WO1999049076A1 - Method for assaying trypsin inhibitor in urine and assay kit to be used therein - Google Patents

Method for assaying trypsin inhibitor in urine and assay kit to be used therein Download PDF

Info

Publication number
WO1999049076A1
WO1999049076A1 PCT/JP1999/000972 JP9900972W WO9949076A1 WO 1999049076 A1 WO1999049076 A1 WO 1999049076A1 JP 9900972 W JP9900972 W JP 9900972W WO 9949076 A1 WO9949076 A1 WO 9949076A1
Authority
WO
WIPO (PCT)
Prior art keywords
trypsin
sample
uti
protease
urine
Prior art date
Application number
PCT/JP1999/000972
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Okamoto
Satoshi Fukunaga
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Publication of WO1999049076A1 publication Critical patent/WO1999049076A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/81Protease inhibitors
    • G01N2333/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • G01N2333/811Serine protease (E.C. 3.4.21) inhibitors
    • G01N2333/8121Serpins
    • G01N2333/8125Alpha-1-antitrypsin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/966Elastase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/976Trypsin; Chymotrypsin

Definitions

  • the present invention relates to a method for measuring urinary trypsin inhibitor and a measurement kit used for the method.
  • UTI urinary trypsin inhibitor
  • UTI inhibits trypsin activity depending on its amount
  • its measurement is performed by measuring the degree of inhibition of trypsin activity.
  • the degree of inhibition of trypsin activity by UTI in a sample is measured by mixing a sample, a buffer solution, and an enzyme solution containing trypsin, adding a substrate solution thereto, and measuring the enzyme reaction. I do.
  • calcium which is a trypsin activator is added to the buffer.
  • UTI is an important indicator of the state of a living body.
  • the disease specificity is low.
  • the present inventors examined the correlation between the amount of UTI in urine and inflammation using C-reactive protein (CRP), which is a representative indicator of inflammation. Nevertheless, it was found that the measured value of UTI may be high. Further investigation of urine samples with high UTI measurements showed that in most of these samples albumin, an indicator of nephropathy, was positive. This means that UTI is increased in urine in the case of nephropathy as well as inflammation, which makes UTI a specific indicator of inflammation or a specific indicator of nephropathy. Can not be used.
  • CRP C-reactive protein
  • an object of the present invention is to provide a method for measuring UTI, which can enhance the clinical usefulness of UTI as an index indicating the state of a living body and accurately measure the amount of UTI, and a measurement kit used therefor. It is to be.
  • a method for measuring UTI according to the present invention is a method for measuring the amount of urinary trypsin inhibitor in a sample, comprising the following steps (a) to (d): It is characterized by having.
  • HI-AT 1-antitrypsin
  • nephropathy in the case of nephropathy, the measured value of UTI by the conventional measurement method was increased. They found that the cause was the leakage of 1-AT from the blood into the urine.
  • prerenal proteins such as albumin appear in the urine because of a decrease in the barrier function of the glomerular basement membrane.
  • ⁇ AT-AT has a trypsin activity inhibitory function like UTI, is contained in large amounts in blood (occupies about 90% of trypsin inhibitor in blood), and has a molecular weight ⁇ isoelectric point. Similar to albumin.
  • Method A is to inactivate ⁇ 1-AT by adding a protease other than trypsin to the sample and reacting the protease with ⁇ 11-AT to form a complex.
  • a 1—AT has only one protease inhibitory active site.
  • UTI has two protease inhibitory sites, and the inhibitory protease is different at each inhibitory site. Therefore, when a protease other than trypsin is added to a sample to form a complex with the a1-AT in the sample and inactivate a1-AT, the UT coexisting in the sample is obtained. I also reacts with the protease to form a complex, There remains a trypsin activity inhibition site. Even if trypsin enzyme activity is measured in this state, UTI can inhibit trypsin activity, so that UTI can be measured without the influence of ⁇ 1-AT.
  • the protease other than the trypsin a protease that does not decompose a trypsin substrate is preferable, and a protease that does not inhibit trypsin is preferable.
  • the protease other than trypsin is preferably a serine protease, but the present invention is not limited to this. This is because ⁇ -AT also reacts with cysteine protease and the like.
  • Preferred specific examples of the protease other than the trypsin include eras yuichi, subtilisin, chymotrypsin, cathepsin, plasmin, thrombin, kallikrein, and perokinase.
  • these proteases more preferred are Erasase and Subtilisin, and particularly preferred is Subtilisin in terms of cost.
  • the protease other than trypsin one kind may be used, or two or more kinds may be used in combination.
  • the addition ratio of Protea Ichize other than the trypsin is preferably from 0. 3 3 X 1 0- 9 ⁇ 1 6. 6 X 1 0- 9 mo 1 to the sample lml, particularly preferably 3 . 3 X 1 0- 9 ⁇ : in the range of L 0. 0 X 1 0- 9 mo l.
  • the addition amount of the protease other than trypsin is represented by mo 1 for the following reason. Usually, the amount of enzyme added is expressed in units based on its activity.
  • the number of the enzymes is a problem because the activity of the enzyme is not a problem and a complex of ⁇ 1-AT and a protease other than trypsin is formed. Therefore, the amount of protease other than trypsin is preferably represented by “mo 1” representing the number of molecules. Good. It should be noted that if the molecular weight of the protease is known, it can be expressed in gram units (g). In practice, when this method A is carried out, it is preferable to use it in terms of gram units. In this case, the addition amount is preferably in the range of 100 to 500 g, particularly preferably in the range of 100 to 300 ⁇ g, per 1 ml of the sample.
  • the addition ratio is preferably in the same range as the above-mentioned ratio. The same applies to the ratio of the amount added in grams.
  • another method is a method in which ⁇ 1-AT in the sample is inactivated by adding an oxidizing agent to the sample.
  • the reactive site with trypsin is the 358th methionine residue. Therefore, when this methionine residue is oxidized to methionine sulfoxide by an oxidizing agent, ⁇ 1 -AT is inactivated.
  • the oxidizing agent is preferably permanganic acid, permanganate, oxyacid, oxyacid salt, metal salts, oxides and peroxides, and particularly preferably sodium iodate, iodine, Copper sulfate and iron trichloride.
  • One type of the oxidizing agent may be used, but it is preferable to use two or more types in combination since a sufficient effect can be obtained.
  • the addition ratio of the oxidizing agent is preferably in the range of 0.05 to 0.5 mmo 1 with respect to the sample lml, and particularly preferably, in the range of 0.01 to 0.1 mmol. Range. If it is less than 0.05 mmol, ⁇ 1 -AT in the sample may not be completely inactivated.
  • the trypsin is not particularly limited, and for example, trypsin derived from bovine gut, trypsin derived from grapevine, and the like can be used.
  • the substrate used is not particularly limited. Examples include natural proteins such as casein and albumin, as well as synthetic substrates. Examples of the synthetic substrate include N-benzoyl-arginine-p-nitroanilide ( ⁇ ⁇ ⁇ ⁇ ⁇ ), ⁇ -benzoyl-lysine-1 ⁇ -nitro-2-lide, and t-butoxycarboyl arginine. 1-p-Nitroanilide, t-butoxycarboniluridine_p_Nitroanilide and the like can be used. These synthetic substrates produce chromogenic substances when decomposed by trypsin. Preferred among these substrates is BAPNA.
  • the buffer used in the measurement method of the present invention is not particularly limited, and examples thereof include a triethanolamine hydrochloride buffer, a Tris-HCl buffer, a phosphate buffer, and a good buffer.
  • the measurement method of the present invention enables UTI in urine to be used as an indicator of inflammation, urine is preferable as the sample to be measured.
  • the target sample for the measurement method of the present invention is not limited to urine, and may include blood, tracheal secretions, and the like.
  • the UTI measurement kit of the present invention includes a measurement kit A and a measurement kit B as shown below, corresponding to the method A or the method B, respectively.
  • the measurement kit A includes trypsin, a substrate, and a protease other than trypsin. By using this measurement kit, the measurement method of the present invention by the method A can be easily and quickly performed.
  • the protease other than the trypsin is preferably a serine protease, as in the method A, but is not limited thereto.
  • Preferred specific examples of the protease other than the trypsin include Erasase, subtilisin, chymotrypsin, cathepsin, plasmin, thrombin, kallikrein and perokinase. This Among them, particularly preferred proteases are Erasase, subtilisin.
  • the protease other than trypsin one kind may be used, or two or more kinds may be used in combination.
  • the measurement kit A includes a trypsin solution (R 1), a substrate solution (R 2), and a protease solution other than trypsin (R 3), and further has a buffer solution (R 4). May be.
  • the preparation of these reagents (R1, R2, R3 and R4) can be carried out by the method described in the description of the measurement method of the present invention according to Method A. It is as described in the measurement method section.
  • the reagents R1, R2, R3 and R4 may be independent of each other, or may be a combination thereof. Specifically, there are combinations of two-liquid systems and three-liquid systems as described below.
  • the measurement kit B includes trypsin, a substrate, and an oxidizing agent.
  • the oxidizing agent is preferably permanganic acid, permanganate, oxyacid, oxyacid salt, metal salt, oxide, peroxide, or the like, as in Method B.
  • Preferred are sodium iodate, iodine, copper sulfate and iron trichloride.
  • one kind of the oxidizing agent may be used, it is preferable to use two or more kinds in combination.
  • the measurement kit B includes a trypsin solution (R 1), a substrate solution (R 2), and an oxidizing agent solution (R 5), and may further have a buffer solution (R 4) in addition thereto. .
  • the preparation of these reagents (R1, R2, R5 and R4) can be carried out by the method described in the description of the measurement method of the present invention by Method B.
  • the compositions and their ratios are as described in the section on the measuring method.
  • the reagents R1, R2, R5 and R4 may be independent of each other, or may be a combination thereof. Specifically, there are three liquid combinations as shown below.
  • the sample to be measured is preferably urine as in the above-described measurement method of the present invention.
  • FIG. 1 is a graph showing the results of measuring UTI by substituting ⁇ 1-AT with subtilisin in one embodiment of the measuring method of the present invention according to method A.
  • FIG. 2 is a graph showing the results of measuring UTI in another example of the measurement method of the present invention according to Method A, by inactivating ⁇ 11-AT using Erasase.
  • FIG. 3 is a graph showing the results of measuring UTI by changing the inactivation time of ⁇ 1-AT with subtilisin in still another example of the measurement method of the present invention according to method A. .
  • FIG. 4 is a graph showing the results obtained by inactivating ⁇ 1-AT using subtilisin and measuring UTI in still another example of the measurement method of the present invention according to method A.
  • FIG. 5 is a graph showing the results of measuring UTI by a conventional method in a comparative example.
  • FIG. 6 is a graph showing the relationship between protein concentration in urine and ⁇ 1-AT concentration in Reference Example.
  • FIG. 7 shows the measurement method of the present invention using Method A and Method B together.
  • FIG. 9 is a graph showing the results of measuring UTI by inactivating ⁇ 1_AT using subtilisin and an oxidizing agent in another example.
  • the measurement method of the present invention by the method A can be carried out using, for example, an enzyme solution containing trypsin (trypsin solution), a substrate solution, and a protease other than trypsin.
  • trypsin solution an enzyme solution containing trypsin
  • substrate solution a substrate solution
  • protease other than trypsin a protease other than trypsin
  • the protease other than trypsin may be used as it is, but is preferably used as a solution containing the protease from the viewpoint of easy operation.
  • the solvent used for preparing the protease solution is usually a buffer, and the buffer is particularly preferable.
  • the buffer is prepared by a conventional method.
  • the pH of the buffer is preferably in the range of pH 7 to 8, which is the optimal pH of trypsin.
  • As a trypsin activator calcium is usually added to the buffer.
  • the compounding ratio is usually in the range of 0.01 to 0.5% by weight with respect to the buffer.
  • the concentration of the trypsin solution is usually in the range of 13,000 to 10,000,000 UZ liters, preferably 130,000, relative to the total trypsin solution. It is in the range of 0 to 2, 000, 000 UZ little.
  • the activity (U) is a value obtained when N ⁇ -benzoyl_L-arginineethyl ester ( ⁇ ) is used as a substrate in the measurement of trypsin activity.
  • the concentration of the trypsin solution is expressed in gram units, the concentration is appropriately determined depending on the specific activity and the like, but is usually in the range of 1 to 50 OmgZ liter with respect to the entire trypsin solution, and is preferably. Ranges from 10 to 10 Omg / litre.
  • this trypsin solution may be adjusted to a pH range of 2.0 to 3.5 with, for example, hydrochloric acid, a buffer solution or the like in order to prevent autolysis of trypsin.
  • the concentration of the substrate solution is usually in the range of 1 to 10 gZ liter.
  • the solvent used for preparing the substrate solution is usually water (purified water or the like), but may be the buffer. Further, since the synthetic substrate is hardly soluble in an aqueous solution or the like, it is preferable that the synthetic substrate be dissolved in an organic solvent such as dimethyl sulfoxide (DMSO) and then diluted with water or the like.
  • DMSO dimethyl sulfoxide
  • a protease other than trypsin is mixed with a urine sample and inactivated.
  • the protease may be directly added to the urine sample.
  • a buffer solution (protease solution) containing the protease is prepared as described above.
  • a urine sample are preferably mixed.
  • ⁇ 1-AT in a urine sample is immediately inactivated at room temperature by the addition of the protease, but it is necessary to incubate at 25 to 37 ° C for 1 to 800 seconds. Is preferred.
  • a trypsin solution is added to the treated urine sample.
  • the mixing ratio of the substrate solution is usually in the range of 5 to 30% by volume based on the total reaction solution.
  • the reaction conditions are usually at 25 to 37 ° C for 1 to 20 minutes.
  • the pH of the reaction solution at this time is preferably in the range of pH 7 to 8, which is the optimum pH for trypsin.
  • the enzyme reaction of trypsin is detected by a predetermined method, and the enzyme activity is measured.
  • ⁇ ⁇ — A in the urine sample Since T is inactivated in advance, the enzymatic reaction of trypsin is inhibited according to the amount of UTI, and the amount of UTI can be measured accurately.
  • a method for detecting the enzymatic reaction of trypsin for example, when a substrate that develops a color by an enzymatic reaction such as ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ is used, a method of measuring the degree of the color development with a spectrophotometer or the like can be mentioned. .
  • the enzyme activity can be measured by measuring the concentration of the enzyme reaction product.
  • the protease treatment of the sample is not limited to the above method, and the protease solution, the sample, and the substrate solution can be mixed in any order. Then, a trypsin solution is added to the mixture to start a trypsin enzymatic reaction.
  • the measurement method of the present invention by the method B can be carried out using, for example, an enzyme solution containing trypsin (trypsin solution), a substrate solution, and an oxidizing agent. Except for the oxidizing agent described below, unless otherwise specified, the same method as the measuring method according to the method A can be used, and it can be prepared in the same manner.
  • the oxidizing agent may be used as it is, but is preferably used as an oxidizing agent solution from the viewpoint of easy operation.
  • the solvent used for preparing the oxidizing agent solution is preferably water in order to maintain its oxidizing power.
  • the oxidizing agent solution may contain other components such as ethylenediaminetetraacetic acid (EDTA).
  • EDTA ethylenediaminetetraacetic acid
  • the addition of EDTA forms a complex with the metal, thereby preventing the formation of a precipitate.
  • an oxidizing agent is mixed with a urine sample and inactivated.
  • the oxidizing agent may be added directly to the urine sample, but from the viewpoint of quickness and simplicity of operation, prepare the oxidizing agent solution as described above and mix it with the urine sample. Is preferred.
  • the addition of the oxidizing agent immediately inactivates ⁇ 1 AT in the urine sample at room temperature, but incubates at 25 to 37 ° C for 10 to 600 seconds. Is preferred.
  • a trypsin enzymatic reaction is carried out in the same manner as in the measurement method according to the above-mentioned method A, and this is detected to measure the enzymatic activity.
  • ⁇ 1 -AT in the urine sample is previously inactivated by an oxidizing agent, so that the enzymatic reaction of trypsin is inhibited in accordance with the amount of UTI, so that an accurate amount of UTI can be measured.
  • the treatment of the sample with the oxidizing agent is not limited to the above method, and the oxidizing agent solution, the sample, and the substrate solution can be mixed in any order. Then, a trypsin solution is added to the mixture to start a trypsin enzymatic reaction.
  • the addition of the oxidizing agent is particularly preferably performed as a pretreatment of the sample, as described above, because of the simplicity of the operation.
  • the sample may be sequentially treated with a protease other than trypsin and an oxidizing agent, or the sample may be treated by simultaneously adding the two to the sample.
  • the oxidizing agent in the range of 1 to 0.05 and 0.5 mmo1.
  • Example A-1 subtilisin was used as a protease other than trypsin, and it was added to urine samples at various concentrations to inactivate ⁇ 1-AT, and the degree of trypsin activity inhibition was determined as the amount of UTI. It is an example.
  • the buffer, trypsin solution and substrate solution in Example A-1 were prepared by the methods described above. The composition and operation method of UTI measurement are shown below.
  • Triethanolamine hydrochloride 0.5 m o 1 Z liter
  • Triton X-405 manufactured by Nacalai Tesque
  • 2.0 gZ little trypsin solution: pH 3.0
  • Sample 1 is a sample ( ⁇ -AT-added urine) obtained by adding ⁇ 1 -AT to the urine of a healthy subject to a concentration of 14 mgZ 100 m 1.
  • the urine protein-positive patient is a patient whose serum CRP and serum amyloid A (SAA) are negative and whose urinary UTI is positive (by the conventional method) (hereinafter, referred to as “UTI”). the same).
  • Sample 3 is healthy subject urine.
  • subtilisin was added at a predetermined concentration (O mgZ lOO ml, 0.4 mg / 100 m 0.8 mgZl 00 ml, 1.2 mgZl 00 ml, 1.6 mgZl 0 ml, 2 mg / lOOm 2.4 mg / 100 mU 3.2 mgZl 100 ml, 4 mg / 100 m1). Then, the urine sample 20/1, the buffer solution 201, and the trypsin solution 1001 after the subtilisin treatment were mixed and kept at 37 ° C. for 5 minutes. The substrate solution 1001 was added to the mixture to start the enzymatic reaction.
  • the reaction solution was kept at 37 ° C., and the change in absorbance (405 nm) of the reaction solution for 2 minutes was measured with a Hitachi 770 type automatic analyzer (manufactured by Hitachi, Ltd.).
  • the relative absorbance ( ⁇ .D.) was determined. From this relative absorbance, the degree of trypsin activity inhibition was determined as the UTI amount using a calibration curve prepared in advance.
  • the calibration curve is a standard solution prepared by dissolving a UTI standard substance (Utinin, manufactured by Mech) in physiological saline. And the measurement was made in the same manner as described above. This UTI measurement was performed three times for each sample. The results are shown in the graph of FIG. '
  • subtilisin As shown in FIG. 1, in the ⁇ -AT-added urine (sample 1), as the amount of subtilisin added increased, the amount of UTI decreased, and subtilisin was added to the sample at 0.4 mg / 100m2. If (to the sample lml 1 3 X 1 0- 9 mo 1 0.) l is added to a above, UT I amount is constant, almost the same amount as UT I of healthy subjects urine (sample 3) Was. This indicates that ⁇ 1-AT added to the urine of healthy subjects was completely inactivated. As for the above serum-supplemented urine Similarly, the addition of subtilisin so that the above (0. 5 3 X 1 0- 9 mo 1 to the sample lml) 1.
  • Example A-2 is an example in which elastase was added to a sample at various concentrations to inactivate ⁇ 1 -AT and the degree of trypsin activity inhibition was determined as the UTI amount. Unless otherwise indicated, the measurement operation of UTI is the same as in Example A-1.
  • Urine from a urine protein-positive patient (urine protein concentration: 54 lmg / 100 ml) was used.
  • the UTI amount decreased in proportion to the Elasic concentration.
  • This sample is urine from a patient with non-inflamed nephropathy. Therefore, UTI showed a high value before the addition of Erasase, and the UTI value decreased as the concentration of Erasase was increased. It can be said that 1-AT is present, which inhibits trypsin activity. The a1-AT is inactivated by adding Erasase. From the results of Example A-2, it can be said that according to the measurement method of the present invention, UTI in urine can be used as an index specific to inflammation.
  • Example A-3 the relationship between the treatment time of a sample with subtilisin and the amount of UTI was examined. Unless otherwise indicated, the used sample and the operation of measuring UTI were the same as those in Example A-1.
  • the buffer was prepared by adding the same subtilisin as in Example A-1 to a concentration of 2 Omg / 100 ml.
  • the subtilisin solution 200 / X1 and the sample 20n1 were mixed and incubated for various times (25 seconds, 50 seconds, 425 seconds, 800 seconds). The temperature during this incubation is 37 ° C. Trip this solution
  • the thin solution 1001 was added, and thereafter the UTI amount was measured in the same manner as in Example A-1.
  • the absorbance was measured using a Roche COBAS MIRA automatic analyzer (manufactured by Roche Japan). The UTI was measured five times. The results are shown in the graph of FIG.
  • Example A-4 and Comparative Example A-1 the correlation between the UTI amount and inflammation was examined. Unless otherwise indicated, the measurement operation of UTI is the same as in Example A-1.
  • Example A-4 the sample 201 was mixed with the subtilisin solution 2001 used in Example A-3, and then the trypsin solution 100a1 was added thereto.
  • the UTI amount was measured in the same manner as in Example A-1.
  • Example A_4 The results of Example A_4 and the control are shown in the graph of FIG.
  • This graph is a graph showing the correlation between the amount of UTI in the urine sample after the subtilisin treatment and the CRP concentration in the serum sample.
  • the equation in the figure is an equation representing the correlation, and R is the phase. The relation numbers are shown.
  • Comparative Example A-1 was treated with a protease other than trypsin. There is no conventional UTI measurement method.
  • the sample 20 was mixed with the buffer solution 200 ⁇ 1 and the trypsin solution 100 ⁇ 1, and the UTI amount was measured in the same manner as in Example A-1.
  • This result and the result of the control are shown in the graph of FIG.
  • This graph is a graph showing the correlation between the UTI amount in the urine sample not treated with the protease and the CRP concentration in the serum sample.
  • the equation in the figure is an equation representing the correlation, and R is The correlation coefficient is shown.
  • This reference example is an example in which the relationship between urine protein concentration and ⁇ 1-AT concentration in urine was examined.
  • the equation in the figure is an equation representing the correlation, and R is a correlation coefficient.
  • the sample with high urine protein concentration is The T concentration also tends to be high, and the two have a high correlation. From this, it can be seen that in nephropathy in which urine protein concentration is increased, ⁇ 1-AT having the same ability to inhibit trypsin activity as UTI is leaked into urine. In other words, in the urine of patients with nephropathy, since ⁇ 1-AT leaked into the urine inhibits triscine activity, it can be said that the amount of UTI in the urine is apparently increased by the conventional method.
  • Example B-1 is an example in which various oxidizing agents were used, added to a urine sample to inactivate 11-AT, and the degree of trypsin activity inhibition was determined as the UTI amount.
  • the buffer, tribcine solution, substrate solution and oxidizing agent in Example B-1 were prepared by the methods described above. The composition and operation method of UTI measurement are shown below.
  • Triethanolamine hydrochloride 0.5 mol / liter
  • Triton X—405 (manufactured by Nacalai Tesque) 2.0 g / liter
  • Serum-containing urine was prepared by mixing normal human urine and serum of a urine protein-positive patient in a volume ratio of 7: 1.
  • a control sample a mixture of physiological saline and the urine of a healthy subject so as to have a volume ratio of 1: 1 (diluted normal subject urine) was used.
  • the sample and the oxidant solution were mixed so that the volume ratio was 1: 1.
  • the urine sample 20 ⁇ 1, the buffer solution 20111 and the trypsin solution 1001 after the treatment with the oxidizing agent were mixed and kept at 37 ° C for 5 minutes.
  • the substrate solution (100 ⁇ 1) was added to the mixture to start an enzyme reaction.
  • the reaction solution was kept at 37 ° C., and the change in absorbance (405 nm) of the reaction solution for 2 minutes was measured with a Hitachi 7770 automatic analyzer (manufactured by Hitachi, Ltd.).
  • the relative absorbance ( ⁇ ⁇ .D.) was determined. From this relative absorbance, the degree of trypsin activity inhibition was determined as the UTI amount using a calibration curve prepared in advance.
  • the calibration curve was prepared by using a standard solution prepared by dissolving a UTI standard substance (Utinin, manufactured by Mekt) in physiological saline in the same manner as described above.
  • a standard solution prepared by dissolving a UTI standard substance (Utinin, manufactured by Mekt) in physiological saline in the same manner as described above.
  • the diluted healthy urine 201, buffer solution 201, and trypsin solution 1001 were mixed, and the UTI amount was measured in the same manner as in Example B-1. .
  • the results are shown in Table 1 below.
  • Example B-1 0.05 M FeCl 3 ⁇ 6H 2 O (manufactured by Wako Pure Chemical Industries, Ltd .; same hereafter) was prepared. Same as Example B-1 except that this was used as an oxidizing agent solution.
  • Example B-4 the degree of inhibition of trypsin activity when EDTA was added as another component to the oxidizing agent solution was determined as the UTI amount.
  • Example B-1 An oxidizing agent solution was used. This solution and the same sample as in Example B-1 were mixed, and thereafter, the UTI amount was determined in the same manner as in Example B-1. The results are shown in Table 1 below.
  • Comparative Example B-1 is an example of a conventional UTI measurement method without treatment with an oxidizing agent.
  • the same sample (serum added urine) and physiological saline as in Example B-1 were mixed in a volume ratio of 1: 1.
  • the mixed solution 20 / X1, the buffer solution 201, and the trypsin solution 100 1 were mixed, and the UTI amount was measured in the same manner as in Example B-1.
  • the results are shown in Table 1 below.
  • Comparative Example B 1 18 26 X As shown in Table 1 above, the values of the UTI amount in Examples B-1 and B-2 are the values of the UTI amount in Comparative Example B-1 (conventional method). The value was significantly reduced as compared with, and a value almost similar to the value of the UTI amount in the urine of the diluted healthy control as a control was obtained. In addition, it was found that when two types of oxidizing agents were used in combination, the effect of inactivating a 1 -AT was sufficiently obtained. Also, the value of the UTI amount in Example B-3 was smaller than the value of the UTI amount in Comparative Example B-1 (conventional method), and the UTI amount in the diluted normal healthy urine as a control was also reduced. A value close to the value was obtained. Also, the values of UTI in Examples B-4 and B-5 to which EDTA was added were also smaller than the values of UTI in Comparative Example B-1 (conventional method). A value close to the value of UTI in human urine was obtained.
  • Example C-11 is an example in which both a protease other than trypsin and an oxidizing agent were added to the sample, and the degree of trypsin inhibition was determined as the UTI amount. is there. In order to evaluate whether ⁇ -AT was sufficiently inactivated when the protease and the oxidizing agent were used in combination, the amount of UTI when the sample was treated only with a protease other than trypsin was also determined. I asked.
  • Example A-1 The same subtilisin as in Example A-1 was added to the buffer solution to a concentration of 0.02 mgZm1.
  • the serum of the patient was mixed with the urine of a healthy subject to a predetermined concentration (0% by volume, 20% by volume, 40% by volume, 60% by volume, 80% by volume, and 100% by volume). A sample was used.
  • the sample and the oxidant solution are mixed in a volume ratio of 2: 1 (0.05 mmo 1 of the oxidant per 1 m 1 of sample), and the mixed solution 7500 / and mixing the subtilisin solution 2 50 1 1 (subtilisin 1 3. to the sample lm l 3 X 1 0- 9 mo l). Thereafter, in the same manner as in Example A-1, the trypsin solution and the substrate solution were added, and the UTI amount was measured. The UTI amount was measured three times, and the average was determined.
  • sample and physiological saline were mixed in a volume ratio of 2: 1 and the subtilisin solution 2501 (sample Fee 1 m 1 were mixed subtilisin 1 3. 3 X 1 0- 9 mo 1) relative to measure the UT I amount in the same manner as described above.
  • Comparative Example C-11 is an example of a conventional UTI measurement method in which a sample is not treated with any protease or oxidizing agent other than trypsin.
  • the sample was mixed with physiological saline, and subtilisin was added.
  • the UTI amount was measured in the same manner as described above except that the buffer was added instead of the solution.
  • Comparative Example C-1 showed a high UTI amount due to the influence of ⁇ -AT, which exceeded the measurement range.
  • the sample was treated with both subtilisin and the oxidizing agent, and when the sample was treated with only subtilisin, the UTI amount was sufficiently reduced as compared with Comparative Example C-11, and both UTI amounts were reduced. Also showed almost the same values. From this, it was found that even when a protease other than trypsin and an oxidizing agent were used in combination, ⁇ 1-AT in the sample could be sufficiently inactivated. It can be assumed that the increase in UTI value with increasing serum concentration (% by volume) in the sample is due to UTI contained in serum.
  • the method for measuring UTI is a method for measuring UTI in the sample by measuring trypsin activity in the presence of the sample, wherein the contact between the trypsin and the sample is measured.
  • the amount of UTI Prior to inactivating ⁇ AT-AT in a sample, the amount of UTI can be accurately measured and the usefulness of UTI as a clinical index can be enhanced. For example, if UTI in urine is measured by the measurement method of the present invention, UTI can be accurately measured even in urine of a nephropathy patient. Yes, this means that UTI can be used as an indicator of inflammation,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method for assaying UTI which comprises inactivating α1-antitrypsin (α1-AT) in a specimen, mixing a trypsin solution with the specimen, then adding a substrate to thereby initiate an enzyme reaction, and determining UTI by measuring absorbance, etc. The α1-AT may be inactivated by adding a protease other than trypsin to the specimen and reacting the protease with α1-AT to thereby form a complex, or by adding an oxidizing agent to the specimen. As the protease described above, use may be made of elastase or subtilisin. As the oxidizing agent described above, use may be made of sodium iodate, iodine, copper sulfate and iron trichloride. As the graph in the figure shows, α1-AT in the specimen is inactivated by adding subtilisin and thus the amount of UTI can be accurately determined.

Description

明細 : 尿中トリプシンィンヒビ夕一の測定方法およびそれに用いる測定キッ ト 技術分野 Description : Urinary trypsin inhibitor assay method and assay kit used therefor
本発明は、 尿中トリプシンインヒビ夕一の測定方法およびそれに用い る測定キッ トに関する。  The present invention relates to a method for measuring urinary trypsin inhibitor and a measurement kit used for the method.
背景技術 Background art
最近、 尿中トリプシンインヒビ夕一 (U T I ) が、 生体の状態を表わ す指標として注目され、 臨床医学の分野において様々な研究がされてい る。 U T I は、 例えば、 生体が炎症や外科手術等の内的および外的スト レスに晒された場合や感染症に罹った場合に、 尿中に出現することが知 られている (「尿中トリプシンインヒビ夕一の臨床的意義」、 桑島士郎ら、 Recently, urinary trypsin inhibitor (UTI) has been attracting attention as an indicator of the state of a living body, and various studies have been conducted in the field of clinical medicine. UTIs are known to appear in urine, for example, when the body is exposed to internal and external stresses such as inflammation and surgery, or when it becomes infected (see “Urine trypsin”). Clinical significance of Yuichi Inhibi ", Shiro Kuwashima and others
JAPANESE JOURNAL OF INFLAMMATION REVIEW ARTICLE, VOL9, NO. 3, MAY 1989)。 なお、 U T Iは、 最初、 尿中でその存在 が確認されたが、 その後の研究により、 血液等の他の体液中にも存在す ることが明らかになつている。 JAPANESE JOURNAL OF INFLAMMATION REVIEW ARTICLE, VOL9, NO. 3, MAY 1989). UTI was first identified in urine, but subsequent studies have revealed that UTI is also present in other body fluids such as blood.
U T Iは、 その量に応じてトリプシン活性を阻害するため、 その測定 は、 トリプシン活性の阻害程度を測定することによって行われる。 一般 的には、 試料、 緩衝液およびトリプシンを含有する酵素液を混合し、 こ れに基質溶液を添加して、 酵素反応を測定することにより、 試料中の U T I によるトリプシン活性の阻害程度を測定する。 通常、 この測定にお いて、 トリプシン活性化剤であるカルシウムが、 前記緩衝液に配合され る。  Since UTI inhibits trypsin activity depending on its amount, its measurement is performed by measuring the degree of inhibition of trypsin activity. Generally, the degree of inhibition of trypsin activity by UTI in a sample is measured by mixing a sample, a buffer solution, and an enzyme solution containing trypsin, adding a substrate solution thereto, and measuring the enzyme reaction. I do. Usually, in this measurement, calcium which is a trypsin activator is added to the buffer.
発明の開示 Disclosure of the invention
前述のように、 U T Iは、 生体の状態を表わす指標としてその重要性 が指摘されているものの、 疾患特異性が低いという問題がある。 As mentioned above, UTI is an important indicator of the state of a living body. However, there is a problem that the disease specificity is low.
例えば、 本発明者らが、 炎症の代表的な指標である C反応性タンパク (CRP) を用い、 尿中の UT I量と炎症との相関関係を調べたところ、 CRPが陰性であるにもかかわらず、 UT Iの測定値が高くなる場合が あることが分かった。 この UT I測定値が高い尿試料をさらに調べたと ころ、 これらの試料の大半において、 腎症の指標であるアルブミンが陽 性であった。 このことは、 UT Iが、 炎症だけでなく、 腎症の場合にも 尿中に増加することを意味し、 これでは UT Iを炎症の特異的指標若し くは腎症の特異的指標として用いることができない。  For example, the present inventors examined the correlation between the amount of UTI in urine and inflammation using C-reactive protein (CRP), which is a representative indicator of inflammation. Nevertheless, it was found that the measured value of UTI may be high. Further investigation of urine samples with high UTI measurements showed that in most of these samples albumin, an indicator of nephropathy, was positive. This means that UTI is increased in urine in the case of nephropathy as well as inflammation, which makes UTI a specific indicator of inflammation or a specific indicator of nephropathy. Can not be used.
さらに、 本発明者らの研究結果によると、 従来の UT Iの測定方法で は、 尿中に存在する UT I量を正確に測定できていないということも分 かった。  In addition, according to the research results of the present inventors, it was also found that the conventional method for measuring UTI cannot accurately measure the amount of UTI present in urine.
そこで、 本発明の目的は、 生体の状態を表わす指標としての UT Iの 臨床的有用性を高めることができ、 かつ正確に UT I量を測定できる U T Iの測定方法およびそれに用いる測定キッ トを提供することである。 前記目的を達成するために、 本発明の UT Iの測定方法は、 試料中の 尿中トリプシンィンヒビ夕一の量を測定する方法であって、 以下の (a) 〜 (d) の工程を有することを特徴とする。  Therefore, an object of the present invention is to provide a method for measuring UTI, which can enhance the clinical usefulness of UTI as an index indicating the state of a living body and accurately measure the amount of UTI, and a measurement kit used therefor. It is to be. In order to achieve the above object, a method for measuring UTI according to the present invention is a method for measuring the amount of urinary trypsin inhibitor in a sample, comprising the following steps (a) to (d): It is characterized by having.
(a) 試料中の a 1—アンチトリブシン (以下 「ひ 1一 AT」 という) を不活性化する工程。  (a) a step of inactivating a 1-antitrypsin (hereinafter referred to as “HI-AT”) in a sample;
(b) 前記不活性化の後、 試料とトリプシンとを混合する工程。  (b) a step of mixing the sample and trypsin after the inactivation.
(c) 前記トリプシンの活性の阻害を測定する工程。  (c) a step of measuring the inhibition of the trypsin activity.
(d) 前記阻害から試料中の尿中トリプシンインヒビ夕一の量を決定 する工程。  (d) determining the amount of urinary trypsin inhibitor in the sample from the inhibition.
本発明者らは、 前述の調査結果をさらに綿密に検討し、 研究を続けた 結果、 腎症において、 従来の測定方法による UT Iの測定値が高くなる のは、 血液中のひ 1—ATが尿中に漏出することが原因であることを突 き止めた。 腎症において、 アルブミンのような腎前性タンパク質が尿中 に出現するのは、腎糸球体基底膜のバリヤー機能が低下するためである。 また、 α ΐ— ATは、 UT I と同様にトリプシン活性阻害機能を有し、 血液中に多量に含まれ (血液中におけるトリプシン阻害物質の約 90 % を占める)、 その分子量ゃ等電点がアルブミンと類似している。 したがつ て、 腎症であれば、 アルブミンと共に、 血液中の α 1—ATも尿中に漏 出するはずである。 このため、 従来の測定方法では、 UT Iのトリプシ ン活性阻害に加え、 血液中から尿中に漏出した α 1— ATのトリプシン 活性阻害も測定しているのである。 さらに、 腎症では、 尿中の UT I濃 度もほとんど増加しないことを突き止めた。 すなわち、 α ΐ— ATによ る影響を排除すれば、 UT Iを正確に測定することができるばかりでな く、尿中の UT Iを炎症特有の指標として用いることができるのである。 本発明者らは、 このような研究結果および着想に基づき、 前記本発明の 測定方法に到達したのである。 The present inventors have further examined the above-mentioned findings and continued their research.As a result, in the case of nephropathy, the measured value of UTI by the conventional measurement method was increased. They found that the cause was the leakage of 1-AT from the blood into the urine. In nephropathy, prerenal proteins such as albumin appear in the urine because of a decrease in the barrier function of the glomerular basement membrane. Also, α AT-AT has a trypsin activity inhibitory function like UTI, is contained in large amounts in blood (occupies about 90% of trypsin inhibitor in blood), and has a molecular weight ゃ isoelectric point. Similar to albumin. Therefore, in the case of nephropathy, along with albumin, α1-AT in the blood should also leak into the urine. Therefore, in the conventional measurement method, in addition to the inhibition of UTI trypsin activity, the inhibition of trypsin activity of α1-AT leaked from blood into urine is measured. In addition, we found that in nephropathy, the UTI concentration in urine hardly increased. That is, if the effects of αΐ-AT are eliminated, not only can UTI be measured accurately, but also UTI in urine can be used as an index specific to inflammation. The present inventors have arrived at the measurement method of the present invention based on such research results and ideas.
本発明の測定方法において、 前記ひ 1一 ATを不活性化する手段とし ては、 例えば、 以下に示す二つの方法がある。  In the measurement method of the present invention, as means for inactivating the above-mentioned AT, there are, for example, the following two methods.
一つの方法 (方法 A) は、 前記試料にトリプシン以外のプロテア一ゼ を添加し、 前記プロテアーゼと α 1一 ATとを反応させて複合体を形成 させることにより、 α 1— ATを不活性化する方法である。  One method (method A) is to inactivate α1-AT by adding a protease other than trypsin to the sample and reacting the protease with α11-AT to form a complex. How to
a 1— ATは、 プロテアーゼ阻害活性部位が一つしかない。 これに対 し、 UT Iは、 プロテア一ゼ活性阻害部位を二つ有しており、 阻害する プロテア一ゼは各阻害部位で異なる。 したがって、 試料にトリプシン以 外のプロテア一ゼを添加して、 前記試料中の a 1一 ATと複合体を形成 させて、 a 1— ATを不活性にした場合、 前記試料中に共存する UT I も前記プロテアーゼと反応して複合体を形成したとしても、 もう一方の トリプシン活性阻害部位が残っている。 この状態でトリプシンの酵素活 性を測定しても、 UT Iはトリプシンの活性を阻害することができるた め、 α 1— ATの影響なく UT I を測定することができる。 前記トリプ シン以外のプロテア一ゼとしては、 トリプシンの基質を分解しないもの が好ましく、 またトリプシンを阻害しないものが好ましい。 a 1—AT has only one protease inhibitory active site. On the other hand, UTI has two protease inhibitory sites, and the inhibitory protease is different at each inhibitory site. Therefore, when a protease other than trypsin is added to a sample to form a complex with the a1-AT in the sample and inactivate a1-AT, the UT coexisting in the sample is obtained. I also reacts with the protease to form a complex, There remains a trypsin activity inhibition site. Even if trypsin enzyme activity is measured in this state, UTI can inhibit trypsin activity, so that UTI can be measured without the influence of α1-AT. As the protease other than the trypsin, a protease that does not decompose a trypsin substrate is preferable, and a protease that does not inhibit trypsin is preferable.
α ΐ— ATは、 セリンプロテア一ゼインヒビ夕一であるから、 前記ト リプシン以外のプロテア一ゼは、 セリンプロテアーゼが好ましいが、 本 発明は、 これに限定されない。 α ΐ— ATは、 システィンプロテアーゼ 等とも反応するからである。 前記トリプシン以外のプロテアーゼの好ま しい具体例としては、 エラス夕一ゼ、 ズブチリシン、 キモトリブシン、 カテブシン、 プラスミン、 トロンビン、 カリクレインおよびゥロキナー ゼ等があげられる。 これらのプロテア一ゼのなかで、 より好ましいのは、 エラス夕一ゼ、 ズブチリシンであり、 特に好ましくは、 コストの点から、 ズブチリシンである。 前記トリプシン以外のプロテア一ゼは、 1種類を 用いてもよいし、 2種類以上を併用してもよい。  Since α AT-AT is a serine protease inhibitor, the protease other than trypsin is preferably a serine protease, but the present invention is not limited to this. This is because αΐ-AT also reacts with cysteine protease and the like. Preferred specific examples of the protease other than the trypsin include eras yuichi, subtilisin, chymotrypsin, cathepsin, plasmin, thrombin, kallikrein, and perokinase. Among these proteases, more preferred are Erasase and Subtilisin, and particularly preferred is Subtilisin in terms of cost. As the protease other than trypsin, one kind may be used, or two or more kinds may be used in combination.
方法 Aにおいて、 前記トリプシン以外のプロテア一ゼの添加割合は、 試料 l m l に対し 0. 3 3 X 1 0— 9〜 1 6. 6 X 1 0— 9m o 1 の範囲が 好ましく、 特に好ましくは 3. 3 X 1 0— 9〜: L 0. 0 X 1 0— 9mo l の 範囲である。 0. 3 3 X 1 0— 9mo lより少ないと、 試料中の α 1— A Tを完全に不活性化できないおそれがある。 なお、 この方法 Aにおいて、 トリプシン以外のプロテア一ゼの添加量を mo 1で表したのは、 以下の 理由による。 通常、 酵素の添加量は、 その活性を基準にしたユニッ ト単 位で表される。 しかし、 前述のように、 方法 Aでは、 酵素の活性を問題 とせず、 α 1— ATとトリプシン以外のプロテア一ゼとの複合体を形成 させるのだから、 その数が問題となる。 したがって、 前記トリプシン以 外のプロテア一ゼの添加量は、 分子数を表す 「mo 1」 で表すことが好 ましい。 なお、 前記プロテアーゼの分子量がわかればグラム単位 (g) で表示することができ、 実際に、 この方法 Aを実施する場合、 グラム単 位に換算して使用することが好ましい。 この場合、 前記添加量は、 試料 1 m 1に対し 1 0〜 5 0 0 gの範囲が好ましく、 特に好ましくは、 1 00〜 3 0 0 μ gの範囲である。 In the method A, the addition ratio of Protea Ichize other than the trypsin is preferably from 0. 3 3 X 1 0- 9 ~ 1 6. 6 X 1 0- 9 mo 1 to the sample lml, particularly preferably 3 . 3 X 1 0- 9 ~: in the range of L 0. 0 X 1 0- 9 mo l. When the content is less than 0. 3 3 X 1 0- 9 mo l, it may not be completely inactivated the alpha 1-AT in the sample. In addition, in this method A, the addition amount of the protease other than trypsin is represented by mo 1 for the following reason. Usually, the amount of enzyme added is expressed in units based on its activity. However, as described above, in Method A, the number of the enzymes is a problem because the activity of the enzyme is not a problem and a complex of α1-AT and a protease other than trypsin is formed. Therefore, the amount of protease other than trypsin is preferably represented by “mo 1” representing the number of molecules. Good. It should be noted that if the molecular weight of the protease is known, it can be expressed in gram units (g). In practice, when this method A is carried out, it is preferable to use it in terms of gram units. In this case, the addition amount is preferably in the range of 100 to 500 g, particularly preferably in the range of 100 to 300 μg, per 1 ml of the sample.
また、 前記トリプシン以外のプロテアーゼとして前記ズブチリシンま たはエラス夕ーゼを使用する場合も、 前記添加割合と同様の範囲である ことが好ましい。 また、 グラム単位で表した添加量の割合も同様である。 つぎに、 もう一つの方法 (方法 B) は、 試料に酸化剤を添加すること により、 前記試料中の α 1— ATを不活性化するという方法である。 α ΐ— ATにおける、 トリプシンとの反応部位は、 3 5 8番目のメチ ォニン残基である。 したがって、 酸化剤により、 このメチォニン残基を メチォニンスルホキシドに酸化すると、 α 1— ATは、 不活性化される。 この方法 Bにおいて、 前記酸化剤は、 過マンガン酸、 過マンガン酸塩、 酸素酸、 酸素酸塩、 金属塩類、 酸化物および過酸化物等が好ましく、 特 に好ましくは、 ヨウ素酸ナトリウム、 ヨウ素、 硫酸銅および三塩化鉄で ある。 なお、 前記酸化剤は、 1種類を用いてもよいが、 十分な効果が得 られることから、 2種類以上を併用することが好ましい。  When the subtilisin or elastase is used as a protease other than the trypsin, the addition ratio is preferably in the same range as the above-mentioned ratio. The same applies to the ratio of the amount added in grams. Next, another method (method B) is a method in which α1-AT in the sample is inactivated by adding an oxidizing agent to the sample. In α-AT, the reactive site with trypsin is the 358th methionine residue. Therefore, when this methionine residue is oxidized to methionine sulfoxide by an oxidizing agent, α 1 -AT is inactivated. In this method B, the oxidizing agent is preferably permanganic acid, permanganate, oxyacid, oxyacid salt, metal salts, oxides and peroxides, and particularly preferably sodium iodate, iodine, Copper sulfate and iron trichloride. One type of the oxidizing agent may be used, but it is preferable to use two or more types in combination since a sufficient effect can be obtained.
方法 Bにおいて、 前記酸化剤の添加割合は、 試料 lm l に対し 0. 0 0 5〜0. 5mmo 1の範囲であることが好ましく、 特に好ましくは、 0. 0 1〜0. l mmo lの範囲である。 0. 0 0 5 mmo lより少な いと、 試料中の α 1—ATを完全に不活性化できないおそれがある。 本発明の測定方法において、 前記トリプシンとしては、 特に制限され ず、 例えば、 牛塍臓由来のトリプシン、 ブ夕滕臓由来のトリプシン等が 使用できる。  In the method B, the addition ratio of the oxidizing agent is preferably in the range of 0.05 to 0.5 mmo 1 with respect to the sample lml, and particularly preferably, in the range of 0.01 to 0.1 mmol. Range. If it is less than 0.05 mmol, α 1 -AT in the sample may not be completely inactivated. In the measurement method of the present invention, the trypsin is not particularly limited, and for example, trypsin derived from bovine gut, trypsin derived from grapevine, and the like can be used.
本発明の測定方法において、 使用される基質としては、 特に制限され ず、 例えば、 カゼイン、 アルブミン等の天然のタンパク質の他、 合成基 質等があげられる。 前記合成基質としては、 例えば、 N ひ一ベンゾィル 一アルギニン— p—二トロアニリ ド (Β Α Ρ Ν Α )、 Ν α—ベンゾィル— リジン一 ρ —二トロア二リ ド、 t 一ブトキシカルボ二ルーアルギニン一 p—二卜ロア二リ ド、 t —ブトキシカルボ二ルーリジン _ p _二トロア ニリ ド等が使用できる。 これらの合成基質は、 トリプシンにより分解さ れると発色物質を生成する。 これらの基質の中で好ましいのは、 B A P N Aである。 In the measurement method of the present invention, the substrate used is not particularly limited. Examples include natural proteins such as casein and albumin, as well as synthetic substrates. Examples of the synthetic substrate include N-benzoyl-arginine-p-nitroanilide (Β Α Ρ Ν Α), Να-benzoyl-lysine-1 ρ-nitro-2-lide, and t-butoxycarboyl arginine. 1-p-Nitroanilide, t-butoxycarboniluridine_p_Nitroanilide and the like can be used. These synthetic substrates produce chromogenic substances when decomposed by trypsin. Preferred among these substrates is BAPNA.
本発明の測定方法において、 使用される緩衝液としては、 特に制限さ れず、 例えば、 トリエタノールァミン塩酸塩緩衝液、 トリス塩酸緩衝液、 リン酸緩衝液、 グッ ド緩衝液等があげられる。  The buffer used in the measurement method of the present invention is not particularly limited, and examples thereof include a triethanolamine hydrochloride buffer, a Tris-HCl buffer, a phosphate buffer, and a good buffer.
本発明の測定方法は、 尿中の U T I を炎症の指標とすることを可能に するから、 その測定対象試料としては尿が好ましい。 しかし、 U T Iは、 尿以外の体液にも存在するため、 本発明の測定方法の対象試料は、 尿に 限定されず、 その他、 血液、 気管分泌物等がある。  Since the measurement method of the present invention enables UTI in urine to be used as an indicator of inflammation, urine is preferable as the sample to be measured. However, since UTI is also present in body fluids other than urine, the target sample for the measurement method of the present invention is not limited to urine, and may include blood, tracheal secretions, and the like.
つぎに、 本発明の U T I測定キッ トは、 方法 Aまたは方法 Bにそれぞ れ対応して、 以下に示すように、 測定キッ ト Aおよび測定キッ ト Bがあ る。  Next, the UTI measurement kit of the present invention includes a measurement kit A and a measurement kit B as shown below, corresponding to the method A or the method B, respectively.
前記測定キッ ト Aは、 トリプシン、 基質およびトリプシン以外のプロ テア一ゼを備える。 この測定キッ トを用いれば、 方法 Aによる本発明の 測定方法を容易かつ迅速に実施できる。  The measurement kit A includes trypsin, a substrate, and a protease other than trypsin. By using this measurement kit, the measurement method of the present invention by the method A can be easily and quickly performed.
前記測定キッ ト Aにおいて、 前記トリプシン以外のプロテア一ゼは、 前記方法 Aと同様に、 セリンプロテアーゼが好ましいが、 これに限定さ れない。前記トリプシン以外のプロテアーゼの好ましい具体例としては、 エラス夕一ゼ、 ズブチリシン、 キモトリブシン、 カテブシン、 プラスミ ン、 トロンビン、 カリクレインおよびゥロキナーゼ等があげられる。 こ のなかで、 特に好ましいプロテアーゼは、 エラス夕ーゼ、 ズブチリシン である。 前記トリプシン以外のプロテア一ゼは、 1種類を用いてもよい し、 2種類以上を併用してもよい。 In the measurement kit A, the protease other than the trypsin is preferably a serine protease, as in the method A, but is not limited thereto. Preferred specific examples of the protease other than the trypsin include Erasase, subtilisin, chymotrypsin, cathepsin, plasmin, thrombin, kallikrein and perokinase. This Among them, particularly preferred proteases are Erasase, subtilisin. As the protease other than trypsin, one kind may be used, or two or more kinds may be used in combination.
前記測定キッ ト Aは、 トリプシン溶液 (R 1 )、 基質溶液 (R 2) およ びトリプシン以外のプロテア一ゼ溶液 (R 3) を備え、 これらに加え、 緩衝液 (R 4) を有していてもよい。 これらの試薬 (R l、 R 2、 R 3 および R 4) の調製は、 方法 Aによる本発明の測定方法の説明において 述べる方法により行うことができ、 また各組成およびその割合等は、 前 記測定方法の箇所で述べるとおりである。  The measurement kit A includes a trypsin solution (R 1), a substrate solution (R 2), and a protease solution other than trypsin (R 3), and further has a buffer solution (R 4). May be. The preparation of these reagents (R1, R2, R3 and R4) can be carried out by the method described in the description of the measurement method of the present invention according to Method A. It is as described in the measurement method section.
この測定キッ ト Aにおいて、 試薬 R l、 R 2、 R 3および R 4は、 そ れぞれ独立してもよく、 またこれらの組み合わせであってもよい。 具体 的には下記のように 2液系および 3液系の組み合わせがある。  In the measurement kit A, the reagents R1, R2, R3 and R4 may be independent of each other, or may be a combination thereof. Specifically, there are combinations of two-liquid systems and three-liquid systems as described below.
( 1 ) 3液系 : R 1 + R 2 + R 3と R 4の混合液  (1) Three-component system: a mixture of R 1 + R 2 + R 3 and R 4
( 2 ) 2液系 : R 1 +R 2と R 3と R 4の混合液  (2) Two-component system: mixed solution of R 1 + R 2, R 3 and R 4
つぎに、 前記測定キッ ト Bは、 トリプシン、 基質および酸化剤を備え る。 この測定キッ ト Bを用いれば、 方法 Bによる本発明の測定方法を容 易かつ迅速に実施することができる。  Next, the measurement kit B includes trypsin, a substrate, and an oxidizing agent. By using this measurement kit B, the measurement method of the present invention by the method B can be easily and quickly performed.
前記測定キッ ト Bにおいて、 前記酸化剤は、 前記方法 Bと同様に、 過 マンガン酸、 過マンガン酸塩、 酸素酸、 酸素酸塩、 金属塩類、 酸化物お よび過酸化物等が好ましく、 特に好ましくはヨウ素酸ナトリウム、 ヨウ 素、 硫酸銅および三塩化鉄である。 前記酸化剤は、 1種類を用いてもよ いが、 2種類以上を併用することが好ましい。  In the measurement kit B, the oxidizing agent is preferably permanganic acid, permanganate, oxyacid, oxyacid salt, metal salt, oxide, peroxide, or the like, as in Method B. Preferred are sodium iodate, iodine, copper sulfate and iron trichloride. Although one kind of the oxidizing agent may be used, it is preferable to use two or more kinds in combination.
前記測定キッ ト Bは、 トリプシン溶液 (R 1 )、 基質溶液 (R 2) およ び酸化剤溶液 (R 5) を備え、 これらに加え、 緩衝液 (R 4) を有して いてもよい。 これらの試薬 (R l、 R 2、 R 5および R 4) の調製は、 方法 Bによる本発明の測定方法の説明において述べる方法により行うこ とができ、 また各組成およびその割合等は、 前記測定方法の箇所で述べ るとおりである。 The measurement kit B includes a trypsin solution (R 1), a substrate solution (R 2), and an oxidizing agent solution (R 5), and may further have a buffer solution (R 4) in addition thereto. . The preparation of these reagents (R1, R2, R5 and R4) can be carried out by the method described in the description of the measurement method of the present invention by Method B. The compositions and their ratios are as described in the section on the measuring method.
この測定キッ ト Bにおいて、 試薬 R l、 R 2、 R 5および R 4は、 そ れぞれ独立してもよく、 またこれらの組み合わせであってもよい。 具体 的には下記のような 3液系の組み合わせがある。  In the measurement kit B, the reagents R1, R2, R5 and R4 may be independent of each other, or may be a combination thereof. Specifically, there are three liquid combinations as shown below.
3液系 : R 1 +R 5 + R 2と R 4の混合液  Three-part system: R 1 + R 5 + R 2 and R 4 mixture
また、 本発明の測定キッ ト A、 Bにおいて、 その測定対象試料は、 前 述の本発明の測定方法と同様に尿が好ましい。  In the measurement kits A and B of the present invention, the sample to be measured is preferably urine as in the above-described measurement method of the present invention.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 方法 Aによる本発明の測定方法の一実施例において、 ズブチ リシンを用いて α 1—ATを不活性にし、 UT Iの測定を行った結果を 示すグラフである。  FIG. 1 is a graph showing the results of measuring UTI by substituting α1-AT with subtilisin in one embodiment of the measuring method of the present invention according to method A.
図 2は、 方法 Aによる本発明の測定方法のその他の実施例において、 エラス夕一ゼを用いて α 1一 ATを不活性にし、 UT Iの測定を行った 結果を示すグラフである。  FIG. 2 is a graph showing the results of measuring UTI in another example of the measurement method of the present invention according to Method A, by inactivating α11-AT using Erasase.
図 3は、 方法 Aによる本発明の測定方法のさらにその他の実施例にお いて、 ズブチリシンによる α 1— ATの不活性化処理時間を変えて、 U T Iの測定を行った結果を示すグラフである。  FIG. 3 is a graph showing the results of measuring UTI by changing the inactivation time of α1-AT with subtilisin in still another example of the measurement method of the present invention according to method A. .
図 4は、 方法 Aによる本発明の測定方法のさらにその他の実施例にお いて、 ズブチリシンを用いて α 1— ATを不活性にし、 UT Iの測定を 行った結果を示すグラフである。  FIG. 4 is a graph showing the results obtained by inactivating α1-AT using subtilisin and measuring UTI in still another example of the measurement method of the present invention according to method A.
図 5は、 比較例において、 従来の方法により、 UT Iの測定を行った 結果を示すグラフである。  FIG. 5 is a graph showing the results of measuring UTI by a conventional method in a comparative example.
図 6は、 参考例において、 尿中のタンパク質濃度と α 1— AT濃度と の関係を示すグラフである。  FIG. 6 is a graph showing the relationship between protein concentration in urine and α1-AT concentration in Reference Example.
図 7は、 方法 Aと方法 Bとを併用した本発明の測定方法のさらにその 他の実施例において、 ズブチリシンと酸化剤とを用いて α 1 _ ATを不 活性にし、 UT I の測定を行った結果を示すグラフである。 FIG. 7 shows the measurement method of the present invention using Method A and Method B together. FIG. 9 is a graph showing the results of measuring UTI by inactivating α1_AT using subtilisin and an oxidizing agent in another example.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
方法 Aによる本発明の測定方法は、 例えば、 トリプシンを含有する酵 素液 (トリプシン溶液) と、 基質溶液と、 トリプシン以外のプロテア一 ゼとを用いて実施できる。  The measurement method of the present invention by the method A can be carried out using, for example, an enzyme solution containing trypsin (trypsin solution), a substrate solution, and a protease other than trypsin.
前記トリプシン以外のプロテア一ゼは、 そのまま使用してもよいが、 操作の簡便性等の点から、 前記プロテアーゼを含有する溶液として用い ることが好ましい。 前記プロテア一ゼ溶液の調製に用いる溶媒は、 通常、 緩衝液であり、 特に前記緩衝液が好ましい。  The protease other than trypsin may be used as it is, but is preferably used as a solution containing the protease from the viewpoint of easy operation. The solvent used for preparing the protease solution is usually a buffer, and the buffer is particularly preferable.
前記緩衝液は、 常法により調製される。 前記緩衝液の pHは、 トリプ シンの最適 P Hである p H 7〜 8の範囲が好ましい。 また、 トリプシン 活性化剤として、 通常、 緩衝液中にカルシウムを配合する。 その配合割 合は、 通常、 前記緩衝液に対して 0. 0 1〜0. 5重量%の範囲である。 前記トリプシン溶液の濃度は、 前記トリプシン溶液全体に対し、 通常、 1 3, 0 0 0〜 1 0, 0 0 0, 0 0 0 UZリッ トルの範囲であり、 好ま しくは 1 3 0, 0 0 0〜 2 , 0 0 0 , 0 0 0 UZリッ トルの範囲である。 なお、 この活性 (U) は、 トリプシン活性の測定において、 基質として N α—ベンゾィル _ L一アルギニンェチルエステル (ΒΑΕ Ε) を用い た場合の値である。 また、 前記トリプシン溶液の濃度をグラム単位を用 いて表す場合、 その比活性等により適宜決定されるが、 前記トリプシン 溶液全体に対し、 通常、 1〜 5 0 OmgZリッ トルの範囲であり、 好ま しくは 1 0〜 1 0 Omg/リッ トルの範囲である。 また、 このトリプシ ン溶液は、 トリプシンの自己消化を防止する目的で、 例えば、 塩酸、 緩 衝液等により pH 2. 0〜 3. 5の範囲に調整してもよい。  The buffer is prepared by a conventional method. The pH of the buffer is preferably in the range of pH 7 to 8, which is the optimal pH of trypsin. As a trypsin activator, calcium is usually added to the buffer. The compounding ratio is usually in the range of 0.01 to 0.5% by weight with respect to the buffer. The concentration of the trypsin solution is usually in the range of 13,000 to 10,000,000 UZ liters, preferably 130,000, relative to the total trypsin solution. It is in the range of 0 to 2, 000, 000 UZ little. The activity (U) is a value obtained when Nα-benzoyl_L-arginineethyl ester (ΒΑΕ) is used as a substrate in the measurement of trypsin activity. When the concentration of the trypsin solution is expressed in gram units, the concentration is appropriately determined depending on the specific activity and the like, but is usually in the range of 1 to 50 OmgZ liter with respect to the entire trypsin solution, and is preferably. Ranges from 10 to 10 Omg / litre. In addition, this trypsin solution may be adjusted to a pH range of 2.0 to 3.5 with, for example, hydrochloric acid, a buffer solution or the like in order to prevent autolysis of trypsin.
前記基質溶液の濃度は、 通常、 1〜 1 0 gZリッ トルの範囲である。 前記基質溶液の調製に用いる溶媒は、 通常、 水 (精製水等) であるが、 前記緩衝液でもよい。 また、 前記合成基質は、 水溶液等には難溶である ため、 例えば、 ジメチルスルホキシド (D M S O ) 等の有機溶媒に溶解 してから、 水等で希釈することが好ましい。 The concentration of the substrate solution is usually in the range of 1 to 10 gZ liter. The solvent used for preparing the substrate solution is usually water (purified water or the like), but may be the buffer. Further, since the synthetic substrate is hardly soluble in an aqueous solution or the like, it is preferable that the synthetic substrate be dissolved in an organic solvent such as dimethyl sulfoxide (DMSO) and then diluted with water or the like.
つぎに、 方法 Aによる本発明の測定方法について、 尿を試料とした場 合を例として、 以下に説明する。  Next, the measurement method of the present invention according to Method A will be described below, taking urine as a sample as an example.
すなわち、 まず、 尿試料にトリプシン以外のプロテアーゼを混合して 不活性化処理する。 前記プロテアーゼは、 尿試料に直接添加してもよい が、 操作の迅速性、 簡便性の点から、 先に述べたように前記プロテア一 ゼを含有する緩衝液 (プロテアーゼ溶液) を調製し、 これと尿試料とを 混合することが好ましい。 この混合割合 (体積比) は、 前記プロテア一 ゼ溶液の濃度により異なるが、 前記濃度が 0 . O l m Mの場合、 通常、 前記尿試料 : 前記プロテア一ゼ溶液 = 1 : 5〜 1 : 2 0の範囲に設定さ れる。 このように前記プロテア一ゼの添加により尿試料中の α 1—A T は、 室温において直ぐに不活性となるが、 2 5〜 3 7 °Cで 1〜 8 0 0秒 間ィンキュベーションすることが好ましい。  That is, first, a protease other than trypsin is mixed with a urine sample and inactivated. The protease may be directly added to the urine sample. However, in view of quickness and simplicity of operation, a buffer solution (protease solution) containing the protease is prepared as described above. And a urine sample are preferably mixed. The mixing ratio (volume ratio) varies depending on the concentration of the protease solution. However, when the concentration is 0.001 M, usually, the urine sample: the protease solution = 1: 5 to 1: 2 Set to 0 range. Thus, α1-AT in a urine sample is immediately inactivated at room temperature by the addition of the protease, but it is necessary to incubate at 25 to 37 ° C for 1 to 800 seconds. Is preferred.
つづいて、 前記処理済尿試料にトリプシン溶液を配合する。 この配合 割合 (体積比) は、 通常、 前記処理済尿試料:前記トリプシン溶液 = 1 : 1〜 5 : 1の範囲に設定される。 通常、 この混合液を 2 5〜 3 7 °Cで 1 〜 5分間インキュベーションする。 そして、 これに前記基質溶液を配合 し、 前記トリプシンと前記基質とを反応させる。 前記基質溶液の配合割 合は、 通常、 全反応液に対し、 5〜 3 0体積%の範囲である。 この反応 条件は、 通常、 2 5〜 3 7 °Cで 1〜 2 0分間である。 また、 このときの 前記反応液の p Hは、 トリプシンの最適 p Hである p H 7〜 8の範囲が 好ましい。 そして、 所定の方法により、 トリプシンの酵素反応を検出し、 その酵素活性を測定する。 この反応において、 前記尿試料中の α ΐ— A Tが予め不活性にされているため、 U T I量に応じ、 トリプシンの酵素 反応が阻害されて、 正確な U T I量を測定できる。 前記トリプシンの酵 素反応の検出方法としては、 例えば、 Β Α Ρ Ν Α等の酵素反応により発 色する基質を用いた場合は、 この発色程度を分光光度計等により測定す る方法があげられる。 この他に、 酵素反応生成物の濃度を測定すること により、 その酵素活性を測定することもできる。 Subsequently, a trypsin solution is added to the treated urine sample. This mixing ratio (volume ratio) is usually set in the range of the treated urine sample: the trypsin solution = 1: 1 to 5: 1. Typically, this mixture is incubated at 25-37 ° C for 1-5 minutes. Then, the substrate solution is added thereto, and the trypsin and the substrate are reacted. The mixing ratio of the substrate solution is usually in the range of 5 to 30% by volume based on the total reaction solution. The reaction conditions are usually at 25 to 37 ° C for 1 to 20 minutes. The pH of the reaction solution at this time is preferably in the range of pH 7 to 8, which is the optimum pH for trypsin. Then, the enzyme reaction of trypsin is detected by a predetermined method, and the enzyme activity is measured. In this reaction, α ΐ— A in the urine sample Since T is inactivated in advance, the enzymatic reaction of trypsin is inhibited according to the amount of UTI, and the amount of UTI can be measured accurately. As a method for detecting the enzymatic reaction of trypsin, for example, when a substrate that develops a color by an enzymatic reaction such as Β Β Ρ Ν 用 い is used, a method of measuring the degree of the color development with a spectrophotometer or the like can be mentioned. . Alternatively, the enzyme activity can be measured by measuring the concentration of the enzyme reaction product.
なお、 方法 Αによる本発明の測定方法において、 試料と前記トリプシ ン溶液とが接触する前に、 試料中の α 1 一 A Tのトリプシン活性阻害能 が不活性化されていればよい。 このため、 試料の前記プロテアーゼ処理 は、 前記方法に限定されず、 前記プロテア一ゼ溶液、 試料および基質溶 液を、 順序を問わずに混合できる。 そして、 この混合液にトリプシン溶 液を添加することにより、 トリプシンの酵素反応を開始する。  In the measurement method of the present invention according to the method 2, it is sufficient that the ability of the sample to inhibit the trypsin activity of α11-AT before contacting the sample with the trypsin solution. For this reason, the protease treatment of the sample is not limited to the above method, and the protease solution, the sample, and the substrate solution can be mixed in any order. Then, a trypsin solution is added to the mixture to start a trypsin enzymatic reaction.
つぎに、 方法 Bによる本発明の測定方法は、 例えば、 トリプシンを含 有する酵素溶液 (トリプシン溶液) と、 基質溶液と、 酸化剤とを用いて 実施できる。 なお、 後述する酸化剤以外は、 特に示さない限り、 前記方 法 Aによる測定方法と同様のものを用いることができ、 また同様にして 調製できる。  Next, the measurement method of the present invention by the method B can be carried out using, for example, an enzyme solution containing trypsin (trypsin solution), a substrate solution, and an oxidizing agent. Except for the oxidizing agent described below, unless otherwise specified, the same method as the measuring method according to the method A can be used, and it can be prepared in the same manner.
前記酸化剤は、 そのまま使用してもよいが、 操作の簡便性等の点から、 酸化剤溶液として使用することが好ましい。 前記酸化剤溶液の調製に用 いる溶媒は、 通常、 その酸化力を維持するために、 水が好ましい。 また、 前記酸化剤溶液は、 エチレンジァミン四酢酸 (E D T A ) 等のその他の 成分を含んでいてもよい。 例えば、 E D T Aを添加すれば、 金属と錯体 を形成するため、 沈殿物の生成を防止できる。  The oxidizing agent may be used as it is, but is preferably used as an oxidizing agent solution from the viewpoint of easy operation. The solvent used for preparing the oxidizing agent solution is preferably water in order to maintain its oxidizing power. Further, the oxidizing agent solution may contain other components such as ethylenediaminetetraacetic acid (EDTA). For example, the addition of EDTA forms a complex with the metal, thereby preventing the formation of a precipitate.
つぎに、 方法 Bによる本発明の測定方法について、 尿を試料とした場 合を例として、 以下に説明する。  Next, the measurement method of the present invention according to the method B will be described below using urine as an example.
すなわち、 まず、 尿試料に酸化剤を混合して不活性化処理する。 前記 酸化剤は、 尿試料に直接添加してもよいが、 操作の迅速性、 簡便性の点 から、 先に述べたように前記酸化剤溶液を調製し、 これと尿試料とを混 合することが好ましい。 この混合の割合 (体積比) は、 前記酸化剤溶液 の濃度により異なるが、 前記濃度が 0 . 1 mm o 1 / 1 の場合、 通常、 前記尿試料 : 前記酸化剤溶液 = 1 : 5〜 1 : 2 0の範囲に設定される。 このように前記酸化剤の添加により尿試料中の α 1 一 A Tは、 室温にお いて直ぐに不活性となるが、 2 5〜 3 7 °Cで 1 0〜 6 0 0秒間ィンキュ ベ一ションすることが好ましい。 That is, first, an oxidizing agent is mixed with a urine sample and inactivated. Said The oxidizing agent may be added directly to the urine sample, but from the viewpoint of quickness and simplicity of operation, prepare the oxidizing agent solution as described above and mix it with the urine sample. Is preferred. The mixing ratio (volume ratio) varies depending on the concentration of the oxidizing agent solution. However, when the concentration is 0.1 mmo1 / 1, usually, the urine sample: the oxidizing agent solution = 1: 5 to 1 : Set to the range of 20. Thus, the addition of the oxidizing agent immediately inactivates α1 AT in the urine sample at room temperature, but incubates at 25 to 37 ° C for 10 to 600 seconds. Is preferred.
つづいて、 前記処理済尿試料、 緩衝液およびトリプシン溶液を混合す る。 この混合の割合 (体積比) は、 通常、 前記処理済尿試料: 前記緩衝 液: 前記トリプシン溶液 = 1 : 1〜 5 : 1の範囲に設定される。 前記混 合を行った後は、 前述の方法 Aによる測定方法と同様にして、 トリプシ ンの酵素反応を行い、 これを検出して酵素活性を測定する。 この反応に おいて、 前記尿試料中の α 1 一 A Tが酸化剤により予め不活性にされて いるから、 U T I量に応じ、 トリプシンの酵素反応が阻害されて、 正確 な U T I量を測定できる。  Subsequently, the treated urine sample, buffer solution and trypsin solution are mixed. The mixing ratio (volume ratio) is usually set in the range of the treated urine sample: the buffer solution: the trypsin solution = 1: 1 to 5: 1. After the mixing, a trypsin enzymatic reaction is carried out in the same manner as in the measurement method according to the above-mentioned method A, and this is detected to measure the enzymatic activity. In this reaction, α 1 -AT in the urine sample is previously inactivated by an oxidizing agent, so that the enzymatic reaction of trypsin is inhibited in accordance with the amount of UTI, so that an accurate amount of UTI can be measured.
なお、 方法 Bによる本発明の測定方法において、 試料と前記トリプシ ン溶液とが接触する前に、 試料中の α 1— A Tのトリプシン活性阻害能 が酸化剤により不活性化されていればよい。 このため、 試料の前記酸化 剤処理は、 前記方法に限定されず、 前記酸化剤溶液、 試料および基質溶 液を、 順序を問わずに混合できる。 そして、 この混合液にトリプシン溶 液を添加することにより、 トリプシンの酵素反応を開始する。 ただし、 前記酸化剤の添加は、 その操作の簡便性等から、 先に述べたように、 試 料の前処理として行うことが特に好ましい。  In the measurement method of the present invention according to the method B, it is sufficient that the ability of the sample to inhibit the α1-AT trypsin activity is inactivated by the oxidizing agent before the sample comes into contact with the trypsin solution. For this reason, the treatment of the sample with the oxidizing agent is not limited to the above method, and the oxidizing agent solution, the sample, and the substrate solution can be mixed in any order. Then, a trypsin solution is added to the mixture to start a trypsin enzymatic reaction. However, the addition of the oxidizing agent is particularly preferably performed as a pretreatment of the sample, as described above, because of the simplicity of the operation.
また、 本発明の測定方法において、 前述のように、 方法 Aまたは方法 Bのいずれかにより、 α 1—A Tを不活性化するだけでなく、 方法 Aお よび方法 Bの併用により、 1 —ATを不活性化してもよい。 Further, in the measurement method of the present invention, as described above, not only the method of inactivating α1-AT but also the method of 1-AT may be inactivated by a combination of the method and method B.
この場合、 例えば、 試料をトリプシン以外のプロテアーゼと酸化剤と で、 順次処理してもよいし、 試料に前記両者を同時に添加して処理して もよい。 このように方法 Aおよび方法 Bを併用する場合は、 試料 l m l In this case, for example, the sample may be sequentially treated with a protease other than trypsin and an oxidizing agent, or the sample may be treated by simultaneously adding the two to the sample. When using Method A and Method B together,
:対し、 前記プロテアーゼを 0. 3 3 X 1 0 1 6. 6 X 1 0 m o: On the other hand, 0.33 X 10 16.6 X 10 mo
1 の範囲および酸化剤を 0. 0 5〜0. 5 mm o 1 の範囲で添加するこ とが好ましい。 It is preferable to add the oxidizing agent in the range of 1 to 0.05 and 0.5 mmo1.
(実施例)  (Example)
つぎに、 実施例について比較例と併せて説明する。  Next, examples will be described together with comparative examples.
(実施例 A— 1 )  (Example A-1)
この実施例 A— 1は、 トリプシン以外のプロテアーゼとしてズブチリ シンを用い、 これを種々濃度で尿試料に添加して α 1 一 ATを不活性化 し、 トリプシン活性阻害程度を UT I量として求めた例である。 この実 施例 A— 1における緩衝液、 トリプシン溶液および基質溶液は、 前述の 方法により調製した。 その組成および UT I測定の操作方法を下記に示 す。  In Example A-1, subtilisin was used as a protease other than trypsin, and it was added to urine samples at various concentrations to inactivate α1-AT, and the degree of trypsin activity inhibition was determined as the amount of UTI. It is an example. The buffer, trypsin solution and substrate solution in Example A-1 were prepared by the methods described above. The composition and operation method of UTI measurement are shown below.
(緩衝液: p H 8. 1 )  (Buffer: pH 8.1)
トリエタノールァミン塩酸塩 0. 5 m o 1 Zリッ トルTriethanolamine hydrochloride 0.5 m o 1 Z liter
C a C 1 · 2 H O 1 5 0 mgZリッ トル C a C 1 2 H O 150 mg Z liter
2 2  twenty two
T r i t o n X- 4 0 5 (ナカライテスク社製) 2. 0 gZリッ トル (トリプシン溶液: p H 3. 0 ) Triton X-405 (manufactured by Nacalai Tesque) 2.0 gZ little (trypsin solution: pH 3.0)
トリプシン ( 1 4, 9 0 0 U/mg, シグマ社製) 5 0 mg/リッ トル HC 1 1 mm o 1 Zリッ トルTrypsin (14, 900 U / mg, Sigma) 50 mg / liter HC 11 mm o 1 Z liter
(基質溶液) (Substrate solution)
約 7 0°Cに加温した水に、 4 gZリツ トルの割合で L一 BA P NA (ぺ プチド研究所社製) を溶解することにより調製した。 (ズブチリシン) It was prepared by dissolving L-BA PNA (manufactured by Peptide Research Laboratories) at a rate of 4 gZ liter in water heated to about 70 ° C. (Subtilisin)
枯草菌由来ズブチリシン (ベーリンガー · マンハイム社製)  Subtilisin derived from Bacillus subtilis (Boehringer Mannheim)
( 1 - AT)  (1-AT)
ヒト血清由来ひ 1 一 AT (ART社製)  Human serum-derived AT (ART)
(試料 1、 2、 3 )  (Sample 1, 2, 3)
試料 1は、 α 1 — ATを健常者尿に 1 4mgZ 1 0 0 m 1 の濃度にな るように添加した試料 (α ΐ — AT添加尿) である。 試料 2は、 尿タン パク質陽性患者の血清と健常者尿とを、体積比が前記血清:前記尿 = 1 : 7になるように混合した試料 (血清添加尿) である。 前記尿タンパク質 陽性患者とは、 血清中の C R Pおよび血清アミロイ ド A ( S AA) が陰 性であり、 尿中の UT Iが陽性 (従来法による) である患者のことであ る (以下、 同じ)。 試料 3は、 健常者尿である。  Sample 1 is a sample (αΐ-AT-added urine) obtained by adding α 1 -AT to the urine of a healthy subject to a concentration of 14 mgZ 100 m 1. Sample 2 is a sample (serum-added urine) obtained by mixing serum of a urine protein-positive patient and urine of a healthy subject so that the volume ratio becomes serum: urine = 1: 7. The urine protein-positive patient is a patient whose serum CRP and serum amyloid A (SAA) are negative and whose urinary UTI is positive (by the conventional method) (hereinafter, referred to as “UTI”). the same). Sample 3 is healthy subject urine.
(操作方法)  (Method of operation)
前記試料 1、 2、 3に対し、 ズブチリシンを所定濃度 ( O mgZ l O O m l 、 0. 4mg/ 1 0 0 m 0. 8mgZ l 0 0m l、 1. 2 m gZ l 0 0 m l 、 1. 6 mgZ l 0 0 m l 、 2 mg/ l 0 O m 2. 4mg/ 1 0 0 m U 3. 2 mgZ l 0 0 m l 、 4mg/ 1 0 O m 1 ) になるように直接添加した。 そして、 このズブチリシン処理後の尿試料 2 0 / 1、緩衝液 2 0 0 1およびトリプシン溶液 1 0 0 1 を混合し、 3 7 °Cで 5分間保温した。 この混合液に前記基質溶液 1 0 0 1 を添加 して、 酵素反応を開始した。 そして、 前記反応液を 3 7 °Cで保温して、 前記反応液の 2分間の吸光度 (4 0 5 n m) 変化を日立 7 0 7 0型自動 分析装置 (日立製作所社製) で測定し、 その相対吸光度 (Δ〇. D.) を 求めた。 この相対吸光度から、 予め作成した検量線を用いて、 トリプシ ン活性阻害程度を UT I量として求めた。 なお、 前記検量線は、 UT I 標準物質 (ュ一ティニン、 メク ト社製) を生理食塩水に溶解した標準液 を用い、 前述と同様に測定して作成した。 この UT Iの測定は、 各試料 について 3回ずつ行った。 この結果を図 1のグラフに示す。 ' To the samples 1, 2, and 3, subtilisin was added at a predetermined concentration (O mgZ lOO ml, 0.4 mg / 100 m 0.8 mgZl 00 ml, 1.2 mgZl 00 ml, 1.6 mgZl 0 ml, 2 mg / lOOm 2.4 mg / 100 mU 3.2 mgZl 100 ml, 4 mg / 100 m1). Then, the urine sample 20/1, the buffer solution 201, and the trypsin solution 1001 after the subtilisin treatment were mixed and kept at 37 ° C. for 5 minutes. The substrate solution 1001 was added to the mixture to start the enzymatic reaction. Then, the reaction solution was kept at 37 ° C., and the change in absorbance (405 nm) of the reaction solution for 2 minutes was measured with a Hitachi 770 type automatic analyzer (manufactured by Hitachi, Ltd.). The relative absorbance (Δ〇.D.) Was determined. From this relative absorbance, the degree of trypsin activity inhibition was determined as the UTI amount using a calibration curve prepared in advance. Note that the calibration curve is a standard solution prepared by dissolving a UTI standard substance (Utinin, manufactured by Mech) in physiological saline. And the measurement was made in the same manner as described above. This UTI measurement was performed three times for each sample. The results are shown in the graph of FIG. '
図 1に示すように、 前記 α ΐ— AT添加尿 (試料 1 ) では、 ズブチリ シンの添加量を増加するに従い、 UT I量が減少し、 ズブチリシンを試 料に対し 0. 4mg/ 1 0 0m l (試料 l m l に対し 0. 1 3 X 1 0— 9 mo 1 ) 以上になるように添加すると、 UT I量は一定となり、 健常者 尿 (試料 3) の UT I量とほぼ同量になった。 このことから、 健常者尿 に添加した α 1— ATが完全に不活性化されたことが分かる。 また、 同 様に前記血清添加尿についても、 ズブチリシンを試料に対し 1. 6mg / 1 00m l (試料 l m lに対し 0. 5 3 X 1 0— 9 m o 1 ) 以上になる ように添加することにより、 前記血清由来の α 1一 ATが不活性化され たことがわかる。 なお、 充分量のズブチリシンを添加した前記血清添加 尿の UT I量が、 健常者尿の UT I量よりも高い値を示すのは、 添加し た前記血清中に存在する UT Iによるためと考えられる。 As shown in FIG. 1, in the αΐ-AT-added urine (sample 1), as the amount of subtilisin added increased, the amount of UTI decreased, and subtilisin was added to the sample at 0.4 mg / 100m2. If (to the sample lml 1 3 X 1 0- 9 mo 1 0.) l is added to a above, UT I amount is constant, almost the same amount as UT I of healthy subjects urine (sample 3) Was. This indicates that α1-AT added to the urine of healthy subjects was completely inactivated. As for the above serum-supplemented urine Similarly, the addition of subtilisin so that the above (0. 5 3 X 1 0- 9 mo 1 to the sample lml) 1. 6mg / 1 00m l to the sample It can be seen that α1 AT derived from the serum was inactivated. The reason that the UTI amount in the serum-added urine to which a sufficient amount of subtilisin was added was higher than the UTI amount in the healthy subject urine was considered to be due to the UTI present in the serum added. Can be
(実施例 A— 2)  (Example A-2)
この実施例 A— 2は、 エラスタ一ゼを種々濃度で試料に添加して α 1 一 ATを不活性にし、 トリプシン活性阻害程度を UT I量として求めた 例である。 なお、 特に示さない限り、 UT Iの測定操作は、 実施例 A— 1と同じである。  Example A-2 is an example in which elastase was added to a sample at various concentrations to inactivate α 1 -AT and the degree of trypsin activity inhibition was determined as the UTI amount. Unless otherwise indicated, the measurement operation of UTI is the same as in Example A-1.
(エラス夕一ゼ)  (Eras Yuichi)
ヒト白血球由来エラス夕ーゼ (ART社製)  Erasase from human leukocytes (ART)
(試料)  (Sample)
尿タンパク質陽性患者の尿 (尿タンパク質濃度 : 54 lmg/ 1 0 0 m 1 ) を用いた。  Urine from a urine protein-positive patient (urine protein concentration: 54 lmg / 100 ml) was used.
(操作方法)  (Method of operation)
前記試料に対し、 エラス夕一ゼを所定濃度 (Omg/ 1 0 0m 1、 2 mgZl 00m l、 4mg/ 1 0 0m 6mg/ 1 0 0m 8 m g Zl 00m l、 1 0 mg/ 100 m 1 ) になるように直接添加した。 以 後、 実施例 A— 1と同様にして UT I量を求めた。 この UT Iの測定は、 2回ずつ行った。 この結果を、 図 2のグラフに示す。 To the sample, add Eras Juice at a predetermined concentration (Omg / 100m1,2 mgZl 00 ml, 4 mg / 100 m 6 mg / 100 m 8 mg Zl 00 ml, 10 mg / 100 m 1). Thereafter, the UTI amount was determined in the same manner as in Example A-1. This UTI measurement was performed twice. The results are shown in the graph of FIG.
図 2に示すように、 エラス夕一ゼ濃度に比例して、 その UT I量が減 少した。 この試料は、 炎症をおこしていない腎症の患者の尿である。 従 つて、 エラス夕ーゼを添加する前は、 UT Iが高い値を示し、 エラス夕 ーゼの濃度を高くするに従い、 UT Iの値が低下したということは、 こ の尿試料には α 1—ATが存在し、 これが、 トリプシン活性を阻害して いるといえる。 また、 この a 1— ATは、 エラス夕ーゼを添加すること により不活性化される。 この実施例 A— 2の結果から、 本発明の測定方 法によれば、 尿中の UT Iを炎症特有の指標として用いることができる といえる。  As shown in FIG. 2, the UTI amount decreased in proportion to the Elasic concentration. This sample is urine from a patient with non-inflamed nephropathy. Therefore, UTI showed a high value before the addition of Erasase, and the UTI value decreased as the concentration of Erasase was increased. It can be said that 1-AT is present, which inhibits trypsin activity. The a1-AT is inactivated by adding Erasase. From the results of Example A-2, it can be said that according to the measurement method of the present invention, UTI in urine can be used as an index specific to inflammation.
(実施例 A— 3)  (Example A-3)
この実施例 A— 3では、 ズブチリシンによる試料の処理時間と UT I 量との関係を調べた。 なお、 特に示さない限り、 使用した試料および U T Iの測定操作は実施例 A— 1と同じである。  In Example A-3, the relationship between the treatment time of a sample with subtilisin and the amount of UTI was examined. Unless otherwise indicated, the used sample and the operation of measuring UTI were the same as those in Example A-1.
(試料)  (Sample)
実施例 A— 1で用いた試料 2 (血清添加尿) を使用した。  Sample 2 (urine with serum added) used in Example A-1 was used.
(ズブチリシン溶液)  (Subtilisin solution)
前記緩衝液に実施例 A— 1と同じズブチリシンを 2 Omg/ 1 0 0m 1の濃度になるように添加して調製した。  The buffer was prepared by adding the same subtilisin as in Example A-1 to a concentration of 2 Omg / 100 ml.
(操作方法)  (Method of operation)
ズブチリシン溶液 2 0 0 /X 1 と前記試料 20 n 1 とを混合し、 これを 種々の時間 (2 5秒、 5 0秒、 42 5秒、 8 0 0秒) インキュベートし た。 このインキュベート時の温度は、 3 7°Cである。 この溶液にトリプ シン溶液 1 0 0 1を添加し、 以後、 実施例 A— 1と同様にして UT I 量を測定した。 吸光度の測定には、 日本ロシュ COBAS M I RA自 動分析装置 (日本ロシュ社製) を使用した。 この UT Iの測定は、 5回 ずつ行った。 この結果を図 3のグラフに示す。 The subtilisin solution 200 / X1 and the sample 20n1 were mixed and incubated for various times (25 seconds, 50 seconds, 425 seconds, 800 seconds). The temperature during this incubation is 37 ° C. Trip this solution The thin solution 1001 was added, and thereafter the UTI amount was measured in the same manner as in Example A-1. The absorbance was measured using a Roche COBAS MIRA automatic analyzer (manufactured by Roche Japan). The UTI was measured five times. The results are shown in the graph of FIG.
図 3に示すように、 ズブチリシンによる試料中のひ 1—ATの不活性 化処理時間を変えても UT I量に大きな違いは見られず、 前記不活性化 処理時間が 2 5秒で、 完全に α 1—ATは不活性化された。  As shown in Fig. 3, there was no significant difference in the amount of UTI even when the inactivation time of 1-AT in the sample was changed by subtilisin. Α 1 -AT was inactivated.
(実施例 A— 4、 比較例 A— 1 )  (Example A-4, Comparative Example A-1)
実施例 A— 4および比較例 A— 1において、 UT I量と炎症との相関 性を調べた。 なお、 特に示さない限り、 UT Iの測定操作は実施例 A— 1と同じである。  In Example A-4 and Comparative Example A-1, the correlation between the UTI amount and inflammation was examined. Unless otherwise indicated, the measurement operation of UTI is the same as in Example A-1.
(試料)  (Sample)
実施例 A— 4および比較例 A— 1の試料として、 患者尿 (検体数 : n = 7 7) を使用し、 また対照の試料として、 同患者の血清 (検体数: n = 7 7) を使用した。  Patient urine (sample number: n = 77) was used as a sample for Example A-4 and Comparative Example A-1. Serum (sample number: n = 77) of the same patient was used as a control sample. used.
実施例 A— 4では、 前記試料 2 0 1 と実施例 A— 3で用いたズブチ リシン溶液 2 00 1 とを混合した後、 これに前記トリプシン溶液 1 0 0 a 1を添加し、 以後、 実施例 A— 1と同様にして UT I量を測定した。 対照として、 前記血清 (n = 7 7) について、 CRPの測定を行った。 この測定は、 CRP測定キッ ト (デン力生研社製) を用い、 その使用方 法に準じて行った。  In Example A-4, the sample 201 was mixed with the subtilisin solution 2001 used in Example A-3, and then the trypsin solution 100a1 was added thereto. The UTI amount was measured in the same manner as in Example A-1. As a control, the serum (n = 77) was measured for CRP. This measurement was performed using a CRP measurement kit (manufactured by Den Rikiseiken Co., Ltd.) according to the method of use.
この実施例 A _ 4と対照の結果を図 4のグラフに示す。このグラフは、 前記ズブチリシン処理後の尿試料中の UT I量と前記血清試料中の C R P濃度との相関関係を示すグラフであり、 図中の式は、 前記相関関係を 表す式、 Rは相関係数をそれぞれ示す。  The results of Example A_4 and the control are shown in the graph of FIG. This graph is a graph showing the correlation between the amount of UTI in the urine sample after the subtilisin treatment and the CRP concentration in the serum sample. The equation in the figure is an equation representing the correlation, and R is the phase. The relation numbers are shown.
一方、 比較例 A— 1は、 トリプシン以外のプロテア一ゼで処理を行わ ない従来の UT I測定方法の例である。 この比較例 A— 1では、 前記試 料 20 し 前記緩衝液 2 0 0 ^ 1およびトリプシン溶液 1 00 ^ 1 を 混合し、 以後、 実施例 A— 1と同様にして UT I量を測定した。 この結 果と前記対照の結果を図 5のグラフに示す。 このグラフは、 前記プロテ ァーゼ未処理の尿試料中の UT I量と前記血清試料中の C R P濃度との 相関関係をしめすグラフであり、 図中の式は、 前記相関関係を表す式、 Rは相関係数をそれぞれ示す。 On the other hand, Comparative Example A-1 was treated with a protease other than trypsin. There is no conventional UTI measurement method. In Comparative Example A-1, the sample 20 was mixed with the buffer solution 200 ^ 1 and the trypsin solution 100 ^ 1, and the UTI amount was measured in the same manner as in Example A-1. This result and the result of the control are shown in the graph of FIG. This graph is a graph showing the correlation between the UTI amount in the urine sample not treated with the protease and the CRP concentration in the serum sample.The equation in the figure is an equation representing the correlation, and R is The correlation coefficient is shown.
図 4および図 5のグラフに示すように、 実施例 A— 4における UT I 量と CRP濃度との相関 (R= 0. 3 9) は、 比較例 A— 1における前 記相関 (R= 0. 24) よりも高かった。 この結果から、 本発明の測定 方法によれば、 UT Iの炎症に対する指標としての特異性を高めること ができるといえる。  As shown in the graphs of FIGS. 4 and 5, the correlation between the UTI amount and the CRP concentration in Example A-4 (R = 0.39) was the same as that in Comparative Example A-1 (R = 0.39). 24) was higher. From these results, it can be said that the measurement method of the present invention can enhance the specificity of UTI as an index for inflammation.
(参考例)  (Reference example)
この参考例は、 尿における尿タンパク質濃度と α 1一 AT濃度との関 係を調べた例である。  This reference example is an example in which the relationship between urine protein concentration and α1-AT concentration in urine was examined.
(試料)  (Sample)
患者尿 (検体数 : n = 9 8)  Patient urine (sample size: n = 98)
前記各患者尿 (n= 98) について、 そのタンパク質量をタンパク質 測定キッ ト (和光純薬社製) を用い、 その使用方法 (ピロガロールレツ ド法) に準じて測定した。 この測定には、 日立 7 0 7 0型自動分析装置 (日立製作所社製) を使用した。 一方、 前記各患者尿 (n = 9 8) につ いて、 その α ΐ— AT濃度を、 E L I S A法により測定した。 これらの 結果を図 6のグラフに示す。 このグラフは、 前記尿タンパク質濃度と前 記尿中ひ 1一 ATとの相関関係を示すグラフであり、 図中の式は、 前記 相関関係を表す式、 Rは相関係数をそれぞれ示す。  The protein amount of each patient urine (n = 98) was measured using a protein measurement kit (manufactured by Wako Pure Chemical Industries, Ltd.) according to the method of use (pyrogallol red method). For this measurement, a Hitachi 770-type automatic analyzer (manufactured by Hitachi, Ltd.) was used. On the other hand, in each patient's urine (n = 98), the αΐ-AT concentration was measured by the ELISA method. These results are shown in the graph of FIG. This graph is a graph showing the correlation between the urine protein concentration and the above-mentioned urinary AT. The equation in the figure is an equation representing the correlation, and R is a correlation coefficient.
図 6に示すように、 尿タンパク質濃度が高い検体は、 尿中の α Ι—Α T濃度も高い傾向にあり、 前記両者は高い相関性を示している。 このこ とから、 尿タンパク質濃度が高くなる腎症では、 UT I と同じトリプシ ン活性阻害能を有する α 1一 ATが、尿中に漏出していることが分かる。 つまり、 腎症患者の尿においては、 この尿中に漏出した α 1—ATがト リブシン活性を阻害するため、 従来法では尿中の UT I量がみかけ上高 くなるといえる。 As shown in Fig. 6, the sample with high urine protein concentration is The T concentration also tends to be high, and the two have a high correlation. From this, it can be seen that in nephropathy in which urine protein concentration is increased, α1-AT having the same ability to inhibit trypsin activity as UTI is leaked into urine. In other words, in the urine of patients with nephropathy, since α1-AT leaked into the urine inhibits triscine activity, it can be said that the amount of UTI in the urine is apparently increased by the conventional method.
(実施例 B— 1 )  (Example B-1)
この実施例 B— 1は、 種々の酸化剤を用い、 これを尿試料に添加して 1一 ATを不活性化し、 トリプシン活性阻害程度を UT I量として求 めた例である。 以下の実施例 B— 1〜B _ 5も同様である。 この実施例 B— 1における緩衝液、 卜リブシン溶液、 基質溶液および酸化剤は、 前 述の方法により調製した。 その組成および UT I測定の操作方法を下記 に示す。  Example B-1 is an example in which various oxidizing agents were used, added to a urine sample to inactivate 11-AT, and the degree of trypsin activity inhibition was determined as the UTI amount. The same applies to the following Examples B-1 to B_5. The buffer, tribcine solution, substrate solution and oxidizing agent in Example B-1 were prepared by the methods described above. The composition and operation method of UTI measurement are shown below.
(緩衝液: pH 8. 3)  (Buffer: pH 8.3)
トリエタノールァミン塩酸塩 0. 5mo l /リッ トルTriethanolamine hydrochloride 0.5 mol / liter
C a C 1 · 2 H O 1 5 0mgZリッ トル C a C 1 2 H O 150 mg Z liter
2 2  twenty two
T r i t o n X— 40 5 (ナカライテスク社製) 2. 0 g/リッ トル Triton X—405 (manufactured by Nacalai Tesque) 2.0 g / liter
(トリプシン溶液: p H 3. 0 ) (Trypsin solution: pH 3.0)
トリプシン ( 1 4, 9 00 U/mg, シグマ社製) 5 0mgZリッ トル HC 1 1 mm o 1 Zリッ トルTrypsin (14, 900 U / mg, Sigma) 50 mg Z liter HC 1 1 mm o 1 Z liter
(基質溶液) (Substrate solution)
約 7 0°Cに加温した水に、 4 gZリツ トルの割合で L一 B AP N A (ぺ プチド研究所社製) を溶解することにより調製した。  It was prepared by dissolving L-BAPNA (manufactured by Peptide Research Laboratories) at a rate of 4 gZ liter in water heated to about 70 ° C.
(酸化剤溶液)  (Oxidizing agent solution)
0. 0 5 M N a I O (ナカライテスク社製、 以下同じ) および 0. 0 5M I 2 (和光純薬社製、 以下同じ) をそれぞれ調製し、 これらを体 積比が 1 : 1の割合になるように混合した。 調製用の溶媒としては、 水 を使用した。 後述の各酸化剤溶液の調製も、 同じく溶媒として水を用い た。 Prepare 0.05 MNa IO (manufactured by Nacalai Tesque, Inc., the same applies hereinafter) and 0.05 M I 2 (manufactured by Wako Pure Chemical Industries, Ltd., the same applies hereinafter). Mixing was performed so that the product ratio was 1: 1. Water was used as a solvent for the preparation. In the preparation of each oxidizing agent solution described below, water was also used as a solvent.
(試料)  (Sample)
健常者尿と尿タンパク質陽性患者の血清とを体積比が 7 : 1になるよ うに混合した血清添加尿を試料とした。 また、 対照の試料として、 生理 食塩水と前記健常者尿とを体積比 1 : 1になるように混合したもの (希 釈健常者尿) を使用した。  Serum-containing urine was prepared by mixing normal human urine and serum of a urine protein-positive patient in a volume ratio of 7: 1. As a control sample, a mixture of physiological saline and the urine of a healthy subject so as to have a volume ratio of 1: 1 (diluted normal subject urine) was used.
(操作方法)  (Method of operation)
まず、 前記試料と前記酸化剤溶液とを体積比が 1 : 1になるように混 合した。 そして、 この酸化剤処理後の尿試料 2 0 ^ 1、 緩衝液 2 0 011 1およびトリプシン溶液 1 0 0 1 を混合し、 3 7 °Cで 5分間保温した。 この混合液に前記基質溶液 1 0 0 X 1 を添加して、酵素反応を開始した。 そして、 前記反応液を 3 7°Cで保温して、 前記反応液の 2分間の吸光度 (40 5 nm) 変化を日立 7 0 7 0型自動分析装置 (日立製作所社製) で測定し、 その相対吸光度 (△〇. D.) を求めた。 この相対吸光度から、 予め作成した検量線を用いて、 トリプシン活性阻害程度を UT I量とし て求めた。 なお、 前記検量線は、 UT I標準物質 (ユーティニン、 メク ト社製) を生理食塩水に溶解した標準液を用い、 前述と同様に測定して 作成した。 また、 対照例として、 前記希釈健常者尿 2 0 1、 緩衝液 2 0 0 1およびトリプシン溶液 1 0 0 1 を混合し、 以後、 前記実施例 B— 1 と同様にして UT I量を測定した。 これらの結果を下記表 1に示 す。  First, the sample and the oxidant solution were mixed so that the volume ratio was 1: 1. Then, the urine sample 20 ^ 1, the buffer solution 20111 and the trypsin solution 1001 after the treatment with the oxidizing agent were mixed and kept at 37 ° C for 5 minutes. The substrate solution (100 × 1) was added to the mixture to start an enzyme reaction. Then, the reaction solution was kept at 37 ° C., and the change in absorbance (405 nm) of the reaction solution for 2 minutes was measured with a Hitachi 7770 automatic analyzer (manufactured by Hitachi, Ltd.). The relative absorbance (△ 〇.D.) Was determined. From this relative absorbance, the degree of trypsin activity inhibition was determined as the UTI amount using a calibration curve prepared in advance. The calibration curve was prepared by using a standard solution prepared by dissolving a UTI standard substance (Utinin, manufactured by Mekt) in physiological saline in the same manner as described above. As a control example, the diluted healthy urine 201, buffer solution 201, and trypsin solution 1001 were mixed, and the UTI amount was measured in the same manner as in Example B-1. . The results are shown in Table 1 below.
(実施例 B— 2)  (Example B-2)
0. l M N a I 〇3を調製し、 これと前記 0. 0 5 M I とを、 体積 比 1: 1になるように混合したものを酸化剤溶液として使用した以外は、 実施例 B— 1と同様にして、 UT I測定の操作を行った。 この結果を下 記表 1に併せて示す。 0.1 M N a I 〇 3 was prepared and mixed with the above-mentioned 0.05 MI so that the volume ratio was 1: 1. The UTI measurement operation was performed in the same manner as in Example B-1. The results are shown in Table 1 below.
(実施例 B— 3)  (Example B-3)
0. 0 5 M F e C l 3 · 6 H 2 O (和光純薬社製、 以下同じ) を調製し. これを酸化剤溶液として使用した以外は、 実施例 B— 1と同様に  0.05 M FeCl 3 · 6H 2 O (manufactured by Wako Pure Chemical Industries, Ltd .; same hereafter) was prepared. Same as Example B-1 except that this was used as an oxidizing agent solution.
UT I測定の操作を行った。 この結果を下記表 1に併せて示す。 The operation of UTI measurement was performed. The results are shown in Table 1 below.
(実施例 B— 4)  (Example B-4)
この実施例 B— 4では、 酸化剤溶液に他の成分として EDT Aを添加 した場合の卜リプシン活性阻害程度を UT I量として求めた。  In Example B-4, the degree of inhibition of trypsin activity when EDTA was added as another component to the oxidizing agent solution was determined as the UTI amount.
すなわち、 0. 0 5M C u S O · 5 H O (ナカライテスク社製) および 0. 0 5M EDTA— 2 N a · 2H O (ナカライテスク社製、 以下同じ) をそれぞれ調製し、 これらを体積比が 1 : 1の割合になるよ うに混合したものを酸化剤溶液として使用した。 この溶液と実施例 B— 1と同じ試料とを混合し、 以後、 実施例 B— 1と同様にして、 UT I量 を求めた。 この結果を下記表 1に併せて示す。  That is, 0.05M CuSO · 5HO (manufactured by Nacalai Tesque) and 0.05M EDTA—2Na · 2HO (manufactured by Nacalai Tesque, hereinafter the same) were prepared, and the volume ratio of these was adjusted. The mixture mixed at a ratio of 1: 1 was used as an oxidizing agent solution. This solution and the same sample as in Example B-1 were mixed, and the UTI amount was determined in the same manner as in Example B-1. The results are shown in Table 1 below.
(実施例 B— 5 )  (Example B-5)
前記 0. 0 5M F e C l 3 ' 61"120と前記0. 0 5M EDTA— The above-mentioned 0.05 M FeCl 3 '61 "120 and the above-mentioned 0.05 M EDTA
2 N a · 2 H Oとを体積比が 1 : 1の割合になるように混合したものを A mixture of 2Na · 2HO with a volume ratio of 1: 1
2  Two
酸化剤溶液とした。 この溶液と実施例 B— 1と同じ試料とを混合し、 以 後、 実施例 B— 1と同様にして、 UT I量を求めた。 この結果を下記表 1に示す。 An oxidizing agent solution was used. This solution and the same sample as in Example B-1 were mixed, and thereafter, the UTI amount was determined in the same manner as in Example B-1. The results are shown in Table 1 below.
(比較例 B— 1 )  (Comparative Example B-1)
この比較例 B— 1は、 酸化剤で処理を行わない従来の UT I測定方法 の例である。 この比較例 B— 1では、 まず、 実施例 B— 1と同じ試料(血 清添加尿) と生理食塩水とを体積比 1 : 1になるよう混合した。 そして、 この混合液 2 0 /X 1、 緩衝液 20 0 1およびトリプシン溶液 1 00 1 を混合し、 以後、 前記実施例 B— 1と同様にして UT I量を測定した, この結果を下記表 1に併せて示す。 Comparative Example B-1 is an example of a conventional UTI measurement method without treatment with an oxidizing agent. In Comparative Example B-1, first, the same sample (serum added urine) and physiological saline as in Example B-1 were mixed in a volume ratio of 1: 1. Then, the mixed solution 20 / X1, the buffer solution 201, and the trypsin solution 100 1 were mixed, and the UTI amount was measured in the same manner as in Example B-1. The results are shown in Table 1 below.
(表 1)  (table 1)
UT I量 a 1 -AT  UT I amount a 1 -AT
( I UZリッ トル) の不活性化程度  (I UZ liter) Deactivation degree
対照例 1 43  Control 1 43
実施例 B 1 54  Example B 1 54
実施例 B 2 8 5  Example B 2 8 5
実施例 B 3 3 94 〇  Example B 3 3 94 〇
実施例 B 4 3 2 5 〇  Example B 4 3 2 5 〇
実施例 B 5 3 26 〇  Example B 5 3 26 〇
比較例 B 1 1 8 26 X 上記表 1に示すように、 実施例 B— 1および B― 2における UT I量 のそれぞれの値は、 比較例 B— 1 (従来法) の UT I量の値と比較して 大幅に減少し、 対照である前記希釈健常者尿中の UT I量の値とほぼ同 様の値が得られた。 また、 酸化剤を二種類併用すると、 充分に a 1— A T不活性化の効果が得られることが分かった。 また、 実施例 B— 3にお ける UT I量の値も、 比較例 B— 1 (従来法) の UT I量の値より減少 し、対照である前記希釈健常者尿中の UT I量の値に近い値が得られた。 そして、 EDTAを共に添加した実施例 B— 4、 B— 5の UT I量の値 も、 比較例 B— 1 (従来法) の UT I量の値より減少し、 対照である前 記希釈健常者尿中の UT I量の値に近い値が得られた。  Comparative Example B 1 18 26 X As shown in Table 1 above, the values of the UTI amount in Examples B-1 and B-2 are the values of the UTI amount in Comparative Example B-1 (conventional method). The value was significantly reduced as compared with, and a value almost similar to the value of the UTI amount in the urine of the diluted healthy control as a control was obtained. In addition, it was found that when two types of oxidizing agents were used in combination, the effect of inactivating a 1 -AT was sufficiently obtained. Also, the value of the UTI amount in Example B-3 was smaller than the value of the UTI amount in Comparative Example B-1 (conventional method), and the UTI amount in the diluted normal healthy urine as a control was also reduced. A value close to the value was obtained. Also, the values of UTI in Examples B-4 and B-5 to which EDTA was added were also smaller than the values of UTI in Comparative Example B-1 (conventional method). A value close to the value of UTI in human urine was obtained.
(実施例 C一 1および比較例 C一 1 )  (Example C-11 and Comparative Example C-11)
この実施例 C一 1は、 試料に、 トリプシン以外のプロテアーゼと酸化 剤の両方を添加して、 トリプシン阻害程度を UT I量として求めた例で ある。 なお、 前記プロテアーゼおよび酸化剤を併用した場合に、 α ΐ— ATが充分に不活性化されたかを評価するために、 試料をトリプシン以 外のプロテア一ゼのみで処理した場合の UT I量も求めた。 Example C-11 is an example in which both a protease other than trypsin and an oxidizing agent were added to the sample, and the degree of trypsin inhibition was determined as the UTI amount. is there. In order to evaluate whether αΐ-AT was sufficiently inactivated when the protease and the oxidizing agent were used in combination, the amount of UTI when the sample was treated only with a protease other than trypsin was also determined. I asked.
(緩衝液)  (Buffer solution)
実施例 A— 1と同じ緩衝液を使用した。  The same buffer as in Example A-1 was used.
(ズブチリシン溶液)  (Subtilisin solution)
前記緩衝液に、 実施例 A— 1と同じズブチリシンを、 0. 0 2mgZ m 1の濃度になるように添加した。  The same subtilisin as in Example A-1 was added to the buffer solution to a concentration of 0.02 mgZm1.
(酸化剤溶液)  (Oxidizing agent solution)
0. 2 M C u S O 4 · 5 Η 2Οおよび 0. 2Μ EDTA- 2 N a - 0.2 M Cu S O 4 5 5 2Ο and 0.2 0 EDTA- 2 Na-
2 H20をそれぞれ調製し、 これらを体積比が 1 : 1の割合になるように 混合した。 2 H 2 0 was prepared and mixed so that the volume ratio was 1: 1.
(試料)  (Sample)
健常者尿に対し、 患者血清を所定濃度 (0体積%、 2 0体積%、 40 体積%、 6 0体積%、 8 0体積%、 1 0 0体積%) になるように混合し、 これらを試料とした。  The serum of the patient was mixed with the urine of a healthy subject to a predetermined concentration (0% by volume, 20% by volume, 40% by volume, 60% by volume, 80% by volume, and 100% by volume). A sample was used.
(操作方法)  (Method of operation)
前記試料と前記酸化剤溶液とが、 体積比 2 : 1の割合になるように混 合し (試料 1 m 1 に対して酸化剤 0. 0 5 mm o 1 )、 この混合液 7 5 0 / 1に前記ズブチリシン溶液 2 50 1 を混合した (試料 lm l に対し てズブチリシン 1 3. 3 X 1 0— 9mo l )。 この後、 前記実施例 A— 1 と同様にして、 前記トリプシン溶液および前記基質溶液を添加して、 U T I量を測定した。 この UT I量の測定は 3回ずつ行い、 その平均値を 求めた。 The sample and the oxidant solution are mixed in a volume ratio of 2: 1 (0.05 mmo 1 of the oxidant per 1 m 1 of sample), and the mixed solution 7500 / and mixing the subtilisin solution 2 50 1 1 (subtilisin 1 3. to the sample lm l 3 X 1 0- 9 mo l). Thereafter, in the same manner as in Example A-1, the trypsin solution and the substrate solution were added, and the UTI amount was measured. The UTI amount was measured three times, and the average was determined.
一方、 前記試料と生理食塩水とが、 体積比 2 : 1の割合になるように 混合し、 この混合液 7 5 0 1 に前記ズブチリシン溶液 2 5 0 1 (試 料 1 m 1に対してズブチリシン 1 3. 3 X 1 0— 9mo 1 ) を混合した後、 前述と同様にして UT I量を測定した。 On the other hand, the sample and physiological saline were mixed in a volume ratio of 2: 1 and the subtilisin solution 2501 (sample Fee 1 m 1 were mixed subtilisin 1 3. 3 X 1 0- 9 mo 1) relative to measure the UT I amount in the same manner as described above.
なお、 比較例 C一 1は、 試料をトリプシン以外のプロテアーゼおよび 酸化剤のいずれによっても処理しない従来の UT I測定方法の例である この比較例では、 前記試料を生理食塩水と混合し、 ズブチリシン溶液の 代わりに前記緩衝液を添加した以外は、 前述と同様にして UT I量を測 定した。 これらの結果を、 図 7のグラフに示す。 図中において、 ◊は、 ズブチリシンのみで試料を処理した場合の UT I量、 口は、 ズプチリシ ンおよび酸化剤で試料を処理した場合の UT I量、 〇は、 試料を処理し ない比較例 C一 1の UT I量をそれぞれ示す。  Comparative Example C-11 is an example of a conventional UTI measurement method in which a sample is not treated with any protease or oxidizing agent other than trypsin. In this comparative example, the sample was mixed with physiological saline, and subtilisin was added. The UTI amount was measured in the same manner as described above except that the buffer was added instead of the solution. These results are shown in the graph of FIG. In the figure, ◊ indicates the amount of UTI when the sample was treated with subtilisin alone, the mouth indicates the amount of UTI when the sample was treated with subtilisin and an oxidizing agent, and 〇 indicates Comparative Example C where the sample was not treated. The UTI amount of 11 is shown.
図示のように、 比較例 C— 1では、 α ΐ— ATの影響により、 高い U T I量を示し、 測定範囲を越えていた。 一方、 ズブチリシンおよび酸化 剤の両方で試料を処理した場合と、 ズブチリシンのみで試料を処理した 場合とでは、 比較例 C一 1に比べ、 充分にその UT I量が減少し、 両者 の UT I量も、 ほぼ同様の値を示した。 このことから、 トリプシン以外 のプロテア一ゼと酸化剤とを併用しても、 十分に試料中の α 1— ATを 不活性化できることがわかった。 なお、 試料中の血清濃度 (体積%) の 増加に伴い、 UT Iの値が高くなるのは、 血清中に含まれる UT Iによ るものと推測できる。  As shown in the figure, Comparative Example C-1 showed a high UTI amount due to the influence of αΐ-AT, which exceeded the measurement range. On the other hand, when the sample was treated with both subtilisin and the oxidizing agent, and when the sample was treated with only subtilisin, the UTI amount was sufficiently reduced as compared with Comparative Example C-11, and both UTI amounts were reduced. Also showed almost the same values. From this, it was found that even when a protease other than trypsin and an oxidizing agent were used in combination, α1-AT in the sample could be sufficiently inactivated. It can be assumed that the increase in UTI value with increasing serum concentration (% by volume) in the sample is due to UTI contained in serum.
産業上の利用の可能性 Industrial applicability
以上のように、 本発明の UT Iの測定方法は、 試料の存在下、 トリプ シン活性を測定することにより前記試料中の UT Iを測定する方法であ つて、 前記トリプシンと試料との接触に先立ち、 試料中の α ΐ— ATを 不活性にすることにより、 UT I量を正確に測定し、 かつ UT Iの臨床 的指標としての有用性を高める。 例えば、 本発明の測定方法により尿中 の UT Iを測定すれば、 腎症患者の尿であっても、 UT Iを正確に測定 でき、このことは UT Iを炎症の指標として活用できることを意味する, As described above, the method for measuring UTI according to the present invention is a method for measuring UTI in the sample by measuring trypsin activity in the presence of the sample, wherein the contact between the trypsin and the sample is measured. Prior to inactivating α AT-AT in a sample, the amount of UTI can be accurately measured and the usefulness of UTI as a clinical index can be enhanced. For example, if UTI in urine is measured by the measurement method of the present invention, UTI can be accurately measured even in urine of a nephropathy patient. Yes, this means that UTI can be used as an indicator of inflammation,

Claims

請求の範囲 The scope of the claims
1. 試料中の尿中トリプシンインヒビ夕一の量を測定する方法であつ て、 以下の (a) 〜 (d) の工程を有する測定方法。 1. A method for measuring the amount of urinary trypsin inhibitor in a sample, the method comprising the following steps (a) to (d).
(a) 試料中の a 1—アンチトリプシンを不活性化する工程。  (a) a step of inactivating a 1 -antitrypsin in a sample;
(b) 前記不活性化の後、 試料とトリプシンとを混合する工程。 (b) a step of mixing the sample and trypsin after the inactivation.
(c) 前記トリプシンの活性の阻害を測定する工程。 (c) a step of measuring the inhibition of the trypsin activity.
(d) 前記阻害から試料中の尿中トリプシンインヒビターの量を決定 する工程。  (d) determining the amount of urinary trypsin inhibitor in the sample from the inhibition.
2. a 1—アンチトリプシンを不活性化する手段が、 試料にトリプシン 以外のプロテア一ゼを添加し、 前記プロテアーゼと a 1—アンチトリプ シンとを反応させて複合体を形成させる手段である請求項 1記載の測定 方法。 2. The means for inactivating a1-antitrypsin is a means for adding a protease other than trypsin to a sample and reacting the protease with a1-antitrypsin to form a complex. The measurement method described in 1.
3. トリプシン以外のプロテア一ゼが、 セリンプロテアーゼである請求 項 2記載の測定方法。  3. The method according to claim 2, wherein the protease other than trypsin is a serine protease.
4. トリプシン以外のプロテアーゼが、 エラス夕一ゼ、 ズブチリシン、 キモトリブシン、 カテブシン、 プラスミン、 トロンビン、 カリクレイン およびゥロキナーゼからなる群から選択された少なくとも一つのプロテ ァーゼである請求項 2記載の測定方法。  4. The method according to claim 2, wherein the protease other than trypsin is at least one protease selected from the group consisting of elasase, subtilisin, chymotrypsin, cathepsin, plasmin, thrombin, kallikrein, and perokinase.
5. トリプシン以外のプロテア一ゼを、 試料 1 m 1に対し 0. 3 3 X 1 0— 9〜1 6. 6 X 1 0— 9mo 1の範囲で添加する請求項 2〜 4のいずれ か一項に記載の測定方法。 5. Protea Ichize other than trypsin, claim 2-4 is added in a range of 0. 3 3 X 1 0- 9 ~1 6. 6 X 1 0- 9 mo 1 to the sample 1 m 1 The measurement method according to claim 1.
6. トリプシン以外のプロテア一ゼを、 試料 1 m 1に対し 3. 3 X 1 0 一9〜 1 0. 0 X 1 0— 9mo 1の範囲で添加する請求項 2〜 4のいずれか 項に記載の測定方法。 6. Protea Ichize other than trypsin, or the preceding claims 2-4 is added in a range of 3. 3 X 1 0 one 9 ~ 1 0. 0 X 1 0- 9 mo 1 to the sample 1 m 1 Measurement method described in 1.
7. 試料中の a 1—アンチトリプシンを不活性化する手段が、 試料に酸 化剤を添加する手段である請求項 1記載の測定方法。 7. The means to inactivate a 1 -antitrypsin in the sample 2. The method according to claim 1, which is a means for adding an agent.
8. 酸化剤が、 過マンガン酸、 過マンガン酸塩、 酸素酸、 酸素酸塩、 金 属塩類、 酸化物および過酸化物からなる群から選択された少なくとも一 つの酸化剤である請求項 7記載の測定方法。 8. The oxidizing agent according to claim 7, wherein the oxidizing agent is at least one selected from the group consisting of permanganic acid, permanganate, oxyacid, oxyacid salt, metal salt, oxide, and peroxide. Measurement method.
9. 酸化剤が、 ヨウ素酸ナトリウム、 ヨウ素、 硫酸銅および三塩化鉄か らなる群から選択された少なくとも一つの酸化剤である請求項 7記載の 測定方法。 9. The method according to claim 7, wherein the oxidizing agent is at least one oxidizing agent selected from the group consisting of sodium iodate, iodine, copper sulfate, and iron trichloride.
1 0. 酸化剤を二種類以上併用する請求項 8または 9記載の測定方法。  10. The method according to claim 8 or 9, wherein two or more oxidizing agents are used in combination.
1 1. 酸化剤を、 試料 1 m 1 に対し 0. 00 5〜 0. 5 mm o 1の範囲 で添加する請求項 7〜 9のいずれか一項に記載の測定方法。  1. The method according to claim 7, wherein the oxidizing agent is added to the sample in an amount of 0.005 to 0.5 mmo 1 per 1 m 1.
1 2. 酸化剤を、 試料 1 m 1 に対し 0. 0 1〜 0. lmmo lの範囲で 添加する請求項 7〜 9のいずれか一項に記載の測定方法。  12. The method according to any one of claims 7 to 9, wherein the oxidizing agent is added in a range of 0.01 to 0.1 lmmol per 1 ml of the sample.
1 3. トリプシンが、 牛塍臓由来のトリプシンおよびブ夕塍臓由来のト リプシンの少なくとも一方である請求項 1記載の測定方法。  1 3. The method according to claim 1, wherein the trypsin is at least one of trypsin derived from bovine kidney and trypsin derived from rat liver.
1 4. トリプシン活性の測定に使用される基質が、 N α—ベンゾィル— アルギニン一 ρ—二トロアニリ ド、 Ν α—ベンゾィル—リジン一 ρ—二 トロア二リ ド、 t—ブトキシカルボ二ルーアルギニン一 p—二トロア二 リ ドおよび t—ブトキシカルボ二ルーリジン— p—ニトロァニリ ドから なる群から選択された少なくとも一つの合成基質である請求項 1記載の 測定方法。  1 4. The substrates used for measurement of trypsin activity were N α-benzoyl-arginine-1 ρ-nitroanilide, Να-benzoyl-lysine-1 ρ-2 troanilide, and t-butoxycarbone-arginine-1. 2. The method according to claim 1, which is at least one synthetic substrate selected from the group consisting of p-nitro-2-lide and t-butoxycarboryl lysine-p-nitroanilide.
1 5. 試料が、 尿である請求項 1記載の測定方法。  1 5. The method according to claim 1, wherein the sample is urine.
1 6. トリプシン、 基質およびトリプシン以外のプロテアーゼを備える 尿中卜リプシンィンヒビ夕一測定キッ 卜。  1 6. Urinary trypsin inhibitor kit containing trypsin, substrate and protease other than trypsin.
1 7. トリプシン以外のプロテアーゼが、 セリンプロテアーゼである請 求項 1 6記載の測定キッ ト。  17. The measurement kit according to claim 16, wherein the protease other than trypsin is a serine protease.
1 8. トリプシン以外のプロテア一ゼが、 エラス夕一ゼ、 ズブチリシン、 キモトリブシン、 カテブシン、 プラスミン、 卜ロンビン、 カリクレイン およびゥロキナーゼからなる群から選択された少なくとも一つのプロテ ァーゼである請求項 1 6記載の測定キッ ト。 1 8. Proteases other than trypsin are Erasu Yuichi, Subtilisin, 16. The measurement kit according to claim 16, which is at least one protease selected from the group consisting of chymotrypsin, cathepsin, plasmin, trombin, kallikrein, and perokinase.
1 9 . トリプシン、 基質および酸化剤を備える尿中トリプシンインヒビ ター測定キッ ト。  1 9. Urine trypsin inhibitor assay kit with trypsin, substrate and oxidant.
2 0 . 酸化剤が、 過マンガン酸、 過マンガン酸塩、 酸素酸、 酸素酸塩、 金属塩類、 酸化物および過酸化物からなる群から選択された少なくとも 一つの酸化剤である請求項 1 9記載の測定キッ ト。  20. The oxidizing agent is at least one selected from the group consisting of permanganic acid, permanganate, oxyacid, oxyacid salt, metal salts, oxide and peroxide. The measurement kit described.
2 1 . 酸化剤が、 ヨウ素酸ナトリウム、 ヨウ素、 硫酸銅および三塩化鉄 からなる群から選択された少なくとも一つの酸化剤である請求項 1 9記 載の測定キッ ト。 21. The measurement kit according to claim 19, wherein the oxidizing agent is at least one oxidizing agent selected from the group consisting of sodium iodate, iodine, copper sulfate, and iron trichloride.
2 2 . 酸化剤を二種類以上併用する請求項 2 0または 2 1記載の測定キ ッ 卜。  22. The measuring kit according to claim 20, wherein two or more oxidizing agents are used in combination.
2 3 . 測定対象試料が、 尿である請求項 1 6または 1 9記載の測定キッ 卜。  23. The measurement kit according to claim 16 or 19, wherein the sample to be measured is urine.
PCT/JP1999/000972 1998-03-20 1999-02-26 Method for assaying trypsin inhibitor in urine and assay kit to be used therein WO1999049076A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/72713 1998-03-20
JP7271398 1998-03-20
JP10/72712 1998-03-20
JP7271298 1998-03-20

Publications (1)

Publication Number Publication Date
WO1999049076A1 true WO1999049076A1 (en) 1999-09-30

Family

ID=26413856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000972 WO1999049076A1 (en) 1998-03-20 1999-02-26 Method for assaying trypsin inhibitor in urine and assay kit to be used therein

Country Status (1)

Country Link
WO (1) WO1999049076A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7001737B2 (en) * 2000-05-15 2006-02-21 Bayer Corporation Urinary trypsin inhibitor assay containing a chelating agent
CN103760360A (en) * 2013-12-09 2014-04-30 宁波普瑞柏生物技术有限公司 Reagent for quantitative detection of serum alpha 1-antitrypsin
US11725043B2 (en) 2020-03-05 2023-08-15 DiaMedica USA Inc. Ulinastatin polypeptides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUWAJIMA S, ET AL.: "NYOUCHUU TRYPSIN INHIBITOR NO RINSHOUTEKI IGI", ENSHOA - JAPANESE JOURNAL OF INFLAMMATION, ISHIYAKU SHUPPAN, TOKYO, JP, vol. 09, no. 03, 1 May 1989 (1989-05-01), JP, pages 175 - 182, XP002920970, ISSN: 0389-4290 *
LOUTFTI H., ET AL.: "ACTIVITE ANTITRYPSIQUE DE L'URINE ET ALPHA1 PROTEASE INHIBITEUR.", ANNALES DE BIOLOGIE CLINIQUE, JOHN LIBBEY EUROTEXT LTD., PARIS, FR, vol. 47., no. 05., 1 January 1989 (1989-01-01), PARIS, FR, pages 261 - 267., XP002920969, ISSN: 0003-3898 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7001737B2 (en) * 2000-05-15 2006-02-21 Bayer Corporation Urinary trypsin inhibitor assay containing a chelating agent
CN103760360A (en) * 2013-12-09 2014-04-30 宁波普瑞柏生物技术有限公司 Reagent for quantitative detection of serum alpha 1-antitrypsin
US11725043B2 (en) 2020-03-05 2023-08-15 DiaMedica USA Inc. Ulinastatin polypeptides

Similar Documents

Publication Publication Date Title
Fritz et al. Protease inhibitors
Scott et al. Amidolytic assay of human factor XI in plasma: Comparison with a coagulant assay and a new rapid radioimmunoassay
Abildgaard et al. A simple amidolytic method for the determination of functionally active antithrombin III
US4496653A (en) Process for the determination of antithrombin-BM
US5057414A (en) Method for the determination of the activity of serine proteases or serine protease inhibitors
Steven et al. Evidence for an enzyme which cleaves the guanidinobenzoate moiety from active‐site titrants specifically designed to inhibit and quantify trypsin
Lasson et al. Changes in the kallikrein kinin system during acute pancreatitis in man
US5646007A (en) Method for determination of antithrombin III activity and reagent kit therefor
JPS6261600A (en) Measurement of protease inhibitor
Fareed et al. Diagnostic efficacy of newer synthetic-substrates methods for assessing coagulation variables: a critical overview.
Dubick et al. Digestive enzymes and protease inhibitors in plasma from patients with acute pancreatitis
CA1079166A (en) Process for the quantitative determination of antithrombin iii
WO1999049076A1 (en) Method for assaying trypsin inhibitor in urine and assay kit to be used therein
Nilsson et al. Elevated plasmin-α2-antiplasmin complex levels in hereditary angioedema: evidence for the in vivo efficiency of the intrinsic fibrinolytic system
Turpeinen et al. Reaction of a tumour-associated trypsin inhibitor with serine proteinases associated with coagulation and tumour invasion
JP3059433B2 (en) Method for measuring urinary trypsin inhibitor and assay kit used therefor
Schatteman et al. Fast homogeneous assay for plasma procarboxypeptidase U
CA2421957C (en) Method for measuring antithrombin activity
WO1998005970A1 (en) Method for examining chronic rejection reactions following organ transplantation and method for determining urine components
JP3626982B2 (en) Method for measuring proteolytic enzyme inhibitor and measurement kit used therefor
Win Test systems with synthetic peptide substrates in haemostaseology
Scott et al. A new assay for high molecular weight kininogen in human plasma using a chromogenic substrate
US5290679A (en) Method of predicting threatened premature delivery in a pregnant woman
JPH0353898A (en) Measurement of anti-thrombin iii in body fluid and reagent for it
US5856117A (en) Method for measuring the concentration of protease inhibitors, kit for use in such a method and method for dissolving a substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase