WO1999049053A1 - Sous-unite lcb1 de serine palmitoyltransferase - Google Patents

Sous-unite lcb1 de serine palmitoyltransferase

Info

Publication number
WO1999049053A1
WO1999049053A1 PCT/US1999/006045 US9906045W WO9949053A1 WO 1999049053 A1 WO1999049053 A1 WO 1999049053A1 US 9906045 W US9906045 W US 9906045W WO 9949053 A1 WO9949053 A1 WO 9949053A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
lcbl
subunit
nucleic acid
serine palmitoyltransferase
Prior art date
Application number
PCT/US1999/006045
Other languages
English (en)
Inventor
Rebecca E. Cahoon
Anthony J. Kinney
J. Antoni Rafalski
Alan R. Rendina
Original Assignee
E.I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E.I. Du Pont De Nemours And Company filed Critical E.I. Du Pont De Nemours And Company
Priority to AU31033/99A priority Critical patent/AU3103399A/en
Priority to EP99912721A priority patent/EP1066387A1/fr
Priority to BR9907966-6A priority patent/BR9907966A/pt
Publication of WO1999049053A1 publication Critical patent/WO1999049053A1/fr
Priority to US10/309,629 priority patent/US7659450B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition

Definitions

  • This invention is in the field of plant molecular biology. More specifically, this invention pertains to nucleic acid fragments encoding Lcbl subunit of serine palmitoyltransferase in plants and seeds.
  • Sphingolipids are abundant components of the plasma membrane of higher eukaryotes.
  • Specific sphingolipids are produced via the addition of polar groups to the 1-hydroxyl group of ceramide.
  • the mechanism of de novo synthesis of ceramide in plants begins with the condensation of serine and palmitoyl-CoA to yield 3-ketosphinganine. This reaction is catalyzed by serine palmitoyltransferase (SPT; EC 2.3.1.50). Further reactions convert 3-ketosphinganine to ceramide.
  • Serine palmitoyltransferase is thought to have at least two subunits, Lcbl and Lcb2, with Lcbl containing a conserved non-functional pyridoxal binding site which does not have the essential lysine residue.
  • Sphingolipids appear to play essential roles in cellular events such as proliferation, senescence, differentiation, apoptosis and response to desiccation stress. Although not much is known about the mechanism of this pathway, it has been suggested that SPT is the rate- limiting step in the production of ceramide.
  • the genes encoding the Lcbl subunit of SPT have been isolated from human, mouse and Saccharomyces cerevisiae. All of these genes appear to contain a putative transmembrane domain and are probably localized at the endoplasmic reticulum (Hanada, K. et al. (1997) J Biol Chem 272:32108-32114).
  • nucleic acid sequences encoding all or a portion of this enzyme would facilitate studies to better understand the de novo synthesis of ceramide, provide genetic tools for the manipulation of this biosynthetic pathway, and provide a means to control sphingolipid concentration in plant cells.
  • the instant invention pertains to an isolated nucleic acid fragment encoding an Lcbl subunit of serine palmitoyltransferase.
  • this invention relates to a nucleic acid fragment that is complementary to the nucleic acid fragment encoding an Lcbl subunit of serine palmitoyltransferase.
  • An additional embodiment of the instant invention pertains to a polypeptide encoding all or a substantial portion of an Lcbl subunit of serine palmitoyltransferase.
  • the instant invention relates to a chimeric gene encoding an Lcbl subunit of serine palmitoyltransferase, or to a chimeric gene that comprises a nucleic acid fragment that is complementary to a nucleic acid fragment encoding an Lcbl subunit of
  • the instant invention concerns a transformed host cell comprising in its genome a chimeric gene encoding an Lcbl subunit of serine palmitoyltransferase, operably linked to suitable regulatory sequences. Expression of the chimeric gene results in production of altered levels of the encoded protein in the transformed host cell.
  • the transformed host cell can be of eukaryotic or prokaryotic origin, and include cells derived from higher plants and microorganisms.
  • the invention also includes transformed plants that arise from transformed host cells of higher plants, and seeds derived from such transformed plants.
  • An additional embodiment of the instant invention concerns a method of altering the level of expression of an Lcbl subunit of serine palmitoyltransferase in a transformed host cell comprising: a) transforming a host cell with a chimeric gene comprising a nucleic acid fragment encoding an Lcbl subunit of serine palmitoyltransferase; and b) growing the transformed host cell under conditions that are suitable for expression of the chimeric gene wherein expression of the chimeric gene results in production of altered levels of the Lcbl subunit of serine palmitoyltransferase in the transformed host cell.
  • An addition embodiment of the instant invention concerns a method for obtaining a nucleic acid fragment encoding all or a substantial portion of an amino acid sequence encoding an Lcbl subunit of serine palmitoyltransferase.
  • a further embodiment of the instant invention is a method for evaluating at least one compound for its ability to inhibit the activity of a serine palmitoyltransferase Lcbl subunit, the method comprising the steps of: (a) transforming a host cell with a chimeric gene comprising a nucleic acid fragment encoding a serine palmitoyltransferase Lcbl subunit, operably linked to suitable regulatory sequences; (b) growing the transformed host cell under conditions that are suitable for expression of the chimeric gene wherein expression of the chimeric gene results in production of serine palmitoyltransferase Lcbl subunit in the transformed host cell; (c) optionally purifying the serine palmitoyltransferase Lcbl subunit expressed by the transformed host cell; (d) treating the serine palmitoyltransferase Lcbl subunit with a compound to be tested; and (e) comparing the activity of the serine palmitoyltransfer
  • Figure 1 shows an alignment of the amino acid sequences from Arabidopsis thaliana serine palmitoyltransferase Lcbl subunit (SEQ ID NO: 13), the instant corn Lcbl subunit of serine palmitoyltransferase (contig of ccoln.pk060.d3, ceb3.pk0002.d5, p0010.cbpaa34rb, p0010.cbpad89rb and crln.pk0001.e6; SEQ ID NO:2), the instant corn Lcbl subunit of serine palmitoyltransferase (clone cen3n.pk0067.a2; SEQ ID NO:4) and the instant wheat Lcbl subunit of serine palmitoyltransferase
  • SEQ ID NO: 1 is the nucleotide sequence comprising the contig assembled from the entire cDNA insert in clones ceb3.pk0002.d5 and crln.pk0001.e6 and a portion of the cDNA insert in clones ccoln.pk060.d3, p0010.cbpaa34rb and p0010.cbpad89rb encoding an entire corn serine palmitoyltransferase Lcbl subunit homolog.
  • SEQ ID NO:2 is the deduced amino acid sequence of an entire corn serine palmitoyltransferase Lcbl subunit homolog derived from the nucleotide sequence of SEQ ID NO:l.
  • SEQ ID NO:3 is the nucleotide sequence comprising the entire cDNA insert in clone cen3n.pk0067.a2 encoding a portion of a corn serine palmitoyltransferase Lcbl subunit homolog.
  • SEQ ID NO:4 is the deduced amino acid sequence of a portion of a corn serine palmitoyltransferase Lcbl subunit homolog derived from the nucleotide sequence of SEQ ID NO.3.
  • SEQ ID NO: 5 is the nucleotide sequence comprising a portion of the cDNA insert in clone rcaln.pk009.h2 encoding a portion of a rice serine palmitoyltransferase Lcbl subunit homolog.
  • SEQ ID NO:6 is the deduced amino acid sequence of a portion of a rice serine palmitoyltransferase Lcbl subunit homolog derived from the nucleotide sequence of SEQ ID NO.5.
  • SEQ ID NO: 7 is the nucleotide sequence comprising a portion of the cDNA insert in clone rls 12.pk0012.d2 encoding a portion of a rice serine palmitoyltransferase Lcb 1 subunit homolog.
  • SEQ ID NO: 8 is the deduced amino acid sequence of a portion of a rice serine palmitoyltransferase Lcbl subunit homolog derived from the nucleotide sequence of SEQ ID NO:7.
  • SEQ ID NO: 9 is the nucleotide sequence comprising a portion of the cDNA insert in clone srrlc.pk002.k24 encoding a portion of a soybean serine palmitoyltransferase Lcbl subunit homolog.
  • SEQ ID NO: 10 is the deduced amino acid sequence of a portion of a soybean serine palmitoyltransferase Lcbl subunit homolog derived from the nucleotide sequence of SEQ ID NO.9.
  • SEQ ID NO: 11 is the nucleotide sequence comprising the entire cDNA insert in clone wlm4.pk0022.f3 encoding a portion of a wheat serine palmitoyltransferase Lcbl subunit homolog.
  • SEQ ID NO: 12 is the deduced amino acid sequence of a portion of a wheat serine palmitoyltransferase Lcbl subunit homolog derived from the nucleotide sequence of SEQ ID NO.l l.
  • SEQ ID NO: 13 is the amino acid sequence of a Ar ⁇ bidopsis th ⁇ li ⁇ n ⁇ serine palmitoyltransferase Lcbl subunit having an NCBI General Identifier No.4006914.
  • the Sequence Listing contains the one letter code for nucleotide sequence characters and the three letter codes for amino acids as defined in conformity with the IUPAC-IUBMB standards described in Nucleic Acids Research 5:3021-3030 (1985) and in the Biochemical Journal 219 (No. 2) :345-373 (1984) which are herein incorporated by reference.
  • the symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C.F.R. ⁇ 1.822.
  • an "isolated nucleic acid fragment” is a polymer of RNA or DNA that is single- or double- stranded, optionally containing synthetic, non-natural or altered nucleotide bases.
  • An isolated nucleic acid fragment in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA or synthetic DNA.
  • "contig” refers to an assemblage of overlapping nucleic acid sequences to form one contiguous nucleotide sequence. For example, several DNA sequences can be compared and aligned to identify common or overlapping regions. The individual sequences can then be assembled into a single contiguous nucleotide sequence.
  • substantially similar refers to nucleic acid fragments wherein changes in one or more nucleotide bases results in substitution of one or more amino acids, but do not affect the functional properties of the protein encoded by the DNA sequence. “Substantially similar” also refers to nucleic acid fragments wherein changes in one or more nucleotide bases does not affect the ability of the nucleic acid fragment to mediate alteration
  • substantially similar also refers to modifications of the nucleic acid fragments of the instant invention such as deletion or insertion of one or more nucleotides that do not substantially affect the functional properties of the resulting transcript vis-a-vis the ability to mediate alteration of gene expression by antisense or co-suppression technology or alteration of the functional properties of the resulting protein molecule. It is therefore understood that the invention encompasses more than the specific exemplary sequences.
  • antisense suppression and co-suppression of gene expression may be accomplished using nucleic acid fragments representing less than the entire coding region of a gene, and by nucleic acid fragments that do not share 100% sequence identity with the gene to be suppressed.
  • alterations in a gene which result in the production of a chemically equivalent amino acid at a given site, but do not effect the functional properties of the encoded protein are well known in the art.
  • a codon for the amino acid alanine, a hydrophobic amino acid may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine.
  • a codon encoding another less hydrophobic residue such as glycine
  • a more hydrophobic residue such as valine, leucine, or isoleucine.
  • changes which result in substitution of one negatively charged residue for another such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product.
  • Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the protein molecule would also not be expected to alter the activity of the protein.
  • nucleic acid fragments may also be characterized by their ability to hybridize, under stringent conditions (0.1X SSC, 0.1% SDS, 65°C), with the nucleic acid fragments disclosed herein.
  • Substantially similar nucleic acid fragments of the instant invention may also be characterized by the percent similarity of the amino acid sequences that they encode to the amino acid sequences disclosed herein, as determined by algorithms commonly employed by those skilled in this art. Preferred are those nucleic acid fragments whose nucleotide sequences encode amino acid sequences that are 80% similar to the amino acid sequences reported herein. More preferred nucleic acid fragments encode amino acid sequences that are 90% similar to the amino acid sequences reported herein. Most preferred are nucleic acid fragments that encode amino acid sequences that are 95% similar to the amino acid sequences reported herein.
  • a "substantial portion" of an amino acid or nucleotide sequence comprises enough of the amino acid sequence of a polypeptide or the nucleotide sequence of a gene to afford putative identification of that polypeptide or gene, either by manual evaluation of the sequence by one skilled in the art, or by computer-automated sequence comparison and identification using algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul, S. F., et al., (1993) J. Mol. Biol. 275:403-410; see also www.ncbi.nlm.nih.gov/BLAST/).
  • BLAST Basic Local Alignment Search Tool
  • a sequence often or more contiguous amino acids or thirty or more nucleotides is necessary in order to putatively identify a polypeptide or nucleic acid sequence as homologous to a known protein or gene.
  • gene specific oligonucleotide probes comprising 20-30 contiguous nucleotides may be used in sequence-dependent methods of gene identification (e.g., Southern hybridization) and isolation (e.g., in situ hybridization of bacterial colonies or bacteriophage plaques).
  • short ohgonucleotides of 12-15 bases may be used as amplification primers in PCR in order to obtain a particular nucleic acid fragment comprising the primers.
  • a "substantial portion" of a nucleotide sequence comprises enough of the sequence to afford specific identification and/or isolation of a nucleic acid fragment comprising the sequence.
  • the instant specification teaches partial or complete amino acid and nucleotide sequences encoding one or more particular plant proteins.
  • the skilled artisan, having the benefit of the sequences as reported herein, may now use all or a substantial portion of the disclosed sequences for purposes known to those skilled in this art. Accordingly, the instant invention comprises the complete sequences as reported in the accompanying Sequence Listing, as well as substantial portions of those sequences as defined above.
  • Codon degeneracy refers to divergence in the genetic code permitting variation of the nucleotide sequence without effecting the amino acid sequence of an encoded polypeptide. Accordingly, the instant invention relates to any nucleic acid fragment that encodes all or a substantial portion of the amino acid sequence encoding the Lcbl subunit of serine palmitoyltransferase proteins as set forth in SEQ ID NOs:2, 4, 6, 8, 10 and 12. The skilled artisan is well aware of the "codon-bias" exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid.
  • Synthetic genes can be assembled from oligonucleotide building blocks that are chemically synthesized using procedures known to those skilled in the art. These building blocks are ligated and annealed to form gene segments which are then enzymatically assembled to construct the entire gene. "Chemically synthesized”, as related to a sequence
  • DNA means that the component nucleotides were assembled in vitro.
  • Manual chemical synthesis of DNA may be accomplished using well established procedures, or automated chemical synthesis can be performed using one of a number of commercially available machines.
  • the genes can be tailored for optimal gene expression based on optimization of nucleotide sequence to reflect the codon bias of the host cell. The skilled artisan appreciates the likelihood of successful gene expression if codon usage is biased towards those codons favored by the host. Determination of preferred codons can be based on a survey of genes derived from the host cell where sequence information is available.
  • Gene refers to a nucleic acid fragment that expresses a specific protein, including regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence.
  • Native gene refers to a gene as found in nature with its own regulatory sequences.
  • Chimeric gene refers any gene that is not a native gene, comprising regulatory and coding sequences that are not found together in nature. Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature.
  • Endogenous gene refers to a native gene in its natural location in the genome of an organism.
  • a “foreign” gene refers to a gene not normally found in the host organism, but that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, or chimeric genes.
  • a “transgene” is a gene that has been introduced into the genome by a transformation procedure.
  • Coding sequence refers to a DNA sequence that codes for a specific amino acid sequence.
  • Regulatory sequences refer to nucleotide sequences located upstream (5' non- coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include promoters, translation leader sequences, introns, and polyadenylation recognition sequences.
  • Promoter refers to a DNA sequence capable of controlling the expression of a coding sequence or functional RNA.
  • a coding sequence is located 3' to a promoter sequence.
  • the promoter sequence consists of proximal and more distal upstream elements, the latter elements often referred to as enhancers.
  • an “enhancer” is a DNA sequence which can stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. Promoters which cause a
  • translation leader sequence refers to a DNA sequence located between the promoter sequence of a gene and the coding sequence.
  • the translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence.
  • the translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences have been described (Turner, R. and Foster, G. D. (1995) Molecular Biotechnology 5:225).
  • the "3' non-coding sequences” refer to DNA sequences located downstream of a coding sequence and include polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression.
  • the polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3' end of the mRNA precursor.
  • the use of different 3' non-coding sequences is exemplified by Ingelbrecht et al., (1989) Plant Cell 7:671-680.
  • RNA transcript refers to the product resulting from RNA polymerase-catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect complementary copy of the DNA sequence, it is referred to as the primary transcript or it may be a RNA sequence derived from posttranscriptional processing of the primary transcript and is referred to as the mature RNA.
  • Messenger RNA (mRNA) refers to the RNA that is without introns and that can be translated into protein by the cell.
  • cDNA refers to a double-stranded DNA that is complementary to and derived from mRNA.
  • Sense RNA transcript that includes the mRNA and so can be translated into protein by the cell.
  • Antisense RNA refers to a RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target gene (U.S. Pat. No. 5,107,065, incorporated herein by reference). The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5' non-coding sequence, 3' non-coding sequence, introns, or the coding sequence.
  • “Functional RNA” refers to sense RNA, antisense RNA, ribozyme RNA, or other RNA that may not be translated but yet has an effect on cellular processes.
  • operably linked refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other.
  • a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence (i.e., that the coding sequence is under the
  • Coding sequences can be operably linked to regulatory sequences in sense or antisense orientation.
  • expression refers to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from the nucleic acid fragment of the invention. Expression may also refer to translation of mRNA into a polypeptide.
  • Antisense inhibition refers to the production of antisense RNA transcripts capable of suppressing the expression of the target protein.
  • Overexpression refers to the production of a gene product in transgenic organisms that exceeds levels of production in normal or non-transformed organisms.
  • Co-suppression refers to the production of sense RNA transcripts capable of suppressing the expression of identical or substantially similar foreign or endogenous genes (U.S. Pat. No. 5,231,020, incorporated herein by reference).
  • altered levels refers to the production of gene product(s) in transgenic organisms in amounts or proportions that differ from that of normal or non-transformed organisms.
  • “Mature” protein refers to a post-translationally processed polypeptide; i.e., one from which any pre- or propeptides present in the primary translation product have been removed.
  • Precursor protein refers to the primary product of translation of mRNA; i.e., with pre- and propeptides still present. Pre- and propeptides may be but are not limited to intracellular localization signals.
  • chloroplast transit peptide is an amino acid sequence which is translated in conjunction with a protein and directs the protein to the chloroplast or other plastid types present in the cell in which the protein is made.
  • Chloroplast transit sequence refers to a nucleotide sequence that encodes a chloroplast transit peptide.
  • a “signal peptide” is an amino acid sequence which is translated in conjunction with a protein and directs the protein to the secretory system (Chrispeels, J. J., (1991) Ann. Rev. Plant Phys. Plant Mol. Biol. 42:21-53).
  • a vacuolar targeting signal can further be added, or if to the endoplasmic reticulum, an endoplasmic reticulum retention signal (supra) may be added.
  • any signal peptide present should be removed and instead a nuclear localization signal included (Raikhel (1992) Plant Phys.100:1627 -1632).
  • Transformation refers to the transfer of a nucleic acid fragment into the genome of a host organism, resulting in genetically stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as "transgenic" organisms.
  • Examples of methods of plant transformation include Agrobacterium-mediated transformation (De Blaere et al. (1987) Meth. Enzymol. 143:211) and particle-accelerated or "gene gun” transformation technology (Klein et al. (1987) Nature (London) 327:10-13; U.S. Pat. No. 4,945,050, incorporated herein by reference).
  • Nucleic acid fragments encoding at least a portion of several Lcbl subunits of serine palmitoyltransferase have been isolated and identified by comparison of random plant cDNA sequences to public databases containing nucleotide and protein sequences using the BLAST algorithms well known to those skilled in the art.
  • Table 1 lists the proteins that are described herein, and the designation of the cDNA clones that comprise the nucleic acid fragments encoding these proteins.
  • the nucleic acid fragments of the instant invention may be used to isolate cDNAs and genes encoding homologous proteins from the same or other plant species. Isolation of homologous genes using sequence-dependent protocols is well known in the art. Examples of sequence-dependent protocols include, but are not limited to, methods of nucleic acid hybridization, and methods of DNA and RNA amplification as exemplified by various uses of nucleic acid amplification technologies (e.g., polymerase chain reaction, ligase chain reaction). For example, genes encoding other serine palmitoyltransferase Lcbl subunits.
  • sequence-dependent protocols include, but are not limited to, methods of nucleic acid hybridization, and methods of DNA and RNA amplification as exemplified by various uses of nucleic acid amplification technologies (e.g., polymerase chain reaction, ligase chain reaction). For example, genes encoding other serine palmitoyltransferase Lcbl subunits.
  • cDNAs or genomic DNAs could be isolated directly by using all or a portion of the instant nucleic acid fragments as DNA hybridization probes to screen libraries from any desired plant employing methodology well known to those skilled in the art.
  • Specific oligonucleotide probes based upon the instant nucleic acid sequences can be designed and synthesized by methods known in the art (Maniatis). Moreover, the entire sequences can be used directly to synthesize DNA probes by methods known to the skilled artisan such as random primer DNA labeling, nick translation, or end-labeling techniques, or RNA probes using available in vitro transcription systems.
  • specific primers can be designed
  • the resulting amplification products can be labeled directly during amplification reactions or labeled after amplification reactions, and used as probes to isolate full length cDNA or genomic fragments under conditions of appropriate stringency.
  • two short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols to amplify longer nucleic acid fragments encoding homologous genes from DNA or RNA.
  • the polymerase chain reaction may also be performed on a library of cloned nucleic acid fragments wherein the sequence of one primer is derived from the instant nucleic acid fragments, and the sequence of the other primer takes advantage of the presence of the polyadenylic acid tracts to the 3' end of the mRNA precursor encoding plant genes.
  • the second primer sequence may be based upon sequences derived from the cloning vector.
  • the skilled artisan can follow the RACE protocol (Frohman et al., (1988) Proc. Natl. Acad. Sci. USA 55:8998) to generate cDNAs by using PCR to amplify copies of the region between a single point in the transcript and the 3' or 5' end.
  • Primers oriented in the 3' and 5' directions can be designed from the instant sequences.
  • 3' RACE or 5' RACE systems BBL
  • specific 3' or 5' cDNA fragments can be isolated (Ohara et al., (1989) Proc. Natl. Acad. Sci. USA 86:5613; Loh et al., (1989) Science 243:211).
  • Products generated by the 3' and 5' RACE procedures can be combined to generate full-length cDNAs (Frohman, M. A. and Martin, G. R., (1989) Techniques 7: 165).
  • Synthetic peptides representing portions of the instant amino acid sequences may be synthesized. These peptides can be used to immunize animals to produce polyclonal or monoclonal antibodies with specificity for peptides or proteins comprising the amino acid sequences. These antibodies can be then be used to screen cDNA expression libraries to isolate full-length cDNA clones of interest (Lerner, R. A. (1984) Adv. Immunol. 36: ⁇ ; Maniatis).
  • the nucleic acid fragments of the instant invention may be used to create transgenic plants in which the disclosed serine palmitoyltransferase Lcbl subunits are present at higher or lower levels than normal or in cell types or developmental stages in which they are not normally found. This would have the effect of altering the level of sphingolipid biosynthesis in those cells. Because sphingolipids are involved in dissecation stress tolerance overexpression of the Lcbl subunit in transgenic plants will enhance stress tolerance in these plants. Manipulation of the levels of Lcbl will lead to a greater accumulation of ceramides which are useful in the cosmetic industry.
  • Overexpression of the serine palmitoyltransferase Lcbl subunit proteins of the instant invention may be accomplished by first constructing a chimeric gene in which the coding region is operably linked to a promoter capable of directing expression of a gene in the
  • the chimeric gene may comprise promoter sequences and translation leader sequences derived from the same genes. 3' Non-coding sequences encoding transcription termination signals may also be provided.
  • the instant chimeric gene may also comprise one or more introns in order to facilitate gene expression.
  • Plasmid vectors comprising the instant chimeric gene can then constructed.
  • the choice of plasmid vector is dependent upon the method that will be used to transform host plants. The skilled artisan is well aware of the genetic elements that must be present on the plasmid vector in order to successfully transform, select and propagate host cells containing the chimeric gene. The skilled artisan will also recognize that different independent transformation events will result in different levels and patterns of expression (Jones et al., (19S5) EMBO J. 4:24 ⁇ 1-2418; De Almeida et al., (1989) Mol. Gen. Genetics 218:1 '8-86), and thus that multiple events must be screened in order to obtain lines displaying the desired expression level and pattern. Such screening may be accomplished by Southern analysis of DNA, Northern analysis of mRNA expression, Western analysis of protein expression, or phenotypic analysis.
  • the instant serine palmitoyltransferase Lcbl subunit may be further supplemented by altering the coding sequence to encode serine palmitoyltransferase Lcbl subunit with appropriate intracellular targeting sequences such as transit sequences (Keegstra, K. (1989) Cell 55:247-253), signal sequences or sequences encoding endoplasmic reticulum localization (Chrispeels, J. J., (1991) Ann. Rev. Plant Phys. Plant Mol. Biol.
  • a chimeric gene designed for co-suppression of the instant serine palmitoyltransferase Lcbl subunit can be constructed by linking a gene or gene fragment encoding an serine palmitoyltransferase Lcbl subunit to plant promoter sequences.
  • a chimeric gene designed to express antisense RNA for all or part of the instant nucleic acid fragment can be constructed by linking the gene or gene fragment in reverse orientation to plant promoter sequences. Either the co-suppression or antisense chimeric genes could be introduced into plants via transformation wherein expression of the corresponding endogenous genes are reduced or eliminated.
  • the instant serine palmitoyltransferase Lcbl subunit may be produced in heterologous host cells, particularly in the cells of microbial hosts, and can be used to prepare antibodies to the these proteins by methods well known to those skilled in the art.
  • the antibodies are useful for detecting serine palmitoyltransferase Lcbl subunit in situ in cells or in vitro in cell extracts.
  • Preferred heterologous host cells for production of the instant serine palmitoyltransferase Lcbl subunit are microbial hosts. Microbial expression systems and expression vectors containing regulatory sequences that direct high level expression of foreign proteins are well known to those skilled in the art.
  • any of these could be used to construct a chimeric gene for production of the instant serine palmitoyltransferase Lcbl subunit.
  • This chimeric gene could then be introduced into appropriate microorganisms via transformation to provide high level expression of the encoded serine palmitoyltransferase Lcbl subunit.
  • An example of a vector for high level expression of the instant serine palmitoyltransferase Lcbl subunit in a bacterial host is provided (Example 6). All or a substantial portion of the nucleic acid fragments of the instant invention may also be used as probes for genetically and physically mapping the genes that they are a part of, and as markers for traits linked to those genes.
  • the instant nucleic acid fragments may be used as restriction fragment length polymorphism (RFLP) markers.
  • RFLP restriction fragment length polymorphism
  • Southern blots (Maniatis) of restriction-digested plant genomic DNA may be probed with the nucleic acid fragments of the instant invention.
  • the resulting banding patterns may then be subjected to genetic analyses using computer programs such as MapMaker (Lander et at., (1987) Genomics 7:174-181) in order to construct a genetic map.
  • nucleic acid fragments of the instant invention may be used to probe Southern blots containing restriction endonuclease-treated genomic DNAs of a set of individuals representing parent and progeny of a defined genetic cross. Segregation of the DNA polymorphisms is noted and used to calculate the position of the instant nucleic acid sequence in the genetic map previously obtained using this population (Botstein, D. et al., (1980) Am. J. Hum. Genet. 52:314-331). The production and use of plant gene-derived probes for use in genetic mapping is described in R. Beraatzky, R. and Tanksley, S. D. (1986) Plant Mol. Biol. Reporter 4(1):31- ⁇ .
  • Nucleic acid probes derived from the instant nucleic acid sequences may also be used for physical mapping (i.e., placement of sequences on physical maps; see Hoheisel, J. D., et
  • nucleic acid probes derived from the instant nucleic acid sequences may be used in direct fluorescence in situ hybridization (FISH) mapping (Trask, B. J. (1991) Trends Genet. 7:149-154).
  • FISH direct fluorescence in situ hybridization
  • nucleic acid amplification-based methods of genetic and physical mapping may be carried out using the instant nucleic acid sequences. Examples include allele-specific amplification (Kazazian, H. H. (1989) J Lab. Clin. Med. 114(24.95-96), polymorphism of PCR-amplified fragments (CAPS; Sheffield, V. C. et al. (1993) Genomics 7(5:325-332), allele-specific ligation (Landegren, U. et al. (1988) Science 247:1077-1080), nucleotide extension reactions (Sokolov, B. P. (1990) Nucleic Acid Res. 18:3611), Radiation Hybrid Mapping (Walter, M. A.
  • Loss of function mutant phenotypes may be identified for the instant cDNA clones either by targeted gene disruption protocols or by identifying specific mutants for these genes contained in a maize population carrying mutations in all possible genes (Ballinger and Benzer, (1989) Proc. Natl. Acad. Sci USA 86:9402; Koes et al., (1995) Proc. Natl. Acad. Sci USA 92:8149; Bensen et al, (1995) Plant Cell 7:15). The latter approach may be accomplished in two ways.
  • short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols in conjunction with a mutation tag sequence primer on DNAs prepared from a population of plants in which Mutator transposons or some other mutation-causing DNA element has been introduced (see Bensen, supra).
  • the amplification of a specific DNA fragment with these primers indicates the insertion of the mutation tag element in or near the plant gene encoding the serine palmitoyltransferase Lcbl subunit.
  • the instant nucleic acid fragment may be used as a hybridization probe against PCR amplification products generated from the mutation population using the mutation tag sequence primer in conjunction with an arbitrary genomic site primer, such as that for a restriction enzyme site-anchored synthetic adaptor. With either method, a plant containing a mutation in the endogenous gene encoding a serine palmitoyltransferase Lcbl
  • This mutant plant can then be used to determine or confirm the natural function of the serine palmitoyltransferase Lcbl subunit gene product.
  • EXAMPLE 1 Composition of cDNA Libraries; Isolation and Sequencing of cDNA Clones cDNA libraries representing mRNAs from various corn, rice, soybean and wheat tissues were prepared. The characteristics of the libraries are described below.
  • cDNA libraries were prepared in Uni-ZAPTM XR vectors according to the manufacturer's protocol (Stratagene Cloning Systems, La Jolla, CA). Conversion of the Uni-ZAPTM XR libraries into plasmid libraries was accomplished according to the protocol provided by Stratagene. Upon conversion, cDNA inserts were contained in the plasmid vector pBluescript. cDNA inserts from randomly picked bacterial colonies containing
  • telomere sequences 15 recombinant pBluescript plasmids were amplified via polymerase chain reaction using primers specific for vector sequences flanking the inserted cDNA sequences or plasmid DNA was prepared from cultured bacterial cells. Amplified insert DNAs or plasmid DNAs were sequenced in dye-primer sequencing reactions to generate partial cDNA sequences (expressed sequence tags or "ESTs"; see Adams, M. D. et al., (1991) Science 252:1651). The resulting ESTs were analyzed using a Perkin Elmer Model 377 fluorescent sequencer.
  • EXAMPLE 3 Characterization of cD ⁇ A Clones Encoding Serine Palmitoyltransferase Lcbl Subunit The BLASTX search using the EST sequences from several corn, rice, soybean and wheat clones revealed similarity of the proteins encoded by the cD ⁇ As to serine palmitoyltransferase Lcbl subunit from several Arabidopsis thaliana and Homo sapiens.
  • the Arabidopsis thaliana sequence has GenBank Accession No. Z99708 while the Homo sapiens sequence has GenBank Accession No. Y08685.
  • a contig is an assemblage of overlapping nucleic acid sequences to form one contiguous nucleotide sequence.
  • the individual sequences were assembled into unique contiguous nucleotide sequences encoding unique corn and wheat serine palmitoyltransferase Lcbl subunits.
  • the database accession numbers and BLAST results for each of these ESTs and contigs are shown in Table 3:
  • sequence from the entire cDNA insert in clones ceb3.pk0002.d5 and crln.pk0001.e6 was determined and a contig assembled with these sequences and the sequences from portions of the cDNA inserts in clones ccoln.pk060.d3, p0010.cbpaa34rb and p0010.cbpad89rb.
  • the nucleotide sequence of this contig is shown in SEQ ID NO: 1 ; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:2.
  • the nucleotide sequence set forth in SEQ ID NO:l includes the EST sequences from clones cbnl0. ⁇ k0005.h3, cepe7.pk0018.h4, crln.pk0184. ⁇ , csl.pk0009.h4, csiln.pk0021.c3, cepe7.pk0019.a4, ccoln.pk0013.a5 and cen3n.pk0134.hl2.
  • the amino acid sequence set forth in SEQ ID NO:2 was evaluated by BLASTP, yielding a pLog value of >254 versus the Arabidopsis thaliana sequence (NCBI General Identifier No. 4006914).
  • the sequence of the entire cDNA insert in clone cen3n.pk0067.a2 was determined and is shown in SEQ ID NO:
  • the nucleotide sequence set forth in SEQ ID NO: 3 includes the EST sequence from clone crln.pk0196.h6.
  • the amino acid sequence set forth in SEQ ID NO:4 was evaluated by BLASTP, yielding a pLog value of 102.0 versus the Arabidopsis thaliana sequence.
  • the sequence of a portion of the cDNA insert from clone rcaln.pk009.h2 is shown in SEQ ID NO:5; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:6.
  • the sequence of a portion of the cDNA insert from clone rlsl2.pk0012.d2 is shown in SEQ ID NO: 7; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:8.
  • the sequence of a portion of the cDNA insert from clone srrlc.pk002.k24 is shown in SEQ ID NO:9; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO: 10.
  • the sequence of the entire cDNA insert in clone wlm4.pk0022.f3 was determined and is shown in SEQ ID NO: 11 ; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO: 12.
  • the nucleotide sequence set forth in SEQ ID NO: 11 includes the EST sequence from clone wreln.pk0031.g5.
  • the amino acid sequence set forth in SEQ ID NO: 12 was evaluated by BLASTP, yielding a pLog value of 79.70 versus the Arabidopsis thaliana sequence.
  • Figure 1 presents an alignment of the amino acid sequences set forth in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:12 and the Arabidopsis thaliana sequence (SEQ ID NO.13). From this alignment it is clear that there are two types of serine palmitoyltransferase subunits in corn. One type has a similar structural arrangement to the Arabidopsis thaliana serine palmitoyl transferase Lcbl subunit while the other type, represented by SEQ ID NO:4, has two deletions relative to SEQ ID NO:2 and the Arabidopsis thalaiana sequence.
  • the first deletion corresponds to amino acids 69-99 in SEQ ID NO:2 and the second deletion corresponds to amino acids 308 to 398 in SEQ ID NO:2.
  • This type of corn serine palmitoyltransferase Lcbl subunit also appears to be missing the C-terminal 31 amino acids with respect to the Arabidopsis thaliana sequence and the other corn sequence of the present invention.
  • the amino acid sequences set forth in SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:12 are 65.5, 61.5 and 62.4% similar to the Arabidopsis thaliana sequence.
  • a chimeric gene comprising a cDNA encoding the Lcbl subunit of serine palmitoyltransferase in sense orientation with respect to the maize 27 kD zein promoter that is located 5' to the cDNA fragment, and the 10 kD zein 3' end that is located 3' to the cDNA fragment, can be constructed.
  • the cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers.
  • Cloning sites can be incorporated into the ohgonucleotides to provide proper orientation of the DNA fragment when inserted into the digested vector pML103 as described below.
  • Amplification is then performed in a standard PCR.
  • the amplified DNA is then digested with restriction enzymes Ncol and Smal and fractionated on an agarose gel.
  • the appropriate band can be isolated from the gel and combined with a 4.9 kb Ncol-Smal fragment of the plasmid pML103.
  • Plasmid pML103 has been deposited under the terms of the Budapest Treaty at ATCC (American Type Culture Collection, 10801 University Boulevard., Manassas, VA 20110-2209), and bears accession number ATCC 97366.
  • the DNA segment from pML103 contains a 1.05 kb Sall-Ncol promoter fragment of the maize 27 kD zein gene and a 0.96 kb Smal-Sall fragment from the 3' end of the maize 10 kD zein gene in the vector pGem9Zf(+) (Promega).
  • Vector and insert DNA can be ligated at 15°C overnight, essentially as described (Maniatis). The ligated DNA may then be used to transform E. coli XLl-Blue (Epicurian Coli XL-1 BlueTM; Stratagene).
  • Bacterial transformants can be screened by restriction enzyme digestion of plasmid DNA and limited nucleotide sequence analysis using the dideoxy chain termination method (SequenaseTM DNA Sequencing Kit; U. S. Biochemical).
  • the resulting plasmid construct would comprise a chimeric gene encoding, in the 5' to 3' direction, the maize 27 kD zein promoter, a cDNA fragment encoding the Lcbl subunit from serine palmitoyltransferase, and the 10 kD zein 3' region.
  • the chimeric gene described above can then be introduced into com cells by the following procedure.
  • Immature com embryos can be dissected from developing caryopses derived from crosses of the inbred com lines H99 and LH132. The embryos are isolated 10 to 11 days after pollination when they are 1.0 to 1.5 mm long. The embryos are then placed with the axis-side facing down and in contact with agarose-solidified N6 medium (Chu et al., (1975) Sci. Sin. Peking 18:659-668). The embryos are kept in the dark at 27°C.
  • Friable embryogenic callus consisting of undifferentiated masses of cells with somatic proembryoids and embryoids bome on suspensor structures proliferates from the scutellum of these immature embryos.
  • the embryogenic callus isolated from the primary explant can be cultured on N6 medium and sub-cultured on this medium every 2 to 3 weeks.
  • the plasmid, p35S/Ac (obtained from Dr. Peter Eckes, Hoechst Ag, Frankfurt, Germany) may be used in transformation experiments in order to provide for a selectable marker.
  • This plasmid contains the Pat gene (see European Patent Publication 0 242 236) which encodes phosphinothricin acetyl transferase (PAT).
  • PAT phosphinothricin acetyl transferase
  • the enzyme PAT confers resistance to herbicidal glutamine synthetase inhibitors such as phosphinothricin.
  • the pat gene in p35S/Ac is under the control of the 35S promoter from Cauliflower Mosaic Virus (Odell et al. (1985) Nature 313:810-812) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens.
  • the particle bombardment method (Klein et al., (1987) Nature 327:70-73) may be used to transfer genes to the callus culture cells.
  • gold particles (1 ⁇ m in diameter) are coated with DNA using the following technique.
  • Ten ⁇ g of plasmid DNAs are added to 50 ⁇ L of a suspension of gold particles (60 mg per mL).
  • Calcium chloride 50 ⁇ L of a 2.5 M solution
  • spermidine free base (20 ⁇ L of a 1.0 M solution) are added to the particles.
  • the suspension is vortexed during the addition of these solutions. After 10 minutes, the tubes are briefly centrifuged (5 sec at 15,000 rpm) and the supernatant removed.
  • the particles are resuspended in 200 ⁇ L of absolute ethanol, centrifuged again and the supernatant removed. The ethanol rinse is performed again and the particles resuspended in a final volume of 30 ⁇ L of ethanol.
  • An aliquot (5 ⁇ L) of the DNA-coated gold particles can be placed in the center of a KaptonTM flying disc (Bio-Rad Labs).
  • the particles are then accelerated into the com tissue with a BiolisticTM PDS-1000/ ⁇ e (Bio-Rad Instruments, Hercules CA), using a helium pressure of 1000 psi, a gap distance of 0.5 cm and a flying distance of 1.0 cm.
  • the embryogenic tissue is placed on filter paper over agarose- solidified N6 medium.
  • the tissue is arranged as a thin lawn and covered a circular area of about 5 cm in diameter.
  • the petri dish containing the tissue can be placed in the chamber of the PDS-1000/He approximately 8 cm from the stopping screen.
  • the air in the chamber is then evacuated to a vacuum of 28 inches of Hg.
  • the macrocarrier is accelerated with a helium shock wave using a rupture membrane that bursts when the He pressure in the shock tube reaches 1000 psi.
  • Seven days after bombardment the tissue can be transferred to N6 medium that contains gluphosinate (2 mg per liter) and lacks casein or proline. The tissue continues to grow slowly on this medium.
  • tissue can be transferred to fresh N6 medium containing gluphosinate. After 6 weeks, areas of about 1 cm in diameter of actively growing callus can be identified on some of the plates containing the glufosinate- supplemented medium. These calli may continue to grow when sub-cultured on the selective medium.
  • Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the
  • tissue can be transferred to regeneration medium (Fromm et al., (1990) Bio/Technology 5:833-839).
  • a seed-specific expression cassette composed of the promoter and transcription terminator from the gene encoding the ⁇ subunit of the seed storage protein phaseolin from the bean Phaseolus vulgaris (Doyle et al. (1986) J. Biol. Chem. 261 :9228-9238) can be used for expression of the instant serine palmitoyltransferase Lcbl subunit in transformed soybean.
  • the phaseolin cassette includes about 500 nucleotides upstream (5') from the translation initiation codon and about 1650 nucleotides downstream (3') from the translation stop codon of phaseolin.
  • Nco I which includes the ATG translation initiation codon
  • Sma I which includes the ATG translation initiation codon
  • Kpn I The entire cassette is flanked by Hind III sites.
  • the cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites can be incorporated into the ohgonucleotides to provide proper orientation of the DNA fragment when inserted into the expression vector. Amplification is then performed as described above, and the isolated fragment is inserted into a pUC18 vector carrying the seed expression cassette. Soybean embroys may then be transformed with the expression vector comprising sequences encoding an Lcbl subunit of serine palmitoyltransferase.
  • somatic embryos cotyledons, 3-5 mm in length dissected from surface sterilized, immature seeds of the soybean cultivar A2872, can be cultured in the light or dark at 26°C on an appropriate agar medium for 6-10 weeks. Somatic embryos which produce secondary embryos are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos which multiplied as early, globular staged embryos, the suspensions are maintained as described below.
  • Soybean embryogenic suspension cultures can maintained in 35 mL liquid media on a rotary shaker, 150 rpm, at 26°C with florescent lights on a 16:8 hour day/night schedule. Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 mL of liquid medium.
  • Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Kline et al. (1987) Nature (London) 527:70, U.S. Patent No. 4,945.050).
  • a DuPont BiolisticTM PDS1000/HE instrument helium retrofit
  • a selectable marker gene which can be used to facilitate soybean transformation is a chimeric gene composed of the 35S promoter from Cauliflower Mosaic Virus (Odell et al. (1985) Nature 575:810-812), the hygromycin phosphotransferase gene from plasmid pJR225
  • the seed expression cassette comprising the phaseolin 5' region, the fragment encoding the Lcbl subunit from serine palmitoyltransferase and the phaseolin 3' region can be isolated as a restriction fragment. This fragment can then be inserted into a unique restriction site of the vector carrying the marker gene.
  • Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60x15 mm petri dish and the residual liquid removed from the tissue with a pipette.
  • approximately 5-10 plates of tissue are normally bombarded.
  • Membrane rupture pressure is set at 1100 psi and the chamber is evacuated to a vacuum of 28 inches mercury.
  • the tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.
  • the liquid media may be exchanged with fresh media, and eleven to twelve days post bombardment with fresh media containing 50 mg/mL hygromycin. This selective media can be refreshed weekly.
  • green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos.
  • the cDNAs encoding the instant serine palmitoyltransferase Lcbl subunit can be inserted into the T7 E. coli expression vector pBT430.
  • This vector is a derivative of pET-3a (Rosenberg et al. (1987) Gene 55:125-135) which employs the bacteriophage T7 RNA polymerase/T7 promoter system.
  • Plasmid pBT430 was constructed by first destroying the EcoR I and Hind III sites in pET-3a at their original positions. An oligonucleotide adaptor containing EcoR I and Hind III sites was inserted at the BamH I site of pET-3a. This created pET-3aM with additional unique cloning sites for insertion of genes into the expression
  • Plasmid DNA containing a cDNA may be appropriately digested to release a nucleic acid fragment encoding the protein. This fragment may then be purified on a 1% NuSieve GTGTM low melting agarose gel (FMC). Buffer and agarose contain 10 ⁇ g/ml ethidium bromide for visualization of the DNA fragment. The fragment can then be purified from the agarose gel by digestion with GELaseTM (Epicentre Technologies) according to the manufacturer's instructions, ethanol precipitated, dried and resuspended in 20 ⁇ L of water. Appropriate oligonucleotide adapters may be ligated to the fragment using T4 DNA ligase (New England Biolabs, Beverly, MA).
  • the fragment containing the ligated adapters can be purified from the excess adapters using low melting agarose as described above.
  • the vector pBT430 is digested, dephosphorylated with alkaline phosphatase (NEB) and deproteinized with phenol/chloroform as described above.
  • the prepared vector pBT430 and fragment can then be ligated at 16°C for 15 hours followed by transformation into DH5 electrocompetent cells (GIBCO BRL).
  • Transformants can be selected on agar plates containing LB media and 100 ⁇ g/mL ampicillin.
  • Transformants containing the gene encoding the Lcbl subunit from serine palmitoyltransferase are then screened for the correct orientation with respect to the T7 promoter by restriction enzyme analysis.
  • a plasmid clone with the cDNA insert in the correct orientation relative to the T7 promoter can be transformed into E. coli strain BL21(DE3) (Studier et al. (1986) J. Mol. Biol. 189:113-130). Cultures are grown in LB medium containing ampicillin (100 mg/L) at 25°C. At an optical density at 600 nm of approximately 1, IPTG (isopropylthio- ⁇ -galactoside, the inducer) can be added to a final concentration of 0.4 mM and incubation can be continued for 3 h at 25°.
  • IPTG isopropylthio- ⁇ -galactoside, the inducer
  • Cells are then harvested by centrifugation and re-suspended in 50 ⁇ L of 50 mM Tris-HCl at pH 8.0 containing 0.1 mM DTT and 0.2 mM phenyl methylsulfonyl fluoride.
  • a small amount of 1 mm glass beads can be added and the mixture sonicated 3 times for about 5 seconds each time with a microprobe sonicator.
  • the mixture is centrifuged and the protein concentration of the supernatant determined.
  • One ⁇ g of protein from the soluble fraction of the culture can be separated by SDS-polyacrylamide gel electrophoresis. Gels can be observed for protein bands migrating at the expected molecular weight.
  • the serine palmitoyltransferase Lcbl subunits described herein may be produced using any number of methods known to those skilled in the art. Such methods include, but are not limited to, expression in bacteria as described in Example 6, or expression in eukaryotic cell
  • the instant serine palmitoyltransferase Lcbl subunits may be expressed either as mature forms of the proteins as observed in vivo or as fusion proteins by covalent attachment to a variety of enzymes, proteins or affinity tags.
  • Common fusion protein partners include glutathione S-transferase ("GST”), thioredoxin (“Trx”), maltose binding protein, and C- and or N-terminal hexahistidine polypeptide ("(His) 6 ").
  • the fusion proteins may be engineered with a protease recognition site at the fusion point so that fusion partners can be separated by protease digestion to yield intact mature enzyme.
  • proteases include thrombin, enterokinase and factor Xa.
  • any protease can be used which specifically cleaves the peptide connecting the fusion protein and the enzyme.
  • Purification of the instant serine palmitoyltransferase Lcbl subunits may utilize any number of separation technologies familiar to those skilled in the art of protein purification. Examples of such methods include, but are not limited to, homogenization, filtration, centrifugation, heat denaturation, ammonium sulfate precipitation, desalting, pH precipitation, ion exchange chromatography, hydrophobic interaction chromatography and affinity chromatography, wherein the affinity ligand represents a substrate, substrate analog or inhibitor.
  • the purification protocol may include the use of an affinity resin which is specific for the fusion protein tag attached to the expressed enzyme or an affinity resin containing ligands which are specific for the enzyme.
  • an affinity resin which is specific for the fusion protein tag attached to the expressed enzyme
  • an affinity resin containing ligands which are specific for the enzyme For example, a serine palmitoyltransferase Lcbl subunit may be expressed as a fusion protein coupled to the C-terminus of thioredoxin.
  • a (His) 6 peptide may be engineered into the N-terminus of the fused thioredoxin moiety to afford additional opportunities for affinity purification.
  • Other suitable affinity resins could be synthesized by linking the appropriate ligands to any suitable resin such as Sepharose-4B.
  • a thioredoxin fusion protein may be eluted using dithiothreitol; however, elution may be accomplished using other reagents which interact to displace the thioredoxin from the resin. These reagents include ⁇ -mercaptoethanol or other reduced thiol.
  • the eluted fusion protein may be subjected to further purification by traditional means as stated above, if desired. Proteolytic cleavage of the thioredoxin fusion protein and the enzyme may be accomplished after the fusion protein is purified or while the protein is still bound to the ThioBondTM affinity resin or other resin.
  • Crude, partially purified or purified enzyme may be utilized in assays for the evaluation of compounds for their ability to inhibit enzymatic activation of the serine palmitoyltransferase Lcbl subunit disclosed herein. Assays may be conducted under well known experimental conditions which permit optimal enzymatic activity. For example, assays for serine palmitoyltransferase Lcbl subunit are presented by Hanada K. et al. (1997) J Biol Chem 272:32108-32114.

Abstract

L'invention porte sur un fragment isolé d'acide nucléique codant pour une sous-unité LCB1 de sérine palmitoyltransférase, et sur l'élaboration d'un gène chimère codant pour tout ou partie de la sous unité LCB1 de sérine palmitoyltransférase à orientation sens ou antisens, l'expression du gène chimère ayant pour résultat la production de niveaux modifiés de sous-unités LCB1 de sérine palmitoyltransférase dans une cellule hôte transformée.
PCT/US1999/006045 1998-03-26 1999-03-19 Sous-unite lcb1 de serine palmitoyltransferase WO1999049053A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU31033/99A AU3103399A (en) 1998-03-26 1999-03-19 Lcb1 subunit of serine palmitoyltransferase
EP99912721A EP1066387A1 (fr) 1998-03-26 1999-03-19 Sous-unite lcb1 de serine palmitoyltransferase
BR9907966-6A BR9907966A (pt) 1998-03-26 1999-03-19 Fragmento de ácido nucleìco, gene quimérico, célula hospedeira transformada, polipeptìdeo, método de alteração do nìvel de expressão de uma subunidade lcb1 de serina palmitoil transferase em uma célula hospedeira, método de obtenção de um fragmento de ácido nucléico, produto e método de avaliação de pelo menos um composto quanto à sua capacidade de inibir a atividade de uma subunidade lcb1 de serina palmitoil transferase
US10/309,629 US7659450B2 (en) 1998-03-26 2002-12-04 Lcb1 subunit of serine palmitoyltransferase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7943098P 1998-03-26 1998-03-26
US60/079,430 1998-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US66584200A Continuation 1998-03-26 2000-09-20

Publications (1)

Publication Number Publication Date
WO1999049053A1 true WO1999049053A1 (fr) 1999-09-30

Family

ID=22150493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/006045 WO1999049053A1 (fr) 1998-03-26 1999-03-19 Sous-unite lcb1 de serine palmitoyltransferase

Country Status (4)

Country Link
EP (1) EP1066387A1 (fr)
AU (1) AU3103399A (fr)
BR (1) BR9907966A (fr)
WO (1) WO1999049053A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659450B2 (en) * 1998-03-26 2010-02-09 E. I. Du Pont De Nemours And Company Lcb1 subunit of serine palmitoyltransferase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583030A (en) * 1992-06-30 1996-12-10 The University Of Kentucky Research Foundation Method for obtaining antifungal and herbicidal compounds that target the first committed step in shingolipid long-chain base biosynthesis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583030A (en) * 1992-06-30 1996-12-10 The University Of Kentucky Research Foundation Method for obtaining antifungal and herbicidal compounds that target the first committed step in shingolipid long-chain base biosynthesis

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
BEVAN, M., ET AL.: "Arabidopsis thaliana DNA chromosome 4, ESSA I AP2 contig fragment No. 2", EMBL ACCESSION NO.Z99708, 2 October 1997 (1997-10-02), XP002108819 *
HANADA, K., ET AL.: "A mammalian homolog of the yeast LCB1 encodes a component of serine palmitoyltransferase, the enzyme catalysing the first step in sphingolpid synthesis", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 272, no. 51, 19 December 1997 (1997-12-19), pages 32108 - 32114, XP002108816 *
HANADA, K., ET AL.: "Cricetulus griseus serine palmitoyltransferase LCB1 subunit mRNA, complete cds.", EMBL ACCESSION NO. AF004831, 16 December 1997 (1997-12-16), XP002108817 *
HANADA, K., ET AL.: "Mus musculus serine palmitoyltransferase LCB1 subunit mRNA, complete cds.", EMBL ACCESSION NO. AF003823, 11 February 1998 (1998-02-11), XP002108818 *
MANDALA, S.M., ET AL.: "Viridiofungins,novel inhibitors of sphingolipid synthesis", THE JOURNAL OF ANTIBIOTICS, vol. 50, no. 4, April 1997 (1997-04-01), pages 339 - 343, XP002108823 *
NAHM, B.H., ET AL.: "ISKH0061 Rice immature seed lambda ZAPII cDNA library Oryza sativa cDNA clone ISKH0061", EMBL ACCESSION NO. AA750817, 21 January 1998 (1998-01-21), XP002108821 *
SASAKI, T., ET AL.,: "Rice cDNA, partial sequence (S11536_1A)", EMBL ACCESSION NO. D46698, 8 March 1995 (1995-03-08), XP002108820 *
SASAKI, T., ET AL.: "Rice cDNA, partial sequence (R3014_2A)", EMBL ACCESSION NO. D39197, 13 November 1994 (1994-11-13), XP002108822 *
STOFFEL, W., ET AL.: "H.sapiens mRNA for serine palmitoyltransferase, subunit I", EMBL ACCESSION NO. Y08685, 4 October 1997 (1997-10-04), XP002108814 *
WEISS, B., ET AL.: "Human and murine serine-palmitoyl-CoA transferase. Clonng, expression and characterization of the key enzyme in sphingolipid synthesis", EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 249, no. 1, October 1997 (1997-10-01), pages 239 - 247, XP002108813 *
WEISS, B., ET AL.: "M.musculus mRNA for serine palmitoyltransferase subunit A", EMBL ACCESSION NO. X95641, 23 October 1997 (1997-10-23), XP002108815 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659450B2 (en) * 1998-03-26 2010-02-09 E. I. Du Pont De Nemours And Company Lcb1 subunit of serine palmitoyltransferase

Also Published As

Publication number Publication date
AU3103399A (en) 1999-10-18
BR9907966A (pt) 2000-12-12
EP1066387A1 (fr) 2001-01-10

Similar Documents

Publication Publication Date Title
WO1999049058A2 (fr) Enzyme de biosynthese du tryptophane
EP1097221A2 (fr) Genes codant pour des proteines d'assimilation des sulfates
WO1999053068A2 (fr) Transporteurs de sucrose d'origine vegetale
WO1999053069A2 (fr) Proteines de regulation du cycle cellulaire
WO2000005387A1 (fr) Enzymes impliquees dans la biosynthese du chorismate
EP1044264A2 (fr) Enzymes biosynthetiques a acides amines ramifies
US6849783B2 (en) Plant biotin synthase
US20010005749A1 (en) Aromatic amino acid catabolism enzymes
WO2000006756A1 (fr) Enzymes du metabolisme du soufre
US7659450B2 (en) Lcb1 subunit of serine palmitoyltransferase
US6911331B2 (en) Chorismate biosynthesis enzymes
WO2000028006A2 (fr) Deshydrogenase des glutamates a specificite des nadp vegetaux
WO1999048486A2 (fr) Genes de cycline de cellules vegetales
WO1999043820A1 (fr) FACTEUR DE TRANSLATION eIF-4E DE VEGETAUX
WO2000004168A1 (fr) Enzymes de biosynthese d'ornithine
EP1002089A1 (fr) Genes de codage de dr1 et drap1, complexes represseurs globaux de la transcription
EP1066387A1 (fr) Sous-unite lcb1 de serine palmitoyltransferase
US20040082050A1 (en) Chorismate biosynthesis enzymes
WO2005013675A1 (fr) Obtusifoliol 14$g(a)-demethylase
WO2000032791A2 (fr) Acyltransferases lecithine:cholesterol d'origine vegetale
EP1338652A2 (fr) Génés de cycline de cellules végétales
WO2003066668A2 (fr) Peptide deformylase
WO1999049021A1 (fr) Sous-unite lcb2 de serine palmitoyltransferase
WO2001009304A2 (fr) Polynucleotides codant des enzymes biosynthetiques d'acide aminolevulinique
WO1999053082A2 (fr) Transporteurs de l'hexose

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GD GE HR HU ID IL IN IS JP KP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999912721

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09665842

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

WWP Wipo information: published in national office

Ref document number: 1999912721

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999912721

Country of ref document: EP