WO1999045553A1 - Direct current magnet system for an electromagnetic switching device - Google Patents

Direct current magnet system for an electromagnetic switching device Download PDF

Info

Publication number
WO1999045553A1
WO1999045553A1 PCT/DE1999/000473 DE9900473W WO9945553A1 WO 1999045553 A1 WO1999045553 A1 WO 1999045553A1 DE 9900473 W DE9900473 W DE 9900473W WO 9945553 A1 WO9945553 A1 WO 9945553A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
switching element
magnet system
excitation
direct current
Prior art date
Application number
PCT/DE1999/000473
Other languages
German (de)
French (fr)
Inventor
Norbert Mitlmeier
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1999045553A1 publication Critical patent/WO1999045553A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H47/08Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current by changing number of parallel-connected turns or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H47/10Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current by switching-in or -out impedance external to the relay winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/045Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere
    • H02H9/047Free-wheeling circuits

Definitions

  • the invention relates to a DC magnet system for an electromagnetic switching device, with a series connection of a coil and a switching element, which serves to reduce the excitation power in the coil.
  • Generic direct current magnet systems are for direct current operated contactors e.g. in the Siemens publication (order no. E 20001-P285-A342).
  • the preferred control of the contactors with direct current is due to their wide range of possible uses.
  • a basic distinction is made between the two drive variants DC magnet systems and AC magnet systems in economy mode.
  • the invention has for its object to improve a DC magnet system of the type mentioned above that the problem of loading the switching element is solved inexpensively.
  • the object is achieved in that a capacitor is connected in parallel with the switching element.
  • a series circuit comprising the capacitor and an ohmic resistor is connected in parallel with the switching element.
  • the charging of the capacitor can be influenced over time by appropriate dimensioning of the ohmic resistance. This makes it possible to implement the course of the voltage rise on the switching element in the desired manner. 3 If an antiserial series connection consisting of a blocking diode and a suppressor diode is connected in parallel to the coil, this will reduce overvoltages.
  • FIG. 1 shows a circuit of a DC magnet system with a pull-in coil winding and a holding coil winding
  • FIG. 2 shows a circuit of a DC magnet system with a single single-winding coil for the pull-in phase and the holding operation
  • FIG. 3 shows a diagram with current and voltage curve during the changeover from pull-in to holding excitation.
  • FIG. 1 shows a circuit suitable for AC / DC connection of a direct current magnet system for an electromagnetic switching device, in particular a contactor with a pull-in coil 1 and a holding coil 2 connected in parallel, which is connected to a rectifier bridge from the valves VI, V2, V3 and V4 for supply with DC are connected.
  • a switching element 3 with a isolating path is located in series with the pull-in coil 1.
  • the latter is connected in series from an ohmic resistor 4 and a capacitor 5 in parallel.
  • the ohmic resistor 5 can be dispensed with.
  • An antiserial circuit comprising a blocking diode 6 and a suppressor diode 7 is connected in parallel with the pull-in coil 1.
  • a varistor 8 can be used instead of the suppressor diode 7.
  • 4 To the holding coil 2 is a Zener diode 9 in series. The function of the circuit is explained below.
  • the pull-in coil 1 and the holding coil 2 are supplied with direct current in order to switch on the contacts of the switching device in a pull-in phase, i.e. the switching element 3 is here in the closed state.
  • the switching element opens.
  • the coil current I is then commutated abruptly onto the capacitor 5, to which a low voltage is initially applied and then a linear voltage rise follows.
  • the voltage rise is steeper the smaller the capacitance of the capacitor 5 is chosen.
  • the voltage rise across the capacitor 5 must be adapted to the separation distance of the switching element 3 which is variable during the opening, in order to avoid breakdown of the separation distance.
  • the voltage U on the switching element 3 is kept so low for a sufficiently long time that the isolating distance between the contacts of the switching element 3 has a correspondingly sufficient insulation strength and the arcing on the switching element 3 is avoided. It is crucial for this process that the excitation current in the pull-in coil 1 is commutated via the capacitor 5 for a sufficiently long time, so that a sufficiently large switching path can form without the occurrence of an arc.
  • the diode combination of the suppressor diode 7 and the blocking diode 8 serves to limit overvoltages on the pull-in coil 1. By appropriately dimensioning the suppressor diode 7, the switch-off delay times can be reduced to the desired, small values.
  • the suppressor diode 7 5, as indicated in FIG. 1, can be replaced by the varistor 8.
  • An additional reduction in the switch-off delay time can be achieved by the Zener diode 9 connected in the blocking direction to the holding winding 2.
  • FIG. 2 shows an alternative solution variant of a direct current magnet system.
  • this has a single winding coil 11, which is connected in series with a series resistor 12 when the magnetic drive is closed.
  • a switching element 13 is parallel to the series resistor 12 and thus also in series with the single winding coil 10.
  • the series resistor 12 is short-circuited by the switching element 13, and a high excitation current flows through the single winding coil 11.
  • the series resistor 12 is switched on by opening the switching element 13, thereby reducing the excitation power.
  • the switching element 13 and the single winding coil 11 are connected in a corresponding manner to avoid arcing and overvoltages, as in the embodiment according to FIG. here too, a line branch with a capacitor 14 and a line branch with two antiserial diodes 15 and 16 are provided.

Abstract

High arc currents provoking strong contact erosion in the switching element (3) occur in existing direct current magnet systems when switching from starting excitation to non-drop-out excitation. In order to avoid said inconvenient, a capacitor (5) is parallel connected to the switching element (3). The excitation current in the trip coil (1) is commutated during a short but sufficiently long period so that the break distance of the switching element (3) is sufficiently opened without causing the emergence of a light arc.

Description

Beschreibungdescription
Gleichstrommagnetsystem für ein elektromagnetisches SchaltgerätDC magnet system for an electromagnetic switching device
Die Erfindung bezieht sich auf ein Gleichstrommagnetsystem für ein elektromagnetisches Schaltgerät, mit einer Reihenschaltung aus einer Spule und einem Schaltelement, das zur Reduzierung der Erregerleistung in der Spule dient.The invention relates to a DC magnet system for an electromagnetic switching device, with a series connection of a coil and a switching element, which serves to reduce the excitation power in the coil.
Gattungsgemäße Gleichstrommagnetsysteme sind für gleichstrombetätigte Schütze z.B. in der Siemens-Druckschrift (Best. -Nr. E 20001-P285-A342) offenbart. Die bevorzugte Ansteuerung der Schütze mit Gleichstrom liegt in ihren umfangreichen Einsatz- möglichkeiten begründet. Grundsätzlich werden die beiden Antriebsvarianten Gleichstrommagnetsysteme und Wechselstrommagnetsysteme in Sparschaltung unterschieden.Generic direct current magnet systems are for direct current operated contactors e.g. in the Siemens publication (order no. E 20001-P285-A342). The preferred control of the contactors with direct current is due to their wide range of possible uses. A basic distinction is made between the two drive variants DC magnet systems and AC magnet systems in economy mode.
Bei den Gleichstromantrieben ist die Gleichstromerregung unabhängig vom Magnetweg, was zu verhältnismäßig langenWith DC drives, DC excitation is independent of the magnetic path, which is too long
Schaltzeiten führt. Um die Schaltzeiten zu verkürzen, wird daher für die Anzugserregung eine verhältnismäßig große Anzugsleistung verwendet. Nach dem Anzug wird die Erregung auf die Halteerregung mit geringer Spulenleistung im geschlosse- nen Eisenkreis reduziert. Zur Reduzierung der Erregung von der Anzugserregung auf die Halteerregung im Dauerbetrieb sind die beiden folgenden Lösungen bekannt. Es wird ein Spulensystem, meist eine Doppelwickelspule, mit einer Anzugs- und einer Haltespule verwendet, die parallel geschaltet sind. Nach Beendigung der Anzugsphase wird der Strom durch die Anzugsspule durch ein in Reihe liegendes Schaltelement unterbrochen. Bei der zweiten Lösung wird für den Anzug und den Dauerbetrieb nur eine einzige Spulenwicklung benutzt. Die Reduzierung der Erregung auf die Halteerregung erfolgt durch Hinzuschaltung eines oh schen Widerstands. Auch hier wird ein zur Spule in Reihe und zum Widerstand parallel liegendes Schaltelement geöffnet. 2Switching times. In order to shorten the switching times, a relatively large starting power is therefore used for the excitation of the suit. After the suit, the excitation is reduced to the holding excitation with low coil power in the closed iron circuit. The following two solutions are known for reducing the excitation from the pull excitation to the holding excitation in continuous operation. A coil system, usually a double winding coil, with a pull-in and a holding coil, which are connected in parallel, is used. After the end of the pull-in phase, the current through the pull-in coil is interrupted by a switching element in series. In the second solution, only a single coil winding is used for the tightening and continuous operation. The excitation is reduced to the holding excitation by adding an oh resistance. Here, too, a switching element lying in series with the coil and with the resistor is opened. 2
Bei der Abschaltung der hohen Anzugserregung ergibt sich durch den Lichtbogen ein starker Abbrand an den Kontakten des Schaltelements. Die hohen Lichtbogenleistungen wurden bisher durch Anwendung folgender Lösungen bewältigt. Es wurden Schaltelemente mit hohem Gleichstrom-Schaltvermögen und großem Silbervolumen verwendet, um eine hohe elektrische Lebensdauer zu erreichen. Mehrere Kontakte eines Hilfsschützes oder eines kleinen Motorschützes wurden in Reihe geschaltet. Durch Beschaltung der Spulen mit Freilaufdioden wurden die Lichtbo- genlöschzeiten verringert, was allerdings zu längeren Aus- schaltverzugszeiten des Schützes führt. Schließlich kann das Problem auch durch Einsatz von aufwendiger und kostenspieli- ger Elektronik gelöst werden. Diese liefert für das Schütz in der jeweiligen Stellung des Magnetantriebs die notwendige Spulenerregung. Allerdings ist diese Lösung mit dem Nachteil verhältnismäßig hoher Kosten und großen Platzbedarfs verbunden.When the high excitation excitation is switched off, the arcing causes a severe erosion at the contacts of the switching element. The high arc power has been managed so far using the following solutions. Switching elements with high DC switching capacity and large silver volume were used in order to achieve a long electrical service life. Several contacts of an auxiliary contactor or a small motor contactor were connected in series. By switching the coils with free-wheeling diodes, the arc extinguishing times were reduced, which however leads to longer switch-off delay times for the contactor. Finally, the problem can also be solved by using complex and costly electronics. This provides the necessary coil excitation for the contactor in the respective position of the magnetic drive. However, this solution is associated with the disadvantage of relatively high costs and large space requirements.
Der Erfindung liegt die Aufgabe zugrunde, ein Gleichstrom- magnetsystem der obengenannten Art dadurch zu verbessern, daß das Problem der Belastung des Schaltelements kostengünstig gelöst wird.The invention has for its object to improve a DC magnet system of the type mentioned above that the problem of loading the switching element is solved inexpensively.
Die Aufgabe wird dadurch gelöst, daß zum Schaltelement ein Kondensator parallel geschaltet ist.The object is achieved in that a capacitor is connected in parallel with the switching element.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen 2 bis 4 zu entnehmen.Further advantageous refinements of the invention can be found in subclaims 2 to 4.
Bei der Lösungsvariante nach Anspruch 2 ist eine Reihenschaltung aus dem Kondensator und einem ohmschen Widerstand zum Schaltelement parallel geschaltet. Durch entsprechende Bemessung des ohmschen Widerstands kann die Aufladung des Kondensators zeitlich beeinflußt werden. Dadurch ist es möglich, den Verlauf des Spannungsanstiegs am Schaltelement in der gewünschten Weise zu realisieren. 3 Ist zur Spule eine antiserielle Reihenschaltung aus einer Sperrdiode und einer Supressordiode parallel geschaltet, so werden hierdurch Überspannungen reduziert.In the solution variant according to claim 2, a series circuit comprising the capacitor and an ohmic resistor is connected in parallel with the switching element. The charging of the capacitor can be influenced over time by appropriate dimensioning of the ohmic resistance. This makes it possible to implement the course of the voltage rise on the switching element in the desired manner. 3 If an antiserial series connection consisting of a blocking diode and a suppressor diode is connected in parallel to the coil, this will reduce overvoltages.
Weist das Gleichstrommagnetsystem eine weitere Spule auf, die die Kontakte des Schaltgeräts im erregten Zustand dauerhaft in der EIN-Stellung hält und zu der eine Zenerdiode in Reihe geschaltet ist, so werden bei entsprechender Dimensionierung Ausschaltverzugszeiten mit gewünscht kleinen Werten erreicht.If the DC magnet system has a further coil that keeps the contacts of the switching device permanently in the ON position in the excited state and to which a Zener diode is connected in series, switch-off delay times with the desired small values are achieved with the appropriate dimensions.
Ein Ausführungsbeispiel der Erfindung wird im folgenden anhand einer Zeichnung näher erläutert. Es zeigen:An embodiment of the invention is explained below with reference to a drawing. Show it:
FIG 1 eine Schaltung eines Gleichstrommagnetsystems mit einer Anzugsspulenwicklung und einer Haltespulenwicklung, FIG 2 eine Schaltung eines Gleichstrommagnetsystems mit einer einzigen Einfachwicklungsspule für die Anzugsphase und den Haltebetrieb und FIG 3 ein Diagramm mit zeitlichem Strom- und Spannungsverlauf bei der Umschaltung von Anzugs- auf Halteerregung.1 shows a circuit of a DC magnet system with a pull-in coil winding and a holding coil winding, FIG. 2 shows a circuit of a DC magnet system with a single single-winding coil for the pull-in phase and the holding operation, and FIG. 3 shows a diagram with current and voltage curve during the changeover from pull-in to holding excitation.
FIG 1 zeigt eine für AC/DC-Anschluß geeignete Schaltung eines Gleichstrommagnetsystems für ein elektromagnetisches Schaltgerät, insbesondere ein Schütz mit einer Anzugsspule 1 und einer parallel geschalteten Haltespule 2, die an eine Gleichrichterbrücke aus den Ventilen VI, V2, V3 und V4 zur Versorgung mit Gleichstrom angeschlossen sind. In Reihe zur Anzugs- spule 1 liegt ein Schaltelement 3 mit einer Trennstrecke.1 shows a circuit suitable for AC / DC connection of a direct current magnet system for an electromagnetic switching device, in particular a contactor with a pull-in coil 1 and a holding coil 2 connected in parallel, which is connected to a rectifier bridge from the valves VI, V2, V3 and V4 for supply with DC are connected. A switching element 3 with a isolating path is located in series with the pull-in coil 1.
Letzterem ist eine Reihenschaltung aus einem ohmschen Widerstand 4 und einem Kondensator 5 parallel geschaltet. Auf den ohmschen Widerstand 5 kann verzichtet werden. Parallel zur Anzugsspule 1 ist eine antiserielle Schaltung aus einer Sperrdiode 6 und einer Suppressordiode 7 geschaltet. Anstelle der Suppressordiode 7 kann ein Varistor 8 eingesetzt werden. 4 Zur Haltespule 2 liegt eine Zenerdiode 9 in Reihe. Im folgenden wird die Funktion der Schaltung erläutert.The latter is connected in series from an ohmic resistor 4 and a capacitor 5 in parallel. The ohmic resistor 5 can be dispensed with. An antiserial circuit comprising a blocking diode 6 and a suppressor diode 7 is connected in parallel with the pull-in coil 1. A varistor 8 can be used instead of the suppressor diode 7. 4 To the holding coil 2 is a Zener diode 9 in series. The function of the circuit is explained below.
Die Anzugsspule 1 und die Haltespule 2 werden zur Einschal- tung der Kontakte des Schaltgeräts in einer Anzugsphase mit Gleichstrom versorgt, d.h. das Schaltelement 3 befindet sich hier im geschlossenen Zustand. Nach Abschluß der Anzugsphase, in der durch die Anzugsspule 1 die zur Erreichung kurzer Schaltzeiten erforderliche, relativ hohe Erregerleistung ge- liefert wird, öffnet das Schaltelement. Gemäß dem Diagramm in FIG 3 wird daraufhin der Spulenstrom I sprungartig auf den Kondensator 5 kommutiert, an dem zunächst eine geringe Spannung anliegt und anschließend ein linearer Spannungsanstieg folgt. Der Spannungsanstieg ist um so steiler, je kleiner die Kapazität des Kondensators 5 gewählt wird. Der Spannungsanstieg am Kondensator 5 muß an die während der Öffnung variable Trennungsstrecke des Schaltelements 3 angepaßt werden, um einen Durchschlag der Trennstrecke zu vermeiden.The pull-in coil 1 and the holding coil 2 are supplied with direct current in order to switch on the contacts of the switching device in a pull-in phase, i.e. the switching element 3 is here in the closed state. After the end of the pull-in phase, in which the pull-in coil 1 supplies the relatively high excitation power required to achieve short switching times, the switching element opens. According to the diagram in FIG. 3, the coil current I is then commutated abruptly onto the capacitor 5, to which a low voltage is initially applied and then a linear voltage rise follows. The voltage rise is steeper the smaller the capacitance of the capacitor 5 is chosen. The voltage rise across the capacitor 5 must be adapted to the separation distance of the switching element 3 which is variable during the opening, in order to avoid breakdown of the separation distance.
Durch den parallel zum Schaltelement 3 liegenden Kondensator 5 wird die Spannung U am Schaltelement 3 für eine ausreichend lange Zeit so klein gehalten, daß die Trennstrecke zwischen den Kontakten des Schaltelements 3 eine entsprechend ausreichende Isolationsfestigkeit aufweist und die Lichtbogenbil- düng am Schaltelement 3 vermieden wird. Entscheidend für diesen Ablauf ist, daß der Erregerstrom in der Anzugsspule 1 für eine ausreichend lange Zeit über den Kondensator 5 kommutiert wird, so daß sich währenddessen eine genügend große Schaltstrecke ohne Auftreten eines Lichtbogens bilden kann.Due to the capacitor 5 lying parallel to the switching element 3, the voltage U on the switching element 3 is kept so low for a sufficiently long time that the isolating distance between the contacts of the switching element 3 has a correspondingly sufficient insulation strength and the arcing on the switching element 3 is avoided. It is crucial for this process that the excitation current in the pull-in coil 1 is commutated via the capacitor 5 for a sufficiently long time, so that a sufficiently large switching path can form without the occurrence of an arc.
Die Diodenkombination aus der Suppressordiode 7 und der Sperrdiode 8 dient zur Begrenzung von Überspannungen an der Anzugsspule 1. Durch entsprechende Dimensionierung der Suppressordiode 7 lassen sich die Ausschaltverzugszeiten auf ge- wünschte, kleine Werte reduzieren. Die Suppressordiode 7 5 kann, wie in FIG 1 angedeutet, durch den Varistor 8 ersetzt werden. Durch die in Sperrichtung zur Haltewicklung 2 geschaltete Zenerdiode 9 läßt sich eine zusätzliche Reduzierung der Ausschaltverzugszeit erreichen.The diode combination of the suppressor diode 7 and the blocking diode 8 serves to limit overvoltages on the pull-in coil 1. By appropriately dimensioning the suppressor diode 7, the switch-off delay times can be reduced to the desired, small values. The suppressor diode 7 5, as indicated in FIG. 1, can be replaced by the varistor 8. An additional reduction in the switch-off delay time can be achieved by the Zener diode 9 connected in the blocking direction to the holding winding 2.
In FIG 2 ist eine alternative Lösungsvariante eines Gleichstrommagnetsystems dargestellt. Dieses weist anstelle der Doppelwicklungsspule mit der Anzugs- und Haltespule eine Ein- fachwicklungsspule 11 auf, die im geschlossenen Zustand des Magnetantriebs mit einem Vorwiderstand 12 in Reihe geschaltet ist. Parallel zum Vorwiderstand 12 und damit ebenfalls in Reihe zur Einfachwicklungsspule 10 liegt ein Schaltelement 13. In der Anzugsphase ist der Vorwiderstand 12 durch das Schaltelement 13 kurzgeschlossen, und es fließt ein hoher Er- regungsstrom durch die Einfachwicklungsspule 11. Zum Übergang in die Haltephase, d.h. nach Erreichen der EIN-Stellung des Schaltgeräts, wird durch Öffnen des Schaltelements 13 der Vorwiderstand 12 hinzugeschaltet und dadurch die Erregerleistung reduziert. Auch bei dieser Lösung sind das Schaltele- ment 13 sowie die Einfachwicklungsspule 11 zur Vermeidung der Lichtbogenbildung und von Überspannungen in entsprechender Weise, wie beim Ausführungsbeispiel nach FIG 1, beschaltet, d.h. auch hier ist ein Leitungszweig mit einem Kondensator 14 sowie ein Leitungszweig mit zwei antiseriellen Dioden 15 und 16 vorgesehen. 2 shows an alternative solution variant of a direct current magnet system. Instead of the double winding coil with the pull-in and holding coil, this has a single winding coil 11, which is connected in series with a series resistor 12 when the magnetic drive is closed. A switching element 13 is parallel to the series resistor 12 and thus also in series with the single winding coil 10. In the starting phase, the series resistor 12 is short-circuited by the switching element 13, and a high excitation current flows through the single winding coil 11. For the transition to the holding phase, i.e. After reaching the ON position of the switching device, the series resistor 12 is switched on by opening the switching element 13, thereby reducing the excitation power. In this solution too, the switching element 13 and the single winding coil 11 are connected in a corresponding manner to avoid arcing and overvoltages, as in the embodiment according to FIG. here too, a line branch with a capacitor 14 and a line branch with two antiserial diodes 15 and 16 are provided.

Claims

Patentansprüche claims
1. Gleichstrommagnetsystem für ein elektromagnetisches Schaltgerät, mit einer Reihenschaltung aus einer Spule (1,11) und einem Schaltelement (3,13), das zur Reduzierung der Erregerleistung in der Spule (1,11) dient, dadurch gekennzeichnet, daß zum Schaltelement (3,13) ein Kondensator (5,14) parallel geschaltet ist.1. DC magnet system for an electromagnetic switching device, with a series connection of a coil (1,11) and a switching element (3,13), which serves to reduce the excitation power in the coil (1,11), characterized in that the switching element ( 3.13) a capacitor (5.14) is connected in parallel.
2. Gleichstrommagnetsystem nach Anspruch 1, dadurch gekennzeichnet, daß zum Schaltelement (3,13) eine Reihenschaltung aus dem Kondensator (5,14) und einem ohmschen Widerstand (4) parallel geschaltet ist.2. DC magnet system according to claim 1, characterized in that a series circuit comprising the capacitor (5,14) and an ohmic resistor (4) is connected in parallel to the switching element (3,13).
3. Gleichstrommagnetsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Spule (1,11) eine antiserielle Reihenschaltung aus einer Sperrdiode (8) und einer Suppressordiode (7) parallel geschaltet ist.3. DC magnet system according to claim 1 or 2, characterized in that an antiserial series circuit comprising a blocking diode (8) and a suppressor diode (7) is connected in parallel with the coil (1, 11).
4. Gleichstrommagnetsystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Gleichstrommagnetsystem eine weitere Spule (2) aufweist, die die Kontakte des Schaltgeräts im erregten Zustand dauerhaft in der EIN-Stellung hält und zu der eine Zenerdiode (10) in Reihe geschaltet ist. 4. DC magnet system according to one of the preceding claims, characterized in that the DC magnet system has a further coil (2) which keeps the contacts of the switching device in the excited state permanently in the ON position and to which a Zener diode (10) is connected in series .
PCT/DE1999/000473 1998-03-04 1999-02-19 Direct current magnet system for an electromagnetic switching device WO1999045553A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19809208 1998-03-04
DE19809208.3 1998-03-04

Publications (1)

Publication Number Publication Date
WO1999045553A1 true WO1999045553A1 (en) 1999-09-10

Family

ID=7859666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/000473 WO1999045553A1 (en) 1998-03-04 1999-02-19 Direct current magnet system for an electromagnetic switching device

Country Status (1)

Country Link
WO (1) WO1999045553A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923986A3 (en) * 2006-11-15 2009-05-06 Moeller GmbH AC controller for electromagnetic switches

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1199660A (en) * 1968-06-19 1970-07-22 B K Switchcontrols Ltd Improved Contactor Operating Circuit
FR2173924A1 (en) * 1972-03-08 1973-10-12 Werkzeugmasch Okt Veb
DE3008868A1 (en) * 1979-03-09 1980-09-11 Fujikoshi Kk Overload protection circuit for relay switching - combines inductive load with capacitance and semiconductor elements to reduce arcing at contacts
DE3037951A1 (en) * 1980-10-08 1982-05-13 Brown, Boveri & Cie Ag, 6800 Mannheim Protection circuit for changeover switch contacts - protects contacts against arc burn-off using resistor(s), capacitor and extra contact
WO1991015865A1 (en) * 1990-04-05 1991-10-17 Merit-Werk Merten & Co. Kg Hinged-armature relay, especially for motor vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1199660A (en) * 1968-06-19 1970-07-22 B K Switchcontrols Ltd Improved Contactor Operating Circuit
FR2173924A1 (en) * 1972-03-08 1973-10-12 Werkzeugmasch Okt Veb
DE3008868A1 (en) * 1979-03-09 1980-09-11 Fujikoshi Kk Overload protection circuit for relay switching - combines inductive load with capacitance and semiconductor elements to reduce arcing at contacts
DE3037951A1 (en) * 1980-10-08 1982-05-13 Brown, Boveri & Cie Ag, 6800 Mannheim Protection circuit for changeover switch contacts - protects contacts against arc burn-off using resistor(s), capacitor and extra contact
WO1991015865A1 (en) * 1990-04-05 1991-10-17 Merit-Werk Merten & Co. Kg Hinged-armature relay, especially for motor vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923986A3 (en) * 2006-11-15 2009-05-06 Moeller GmbH AC controller for electromagnetic switches

Similar Documents

Publication Publication Date Title
EP3518263A1 (en) Low voltage circuit breaker
DE4105698C2 (en) Method for operating a three-pole group-operated vacuum contactor
EP0575792B1 (en) Method and device for driving an electromagnetic switch
EP0997921A1 (en) Method and device for control of a electromechanical relay
WO1997000525A1 (en) Circuit arrangement for operating an electromagnet
WO2002033716A1 (en) Method and device for reducing the contact erosion of a switchgear
DE1160923B (en) Switching device for interrupting alternating currents
WO1999045553A1 (en) Direct current magnet system for an electromagnetic switching device
EP2994929A1 (en) Relay
EP1417694A1 (en) Electromagnet arrangement for a switch
EP0740407A2 (en) Braking device for a series commutator motor
EP0231793B1 (en) Electromagnetic relay
EP0200099B1 (en) Control circuit for an electromagnetic relay to interrupt an ac circuit under tension
EP0671747B1 (en) Circuit with reduced direct current
DE3102656C2 (en) Circuit arrangement for a magnetic drive, in particular a contactor, which is supplied by a DC voltage network with strong voltage fluctuations
DE1005590B (en) AC switchgear
EP0895263A2 (en) Arrangement for switching on electric loads one at a time
WO2001013396A1 (en) Circuitry for an electromagnetic switchgear
DE102020215711B4 (en) Tripping device for a circuit breaker
EP0433592A1 (en) Computer controlled electric timer
DE1515603A1 (en) Switch arrangement for switching an AC-powered consumer on and off
DE102022123202A1 (en) Method for controlling an electromechanical switching element
DE866208C (en) Arc-free switch, especially load switch for step control devices of transformers, chokes and the like. like
DE973372C (en) Relay with response delay through a capacitor, especially for signal systems
DE2636029C2 (en) Circuit arrangement for controlling a bistable switching relay provided with two excitation coils

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase