WO1999043702A1 - PROTEIN BINDING TO NE-dlg - Google Patents

PROTEIN BINDING TO NE-dlg Download PDF

Info

Publication number
WO1999043702A1
WO1999043702A1 PCT/JP1998/003740 JP9803740W WO9943702A1 WO 1999043702 A1 WO1999043702 A1 WO 1999043702A1 JP 9803740 W JP9803740 W JP 9803740W WO 9943702 A1 WO9943702 A1 WO 9943702A1
Authority
WO
WIPO (PCT)
Prior art keywords
nedacin
polynucleotide
protein
amino acid
cdna
Prior art date
Application number
PCT/JP1998/003740
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiko Kishimoto
Shin-Ichiro Niwa
Hiroaki Kuwahara
Hideyuki Saya
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to CA002322070A priority Critical patent/CA2322070A1/en
Publication of WO1999043702A1 publication Critical patent/WO1999043702A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Definitions

  • the present invention relates to a protein that binds to NE-d1 g (including a splicing isoform thereof).
  • the present invention also relates to a polynucleotide encoding the above protein.
  • the present invention relates to a homolog of the protein or the polynucleotide.
  • the present invention also relates to an antibody that recognizes the above-mentioned protein.
  • the d1g gene a Drosophila tumor suppressor gene, is a gene that, when deleted, causes hyperplasia of adult disciogenesis.
  • a group of genes having homology with the d1g gene is called MAGUK family, and is considered to have a function of localizing at cell adhesion sites and nerve endings and accumulating specific proteins.
  • the present inventors isolated the NE-d1g gene, which is a human gene and has homology to the Drosophila d1g gene, and further isolated the NE-d1g gene encoded by the NE-d1g gene.
  • NE—d 1 g D 1 g protein (hereinafter abbreviated as NE—d 1 g), and revealed that it interacts with the C-terminal region of the APC tumor suppressor protein. Has a negative control on cell growth (Oncogene, 14, 2425-2433).
  • the present invention provides a protein that binds to the NE-d1g,
  • the present invention provides a protein (named nedacin) which binds to 1 g of NE-d, has no homology to a known mammalian protein, and has a molecular weight of 5 lkD.
  • Nedacin can be obtained by affinity-purifying the crude protein fraction of each tissue using a column on which 1 g of NE-d is immobilized.
  • the present invention provides a protein comprising the amino acid sequence described in any one of SEQ ID NOs: 1, 3, 5, and 7 in the sequence listing. These are nedacins (including sublysing isoformers) in humans.
  • the present invention also provides a protein comprising an amino acid sequence obtained by substituting, deleting or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing, and binding to NE-d1 g. I do. It is a mutant of human nedacin S.
  • the present invention also provides a polynucleotide encoding the above-mentioned nedacin (including a mutant).
  • the present invention also provides an antisense polynucleotide consisting of a nucleotide sequence complementary to the nucleotide sequence of the polynucleotide.
  • a method for producing nedacin is disclosed. Specifically, a method is disclosed in which a transformant into which nedacin cDNA is introduced produces nedacin. Also disclosed is a recombinant nedacin produced by the method.
  • the present invention also provides an antisense polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of the polynucleotide encoding the nedacin or the polynucleotide encoding the nedacin mutant.
  • the antisense polynucleotide is included in the polynucleotide, but in the present application, it is referred to as an antisense polynucleotide particularly when it is specified that the polynucleotide comprises a nucleotide sequence of an antisense strand.
  • Representative Antisense Polynucleotides also provides polynucleotides that are all or part of a nucleotide consisting of 12 or more bases that encode nedacin or a nedacin variant.
  • This polynucleotide for portions of the coding region, can be used to produce partial length proteins of nedasin or nedasin variants, respectively. Ma It can also be used as a probe.
  • the present invention also provides an antisense polynucleotide which is all or a part consisting of 12 or more bases of the antisense polynucleotide of nedacin or a nedacin mutant.
  • the antisense polynucleotide is capable of inhibiting the biosynthesis of nedacin or a nedacin mutant, respectively. It can also be used as a probe.
  • the present invention also provides a polynucleotide obtained by chemically modifying the above-mentioned polynucleotide (including an antisense polynucleotide).
  • the present application discloses that the analysis by the northern blot hybridization method using a DNA probe enables the detection of nedasin mRNA from each tissue and that the nedasin mRNA is naturally expressed. Is what you do.
  • the present invention also provides a nedacin homolog protein encoded by a homolog gene of the nedacin gene.
  • nedacin in each vertebrate is collectively indicated. The above nedacin can be produced in a transformant into which the nedasin gene has been introduced.
  • the present invention uses a polynucleotide encoding human nedasin or a part thereof consisting of at least 12 bases (a part of the coding region) as a probe to obtain nedasin from another vertebrate, preferably mammalian cDNA library. It also includes a method for obtaining cDNA and nedacin cDNA obtained by the method. The present invention also provides a nedacin protein which is a homologue of human nedacin encoded by the nedacin cDNA.
  • the present invention also provides an antibody that recognizes the nedacin and a mutant of the nedacin.
  • the antigenicity of nedacin that is, that an antibody can be produced from nedacin.
  • FIG. 1 is a diagram showing the positional relationship between the cDNA of nedasin S, each fragment obtained during the cloning process, and each primer.
  • FIG. 2 is a diagram showing a positional relationship of each region of NE-d1g.
  • Fig. 3 is an electrophoresis photograph showing the result of SDS-PAGE electrophoresis of a protein extracted from E. coli brain cells binding to 1 g of NE-d and silver staining of the gel as it is.
  • 1 is an electrophoretic photograph showing the result of electrophoresis of a protein extracted from a brain cell of a mouse bound to 1 g of a NE-d delivery mutant.
  • FIG. 4B is a diagram showing the relationship between the partial or full length of the NE-dlg delivery mutant.
  • FIG. 5 is an electrophoretic photograph showing the results of analyzing the expression of nedacin mRNA in each tissue by the Northern Protocol hybridization method.
  • FIG. 6 is an electrophoretic photograph showing the results of RT-PCR analysis of the expression of nedacin mRNA in each tissue and each cell.
  • FIG. 7 is an electrophoresis photograph showing the result of electrophoresis of an immunoprecipitate containing nedacin and 1 g of NE-d.
  • the nedacin according to the present invention is obtained by combining a crude protein fraction extracted from cells derived from tissues of various animals as well as humans with 1 g of NE-d, and further dialysis, ammonium sulfate precipitation or gel filtration column, Purification can be performed singly by chromatography, using an exchange column or hydroxyapatite as an adsorbent, or by glycerol density gradient centrifugation.
  • Nedacin can be purified by combining various types of chromatography. The purified nedacin fraction binds 1 g of NE-d.
  • the fraction containing purified nedacin was analyzed by SDS-polyacrylamide electrophoresis (S DS-PAGE ⁇ Ant ibodies A Laboratory Manu a 1, p636-640), and separation by two-dimensional electrophoresis using 0, Farrell, etc. Bands are observed.
  • Nedacin can be isolated from the band obtained by SDS-PAGE or two-dimensional electrophoresis by extracting a protein from a band having a molecular weight of about 51 kDa. That is, nedacin separated and identified by electrophoresis can be transferred to polyvinylidene difluoride (PVDF) or the like.
  • PVDF polyvinylidene difluoride
  • Nedacin after the above-mentioned treatment is subjected to various enzyme treatments such as lysylendopeptidase into a mixture of polypeptide fragments, and the obtained mixture of peptide fragments is separated by high performance liquid chromatography.
  • This synthetic polynucleotide can be used as a probe for searching for a polynucleotide encoding nedasin.
  • a general method for preparing a cDNA library for screening the polynucleotide encoding nedasin of the present invention, a general method can be used, for example, by the following steps.
  • mRNA messenger RNA
  • cDNA single-stranded complementary polynucleotide
  • a plasmid or a plasmid containing the target polynucleotide is obtained from the transformant by an appropriate method, for example, colony hybridization or plaque hybridization. Isolating di,
  • Step (i): mRNA encoding the polypeptide of nedasin can be obtained from various animal tissues, organs, and producer cells, more specifically, from the brain, placenta, liver, kidney, and the like.
  • guanidium / cesium chloride a method (Guanidi umu / Cesi umu Chloride method, Mo lecular Clonin Second Edition, Cold Spring Harbor Laboratory or Pre- ss, p7. 19-7.23, 1989) Guanidimuthiocinate method (Analyt i cal Bio chemi stry, 162, pl 56—159, 1987) is generally used.
  • Separation and purification of mRNA from total RNA obtained by the above operation can be performed, for example, by using oligo dT-cellulose (Collaborative Research Co., Ltd.) or Oligodex-1 dT 30 (Yukara Co., Ltd.). This can be carried out by an adsorption column method or a batch method.
  • the Okayama-Berg method Okayama, H. and Ber, P., Molecular and Cereal
  • l lu l ar B ioloy, 3, p 280, 1983 cDNASynthesize cDNA according to the method of Gubler and V. Hoffman (Gubler, V. and Hoffman, BJ, Gene, 25, p 263-269, 1983) I do.
  • Examples of plasmid vectors incorporating cDNA include PBR322 (Gene, 2, 95, 1977), PBR325 (Gene, 4, 121, 1978), PUC12 or PUC13 (Gene, 19, 259, 1982), PUC 18 or PUC 19 (Gene, 33, 103, 1985), PU C 118 or PUC 119 (Me t ho ds in Enzymology, 153, 3, 1987), Blu scr ip t II (Nucleic Acids. Res., 17, 9494, 1989), etc., but any other one can be used as long as it is replicated and maintained in the host. .
  • phage vector incorporating cDNA examples include, for example, Agt10 (Huynh, TV, Young, RA and Davis, .W., DNA cloning, A Practi ca l App roach, IRL Pre ss, Oxford, 1, 49, 1985), ⁇ gt 11 (Proc. Natl. Ac ad. Sci., USA, 80, 1194, 1983) or human ZAP II (Nucleic Acids. Res., 17, 9494,
  • Examples of a method for incorporating cDNA into plasmid include, for example, the method of Sambrook (J.), et al. (Mo 1 ecu 1 ar Cloning Sect on Ed Ed., Pi. 53— 1.73, 1989).
  • a method of incorporating cDNA into a phage vector for example, the method of Hyunh, T.V., etc. (DNA cloning as described above) can be used.
  • Escherichia coli Escherichia coli
  • Bacillus subtilis Bacillus subtilis
  • Saccharomyces cerevisiae Saccharomyces cerevisiae (Saccharomyces escer evisiae) and the like, and can be transformed.
  • Methods for transforming a host with a plasmid vector include, for example, the electroporation method described in Molecular Cloning (Moe ecu 1 ar Cloning, supra, page 1.74-1.84) or Calcium chloride method and the like can be mentioned.
  • a phage vector can be introduced, for example, into grown Escherichia coli using an in vitro packaging method.
  • Polynucleotide used as a probe in the above hybridization Any kind of polynucleotide can be used as long as it is a polynucleotide that hybridizes with nedacin.
  • a polynucleotide chemically synthesized based on the amino acid sequence of nedacin can be used.
  • nedacin a polynucleotide encoding nedacin can be prepared. (Determination of base sequence)
  • Determination of the nucleotide sequence of the cDNA obtained in accordance with the above can be performed by, for example, the Maxiam-Gilbert method (Methods in Enzymology, 65, 499-560, 1980), the dideoxy method (Messing, J. eta 1., Nucleic Acids Research, 9, 309, 1981), and Taq cycle sequencing using fluorescent dyes (Biotechniques, 7, 494-499, 1989). .
  • a combination of DNAs was selected to cover the coding region, By cutting and joining the DNA with an appropriate restriction enzyme site contained in the overlapping portion of the DNA, the full-length DNA can be obtained. Further, a primer is designed so as to include the entire coding region, and PCR is performed using the primers with a cDNA library of a target vertebrate, preferably a mammal, as a type I, to obtain a full-length primer. DNA can also be obtained.
  • Nedacin S having an SSV structure at the C-terminus has a binding property to NE-d 1 g.
  • the nucleotide sequence of cDNA encoding nedasin S consists of 2040 residues, and the open reading frame is composed of 1365 bases from A at 86 to A at 1450. Yes, encoding 454 amino acids. From the structural point of view that it binds to NE-d 1 g, the C-terminus becomes an S SV structure. It is that it is wearing.
  • the nucleotide sequence of the cDNA encoding nedasin V1 consists of 1926 residues, as shown in SEQ ID NO: 4 in the sequence listing, and the open reading frame is from A at position 1 to A at position 16 Up to 1416 bases and encodes 471 amino acids.
  • nucleotide sequence of cDNA coding for nedacin V2 has an open reading frame consisting of 151 and 18 residues and encodes 505 amino acids.
  • nucleotide sequence of cDNA encoding nedacin V3 has an open reading frame consisting of 133 residues and encodes 460 amino acids. I do.
  • the c DNA according to the present invention includes c DNA consisting of the nucleotide sequence ATG is not bound to the 5 5 end of the open reading frame of the sequence.
  • cDNA not only cDNA, but also a DNA having a primary structure of the base sequence described in SEQ ID NO: 2, 4, 6, or 8 in the sequence listing, and an RNA comprising a base sequence corresponding to the base sequence, the human nedasin of the present invention. Included in the encoding polynucleotide.
  • the polynucleotides of the present invention also include DNAs that include 5'-flanking polynucleotides that encode part or all of the signal peptide for human nedacin. Furthermore, in accordance with the degeneracy of the genetic code, substituting at least one base of the polynucleotide for another type of base without changing the amino acid sequence of the polypeptide produced from the polynucleotide. Can be.
  • polynucleotide of the present invention also has an amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7 in the sequence listing by substitution based on the degeneracy of the genetic code. Includes everything that is
  • the amino acid sequence of human nedacin S of the present invention is the amino acid sequence described in SEQ ID NO: 1 in the sequence listing.
  • the calculated molecular weight of the protein consisting of the amino acid sequence is 51.0. kD and the isoelectric point is 5.35.
  • the amino acid sequence of human nedacin V1 of the present invention is the amino acid sequence described in SEQ ID NO: 3 in the sequence listing.
  • the calculated molecular weight of the protein consisting of the amino acid sequence is 52.8 kD, and the isoelectric point is 5.48.
  • the amino acid sequence of human nedacin V2 of the present invention is the amino acid sequence described in SEQ ID NO: 5 in the sequence listing.
  • the calculated molecular weight of the protein consisting of the amino acid sequence is 56.8 kD, and the isoelectric point is 5.36.
  • the amino acid sequence of human nedacin V3 of the present invention is the amino acid sequence described in SEQ ID NO: 7 in the sequence listing.
  • the calculated molecular weight of the protein consisting of the amino acid sequence is 52. lkD, and the isoelectric point is 5.90.
  • Human nedacin includes a polypeptide in which methionine is not bound to the N-terminal of the amino acid sequence. Also, an intermediate in which a part or all of a signal peptide for human nedascin is bound or deleted at the N-terminus of the amino acid sequence is included.
  • a DNA mutant is produced in which the structure of the DNA encoding the target protein is changed, and the DNA mutant is introduced into an appropriate host to prepare a transformant.
  • a transformant can produce a mutant of the desired protein.
  • the present invention relates to a mutant of nedacin S, which includes a protein in which the C-terminal S SV structure of the amino acid sequence has been changed while being conserved, and which binds to NE-d1 g. Mutants of the splicing isoforms nedacin V1, nedacin V2 or nedacin V3 are also included.
  • nedacin V1, nedacin V2 or nedacin V3 are also included.
  • usually several amino acids can be substituted, deleted or added by one operation. By repeating this operation a plurality of times, more amino acids can be substituted, deleted or added, and a desired mutant can be produced.
  • the homology between nedacin S of the present invention and its mutant is preferably 75% or more at the amino acid level, more preferably 90% or more, and even more preferably 95% or more.
  • the present invention also includes a polynucleotide consisting of a nucleotide sequence encoding a nedacin mutant.
  • CDNA and genomic DNA encoding nedasin can be used as they are or after being cut with restriction enzymes, depending on the purpose.
  • the present invention also includes an antisense polynucleotide comprising a base sequence complementary to the base sequence.
  • the antisense polynucleotide of the present invention can be used to inhibit the biosynthesis of human nedacin, and can also be used as a probe.
  • an antisense polynucleotide is included in a polynucleotide.
  • the antisense polynucleotide will be described as being included in the polynucleotide.
  • the antisense polynucleotide is specifically referred to as an antisense polynucleotide, it is referred to as an antisense polynucleotide.
  • the antisense polynucleotide for inhibiting the biosynthesis of the polypeptide preferably comprises 15 or more bases.
  • antisense polynucleotides that are too long are unsuitable for uptake into cells.
  • the base is 12 to 30 bases, preferably 15 to 25 bases, and more preferably.
  • an antisense polynucleotide comprising 18 to 22 bases It is better to use 7
  • the antisense polynucleotide to human nedacin of the present invention also comprises 12 to 30 bases, preferably 15 to 25 bases, more preferably 18 to 22 bases. It is preferable to use an antisense polynucleotide.
  • the antisense polynucleotide of the present invention includes all of those in which a plurality of nucleotides consisting of bases, phosphates, and sugars are bound, including those that are not naturally occurring. Typical examples are antisense DNA and antisense RNA.
  • the binding strength to the target DNA or mRNA, tissue selectivity, cell permeability, nuclease resistance, or intracellular stability can be improved.
  • High variety of antisense polynucleotide derivatives are obtained.
  • the derivatives generally known at present are preferably derivatives having at least one of enhanced nuclease resistance, tissue selectivity, cell permeability, and avidity. Particularly preferred are derivatives having a phosphorothioate bond as a skeletal structure.
  • the polynucleotides and derivatives thereof of the present invention also include derivatives having these functions or structures.
  • an antisense polynucleotide or a derivative thereof having a base sequence complementary to the base sequence of the region forming the stem loop should be designed.
  • the antisense polynucleotide and the derivative thereof of the present invention can form a stem loop as necessary.
  • an antisense polynucleotide having a sequence complementary to the sequence of the translation initiation codon, the ribosome binding site, the cabling site, and the splice site can generally be expected to have a high expression suppressing effect. Therefore, the antisense polynucleotide of the present invention or a derivative thereof, which is located near the translation initiation codon of DNA or mRNA encoding nedasin, a ribosome binding site, a caving site, Those containing a sequence complementary to the chair site are expected to have a high expression suppressing effect.
  • the antisense polynucleotide of the present invention can be prepared by using a chemical synthesizer or by a PCR method using a gene encoding human nedacin as type III.
  • some derivatives such as a methylphosphonate type and a phosphorothioate type, can be chemically synthesized.
  • the operation can be carried out in accordance with the instructions attached to the chemical synthesizer, and the resulting synthetic product can be purified by the HP LC method using reverse phase chromatography or the like.
  • Antisense polynucleotide or a derivative thereof can be obtained.
  • Polynucleotide encoding nedacin of the present invention or a part thereof polynucleotide comprising 9 or more consecutive bases
  • an antisense polynucleotide of the antisense strand of the polynucleotide or a derivative thereof from 9 or more consecutive bases
  • Antisense polynucleotide or a derivative thereof can be used as a probe for screening a nedasin gene from a cDNA library or the like. At this time, those having a GC content of 30 to 70% can be suitably used.
  • a polynucleotide comprising 12 or more consecutive bases is more preferable
  • a polynucleotide having 15 or more bases is more preferable.
  • the polynucleotide used as a probe may be a derivative. Usually, a sequence having the number of bases or more is recognized as a sequence having specificity.
  • a cDNA library used in screening using the probe a cDNA library prepared from mRNA can be preferably used. A group of cDNAs selected from these cDNA libraries by random sampling can be used as a sample for the search.
  • DNA consisting of 9 or more consecutive bases in the nucleotide sequence shown in SEQ ID NO: 2 in the sequence listing or a polynucleotide that hybridizes to the DNA (antisense polynucleotide) is obtained by synthesizing the nedasin gene from a cDNA library or the like. It can be used as a probe for cleaning.
  • tissue expressing nedasin-gene-derived mRNA can be identified. It is possible to find out.
  • the DNA and RNA of the present invention include the above-mentioned chemically modified DNA, RNA or antisense polynucleotide within its scope.
  • the chemically modified DNA or RNA referred to here can exert both a protein-encoding function and a probe function, and the chemically-modified antisense polynucleotide can be used for probe or protein biosynthesis. It can exhibit both the function of inhibiting the activity and the function as a probe.
  • the present invention also includes a recombinant nedacin produced by the above-mentioned transformant into which the nedasin gene has been introduced. Further, the disclosure of the present invention makes it possible to produce a nedacin mutant in which one or more amino acids in the amino acid sequence of nedacin are substituted, deleted or added.
  • the vector and host used for the transformation those described in the section on the preparation and screening of the cDNA library can be used.
  • the method for purifying nedacin or a nedacin mutant the method described in the section on purification of nedasin can be used.
  • the nedacin or nedacin mutant to be produced is
  • the transformant may be prepared as a fusion peptide with a peptide.
  • a chemical substance such as bromocyan or an enzyme such as protease to excise nedacin or nedacin mutant.
  • an antibody recognizing nedasin can be obtained by immunizing a non-human animal with a peptide that is a part of nedasin of the present invention, as exemplified in Example 7, as to the antigenicity of nedasin Is to clarify.
  • an antibody that recognizes nedacin can be obtained by immunizing with full-length nedacin. Therefore, an antibody recognizing nedacin of the present invention (hereinafter sometimes referred to as a human nedacin antibody) is an antibody obtained by immunizing a non-human animal with nedacin, and the antibody is the nedacin of the present invention.
  • Antibodies whose recognition is confirmed by Western blotting, ELISA, immunostaining (eg, measurement by FACS), etc. are included in the range.
  • an immunogen obtained by binding a part of the protein to another carrier protein such as serum albumin is a commonly used method to use an immunogen obtained by binding a part of the protein to another carrier protein such as serum albumin.
  • a part of the protein may be synthesized using, for example, a peptide synthesizer.
  • it is preferable that a part of the protein has eight or more amino acid residues.
  • the nedacin antibody of the present invention includes a monoclonal antibody within its scope.
  • antibodies also include active fragments.
  • An active fragment refers to a fragment of an antibody having antigen-antibody reaction activity.
  • F (ab ') 2 , Fab', Fab, Fv and the like can be mentioned.
  • F (ab,) 2 is obtained, and when digested with papain, Fab is obtained.
  • Reduction of F (ab,) 2 with reagents such as 2-mercaptoethanol and alkylation with mono-acetic acid gives Fab '.
  • Fv is a monovalent antibody active fragment in which a heavy chain variable region and a light chain variable region are linked by a linker.
  • a chimeric antibody can be obtained by retaining these active fragments and substituting the other parts with fragments of another animal.
  • the immunoassay using the obtained antibody provides a means for quantitatively measuring the change of the subject in various cells.
  • the method using an antibody include a method for detecting nedacin using a labeled nedacin antibody, and a method for detecting nedacin using a nedacin antibody and a labeled secondary antibody of the antibody.
  • the label for example, a radioisotope (RI), an enzyme, avidin or biotin, or a fluorescent substance (FITC, rhodamine, etc.) is used.
  • Examples of the method utilizing an enzymatic reaction include an ELISA method, an immunoagglutination method, a Western blot method, a method for identifying an immune reaction molecule using flow cytometry, or a method similar thereto.
  • the base sequence up to the 1937th A was inserted, and the vector was introduced into Escherichia coli DH5 to prepare a transformant.
  • the From the PDZ1 region consisting of the amino acid sequence from Ala at position 63 to G1u at position 568 of the NE-d1g protein (protein consisting of the amino acid sequence of SEQ ID NO: 9) in the transformant A GST-NE-d1g fusion protein in which GST was bound to the N-terminal of the portion up to the SH3 region was produced.
  • Figure 2 shows the positional relationship of each area of NE-dig.
  • the beads After immobilizing the GST-NE-d1g fusion protein on glutathione agarose beads, the beads were packed in a column to prepare an affinity column.
  • the protein was extracted from P. cerevisiae brain cells, and the extracted crude fraction was applied to the affinity column at 4 ° C. and passed through the affinity column.
  • proteins elution buffer attached to the beads in a column (0. 5M NaC 1, 3 OmM T ris -HC 1 pH 7. 5, 1 mM EDTA, 5 mM M gCl 2, 1 mM DTT) pH 7 Washed out in 5 and heated in Laemli's sample buffer and placed at 100 ° C for 5 minutes.
  • Lane 1 is a lane in which only GST was electrophoresed
  • lane 2 is a lane in which GST-NE-d 1 g fusion protein was electrophoresed.
  • a fusion protein was prepared by combining the following four types of NE-d 1 g of partial protein and full-length protein with GST, and an affinity column in which each protein was packed with beads was prepared. .
  • NE A protein containing the dig SH3 region (amino acid sequence from Ser 503 to G1u at 568 in the amino acid sequence described in SEQ ID NO: 9 in the sequence listing).
  • NE Dig protein deleted from the GUK region (amino acid sequence from Arg at position 628 to Asp at position 803 in the amino acid sequence described in SEQ ID NO: 9 in the sequence listing).
  • FIG. 4 (B) shows the relationship between the part or the full length of NE—d 1 g of 1 to 4 above.
  • a crude protein fraction extracted from the E. coli brain cells was applied in the same manner as in 2 above, and the proteins bound to the fusion proteins immobilized on the beads were electrophoresed in the same manner as in 3 above.
  • the result is shown in Fig. 4 (A).
  • the middle arrow indicates the protein band of 51 kD. This indicates that the 51 kD protein does not bind to the SH3 region, but binds to NE-d1 g lacking the N-terminal and NE-d1 g lacking the GUK region. . Therefore, it was found that the 51 kD protein binds to NE-dig and its PDZ region.
  • Example 2 Determination of amino acid sequence of NE-d1g binding protein and nucleotide sequence of a gene encoding the same
  • the gel which had been subjected to electrophoresis for the 51 kD protein purified in 2 of Example 1 was applied to a Immobilon-1 P VDF membrane (manufactured by Millipore) using a semi-dry electroprototyping apparatus, Sartoblot II-1 S ( (Manufactured by Sartorius).
  • the membrane filter on which the protein was blotted was washed with distilled water, stained with Ponceau S (P onceau S) staining solution (0.1% Ponceau-13, 1% acetic acid solution), and immersed in distilled water.
  • the background was decolorized by shaking.
  • Lys-C protease manufactured by Boehringer Mannheim
  • HP LC Perkin Elmer
  • Peptide fragment 1 Va 1 Phe Leu G 1 u G 1 u A La Ser G in G in G 1 u Lys (from 43 to 53 of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing) Array)
  • Peptide fragment 2 GluTrpCysPheLys (sequence from the 47th to the 51st amino acid sequence of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing)
  • Peptide fragment 3 Thr Arg As LeuHislie Gin Ser H is (sequences 232 to 240 of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing)
  • Peptide fragment 4 Asn Leu TyrPRoSeyrTyr Lys (sequences from 253 to 259 of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing)
  • Peptide fragment 5 G1uPheAspAlaiLieLeuLieAsnProLys (sequence from position 394 to position 403 of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing)
  • Peptide fragment 6 G1nVa1Va1ProPHeSer (sequence from amino acid position 446 to position 451 of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing)
  • a human fetal brain cDNA library (Clontech) was used for PCR type II.
  • P1 primer 5'-ATGCCTGGGCTG GTTGATACACAC-3, (base sequence described in SEQ ID NO: 11)
  • P2 primer 5'-CATCACTGTCT TATTTGTCAAAAG-3
  • the nucleotide sequence described in SEQ ID NO: 12 in the sequence listing was designed and synthesized using a DNA synthesizer (ABI, model 392).
  • the synthesized primer was adjusted to 10 pmo1 / ⁇ 1 with distilled water (the subsequent primer synthesis was performed in the same manner).
  • PCR was performed using these primers, a cDNA fragment of 609 bp was obtained. This fragment is hereinafter referred to as fragment A.
  • the fragment A obtained above was subjected to mini gel electrophoresis (0.75% agarose gel), and a band (609 bp) of the DNA was cut out from the gel.
  • the cDNA was collected on a dialysis membrane, and the bands were checked by mini gel electrophoresis.
  • cDNA a l y l up was diluted with 99 1 of TE.
  • the absorbance at 260 nm (A260) was measured, and the DNA concentration was calculated (the DNA concentration when the concentration of 260 was 1.0 was 50 l / ml).
  • the DNA was diluted with TE so that the DNA concentration was.
  • Fragment A with P1 sense primer and P2 antisense primer was used to perform a direct sequence.
  • DNA sequencing was performed using the Auto Sequencer (ABI Model 373A) by the Dye-Mine-Mine-One-Duct method to determine the nucleotide sequence of fragment A cDNA.
  • the following primers were synthesized to obtain further DNA fragments from the human cDNA library.
  • P 3 primer on the 3 ′ side from P 1 primer: 5′-TGATTTGCACA TTCAGAGCCATAT—3, (base sequence described in SEQ ID NO: 13 in the sequence listing), P 4 primer on the 5 ′ side from P 2 primer: 5 , -AGGTCTATGCTA CTTCCAGCAAAG-3, (base sequence described in SEQ ID NO: 14 in the sequence listing) was designed and synthesized using a DNA synthesizer (ABI, model 392). The synthesized primer was adjusted to 10 pmo1 / 1/1 with distilled water.
  • cDNA library a cDNA library of human fetal brain (manufactured by Clonetech) was used, and the AP-1 primer set in the linker of the cDNA library: 5'-CCAT CCTAATACGACTCACTATAGGGC-3 ' One step PCR was carried out using P1, P2, P3 and P primers.
  • the P1 primer was used to extend the single-stranded DNA on the 3 side by PCR.
  • Mineral oil 10 ⁇ 1 is overlaid on the liquid having the above composition, left at 95 ° C. for 5 minutes, and XL Polymerase 0.3 / 1 (registered trademark, manufactured by Parkin Elma Co., Ltd.) was added. The cycle of “6 ° C for 30 seconds, 60 ° C for 30 seconds, and then 72 ° C for 2 minutes” was repeated 40 times. Finally, a fragment extension reaction was performed at 72 ° C for 7 minutes to complete the PCR.
  • the PCR product was transformed into type III and cloned on the 3 side to synthesize double-stranded DNA.
  • fragment B DNA sequence
  • the P2 primer was used to extend the single-stranded DNA on the 3 side by PCR.
  • a mineral oil (10-1) is overlaid on the liquid having the above composition, left at 95 ° C for 5 minutes, added with XL Polymerase 0.3-1 (registered trademark, manufactured by PerkinElmer Co., Ltd.), and added to “96 ° A cycle of 30 seconds at C, 30 seconds at 60 ° C, and then 2 minutes at 72 ° C "was repeated 40 times. Finally, a fragment extension reaction was performed at 72 ° C for 7 minutes to complete PCR.
  • the PCR product was transformed into type I and the 5 side was cloned to synthesize double-stranded DNA.
  • Mineral oil 10 ⁇ 1 is overlaid on the liquid of the above composition, left at 95 ° C for 5 minutes, and XL Polymerase 0.3 ⁇ 1 (registered trademark, manufactured by PerkinElmer Inc.) is added. A cycle of “30 seconds, 60 seconds for 30 seconds, and then 72 ° C. for 2 minutes” was repeated 40 times. Finally, a fragment extension reaction was performed for 72 minutes at 72 to complete the PCR.
  • fragment C this DNA fragment is referred to as fragment C hereinafter.
  • P GCTCAGATGCCG-3 (base sequence described in SEQ ID No. 17 in the sequence listing) was set as an antisense primer, P6 primer 1: 5, -AAAT AGGAT CC, the base sequence described in SEQ ID No. 18).
  • PCR was performed under the following conditions using human fetal brain cDNA library as a type III.
  • the cDNA was ligated to a protein that binds to NE-d1 g (this protein was nedasin (NEDAS IN, NE-DiAs soci ating protein IN). ) was identified as cDNA encoding).
  • This nucleotide sequence is shown as SEQ ID NO: 2 in the sequence listing. The gene consisting of this nucleotide sequence was named nedacin S gene. No known mammalian genes having homology with the nedacin S gene were found. Nedacin S cDNA and the position of each fragment and each primer obtained during the cloning process. Figure 1 shows the relationship.
  • nedacin S The amino acid sequence of the nedacin S protein encoded by this gene (hereinafter sometimes simply referred to as nedacin S) is shown in SEQ ID NO: 1 in the sequence listing.
  • the C-terminus of nedacin S was an S SV motif that could bind to the PDZ region. No mammalian protein having homology with this nedacin S was found, but it had about 40% homology with the yeast YDL238c protein.
  • the full-length nedasin cDNA obtained above was inserted into a plasmid vector pGEM (registered trademark) — T Easy (Promega) multi-cloning site.
  • This plasmid vector was introduced into E. coli NM522 to prepare a transformant.
  • the Escherichia coli harboring the cDNA of nedacin S was named Ne dasin S, and the Institute of Biotechnology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry (1-3 1-3 Tsukuba East, Ibaraki, Japan (zip code 305- 8566)) and deposited on February 25, 1998.
  • the accession number is FERM P-16663.
  • the Nedas inS was transferred to the Deposit under the Budapest Treaty at the institute (Accession No. FERM BP-6471).
  • nedasin S gene was added to the MoE ecu1arClonin A Laboratory Manual Manual, Edition Ed. According to the description, hybridization was carried out at 43 ° C. for 16 hours, and analysis was carried out by the Northern blot hybridization method.
  • FIG. 5 shows the results of analysis by the Northern Protocol hybridization method. From this, it was found that mRNA of nedacin was strongly expressed in brain, placenta, liver and kidney.
  • MRNA was extracted from each tissue in which nedacin expression was observed using a Microfast Track (registered trademark) kit (manufactured by Invitrogen) mRNA purification kit, and RT-PCR method (new cell experimental engineering protocol, Shujunsha, Published in 1993, listed on pages 175-176).
  • the obtained gene product was sequenced in the same manner as described above by the dye-mine method.
  • three splicing Form was found to exist. These were named Nedacin VI, Nedasin V2, and Nedasin V3.
  • nedacin V1 The amino acid sequence of nedacin V1 is shown in SEQ ID NO: 3 in the sequence listing, and the nucleotide sequence of the nedacin V1 gene is shown in SEQ ID NO: 4 in the sequence listing.
  • nedacin V2 The amino acid sequence of nedacin V2 is shown in SEQ ID NO: 5 in the sequence listing, and the nucleotide sequence of the nedacin V2 gene (only the coding region) is shown in SEQ ID NO: 6 in the sequence listing.
  • nedacin V3 The amino acid sequence of nedacin V3 is shown in SEQ ID NO: 7 in the sequence listing, and the nucleotide sequence of the nedacin V3 gene (only the coding region) is shown in SEQ ID NO: 8 in the sequence listing.
  • the nedacin VI gene was introduced into a plasmid vector pGEM (registered trademark) -TEASy (promega) multi-cloning site.
  • the transformant in which this plasmid was introduced into Escherichia coli DH5 was named Ne dasin VI. Institute of Biotechnology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry (1-3 1-3 Tsukuba East, Ibaraki, Japan) (Postal code 305-8566)) on February 25, 1998.
  • the accession number is FERM P-16664.
  • the Nadasin V1 was transferred to the Deposit under the Budapest Treaty at the same institute (Accession No. FERM BP-6472).
  • RT_PCR was also performed on each cell to examine the expression of the nedasin splicing isoform.
  • FIG. 6 shows the results of RT-PCR for each tissue and each cell. This confirmed that nedacin S is predominantly expressed in human fetal brain and placenta, and nedacin V1 is predominantly expressed in other tissues.
  • nedasin S cDNA and nedasin V1 cDNA were obtained by inserting a 63-mer linker containing the my c tag into the EcoRI-BamHI site of the plasmid vector pBj-1. It was inserted into the BamHI site of my c. Each of these was introduced into COS cells together with a vector-pCGN (having an HA tag) incorporating the NE-d1 g gene in which the GUK region had been deleted, to prepare transformants.
  • the cells are lysed using TNN buffer (15 OmM NaCl, 5 OmM Tris-HC1H7.5, 0.5% NP-40), and the cells are extracted. A liquid was obtained.
  • An anti-myc antibody was added to the cell extract, and the mixture was centrifuged at 3000 rpm for 5 minutes to separate immunoprecipitates.
  • This immunoprecipitate was electrophoresed on 9% SDS-PAGE.
  • the DNA was transferred to a nitrocellulose membrane using a Transplot system (manufactured by Marisol).
  • the nitrocellulose membrane was immersed in 10% skim milk / PBS, 0.1% Tween 20, allowed to stand for 1 hour, and blocked. Thereafter, the plate was washed twice with 0.3% Tween20 / PBS for 5 minutes each.
  • the anti-myc antibody was diluted to 1 g / ml with PBS, it was added to a nitrocellulose membrane and reacted at room temperature for 60 minutes. Thereafter, the plate was washed three times for 5 minutes each with 0.3% Tween20 / PBS.
  • nedacin S whose C-terminal is S SV binds to NE-d 1 g, but C-terminal
  • nedacin V1 of PFP did not bind to NE-d1g.
  • the binding between nedacin and NE-d1 g was demonstrated in vivo, and the binding was found to be controlled by a change in the C-terminal side of nedacin.
  • Chromosomal mating of the full-length gene of nedacin S was performed as follows.
  • the PCR uses the Genebridge 4 Radiation Hybrid Screening Panel (available from Research Genetics, Inc.) as a type II to convert a portion of the Nedacin S gene.
  • the PCR operation was performed as follows. A liquid having the following composition was placed in a test tube and left at 96 ° C for 9 minutes.
  • the section number of the panel to which the primer (S1 or AS1) was hybridized was changed to the “Whitehead Insitute / MIT C enterf or Genome Research (http: www—genome.wi.mit.edu/cgi”) — E-mail to b in / cont ig / rhmap er. Pi.;)
  • Genome Research http: www—genome.wi.mit.edu/cgi”
  • the nedacin S gene was located on the short arm of chromosome 9.
  • Peptide A RNIEEVYVGGKQVVPFSSSV (amino acid sequence from 435 to 454 of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing)
  • Peptide B LYP S YKNYT S VYDKNNLLT (position 254 in the amino acid sequence described in SEQ ID NO: 1 in the sequence listing) Amino acid sequence from position 272 to position 272)
  • a reaction solution was prepared by binding 2 mg of the prepared peptide to 2 mg of maleimide KLH (Pierce). The reaction was performed according to the method described in the instruction manual of Pierce.
  • a second immunization was performed. From the second time on, immunization was performed by changing the adjuvant to Freund's complete adjuvant (Difco). Other operations are the same as the first operation. The second and subsequent immunizations were performed at weekly intervals for a total of six immunizations.
  • the antibody was affinity purified using a protein G Sepharose column (registered trademark, manufactured by Pharmacia). As a result, a total of 5 mg of the peptide-specific antibody was obtained.
  • Nedacin (including splicing isoform) or a mutant thereof of the present invention is effective for analyzing the mechanism of NE-d1 g.
  • the polynucleotide encoding the nedacin or a mutant thereof of the present invention a polynucleotide consisting of a continuous base sequence of 12 or more bases, or a polynucleotide (antisense polynucleotide) that hybridizes to the polynucleotide, is a cDNA. It can be used as a probe for screening nedacin or its mutant gene from a library or the like.
  • the antisense polynucleotide of the present invention is characterized in that nedacin or a mutant thereof Biosynthesis can be inhibited.
  • the antibody of the present invention can be used for elucidating functions such as expression of nedacin and elucidating the formation mechanism of malignant tumors.

Abstract

A protein (named 'Nedasin') which binds to NE-dlg, shows no homology with any known mammalian protein and has a molecular weight of 51 kD; polynucleotides encoding the above Nedasin or its mutants; antisense polynucleotides comprising the complementary base sequences of the base sequences of the above polynucleotides; and an antibody recognizing the above-mentioned Nedasin or its mutants.

Description

明糸田  Akitoda
NE-d 1 gと結合する蛋白質  Protein that binds to 1 g of NE-d
技術分野 Technical field
本発明は、 NE— d 1 gと結合する蛋白質 (そのスプライシングアイソフォー ムを含む) に関する。 また、 前記の蛋白質をコードするポリヌクレオチドに関す る。 また、 前記の蛋白質またはポリヌクレオチドのホモログに関する。 また、 前 記の蛋白質を認識する抗体に関する。  The present invention relates to a protein that binds to NE-d1 g (including a splicing isoform thereof). The present invention also relates to a polynucleotide encoding the above protein. In addition, the present invention relates to a homolog of the protein or the polynucleotide. The present invention also relates to an antibody that recognizes the above-mentioned protein.
背景技術 Background art
ショウジヨウバエの癌抑制遺伝子である d 1 g遺伝子は、 その欠失により成虫 盤新生の過増殖を引き起こす遺伝子である。 該 d 1 g遺伝子とホモロジ一を持つ 遺伝子群は、 MAGUKフアミリーと呼ばれ、細胞接着部位や神経末端に局在し、 特定の蛋白質を集積させる機能を持つと考えられている。 本発明者らは、 ヒトの 遺伝子であってショウジヨウバエの d 1 g遺伝子にホモロジ一を有する遺伝子で ある NE— d 1 g遺伝子を単離し、 さらに該 NE— d 1 g遺伝子がコードする N E— d 1 g蛋白質 (以下、 NE— d 1 gと略記することがある。 ) が AP C癌抑 制蛋白質の C末端領域と相互作用することを明らかにして、 該 NE— d 1 g蛋白 質が細胞の増殖に対して負の制御をすることを示した(Oncogene, 14, 2425-2433) 。  The d1g gene, a Drosophila tumor suppressor gene, is a gene that, when deleted, causes hyperplasia of adult disciogenesis. A group of genes having homology with the d1g gene is called MAGUK family, and is considered to have a function of localizing at cell adhesion sites and nerve endings and accumulating specific proteins. The present inventors isolated the NE-d1g gene, which is a human gene and has homology to the Drosophila d1g gene, and further isolated the NE-d1g gene encoded by the NE-d1g gene. — D 1 g protein (hereinafter abbreviated as NE—d 1 g), and revealed that it interacts with the C-terminal region of the APC tumor suppressor protein. Has a negative control on cell growth (Oncogene, 14, 2425-2433).
発明の開示 Disclosure of the invention
本発明は、 前記 NE— d 1 gに結合する蛋白質を提供すること、 該蛋白質をコ The present invention provides a protein that binds to the NE-d1g,
―ドするポリヌクレオチドを提供すること、 該蛋白質を認識する抗体を提供する ことを課題とする。 It is an object of the present invention to provide a polynucleotide to be loaded, and to provide an antibody that recognizes the protein.
本発明は、 NE— d 1 gと結合しかつ既知の哺乳類蛋白質とホモロジ一を有さ ず分子量が 5 lkDである蛋白質 (ネダシンと名付けた) を提供する。 ネダシン は、 NE— d 1 gを固定したカラムを使用して各組織の蛋白質粗分画をァフィ二 ティ一精製することにより得ることができる。 また、 本発明は、 配列表の配列番号 1、 3、 5または 7のいずれかに記載のァ ミノ酸配列からなる蛋白質を提供する。 これらはヒトにおけるネダシン (スブラ イシングァイソフォーマを含む) である。 The present invention provides a protein (named nedacin) which binds to 1 g of NE-d, has no homology to a known mammalian protein, and has a molecular weight of 5 lkD. Nedacin can be obtained by affinity-purifying the crude protein fraction of each tissue using a column on which 1 g of NE-d is immobilized. Further, the present invention provides a protein comprising the amino acid sequence described in any one of SEQ ID NOs: 1, 3, 5, and 7 in the sequence listing. These are nedacins (including sublysing isoformers) in humans.
また、 本発明は、 配列表の配列番号 1に記載のアミノ酸配列において一または 複数のアミノ酸を置換、 欠失または付加してなるアミノ酸配列からなり、 かつ N E— d 1 gと結合する蛋白質を提供する。 これは、 ヒトネダシン Sの変異体であ る。  The present invention also provides a protein comprising an amino acid sequence obtained by substituting, deleting or adding one or more amino acids in the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing, and binding to NE-d1 g. I do. It is a mutant of human nedacin S.
また、 本発明は、 前記のネダシン (変異体を含む) をコードするポリヌクレオ チドを提供する。  The present invention also provides a polynucleotide encoding the above-mentioned nedacin (including a mutant).
また、 本発明は、 前記ポリヌクレオチドの塩基配列の相補塩基配列からなるァ ンチセンスポリヌクレオチドをも提供する。  The present invention also provides an antisense polynucleotide consisting of a nucleotide sequence complementary to the nucleotide sequence of the polynucleotide.
また、 本出願において、 ネダシンの作製方法が開示される。 具体的には、 ネダ シン c D N Aを導入した形質転換体にネダシンを作製させる方法が開示される。 また、 その作製方法により作製した組み換えネダシンが開示される。  Also, in the present application, a method for producing nedacin is disclosed. Specifically, a method is disclosed in which a transformant into which nedacin cDNA is introduced produces nedacin. Also disclosed is a recombinant nedacin produced by the method.
また、 本発明は、 前記ネダシンをコードするポリヌクレオチドまたはネダシン 変異体をコードするポリヌクレオチドの塩基配列の相補塩基配列からなるアンチ センスポリヌクレオチドをも提供するものである。 アンチセンスポリヌクレオチ ドはポリヌクレオチドに含まれるものであるが、 本出願において、 特にアンチセ ンス鎖の塩基配列からなるポリヌクレオチドであることを明示する場合にアンチ センスポリヌクレオチドという。 アンチセンスポリヌクレオチドは、 代表的なも また、 本発明は、 ネダシンもしくはネダシン変異体をコードするポリヌクレオ チドの全部または 1 2塩基以上からなる一部であるポリヌクレオチドを提供する ものである。  The present invention also provides an antisense polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of the polynucleotide encoding the nedacin or the polynucleotide encoding the nedacin mutant. The antisense polynucleotide is included in the polynucleotide, but in the present application, it is referred to as an antisense polynucleotide particularly when it is specified that the polynucleotide comprises a nucleotide sequence of an antisense strand. Representative Antisense Polynucleotides The present invention also provides polynucleotides that are all or part of a nucleotide consisting of 12 or more bases that encode nedacin or a nedacin variant.
このポリヌクレオチドは、 コード領域の部分のものについては、 それぞれネダ シンまたはネダシン変異体の部分長蛋白質を作製するために使用可能である。 ま た、 プローブとしても使用可能である。 This polynucleotide, for portions of the coding region, can be used to produce partial length proteins of nedasin or nedasin variants, respectively. Ma It can also be used as a probe.
また、 本発明は、 ネダシンまたはネダシン変異体のアンチセンスポリヌクレオ チドの全部または 1 2塩基以上からなる一部であるアンチセンスポリヌクレオチ ドを提供するものである。  The present invention also provides an antisense polynucleotide which is all or a part consisting of 12 or more bases of the antisense polynucleotide of nedacin or a nedacin mutant.
このアンチセンスポリヌクレオチドは、 それぞれネダシンまたはネダシン変異 体の生合成を阻害することが可能である。 また、 プローブとしても使用可能であ る。  The antisense polynucleotide is capable of inhibiting the biosynthesis of nedacin or a nedacin mutant, respectively. It can also be used as a probe.
また、 本発明は、 前記のポリヌクレオチド (アンチセンスポリヌクレオチドを 含む) を化学修飾したポリヌクレオチドを提供するものである。  The present invention also provides a polynucleotide obtained by chemically modifying the above-mentioned polynucleotide (including an antisense polynucleotide).
また、 本出願は、 D N Aプローブを用いたノーザンプロットハイブリダィゼ一 シヨン法による解析により、 各組織からネダシンの mR N Aを検出できることお よび天然にネダシンの m R N Aが発現していることを開示するものである。 また、 本発明は、 ネダシン遺伝子のホモログ遺伝子がコードするネダシンのホ モログ蛋白質を提供するものである。 なお、 本出願において、 由来する動物名を 示さない場合は、 各脊椎動物におけるネダシンを集合的に指す。 前記のネダシン は、 ネダシン遺伝子を導入した形質転換体に作製させることが可能である。 本発明は、 ヒトネダシンをコードするポリヌクレオチドまたは 1 2塩基以上か らなるその一部 (コード領域の部分) をプローブとして用いて、 他の脊椎動物、 好ましくは哺乳類動物の c D N Aライブラリーからもネダシン c D N Aを取得す る方法およびその方法により得られたネダシン c D N Aをも含むものである。 また、 本発明は、 前記ネダシン c D N Aがコードするヒトネダシンのホモログ であるネダシン蛋白質を提供する。  In addition, the present application discloses that the analysis by the northern blot hybridization method using a DNA probe enables the detection of nedasin mRNA from each tissue and that the nedasin mRNA is naturally expressed. Is what you do. The present invention also provides a nedacin homolog protein encoded by a homolog gene of the nedacin gene. In the present application, when no derived animal name is indicated, nedacin in each vertebrate is collectively indicated. The above nedacin can be produced in a transformant into which the nedasin gene has been introduced. The present invention uses a polynucleotide encoding human nedasin or a part thereof consisting of at least 12 bases (a part of the coding region) as a probe to obtain nedasin from another vertebrate, preferably mammalian cDNA library. It also includes a method for obtaining cDNA and nedacin cDNA obtained by the method. The present invention also provides a nedacin protein which is a homologue of human nedacin encoded by the nedacin cDNA.
また、 本発明は、 前記ネダシンおよびネダシンの変異体を認識する抗体を提供 する。 本出願において、 ネダシンの抗原性、 すなわち、 ネダシンから抗体を作製 することが可能であることが開示される。  The present invention also provides an antibody that recognizes the nedacin and a mutant of the nedacin. In the present application, it is disclosed that the antigenicity of nedacin, that is, that an antibody can be produced from nedacin.
図面の簡単な説明 図 1は、 ネダシン Sの cDNAとクローニングの過程で得られた各フラグメント および各プライマ一との位置関係を示す図である。 BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a diagram showing the positional relationship between the cDNA of nedasin S, each fragment obtained during the cloning process, and each primer.
図 2は、 NE— d 1 gの各領域の位置関係を示す図である。 FIG. 2 is a diagram showing a positional relationship of each region of NE-d1g.
図 3は、 NE— d 1 gと結合するゥシの脳細胞から抽出した蛋白質を SD S— P AGE電気泳動してゲルをそのまま銀染色した結果を示す電気栄泳動写真である c 図 4Aは、 NE— d 1 gのデリ一シヨン変異体と結合したゥシの脳細胞から抽出 した蛋白質を電気泳動した結果を示す電気泳動写真である。 Fig. 3 is an electrophoresis photograph showing the result of SDS-PAGE electrophoresis of a protein extracted from E. coli brain cells binding to 1 g of NE-d and silver staining of the gel as it is. 1 is an electrophoretic photograph showing the result of electrophoresis of a protein extracted from a brain cell of a mouse bound to 1 g of a NE-d delivery mutant.
図 4Bは、 NE— d l gのデリ一シヨン変異体の部分または全長の関係を示す図 である。 FIG. 4B is a diagram showing the relationship between the partial or full length of the NE-dlg delivery mutant.
図 5は、 ネダシン mRNAの各組織で発現についてノーザンプロヅトハイブリダ ィゼーシヨン法により解析した結果を示す電気泳動写真である。 FIG. 5 is an electrophoretic photograph showing the results of analyzing the expression of nedacin mRNA in each tissue by the Northern Protocol hybridization method.
図 6は、 ネダシン m R N Aの各組織および各細胞での発現についての RT— PC Rにより解析した結果を示す電気泳動写真である。 FIG. 6 is an electrophoretic photograph showing the results of RT-PCR analysis of the expression of nedacin mRNA in each tissue and each cell.
図 7は、 ネダシンと NE— d 1 gとを含む免疫沈降物を電気泳動した結果を示す 電気泳動写真である。 FIG. 7 is an electrophoresis photograph showing the result of electrophoresis of an immunoprecipitate containing nedacin and 1 g of NE-d.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
(ネダシンの精製)  (Purification of Nedacin)
本発明に係るネダシンは、 ヒトだけではなく、 各種動物の組織由来細胞から抽 出した蛋白質粗分画を NE— d 1 gと結合させて、 さらに、 透析、 硫安沈殿また はゲル濾過カラム、 イオン交換カラムもしくはハイ ドロキシァパタイ トを吸着体 としたクロマトグラフィー、 またはグリセロール密度勾配遠心法等の操作で単一 に精製することが可能である。 また、 各種クロマトグラフィーを組み合わせるこ とにより、 ネダシンの精製は可能である。 精製したネダシン画分は NE— d 1 g と結合する。  The nedacin according to the present invention is obtained by combining a crude protein fraction extracted from cells derived from tissues of various animals as well as humans with 1 g of NE-d, and further dialysis, ammonium sulfate precipitation or gel filtration column, Purification can be performed singly by chromatography, using an exchange column or hydroxyapatite as an adsorbent, or by glycerol density gradient centrifugation. Nedacin can be purified by combining various types of chromatography. The purified nedacin fraction binds 1 g of NE-d.
精製したネダシンを含む画分を、 SDS—ポリアクリルアミ ド電気泳動法 (S DS-PAGE^ Ant ibod i es A Laborat ory Manu a 1 , p636— 640) や、 0, Farre l l等による 2次元電気泳動によ り分離した後、 ゲルをクマシ一染色すると、 分子量約 51 kDのバンドが観察さ れる。 The fraction containing purified nedacin was analyzed by SDS-polyacrylamide electrophoresis (S DS-PAGE ^ Ant ibodies A Laboratory Manu a 1, p636-640), and separation by two-dimensional electrophoresis using 0, Farrell, etc. Bands are observed.
(ネダシンの単離)  (Isolation of nedacin)
前記 SDS— PAGEや 2次元電気泳動によるバンドからネダシンを単離する には、分子量約 51 k Daのバンドから蛋白質を抽出することにより可能である。 すなわち電気泳動法より分離同定されたネダシンをポリビニリデンジフルオラ イ ド (PVDF)等にトランスファ一することが可能である。  Nedacin can be isolated from the band obtained by SDS-PAGE or two-dimensional electrophoresis by extracting a protein from a band having a molecular weight of about 51 kDa. That is, nedacin separated and identified by electrophoresis can be transferred to polyvinylidene difluoride (PVDF) or the like.
(プロープの作成)  (Creating probes)
前記の処理後のネダシンを、 リジルェンドぺプチダーゼなどによる各種酵素処 理によりポリべプチドフラグメン卜の混合物とし、 得られたぺプチドフラグメン トの混合物を高速液体ク口マトグラフィ一で分離する。  Nedacin after the above-mentioned treatment is subjected to various enzyme treatments such as lysylendopeptidase into a mixture of polypeptide fragments, and the obtained mixture of peptide fragments is separated by high performance liquid chromatography.
前記得られたポリペプチドフラグメントのいくつかのフラグメントのアミノ酸 配列を自動アミノ酸シークェンサ一等を用いて決定することが可能である。  It is possible to determine the amino acid sequences of some of the obtained polypeptide fragments using an automatic amino acid sequencer or the like.
前記の解析によって得られたァミノ酸配列をコードするポリぺプチドフラグメ ントのうち縮重頻度の低いものを選択し、 これに対応する相補的ポリヌクレオチ ドを、 合成して作成することにより可能である。 この合成ポリヌクレオチドを、 ネダシンをコ一ドするポリヌクレオチドの検索のためのプローブとして使用でき る。  This can be achieved by selecting a polypeptide fragment encoding the amino acid sequence obtained by the above analysis, which has a low degeneracy frequency, and synthesizing and preparing a complementary polynucleotide corresponding thereto. . This synthetic polynucleotide can be used as a probe for searching for a polynucleotide encoding nedasin.
また、 複数のアミノ酸配列が得られた場合は、 対応する相補的ポリヌクレオチ ドを組み合わせて、 cDNAを錄型にして、 PCR法により、 より長い断片の D N Aプローブを得ることが可能である。  When a plurality of amino acid sequences are obtained, it is possible to combine the corresponding complementary polynucleotides, convert the cDNA into type III, and obtain a longer fragment DNA probe by PCR.
以上のようにして、 ネダシンをコ一ドするポリヌクレオチドをスクリーニング するためのポリヌクレオチドプローブが得られる。  As described above, a polynucleotide probe for screening a polynucleotide encoding nedasin is obtained.
( c D N Aライブラリ一の作製およびスクリ一ニング) 本発明のネダシンをコードするポリヌクレオチドをスクリ一ニングするための c DNAライブラリーの作製には、 一般的な方法を使用可能であり例えば次のス テツプにより可能である。 (Preparation and screening of cDNA library) For preparing a cDNA library for screening the polynucleotide encoding nedasin of the present invention, a general method can be used, for example, by the following steps.
すなわち、 (i) 細胞からメッセンジャー RNA (mRNA) を分離し、 (i i) 該 mRNAから、 一本鎖の相補鎖ポリヌクレオチド (cDNA) を、 次いで 2重鎖ポリヌクレオチドを合成し、  That is, (i) separating messenger RNA (mRNA) from cells, (ii) synthesizing a single-stranded complementary polynucleotide (cDNA) and then a double-stranded polynucleotide from the mRNA,
(i i i) 二本鎖ポリヌクレオチドをプラスミ ドまたはファージに組み込み、 ( i V) 得られた組換えプラスミ ドまたはファージにより適当な宿主細胞を形 質転換し、  (iii) incorporating the double-stranded polynucleotide into a plasmid or phage, (iV) transforming a suitable host cell with the obtained recombinant plasmid or phage,
(V) 得られた形質転換体を培養後、 形質転換体から、 適当な方法、 例えばコ ロニ一ハイブリダイゼ一シヨンまたはプラークハイブリダイゼーシヨンにより、 目的とするポリヌクレオチドを含有するプラスミ ドまたはファ一ジを単離し、 (V) After culturing the obtained transformant, a plasmid or a plasmid containing the target polynucleotide is obtained from the transformant by an appropriate method, for example, colony hybridization or plaque hybridization. Isolating di,
(V i ) そのプラスミ ドまたはファージから目的とするポリヌクレオチドを切 り出し、 (Vi) cutting out the target polynucleotide from the plasmid or phage,
(V i i ) 切り出したポリヌクレオチド (クロ一ン化ポリヌクレオチド) を適 当なプラスミ ドにサブクローニングする、 というステップである。  (Vii) This is the step of subcloning the excised polynucleotide (cloned polynucleotide) into a suitable plasmid.
各ステツプについてさらに詳しく説明する。  Each step will be described in more detail.
ステップ (i) :ネダシンのポリペプチドをコードする mRNAは、 種々の動 物の組織、 器官、 産生細胞から、 より具体的には、 脳、 胎盤、 肝臓、 腎臓などか ら得ることができる。  Step (i): mRNA encoding the polypeptide of nedasin can be obtained from various animal tissues, organs, and producer cells, more specifically, from the brain, placenta, liver, kidney, and the like.
また前記細胞から全 RNAを調製する方法としては、 グァニジゥム /セシウム クロライ ド、法 (Gu a n i d i umu/C e s i umu Chlor ide m ethod, Mo lecular Clonin Se cond Edi t i on, Co ld Spr ing Harbor Laborat ory Pre s s, p7. 19-7. 23, 1989 ) ゃグァニジゥムチオシァネート法 (A nalyt i cal Bi o chemi stry, 162, p l 56— 159, 1987) 等が一般に用いられる。 In addition, as a method for preparing total RNA from the cells, guanidium / cesium chloride, a method (Guanidi umu / Cesi umu Chloride method, Mo lecular Clonin Second Edition, Cold Spring Harbor Laboratory or Pre- ss, p7. 19-7.23, 1989) Guanidimuthiocinate method (Analyt i cal Bio chemi stry, 162, pl 56—159, 1987) is generally used.
前記操作により得られる全 RNAからの mRNAの分離、 精製は例えば、 オリ ゴ d T—セルロース (コラボレイティブ リサーチ社 (Co l l abo rat i V e Re s e a r c h社) ) やオリゴテヅクス一 dT 30 (夕カラ社) 等を用 いて吸着カラム法またはバッチ法により実施できる。  Separation and purification of mRNA from total RNA obtained by the above operation can be performed, for example, by using oligo dT-cellulose (Collaborative Research Co., Ltd.) or Oligodex-1 dT 30 (Yukara Co., Ltd.). This can be carried out by an adsorption column method or a batch method.
ステップ ( i i) : このようにして得られた mRNAを錡型として逆転写酵素 を用いて、 例えばォカャマ—バーグ法(Oka y ama, H. and Be r , P. , Mo l e cu l ar and Ce l lu l ar B i o l o y, 3, p 280 , 1983) ゃグブラ一とホフマンの方法 (Gub l e r, V. and Ho f fman, B. J. , Gene, 25, p 263-269, 1983) 等に従い cDNAを合成する。  Step (ii): Using the mRNA obtained in this manner as type I and using reverse transcriptase, for example, the Okayama-Berg method (Okayama, H. and Ber, P., Molecular and Cereal) l lu l ar B ioloy, 3, p 280, 1983) cDNASynthesize cDNA according to the method of Gubler and V. Hoffman (Gubler, V. and Hoffman, BJ, Gene, 25, p 263-269, 1983) I do.
ステップ ( i i i) :得られた cDN Aをプラスミ ドゃファージに組み込み、 cDNAのライブラリーを調製する。  Step (ii): Incorporate the obtained cDNA into Plasmid II phage to prepare a cDNA library.
cDNAを組み込むプラスミ ドベクターとしては、 例えば、 PBR 322 (G e ne, 2, 95, 1977) 、 PBR 325 (Gene, 4, 121, 197 8) 、 PUC 12もしくは PUC 13 (Gene, 19, 259, 1982) 、 PUC 18もしくは PUC 19 (Gene, 33, 103, 1985) 、 PU C 1 18もしくは PUC 1 19 (Me t ho d s in E n z ymo l o gy, 153, 3 , 1987) 、 B lue s c r ip t I I (Nuc l e i c Ac i ds. Re s. , 17, 9494, 1989) などが挙げられるが、 その他の ものであっても、 宿主内で複製保持されるものであれば、 いずれも用いることが できる。  Examples of plasmid vectors incorporating cDNA include PBR322 (Gene, 2, 95, 1977), PBR325 (Gene, 4, 121, 1978), PUC12 or PUC13 (Gene, 19, 259, 1982), PUC 18 or PUC 19 (Gene, 33, 103, 1985), PU C 118 or PUC 119 (Me t ho ds in Enzymology, 153, 3, 1987), Blu scr ip t II (Nucleic Acids. Res., 17, 9494, 1989), etc., but any other one can be used as long as it is replicated and maintained in the host. .
また、 cDN Aを組み込むファージベクターとしては、例えば、 Agt 10 (H u y nh, T. V. , Young, R. A. and Dav i s, . W. , D N A c l on ing, A Pr ac t i ca l App r o ach, IRL Pre s s, Oxf o rd, 1, 49, 1985) 、 λ g t 1 1 (P r o c . Nat l. Ac ad. S c i. , U. S. A. , 80, 1 194, 1983) ま たは人 ZAP I I (Nuc l e i c Ac id s. Re s. , 17, 9494,Examples of the phage vector incorporating cDNA include, for example, Agt10 (Huynh, TV, Young, RA and Davis, .W., DNA cloning, A Practi ca l App roach, IRL Pre ss, Oxford, 1, 49, 1985), λ gt 11 (Proc. Natl. Ac ad. Sci., USA, 80, 1194, 1983) or human ZAP II (Nucleic Acids. Res., 17, 9494,
1989) などが使用可能であるが、 その他のベクターであっても、 適当な宿主 内で増殖できるものであれば良い。 1989) can be used, but other vectors may be used as long as they can be propagated in an appropriate host.
プラスミ ドに cDNAを組み込む方法としては、 例えば、 サンブルーク (S a mb r o ok, J . ) らの方法 (前掲の Mo 1 e c u 1 a r C l oning S e c ond Ed t . , p i. 53— 1. 73, 1989 ) などが挙げられる。 また、 ファージベクタ一に cDNAを組み込む方法としては、 例えば、 Hyu nh, T. V. 等の方法 (前掲の DNA c l on i ng) などが使用可能であ る。  Examples of a method for incorporating cDNA into plasmid include, for example, the method of Sambrook (J.), et al. (Mo 1 ecu 1 ar Cloning Sect on Ed Ed., Pi. 53— 1.73, 1989). As a method of incorporating cDNA into a phage vector, for example, the method of Hyunh, T.V., etc. (DNA cloning as described above) can be used.
ステップ (iv) :前記の方法により得られたプラスミ ドやファージベクター は、 これを適当な宿主たとえば、 ェシエリヒアコリ (E s che r i chi a C o 1 i ) 、 バチルススブチリス (Bac i l lus sub t i l i s) 、 サ ヅカロミセスセレビシァェ (Sa c charomyc e s c e r evi s i a e) 等に導入して、 これを形質転換できる。  Step (iv): Plasmid or phage vector obtained by the above-mentioned method is used in a suitable host such as Escherichia coli (Escherichia coli), Bacillus subtilis (Bacillus subtilis). And Saccharomyces cerevisiae (Saccharomyces escer evisiae) and the like, and can be transformed.
プラスミ ドベクターで宿主を形質転換する方法としては、 例えば、 モレキユラ —クロ一ニング (前掲の Mo 1 e c u 1 a r C l on i ng、 1. 74- 1. 84ページ) 記載のエレクト口ポーレーシヨン法あるいはカルシウムクロライ ド 法などが挙げられる。 また、 ファージベクターには、 例えば、 増殖させた大腸菌 にインビトロパッケージング法を用いて導入することができる。  Methods for transforming a host with a plasmid vector include, for example, the electroporation method described in Molecular Cloning (Moe ecu 1 ar Cloning, supra, page 1.74-1.84) or Calcium chloride method and the like can be mentioned. In addition, a phage vector can be introduced, for example, into grown Escherichia coli using an in vitro packaging method.
ステップ (V) :前記方法による cDNAから目的のネダシンの cDNAを選 択するには、 例えばラベル化したプローブを用いたコロニーハイプリダイゼーシ ヨン法または、 プラークハイブリダィゼ一シヨン法 (前掲の Mo 1 e c u 1 a r C l oning S e c ond Ed i t. , 1. 85— 1. 104ページま たは 2. 1 12-2. 120ページ) などが使用可能である。  Step (V): To select the desired cDNA of nedacin from the cDNA obtained by the above method, for example, a colony hybridization method using a labeled probe or a plaque hybridization method (see above) Mo 1 ecu 1 ar C loning S e c tion Ed it., 1.85— 1.104 or 2.112-2. 120) can be used.
前記のハイプリダイゼ一ションにおけるプローブとして用いるポリヌクレオチ ドとしては、 ネダシンとハイブリダィズするポリヌクレオチドであれば、 何でも よく、 例えばネダシンのアミノ酸配列に基づいて化学合成したポリヌクレオチド が使用可能である。 Polynucleotide used as a probe in the above hybridization Any kind of polynucleotide can be used as long as it is a polynucleotide that hybridizes with nedacin. For example, a polynucleotide chemically synthesized based on the amino acid sequence of nedacin can be used.
以上のようにして、ネダシンをコードするポリヌクレオチドが調製可能となる。 (塩基配列の決定)  As described above, a polynucleotide encoding nedacin can be prepared. (Determination of base sequence)
前記に従い得られた cDN Aの塩基配列の決定は、 例えば、 マキサムーギルバ —ト (Maxiam— Gi lbert) 法 (Methods in Enzym o logy, 65, 499— 560, 1980) 、 ジデォキシ法 (Me s s i n g , J . e t a 1. , Nuc le i c Ac ids Re search, 9, 309, 1981) 、 蛍光色素を用いた T a qサイクルシークェンシング法 (B i ot e chniques, 7 , 494— 499, 1989 )により可能である。 なお、 シークェンスの結果、 コード領域全長を含む DN Α (以下完全長 DN A ということがある) が得られなかったことが分かった場合、 コード領域をカバー するように DN Aの組み合わせを選び、 それらの DN Aのオーバ一ラップする部 分に含まれる適当な制限酵素サイ トで該 DNAを切断して繋ぎ合わせることで、 完全長 DNAを得ることができる。 また、 コード領域全長を含むようにプライマ —を設計して、 該プライマーを用いて、 目的とする脊椎動物、 好ましくは哺乳動 物の c D N Aライブラリ一を錄型として PCRを行うことで、 完全長 D N Aを得 ることもできる。  Determination of the nucleotide sequence of the cDNA obtained in accordance with the above can be performed by, for example, the Maxiam-Gilbert method (Methods in Enzymology, 65, 499-560, 1980), the dideoxy method (Messing, J. eta 1., Nucleic Acids Research, 9, 309, 1981), and Taq cycle sequencing using fluorescent dyes (Biotechniques, 7, 494-499, 1989). . If the sequence shows that DN 含 む (hereinafter sometimes referred to as full-length DNA) containing the entire coding region could not be obtained, a combination of DNAs was selected to cover the coding region, By cutting and joining the DNA with an appropriate restriction enzyme site contained in the overlapping portion of the DNA, the full-length DNA can be obtained. Further, a primer is designed so as to include the entire coding region, and PCR is performed using the primers with a cDNA library of a target vertebrate, preferably a mammal, as a type I, to obtain a full-length primer. DNA can also be obtained.
(ヒトネダシン)  (Human nedacin)
決定されたヒ卜のネダシンには 4つのスプライシングアイソフォームがある。 C末端が S S V構造のネダシン Sは NE— d 1 gとの結合性を有している。 ネ ダシン Sをコードする c D N Aの塩基配列は、 配列表の配列番号 2に記載したよ うに、 2040残基からなり、 オープンリーディングフレームは 86番目の Aか ら 1450番目の Aまでの 1365塩基であり、 454アミノ酸をコードする。 NE-d 1 gと結合することを構造の点から述べると、 C末端が S SV構造とな つているということである。 The determined human nedacin has four splicing isoforms. Nedacin S having an SSV structure at the C-terminus has a binding property to NE-d 1 g. As described in SEQ ID NO: 2 in the sequence listing, the nucleotide sequence of cDNA encoding nedasin S consists of 2040 residues, and the open reading frame is composed of 1365 bases from A at 86 to A at 1450. Yes, encoding 454 amino acids. From the structural point of view that it binds to NE-d 1 g, the C-terminus becomes an S SV structure. It is that it is wearing.
ネダシン V 1をコードする c D N Aの塩基配列は、 配列表の配列番号 4に記載 したように、 1 9 2 6残基からなり、 オープンリーディングフレームは 1番目の Aから 1 4 1 6番目の Aまでの 1 4 1 6塩基であり、 4 7 1アミノ酸をコードす る。  The nucleotide sequence of the cDNA encoding nedasin V1 consists of 1926 residues, as shown in SEQ ID NO: 4 in the sequence listing, and the open reading frame is from A at position 1 to A at position 16 Up to 1416 bases and encodes 471 amino acids.
ネダシン V 2をコードする c D N Aの塩基配列は、 配列表の配列番号 6に記載 したように、 1 5 1 8残基からなるオープンリーディングフレームを有していて、 5 0 5アミノ酸をコードする。  As described in SEQ ID NO: 6 in the sequence listing, the nucleotide sequence of cDNA coding for nedacin V2 has an open reading frame consisting of 151 and 18 residues and encodes 505 amino acids.
ネダシン V 3をコードする c D N Aの塩基配列は、 配列表の配列番号 8に記載 したように、 1 3 8 3残基からなるオープンリ一ディングフレームを有していて、 4 6 0アミノ酸をコードする。  As described in SEQ ID NO: 8 in the sequence listing, the nucleotide sequence of cDNA encoding nedacin V3 has an open reading frame consisting of 133 residues and encodes 460 amino acids. I do.
本発明に係る前記 c D N Aは、 前記配列のオープンリーディングフレームの 5 5 末端に A T Gが結合していない塩基配列からなる c D N Aを含む。 The c DNA according to the present invention includes c DNA consisting of the nucleotide sequence ATG is not bound to the 5 5 end of the open reading frame of the sequence.
また、 c D N Aに限らず、 配列表の配列番号 2、 4、 6または 8に記載の塩基 配列を一次構造とする D N Aおよび該塩基配列に対応する塩基配列からなる R N Aも、 本発明のヒトネダシンをコードするポリヌクレオチドに含まれる。  Not only cDNA, but also a DNA having a primary structure of the base sequence described in SEQ ID NO: 2, 4, 6, or 8 in the sequence listing, and an RNA comprising a base sequence corresponding to the base sequence, the human nedasin of the present invention. Included in the encoding polynucleotide.
本発明のポリヌクレオチドは、 ヒトネダシンのシグナルべプチドの部分または 全部をコードする 5 ' —フランキングポリヌクレオチドを含む D N Aも含む。 さらに、 遺伝暗号の縮重に従い、 ポリヌクレオチドから生産されるポリべプチ ドのァミノ酸配列を変えることなくそのポリヌクレオチドの塩基配列の少なくと も一つの塩基を他の種類の塩基に置換することができる。  The polynucleotides of the present invention also include DNAs that include 5'-flanking polynucleotides that encode part or all of the signal peptide for human nedacin. Furthermore, in accordance with the degeneracy of the genetic code, substituting at least one base of the polynucleotide for another type of base without changing the amino acid sequence of the polypeptide produced from the polynucleotide. Can be.
従って、 本発明のポリヌクレオチドはまた、 遺伝暗号の縮重に基づく置換によ つて、 その塩基配列がコードするアミノ酸配列が配列表の配列番号 1、 3、 5ま たは 7に記載のアミノ酸配列であるもの全てを含む。  Therefore, the polynucleotide of the present invention also has an amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7 in the sequence listing by substitution based on the degeneracy of the genetic code. Includes everything that is
本発明のヒトネダシン Sのァミノ酸配列は、 配列表の配列番号 1に記載のァミ ノ酸配列である。 該アミノ酸配列からなる蛋白質の計算上の分子量は、 5 1 . 0 kDであり、 等電点は、 5. 35である。 The amino acid sequence of human nedacin S of the present invention is the amino acid sequence described in SEQ ID NO: 1 in the sequence listing. The calculated molecular weight of the protein consisting of the amino acid sequence is 51.0. kD and the isoelectric point is 5.35.
本発明のヒトネダシン V 1のァミノ酸配列は、 配列表の配列番号 3に記載のァ ミノ酸配列である。 該アミノ酸配列からなる蛋白質の計算上の分子量は、 52. 8kDであり、 等電点は、 5. 48である。  The amino acid sequence of human nedacin V1 of the present invention is the amino acid sequence described in SEQ ID NO: 3 in the sequence listing. The calculated molecular weight of the protein consisting of the amino acid sequence is 52.8 kD, and the isoelectric point is 5.48.
本発明のヒトネダシン V 2のァミノ酸配列は、 配列表の配列番号 5に記載のァ ミノ酸配列である。 該アミノ酸配列からなる蛋白質の計算上の分子量は、 56. 8kDであり、 等電点は、 5. 36である。  The amino acid sequence of human nedacin V2 of the present invention is the amino acid sequence described in SEQ ID NO: 5 in the sequence listing. The calculated molecular weight of the protein consisting of the amino acid sequence is 56.8 kD, and the isoelectric point is 5.36.
本発明のヒトネダシン V3のアミノ酸配列は、 配列表の配列番号 7に記載のァ ミノ酸配列である。 該アミノ酸配列からなる蛋白質の計算上の分子量は、 52. lkDであり、 等電点は、 5. 90である。  The amino acid sequence of human nedacin V3 of the present invention is the amino acid sequence described in SEQ ID NO: 7 in the sequence listing. The calculated molecular weight of the protein consisting of the amino acid sequence is 52. lkD, and the isoelectric point is 5.90.
本発明に係るヒトネダシンは、 前記のアミノ酸配列の N末端にメチォニンが結 合していないポリペプチドを含む。 また、 前記アミノ酸配列の N末端にヒトネダ シンのためのシグナルべプチドの一部分もしくは全部が結合または欠損した中間 体も含む。  Human nedacin according to the present invention includes a polypeptide in which methionine is not bound to the N-terminal of the amino acid sequence. Also, an intermediate in which a part or all of a signal peptide for human nedascin is bound or deleted at the N-terminus of the amino acid sequence is included.
また、 自然の変異により、 または人工の変異によりポリペプチドの主たる活性 に変化を与えることなく、 蛋白質をコードする DN Aの構造の一部を変化させる ことが可能である。 人工の変異としては、 例えばポイントミューテ一シヨンの技 術がある。 この技術を利用して、 目的とする蛋白質をコードする DNAの構造を 変化させた DN A変異体を作製し、 該 DN A変異体を適当な宿主に導入して形質 転換体を作製し、 該形質転換体に目的とする蛋白質の変異体を作製させることが できる。 この技術を利用して、 本発明のネダシンについてもその構造を変化させ た変態を作製することができる。 したがって、 本発明は、 ネダシン Sの変異体に ついては、 そのアミノ酸配列の C末端の S SV構造が保存されながら変化させら れており、 かつ NE— d 1 gと結合する蛋白質をを含み、 そのスプライシングァ イソフォームであるネダシン V 1、 ネダシン V2またはネダシン V3のそれぞれ の変異体も含む。 P 7 0 サイ トダイレクテツ ドミュ一夕ジエネシスの手法により、 変異体を作製する場 合は、 一度の操作では、 通常数個のアミノ酸を置換、 欠失または付加することが できる。 この操作を複数回繰り返すことで、 さらに多くのアミノ酸を置換、 欠失 または付加することができ、 好みの変異体を作製することができる。 本発明のネ ダシン Sとその変異体の間のホモロジ一は、 アミノ酸レベルで 7 5 %以上である ことが好ましく、 9 0 %以上であればより好ましく、 9 5 %以上であればさらに 好ましい。 In addition, it is possible to change a part of the structure of a DNA encoding a protein without changing the main activity of the polypeptide by natural mutation or artificial mutation. Examples of artificial mutation include point mutation technology. Utilizing this technique, a DNA mutant is produced in which the structure of the DNA encoding the target protein is changed, and the DNA mutant is introduced into an appropriate host to prepare a transformant. A transformant can produce a mutant of the desired protein. Utilizing this technique, it is possible to produce a modification of the nedacin of the present invention in which the structure is changed. Therefore, the present invention relates to a mutant of nedacin S, which includes a protein in which the C-terminal S SV structure of the amino acid sequence has been changed while being conserved, and which binds to NE-d1 g. Mutants of the splicing isoforms nedacin V1, nedacin V2 or nedacin V3 are also included. In the case of producing a mutant by the technique of P70 site directed mugenesis, usually several amino acids can be substituted, deleted or added by one operation. By repeating this operation a plurality of times, more amino acids can be substituted, deleted or added, and a desired mutant can be produced. The homology between nedacin S of the present invention and its mutant is preferably 75% or more at the amino acid level, more preferably 90% or more, and even more preferably 95% or more.
また、 本発明は、 ネダシン変異体をコードする塩基配列からなるポリヌクレオ チドを含有する。  The present invention also includes a polynucleotide consisting of a nucleotide sequence encoding a nedacin mutant.
ネダシンをコードする c D N Aおよびゲノム D N Aは、 目的により、 そのまま あるいは制限酵素で切断して使用することが可能である。  CDNA and genomic DNA encoding nedasin can be used as they are or after being cut with restriction enzymes, depending on the purpose.
(アンチセンスポリヌクレオチド)  (Antisense polynucleotide)
また、 本発明は、 前記塩基配列の相補塩基配列からなるアンチセンスポリヌク レオチドをも含むものである。 本発明のアンチセンスポリヌクレオチドは、 ヒト ネダシンの生合成を阻害するのに使用可能であり、 またプローブとしても使用可 能である。  The present invention also includes an antisense polynucleotide comprising a base sequence complementary to the base sequence. The antisense polynucleotide of the present invention can be used to inhibit the biosynthesis of human nedacin, and can also be used as a probe.
一般に、 アンチセンスポリヌクレオチドはポリヌクレオチドに含まれる。 本出 願においても、 アンチセンスポリヌクレオチドはポリヌクレオチドに含まれるも のとして説明するが、 特に、 アンチセンス鎖のポリヌクレオチドであるものを明 確に指す場合に、 アンチセンスポリヌクレオチドという。  Generally, an antisense polynucleotide is included in a polynucleotide. In the present application, the antisense polynucleotide will be described as being included in the polynucleotide. However, when the antisense polynucleotide is specifically referred to as an antisense polynucleotide, it is referred to as an antisense polynucleotide.
ポリぺプチドの生合成を阻害するためのアンチセンスポリヌクレオチドは、 1 5塩基以上からなることが好ましい。 一方、 あまりに長いアンチセンスポリヌク レオチドは、 細胞内に取り込まれるには不適である。 一般に、 細胞内にアンチセ ンスポリヌクレオチドを取り込ませ、 目的とする蛋白質の生合成を阻害させる場 合、 1 2塩基以上 3 0塩基以下、 好ましくは 1 5塩基以上 2 5塩基以下、 より好 ましくは 1 8塩基以上 2 2塩基以下の塩基からなるアンチセンスポリヌクレオチ 7 ドを用いるのがよい。 本発明のヒトネダシンに対するアンチセンスポリヌクレチ ドにおいても、 1 2塩基以上 3 0塩基以下、 好ましくは 1 5塩基以上 2 5塩基以 下、 より好ましくは 1 8塩基以上 2 2塩基以下の塩基からなるアンチセンスポリ ヌクレオチドを用いるのがよい。 The antisense polynucleotide for inhibiting the biosynthesis of the polypeptide preferably comprises 15 or more bases. On the other hand, antisense polynucleotides that are too long are unsuitable for uptake into cells. Generally, when the antisense polynucleotide is incorporated into cells to inhibit the biosynthesis of the target protein, the base is 12 to 30 bases, preferably 15 to 25 bases, and more preferably. Is an antisense polynucleotide comprising 18 to 22 bases It is better to use 7 The antisense polynucleotide to human nedacin of the present invention also comprises 12 to 30 bases, preferably 15 to 25 bases, more preferably 18 to 22 bases. It is preferable to use an antisense polynucleotide.
本発明のアンチセンスポリヌクレオチドは、 塩基、 リン酸、 糖からなるヌクレ ォチドが複数結合したものが、 天然には存在しないものを含めて全て含まれる。 代表的なものは、 アンチセンス D N Aとアンチセンス R N Aである。  The antisense polynucleotide of the present invention includes all of those in which a plurality of nucleotides consisting of bases, phosphates, and sugars are bound, including those that are not naturally occurring. Typical examples are antisense DNA and antisense RNA.
本発明のアンチセンスポリヌクレオチドについて、 公知のアンチセンス技術を 用いて、 目的とする D N Aや mR N Aとの結合力、 組織選択制、 細胞透過性、 ヌ クレア一ゼ耐性、 または細胞内安定性の高い様々なアンチセンスポリヌクレオチ ド誘導体が得られる。  For the antisense polynucleotide of the present invention, using known antisense technology, the binding strength to the target DNA or mRNA, tissue selectivity, cell permeability, nuclease resistance, or intracellular stability can be improved. High variety of antisense polynucleotide derivatives are obtained.
現在一般的に知られている誘導体は、 ヌクレアーゼ耐性、 組織選択性、 細胞透 過性、 結合力の少なくとも一が高められた誘導体であることが好ましい。 特に好 ましくは、 フォスフォロチォェ一ト結合を骨格構造として有する誘導体である。 本発明のポリヌクレオチドおよびその誘導体についても、 これらの機能または構 造を有する誘導体が含まれる。  The derivatives generally known at present are preferably derivatives having at least one of enhanced nuclease resistance, tissue selectivity, cell permeability, and avidity. Particularly preferred are derivatives having a phosphorothioate bond as a skeletal structure. The polynucleotides and derivatives thereof of the present invention also include derivatives having these functions or structures.
ハイプリダイズのし易さの点では、 一般的には、 ステムループを形成している 領域の塩基配列に相補的な塩基配列を持つアンチセンスポリヌクレオチドまたは その誘導体を設計するとよいとされている。 本発明のアンチセンスポリヌクレオ チドおよびその誘導体は、 必要に応じ、 ステムループを形成することが可能であ る。  In terms of ease of hybridization, it is generally said that an antisense polynucleotide or a derivative thereof having a base sequence complementary to the base sequence of the region forming the stem loop should be designed. The antisense polynucleotide and the derivative thereof of the present invention can form a stem loop as necessary.
また、 翻訳開始コドン付近、 リボソーム結合部位、 キヤッビング部位、 スプラ ィス部位の配列に相補的な配列を有するようなアンチセンスポリヌクレオチドは、 一般に高い発現抑制効果が期待できる。 したがって、 本発明のアンチセンスポリ ヌクレオチドまたはその誘導体であって、 ネダシンをコードする D N Aまたは m R N Aの翻訳開始コドン付近、 リボソーム結合部位、 キヤッビング部位、 スプラ イス部位の相補的な配列を含むものは、 高い発現抑制効果が期待される。 An antisense polynucleotide having a sequence complementary to the sequence of the translation initiation codon, the ribosome binding site, the cabling site, and the splice site can generally be expected to have a high expression suppressing effect. Therefore, the antisense polynucleotide of the present invention or a derivative thereof, which is located near the translation initiation codon of DNA or mRNA encoding nedasin, a ribosome binding site, a caving site, Those containing a sequence complementary to the chair site are expected to have a high expression suppressing effect.
天然型のアンチセンスポリヌクレオチドであれば、 化学合成機を使用して合成 したり、 ヒトネダシンをコードする遺伝子を鎵型とする P CR法により本発明の アンチセンスポリヌクレオチドを作製することができる。 また、 メチルフォスフ ォネート型やフォスフォロチォェ一ト型等、 誘導体の中には、 化学合成できるも のもある。 この場合には、 化学合成機に添付されている説明書にしたがって操作 を行い、 得られた合成産物を逆相クロマトグラフィー等を用いた HP L C法によ り精製することによつても、 目的のアンチセンスポリヌクレオチドまたはその誘 導体を得ることができる。  As long as it is a natural type antisense polynucleotide, the antisense polynucleotide of the present invention can be prepared by using a chemical synthesizer or by a PCR method using a gene encoding human nedacin as type III. In addition, some derivatives, such as a methylphosphonate type and a phosphorothioate type, can be chemically synthesized. In this case, the operation can be carried out in accordance with the instructions attached to the chemical synthesizer, and the resulting synthetic product can be purified by the HP LC method using reverse phase chromatography or the like. Antisense polynucleotide or a derivative thereof can be obtained.
(ポリヌクレオチドプローブ)  (Polynucleotide probe)
本発明のネダシンをコードするポリヌクレオチドもしくはその一部 (連続する 9以上の塩基からなるポリヌクレオチド) 、 または該ポリヌクレオチドのアンチ センス鎖のアンチセンスポリヌクレオチドもしくはその誘導体 (連続する 9以上 の塩基からなるアンチセンスポリヌクレオチドもしくはその誘導体) は、 cDN Aライブラリ一等からネダシン遺伝子をスクリーニングするためのプロ一ブとし て使用可能である。 このとき GC含有率が 30ないし 70%のものが好適に使用 可能である。 また、 連続する 12以上の塩基からなるポリヌクレオチドがより好 ましく、 15塩基以上であればさらに好ましい。 プローブとして用いる該ポリヌ クレオチドは誘導体であってもよい。 通常、 前記の塩基数以上の配列は特異性の ある配列であると認識されている。 該プローブを用いたスクリーニングにおいて 使用する cDNAライブラリ一としては、 mRNAから作製されたものが好まし く使用できる。 これらの cDNAライブラリーからランダムサンプリングにより 選択された一群の cDN Aを検索の試料とすることができる。  Polynucleotide encoding nedacin of the present invention or a part thereof (polynucleotide comprising 9 or more consecutive bases), or an antisense polynucleotide of the antisense strand of the polynucleotide or a derivative thereof (from 9 or more consecutive bases) Antisense polynucleotide or a derivative thereof) can be used as a probe for screening a nedasin gene from a cDNA library or the like. At this time, those having a GC content of 30 to 70% can be suitably used. Further, a polynucleotide comprising 12 or more consecutive bases is more preferable, and a polynucleotide having 15 or more bases is more preferable. The polynucleotide used as a probe may be a derivative. Usually, a sequence having the number of bases or more is recognized as a sequence having specificity. As a cDNA library used in screening using the probe, a cDNA library prepared from mRNA can be preferably used. A group of cDNAs selected from these cDNA libraries by random sampling can be used as a sample for the search.
例えば、 配列表の配列番号 2に記載の塩基配列のうちの連続する 9以上の塩基 からなる DNAまたは該 DNAにハイブリダィズするポリヌクレオチド (アンチ センスポリヌクレオチド) は、 cDNAライブラリ一等からネダシン遺伝子をス クリーニングするためのプローブとして使用可能である。 For example, DNA consisting of 9 or more consecutive bases in the nucleotide sequence shown in SEQ ID NO: 2 in the sequence listing or a polynucleotide that hybridizes to the DNA (antisense polynucleotide) is obtained by synthesizing the nedasin gene from a cDNA library or the like. It can be used as a probe for cleaning.
また、 本発明のネダシンをコードするポリヌクレオチドもしくはその一部をプ ローブとして、 各組織由来の mRN Aについてノザンブロッ トハイブリダィゼ一 シヨン解析を行うことにより、 ネダシンを遺伝子由来の mRNAが発現している 組織を見出すことが可能である。  Further, by performing Northern blot hybridization analysis on mRNA derived from each tissue using the polynucleotide encoding the nedasin of the present invention or a part thereof as a probe, the tissue expressing nedasin-gene-derived mRNA can be identified. It is possible to find out.
(化学修飾されたポリヌクレオチド)  (Chemically modified polynucleotide)
DNA又は RNAをを化学合成するときに、 側鎖をメチル化すること、 あるい はビォチン化すること、 またはリン酸基部分の〇 (酸素) を S (硫黄) に置換す ること等の化学的に修飾することはよく知られている。  When chemically synthesizing DNA or RNA, chemistry such as methylation of the side chain or biotinylation, or substitution of S (sulfur) for 〇 (oxygen) in the phosphate group. Modification is well known.
また、 cDN Aライブラリーから取得された cDN Aであっても放射性同位体 で標識することも可能である。  In addition, it is also possible to label radioactive isotopes even with cDNA obtained from a cDNA library.
したがって、 本発明の DNA及び RNAは、 前記の化学修飾された DNA、 R NAまたはアンチセンスポリヌクレオチドをその範囲に含むものである。 ここで いう化学修飾された DNAまたは RNAは、 蛋白質をコードする機能またはプロ ーブとしての機能をいずれも発揮可能なものであり、 化学修飾されたアンチセン スポリヌクレオチドは、 プローブまたは蛋白質の生合成を阻害する機能またはプ ローブとしての機能をいずれも発揮可能なものである。  Therefore, the DNA and RNA of the present invention include the above-mentioned chemically modified DNA, RNA or antisense polynucleotide within its scope. The chemically modified DNA or RNA referred to here can exert both a protein-encoding function and a probe function, and the chemically-modified antisense polynucleotide can be used for probe or protein biosynthesis. It can exhibit both the function of inhibiting the activity and the function as a probe.
(組換ネダシンの作製)  (Preparation of recombinant nedacin)
また、 本発明は、 前記のネダシン遺伝子を導入した形質転換体によって作製さ れた組換ネダシンを含むものである。 また本発明の開示によりネダシンのァミノ 酸配列のうち一または複数のアミノ酸を置換、 欠失または付加したネダシン変異 体の作製が可能となる。 形質転換に用いるベクターや宿主は前記 cDNAライブ ラリーの作製およびスクリーニングの項で説明したものが使用可能である。また、 ネダシンまたはネダシン変異体の精製方法は、 前記ネダシンの精製の項で説明し た方法が使用可能である。  The present invention also includes a recombinant nedacin produced by the above-mentioned transformant into which the nedasin gene has been introduced. Further, the disclosure of the present invention makes it possible to produce a nedacin mutant in which one or more amino acids in the amino acid sequence of nedacin are substituted, deleted or added. As the vector and host used for the transformation, those described in the section on the preparation and screening of the cDNA library can be used. In addition, as the method for purifying nedacin or a nedacin mutant, the method described in the section on purification of nedasin can be used.
また、 製造段階において、 製造するネダシンまたはネダシン変異体は、 他のポ リぺプチドとの融合べプチドとして形質転換体に作製させてもよい。この場合は、 精製工程において、 ブロムシアン等の化学物質やプロテア一ゼ等の酵素で処理し て、 ネダシンまたはネダシン変異体を切り出す操作が必要になる。 At the manufacturing stage, the nedacin or nedacin mutant to be produced is The transformant may be prepared as a fusion peptide with a peptide. In this case, in the purification step, it is necessary to carry out a treatment with a chemical substance such as bromocyan or an enzyme such as protease to excise nedacin or nedacin mutant.
(ネダシンを認識する抗体)  (Antibody that recognizes nedacin)
さらに本発明において得られたネダシンに対するポリクロナ一ルまたはモノク ロナ一ル抗体を作成することが可能である。  Further, it is possible to prepare a polyclonal or monoclonal antibody against nedacin obtained in the present invention.
本発明は、 ネダシンの抗原性について、 実施例 7に例示するように、 本発明の ネダシンの一部分であるペプチドをヒト以外の動物に免疫することでネダシンを 認識する抗体が得られるものであることを明らかにするものである。 また、 全長 のネダシンを免疫してもネダシンを認識する抗体が得られる。 したがって、 本発 明のネダシンを認識する抗体 (以降、 ヒトネダシン抗体ということがある) は、 ネダシンをヒト以外の動物に免疫感作することにより得られる抗体であって、 該 抗体が本発明のネダシンを認識することがウエスタンプロッ ト法、 E L I S A法 や免疫染色法 (例えば F ACSでの測定) 等により確認される抗体をその範囲内 に含む。  According to the present invention, an antibody recognizing nedasin can be obtained by immunizing a non-human animal with a peptide that is a part of nedasin of the present invention, as exemplified in Example 7, as to the antigenicity of nedasin Is to clarify. In addition, an antibody that recognizes nedacin can be obtained by immunizing with full-length nedacin. Therefore, an antibody recognizing nedacin of the present invention (hereinafter sometimes referred to as a human nedacin antibody) is an antibody obtained by immunizing a non-human animal with nedacin, and the antibody is the nedacin of the present invention. Antibodies whose recognition is confirmed by Western blotting, ELISA, immunostaining (eg, measurement by FACS), etc. are included in the range.
また、 免疫原として、 該蛋白質の一部をゥシ血清アルブミンなどの他のキヤリ ァ蛋白質に結合させたものを用いることは、 よく用いられる方法である。 該蛋白 質の一部は、 例えばペプチド合成機を用いて合成してもよい。 なお、 蛋白質の一 部としては、 8アミノ酸残基以上であることが好ましい。  It is a commonly used method to use an immunogen obtained by binding a part of the protein to another carrier protein such as serum albumin. A part of the protein may be synthesized using, for example, a peptide synthesizer. In addition, it is preferable that a part of the protein has eight or more amino acid residues.
抗原性が明らかとなった物質については、 免疫感作によってポリクローナル抗 体が得られるならば、 該免疫した動物のリンパ球を用いたハイプリ ドーマにより モノクローナル抗体が産生されることはよく知られている (前掲の Ant i b o d i e s A Lab o r at o ry Manua l 第 6章) 。 したがって本 発明のネダシン抗体はモノクローナル抗体もその範囲内に含むものである。  It is well known that if a polyclonal antibody can be obtained by immunization, a monoclonal antibody is produced by a hybridoma using lymphocytes of the immunized animal. (Chapter 6 of Ant ibodies A Lab or at Manly, mentioned above). Therefore, the nedacin antibody of the present invention includes a monoclonal antibody within its scope.
本発明においては、 抗体は活性フラグメントをも包含するものである。 活性フ ラグメントとは、 抗原抗体反応活性を有する抗体のフラグメントを意味し、 具体 的には、 F (ab' ) 2、 Fab' 、 Fab、 F vなどを挙げることができる。 例えば、 本発明の抗体をペプシンで分解すると F (ab, ) 2 が得られ、 パパ インで分解すると F abが得られる。 F (ab, ) 2 を 2—メルカプトエタノー ルなどの試薬で還元して、 モノョード酢酸でアルキル化すると Fab' が得られ る。 Fvは重鎖可変領域と軽鎖可変領域とをリンカ一で結合させた一価の抗体活 性フラグメントである。 In the present invention, antibodies also include active fragments. An active fragment refers to a fragment of an antibody having antigen-antibody reaction activity. Specifically, F (ab ') 2 , Fab', Fab, Fv and the like can be mentioned. For example, when the antibody of the present invention is digested with pepsin, F (ab,) 2 is obtained, and when digested with papain, Fab is obtained. Reduction of F (ab,) 2 with reagents such as 2-mercaptoethanol and alkylation with mono-acetic acid gives Fab '. Fv is a monovalent antibody active fragment in which a heavy chain variable region and a light chain variable region are linked by a linker.
これらの活性フラグメン卜を保持し、 その他の部分を他の動物のフラグメン卜 に置換することでキメラ抗体が得られる。  A chimeric antibody can be obtained by retaining these active fragments and substituting the other parts with fragments of another animal.
得られた抗体を用いた免疫的測定法により、 各種細胞中の該サブュニッ卜の変 化を定量的に測定する手段が与えられる。  The immunoassay using the obtained antibody provides a means for quantitatively measuring the change of the subject in various cells.
抗体を用いる方法としては具体的には、 標識されたネダシン抗体を用いてネダ シンを検出する方法、 ネダシン抗体および該抗体の標識二次抗体を用いてネダシ ンを検出する方法が挙げられる。標識としては、 例えば放射性同位元素 (R I )、 酵素、 アビジン又はビォチン、 もしくは蛍光物質 (F I T Cやローダミン等) が 利用される。  Specific examples of the method using an antibody include a method for detecting nedacin using a labeled nedacin antibody, and a method for detecting nedacin using a nedacin antibody and a labeled secondary antibody of the antibody. As the label, for example, a radioisotope (RI), an enzyme, avidin or biotin, or a fluorescent substance (FITC, rhodamine, etc.) is used.
酵素反応を利用する方法としては、 例えば、 EL I SA法、 免疫凝集法、 ゥェ スタンブロッ ト法、 フローサイ トメ トリ一を用いた免疫反応分子の同定方法又は それらに類似する方法が挙げられる。  Examples of the method utilizing an enzymatic reaction include an ELISA method, an immunoagglutination method, a Western blot method, a method for identifying an immune reaction molecule using flow cytometry, or a method similar thereto.
実施例 Example
以下に実施例を示し、 さらに詳細に本発明を説明する。  Hereinafter, the present invention will be described in more detail with reference to Examples.
く実施例 1> NE— d 1 g結合性蛋白質の単離  Example 1> Isolation of NE—d1g binding protein
1. GST— NE— d 1 gカラムの作製  1. Preparation of GST—NE—d 1 g column
GS T遺伝子を組み込んだベクタ一 pGEX— 2 TH (フアルマシア社製) の BamHIと Hindl l l間に、 配列表の配列番号 10記載の塩基配列からな る NE— d 1 g遺伝子の 420番目の Gから 1937番目の Aまでの塩基配列部 分を挿入し、 該ベクターを大腸菌 DH 5 に導入して形質転換体を作製した。 該 形質転換体に NE— d 1 g蛋白質 (配列表の配列番号 9に記載のアミノ酸配列か らなる蛋白質) の 63番目の A laから 568番目の G 1 uまでのアミノ酸配列 からなる P D Z 1領域から S H 3領域までの部分の N末端に G S Tを結合させた GST— NE— d 1 g融合蛋白質を作製させた。 なお、 NE— digの各領域の 位置関係は図 2に示す。 A vector containing the GST gene, between BamHI and HindII of pGEX-2TH (Pharmacia), consisting of the nucleotide sequence described in SEQ ID NO: 10 in the sequence listing. The base sequence up to the 1937th A was inserted, and the vector was introduced into Escherichia coli DH5 to prepare a transformant. The From the PDZ1 region consisting of the amino acid sequence from Ala at position 63 to G1u at position 568 of the NE-d1g protein (protein consisting of the amino acid sequence of SEQ ID NO: 9) in the transformant A GST-NE-d1g fusion protein in which GST was bound to the N-terminal of the portion up to the SH3 region was produced. Figure 2 shows the positional relationship of each area of NE-dig.
該 GS T— NE— d 1 g融合蛋白質をグル夕チオンァガロースビーズに固定し た後、 該ビーズをカラムに詰めて、 ァフィ二ティ一カラムを作製した。  After immobilizing the GST-NE-d1g fusion protein on glutathione agarose beads, the beads were packed in a column to prepare an affinity column.
2. ァフィ二ティ一精製  2. Affinity purification
ゥシの脳細胞から蛋白質を抽出し、 抽出された粗分画 4°Cでを前記ァフィニテ ィーカラムにアプライし、 通過させた。  The protein was extracted from P. cerevisiae brain cells, and the extracted crude fraction was applied to the affinity column at 4 ° C. and passed through the affinity column.
反応後、 カラム中のビーズに結合した蛋白質を溶出緩衝液 (0. 5M NaC 1、 3 OmM T r i s -HC 1 pH 7. 5、 1 mM EDTA、 5 mM M gCl2、 1 mM DTT) pH 7. 5で洗い出し、 ラエムリのサンプル緩衝液 中で加熱し、 100°Cに 5分間おいた。 After the reaction, proteins elution buffer attached to the beads in a column (0. 5M NaC 1, 3 OmM T ris -HC 1 pH 7. 5, 1 mM EDTA, 5 mM M gCl 2, 1 mM DTT) pH 7 Washed out in 5 and heated in Laemli's sample buffer and placed at 100 ° C for 5 minutes.
得られたサンプルを SD S— PAGEに展開して電気泳動した。 ゲルをそのま ま銀染色した結果、分子量が 51 kDの蛋白質が単離された。結果を図 3に示す。 1のレーンは G S Tのみを電気泳動したレーンであり、 2のレーンは GST— N E-d 1 g融合蛋白質を電気泳動したレーンである。  The obtained sample was developed on SDS-PAGE and electrophoresed. As a result of silver staining of the gel, a protein with a molecular weight of 51 kD was isolated. The results are shown in Figure 3. Lane 1 is a lane in which only GST was electrophoresed, and lane 2 is a lane in which GST-NE-d 1 g fusion protein was electrophoresed.
3. NE—d 1 gのデリーシヨン変異体との結合性の確認  3. Confirmation of binding with NE-d 1 g deletion mutant
前記 と同様にして、 以下の 4種類の NE— d 1 gの部分蛋白質および全長 蛋白質を GS Tと結合させた融合蛋白質を作製し、 それぞれの蛋白質をビーズを 詰めたァフィ二ティーカラムを作製した。  In the same manner as above, a fusion protein was prepared by combining the following four types of NE-d 1 g of partial protein and full-length protein with GST, and an affinity column in which each protein was packed with beads was prepared. .
1 : NE— digの SH3領域部分 (配列表の配列番号 9に記載のァミノ酸配列 の 503番目の Serから 568番目の G 1 uまでのアミノ酸配列) を含む蛋白 質。  1: NE—A protein containing the dig SH3 region (amino acid sequence from Ser 503 to G1u at 568 in the amino acid sequence described in SEQ ID NO: 9 in the sequence listing).
2 :全長 NE— d 1 g。 P T/JP98/03740 2: full length NE—d 1 g. PT / JP98 / 03740
3 : NE— d igの GUK領域 (配列表の配列番号 9に記載のァミノ酸配列の 6 28番目の Ar gから 803番目の A s pまでのアミノ酸配列) の欠失した蛋白 質。 3: NE—Dig protein deleted from the GUK region (amino acid sequence from Arg at position 628 to Asp at position 803 in the amino acid sequence described in SEQ ID NO: 9 in the sequence listing).
4 : N E - d 1 gの N末端および G UK領域を欠失させた蛋白質。  4: NE-d 1 g protein with the N-terminal and GUK regions deleted.
前記 1ないし 4の NE— d 1 gの部分または全長の関係を図 4の(B)に示す。 これらのカラムに前記 2. と同様にゥシの脳細胞から抽出した蛋白質粗分画を アプライし、 前記 3. と同様にビーズに固定した融合蛋白質と結合した蛋白質を 電気泳動した。 この結果を図 4 (A) に示す。 図 4 (A) 中矢印で示したのが 5 1 kDの蛋白質のバンドである。 これより、 前記の 51 kDの蛋白質は、 SH3 領域には結合せず、 N末端を欠失した NE— d 1 gおよび GUK領域を欠失した NE— d 1 gとは結合することが分かった。 したがって、 前記 51 kDの蛋白質 は、 NE— d igとは、 その PD Z領域と結合することが分かった。  FIG. 4 (B) shows the relationship between the part or the full length of NE—d 1 g of 1 to 4 above. To these columns, a crude protein fraction extracted from the E. coli brain cells was applied in the same manner as in 2 above, and the proteins bound to the fusion proteins immobilized on the beads were electrophoresed in the same manner as in 3 above. The result is shown in Fig. 4 (A). In FIG. 4 (A), the middle arrow indicates the protein band of 51 kD. This indicates that the 51 kD protein does not bind to the SH3 region, but binds to NE-d1 g lacking the N-terminal and NE-d1 g lacking the GUK region. . Therefore, it was found that the 51 kD protein binds to NE-dig and its PDZ region.
<実施例 2 >NE— d 1 g結合性蛋白質のアミノ酸配列およびそれをコ一ドす る遺伝子の塩基配列の決定  <Example 2> Determination of amino acid sequence of NE-d1g binding protein and nucleotide sequence of a gene encoding the same
1. 部分アミノ酸シークェンス  1. Partial amino acid sequence
前記実施例 1の 2. でァフィ二ティ一精製した 51 kDの蛋白質について電気 泳動が終わったゲルを、 ィモビロン一 P VDFメンブラン (ミリポア社製) にセ ミ ドライエレクトロプロティング装置ザルトブロット I I一 S (ザルトリウス社 製) を用いてトランスファ一した。  The gel which had been subjected to electrophoresis for the 51 kD protein purified in 2 of Example 1 was applied to a Immobilon-1 P VDF membrane (manufactured by Millipore) using a semi-dry electroprototyping apparatus, Sartoblot II-1 S ( (Manufactured by Sartorius).
蛋白質をブロットした膜フィルタ一は、 蒸留水で洗浄した後、 ポンソ一 S (P onceau S) 染色液 (0. 1%ポンソ一3、 1 %酢酸溶液) で染色後、 蒸 留水に浸し、 振盪してバックグラウンドを脱色した。  The membrane filter on which the protein was blotted was washed with distilled water, stained with Ponceau S (P onceau S) staining solution (0.1% Ponceau-13, 1% acetic acid solution), and immersed in distilled water. The background was decolorized by shaking.
このメンプラン上の 51 kDの位置のスポットを切り出し、 in s i t uで Lys— Cプロテア一ゼ (ベ一リンガーマンハイム社製) により酵素処理した。 生成したぺプチドは HP L C (パーキンエルマ一社製)によって分離精製した(流 速 500 l/min、 0. 1 % T F Aを溶媒とし 0— 75 %のァセトニトリル によるグラジェント、 (//ボンドスフィァ C 8孔径 300オングストローム (日 本エイ ド一社製) RP 300カラム (2. I x l 00mm) ) 。 A spot at a position of 51 kD on this membrane was cut out and treated in situ with Lys-C protease (manufactured by Boehringer Mannheim) with an enzyme. The produced peptides were separated and purified by HP LC (Perkin Elmer) (flow rate 500 l / min, 0.1% TFA as solvent, 0-75% acetonitrile). Gradient, (// Bond Sphere C 8 pore size 300 Å (manufactured by Nihon Aid One Co., Ltd.) RP 300 column (2.
得られた 5 1 kDの蛋白質の断片のポリべプチドフラグメントのいくつかをべ プチドシークェンサ一 (パーキンエルマ一社製プロティンシークェンサ一 497 型分析装置) により解析を行った。  Some of the resulting polypeptide fragments of the 51 kD protein fragment were analyzed using a peptide sequencer (Prokin Sequencer-497 type analyzer manufactured by PerkinElmer).
以上のアミノ酸解析によりぺプチドフラグメントとして以下のァミノ酸配列を 決定した。  By the above amino acid analysis, the following amino acid sequence was determined as a peptide fragment.
ペプチドフラグメント 1 : Va 1 Phe Leu G 1 u G 1 u Al a S e r G i n G in G 1 u L y s (配列表の配列番号 1に記載のァミ ノ酸配列の 43番目から 53番目までの配列)  Peptide fragment 1: Va 1 Phe Leu G 1 u G 1 u A La Ser G in G in G 1 u Lys (from 43 to 53 of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing) Array)
ぺプチドフラグメント 2 : Glu T r p C y s Phe L y s (配列表 の配列番号 1に記載のアミノ酸配列の 47番目から 51番目までの配列) ぺプチドフラグメント 3 : Thr Ar g As Leu H i s l i e Gin S e r H i s (配列表の配列番号 1に記載のァミノ酸配列の 232 番目から 240番目までの配列)  Peptide fragment 2: GluTrpCysPheLys (sequence from the 47th to the 51st amino acid sequence of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing) Peptide fragment 3: Thr Arg As LeuHislie Gin Ser H is (sequences 232 to 240 of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing)
ペプチドフラグメント 4 : As n Leu T y r P r o S e r T y r Ly s (配列表の配列番号 1に記載のアミノ酸配列の 253番目から 259番 目までの配列)  Peptide fragment 4: Asn Leu TyrPRoSeyrTyr Lys (sequences from 253 to 259 of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing)
ペプチドフラグメント 5 : G 1 u Phe As p Al a l i e L eu l i e As n P r o Ly s (配列表の配列番号 1に記載のァミノ酸配列 の 394番目から 403番目までの配列)  Peptide fragment 5: G1uPheAspAlaiLieLeuLieAsnProLys (sequence from position 394 to position 403 of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing)
ペプチドフラグメント 6 : G 1 n Va 1 Va 1 P r o Phe S e r (配列表の配列番号 1に記載のアミノ酸配列の 446番目から 451番目までの 配列)  Peptide fragment 6: G1nVa1Va1ProPHeSer (sequence from amino acid position 446 to position 451 of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing)
2. 部分遺伝子の塩基配列のシークェンス  2. Sequence of base sequence of partial gene
( 1 ) PCR 前記べプチドフラグメントの配列をもとにインターネットの E S Tデータべ一 ス (mRN Aの断片の配列を登録してあるデータベース、 ht tp ://www. ncb i. nlm. n i h. gov. /dbEST)検索を行ったところ、 登録 番号 H 14396の配列および登録番号 R 39820の配列が選別された。 この 塩基配列をもとに P C Rプライマ一を作製した。 (1) PCR EST database on the Internet based on the sequence of the peptide fragment (database in which the sequence of the mRNA fragment is registered, ht tp: //www.ncbi.nlm.nih.gov./dbEST ) The search resulted in selection of the sequence with accession number H 14396 and the sequence with accession number R 39820. A PCR primer was prepared based on the nucleotide sequence.
PCRの錶型にはヒト胎児脳 cDNAライブラリー (クローンテック社製) を 用いた。  A human fetal brain cDNA library (Clontech) was used for PCR type II.
センスプライマ一として、 P 1プライマー: 5' -ATGCCTGGGCTG GTTGATACACAC— 3, (配列表の配列番号 11に記載の塩基配列) 、 アンチセンスプライマーとして P 2プライマ一: 5' -CATCACTGTCT TATTTGTCAAAAG— 3, (配列表の配列番号 12に記載の塩基配列) を設計し、 DNA合成機 (ABI社製、 モデル 392) にて合成した。 合成した プライマ一は、 蒸留水で 10 pmo 1/〃 1に調製した (以降のプライマーの合 成も同様に行った。 ) 。 これらのプライマ一を用いて、 PCRを行った時に、 6 09 bpの cDNAフラグメントが得られた。 このフラグメントを、 以降、 フラ グメント Aという。  As a sense primer, P1 primer: 5'-ATGCCTGGGCTG GTTGATACACAC-3, (base sequence described in SEQ ID NO: 11), and as an antisense primer, P2 primer: 5'-CATCACTGTCT TATTTGTCAAAAG-3, The nucleotide sequence described in SEQ ID NO: 12 in the sequence listing was designed and synthesized using a DNA synthesizer (ABI, model 392). The synthesized primer was adjusted to 10 pmo1 / 〃1 with distilled water (the subsequent primer synthesis was performed in the same manner). When PCR was performed using these primers, a cDNA fragment of 609 bp was obtained. This fragment is hereinafter referred to as fragment A.
( 2 ) 形質転換体の作製  (2) Preparation of transformant
上記で得たフラグメント Aをミニゲル電気泳動 (0. 75%ァガロースゲル) させて、 該 DNAのバンド (609 bp) をゲルから切り出した。 透析膜で c D N Aを回収して、 ミニゲル電気泳動でバンドをチェックした。  The fragment A obtained above was subjected to mini gel electrophoresis (0.75% agarose gel), and a band (609 bp) of the DNA was cut out from the gel. The cDNA was collected on a dialysis membrane, and the bands were checked by mini gel electrophoresis.
cDNAをly l取り、 99 1の T Eにて希釈した。 260 nmでの吸光度 (A260) を測定し、 DN A濃度を計算した (八260が1. 0のときの DN A濃度を 50〃l/mlとした。 ) 。 DNA濃度が になるように T Eで DNAを希釈した。 cDNA a l y l up, was diluted with 99 1 of TE. The absorbance at 260 nm (A260) was measured, and the DNA concentration was calculated (the DNA concentration when the concentration of 260 was 1.0 was 50 l / ml). The DNA was diluted with TE so that the DNA concentration was.
(3)塩基配列の決定  (3) Determination of base sequence
フラグメント Aを P 1センスプライマーおよび P 2アンチセンスプライマ一を 用いてダイレクトシークェンスを行った。 ダイ夕一ミネ一夕一法により、 オート シ一クェンサ一(AB Iモデル 3 73 A) を用いて、 DNAシークェンスを行い、 フラグメント Aの c DN Aの塩基配列を決定した。 Fragment A with P1 sense primer and P2 antisense primer Was used to perform a direct sequence. DNA sequencing was performed using the Auto Sequencer (ABI Model 373A) by the Dye-Mine-Mine-One-Duct method to determine the nucleotide sequence of fragment A cDNA.
3. プライマーの合成  3. Synthesis of primer
ヒト c DNAライブラリーから、 さらに DNAフラグメントを取得するために 以下のプライマ一を合成した。  The following primers were synthesized to obtain further DNA fragments from the human cDNA library.
P 1プライマー より 3 ' 側に P 3プラマー: 5 ' -TGATTTGCACA TTCAGAGCCATAT— 3, (配列表の配列番号 1 3に記載の塩基配列)、 P 2プライマ一より 5' 側に P 4プライマ一: 5, -AGGTCTATGCTA CTTCCAGCAAAG— 3, (配列表の配列番号 14に記載の塩基配列) を 設計し、 DNA合成機 (AB I社製、 モデル 392) にて合成した。 合成したプ ライマ一は、 蒸留水で 1 0 pmo 1/〃 1に調製した。  P 3 primer on the 3 ′ side from P 1 primer: 5′-TGATTTGCACA TTCAGAGCCATAT—3, (base sequence described in SEQ ID NO: 13 in the sequence listing), P 4 primer on the 5 ′ side from P 2 primer: 5 , -AGGTCTATGCTA CTTCCAGCAAAG-3, (base sequence described in SEQ ID NO: 14 in the sequence listing) was designed and synthesized using a DNA synthesizer (ABI, model 392). The synthesized primer was adjusted to 10 pmo1 / 1/1 with distilled water.
4. P CR  4. PCR
cDNAライブラリーには、 ヒト胎児脳の cDNAライプラリー (クローンテ ヅク社製) を用い、 cDN Aライブラリーのリンカ一に設定されている AP— 1 プライマー: 5' -CCAT CCTAATACGACTCACTATAGGGC — 3' (配列表の配列番号 1 5に記載の塩基配列) 、 P l、 P 2、 P 3および P プライマ一を用いてヅ一ステップ P CRを行った。  For the cDNA library, a cDNA library of human fetal brain (manufactured by Clonetech) was used, and the AP-1 primer set in the linker of the cDNA library: 5'-CCAT CCTAATACGACTCACTATAGGGC-3 ' One step PCR was carried out using P1, P2, P3 and P primers.
( 1) 3, 側クローニング  (1) 3, side cloning
P 1プライマーを用いて P CRで 3, 側の一本差 DN Aを伸長した。  The P1 primer was used to extend the single-stranded DNA on the 3 side by PCR.
c DNA 1. Ομ.1 c DNA 1.Ομ.1
dNTPmix (各 2. 5mM) 1 2ul dNTPmix (2.5 mM each) 1 2ul
P 1プライマ一 1 0 1  P 1 Primer 1 0 1
3. 3 XPCR緩衝液 4 5 j l  3.3 XPCR buffer 45 jl
25mM Mg (0 A c) 2 0. 25mM Mg (0 A c) 2 0.
蒸留水 6 4 z 1 合計 14. 7 1 Distilled water 6 4 z 1 Total 14.7 1
上記組成の液にミネラルオイル 1 0〃 1を重層し、 95 °Cで 5分間放置した後、 XLポリメラ一ゼ 0. 3 / 1 (登録商標、 パ一キンエルマ一社製) を加え、 「9 6°Cで 30秒間、 60°Cで 30秒間、 続いて 72°Cで 2分間」 のサイクルを 40 回繰り返し反応させた。 最後に 72 °Cで 7分間断片の伸長反応を行い P C Rを完 了した。  Mineral oil 10〃1 is overlaid on the liquid having the above composition, left at 95 ° C. for 5 minutes, and XL Polymerase 0.3 / 1 (registered trademark, manufactured by Parkin Elma Co., Ltd.) was added. The cycle of “6 ° C for 30 seconds, 60 ° C for 30 seconds, and then 72 ° C for 2 minutes” was repeated 40 times. Finally, a fragment extension reaction was performed at 72 ° C for 7 minutes to complete the PCR.
反応後、 P CR産物を錡型にして 3, 側のクローニングを行い二本鎖 DNAを 合成した。  After the reaction, the PCR product was transformed into type III and cloned on the 3 side to synthesize double-stranded DNA.
P CR産物 0. 5/ 1  PCR product 0.5 / 1
dNTPmix (各 2. 5mM) 1. 2 μ. \ dNTPmix (2.5 mM each) 1.2 μ. \
Ρ 3プライマ一 1.  Ρ 3 primers 1.
ΑΡ— 1プライマ一 1. 0 1  ΑΡ— 1 Primer 1. 0 1
3. 3 XPCR緩衝液 4. 5 1  3.3 XPCR buffer 4.5 1
25mM Mg (OA c) 2 0. 6 / 1 25mM Mg (OA c) 2 0.6 / 1
蒸留水 5. Distilled water 5.
合計 14. 7〃 1 Total 14.7〃 1
上記組成の液にミネラルオイル 1 0〃 1を重層し、 95 °Cで 5分間放置した後、 Mineral oil 10〃1 is overlaid on the liquid of the above composition, left at 95 ° C for 5 minutes,
XLポリメラ一ゼ 0. 3〃 1 (登録商標、 パーキンエルマ一社製) を加え、 「9Add XL Polymerase 0.3〃1 (registered trademark, manufactured by PerkinElmer Inc.) and add “9
6 °Cで 30秒間、 60 で 30秒間、 続いて 72 °Cで 2分間」 のサイクルを 40 回繰り返し反応させた。 最後に 72°Cで 7分間断片の伸長反応を行い P CRを完 了した。 A cycle of “6 ° C. for 30 seconds, 60 ° C. for 30 seconds, and then 72 ° C. for 2 minutes” was repeated 40 times. Finally, a fragment extension reaction was performed at 72 ° C for 7 minutes to complete PCR.
反応後、 P CR産物についてミニゲル電気泳動を 1. 5%ァガロースゲルで行 つた。 約 1. 2 kbの DNA断片をコードする断片を切り出し PCR産物を回収 した。 さらに、 前記回収物の一部について前記ミニゲル電気泳動を再度行い、 約 1. 2 kbにバンドが現れることを確認した。 以下、 この DNA断片を、 以降、 フラグメント Bという。 (2) DNAシークェンス After the reaction, the PCR product was subjected to minigel electrophoresis on a 1.5% agarose gel. A fragment encoding a DNA fragment of about 1.2 kb was cut out and the PCR product was recovered. Further, the minigel electrophoresis was performed again on a part of the collected product, and it was confirmed that a band appeared at about 1.2 kb. Hereinafter, this DNA fragment is referred to as fragment B. (2) DNA sequence
前記で得たフラグメント Bを 1〃 1を取り、 99〃 1の TEにて希釈した。 2 6 Onmでの吸光度 (A260) を測定し、 DNA値を計算した (A260の値 1. 0を 50〃g/mlとして算出した) 。 A 260値より D N Aが 1〃 g/m 1となるようにサンプルを調製した。 P 3プライマ一および A P— 1プライマ一 の 3' 側に設定されている A P— 2プライマ一: 5, -ACT CACTAT AG GGCTCGAGCGGC— 3, (配列表の配列番号 16に記載の塩基配列) を 用いて、 AB I社製のオートシンクェンサ一モデル 373 Sを使用してダイ夕一 ミネ一夕一法により、 フラグメント cの塩基配列を決定した。  1〃1 of the fragment B obtained above was taken and diluted with 99〃1 of TE. The absorbance at 26 Onm (A260) was measured and the DNA value was calculated (A260 value 1.0 was calculated as 50 µg / ml). A sample was prepared so that the DNA was 1 μg / m 1 based on the A260 value. P-3 primer and AP-1 Primer AP-2 primer set on the 3 'side: 5, -ACT CACTAT AG GGCTCGAGCGGC-3 (using the nucleotide sequence of SEQ ID NO: 16 in the sequence listing) The nucleotide sequence of fragment c was determined by the Dye-Minner-One-Yet method using an ABI AutoSynchencer-1 model 373S.
(3) 5, 側クローニング  (3) 5, Side cloning
P 2プライマ一を用いて P CRで 3, 側の一本差 DN Aを伸長した。  The P2 primer was used to extend the single-stranded DNA on the 3 side by PCR.
c DNA 1. 0 / 1 c DNA 1.0 / 1
dNTPmix (各 2. 5 mM) 1. 2μ.\ dNTPmix (2.5 mM each) 1.2 μ. \
P 2プライマ一 1. 0 ζ 1 P 2 Primer 1.0 ζ 1
3. 3 XPCR緩衝液 4. 5 ζ 1 3.3 XPCR buffer 4.5 ζ 1
25mM Mg (0 A c) 2 0. 6 1 25mM Mg (0 A c) 2 0.6 1
蒸留水 6. 4〃1 Distilled water 6.4 6.1
合計 14. 1 μ.\ Total 14.1 μ. \
上記組成の液にミネラルオイル 10〃1を重層し、 95 °Cで 5分間放置した後、 XLポリメラ一ゼ 0. 3〃1 (登録商標、 パーキンエルマ一社製) を加え、 「9 6°Cで 30秒間、 60°Cで 30秒間、 続いて 72°Cで 2分間」 のサイクルを 40 回繰り返し反応させた。 最後に 72 °Cで 7分間断片の伸長反応を行い P CRを完 了した。  A mineral oil (10-1) is overlaid on the liquid having the above composition, left at 95 ° C for 5 minutes, added with XL Polymerase 0.3-1 (registered trademark, manufactured by PerkinElmer Co., Ltd.), and added to “96 ° A cycle of 30 seconds at C, 30 seconds at 60 ° C, and then 2 minutes at 72 ° C "was repeated 40 times. Finally, a fragment extension reaction was performed at 72 ° C for 7 minutes to complete PCR.
反応後、 PCR産物を錡型にして 5, 側のクロ一ニングを行い二本鎖 DNAを 合成した。  After the reaction, the PCR product was transformed into type I and the 5 side was cloned to synthesize double-stranded DNA.
P CR産物 0. 5 1 dNTPmi x (各 2. 5mM) 1. 2〃1 PCR product 0.5 1 dNTPmi x (2.5 mM each) 1.2〃1
P 4プライマー 1. 0 1 P4 primer 1.0 1
AP- 1プライマ一 1. 0 1  AP-1 Primer 1.0 1.
3. 3 XPCR緩衝液 4. 5〃 1  3.3 XPCR buffer 4.5〃1
25mM Mg (〇Ac) 2 0. 6 1 25mM Mg (〇Ac) 2 0.6 1
蒸留水 5. 9〃1 Distilled water 5.9 5.1
合計 14. 7 1 Total 14.7 1
上記組成の液にミネラルオイル 10〃 1を重層し、 95 °Cで 5分間放置した後、 XLポリメラ一ゼ 0. 3〃 1 (登録商標、 パーキンエルマ一社製) を加え、 「9 6 で 30秒間、 60 で 30秒間、 続いて 72 °Cで 2分間」 のサイクルを 40 回繰り返し反応させた。 最後に 72 で Ί分間断片の伸長反応を行い P C Rを完 了した。  Mineral oil 10〃1 is overlaid on the liquid of the above composition, left at 95 ° C for 5 minutes, and XL Polymerase 0.3〃1 (registered trademark, manufactured by PerkinElmer Inc.) is added. A cycle of “30 seconds, 60 seconds for 30 seconds, and then 72 ° C. for 2 minutes” was repeated 40 times. Finally, a fragment extension reaction was performed for 72 minutes at 72 to complete the PCR.
反応後、 P CR産物についてミニゲル電気泳動を 1. 5%ァガロースゲルで行 つた。 約 0. 5kbの DNA断片をコードする断片を切り出し PCR産物を回収 した。 さらに、 前記回収物の一部について前記ミニゲル電気泳動を再度行い、 約 0. 5 kbにバンドが現れることを確認した。 以下、 この DN A断片を、 以降、 フラグメント Cという。  After the reaction, the PCR product was subjected to minigel electrophoresis on a 1.5% agarose gel. A fragment encoding a DNA fragment of about 0.5 kb was cut out and the PCR product was recovered. Further, the minigel electrophoresis was performed again on a part of the recovered product, and it was confirmed that a band appeared at about 0.5 kb. Hereinafter, this DNA fragment is referred to as fragment C hereinafter.
(4) DNAシークェンス  (4) DNA sequence
前記で得たフラグメント Cを 1〃1を取り、 99〃 1の TEにて希釈した。 2 60 nmでの吸光度 (A260) を測定し、 DNA値を計算した (A260の値 1. 0を 5 O^gZmlとして算出した) 。 A260値より D N Aが 1〃 g/m 1となるようにサンプルを調製した。 P 4プライマ一および AP— 2プライマ一 を用いて、 AB I社製のオートシンクェンサ一モデル 373 Sを使用してダイ夕 —ミネ一夕一法により、 フラグメント Cの塩基配列を決定した。  1〃1 of the fragment C obtained above was taken and diluted with 99〃1 of TE. The absorbance at 260 nm (A260) was measured, and the DNA value was calculated (A260 value 1.0 was calculated as 5 O ^ gZml). A sample was prepared such that the DNA had an A260 value of 1 μg / m 1. Using the P4 primer and the AP-2 primer, the nucleotide sequence of the fragment C was determined by the Dye-Mine-One method using an ABI AutoSynchencer model 373S.
5. 全長 cDNA化  5. Full-length cDNA conversion
フラグメント A、 Bおよび Cの塩基配列をもとに、 センスプライマーとして P GCTCAGATGCCG-3' (配列表の配列番号 17に記載の塩基配列) を、 アンチセンスプライマーとして P 6プライマ一: 5, -AAAT AGGAT C C の配列番号 18に記載の塩基配列) を設定し、 これを用いてヒト胎児脳 cDNA ライプラリ一を鎵型として、 下記の条件で PCRを行った。Based on the base sequence of fragments A, B and C, P GCTCAGATGCCG-3 '(base sequence described in SEQ ID No. 17 in the sequence listing) was set as an antisense primer, P6 primer 1: 5, -AAAT AGGAT CC, the base sequence described in SEQ ID No. 18). PCR was performed under the following conditions using human fetal brain cDNA library as a type III.
Figure imgf000028_0001
Figure imgf000028_0001
dNTPmi 1. 2 μΛ dNTPmi 1.2 μΛ
マ一 1. 0 1  MA 1.01
マー 1. 0 / 1  Mer 1.0 / 1
3. 3 XPCR緩衝液 4. 5 1  3.3 XPCR buffer 4.5 1
25mM Mg (OAc) 0. 6 1 25mM Mg (OAc) 0.6 1
蒸留水 5. 4 1 Distilled water5.4 1
合計 14. Ί μ.\ Total 14.Ί μ. \
前記組成の液にミネラルオイル 15〃 1を重層し、 96 で 5分間放置した後、 XLポリメラ一ゼ 0. 3〃1 (登録商標、 パーキンエルマ一社製) を加え、 「9 6 °Cで 30秒間、 60 で 30秒間、 続いて 72 °Cで 1. 5分間」 のサイクルを 40回繰り返し反応させた。 最後に 72 °Cで 7分間断片の伸長反応を行い P CR を完了した。 この全長 cDNAをダイ夕一ミネ一夕一法でシークェンスした。 全 長のコード領域を含む目的の cDNAが取れたことを確認し、 この cDNAを、 NE— d 1 gに結合する蛋白質 (この蛋白質をネダシン (NEDAS IN、 NE -D i As s o c i at ing p r o t e I N) と名付けた。 ) をコード する cDNAと認定した。 この塩基配列を配列表の配列番号 2に示す。 この塩基 配列からなる遺伝子をネダシン S遺伝子と名付けた。 ネダシン S遺伝子とホモ口 ジーを有するような既知の哺乳類遺伝子は認められなかった。 ネダシン Sの c D N Aとクロ一ニングの過程で得られた各フラグメントおよび各プライマ一との位 置関係を図 1に示す。 Mineral oil 15〃1 was overlaid on the liquid having the above composition, left at 96 ° C. for 5 minutes, and XL Polymerase 0.3〃1 (registered trademark, manufactured by PerkinElmer Inc.) was added. A cycle of “30 seconds, 60 seconds at 30 seconds, and then 72 ° C. for 1.5 minutes” was repeated 40 times. Finally, a fragment extension reaction was performed at 72 ° C for 7 minutes to complete PCR. This full-length cDNA was sequenced according to the method of dye and minerals. After confirming that the desired cDNA containing the full-length coding region was obtained, the cDNA was ligated to a protein that binds to NE-d1 g (this protein was nedasin (NEDAS IN, NE-DiAs soci ating protein IN). ) Was identified as cDNA encoding). This nucleotide sequence is shown as SEQ ID NO: 2 in the sequence listing. The gene consisting of this nucleotide sequence was named nedacin S gene. No known mammalian genes having homology with the nedacin S gene were found. Nedacin S cDNA and the position of each fragment and each primer obtained during the cloning process. Figure 1 shows the relationship.
またこの遺伝子がコードするネダシン S蛋白質 (以下、 単にネダシン Sと略記 する場合がある。 ) のアミノ酸配列を配列表の配列番号 1に示す。 ネダシン Sの C末端は PD Z領域に結合できる S SVモチーフであった。 このネダシン Sとホ モロジ一を有するような哺乳類蛋白質は認められなかったが、 酵母の YDL23 8 c蛋白質とは 40%程度の相同性があった。  The amino acid sequence of the nedacin S protein encoded by this gene (hereinafter sometimes simply referred to as nedacin S) is shown in SEQ ID NO: 1 in the sequence listing. The C-terminus of nedacin S was an S SV motif that could bind to the PDZ region. No mammalian protein having homology with this nedacin S was found, but it had about 40% homology with the yeast YDL238c protein.
6. 形質転換体の作製  6. Preparation of transformants
上記で得られた全長のネダシン cDNAを、 プラスミ ドベクタ一 pGEM (登 録商標) — T Easy (プロメガ社製)マルチクロ一ニングサイ トに挿入した。 このプラスミ ドベクターを大腸菌 NM 522に導入して、形質転換体を作製した。 前記ネダシン Sの cDNAが組み込まれた大腸菌を Ne d a s i n Sと名付 け、 通商産業省工業技術院生命工学工業技術研究所 (日本国茨城県つくば巿東 1 丁目 1番 3号 (郵便番号 305 - 8566 ) ) に平成 10年 2月 25曰に寄託し た。 受託番号は、 FERM P— 16663である。 さらに、 1998年 8月 2 4日に、 同研究所においてこの N e d a s i n Sをブタペスト条約に基づく寄 託に移管した (受託番号 FERM BP- 6471 ) 。  The full-length nedasin cDNA obtained above was inserted into a plasmid vector pGEM (registered trademark) — T Easy (Promega) multi-cloning site. This plasmid vector was introduced into E. coli NM522 to prepare a transformant. The Escherichia coli harboring the cDNA of nedacin S was named Ne dasin S, and the Institute of Biotechnology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry (1-3 1-3 Tsukuba East, Ibaraki, Japan (zip code 305- 8566)) and deposited on February 25, 1998. The accession number is FERM P-16663. Furthermore, on August 24, 1998, the Nedas inS was transferred to the Deposit under the Budapest Treaty at the institute (Accession No. FERM BP-6471).
<実施例 3 >各組織におけるネダシンの発現  <Example 3> Expression of nedacin in each tissue
ヒトの各組織のポリ A + RNA (mRNA) およびヒトの各種細胞のポリ A + RNA (mRNA) それぞれについて、 各 2〃 gをプロットしたメンブレン (H uma n Mult ip le Ti s sue Northern Bl ot 、 同 I Iおよび同 I I I (クローンテック社製) ) に、 標識化した全長のネダシン S遺伝子を M o 1 e c u 1 a r Cl onin A Laborat ory Manual Se cond Ed i t ion 7. 39ページないし 7. 52 ページの記載にしたがって、 43°Cで 16時間ハイブリダィズさせ、 ノーザンブ ロットハイブリダィゼーシヨン法による解析を行った。  For each of human poly A + RNA (mRNA) and human various cells poly A + RNA (mRNA), 2〃 g of each membrane (Huma n Mult ip le Ti s sue Northern Blot, II and III (manufactured by Clontech)), the labeled full-length nedasin S gene was added to the MoE ecu1arClonin A Laboratory Manual Manual, Edition Ed. According to the description, hybridization was carried out at 43 ° C. for 16 hours, and analysis was carried out by the Northern blot hybridization method.
'遺伝子の標識化は以下の操作により行った。 T 'Gene labeling was performed by the following procedure. T
1) Takara MEGA LAB ELキット (登録商標、 宝酒造社製) を 用いて取扱説明書の通りに標識した。 1) Labeling was performed using Takara MEGA LAB EL kit (registered trademark, manufactured by Takara Shuzo) according to the instruction manual.
2) 次に、 下記の組成の DN A反応液を調製し、 この液を 37°Cで 20分間ィ ンキュペートした後、 TEを 25 1加え、 酵素を失活させた。  2) Next, a DNA reaction solution having the following composition was prepared, and this solution was incubated at 37 ° C for 20 minutes, and then 25 1 TE was added to inactivate the enzyme.
DNAプロ一プ ( 2 pmo 1/〃 1) 14〃 1  DNA probe (2 pmo 1 / 〃 1) 14〃 1
10倍ホスホラィレイシヨン緩衝液 2. 5〃1  10x phosphorylation buffer 2.5〃1
CNTP混合物 (mix t ur e) 2. 5〃1  CNTP mixture (mix tur e) 2.5〃1
〔ァー 32P〕 CLTP (37 OMBq/ml) (アマシャム製)  [Ar 32P] CLTP (37 OMBq / ml) (Amersham)
5^1  5 ^ 1
クレノーフラグメント  Klenow fragment
合計 25 1  Total 25 1
3) TE 50 (5 OmM Tr i s-C 1 pH 8. 0、 1 mM EDTA) で平衡化された SephadexG— 25 (登録商標、 フアルマシア社製) を 1. 5mlポリプレップカラム (バイオラヅ ド社製) にベッ ドボリュームが 1 mlに なるように詰め、 2) で熱処理をした DNA反応液を該カラムに載せた。  3) Sephadex G-25 (registered trademark, manufactured by Pharmacia) equilibrated with TE 50 (5 OmM TrisC 1 pH 8.0, 1 mM EDTA) was applied to a 1.5 ml polyprep column (manufactured by BioRad). The DNA reaction solution heat-treated in 2) was packed on the column so that the bed volume became 1 ml.
4) その後、 200 1 TE 50をカラムに 4回流し、 2回目の 200〃1で 溶出した画分から標識化 DN Aプローブを得た。  4) Thereafter, 200 1 TE 50 was passed through the column four times, and a labeled DNA probe was obtained from the fraction eluted in the second 200-1.
ノーザンプロヅトハイプリダイゼーシヨン法による解析の結果を図 5に示す。 これより、 ネダシンの mRNAは脳、 胎盤、 肝臓、 腎臓での発現が強いことが分 かった。  FIG. 5 shows the results of analysis by the Northern Protocol hybridization method. From this, it was found that mRNA of nedacin was strongly expressed in brain, placenta, liver and kidney.
く実施例 4 >スプライシングアイソフォームの同定  Example 4> Identification of Splicing Isoforms
ネダシンの発現が見られた各組織からマイクロファスト トラック (登録商標) キヅト (インビトロゲン社製) mRNA精製キヅトを用いて mRNAを抽出し、 RT— PCR法 (新細胞実験工学プロトコール、 秀潤社、 1993年発行、 17 5 - 176ページに記載) を行った。 得られた遺伝子産物を前記と同様にダイ夕 —ミネ一夕法によりシークェンスした。 その結果、 3つのスプライシングァイソ フォームが存在することが分かった。 これらをネダシン VI、 ネダシン V2、 ネ ダシン V 3と名付けた。 MRNA was extracted from each tissue in which nedacin expression was observed using a Microfast Track (registered trademark) kit (manufactured by Invitrogen) mRNA purification kit, and RT-PCR method (new cell experimental engineering protocol, Shujunsha, Published in 1993, listed on pages 175-176). The obtained gene product was sequenced in the same manner as described above by the dye-mine method. As a result, three splicing Form was found to exist. These were named Nedacin VI, Nedasin V2, and Nedasin V3.
ネダシン V 1のァミノ酸配列を配列表の配列番号 3に、 ネダシン V 1遺伝子の 塩基配列を配列表の配列番号 4に示す。  The amino acid sequence of nedacin V1 is shown in SEQ ID NO: 3 in the sequence listing, and the nucleotide sequence of the nedacin V1 gene is shown in SEQ ID NO: 4 in the sequence listing.
ネダシン V 2のァミノ酸配列を配列表の配列番号 5に、 ネダシン V 2遺伝子の 塩基配列 (コード領域のみ) を配列表の配列番号 6に示す。  The amino acid sequence of nedacin V2 is shown in SEQ ID NO: 5 in the sequence listing, and the nucleotide sequence of the nedacin V2 gene (only the coding region) is shown in SEQ ID NO: 6 in the sequence listing.
ネダシン V 3のァミノ酸配列を配列表の配列番号 7に、 ネダシン V 3遺伝子の 塩基配列 (コード領域のみ) を配列表の配列番号 8に示す。  The amino acid sequence of nedacin V3 is shown in SEQ ID NO: 7 in the sequence listing, and the nucleotide sequence of the nedacin V3 gene (only the coding region) is shown in SEQ ID NO: 8 in the sequence listing.
ネダシン VI遺伝子を、 プラスミ ドベクタ一 pGEM (登録商標) — T E a s y (プロメガ社製) マルチクロ一ニングサイ トに揷入した。 このプラスミ ドべ ク夕一を大腸菌 DH 5ひに導入した形質転換体を Ne d a s i n VIと名付け 通商産業省工業技術院生命工学工業技術研究所 (日本国茨城県つくば巿東 1丁目 1番 3号 (郵便番号 305— 8566) ) に平成 10年 2月 25日に寄託した。 受託番号は、 FERM P- 16664である。 さらに 1998年 8月 24日に 同研究所においてこの N e d a s i n V 1をブタペスト条約に基づく寄託に移 管した (受託番号 FERM BP— 6472) 。  The nedacin VI gene was introduced into a plasmid vector pGEM (registered trademark) -TEASy (promega) multi-cloning site. The transformant in which this plasmid was introduced into Escherichia coli DH5 was named Ne dasin VI. Institute of Biotechnology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry (1-3 1-3 Tsukuba East, Ibaraki, Japan) (Postal code 305-8566)) on February 25, 1998. The accession number is FERM P-16664. In addition, on August 24, 1998, the Nadasin V1 was transferred to the Deposit under the Budapest Treaty at the same institute (Accession No. FERM BP-6472).
各細胞についても R T _ P C Rを行い、 ネダシンのスプライシングアイソフォ —ムの発現を調べた。  RT_PCR was also performed on each cell to examine the expression of the nedasin splicing isoform.
各組織および各細胞についての RT— PCRの結果を図 6に示す。 これより、 ヒト胎児脳や胎盤ではネダシン Sが優位に発現しており、 それ以外の組織ではネ ダシン V 1が優位に発現していることが確認された。  FIG. 6 shows the results of RT-PCR for each tissue and each cell. This confirmed that nedacin S is predominantly expressed in human fetal brain and placenta, and nedacin V1 is predominantly expressed in other tissues.
<実施例 5>NE— d igとネダシンの結合の確認  <Example 5> Confirmation of binding between NE-dig and nedacin
1. 免疫沈降  1. Immunoprecipitation
全長のネダシン S c DNAおよびネダシン V 1 cDNAをそれぞれ、 プラスミ ドベクタ一 pB j— 1の E c oR I— B amH Iサイ 卜に my cタグを含む 63 me rのリンカ一を挿入した pB j一 my cの B amH Iサイ 卜に挿入した。 これらをそれぞれ、 GUK領域を欠失させたNE—d 1 g遺伝子を組み込んだ ベクタ一 pCGN (HAタグ付) とともに CO S細胞に導入して、 形質転換体を 作製した。 The full-length nedasin S cDNA and nedasin V1 cDNA were obtained by inserting a 63-mer linker containing the my c tag into the EcoRI-BamHI site of the plasmid vector pBj-1. It was inserted into the BamHI site of my c. Each of these was introduced into COS cells together with a vector-pCGN (having an HA tag) incorporating the NE-d1 g gene in which the GUK region had been deleted, to prepare transformants.
この形質転換体を培養した後、 細胞を TNN緩衝液 ( 15 OmM NaC l、 5 OmM T r i s -H C 1 H 7. 5、 0. 5% NP— 40) を用いて溶 解して、 細胞抽出液を得た。  After culturing this transformant, the cells are lysed using TNN buffer (15 OmM NaCl, 5 OmM Tris-HC1H7.5, 0.5% NP-40), and the cells are extracted. A liquid was obtained.
この細胞抽出液に抗 my c抗体を加え、 3000 r pmで 5分間遠心分離して、 免疫沈降物を取り分けた。  An anti-myc antibody was added to the cell extract, and the mixture was centrifuged at 3000 rpm for 5 minutes to separate immunoprecipitates.
2. ウエスタンブロット  2. Western blot
この免疫沈降物を 9%SD S— PAGEで電気泳動した。  This immunoprecipitate was electrophoresed on 9% SDS-PAGE.
電気泳動後、 トランスプロットシステム (マリソル社製) を用い、 ニトロセル ロース膜に転写した。  After electrophoresis, the DNA was transferred to a nitrocellulose membrane using a Transplot system (manufactured by Marisol).
ニトロセルロース膜を 10%スキムミルク/ PB S、 0. 1 %Twe e n 20 に浸し、 1時間放置し、 ブロッキングした。 その後、 0. 3%Twe en20/ P B Sで 5分間ずつ 2回洗浄した。  The nitrocellulose membrane was immersed in 10% skim milk / PBS, 0.1% Tween 20, allowed to stand for 1 hour, and blocked. Thereafter, the plate was washed twice with 0.3% Tween20 / PBS for 5 minutes each.
抗 my c抗体を 1 g/mlに PB Sで希釈した後、 二卜ロセルロース膜に加 え、 室温で 60分間反応させた。 その後、 0. 3%Twe e n20/PB Sで 5 分間ずつ 3回洗浄した。  After the anti-myc antibody was diluted to 1 g / ml with PBS, it was added to a nitrocellulose membrane and reacted at room temperature for 60 minutes. Thereafter, the plate was washed three times for 5 minutes each with 0.3% Tween20 / PBS.
次いで、 ペルォキシダーゼ標識抗マウス I gG (アマシャム社製) を PB Sで 20000倍希釈した液を、 ニトロセルロース膜に加え、 さらに 40分間室温に て反応させた。 その後、 0. 3%Twe en20/PBSで 5分間ずつ 3回洗浄 した。  Next, a solution obtained by diluting a peroxidase-labeled anti-mouse IgG (manufactured by Amersham) by 20000 times with PBS was added to the nitrocellulose membrane, and the mixture was further reacted at room temperature for 40 minutes. Thereafter, the plate was washed three times for 5 minutes each with 0.3% Tween 20 / PBS.
次いで、 ECLキット (アマシャム社製) の発色液を 5mlだけニトロセル口 ース膜に加え、 1分間反応させた。 その後、 このメンブレンを X線フィルムに 2 0秒間露光し、 現像した後、 写真撮影した。 結果を図 7に示す。  Next, 5 ml of a color developing solution of an ECL kit (manufactured by Amersham) was added to the nitrocellulose membrane, and reacted for 1 minute. Then, the membrane was exposed to X-ray film for 20 seconds, developed, and photographed. Fig. 7 shows the results.
この結果、 C末端が S SVのネダシン Sは NE— d 1 gと結合するが、 C末端 が PFPのネダシン V 1は NE— d 1 gとは結合しないことが分かった。 すなわ ち vivoでも、 ネダシンと NE— d 1 gとの結合が証明され、 さらにその結合 はネダシンの C末端側の変化によって制御されていることが分かった。 As a result, nedacin S whose C-terminal is S SV binds to NE-d 1 g, but C-terminal However, it was found that nedacin V1 of PFP did not bind to NE-d1g. In other words, the binding between nedacin and NE-d1 g was demonstrated in vivo, and the binding was found to be controlled by a change in the C-terminal side of nedacin.
<実施例 6 >染色体マッピング  <Example 6> Chromosome mapping
ネダシン Sの全長遺伝子の染色体マツビングを以下のようにして行った。 Chromosomal mating of the full-length gene of nedacin S was performed as follows.
1. PCR 1. PCR
P CRは、 ジーンブリッジ 4ラジェーシヨンハイプリッドスクリーニングパネ ル (GENEBRIDGE 4 Rradiat i on Hybr id S c r eening Pane l (リサーチジエネテイクス社製) を錶型にして、 ネダ シン S遺伝子の一部をプライマ一として行った。 プライマーは、 S 1プライマ一 (センス方向) : 5,— ATTGAAGAGGTTTATGTGTTC— 3, (配 列表の配列番号 19に記載の塩基配列) と AS 1プライマー (アンチセンス方 向) : 5, -CAAGGGAGATGCACAACCACGCTA— 3, (配列 表の配列番号 20に記載の塩基配列) を DNA合成機により合成し、 それぞれ蒸 留水中に 10 pmo \/ UL 1となるように溶解したものを用いた。  The PCR uses the Genebridge 4 Radiation Hybrid Screening Panel (available from Research Genetics, Inc.) as a type II to convert a portion of the Nedacin S gene. Primers: S1 primer (sense direction): 5, ATTGAAGAGGTTTATGTGTTC-3, (base sequence described in SEQ ID NO: 19 in Sequence Listing) and AS1 primer (antisense direction): 5 , -CAAGGGAGATGCACAACCACGCTA-3, (the base sequence described in SEQ ID NO: 20 in the sequence listing) were synthesized by a DNA synthesizer, and dissolved in distilled water to give 10 pmo \ / UL1.
PCR操作は、 以下のように行った。 下記の組成からなる液を試験管に入れ、 96 °Cで 9分間放置した。  The PCR operation was performed as follows. A liquid having the following composition was placed in a test tube and left at 96 ° C for 9 minutes.
キヅ トのパネル 1 1  Kit panel 1 1
dNTP混合液 1. 5 1  dNTP mixture 1.5 1
S 1プライマ一  S 1 Primer
AS 1プライマー 1 / 1  AS 1 primer 1/1
10倍濃度の PCR緩衝液 1. 5 1  10 times concentration of PCR buffer 1.5 1
25mM M g C 1 = 1. 1  25mM M g C 1 = 1.1
蒸留水 7. 4//1  Distilled water 7.4 // 1
アンプリ Taqゴールド (登録商標、 パ一キンエルマ一社製)  Ampli Taq Gold (registered trademark, manufactured by Pakinkin Elma)
0. 1 μ.1 合計 15 /1 0.1 μ.1 Total 15/1
その後、 「 96 °Cで 30秒間、 続いて 54 °Cで 30秒間、 続いて 72 °Cで 15 秒間」 のサイクルを 35回繰り返して反応を行った。 最後に 72°Cで 7分間反応 させて、 断片の伸長反応を行い P CR操作を完了した。 その後、 PCR産物の 5 〃1を、 2. 5 %ァガロースゲル電気泳動した。  Thereafter, the cycle of “96 ° C. for 30 seconds, followed by 54 ° C. for 30 seconds, and then 72 ° C. for 15 seconds” was repeated 35 times to carry out the reaction. Finally, the reaction was carried out at 72 ° C for 7 minutes to extend the fragment, thereby completing the PCR operation. Thereafter, 5-1 of the PCR product was subjected to 2.5% agarose gel electrophoresis.
2. マヅピング  2. Mapping
その結果、 前記プライマー (S 1または AS 1) がハイブリダィズしたパネル のセクション番号を、 Wh i t e h e a d Ins t i tut e/MIT C e n t e r f or Genome Research (ht tp : www— g e n o m e . w i . mi t. edu/ cgi— b in/ cont ig/rhmap er. pi. ;) へ電子メールで送り、 該番号のパネルの染色体位置および塩基 配列の情報を得た。 その結果、 ネダシン S遺伝子は、 9番染色体短腕上に位置づ けられた。  As a result, the section number of the panel to which the primer (S1 or AS1) was hybridized was changed to the “Whitehead Insitute / MIT C enterf or Genome Research (http: www—genome.wi.mit.edu/cgi”) — E-mail to b in / cont ig / rhmap er. Pi.;) To obtain information on the chromosome position and nucleotide sequence of the panel with the number. As a result, the nedacin S gene was located on the short arm of chromosome 9.
<実施例 7 >ネダシンを認識する抗体の作製  <Example 7> Preparation of antibody recognizing nedacin
1. 抗原の作製  1. Preparation of antigen
ネダシンのアミノ酸配列に基づき、 以下のぺプチドをぺプチド合成機で合成し た。  Based on the amino acid sequence of nedacin, the following peptides were synthesized using a peptide synthesizer.
ペプチド A: RNIEEVYVGGKQVVPFSSSV (配列表の配列番号 1 に記載のアミノ酸配列の 435番目から 454番目までのアミノ酸配列) ペプチド B: LYP S YKNYT S VYDKNNLLT (配列表の配列番号 1に 記載のアミノ酸配列の 254番目から 272番目までのアミノ酸配列) Peptide A: RNIEEVYVGGKQVVPFSSSV (amino acid sequence from 435 to 454 of the amino acid sequence described in SEQ ID NO: 1 in the sequence listing) Peptide B: LYP S YKNYT S VYDKNNLLT (position 254 in the amino acid sequence described in SEQ ID NO: 1 in the sequence listing) Amino acid sequence from position 272 to position 272)
作製したペプチド 2 mgをマレイミ ド化 KLH (ピアス社製) 2mgに結合さ せ反応液を作製した。 反応はピアス社のキッ卜の説明書に記載の方法にしたがつ た。  A reaction solution was prepared by binding 2 mg of the prepared peptide to 2 mg of maleimide KLH (Pierce). The reaction was performed according to the method described in the instruction manual of Pierce.
2. 免疫  2. Immunity
前記べプチド八、 ぺプチド Bを含む抗原液( 1〃g/ml)それそれについて、 100 /1、 PBS 0. 5ml及びフロイントコンプリートアジュバンド (デ ィフコ社製) 0. 5mlをシリンジに取り、 混合してェマルジヨンとし、 ゥサギ の背に 4箇所に分けて皮下接種した。 The antigen solution containing the peptide eight and peptide B (1 μg / ml) 100/1, 0.5 ml of PBS and 0.5 ml of Freund's complete adjuvant (manufactured by Difco) were taken in a syringe, mixed to give an emulsion, and subcutaneously inoculated into four parts on the back of a perch.
1週間後、 2回目の免疫を行った。 2回目からはアジュバンドをフロイントイ ンコンプリートアジュバンド (ディフコ社製) に変えて免疫を行った。 その他の 操作は 1回目と同様である。 2回目以降は 1週間間隔を開けて、 合計 6回免疫を 行った。  One week later, a second immunization was performed. From the second time on, immunization was performed by changing the adjuvant to Freund's complete adjuvant (Difco). Other operations are the same as the first operation. The second and subsequent immunizations were performed at weekly intervals for a total of six immunizations.
3. 抗体の精製  3. Antibody purification
最終免疫の 1週間後、 採血した。 この血液を室温で 3時間静置し、 十分に血液 凝固を行った後、 3, 000 r pmで 5分間遠心分離を行い、 上清 (血清) を回 収した。  One week after the final immunization, blood was collected. The blood was allowed to stand at room temperature for 3 hours to sufficiently coagulate the blood, followed by centrifugation at 3,000 rpm for 5 minutes, and the supernatant (serum) was collected.
この血清に飽和硫安を最終濃度が 50%になるように加えて塩祈した。 このサ ンプルを遠心分離して、 抗体が含まれる画分を沈殿させた。 その後、 沈殿物を P BSに溶解し、 さらに PB Sに対して塩析した。  Saturated ammonium sulfate was added to this serum to a final concentration of 50%, followed by salt prayer. This sample was centrifuged to precipitate a fraction containing the antibody. After that, the precipitate was dissolved in PBS and further salted out to PBS.
その後、 プロテイン Gセファロ一スカラム (登録商標、 フアルマシア社製) を 用いて、 抗体をァフィ二ティ一精製した。 その結果、 全量で 5 mgのペプチド特 異的抗体が得られた。  Thereafter, the antibody was affinity purified using a protein G Sepharose column (registered trademark, manufactured by Pharmacia). As a result, a total of 5 mg of the peptide-specific antibody was obtained.
産業上の利用可能性 Industrial applicability
本発明のネダシン (スプライシングァイソフォームを含む) またはその変異体 は NE— d 1 gの機序解析に有効である。  Nedacin (including splicing isoform) or a mutant thereof of the present invention is effective for analyzing the mechanism of NE-d1 g.
本発明のネダシンまたはその変異体をコードするポリヌクレオチド、 そのう ちの連続する 12塩基以上の塩基配列からなるポリヌクレオチドまたはそれらの ポリヌクレオチドにハイプリダイズするポリヌクレオチド (アンチセンスポリヌ クレオチド) は、 cDNAライブラリ一等からネダシンまたはその変異体遺伝子 をスクリ一ニングするためのプローブとして使用可能である。  The polynucleotide encoding the nedacin or a mutant thereof of the present invention, a polynucleotide consisting of a continuous base sequence of 12 or more bases, or a polynucleotide (antisense polynucleotide) that hybridizes to the polynucleotide, is a cDNA. It can be used as a probe for screening nedacin or its mutant gene from a library or the like.
さらに本発明のアンチセンスポリヌクレオチドはネダシンまたはその変異体の 生合成を阻害することができる。 In addition, the antisense polynucleotide of the present invention is characterized in that nedacin or a mutant thereof Biosynthesis can be inhibited.
本発明の抗体は、 ネダシンの発現等の機能の解明や悪性腫瘍の形成機構の解明の ために使用可能である。 The antibody of the present invention can be used for elucidating functions such as expression of nedacin and elucidating the formation mechanism of malignant tumors.

Claims

請求の範囲 The scope of the claims
1. NE— d 1 gと結合する分子量 51 kDの蛋白質。  1. NE—a 51 kD protein that binds to 1 g of d.
2. 配列表の配列番号 1、 3、 5または 7に記載のアミノ酸配列から なる蛋白質。  2. A protein comprising the amino acid sequence of SEQ ID NO: 1, 3, 5 or 7 in the sequence listing.
3. 配列表の配列番号 1に記載のアミノ酸配列において一または複数 のアミノ酸を置換、 欠失または付加させたアミノ酸配列からなり、 かつ NE— d 1 gと結合する蛋白質。  3. A protein comprising an amino acid sequence in which one or more amino acids have been substituted, deleted or added in the amino acid sequence of SEQ ID NO: 1 in the sequence listing, and which binds to NE-d1g.
4. 請求項 1ないし 3のいずれか一項に記載の蛋白質をコードするポ リヌクレオチド。  4. A polynucleotide encoding the protein according to any one of claims 1 to 3.
5. 請求項 4に記載のポリヌクレオチドのうちの一部であって、 連続 する 12塩基以上からなるポリヌクレオチド。  5. A part of the polynucleotide according to claim 4, wherein the polynucleotide comprises 12 or more consecutive bases.
6. 請求項 4に記載のポリヌクレオチドのアンチセンス鎖の塩基配列 からなるアンチセンスポリヌクレオチドまたは該アンチセンスポリヌクレオチド の誘導体のうちの一部であって、 連続する 12塩基以上からなるポリヌクレオチ ド。  6. An antisense polynucleotide comprising the nucleotide sequence of the antisense strand of the polynucleotide according to claim 4, or a part of a derivative of the antisense polynucleotide, wherein the polynucleotide comprises 12 or more consecutive bases. .
7. 化学修飾された請求項 4ないし 6のいずれか一項に記載のポリヌ クレオチド。  7. The polynucleotide according to any one of claims 4 to 6, which is chemically modified.
8. 配列表の配列番号 2、 4、 6または 8に記載の塩基配列からなる D N Aのホモログである c D N Aを取得する方法であって、 請求項 5ないし 7の 、ずれか一項に記載のポリヌクレオチドのコード領域部分からなるポリヌクレオ チドをプロ一ブとして、 cDNAライブラリ一から該プローブとしたポリヌクレ ォチドとハイブリダィズする cDNAを取得する方法。  8. A method for obtaining cDNA which is a homolog of DNA consisting of the nucleotide sequence of SEQ ID NO: 2, 4, 6, or 8 in the sequence listing, wherein the cDNA according to any one of claims 5 to 7 A method in which a polynucleotide comprising the coding region of a polynucleotide is used as a probe, and a cDNA that hybridizes with the polynucleotide used as the probe is obtained from a cDNA library.
9. 配列表の配列番号 2、 4、 6または 8に記載の塩基配列からなる 9. Consists of the nucleotide sequence of SEQ ID NO: 2, 4, 6 or 8 in the sequence listing
DNAのホモログであって、請求項 8に記載の方法によって取得される cDNA。 A cDNA which is a homolog of DNA and which is obtained by the method according to claim 8.
10. 請求項 2に記載の蛋白質のホモログであって、 請求項 9に記載 の cDN Aがコードするアミノ酸配列からなる蛋白質。 請求項 1、 2、 3または 1 0に記載の蛋白質を認識する抗体。 10. A homolog of the protein according to claim 2, wherein the protein comprises the amino acid sequence encoded by the cDNA according to claim 9. An antibody that recognizes the protein according to claim 1, 2, 3, or 10.
PCT/JP1998/003740 1998-02-25 1998-08-24 PROTEIN BINDING TO NE-dlg WO1999043702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002322070A CA2322070A1 (en) 1998-02-25 1998-08-24 Protein binding to ne-dlg

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10043552A JPH11239483A (en) 1998-02-25 1998-02-25 Protein binding to ne-dlg
JP10/43552 1998-02-25

Publications (1)

Publication Number Publication Date
WO1999043702A1 true WO1999043702A1 (en) 1999-09-02

Family

ID=12666928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003740 WO1999043702A1 (en) 1998-02-25 1998-08-24 PROTEIN BINDING TO NE-dlg

Country Status (3)

Country Link
JP (1) JPH11239483A (en)
CA (1) CA2322070A1 (en)
WO (1) WO1999043702A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132701A2 (en) * 2005-04-04 2006-12-14 Rutgers, The State University Methods and kits for regulation of microtubule assembly and dendrite growth and branching
US7790843B2 (en) * 2004-01-12 2010-09-07 Firestein-Miller Bonnie L Cypin polypeptide and fragments thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ONCOGENE, Vol. 14, No. 20, (1997), MAKINO K. et al., "Cloning and Characterization of NE-dlg: A Novel Homolog of the Drosophila Disc Large (dlg) Tumor Suppressor Protein Interacts with the APC Protein", p. 2425-2433. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790843B2 (en) * 2004-01-12 2010-09-07 Firestein-Miller Bonnie L Cypin polypeptide and fragments thereof
WO2006132701A2 (en) * 2005-04-04 2006-12-14 Rutgers, The State University Methods and kits for regulation of microtubule assembly and dendrite growth and branching
WO2006132701A3 (en) * 2005-04-04 2007-06-28 Univ Rutgers Methods and kits for regulation of microtubule assembly and dendrite growth and branching
US8283440B2 (en) 2005-04-04 2012-10-09 Firestein-Miller Bonnie L Snapin and methods for regulation of microtubule assembly and dendrite growth and branching

Also Published As

Publication number Publication date
CA2322070A1 (en) 1999-09-02
JPH11239483A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
JP3255699B2 (en) Human IL-2 receptor gamma chain molecule
CA2479498A1 (en) Compositions and methods for the treatment of tumor
WO2001048189A1 (en) Novel guanosine triphosphate-binding protein-coupled receptors, genes thereof and production and use of the same
Marcu et al. Molecular cloning and functional expression of chromaffin cell scinderin indicates that it belongs to the family of Ca 2+-dependent F-actin severing proteins
US7601349B2 (en) GIPs, a family of polypeptides with transcription factor activity that interact with Goodpasture antigen binding protein
WO1999054505A1 (en) A protein that enhances expression of potassium channels on cell surfaces and nucleic acids that encode the same
WO1999043702A1 (en) PROTEIN BINDING TO NE-dlg
JPH11235186A (en) Nucleic acid coding for sodium channel of nervous tissue
AU714793B2 (en) Novel stress proteins
EP1197554A1 (en) Proliferation differentiation factor
JPH1075781A (en) Human proteasome subunit p58 protein and specific antibody against the same
JP3920573B2 (en) Nucleic acids encoding transferrin receptor-like proteins and related products
US7427666B2 (en) Antibody directed against a ubiquitin-specific protease occurring in the brain
JP4348504B2 (en) Human TSC403 gene and human ING1L gene
KR100427645B1 (en) Human melanocortin-4 receptor specific antibody and the preparation method thereof
JP4499926B2 (en) Tumor suppressor gene
CN107056950A (en) A kind of fusion protein comprising keyhole limpet hemocyanin fragment and its application
WO1999015558A1 (en) Warts protein, polynucleotide encoding the same, antisense polynucleotide thereof, and antibody recognizing the protein
US20040115682A1 (en) Novel scavenger receptor class a protein
WO1999057269A1 (en) Human hrpi
WO1999009060A1 (en) 1(3)mbt PROTEIN, POLYNUCLEOTIDE CODING FOR SAID PROTEIN, ANTISENSE POLYNUCLEOTIDE THEREOF, AND ANTIBODY RECOGNIZING SAID PROTEIN
KR100191125B1 (en) New sw13-related gene purified from mouse and the protein expressed from that
JP4161103B2 (en) Sodium-independent transporter that transports small neutral amino acids and its gene, and a method for analyzing the function of the transporter by creating a fusion protein that makes it possible to specify its function
WO2000061744A1 (en) Novel fetal genes
JPH11222499A (en) Protein inhibiting proteasome and polynucleotide encoding the sane

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2322070

Country of ref document: CA

Ref country code: CA

Ref document number: 2322070

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09622828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: CA