WO1999041488A1 - Surface-assisted continuous underground mining - Google Patents
Surface-assisted continuous underground mining Download PDFInfo
- Publication number
- WO1999041488A1 WO1999041488A1 PCT/US1999/003322 US9903322W WO9941488A1 WO 1999041488 A1 WO1999041488 A1 WO 1999041488A1 US 9903322 W US9903322 W US 9903322W WO 9941488 A1 WO9941488 A1 WO 9941488A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- belt
- belt conveyor
- supporting
- conveyor
- mining
- Prior art date
Links
- 238000005065 mining Methods 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 claims description 37
- 238000003860 storage Methods 0.000 claims description 30
- 230000005484 gravity Effects 0.000 claims description 16
- 230000006872 improvement Effects 0.000 claims description 5
- 238000005096 rolling process Methods 0.000 claims 4
- 239000003245 coal Substances 0.000 abstract description 17
- 238000005520 cutting process Methods 0.000 abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 238000004891 communication Methods 0.000 abstract description 3
- 238000005461 lubrication Methods 0.000 abstract description 2
- 238000012546 transfer Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 238000007792 addition Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000008400 supply water Substances 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 241001625808 Trona Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010442 halite Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000004058 oil shale Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G21/00—Supporting or protective framework or housings for endless load-carriers or traction elements of belt or chain conveyors
- B65G21/10—Supporting or protective framework or housings for endless load-carriers or traction elements of belt or chain conveyors movable, or having interchangeable or relatively movable parts; Devices for moving framework or parts thereof
- B65G21/14—Supporting or protective framework or housings for endless load-carriers or traction elements of belt or chain conveyors movable, or having interchangeable or relatively movable parts; Devices for moving framework or parts thereof to allow adjustment of length or configuration of load-carrier or traction element
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C41/00—Methods of underground or surface mining; Layouts therefor
- E21C41/16—Methods of underground mining; Layouts therefor
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F13/00—Transport specially adapted to underground conditions
- E21F13/08—Shifting conveyors or other transport devices from one location at the working face to another
- E21F13/083—Conveyor belts removing methods or devices
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F17/00—Methods or devices for use in mines or tunnels, not covered elsewhere
- E21F17/04—Distributing means for power supply in mines
- E21F17/06—Distributing electric power; Cable networks; Conduits for cables
Definitions
- This invention pertains in general to the field of underground mining and, in particular, to a novel adaptation of continuous-miner development and retreat mining techniques for shortwall and longwall to recover underground reserves under shallow cover.
- This invention is directed at providing an affordable approach to the exploitation of such shallow reserves by combining efficient seam-mining practices, such as the use of continuous miners, shortwall and longwall, with access to the reserve by means of a vertical shaft equipped with a novel continuous system for feeding infrastructure to the mining face.
- the invention materially enhances the feasibility of mining shallow reserves with no direct access to the seam.
- the invention is described in the context of coal mining, but its principles are equivalently applicable to any material suitable for extraction with continuous mining equipment, such as lignite, oil shale, limestone, anthracite, trona, potash, halite, bauxite, gypsum, and other sedimentary rocks that host oxide, sulfide or carbonaceous gold ores and/or other poly-metallic minerals.
- the invention is described in terms of a mine developed through a shaft, but it is equivalently applicable to mines where access to the reserves is obtained through entries within the ore seam.
- the primary goal of this invention is a method of mining underground coal that does not require the conventional in-seam support infrastructure of underground operations ,
- Another important objective is a system of support infrastructure that can be at least partially assembled on 3 the surface and fed continuously underground, thereby minimizing the piecemeal progress and corresponding shutdowns that are typical of underground mining.
- Another objective is a method of providing mine support infrastructure from the surface that encompasses all utility systems necessary to a continuous mining operation, including belt and belt structure, hydraulic lines, pneumatic hoses, electric cables and communication cables.
- Another goal is a method of providing infrastructure that is compatible for use with continuous underground-mining equipment, such as continuous miners, shortwall and longwall.
- Yet another objective is a method of mining that is particularly suitable for the economic recovery of coal reserves left under shallow cover behind an inaccessible highwall or outcrop.
- an objective of the invention is a mining technique that is compatible with and suitable for direct implementation with prior-art mining methods and equipment.
- the present invention consists of sinking a vertical shaft to reach a coal reserve through a shallow cover and using the shaft for providing utilities and support infrastructure virtually on a continuous basis directly from the surface to the mining face of the underground operation.
- a flexible belt structure system incorporates water supply and discharge lines, power and communication cables, hydraulic supply and return lines, bulk lubrication delivery systems, and belt support structure for underground coal haulage.
- the system consists of modular 4 components that are added at the surface and connected underground to form a continuous support structure to the working area, such that the infrastructure necessary for the mining operation is expanded or reduced to keep up with the position of the mining face without interruption of operation.
- the belt structure is mounted on stationary rail or cable fixed to the roof of the mine and is rolled forward or backwards in the belt entry as the mine advances or retreats, as applicable.
- the flexible structure system is fed through the mine shaft and is attached to a monorail or a cable guide hung horizontally in the seam entry to the face.
- the rail is bolted to the roof as part of the normal roof control plan as the mining face advances, thereby extending the reach of the belt and allowing it to keep up with the advance of the continuous miner.
- On retreat, unused rail segments can be removed or, preferably, left attached to the roof bolts behind the retreating face.
- the belt structure is mounted on rollers hung from the rail, so that the belt's tail loading end or "tail piece," which is part of a mobile boot end, remains with the continuous miner tail or the discharge of the stage loader conveyor from a longwall as it moves in advance or retreat.
- Each module of the structure is articulated to permit bending as necessary to reach the mining face.
- the belting is routed to a belt drive on the surface of the mine through a vertical shaft.
- This shaft is used to provide a gravity belt storage unit that affords exceptional storage capacity.
- the belt is laced around the conveyor drive unit at the top of the shaft. This permits the slack side of the belt to be looped and weighted along the length of the shaft, providing a large vertical gravity storage unit that eliminates the need for the more limited horizontal 5 belt storage units used in traditional underground mining operations.
- the belt can be advanced continuously for distances heretofore unattainable before a shut-down is required for splicing. Because the belt storage unit hangs vertically in the shaft, the belt is appropriately and simply counter-weighted for proper tension.
- Another aspect of the invention relates to the placement of the belt drive on the surface. This location permits direct access to the belting on the surface for splicing additions and removals. Surface splicing is facilitated with surface handling equipment and does not require underground transport of large rolls of belting. Belt addition and removal are made during shut-down periods scheduled for such purposes, which are shorter than they would be underground.
- the placement of the belt drive on the surface also affords environmental advantages. Since the belt on the surface is away from the transfer point of coal or ore, the amount of dust in the atmosphere and accumulated on the ground in the immediate area is less than it would be underground. In the case of coal, the resulting fresh atmosphere at the surface makes it possible to use motors without the safe rating required for underground applications. In addition, the cleaner air environment makes it possible to utilize more reliable vulcanized- rubber splices rather than the more common mechanical splices that are required in typically dirty underground environments.
- pipes, cables and hoses that are normally attached to the roof or to the belt structure underground and are advanced by shutting each system down and adding lengths of hardware, are instead fed to the mine continuously from the surface 6 where each system is stored in large quantity in a separate unit capable of continuous delivery.
- Each pipe, cable and hose is laced through each modular segment of the flexible belt structure in continuous fashion from the surface.
- Each module is completely and incorporated into the infrastructure system near the transfer point of the underground belt from the face.
- the modules which include top and bottom belt rollers, are added to the system as the mining face advances (or removed as it retreats, as applicable).
- Fig. 1 is a schematic cross-section of an underground coal mine wherein the seam is accessed through a vertical shaft 7 according to the present invention and then developed by traditional continuous mining techniques.
- Fig. 1A is a schematic top view of an underground coal mine plan suitable for the invention, showing the location of the entries and cross-cuts of a 2-entry development system with continuous miners in each entry.
- Fig. 2 is an enlarged view showing the shaft portion of the mine illustrated in Fig. 1.
- Fig. 2A is a further enlarged view of the transfer point of the underground belt showing the assembly of the structure of the invention.
- Fig. 3 is an enlarged view showing the mining face portion of the mine illustrated in Fig. 1.
- Fig. 4 is an elevational front view of a belt-structure module according to the invention.
- Fig. 5 is an elevational side view of the belt-structure module of Fig. 4.
- Fig. 6 is a top view of the belt-structure module of Fig. 4.
- Fig. 7 is a top plan view of the surface facilities of a mine developed with the infrastructure system of the invention.
- the heart of this invention lies in the development of a modular belt structure and the idea of combining all utility delivery systems for an underground mine in a 8 single movable inf astructure system capable of being integrated with the advance and retreat of continuous mining equipment.
- continuous mining equipment is defined to encompass not only conventional continuous miners, but also longwall and shortwall cutting machines and any other equipment capable of continuous production in conjunction with a conveyor belt reaching the vicinity of the cutting face.
- a vertical shaft and conventional seam-entry development for coal access and removal by continuous miner are used for illustration, but the concepts of the invention are applicable to any type of in-seam continuous mining.
- a continuous miner 18 cuts the mining face 20 and advances the entry 16 underground, a continuous belt 22 is provided to move the coal production to the surface.
- the underground belt 22 links the mining face 20 to a transfer point where another belt 24 is loaded to move the coal toward the surface via an auxiliary belt entry (not shown in the drawings).
- each module 26 of the belt structure is hung on one or more rollers riding on a rail or cable 28 attached to the roof 30 of the entry 16.
- Rail is preferred to cable because it does not require 9 tensioning to support the belt structure, but the two are functionally the same for the purposes of the invention.
- each belt structure module includes a top bracket with a block and pulley wheel engaging the rail.
- Each segment of rail is suspended to the roof 30 by means of a bracket attached to roof bolts 32 during normal roof support work.
- each new segment of rail 28 must be added in good alignment with the rail already in place to ensure continuity and a smooth transition between segments.
- each module 26 of belt structure is able to ride forward or backward along the rail 28 in the entry 16 as necessary to allow the belt's tail piece 29 to keep up with the cutting face in advance or retreat mining, respectively.
- the belt line 22 is driven by a belt drive 38 preferably on top of the shaft 10 at the surface of the mine. This may be achieved by routing the belt 22 under the connecting belt 24 after the coal is discharged at the transfer point 40. Through a system of rollers 42, the tight top portion of the belt line 22 is pulled up the shaft 10 to the belt drive 38. Then, according to one aspect of the present invention, the slack portion of the belt 22 is looped through a vertical belt storage unit 44 housed within the shaft 10 of the mine. A portion of the belt line 22 is suspended in the shaft between two rollers at the surface and tensioned by a weight 46 sufficient to ensure proper tension in the return side of the belt.
- the gravity storage unit of the invention provides a significant improvement over traditional belt advance techniques. Obviously, similar advantages exist when the belt line is shortened during retreat mining.
- assembly of the modular belt structure is completed underground at an assembly station near the transfer point 40, shown more particularly in Fig. 2A.
- each module 26 consists of a
- each module 26 includes longitudinal side
- 35 members 54 pivotally attached at each end to the side members of adjacent modules through hinges 56 that impart flexibility to the chain of modules 26 that constitutes 11 the movable infrastructure of the invention.
- the midpoints of each pair of longitudinal side members 54 are connected in H-shape fashion by a bottom idler roller 58 for supporting the slack side of the belt line 22.
- the top component 48 comprises a hanging bracket 60 releasably attached to a troughing idler frame 62 that includes multiple troughing idler rollers 64 (normally three) mounted on corresponding supporting axles 66.
- rollers 64 are positioned so as to form a trough to cause the top carrying side of the belt line 22 to assume a concave shape to prevent spillage during haulage.
- a cross beam 68 provides the structural support required for retaining the integrity of the troughing idler frame 62.
- the hanging bracket 60 is preferably attached to the idler frame 62 by means of two releasable clamps 70 that make it possible to totally disconnect it from the rest of the belt-structure module 26. As detailed below, this feature simplifies the process of adding new modules to the movable train of belt structure underground.
- the bracket 60 is equipped with a pulley or roller wheel 72 (see Fig. 4) adapted for engagement with a rail 28 suspended from the roof R of the mine, such that the corresponding belt- structure module can tram forward or backward along the mine entry 16 as necessary to keep up with the mobile boot end 34.
- a tramming motor, winch or equivalent unit 74 is shown schematically in the drawings to indicate equipment that would necessarily be used to facilitate the motion of the train of modules 26 along the rail 28, well within the common expertise of underground mine operators.
- the rail 28 is shown schematically in Fig. 4 supported by a roof bracket 76 attached to the mine's roof R by a roof bolt 78 used for roof support.
- the actual geometry of a roof bracket 76 suitable for practicing the invention could vary widely depending on roof conditions 12 and equipment used for roof control, but its functional implementation would be well within the general knowledge of those skilled in the art.
- the bottom component 50 of each module 26 also includes a bottom bracket 80 hingedly attached to one end of the side members 54 for supporting cables, hoses, pipes and other components of underground utility systems.
- a bottom bracket 80 hingedly attached to one end of the side members 54 for supporting cables, hoses, pipes and other components of underground utility systems.
- one side of the bottom bracket 80 is attached to an end of one of the side members 54 through a hinge 82, while the other side of the bottom bracket is attached to a corresponding end of the other side member 54 in the module by means of a releasable clamp 84.
- the bottom components 50 of the modules 26 are assembled and connected to one another at the surface of the shaft 10 and fed underground piece by piece on a continuous chain reaching an underground assembly station 86 located near the discharge end or head roller 88 of the belt line 22 (see Fig. 2). Because of their flexible connection, the chain of bottom components 50 is easily suspended from a retaining surface structure 90 and lowered by gravity and rolled toward the modules 26 already in service at the station 86. At the time of assembly of each bottom component 50 at the surface, all utility lines required by the mining operation are encased in the bottom bracket 80 and also fed underground, so that they can be provided continuously, without interruption, as the cutting face advances.
- FIG. 7 illustrates a set up that could be used to implement this aspect of the invention.
- one such system comprises a central distribution and extension or reduction station 100 from where all utilities are provided through the cables and hoses reaching underground in the bottom component 50 of the infrastructure of the invention.
- mine supply water is fed to a water supply pipe 102 from a supply water tank 104, and mine discharge water is returned to the surface in a return pipe 106 and stored in a tank 108 for periodic discharge.
- Electrical power provided by a conventional substation 110, is delivered at different voltages through appropriate power cables 112, and hydraulic fluid is provided from a pumping station 114 in a pipe 116.
- hydraulic fluid is provided from a pumping station 114 in a pipe 116.
- compressed air and telecommunication wires are provided through a suitable pipe 118 and cable 120, as well as other utilities that may be needed underground. All of these pipes and cables are combined with conveyor belt provided to the station 100 in spools 122 in sufficient length to meet the on-line storage requirements for continuous delivery to the mine.
- the online storage for the belt and the various cables and pipes hereinafter collectively called “mining systems” for simplicity, is provided by a take-up structure 124 comprising two large drums around which the mining systems 14 are looped between the distribution station 100 and mouth of the shaft 10.
- a rotatable drum is mounted a stationary unit 126 on top of the shaft 10 such that the mining systems can be lowered into the shaft in continuous 5 fashion.
- additional units of the bottom component 50 delivered to the station 100 such as by trucks 128, are assembled around the belt and various pipes and cables, as seen in Fig. 4, and
- a braking unit 134 is provided to block the movement of the mining systems from and to the station
- a counterweight 136 is provided to pull the car 132 in the opposite direction through a cable/pulley unit 138.
- the take-up unit 124 From the configuration of the take-up unit 124, it is easy 30 to see how it provides a storage for the mining systems equal to twice the distance between the nearest and farthest positions the car 132 can reach between the braking unit 134 and the cable/pulley unit 138.
- the position 35 of the mobile drum unit 130 is adjusted proportionally to maintain the appropriate tension in the mining systems being fed to the mine.
- no additional length of mining systems is available in storage. At that point, new segments of pipes, cables and belt are spliced or otherwise added to the mining systems and the mobile drum unit 130 is moved away to provide proportionate storage room.
- the mobile boot end 34 seen in Figs. 1 and 3 is moved forward to keep up with the continuous miner 18 cutting at the advancing face 20.
- the roof bolter 36 Prior to each step forward, the roof bolter 36 is used to install new segments of rail 28 that enable the forward progress of the train of structure modules 26 that carry the belt and mining systems to the mobile boot end 34.
- the chain of bottom components 50 assembled at the surface also advances toward the mobile boot end 34 and is combined with a top component 48 of structure at the underground assembly station 86.
- the roller wheel 72 In order to complete the assembly of each module 26 at station 86 (see Fig. 2A) , the roller wheel 72 is hung from the rail 28 and at least one of the clamps 70 is opened to allow the insertion of the top side of the belt 22 between the hanging bracket 60 and the troughing idler frame 62 (see Fig. 4).
- a troughing idler frame 62 is first secured to each bottom component 50 reaching the assembly station 86 and then attached to a hanging bracket 60 that has already been hung on the rail 28, thereby producing a new structure module 26 that is ready to roll with the rest of the train already in operation.
- the surface-assisted continuous underground mining method 16 of the invention is fundamentally different from all conventional underground or surface mining systems, where belt structure and related mine support facilities are added or removed in segments at predetermined stages of mine advance or retreat, as applicable.
- the periodic shutdowns attendant to conventional practice cause significant loss of production time and corresponding inefficiencies.
- the method of the invention also virtually eliminates the need for storage and mining-systems extension work underground, thereby greatly reducing underground haulage of materials and the attendant support equipment, organization and cost.
- these advantages constitute a substantial improvement over, and represent an exciting alternative to, the methods of advancing and retreating underground mining systems previously used in the art.
- system of the invention can be implemented with similar advantages in a mine developed through conventional in-seam entries, rather than through a vertical shaft. Except for the aspect of the vertical belt storage and take up unit, all other features of the invention can be implemented in equivalent fashion through horizontal or inclined entries to the mining face.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Remote Sensing (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Hydraulic Turbines (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99907080A EP1056927A4 (en) | 1998-02-17 | 1999-02-16 | Surface-assisted continuous underground mining |
CA002321064A CA2321064C (en) | 1998-02-17 | 1999-02-16 | Surface-assisted continuous underground mining |
AU26829/99A AU745999B2 (en) | 1998-02-17 | 1999-02-16 | Surface-assisted continuous underground mining |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/024,438 US5997101A (en) | 1998-02-17 | 1998-02-17 | Surface-assisted continuous underground mine conveyor |
US09/024,438 | 1998-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999041488A1 true WO1999041488A1 (en) | 1999-08-19 |
Family
ID=21820588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/003322 WO1999041488A1 (en) | 1998-02-17 | 1999-02-16 | Surface-assisted continuous underground mining |
Country Status (5)
Country | Link |
---|---|
US (1) | US5997101A (en) |
EP (1) | EP1056927A4 (en) |
AU (1) | AU745999B2 (en) |
CA (1) | CA2321064C (en) |
WO (1) | WO1999041488A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014036616A1 (en) * | 2012-09-10 | 2014-03-13 | Bulk Solutions Pty Ltd | A roof mountable support system |
CN104594902A (en) * | 2014-12-31 | 2015-05-06 | 龙口矿业集团有限公司 | Belt head chamber of short-flat neck upper bunker |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6799809B2 (en) * | 1999-02-16 | 2004-10-05 | Dm Technologies Ltd. | Method and apparatus for remote self-propelled conveying in mineral deposits |
US7739959B2 (en) * | 2006-09-19 | 2010-06-22 | Swanson Industries, Inc. | Over/under monorail system for longwall mining operations |
WO2009073923A1 (en) * | 2007-12-11 | 2009-06-18 | John Bremhorst | Improvements relating to belt conveyors and mining |
CA2869237C (en) * | 2012-04-03 | 2020-08-25 | Dw Technologies Pty Ltd | Conveyor system |
US9140120B2 (en) | 2012-09-21 | 2015-09-22 | Joy Mm Delaware, Inc. | Lump breaker for mining machine |
CA2964632C (en) * | 2014-10-17 | 2023-05-23 | Conveyor Manufacturers Australia Pty Ltd | Conveyor system and support frame therefor |
US20180195390A1 (en) * | 2017-01-09 | 2018-07-12 | Seneca Industries Inc. | Mining underground formations |
AU2018315054B2 (en) * | 2017-08-07 | 2024-06-13 | Fortescue Metals Group Ltd | Modular relocatable conveyor |
WO2021045722A1 (en) * | 2019-09-03 | 2021-03-11 | Loyer Harold Bernard | Mining apparatus and methods |
US11148885B1 (en) * | 2020-12-29 | 2021-10-19 | Dos Santos International | Trailing sandwich conveyor system for continuous mining machines along a high-angle tunnel |
CN113135438B (en) * | 2021-04-25 | 2024-07-23 | 上海海事大学 | Underground container logistics loading and unloading system based on deep underground passage |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2826402A (en) * | 1953-05-11 | 1958-03-11 | Union Carbide Corp | Remotely controlled mining system |
US4339031A (en) * | 1979-10-01 | 1982-07-13 | Joy Manufacturing Company | Monorail suspended conveyor system |
US4784257A (en) * | 1987-11-27 | 1988-11-15 | Consolidation Coal Company | Conveyor system including a re-railer |
US4896764A (en) * | 1988-08-08 | 1990-01-30 | Tg Soda Ash, Inc. | Monorail advanced system for conveyors in a mining apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3951459A (en) * | 1974-10-16 | 1976-04-20 | Honeycutt Jr Dewitt W | Coal mining apparatus and method |
US4869358A (en) * | 1984-04-02 | 1989-09-26 | Chandler Charles L | Conveyor belt system for a continuous mining machine |
CA1239113A (en) * | 1985-09-13 | 1988-07-12 | Dennis Mraz | Roof mounted conveyor idler frame |
DE4116662C2 (en) * | 1991-05-22 | 1994-03-17 | Nlw Foerdertechnik Gmbh | Device for transferring the coal from a face conveyor to a belt conveyor in a coal mine that is stationary in an accompanying section |
JPH09144488A (en) * | 1995-11-20 | 1997-06-03 | Yokohama Rubber Co Ltd:The | Conveyer belt device for vertical conveyance |
JPH09273393A (en) * | 1996-04-04 | 1997-10-21 | Furukawa Co Ltd | Belt conveyor device |
-
1998
- 1998-02-17 US US09/024,438 patent/US5997101A/en not_active Expired - Lifetime
-
1999
- 1999-02-16 CA CA002321064A patent/CA2321064C/en not_active Expired - Fee Related
- 1999-02-16 AU AU26829/99A patent/AU745999B2/en not_active Ceased
- 1999-02-16 WO PCT/US1999/003322 patent/WO1999041488A1/en active IP Right Grant
- 1999-02-16 EP EP99907080A patent/EP1056927A4/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2826402A (en) * | 1953-05-11 | 1958-03-11 | Union Carbide Corp | Remotely controlled mining system |
US4339031A (en) * | 1979-10-01 | 1982-07-13 | Joy Manufacturing Company | Monorail suspended conveyor system |
US4784257A (en) * | 1987-11-27 | 1988-11-15 | Consolidation Coal Company | Conveyor system including a re-railer |
US4896764A (en) * | 1988-08-08 | 1990-01-30 | Tg Soda Ash, Inc. | Monorail advanced system for conveyors in a mining apparatus |
Non-Patent Citations (1)
Title |
---|
See also references of EP1056927A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014036616A1 (en) * | 2012-09-10 | 2014-03-13 | Bulk Solutions Pty Ltd | A roof mountable support system |
CN104594902A (en) * | 2014-12-31 | 2015-05-06 | 龙口矿业集团有限公司 | Belt head chamber of short-flat neck upper bunker |
Also Published As
Publication number | Publication date |
---|---|
CA2321064C (en) | 2005-03-22 |
EP1056927A4 (en) | 2005-03-30 |
US5997101A (en) | 1999-12-07 |
AU2682999A (en) | 1999-08-30 |
CA2321064A1 (en) | 1999-08-19 |
EP1056927A1 (en) | 2000-12-06 |
AU745999B2 (en) | 2002-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2376476C2 (en) | Hauling device for continuous hauling of material got under ground | |
US5997101A (en) | Surface-assisted continuous underground mine conveyor | |
CA2167182C (en) | Highwall mining system | |
AU2013243225B2 (en) | Conveyor system | |
CN201496069U (en) | Bridge type transfer machine with large span | |
US11148885B1 (en) | Trailing sandwich conveyor system for continuous mining machines along a high-angle tunnel | |
US4387798A (en) | Cascading conveyor system | |
US4784257A (en) | Conveyor system including a re-railer | |
US5938289A (en) | High wall mining conveyor system | |
CN115402730A (en) | Intelligent fast digging follow-up continuous transportation system for coal mine | |
CA1169441A (en) | Energy supply equipment for extraction machines in mine workings | |
EP0795680B1 (en) | Shortwall mining equipment for extraction of pillars in underground coal mines | |
US2845166A (en) | Belt conveyor | |
US4771881A (en) | Materials handling system | |
WO2019204595A1 (en) | Method for surface mining using a conveyor system | |
MXPA00007287A (en) | Surface-assisted continuous underground mining | |
CN1084821C (en) | Transport apparatus for use in mines | |
CN111958219A (en) | Belt replacing method of button sewing belt conveyor | |
RU2019474C1 (en) | Method of replacing belt of conveyor positioned in mine entry | |
CN220906253U (en) | Transportation device for transferring and transporting coal flow from roadway to inclined roadway | |
US2753981A (en) | Trippers for belt conveyors | |
SU1395824A1 (en) | Mounting and conveying arrangement for entry-driving set | |
CN214660150U (en) | Thick coal seam HLG type series scraping and cutting machine | |
RU1794196C (en) | Machine for construction of filling mass | |
AU1012899A (en) | Transport apparatus for use in mines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2000/007287 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2321064 Country of ref document: CA Ref country code: CA Ref document number: 2321064 Kind code of ref document: A Format of ref document f/p: F |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 26829/99 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999907080 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1999907080 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 26829/99 Country of ref document: AU |