WO1999039084A1 - Combined cycle power generation plant - Google Patents

Combined cycle power generation plant Download PDF

Info

Publication number
WO1999039084A1
WO1999039084A1 PCT/JP1998/000352 JP9800352W WO9939084A1 WO 1999039084 A1 WO1999039084 A1 WO 1999039084A1 JP 9800352 W JP9800352 W JP 9800352W WO 9939084 A1 WO9939084 A1 WO 9939084A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
cooling system
temperature
gas turbine
combined cycle
Prior art date
Application number
PCT/JP1998/000352
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Yasuraoka
Kouzo Toyama
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP20026696A priority Critical patent/JP3835859B2/en
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to DE19882264T priority patent/DE19882264B4/en
Priority to PCT/JP1998/000352 priority patent/WO1999039084A1/en
Priority to US09/381,952 priority patent/US6442926B2/en
Priority to CA002285449A priority patent/CA2285449C/en
Publication of WO1999039084A1 publication Critical patent/WO1999039084A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/232Heat transfer, e.g. cooling characterised by the cooling medium
    • F05B2260/233Heat transfer, e.g. cooling characterised by the cooling medium the medium being steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a combined cycle power plant that combines a gas bin and a steam bin.
  • a combined cycle power plant is a power generation system that combines a gas turbine plant and a steam turbine plant.
  • the high-temperature region of thermal energy is shared by the gas turbine, and the low-temperature region is shared by the steam bin, and heat energy is shared.
  • This is a power generation system that has been effectively collected and used, and has recently been particularly spotlighted.
  • a cooling system must be provided for the formation of the high-temperature region in view of the heat resistance of the bottle structure. Air has been used as the cooling medium in this cooling system.
  • Japanese Patent Application Laid-Open No. H05-166390 there is one disclosed in Japanese Patent Application Laid-Open No. H05-166390.
  • Japanese Patent Application Laid-Open No. H05-166390 is that, apart from disclosing the concept of employing steam as a cooling medium for gas turbines, the details must be devised and solved.
  • this steam cooling is still in a trial and error stage, and there is no example of the prior art that purges the drain from the steam cooling system when starting the gas turbine.
  • the present invention focuses on various problems due to the presence of such a drain, and ensures that the drain is purged and that the drain is removed, in other words, the warm-up is completed when the gas bin is started.
  • the task is to provide something that ensures that it has been done. Disclosure of the invention
  • the present invention has been made to solve the above-described problems, and combines a gas turbine and a steam turbine to generate steam for driving a steam turbine using exhaust heat from a gas turbine.
  • a means for detecting the flow rate of steam at the inlet and outlet of the steam cooling system is provided.
  • a combined cycle power generation plant configured to determine when the warming of the steam cooling system has been completed, and if the deviation between the steam flow at the inlet and the steam However, the residual air and drain are not scattered between the inlet and outlet, and it is good to proceed to the step of starting the gas evening bin assuming that the warm-up is completed.
  • the present invention also provides a gas turbine plant and a steam turbine plant, comprising a waste heat recovery poirer for generating steam for driving a steam bin by using waste heat from the gas turbine.
  • a combined cycle power plant configured to provide a steam cooling system for cooling a high-temperature portion to be cooled with steam, and to collect superheated steam from the steam cooling system in a steam turbine, the temperature of outlet steam of the steam cooling system
  • a combined cycle power plant that is provided with a means for detecting the temperature of the steam cooling system at the time of startup based on the outlet temperature.
  • FIG. 1 is an explanatory diagram schematically showing cooling steam flow rate and temperature measurement at the entrance and exit of a steam cooling system according to one embodiment of the present invention.
  • FIG. 2 is an explanatory diagram schematically showing a steam cooling system of a moving blade portion of a gas turbine.
  • FIG. 3 is an explanatory diagram showing an enlarged part A of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 schematically shows a high-temperature cooled part of the gas turbine, for example, 1a is a combustor, 1b is a dynamic part, and lc is a stationary blade part.
  • Reference numeral 2 denotes a steam supply pipe, which has an inlet-side flow meter 3a on the upstream side where steam enters the high-temperature cooled part 1 and an outlet on the downstream side where steam exits correspondingly.
  • a side flow meter 3b is provided.
  • 4a is an inlet-side thermometer
  • 4b is an outlet-side thermometer.
  • Reference numeral 5 denotes a first subtractor, which calculates the output difference between the inlet side flow meter 3a and the outlet side flow meter 3b, applies the result to the first comparator 6, and compares the result with the set value.
  • reference numeral 7 denotes a second subtractor which calculates the outputs of the inlet thermometer 4a and the outlet thermometer 4b, applies the result to the second comparator 8, and compares the result with the set value.
  • Reference numeral 9 denotes an auxiliary steam supply pipe communicating with an auxiliary steam source (not shown), and reference numeral 10 denotes a cooling steam supply pipe, which is connected to the steam supply pipe 2 by on-off valves 9 a and 10 a provided in respective pipes. They are now in communication. 11, 12, and 13 indicate drain valves, respectively.
  • FIG. 2 schematically shows a high-temperature cooled portion 1b of the gas turbine blade, and a cooling steam outward path 2a indicated by a solid line in which cooling steam is supplied from the steam supply pipe 2 in the blade 21. It has a cooling steam return path 20a indicated by a dotted line for collecting the superheated steam to the high-temperature steam recovery pipe 20.
  • FIG. 3 shows the drain D retained at the tip of the wing 21.
  • the introduction of the steam purges the air remaining in the system, and also drains out of the system through the drain discharge lines 14, 15, and 16.
  • the drain valves 11, 12, and 13 are configured to be appropriately closed when the warming of this system is completed.
  • thermometer 4 a, 4 b the measured value of the measured value T in the exit side thermometer 4 b of the inlet temperature meter 4 a T.
  • second subtractor 7 T outputted from in based on ut - T value of o ut is compared with a preset value in the second comparator 8 (tolerance), n - T.
  • ut ⁇ tolerable value it is determined that the warming is completed, and the comparator 8 outputs the warming complete command B, just like the flow meter.
  • the measured value T of the outlet thermometer 4b. ut is compared with the saturation temperature at the steam supply pressure.
  • ut —saturation temperature ⁇ permissible value the warming completion command C is output in exactly the same way as with the flow meter and thermometer.
  • the warming can be completed by each of the warming completion commands A, B, and C obtained in this manner or by satisfying the AND condition of at least two of these commands. It can be determined appropriately according to the scale of the equipment, required accuracy, etc.
  • the step of surely discharging the drain at the tip part while performing the evening (at a low speed) should be included. Is preferred. In other words, if the drain remains on the movable parts, especially on the tip of the turbine, it may cause excessive centrifugal force and imbalance, etc., which may lead to a major accident. You have to be careful.
  • thermocouple or the like may be buried in advance in a local portion where drain is likely to accumulate due to its structure, and measurement may be performed to judge the completion of warming.
  • the air remaining in the steam cooling system is purged, and the drain generated in this process is removed, whereby the steam cooling system is warmed up.
  • the fact that it was possible to proceed smoothly with the above series of operations was accurately determined from the deviation of the cooling steam flow rate at the entrance and exit of the steam cooling system, and the safety and stability of the operation were further improved. .
  • the completion of the warm-up can be accurately determined from the deviation of the cooling steam temperature at the entrance and exit of the steam cooling system, and the safety and stability of the operation can be further improved. It is a thing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A combined cycle power generation plant including means for detecting flow rates of steam at the outlet/inlet of a steam cooling system. A warming finish timing of the steam cooling system is judged at the time of start from the deviation of the outlet/inlet flow rates. When the deviation of the steam flow rate at the inlet from the flow rate of the steam at the outlet of the steam cooling system falls below an allowable value, it is judged that the residual air and the drain are not scattered and warm-up is completed, allowing the operation flow to proceed to the step of starting a gas turbine.

Description

明 細 書 コンバインドサイクル発電プラント 技術分野  Description Combined cycle power plant Technical field
本発明はガス夕一ビンプラントと蒸気夕一ビンプラントとを組み合わせたコン バインドサイクル発電ブラン卜に関するものである。 背景技術  The present invention relates to a combined cycle power plant that combines a gas bin and a steam bin. Background art
コンバインドサイクル発電プラントは、 ガスタービンプラントと蒸気タービン プラントを組み合わせた発電システムであり、 熱エネルギーの高温域をガスター ビンで、 また、 低温域を蒸気夕一ビンでそれぞれ分担して受持ち、 熱エネルギー を有効に回収し、 利用するようにしたものであり、 近年特に脚光を浴びている発 電システムである。  A combined cycle power plant is a power generation system that combines a gas turbine plant and a steam turbine plant.The high-temperature region of thermal energy is shared by the gas turbine, and the low-temperature region is shared by the steam bin, and heat energy is shared. This is a power generation system that has been effectively collected and used, and has recently been particularly spotlighted.
このコンバインドサイクル発電プラン卜では、 効率向上のための一つのボイン トを、 ガス夕一ビンの高温域を何処まで高め得るか、 と言う点に置いて研究開発 が進められてきた。  In this combined cycle power plant, research and development has been promoted with one point for improving efficiency in terms of how high the high-temperature region of a gas and gas bottle can be raised.
一方、 高温域の形成には、 夕一ビン構造体の耐熱性の面から冷却システムを設 けねばならす、 この冷却システムにおける冷却媒体としては従来から空気が用い られて来た。  On the other hand, a cooling system must be provided for the formation of the high-temperature region in view of the heat resistance of the bottle structure. Air has been used as the cooling medium in this cooling system.
しかし、 冷却媒体として空気を用いる限り、 例え高温域を達成し得たとしても、 冷却に要した空気によって持ち去られる熱量も多くなることから、 高温域の達成 がそのまま効率向上に帰結せず、 効率の向上は限界が見えていた。  However, as long as air is used as the cooling medium, even if a high-temperature range can be achieved, the amount of heat taken away by the air required for cooling increases, so achieving the high-temperature range does not directly result in efficiency improvement. There was a limit to improvement.
この限界を超えて更に効率向上を図るべく、 ガスタービンの冷却媒体として前 記した空気に替えて、 蒸気を採用するものが提案されるに至った。  In order to further improve the efficiency beyond this limit, it has been proposed to use steam instead of the above-mentioned air as the cooling medium for gas turbines.
一例として挙げれば、 特開平 0 5— 1 6 3 9 6 0号公報のものがある。 しかし この特開平 0 5— 1 6 3 9 6 0号公報に記載されたものは、 ガスタービンの冷却 媒体として蒸気を採用するという概念の開示はともかくとして、 その細部におい ては工夫し解決しなければならない課題が多数残されている。 例えば、 ガスタービンの起動に際し蒸気冷却系統内に残留する空気をパージし なければならず、 そのために前記特開平 0 5— 1 6 3 9 6 0号公報では、 補助蒸 気系統等から蒸気を供給して系内に残留する空気をパージするようにしているが、 これら一連の操作を通じてこの系内に発生するドレンについては何ら気に止めて おらず、 また、 何らの配慮もされていない。 As an example, there is one disclosed in Japanese Patent Application Laid-Open No. H05-166390. However, what is disclosed in Japanese Patent Application Laid-Open No. H05-166390 is that, apart from disclosing the concept of employing steam as a cooling medium for gas turbines, the details must be devised and solved. There are many issues to be addressed. For example, when the gas turbine is started, air remaining in the steam cooling system must be purged. For this reason, Japanese Patent Application Laid-Open No. H05-169690 discloses that steam is supplied from an auxiliary steam system or the like. In order to purge the air remaining in the system, the drain generated in the system through these series of operations has not been stopped at all, and no consideration has been given.
即ち、 この蒸気冷却に関しては、 未だ試行錯誤の段階であり、 ガスタービンの 起動に際し蒸気冷却系統内からドレンをパージするようにした従来技術は、 未だ 例が無いと言うことである。  In other words, this steam cooling is still in a trial and error stage, and there is no example of the prior art that purges the drain from the steam cooling system when starting the gas turbine.
前記したように従来の蒸気冷却を行うものでは、 起動に際し蒸気冷却系統内に 残留する空気をパージするに際し、 補助蒸気系統等から蒸気を供給して系内に残 留する空気をパージするが、 その際空気が蒸気内に混入して、 水中の溶存酸素を 上昇させ、 その結果ボイラチューブの酸化腐食に結びつくという問題がある。 また、 このパージ蒸気の投入によりガスタービンの冷却部でドレンが発生し、 このドレンにより局部的に冷却通路が閉塞し、 メタル温度を不均一とし、 熱応力 の発生を促す可能性がある。  As described above, in conventional steam cooling, when purging air remaining in the steam cooling system at the time of startup, steam is supplied from an auxiliary steam system or the like to purge air remaining in the system. At this time, there is a problem that air is mixed into the steam and raises dissolved oxygen in the water, resulting in oxidative corrosion of the boiler tube. In addition, the injection of the purge steam generates drain in the cooling section of the gas turbine, and the drain may locally block the cooling passage, make the metal temperature non-uniform, and promote the generation of thermal stress.
更にまた、 このドレンによる局部的な冷却通路の閉塞が、 回転部の翼先端等で 発生した場合には、 翼先端に滞留した水分のために、 部分的な冷却不足による過 熱部分の発生、 また、 重力のアンバランスにより過大な遠心力を発生し、 思いが けない大事故に結びつく可能性がある。  Furthermore, if the local cooling passage is blocked by the drain at the tip of the blade of the rotating part, etc., due to the water retained at the tip of the blade, the generation of a superheated portion due to partial insufficient cooling, Also, due to the unbalance of gravity, excessive centrifugal force may be generated, which may lead to an unexpected large accident.
本発明はこのようなドレンの存在による種々の問題点に着目し、 このドレンを 確実にパージし、 かつ、 ドレンが除去されたこと、 換言すれば、 ガス夕一ビンの 起動に際しウォームアップが完了したことを確実に把握するようにしたものを提 供することを課題とする。 発明の開示  The present invention focuses on various problems due to the presence of such a drain, and ensures that the drain is purged and that the drain is removed, in other words, the warm-up is completed when the gas bin is started. The task is to provide something that ensures that it has been done. Disclosure of the invention
本発明は前記した課題を解決するべくなされたものであり、 ガス夕一ビンブラ ントと蒸気夕一ビンプラントとを組合せ、 ガスタービンからの排熱を利用して蒸 気タービン駆動用蒸気を発生させる排熱回収ボイラを備えるとともに、 前記ガス タービンの高温被冷却部を蒸気で冷却する蒸気冷却システムを設け、 この蒸気冷 却システムからの過熱蒸気を蒸気夕一ビンに回収させるように構成したコンバイ ンドサイクル発電プラントにおいて、 前記蒸気冷却システムの出入口蒸気の流量 を検知する手段を設け、 同出入口流量の偏差により、 起動時の蒸気冷却システム のウォーミング完了時期を判定するように構成したコンバインドサイクル発電プ ラントを提供し、 蒸気冷却システムの入口の蒸気の流量と出口の蒸気の流量との 偏差が許容値以下となったら、 この入口と出口の間では、 残留空気及びドレンは 散在せず、 ウォームアップが完了したとして、 ガス夕一ビン起動のステップへ進 めることを良しとするものである。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and combines a gas turbine and a steam turbine to generate steam for driving a steam turbine using exhaust heat from a gas turbine. An exhaust heat recovery boiler, and a steam cooling system for cooling a high temperature cooled portion of the gas turbine with steam. In a combined cycle power plant configured to collect superheated steam from the cooling system into a steam bin, a means for detecting the flow rate of steam at the inlet and outlet of the steam cooling system is provided. A combined cycle power generation plant configured to determine when the warming of the steam cooling system has been completed, and if the deviation between the steam flow at the inlet and the steam However, the residual air and drain are not scattered between the inlet and outlet, and it is good to proceed to the step of starting the gas evening bin assuming that the warm-up is completed.
また、 本発明は、 ガスタービンプラン卜と蒸気タービンプラントとを組合せ、 ガスタービンからの排熱を利用して蒸気夕一ビン駆動用蒸気を発生させる排熱回 収ポイラを備えるとともに、 前記ガスタービンの高温被冷却部を蒸気で冷却する 蒸気冷却システムを設け、 この蒸気冷却システムからの過熱蒸気を蒸気タービン に回収させるように構成したコンバインドサイクル発電プラントにおいて、 前記 蒸気冷却システムの出口蒸気の温度を検知する手段を設け、 同出口温度により、 起動時の蒸気冷却システムのウォーミング完了時期を判定するように構成したコ ンバインドサイクル発電プラントを提供し、 蒸気冷却システムの出口蒸気の温度 が、 例えば同蒸気冷却システムの入口蒸気の温度との偏差で許容値以下となるか、 又は、 蒸気供給圧力における飽和温度以上となったら、 この入口と出口の間では、 残留空気及びドレンは散在せず、 ウォームアップが完了したとして、 ガスタービ ン起動のステップへ進めることを良しとするものである。 図面の簡単な説明  The present invention also provides a gas turbine plant and a steam turbine plant, comprising a waste heat recovery poirer for generating steam for driving a steam bin by using waste heat from the gas turbine. In a combined cycle power plant configured to provide a steam cooling system for cooling a high-temperature portion to be cooled with steam, and to collect superheated steam from the steam cooling system in a steam turbine, the temperature of outlet steam of the steam cooling system Provided is a combined cycle power plant that is provided with a means for detecting the temperature of the steam cooling system at the time of startup based on the outlet temperature. The deviation from the inlet steam temperature of the steam cooling system is below the permissible value, or When the temperature becomes equal to or higher than the saturation temperature at the gas supply pressure, no residual air and drain are scattered between the inlet and the outlet. . BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の一形態に係わる蒸気冷却系統の出入口に於ける冷却蒸 気流量及び温度計測を模式的に示す説明図である。  FIG. 1 is an explanatory diagram schematically showing cooling steam flow rate and temperature measurement at the entrance and exit of a steam cooling system according to one embodiment of the present invention.
図 2は、 ガスタービンの動翼部の蒸気冷却系統を模式的に示す説明図である。 図 3は、 図 2の A部を拡大して示す説明図である。 発明を実施するための最良の形態  FIG. 2 is an explanatory diagram schematically showing a steam cooling system of a moving blade portion of a gas turbine. FIG. 3 is an explanatory diagram showing an enlarged part A of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の一形態を図 1ないし図 3に基づいて説明する。 1はガスタービンの高温被冷却部を模式的に示し、 例えば 1 aは燃焼器、 1 b は動冀部、 l cは静翼部である。 An embodiment of the present invention will be described with reference to FIGS. 1 schematically shows a high-temperature cooled part of the gas turbine, for example, 1a is a combustor, 1b is a dynamic part, and lc is a stationary blade part.
2は蒸気供給管で、 前記高温被冷却部 1に対して蒸気が入ってくる上流側には 入口側流量計 3 aを、 また、 これに対応して蒸気が出ていく下流側には出口側流 量計 3 bを設けている。  Reference numeral 2 denotes a steam supply pipe, which has an inlet-side flow meter 3a on the upstream side where steam enters the high-temperature cooled part 1 and an outlet on the downstream side where steam exits correspondingly. A side flow meter 3b is provided.
4 aは入口側温度計、 4 bは出口側温度計で、 前記入口側流量計 3 a及び出口 側流量計 3 bと同様に高温被冷却部 1の上流側と下流側にそれぞれ分かれて設け られている。  4a is an inlet-side thermometer, 4b is an outlet-side thermometer.Similar to the inlet-side flowmeter 3a and the outlet-side flowmeter 3b, they are separately provided on the upstream side and downstream side of the high-temperature cooled part 1. Have been.
5は第 1の減算器で、 入口側流量計 3 aと出口側流量計 3 bの出力差を計算し、 その結果を第 1の比較器 6に印加して、 設定値と比較させる。 同様に、 7は第 2 の減算器で、 入口側温度計 4 aと出口側温度計 4 bの出力を計算し、 その結果を 第 2の比較器 8に印加して、 設定値と比較させる。  Reference numeral 5 denotes a first subtractor, which calculates the output difference between the inlet side flow meter 3a and the outlet side flow meter 3b, applies the result to the first comparator 6, and compares the result with the set value. Similarly, reference numeral 7 denotes a second subtractor which calculates the outputs of the inlet thermometer 4a and the outlet thermometer 4b, applies the result to the second comparator 8, and compares the result with the set value. .
9は図示省略の補助蒸気源に連通した補助蒸気供給管、 また、 1 0は冷却蒸気 供給管で、 それぞれの管路に配設した開閉弁 9 a 、 1 0 aにより前記蒸気供給管 2と連通されるようになつている。 なお、 1 1 、 1 2 、 1 3はそれぞれドレン弁 をしめす。  Reference numeral 9 denotes an auxiliary steam supply pipe communicating with an auxiliary steam source (not shown), and reference numeral 10 denotes a cooling steam supply pipe, which is connected to the steam supply pipe 2 by on-off valves 9 a and 10 a provided in respective pipes. They are now in communication. 11, 12, and 13 indicate drain valves, respectively.
また、 図 2はガス夕一ビン動翼の高温被冷却部 1 bを模式的に示し、 翼 2 1中 で蒸気供給管 2から冷却蒸気を供給される実線で示す冷却蒸気往路 2 aと、 高温 蒸気回収管 2 0へ過熱された蒸気を回収する点線で示す冷却蒸気復路 2 0 aとを 有している。 なお、 図 3には翼 2 1の先端に滞留したドレン Dを示している。 このように構成された本実施の形態において、 ガスタービンが起動する際には、 開閉弁 1 0 aを閉め、 開閉弁 9 aを開けて補助蒸気供給管 9を蒸気供給管 2と連 通させ、 ガス夕一ビンの高温被冷却部 1に蒸気を供給する。  FIG. 2 schematically shows a high-temperature cooled portion 1b of the gas turbine blade, and a cooling steam outward path 2a indicated by a solid line in which cooling steam is supplied from the steam supply pipe 2 in the blade 21. It has a cooling steam return path 20a indicated by a dotted line for collecting the superheated steam to the high-temperature steam recovery pipe 20. FIG. 3 shows the drain D retained at the tip of the wing 21. In the present embodiment configured as above, when the gas turbine is started, the on-off valve 10a is closed, the on-off valve 9a is opened, and the auxiliary steam supply pipe 9 is communicated with the steam supply pipe 2. The steam is supplied to the hot cooled part 1 of the gas bottle.
この蒸気の導入により、 系内に滞留していた空気はパージされ、 かつまた、 系 内で発生するドレンもドレン排出ライン 1 4 、 1 5 、 1 6を経て系外に追い出さ れる。 なお、 ドレン弁 1 1 、 1 2 、 1 3は、 この系統のウォーミングの完了によ り適宜閉となるように構成されている。  The introduction of the steam purges the air remaining in the system, and also drains out of the system through the drain discharge lines 14, 15, and 16. The drain valves 11, 12, and 13 are configured to be appropriately closed when the warming of this system is completed.
更に蒸気の供給が続くと、 高温被冷却部 1のウォーミングも徐々に進行する。 この間流量計 3 a 、 3 b及び温度計 4 a 、 4 bは計測を続行しており、 まず、 流 量計 3 a、 3 bについてみれば、 入口側流量計 3 aの計測値 F l nと出口側流量計 3 bの計測値 F。u tに基づいて第 1の減算器 5から出力される F i n— F。u tの値が 第 1の比較器 6において予め設定された値 (許容値) と比較され、 F i n— F。u t≤ 許容値、 となったらウォーミング完了と判断して、 比較器 6からウォーミング完 了指令 Aを出力する。 When the supply of steam continues, the warming of the high-temperature cooled part 1 gradually progresses. During this time, the flow meters 3a and 3b and the thermometers 4a and 4b continue to measure. Looking at the flowmeters 3a and 3b , the measured value Fln of the inlet flowmeter 3a and the measured value F of the outlet flowmeter 3b. F in — F output from the first subtractor 5 based on ut . value of ut is compared with a preset value in the first comparator 6 (permissible value), F in - F. When ut ≤ allowable value, it is determined that warming is completed, and comparator 6 outputs warming complete command A.
一方、 温度計 4 a、 4 bについてみれば、 入口側温度計 4 aの計測値 T i nと出 口側温度計 4 bの計測値 T。u tに基づいて第 2の減算器 7から出力される T i n— T o utの値が第 2の比較器 8において予め設定された値 (許容値) と比較され、 n— T。u t≤許容値、 となったら前記流量計による場合と全く同様に、 ウォーミン グ完了と判断して、 比較器 8からウォーミング完了指令 Bを出力する。 On the other hand, Come to about thermometer 4 a, 4 b, the measured value of the measured value T in the exit side thermometer 4 b of the inlet temperature meter 4 a T. second subtractor 7 T outputted from in based on ut - T value of o ut is compared with a preset value in the second comparator 8 (tolerance), n - T. When ut ≦ tolerable value, it is determined that the warming is completed, and the comparator 8 outputs the warming complete command B, just like the flow meter.
なお、 図示省略したが出口側温度計 4 bの計測値 T。utを、 蒸気供給圧力におけ る飽和温度と比較し、 別途定めた許容値との関係が、 T。u t—飽和温度≥許容値、 となったら前記流量計及び温度計による場合と全く同様に、 ウォーミング完了指 令 Cを出力する。 Although not shown, the measured value T of the outlet thermometer 4b. ut is compared with the saturation temperature at the steam supply pressure. When ut —saturation temperature ≥ permissible value, the warming completion command C is output in exactly the same way as with the flow meter and thermometer.
このようにして得た各ウォーミング完了指令 A、 B、 Cのそれぞれ、 またはこ れらの内少なくとも 2系統の指令の A N D条件成立を以てウォーミングの完了と すればよく、 その選択組み合わせは、 プラントの規模、 要求精度等に応じて適宜 決めることができる。  The warming can be completed by each of the warming completion commands A, B, and C obtained in this manner or by satisfying the AND condition of at least two of these commands. It can be determined appropriately according to the scale of the equipment, required accuracy, etc.
また、 ガスタービンの高温被冷却部 1が可動部分、 即ちタービン動翼の高温被 冷却部 l bである時には、 (低速で) 夕一ニングしながら確実に先端部のドレン を排出させるステップを折り込むことが好ましい。 即ち可動部分、 特にタービン 先端部にドレンが残留した場合には、 過大な遠心力、 アンバランス等の原因とな り、 大事故に結びつく可能性があるので、 ここでのドレン排出除去は、 特に気を つけて行わねばならない。  When the high temperature cooled part 1 of the gas turbine is a movable part, that is, the high temperature cooled part lb of the turbine blade, the step of surely discharging the drain at the tip part while performing the evening (at a low speed) should be included. Is preferred. In other words, if the drain remains on the movable parts, especially on the tip of the turbine, it may cause excessive centrifugal force and imbalance, etc., which may lead to a major accident. You have to be careful.
また、 構造上ドレンの溜まりやすい局部については、 熱電対等を予め埋め込ん でおき、 其により計測してウォーミング完了の判断をするようにすればよい。 以上、 本発明を図示の実施の形態について説明したが、 本発明はかかる実施の 形態に限定されず、 本発明の範囲内でその具体的構造に種々の変更を加えてよい ことはいうまでもない。 産業上の利用可能性 In addition, a thermocouple or the like may be buried in advance in a local portion where drain is likely to accumulate due to its structure, and measurement may be performed to judge the completion of warming. Although the present invention has been described with reference to the illustrated embodiments, the present invention is not limited to such embodiments, and it goes without saying that various changes may be made to the specific structure within the scope of the present invention. Absent. Industrial applicability
以上、 本発明によれば、 ガスタービンの起動に際し、 蒸気冷却系統内に残留す る空気をパージし、 この過程で発生するドレンを除去し、 これによつて蒸気冷却 系統がウォームアップされ、 爾後の一連の操作を円滑に進めうる状態に至ったこ とを蒸気冷却系統の出入口の冷却蒸気流量の偏差から的確に判断し、 操業の安全 性、 安定性を一段と向上することが出来たものである。  As described above, according to the present invention, when starting the gas turbine, the air remaining in the steam cooling system is purged, and the drain generated in this process is removed, whereby the steam cooling system is warmed up. The fact that it was possible to proceed smoothly with the above series of operations was accurately determined from the deviation of the cooling steam flow rate at the entrance and exit of the steam cooling system, and the safety and stability of the operation were further improved. .
また、 請求項 2の発明によれば、 前記ウォームアップの完了を蒸気冷却系統の 出入口の冷却蒸気温度の偏差から的確に判断し、 前記同様操業の安全性、 安定性 を一段と向上することが出来たものである。  Further, according to the invention of claim 2, the completion of the warm-up can be accurately determined from the deviation of the cooling steam temperature at the entrance and exit of the steam cooling system, and the safety and stability of the operation can be further improved. It is a thing.

Claims

1 請求の範囲 1 Claims
1 . ガスタービンプラン卜と蒸気夕一ビンプラントとを組合せ、 ガスタービンか らの排熱を利用して蒸気タービン駆動用蒸気を発生させる排熱回収ボイラを備え るとともに、 前記ガスタービンの高温被冷却部を蒸気で冷却する蒸気冷却システ ムを設け、 この蒸気冷却システムからの過熱蒸気を蒸気タービンに回収させるよ うに構成したコンバインドサイクル発電プラントにおいて、 前記蒸気冷却システ ムの出入口蒸気の流量を検知する手段を設け、 同出入口流量の偏差により、 起動 時の蒸気冷却システムのウォーミング完了時期を判定するように構成したことを 特徵とするコンバインドサイクル発電プラント。 1. Combination of a gas turbine plant and a steam turbine bin plant, equipped with an exhaust heat recovery boiler that generates steam for driving the steam turbine using exhaust heat from the gas turbine, In a combined cycle power plant that is equipped with a steam cooling system that cools the cooling section with steam and that allows superheated steam from this steam cooling system to be recovered by a steam turbine, the flow rate of steam at the entrance and exit of the steam cooling system is detected. A combined cycle power plant characterized in that the steam cooling system warm-up completion time at the time of startup is determined based on the deviation of the inlet / outlet flow rate.
2 . ガス夕一ビンプラントと蒸気タービンプラントとを組合せ、 ガスタービンか らの排熱を利用して蒸気タービン駆動用蒸気を発生させる排熱回収ポイラを備え るとともに、 前記ガスタービンの高温被冷却部を蒸気で冷却する蒸気冷却システ ムを設け、 この蒸気冷却システムからの過熱蒸気を蒸気夕一ビンに回収させるよ うに構成したコンバインドサイクル発電ブラントにおいて、 前記蒸気冷却システ ムの出口蒸気の温度を検知する手段を設け、 同出口温度により、 起動時の蒸気冷 却システムのウォーミング完了時期を判定するように構成したことを特徴とする コンバインドサイクル発電ブラント。 2. Combination of a gas turbine and a steam turbine plant, equipped with an exhaust heat recovery poirer that generates steam for driving the steam turbine by using the exhaust heat from the gas turbine, and the high temperature cooling of the gas turbine A combined cycle power generation plant configured to provide a steam cooling system that cools the section with steam, and to collect superheated steam from the steam cooling system in a steam bin, adjusts the temperature of the outlet steam of the steam cooling system. A combined cycle power plant wherein a means for detecting the temperature is provided, and the completion temperature of the steam cooling system at the time of startup is determined based on the outlet temperature.
PCT/JP1998/000352 1996-07-30 1998-01-29 Combined cycle power generation plant WO1999039084A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP20026696A JP3835859B2 (en) 1996-07-30 1996-07-30 Combined cycle power plant
DE19882264T DE19882264B4 (en) 1998-01-29 1998-01-29 Composite power generating plant - includes cooling system which cools gas turbine plant to generate superheated steam which is utilised by steam turbine plant
PCT/JP1998/000352 WO1999039084A1 (en) 1996-07-30 1998-01-29 Combined cycle power generation plant
US09/381,952 US6442926B2 (en) 1996-07-30 1998-01-29 Combined cycle power generation plant
CA002285449A CA2285449C (en) 1998-01-29 1998-01-29 Combined cycle power generation plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20026696A JP3835859B2 (en) 1996-07-30 1996-07-30 Combined cycle power plant
PCT/JP1998/000352 WO1999039084A1 (en) 1996-07-30 1998-01-29 Combined cycle power generation plant

Publications (1)

Publication Number Publication Date
WO1999039084A1 true WO1999039084A1 (en) 1999-08-05

Family

ID=26439131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000352 WO1999039084A1 (en) 1996-07-30 1998-01-29 Combined cycle power generation plant

Country Status (2)

Country Link
JP (1) JP3835859B2 (en)
WO (1) WO1999039084A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148035A (en) * 1990-10-11 1992-05-21 Toshiba Corp Vapor cooled gas turbine system
JPH0693879A (en) * 1992-09-11 1994-04-05 Hitachi Ltd Combined plant and operation thereof
JPH06193468A (en) * 1992-12-24 1994-07-12 Hitachi Ltd Gas turbine power plant
JPH08319852A (en) * 1995-05-25 1996-12-03 Hitachi Ltd Gas turbine plant and its cooling method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148035A (en) * 1990-10-11 1992-05-21 Toshiba Corp Vapor cooled gas turbine system
JPH0693879A (en) * 1992-09-11 1994-04-05 Hitachi Ltd Combined plant and operation thereof
JPH06193468A (en) * 1992-12-24 1994-07-12 Hitachi Ltd Gas turbine power plant
JPH08319852A (en) * 1995-05-25 1996-12-03 Hitachi Ltd Gas turbine plant and its cooling method

Also Published As

Publication number Publication date
JP3835859B2 (en) 2006-10-18
JPH1047016A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
US7987675B2 (en) Provision for rapid warming of steam piping of a power plant
US6263662B1 (en) Combined cycle power generation plant and cooling steam supply method thereof
US7040095B1 (en) Method and apparatus for controlling the final feedwater temperature of a regenerative rankine cycle
JP6004484B2 (en) Steam turbine power plant
KR860007454A (en) Operation protection device and method of water heater
RU2485323C2 (en) Steam turbine and method for determining leakage in steam turbine
EP0900921A2 (en) Hydrogen burning turbine plant
JP3965275B2 (en) Thermal efficiency diagnosis method and apparatus for thermal power plant
JP4346213B2 (en) Combined cycle power plant
JP2692973B2 (en) Steam cycle startup method for combined cycle plant
JP2007085294A (en) Steam turbine plant and its operating method
US5327772A (en) Steam quality sensor
CA2168422A1 (en) Method and apparatus for predicting and using the exhaust gas temperatures for control of two and three shaft gas turbines
JPH11182263A (en) Gas turbine power plant
US10711652B2 (en) Steam turbine plant
WO1999039084A1 (en) Combined cycle power generation plant
US6442926B2 (en) Combined cycle power generation plant
JP6193486B2 (en) Method and apparatus for controlling the injection of water into the flue gas path of a gas / steam turbine facility
EP1298297A2 (en) Control device for gas turbine cooling steam pressure
CA2285449C (en) Combined cycle power generation plant
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JPH094416A (en) Steam system separation control method for multishaft combined plant
JP2891009B2 (en) Gas turbine power plant
JP2004162948A (en) Steam generating amount measuring device
JP4402467B2 (en) Combined power plant and control method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA DE US

ENP Entry into the national phase

Ref document number: 2285449

Country of ref document: CA

Ref document number: 2285449

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09381952

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19882264

Country of ref document: DE

Date of ref document: 20000316

WWE Wipo information: entry into national phase

Ref document number: 19882264

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607