WO1999034454A1 - Piezoelectric transformer - Google Patents

Piezoelectric transformer Download PDF

Info

Publication number
WO1999034454A1
WO1999034454A1 PCT/JP1998/005891 JP9805891W WO9934454A1 WO 1999034454 A1 WO1999034454 A1 WO 1999034454A1 JP 9805891 W JP9805891 W JP 9805891W WO 9934454 A1 WO9934454 A1 WO 9934454A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
excitation
output
main surfaces
electrodes
Prior art date
Application number
PCT/JP1998/005891
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsunobu Yoshida
Kouichi Kanayama
Nobuhiro Maruko
Hiroaki Saigoh
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9367616A external-priority patent/JPH11195821A/en
Priority claimed from JP10038108A external-priority patent/JPH11220186A/en
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Publication of WO1999034454A1 publication Critical patent/WO1999034454A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers

Definitions

  • the present invention relates to a piezoelectric transformer.
  • piezoelectric transformers have been used for transformers, taking advantage of their high efficiency, small size, non-combustibility, and low noise compared to electromagnetic transformers.
  • the main applications are lighting applications (for discharge tube lighting), air purifiers, and ozone generators. It is also used in step-down applications such as switching power supplies and AC adapters.
  • this type of piezoelectric transformer has a configuration as shown in FIGS.
  • FIG. 47 is a perspective view showing a conventional Rosen-type piezoelectric transformer.
  • This piezoelectric transformer 600 is composed of a left primary region 620 and a right secondary region 630.
  • primary electrodes 612 are provided on upper and lower surfaces of the piezoelectric substrate 610, respectively, and the piezoelectric substrate 610 is polarized in the thickness direction.
  • a secondary electrode 614 is provided at the right end on the upper surface of the piezoelectric substrate 610, and the piezoelectric substrate 610 is polarized in the longitudinal direction.
  • the AC voltage supplied from the power supply 80 between the primary electrodes is boosted by the piezoelectric transformer 600, extracted from the secondary electrodes 614, and applied to the load 91.
  • FIG. 48 is a perspective view showing a conventional (piezoelectric lateral effect—piezoelectric lateral effect) step-down piezoelectric transformer 700, in which a primary region in which a plurality of layers are stacked in the thickness direction of the piezoelectric substrate 7100. 7 and a secondary region 730 in which a plurality of layers are stacked in the thickness direction.
  • FIG. 49 is a perspective view showing a conventional (piezoelectric longitudinal effect-piezoelectric longitudinal effect) step-down piezoelectric transformer 800, in which a primary side region 8 in which a plurality of layers are laminated in the longitudinal direction of the piezoelectric substrate 8100. 20 and a secondary region 830 in which a plurality of layers are stacked in the longitudinal direction.
  • a conventional (piezoelectric longitudinal effect-piezoelectric longitudinal effect) step-down piezoelectric transformer 800 in which a primary side region 8 in which a plurality of layers are laminated in the longitudinal direction of the piezoelectric substrate 8100. 20 and a secondary region 830 in which a plurality of layers are stacked in the longitudinal direction.
  • the present invention seeks to solve two problems.
  • the first point is that it is difficult to increase the output with a conventional boosting piezoelectric transformer structure such as the Rosen type piezoelectric transformer shown in Fig. 47.
  • a conventional boosting piezoelectric transformer structure such as the Rosen type piezoelectric transformer shown in Fig. 47.
  • it is considered effective to increase the mass of the piezoelectric vibrator by increasing the volume of the piezoelectric vibrator as an effective measure when increasing the output power while maintaining high efficiency. Because, when the mechanical vibration speed is constant, the larger the mass of the piezoelectric vibrator, the larger the mechanical vibration energy stored inside the vibrator, and as a result, it can be extracted from the output electrode by the piezoelectric effect This is because the energy increases.
  • the problem with increasing the thickness is that the input impedance first increases, which results in a lower boost ratio. Also, it is difficult to reduce the thickness due to the increase in thickness. In addition, the heat dissipation area per unit volume is reduced because the thickness is increased, and the heat dissipation effect is reduced.
  • the problem with extending the longitudinal direction is that if the longitudinal direction is The frequency must be lowered, and it is difficult to set a desired driving frequency.
  • the step-down type piezoelectric transformer for switching power supply as shown in Fig. 48 and Fig. 49 has a large number of stacked layers, which lowers the efficiency, and the large number of stacked layers increases the manufacturing cost. .
  • the ratio of input / output impedance cannot be changed with a single board, so that the structure is multi-layered and the ratio of the number of layers on the input side to the number of layers on the output side is changed. It is necessary to obtain a boost ratio.
  • the number of layers is increased, there is a problem that energy conversion efficiency is reduced while manufacturing costs are increased.
  • the present invention is intended to solve the above two problems.
  • the output power can be increased, and when used as a step-down piezoelectric transformer, a large electric power can be obtained.
  • An object of the present invention is to provide a piezoelectric transformer that can achieve cost reduction, cost reduction, high efficiency, and thinness. Disclosure of the invention
  • a piezoelectric body such as a flat plate made of piezoelectric ceramics is divided into a plurality of lattice-shaped regions, electrodes are provided in each region, each region is polarized, and at least one of the plurality of regions is subjected to the piezoelectric treatment.
  • a piezoelectric transformer that is configured as a body excitation area and at least one of the remaining areas is an output area.
  • One is to increase the output.
  • Increasing the mass of the vibrator is effective in increasing power consumption.
  • this piezoelectric transformer by using high-order piezoelectric resonance vibration without changing the vibration frequency, it is possible to increase the element length in two directions, the longitudinal direction or the width direction. . In other words, it has a structure that can easily handle high power consumption.
  • the heat radiation area per unit area is large. As a result, the structure has a large heat dissipation effect and is advantageous for increasing output.
  • the second is cost reduction. Even if this piezoelectric transformer has a single-plate structure, a large transformer ratio can be obtained by increasing the number of regions that divide the flat plate. Therefore, to obtain a large transformation ratio, the number of stacked layers is smaller than that of a conventional piezoelectric transformer. As a result, manufacturing costs can be significantly reduced.
  • the third is higher efficiency.
  • This piezoelectric transformer requires a smaller number of layers to obtain the required transformation ratio than conventional piezoelectric transformers. Therefore, mechanical loss at the interface of the laminated board is reduced, and higher efficiency can be expected. Also, since the electrode take-out part can be provided at the node of the vibration, there is little mechanical loss in piezoelectric vibration, and high efficiency can be expected.
  • the fourth is thinning. Since this piezoelectric transformer has a flat plate structure and can expand the vertical and horizontal areas, it can be thinner when compared with the conventional piezoelectric transformer when compared with the same volume.
  • a single-input multiple-output transformer For example, in the case of a piezoelectric transformer with a 3x3 area, one area or Two or more regions are connected in parallel as an input region, one region or two or more regions are connected in parallel as a first output region, and another one region or another two or more By connecting the areas in parallel, it becomes possible to operate as a 1-input 2-output piezoelectric transformer as a second output area. By this analogy, a one-input three-output piezoelectric transformer can be easily configured.
  • a piezoelectric transformer in which a flat plate made of a piezoelectric material is divided into a total of m ⁇ n lattice-shaped regions in a first direction (for example, in the longitudinal direction) and in a second direction (for example, in the width direction), and The flat plate can be operated by exciting a standing wave due to piezoelectric resonance vibration.
  • FIG. 5A, 5B, and 5C are plan views showing an example of a stretched state of a flat plate divided into 3 ⁇ 3
  • FIG. 5D is a view showing a stress distribution in the state of FIG. Fig.
  • FIG. 5E is a diagram showing the displacement distribution in the state of Fig. 5A
  • Fig. 5F is a diagram showing the stress distribution in the state of Fig. 5C
  • Fig. 5G is the displacement distribution in the state of Fig. 5C.
  • FIG. 5E When an AC voltage waveform having the above frequency is applied to the excitation electrode, the length of the grid-divided region in the first direction (for example, the longitudinal direction) and the length in the second direction (for example, the width direction)
  • the ratio By setting the ratio to 0.7 to 1.3, and preferably 1, the mechanical vibration energy generated by the piezoelectric effect in the excitation electrode portion is evenly transmitted in the first direction and the second direction. Equalization of the transmitted energy also reduces stress concentrations and allows for higher power limits.
  • the number m and n of the areas divided in a grid are equal, and the first direction
  • the shape of the piezoelectric transformer is a square.
  • the excitation electrode or the output electrode is arranged in the center area, and the output electrode or the excitation electrode is arranged in the peripheral area.
  • the cross-sectional area where the mechanical resonance energy propagates can be taken in all directions. For this reason, it is possible to reduce the density of the mechanical resonance energy passing per unit area, and as a result, it is possible to further increase the limit value of the usable power.
  • the mechanical vibration energy of the flat plate can be converted into AC electric energy by a piezoelectric transverse effect or a piezoelectric longitudinal effect, and can be extracted from the output electrode.
  • input / output voltage conversion can be performed based on the ratio of the impedance Zin of the excitation electrode to the impedance Zout of the output electrode. Therefore, by changing the combination of the number of excitation areas and the number of output areas and changing the combination of the number of excitation electrodes and the number of output electrodes, it is possible to increase the degree of freedom in selecting the transformation ratio.
  • the input impedance and output impedance can be matched, and operation can be performed with a transformation ratio of 1. Also, if the input impedance is smaller than the output impedance, it will operate at a transformer ratio of 1 or more. That is, it operates as a step-up transformer.
  • the input impedance can be made larger than the output impedance, and the operation can be performed with a transformation ratio of 1 or less. That is, as a step-down transformer Works.
  • the present invention is based on the above findings, and according to a first aspect of the present invention, comprises two main surfaces facing each other and substantially parallel to each other, and m (m is (N is an integer greater than or equal to 2) Section, divided into a grid of n (n is an integer of 2 or more) sections in the second direction in the main surface and intersecting with the first direction in the second direction
  • a piezoelectric transformer including a piezoelectric body having a plurality of regions,
  • At least one of the plurality of regions is an excitation region to which excitation power for exciting the piezoelectric body is supplied,
  • a first piezoelectric transformer is provided, wherein at least one other of the remaining regions of the plurality of regions is an output region for extracting an output from the piezoelectric transformer.
  • the piezoelectric body is a flat plate
  • a second piezoelectric transformer is provided in which an excitation electrode pair is provided on the two main surfaces in the excitation region, and an output electrode pair is provided on the two main surfaces in the output region.
  • an excitation electrode pair facing each other is provided substantially parallel to the two main surfaces,
  • the output electrode pairs facing each other have the two main surfaces. Is provided substantially in parallel with,
  • One of the excitation electrode pairs is provided on one of the two main surfaces or inside the piezoelectric body,
  • the other of the excitation electrode pair is provided on the other main surface of the two main surfaces or inside the piezoelectric body,
  • One of the output electrode pairs is provided on one of the two main surfaces or inside the piezoelectric body,
  • a third piezoelectric transformer is provided in which the other of the pair of output electrodes is provided on the other main surface of the two main surfaces or inside the piezoelectric body. According to a fourth aspect of the present invention, in the third piezoelectric transformer,
  • the piezoelectric body is configured by laminating a plurality of flat plates made of a piezoelectric material, and the plurality of flat plates each include two sub-main surfaces substantially parallel to the two main surfaces,
  • the plurality of flat plates each have a plurality of sub-regions divided into the m sections in the first direction and the n sections in the second direction in a grid shape, and the one of the excitation electrode pairs is A plurality of sub-main surfaces of the plurality of sub-regions stacked in the excitation region are provided on at least one sub-main surface;
  • the other of the excitation electrode pairs is provided on at least one of the remaining sub-main surfaces of the plurality of sub-main surfaces;
  • the one and the other of the output electrode pairs are respectively provided on any two of the plurality of sub-main surfaces of the plurality of sub-regions stacked in the output region. Is provided with a fourth piezoelectric transformer W
  • the fourth piezoelectric transformer preferably, at least one electrode pair in an area divided into a lattice on the upper surface of the uppermost layer and the lower surface of the lowermost layer in the laminated plate of the piezoelectric transformer is used as an excitation electrode pair. At least one electrode pair among the electrode pairs between the layers sandwiched between the uppermost layer and the lowermost layer is used as the output electrode.
  • At least one pair of electrodes in an area divided into a grid between the upper surface of the uppermost layer and the lower surface of the lowermost layer is preferably used as the output electrode. At least one electrode pair among the electrode pairs between the layers sandwiched between the uppermost layer and the lowermost layer is used as an excitation electrode.
  • the excitation electrode section and the output electrode section are not arranged in the same layer or in the same plane.
  • any one of the second to fourth piezoelectric transformers in any one of the second to fourth piezoelectric transformers,
  • a fifth piezoelectric transformer is provided, wherein the piezoelectric body between the excitation electrode pair and the piezoelectric body between the output electrode pair are polarized in a direction substantially perpendicular to the two main surfaces.
  • the piezoelectric body between the excitation electrode pair and the piezoelectric body between the output electrode pair are polarized in a direction substantially perpendicular to the two main surfaces.
  • the piezoelectric transformers are substantially parallel to the two main surfaces and An excitation electrode pair provided to face each other, and an output electrode pair substantially parallel to the two main surfaces and provided to face each other,
  • One of the excitation electrode pairs is on one of the two main surfaces of the piezoelectric body in the excitation region, and on the one main surface of the piezoelectric body in the excitation region.
  • a first additional piezoelectric body is provided, on the first additional piezoelectric body, or inside the piezoelectric body in the excitation region,
  • the other one of the excitation electrode pairs is formed on the other of the two main surfaces of the piezoelectric body in the excitation region ⁇ , and on the other main surface of the piezoelectric body in the excitation region ⁇ When an additional piezoelectric body is provided, the piezoelectric body is provided on the second additional piezoelectric body or inside the piezoelectric body in the excitation recording area,
  • One of the output electrode pairs is on one of the two main surfaces of the piezoelectric body in the output region, and is on the one main surface of the piezoelectric body in the output region.
  • the third additional piezoelectric body is provided on the third additional piezoelectric body or inside the piezoelectric body in the output area.
  • the other of the pair of output electrodes is provided on the other of the two main surfaces of the piezoelectric body in the output region, and on the other main surface of the piezoelectric body in the output region, When the additional piezoelectric body is provided, the piezoelectric body is provided on the fourth additional piezoelectric body or inside the piezoelectric body in the output area.
  • the one and the other of the excitation electrode pair are provided on the two main surfaces in the excitation region, respectively, and the one and the other of the output electrode pair are in the output region.
  • the one and the other of the excitation electrode pair are provided inside the piezoelectric body in the excitation region, and the one and the other of the output electrode pair are the two in the output region. Each is provided on the main surface.
  • each of the regions of each of the above piezoelectric transformers is polarized in a direction substantially perpendicular to the two main surfaces.
  • a first electrode and a second electrode that are one of an excitation electrode and an output electrode are respectively provided on the two main surfaces in one of the excitation region and the output region;
  • a third electrode that is the other of the excitation electrode and the output electrode is provided on at least one of the two main surfaces in the other of the excitation area and the output area;
  • the piezoelectric body between the first electrode and the second electrode is polarized substantially perpendicular to the two main surfaces;
  • At least a part of the piezoelectric body in the other area of the excitation area and the output area is polarized so as to have a polarization component parallel to the two main surfaces.
  • Six piezoelectric transformers are provided.
  • a first electrode and a second electrode that are one of the excitation electrode and the output electrode face each other and are substantially on the two main surfaces.
  • a third electrode serving as the other of the excitation electrode and the output electrode is provided in the other of the excitation area and the output area.
  • One of the electrodes is located on one of the two main surfaces in the one of the excitation area and the output area or the excitation area and the output area.
  • the second electrode is provided on the other of the two main surfaces in the one of the excitation area and the output area, or the one of the excitation area and the output area. Is provided inside the piezoelectric body in the region of
  • the piezoelectric body between the first electrode and the second electrode is polarized substantially perpendicular to the two main surfaces;
  • a seventh piezoelectric transformer is provided in which at least a part of the other area of the excitation area and the output area is polarized so as to have a polarization component parallel to the two main surfaces. Is done.
  • the insulation between the excitation electrode and the output electrode can be improved, the dielectric strength between the input and output can be significantly improved, and the electrical independence between the commercial AC power supply and the equipment can be improved. It is possible to increase.
  • the seventh or eighth piezoelectric transformer preferably, at least a part of the other area of the excitation area and the output area is any one of the first and second electrodes. It is polarized substantially along the direction connecting one of the electrodes and the third electrode.
  • the seventh piezoelectric transformer is a fourth electrode provided on at least one of the two main surfaces in the other region of the excitation region and the output region, wherein: And a fourth electrode provided apart from the third electrode when viewed in a plan view from a direction perpendicular to the third electrode, wherein the fourth electrode is provided in the other of the excitation area and the output area. At least a part thereof is polarized substantially along the direction connecting the third electrode and the fourth electrode.
  • a fourth electrode provided in the other one of the excitation area and the output area, wherein the fourth electrode and the third electrode are viewed in a plan view from a direction perpendicular to the main surface. Further comprising the fourth electrode provided at a distance, wherein at least a part of the other area of the excitation area and the output area is the third electrode and the fourth electrode. The polarization is substantially along the direction connecting.
  • An outer shape of one of the third and fourth electrodes is substantially circular when viewed in a plan view from a direction perpendicular to the main surface;
  • the other inner shape of the third and fourth electrodes is substantially circular in plan view from a direction perpendicular to the main surface
  • the one of the third and fourth electrodes is provided inside the other of the third and fourth electrodes,
  • the substantially circular shape outside the one of the third and fourth electrodes and the substantially circular shape inside the other of the third and fourth electrodes are substantially concentrically arranged.
  • the piezoelectric body is configured by laminating a plurality of flat plates made of a piezoelectric material, and the plurality of flat plates each include two sub-main surfaces substantially parallel to the two main surfaces,
  • the plurality of flat plates each have a plurality of sub-regions divided in a grid shape of the m sections in the first direction and the n sections in the second direction, and the first electrode includes the excitation electrode.
  • a plurality of sub-main surfaces of the plurality of sub-regions stacked in the one of the output region and the output region are provided on at least one of the sub-main surfaces,
  • the second electrode is provided on at least one sub-main surface of the remaining sub-main surfaces of the plurality of sub-main surfaces;
  • the third electrode may be any one of the plurality of sub-main surfaces of the plurality of sub-regions stacked in the other region of the excitation region and the output region.
  • An eighth piezoelectric transformer provided on the main surface is provided.
  • the excitation electrode and the output electrode are not arranged in the same piezoelectric layer or in the same plane.
  • the shape of the third electrode is substantially circular when viewed in a plan view from a direction perpendicular to the main surface.
  • the electric field intensity around the electrode during polarization tends to be uniform, and uniform polarization processing can be performed.
  • a ninth aspect of the present invention in the first piezoelectric transformer,
  • At least a portion of one of the excitation region and the output region is polarized substantially perpendicular to the two main surfaces;
  • a ninth piezoelectric transformer is provided in which at least a part of the other of the excitation area and the output area is polarized so as to have a polarization component parallel to the two main surfaces.
  • one of the input side (excitation side) and the output side is a region having a component whose polarization is in the plane, that is, a region polarized so as to have a polarization component parallel to the main surface of the flat plate.
  • the coordinates of the area at any one corner of the grid among the plurality of areas arranged in the grid shape are both set to 1 in the first and second directions, and from the area at any one corner,
  • the coordinate of the area of the p-th surface along the first direction in the first direction is P
  • the coordinate of the area of the q-th surface along the second direction from the one corner area along the second direction. If the coordinate in the direction of 2 is q,
  • a region in which the sum (p + q) of the P and the q is an odd number among the plurality of regions arranged in a lattice pattern is defined as a first region group, and the sum (p + q) is an even number as a second region group, and at least two of the regions included in only one of the first region group and the second region group Connecting the regions in parallel, This is a transfer area or the output area.
  • the coordinates of the area at any one corner of the grid among the plurality of areas arranged in the grid shape are both set to 1 in the first and second directions, and from the area at any one corner,
  • the coordinate of the area of the p-th surface along the first direction in the first direction is P
  • the coordinate of the area of the q-th surface along the second direction from the one corner area along the second direction. If the coordinate in the direction of 2 is q,
  • a region in which the sum (p + q) of the P and the q is an odd number among the plurality of regions arranged in a lattice pattern is defined as a first region group, and the sum (p + q) is an even number as a second area group, and both the excitation area and the output area are only one of the first area group or the second area group.
  • a ratio of a length of the region in the first direction to a length of the region in the second direction is 0.7 to 1.3.
  • the first direction and the second direction are substantially orthogonal to each other.
  • one of the excitation area and the output area is set to the first area.
  • the other of the excitation area and the output area is preferably not provided in the entire n section in the first direction, and one of the excitation area electrode and the output area is When provided in all m sections in the second direction, it is preferable that the other of the excitation area and the output area is not provided in all m sections in the second direction.
  • m and n are not particularly limited, but are practically preferably 100 or less, more preferably 10 or less, respectively.
  • FIG. 1A to 1E are views for explaining a piezoelectric transformer according to a first embodiment of the present invention.
  • FIG. 1A is a top view
  • FIG. 1B is a bottom view
  • FIG. 1C FIG. 1E. Is a sectional view
  • FIG. 2 is a perspective view illustrating a piezoelectric transformer according to a first embodiment of the present invention.
  • FIG. 3 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer according to the first embodiment of the present invention at the time of boosting.
  • FIG. 4 is a circuit diagram for explaining electrical connection at the time of step-down of the piezoelectric transformer according to the first embodiment of the present invention.
  • FIG. 5A—FIG. 5G show the piezoelectric transformers of the first and sixth embodiments of the present invention.
  • 5A, 5B, and 5C are plan views showing the expansion and contraction state of the veneer
  • FIG. 5D shows the stress distribution in the state of FIG. 5A.
  • 5E is a diagram showing a displacement distribution in the state of FIG. 5A
  • FIG. 5F is a diagram showing a stress distribution in the state of FIG. 5C
  • FIG. 5G is a state of FIG. 5C. It is a diagram showing the displacement distribution in
  • FIGS. 6A to 6E are views for explaining a piezoelectric transformer according to a second embodiment of the present invention.
  • FIG. 6A is a top view of an upper plate
  • FIG. 6B is a bottom view
  • FIG. FIG. 6E is a cross-sectional view.
  • FIGS. 7A to 7E are views for explaining a piezoelectric transformer according to a second embodiment of the present invention.
  • FIG. 7A is a top view of a lower plate
  • FIG. 7B is a bottom view
  • FIG. 7E is a cross-sectional view
  • FIG. 8 is a perspective view illustrating a piezoelectric transformer according to a second embodiment of the present invention.
  • FIG. 9 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the second embodiment of the present invention.
  • FIG. 10 is a circuit diagram for explaining electrical connection at the time of step-down of the piezoelectric transformer according to the second embodiment of the present invention.
  • FIG. 11A—FIG. 11B is a diagram for explaining a piezoelectric transformer according to a third embodiment of the present invention.
  • FIG. 11A is a top view
  • FIG. 11B is a bottom view
  • FIG. 12 is a perspective view illustrating a piezoelectric transformer according to a third embodiment of the present invention.
  • FIG. 13 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the third embodiment of the present invention.
  • FIG. 14 is a circuit diagram for explaining the electrical connection at the time of step-down of the piezoelectric transformer according to the third embodiment of the present invention.
  • FIGS. 15A and 15B illustrate a piezoelectric transformer according to a fourth embodiment of the present invention.
  • FIG. 15A is a top view
  • FIG. 15B is a bottom view
  • FIG. 16 is a perspective view for explaining a piezoelectric transformer according to a fourth embodiment of the present invention. Yes,
  • FIG. 17 is a circuit diagram illustrating electrical connection of the piezoelectric transformer according to the fourth embodiment of the present invention.
  • FIGS. 18A and 18B are views for explaining a piezoelectric transformer according to a fifth embodiment of the present invention.
  • FIG. 18A is a top view of the first layer
  • FIG. 18B is a bottom view.
  • FIGS. 19A and 19B are views for explaining a piezoelectric transformer according to a fifth embodiment of the present invention.
  • FIG. 19A is a top view of the second layer
  • FIG. 19B is a bottom view.
  • FIGS. 20A and 20B are diagrams for explaining a piezoelectric transformer according to a fifth embodiment of the present invention.
  • FIG. 20A is a top view of the third layer
  • FIG. 20B is a bottom view. Yes,
  • FIGS. 21A and 21B are views for explaining a piezoelectric transformer according to a fifth embodiment of the present invention.
  • FIG. 21A is a top view of a fourth layer
  • FIG. 21B is a bottom view.
  • FIG. 22 is a perspective view illustrating a piezoelectric transformer according to a fifth embodiment of the present invention.
  • FIG. 23 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the fifth embodiment of the present invention.
  • FIG. 24 is a circuit diagram for explaining the electrical connection at the time of step-down of the piezoelectric transformer according to the fifth embodiment of the present invention.
  • FIG. 25A—FIG. 25E is a diagram for explaining a piezoelectric transformer according to a sixth embodiment of the present invention.
  • FIG. 25A is a top view
  • FIG. 25B is a bottom view
  • FIG. C to FIG. 25E are sectional views
  • 26A and 26B are partially enlarged views for explaining a piezoelectric transformer according to a sixth embodiment of the present invention.
  • FIG. 26A is a partially enlarged top view
  • FIG. 26B is a partially enlarged sectional view.
  • FIG. 27 is a perspective view illustrating a piezoelectric transformer according to a sixth embodiment of the present invention.
  • FIG. 28 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the sixth embodiment of the present invention.
  • FIG. 29 is a circuit diagram for explaining the electrical connection at the time of step-down of the piezoelectric transformer according to the sixth embodiment of the present invention.
  • FIG. 3 OA—FIG. 3 OE is a diagram for explaining a piezoelectric transformer according to a seventh embodiment of the present invention.
  • FIG. 3 OA is a top view of an upper plate
  • FIG. 30B is a bottom view
  • FIG. FIG. 30E is a cross-sectional view
  • FIG. 31A—FIG. 31E are views for explaining a piezoelectric transformer according to a seventh embodiment of the present invention.
  • FIG. 31A is a top view of a lower plate
  • FIG. 31B is a bottom view
  • Figure 31C- Figure 31E is a cross-sectional view
  • FIG. 32 is a perspective view illustrating a piezoelectric transformer according to a seventh embodiment of the present invention.
  • FIG. 33 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the seventh embodiment of the present invention.
  • FIG. 34 is a circuit diagram for explaining electrical connection at the time of step-down of the piezoelectric transformer according to the seventh embodiment of the present invention.
  • FIG. 35A and 35B are views for explaining a piezoelectric transformer according to an eighth embodiment of the present invention.
  • FIG. 35A is a top view of the first layer
  • FIG. 35B is a bottom view
  • FIG. 36A and 36B are views for explaining a piezoelectric transformer according to an eighth embodiment of the present invention.
  • FIG. 36A is a top view of the second layer
  • FIG. 36B is a bottom view. Yes,
  • FIGS. 37A and 37B are diagrams for explaining a piezoelectric transformer according to an eighth embodiment of the present invention.
  • FIG. 37A is a top view of the third layer
  • FIG. 37B is a bottom view.
  • FIGS. 38A and 38B are diagrams for explaining a piezoelectric transformer according to an eighth embodiment of the present invention.
  • FIG. 38A is a top view of the fourth layer
  • FIG. 38B is a bottom view.
  • FIG. 39 is a partially enlarged top view for explaining a piezoelectric transformer according to an eighth embodiment of the present invention.
  • FIG. 40 is a perspective view illustrating a piezoelectric transformer according to an eighth embodiment of the present invention.
  • FIG. 41 is a circuit diagram for explaining an electrical connection at the time of boosting of the piezoelectric transformer according to the eighth embodiment of the present invention.
  • FIG. 42 is a circuit diagram for explaining electrical connection at the time of step-down of the piezoelectric transformer according to the eighth embodiment of the present invention.
  • FIGS. 43A to 43E are views for explaining the piezoelectric transformer according to the ninth embodiment of the present invention.
  • FIG. 43A is a top view
  • FIG. 43B is a bottom view
  • FIG. C Fig. 4 3 E is a sectional view
  • FIG. 44 is a perspective view for explaining a piezoelectric transformer according to a ninth embodiment of the present invention.
  • FIG. 45 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the ninth embodiment of the present invention.
  • FIG. 46 is a circuit diagram for explaining the electrical connection at the time of step-down of the piezoelectric transformer according to the ninth embodiment of the present invention.
  • Fig. 47 is a perspective view showing a conventional Rosen-type piezoelectric transformer.
  • Fig. 48 shows a conventional (piezoelectric lateral effect-piezoelectric lateral effect) step-down piezoelectric transformer.
  • FIG. 48 shows a conventional (piezoelectric lateral effect-piezoelectric lateral effect) step-down piezoelectric transformer.
  • FIG. 49 is a perspective view showing a conventional (piezoelectric longitudinal effect-piezoelectric longitudinal effect) step-down piezoelectric transformer.
  • FIGS. 1A to 1E are views for explaining the piezoelectric transformer of this embodiment.
  • FIG. 1A is a top view
  • FIG. 1B is a bottom view
  • FIG. 1C to FIG. is there.
  • FIG. 2 is a perspective view for explaining the piezoelectric transformer of the present embodiment.
  • FIG. 3 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer of the present embodiment.
  • FIG. 4 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of the present embodiment at the time of step-down.
  • FIGS. 5A to 5G are diagrams for explaining the resonance operation of the piezoelectric transformer of the present embodiment
  • FIGS. 5A, 5B, and 5C are plan views showing the contracted state of the single plate.
  • FIG. 5D shows the stress distribution in the state of FIG. 5A
  • FIG. 5E shows the displacement distribution in the state of FIG. 5A
  • FIG. 5F shows the stress distribution in the state of FIG. 5C
  • FIG. 5G is a diagram showing a distribution
  • FIG. 5G is a diagram showing a displacement distribution in the state of FIG. 5C.
  • the flat plate 100 of the piezoelectric transformer 501 of this embodiment is a single plate (24 mm ⁇ 24 mm ⁇ l mm) of a PZT-based piezoelectric ceramics. Electrodes 1-18 are made of Pd-Ag conductive paste. As shown in FIGS. 1A and 1B, the electrode pattern is formed by screen printing square electrodes 118 in a 3 ⁇ 3 grid. This square electrode shape has corners to increase the dielectric breakdown strength between the electrodes, for example, corners 1 1 1 for electrode 1, 1 112, 1 1 3 for electrode 2 and 1 for electrode 103. It is desirable that all four corners of the center electrode 5 be rounded.
  • the polarization treatment is performed in oil.
  • the direction is the direction (z direction) perpendicular to the two main surfaces (front and back) of the flat plate 100 as shown in FIGS. 1A, 1C, 1D, and 1E.
  • Fig. 1A when “ ⁇ ” is shown in ⁇ , it indicates an upward polarization direction, and when "X” is shown in ⁇ , it is a downward polarization direction.
  • the piezoelectric transformer element is manufactured by performing the aging process. By doing so, the flat plate 100, which is square in plan view, is divided into three in the X direction and three in the y direction. Divided into 109.
  • FIG. 2 is a perspective view of the present piezoelectric transformer 501.
  • the electrical connection is made between the square electrodes 1, 3, 5, 7, 9, 10, 10, 12, 14, 16, and 18 located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 501. Remove from each center.
  • a conductive elastic body such as 141-145.
  • an electrical connection with an external circuit is obtained by connecting a metal terminal 131-134 to the conductive elastic body 141-145.
  • This piezoelectric transformer can be used for both step-up and step-down applications by changing the electrical connection.
  • Figure 3 shows the electrical connections when used for boosting.
  • Figure 4 shows the electrical connections when used for step-down.
  • the piezoelectric transformer of the present embodiment performs a resonance operation as shown in FIGS. 5A to 5G.
  • electrode pairs 5, 14 serving as excitation electrodes or output electrodes are arranged in the central region 105, and the peripheral regions 101, 103, 100 are arranged.
  • the output electrode or the excitation electrode is arranged in each of 7, 109, the cross-sectional area where the mechanical resonance energy propagates can be taken in four directions, and therefore the density of the mechanical resonance energy passing per unit area And the resulting power limit can be increased It has become.
  • peripheral regions 101, 103, 107, and 109 are connected in parallel to form an excitation region or an output region, the resonance mode of the flat plate 100 is maintained. Excitation is possible, and as a result, high efficiency can be expected.
  • FIGS. 6A to 6E are views for explaining the piezoelectric transformer of this embodiment.
  • FIG. 6A is a top view of the upper plate
  • FIG. 6B is a bottom view
  • FIGS. 6C to 6E are It is sectional drawing.
  • 7A to 7E are views for explaining the piezoelectric transformer of the present embodiment.
  • FIG. 7A is a top view of the lower plate
  • FIG. 7B is a bottom view
  • FIG. 7C—FIG. 7E is a cross-sectional view.
  • FIG. 8 is a perspective view for explaining the piezoelectric transformer of the present embodiment.
  • FIG. 9 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the present embodiment.
  • FIG. 10 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of this embodiment at the time of step-down.
  • the flat plate of the piezoelectric transformer 502 of this embodiment is a laminated plate 5 10 (24 mm ⁇ 24 mm ⁇ 0.5 mm ⁇ 2 layers) in which two flat plates 100 and 200 of PZT piezoelectric ceramics are stacked. .
  • the electrodes 113 are made of Pd-Ag conductive paste.
  • the electrode pattern is formed by screen printing square electrodes in a 3 ⁇ 3 grid. This square electrode shape has corners to increase the dielectric breakdown strength between the electrodes, for example, the corners 1 1 and 1 for electrode 1, the corners 1 2 and 1 13 for electrode 2, and the corners for electrode 103.
  • the polarization treatment is performed in oil.
  • the piezoelectric transformer element is manufactured by performing an aging process. By doing so, the upper flat plate 100 of a square shape in plan view is divided into three in the X direction and three in the y direction. 0 1 — 1 0 9 is divided into two, and a flat plate with a square bottom in plan view 2 0 0 is divided into 3 in the X direction and 3 in the y direction. It is divided into the area 201-209.
  • FIG. 8 is a perspective view of the present piezoelectric transformer 502.
  • FIG. The electrical connection is made on the upper and lower surfaces of the laminated plate 5 10 by square electrodes 1, 3, 5, 7, 9, 28, 3 located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 502. Take out from the center of 0, 32, 34, 36, respectively.
  • a conductive elastic body 141-145 For electrical connection, it is desirable to use a conductive elastic body 141-145. Further, by connecting metal terminals 131, 132, 135, and 138 to the conductive elastic body 141-145, etc., electrical connection to an external circuit is established.
  • the electrodes 10-18 provided on the back surface of the upper plate 100 and the electrodes 19-27 provided on the surface of the lower plate 200 are connected by epoxy-based bonding.
  • Laminate with agents or join by integral sintering By doing so, a laminated plate 5100 in which the upper plate 100 and the lower plate 200 are integrated is formed. Connection to electrodes 10, 12, 16, 18 provided on the back of upper plate 100, electrodes 19, 21, 25, 27 provided on the surface of lower plate 200 It is preferable that the metal terminal 137 formed of a soft wire that does not hinder vibration be soldered or the like.
  • the electrode pairs 5, 3 serving as excitation electrodes or output electrodes are provided on the front surface of the central region 105 of the flat plate 100 and the back surface of the central region 205 of the flat plate 200. 2 and the output electrodes or excitation electrodes are placed in the peripheral areas 101, 103, 107 and 109 of the flat plate 100, respectively. Since the output electrode or the excitation electrode is arranged in each of the peripheral regions 201, 203, 207, and 209 of 200, the cross-sectional area where mechanical resonance energy propagates is square. Therefore, it is possible to reduce the density of the mechanical resonance energy passing per unit area, and as a result, it is possible to further increase the limit value of usable power.
  • peripheral areas 101, 103, 107, 109 of the flat plate 100 are connected in parallel, and the peripheral areas 201, 203, 2 of the flat plate 200 are connected. Since 0 7 and 2 0 9 are connected in parallel as an excitation area or an output area, excitation is performed without disturbing the resonance mode of the laminated body 5 10 composed of the flat plates 1 0 0 and 2 0 0 As a result, high efficiency can be expected.
  • This piezoelectric transformer 502 can be used for step-up and step-down applications by changing the electrical connection.
  • Figure 9 shows the electrical connections used for boosting.
  • FIG. 10 shows the electrical connection when used for step-down.
  • FIG. 11A and FIG. IB are views for explaining the piezoelectric transformer of the present embodiment.
  • FIG. 11A is a top view
  • FIG. 11B is a bottom view.
  • FIG. 12 is a perspective view for explaining the piezoelectric transformer of the present embodiment.
  • FIG. 13 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer according to the present embodiment at the time of boosting.
  • FIG. 14 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of the present embodiment at the time of step-down.
  • the flat plate 100 of the piezoelectric transformer 503 of this embodiment is made of a single plate (24 mm ⁇ 24 mm ⁇ 1 mm) of PZT-based piezoelectric ceramics. Electrodes 1-18 are made of Pd-Ag conductive paste. As shown in FIGS. 11A and 11B, an electrode pattern is formed by screen printing square electrodes in a 3 ⁇ 3 grid. This square electrode shape is the dielectric breakdown strength between the electrodes. For example, corner 1 1 1 for electrode 1, corner 1 1 2 and 1 13 for electrode 2, corner 1 1 4 for electrode 103, and 4 corners for center electrode 5. It is desirable that all be rounded.
  • the polarization treatment is performed in oil.
  • the polarization direction is a direction ( Z direction) perpendicular to the two main surfaces (front and back) of the flat plate 100 as shown in FIGS. 11A and 12.
  • the piezoelectric transformer element is manufactured by performing an aging process. By doing so, the flat plate 100 having a square shape in plan view is divided into three in the X direction and three in the y direction. It is divided into 09.
  • FIG. 12 is a perspective view of the piezoelectric transformer 503 of this embodiment.
  • the electrical connection is at the center of the square electrodes 1, 3, 5, 7, 9, 10, 0, 12, 14, 16, 18 located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 503 Remove from the part.
  • a conductive elastic body 161 to 165 for electrical connection.
  • the electrical connection between the electrodes can be achieved by applying a conductive paint to the element surface. Further, by connecting metal terminals 15 1-15 4 to the conductive elastic body 16 1-16 5 etc., electrical connection with an external circuit is established.
  • the maximum step-up ratio is about ⁇ (square root of (3/2)) because three electrode plates are used on the input side and two electrode plates are used on the output side during step-up. It will be about twice.
  • the regions 105 and 109 are connected in parallel to form an excitation region or an output region, and the peripheral regions 101, 103, 107 and 109 are formed. Since they are connected in parallel to form an output area or an excitation area, vibration modes are aligned in both the excitation area and the output area, and excitation can be performed without breaking the resonance mode of the flat plate 100. It is possible, and as a result, high efficiency can be expected.
  • Fig. 13 shows the electrical connections for boost operation.
  • Figure 14 shows the Shows the electrical connection for use.
  • FIGS. 15A and 5B are views for explaining the piezoelectric transformer of the present embodiment.
  • FIG. 15A is a top view and FIG. 15B is a bottom view.
  • FIG. 16 is a perspective view for explaining the piezoelectric transformer of the present embodiment.
  • FIG. 17 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer according to the present embodiment.
  • the flat plate 100 of the piezoelectric transformer 504 of this embodiment is a single plate (24 mm ⁇ 24 mm ⁇ l mm) force of a PZT-based piezoelectric ceramic.
  • the electrodes 118 are made of Pd-Ag conductive paste.
  • the electrode pattern is formed by screen printing square electrodes in a 3 ⁇ 3 grid. This square electrode shape has corners to increase the dielectric breakdown strength between the electrodes, for example, corners 11 1 1 for electrode 1, 112, 1 13 for electrode 2, and corners for electrode 103. It is desirable that all four corners of the center electrode 5 are rounded.
  • the polarization treatment is performed in oil.
  • the polarization direction is a direction (z direction) perpendicular to the two main surfaces (front and back) of the flat plate 100 as shown in FIGS. 15A and 16.
  • the piezoelectric transformer element is manufactured by performing an aging process. By doing so, the flat plate 100 having a square shape in plan view is divided into three in the X direction and three in the y direction. It is divided into 09.
  • the piezoelectric transformer element is manufactured by performing aging treatment after the polarization treatment.
  • Fig. 16 shows a perspective view of the present piezoelectric transformer.
  • the electrical connection is taken out from the center of the square electrode 118 located at the node of the piezoelectric resonance vibration of the present piezoelectric transformer. It is desirable to use a conductive elastic body 181-189 for electrical connection.
  • the electrical connection between the electrodes can also be achieved by applying a conductive paint to the element surface. More conductive. Electrical connection to external circuits is established by connecting metal terminals 1 7 1-1 7 6 to 18 1 1-18 9 etc.
  • Excitation electrode terminals are provided at one location in A and D, and output electrode terminals are provided in two locations at B, E, C, and F. At this time, it is desirable that the resonance modes of the electrode plates connected to the electrodes B and C match.
  • Figure 17 shows the electrical connections for boost operation.
  • FIG. 18A is a top view of the first layer
  • FIG. 18B is a bottom view
  • FIG. 19A is a top view of the second layer
  • FIG. 19B is a bottom view
  • FIG. A is a top view of the third layer
  • FIG. 20B is a bottom view
  • FIG. 21A is a top view of the fourth layer
  • FIG. 21B is a bottom view.
  • FIG. 22 is a perspective view for explaining the piezoelectric transformer of the present embodiment.
  • FIG. 23 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer of the present embodiment.
  • FIG. 24 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of the present embodiment at the time of step-down.
  • the flat plate of the piezoelectric transformer 505 of the present embodiment is a laminated plate of four layers 310, 320, 330, 340 of PZT-based piezoelectric ceramics 52 0 (24 mm X 24 mm X 0.5 X 4 mm).
  • the electrodes 401-456 are made of a Pd-Ag-based conductive paste. Electrode patterns are formed by screen printing square electrodes in a 3 ⁇ 3 grid as shown in FIGS. However, the electrodes on the surface exposed to the outside (the surface of the first layer 310 and the back surface of the fourth layer 340) are arranged only in the central area, and the conductive paste is not printed on the other areas. . With such a structure, a long distance between the input and output electrodes can be ensured. Therefore, the dielectric strength between input and output will increase.
  • the shape of these square electrodes 4 0 1-4 5 6 depends on the breakdown strength between the electrodes. It is desirable that the corners be rounded to increase the degree.
  • the polarization treatment is performed in oil. As shown in Fig. 18-22, the polarization direction is the direction (z direction) perpendicular to the two main surfaces (front and back) of each of the flat plates 310, 320, 3330, and 340. ). After the polarization process, the aging process is performed to produce a piezoelectric transformer element. In this way, the first layer flat plate 310 having a square shape in plan view is divided into three in the X direction and three in the y direction.
  • 1 2-3 1 9 is divided into two, and the flat plate of the second layer, which is square in plan view, is divided into 3 in the X direction and 3 in the y direction.
  • the area is divided into three areas 3 2 1-3 2 9, and the flat plate of the third layer, which is square in plan view, is divided into 3 sections in the X direction and 3 sections in the y direction.
  • FIG. 22 is a perspective view of the present piezoelectric transformer 505. Electrical connection is taken from the center of the square electrodes 401, 456 located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 505 on the upper and lower surfaces of the laminated plate 520 . It is desirable to use a conductive elastic body 361 for electrical connection. Further, by connecting metal terminals 35 1 and 35 2 to the conductive elastic body 36 1 and the like, electrical connection with an external circuit is obtained.
  • connection between the electrode 4 0 2 4 0 provided on the back surface of the first layer flat plate 3 10 and the electrode 4 11 1-4 19 provided on the surface of the second layer flat plate 3 2 0, Connection of the electrodes 420-428 provided on the back surface of the flat plate 320 of the second layer with the electrodes 42-9-438 provided on the surface of the flat plate 330 of the third layer;
  • connection between the electrode 4 3 8-4 4 6 provided on the back of the three-layer plate 3 3 0 and the electrode 4 4 7-4 5 5 provided on the surface of the fourth layer 3 4 0 Electrode Bond each other with an epoxy-based adhesive, or join them by integral sintering.
  • a laminated plate 520 in which the first to fourth flat plates 310, 320, 330, and 340 are integrated is formed.
  • the connection to the electrodes 447, 449, 453, 455 is desirably performed by soldering the tip of the metal terminal 353 formed of a soft wire that does not hinder vibration.
  • the metal terminal 353 is drawn so as to be connected only to the region on the right side in the figure, but is similarly connected to the region on the left side in the figure.
  • connection to the electrodes 420, 422, 426, and 428 provided on the back surface of the second layer flat plate 320, and connection to the electrodes 429, 431, 435, and 433 provided on the surface of the third layer flat plate 330 It is desirable to make the connection by soldering the tip of the metal terminal 354 formed of a soft wire that does not hinder the vibration.
  • an electrode serving as an excitation electrode or an output electrode is provided on the surface of the central region 3 15 of the first layer flat plate 3 10 and the bottom surface of the central region 345 of the fourth layer flat plate 340.
  • Pairs 40 1 and 456 are arranged respectively, and output electrodes or excitation electrodes are arranged in the areas 3 11, 3 13, 3 17 and 3 19 around the first flat plate 3 10 respectively.
  • An output electrode or an excitation electrode is arranged in each of the regions 32 1, 323, 327, and 329 around the second layer flat plate 320, and the regions 33 1, 3 around the third layer flat plate 330 are arranged.
  • Output electrodes or excitation electrodes are placed on 33, 33 7 and 339, respectively, and are placed in the areas 34 1, 343, 34 7 and 349 around the fourth layer flat plate 340. Since the output electrode or the excitation electrode is disposed, the cross-sectional area where the mechanical resonance energy propagates can be taken in four directions, thereby reducing the density of the mechanical resonance energy that passes through per unit area. As a result, it is possible to raise the limit of power that can be used as a result. Also, the regions 3 11, 3 13, 3 17, 3 19 around the first layer flat plate 3 10 are connected in parallel, and the area 3 around the second layer flat plate 3 20 is connected. 2 1, 3
  • Excitation can be performed without destroying the resonance mode of the laminate 520 composed of 30 and 340, and as a result, high efficiency can be expected.
  • the excitation electrode portion and the output electrode portion are not arranged on the same layer or in the same plane, so that the insulation between the excitation electrode and the output electrode can be improved, and the piezoelectric transformer The dielectric strength between input and output can be greatly improved.
  • the piezoelectric transformer of this embodiment is applied to an AC adapter or the like, it becomes possible to increase the electrical independence between the commercial AC power supply and the device.
  • This piezoelectric transformer can be used for both step-up and step-down applications by changing the electrical connection.
  • Figure 23 shows the electrical connections used for boosting.
  • Figure 24 shows the electrical connections when used for step-down.
  • the output can be increased, the efficiency can be reduced, the cost can be reduced, the thickness can be reduced, and the degree of freedom in selecting the transformer ratio is high.
  • a piezoelectric transformer that can be used as a multi-output transformer is provided.
  • FIGS. 25A to 25E are views for explaining the piezoelectric transformer of this embodiment.
  • FIG. 25A is a top view
  • FIG. 25B is a bottom view
  • FIG. 25C to FIG. 25E are cross-sectional views.
  • . 26A and 26B are partially enlarged views for explaining the piezoelectric transformer of the present embodiment
  • FIGS. 26A and 26B are a partially enlarged top view and a partially enlarged sectional view of a region 105, respectively.
  • FIG. 27 is a perspective view for explaining the piezoelectric transformer of this example.
  • FIG. 28 is a circuit diagram for explaining electrical connection at the time of boosting of the piezoelectric transformer according to the present embodiment.
  • FIG. 29 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of this example at the time of step-down.
  • FIGS. 5A to 5G are diagrams for explaining the resonance operation of the piezoelectric transformer of the present embodiment
  • FIGS. 5A, 5B, and 5C are plan views showing the expanded and contracted states of the single plate.
  • 5D is a diagram illustrating the stress distribution in the state of FIG. 5A
  • FIG. 5E is a diagram illustrating the displacement distribution in the state of FIG. 5A
  • FIG. 5F is a diagram illustrating the stress distribution in the state of FIG. 5C.
  • FIG. 5G is a diagram showing a displacement distribution in the state of FIG. 5C.
  • the flat plate 100 of the piezoelectric transformer 501 of this embodiment is a single plate (24 mm X 24 mm X 1 mm) of a PZT-based piezoelectric ceramic.
  • the electrodes 118, 5 ', and 14' are made of a Pd-Ag-based conductive paste. As shown in Fig. 1, the electrode pattern is formed by screen printing electrodes 1-1, 5, 5, 14 'in a 3x3 grid.
  • Electrodes 1, 4, 6-13, 15-18 have a square shape, and this square electrode shape has corners to increase the dielectric breakdown strength between the electrodes. It is desirable that the corners 112, 113 for the electrode 1, and the electrode 112, and the corners 114 for the electrode 103, be rounded.
  • the outer shapes of the electrodes 5 ′ and 14 ′ are also square, and it is desirable that all the four corners of the square electrode are rounded in order to increase the dielectric strength.
  • the inside of the electrodes 5 ′ and 14 ′ is hollowed out in a circular shape and has a circular opening. Parts 120 and 121 are formed respectively. The top and bottom surfaces of the flat plate 100 are exposed from the openings 120 and 121 respectively.
  • Circular electrodes 5 and 14 are provided concentrically with the circular openings 120 and 121, respectively.
  • the center of the square of the outer shape of the electrode 5 'and the center of the circular opening 1 20 coincide with the center of the circular electrode 5, and the center of the square of the outer shape of the electrode 14' matches the center of the circular electrode.
  • the center of the opening 1 21 coincides with the center of the circular electrode 14.
  • the polarization treatment is performed in oil.
  • the direction of polarization is as shown in Fig. 25A, Fig. 25C-Fig. 25E for the surrounding areas 101-104 and 106-109. It is the direction (z direction) perpendicular to (front and back).
  • the polarization of the region 105 is radial with respect to the center of the circular electrode 5 and almost parallel to the main surface (front surface, back surface) of the flat plate 100.
  • a voltage is applied between the electrode terminals B and D so that the polarization direction is oriented in the desired direction.
  • the flat plate 100 between the electrode 5 and the electrode 14 be polarized in a direction perpendicular to the two main surfaces (the front surface and the back surface).
  • the piezoelectric transformer element is manufactured by performing an aging process. By doing so, the flat plate 100 having a square shape in plan view is divided into three in the X direction and three in the y direction. 0 is divided into nine.
  • FIG. 27 is a perspective view of the piezoelectric transformer 501 of this embodiment.
  • the electrical connection is made in the areas 101, 103, 107, 109 at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 501, and the square electrodes 1, 3, 7, 9 , 10, 12, 16, and 18 are taken out from the center of each.
  • the electrode terminal portion B is taken out from the center of the center circular electrode 5 located at the node of the piezoelectric resonance vibration of the piezoelectric transformer 501, while the electrode terminal portion D is taken out of the outer side. Take out near the corner of electrode 5 '.
  • electrical connection to external circuits is established by connecting metal terminals 13 1 1 to 13 4 to the conductive elastic body 1 4 1 1 1 1 4 6 and the like.
  • This piezoelectric transformer can be used for both step-up and step-down applications by changing the electrical connection.
  • Figure 28 shows the electrical connections when used for boosting.
  • Figure 29 shows the electrical connections when used for step-down.
  • the piezoelectric transformer of this embodiment performs a resonance operation as shown in FIG.
  • an electrode pair 5, 5 'serving as an excitation electrode or an output electrode is arranged in a central region 105, and a peripheral region 101, 103, 107, 1 is formed. Since an output electrode or an excitation electrode is placed on each of the components 9, the cross-sectional area where mechanical resonance energy propagates can be taken in four directions, so that the density of mechanical resonance energy that passes through per unit area can be reduced. It is possible to raise the limit of the power that can be used as a result.
  • peripheral regions 101, 103, 107, and 109 are connected in parallel to form an excitation region or an output region, the resonance mode of the flat plate 100 is maintained. Excitation is possible, and as a result, high efficiency can be expected.
  • one of the excitation region and the output region is a region in which the polarization is in a direction substantially parallel to the two main surfaces (the front surface and the rear surface) of the flat plate 100, and the excitation region and the output region are arranged. Since the other of the regions is a region in which the polarization is almost perpendicular to the two main surfaces (front surface and back surface) of the flat plate 100, the ratio between the input impedance and the output impedance can be made large, and as a result, the voltage A larger ratio or step-down ratio can be taken.
  • a circular opening 120 is provided inside the outer electrode 5, and concentric with the circular opening 120 inside the opening 120. Since the circular electrode 5 is provided, when a voltage is applied between these electrodes 5 and 5 ′ to perform polarization, the electric field intensity applied to the element during polarization becomes uniform, and the circular electrode 5 is formed. Can be uniformly polarized radially with respect to the center. (Seventh embodiment)
  • FIG. 3 OA-30E is a diagram for explaining the piezoelectric transformer of this embodiment.
  • Fig. 3 OA is a top view of the upper plate
  • Fig. 30B is a bottom view
  • Fig. 30C-Fig. 30E is a cross-sectional view.
  • FIGS. 31A-31E are views for explaining the piezoelectric transformer of this embodiment.
  • FIG. 31A is a top view of the lower plate
  • FIG. 31B is a bottom view
  • FIG. FIG. 31E is a cross-sectional view.
  • FIG. 32 is a perspective view for explaining the piezoelectric transformer of this example.
  • FIG. 33 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the present embodiment.
  • FIG. 34 is a circuit diagram for explaining the electrical connection at the time of step-down of the piezoelectric transformer according to the present embodiment.
  • the flat plate of the piezoelectric transformer 502 of this embodiment is a laminated plate 5 10 (24 mm ⁇ 24 mm ⁇ 0.5 mm ⁇ 2 layers) in which two flat plates 100 and 200 of PZT piezoelectric ceramics are stacked.
  • the electrodes 1-36, 5 ', 14, 24, 23', and 32 ' are made of Pd-Ag conductive paste. As shown in Fig. 30A, Fig. 30B, Fig. 31A and Fig. 31B, the electrodes 1-36, 5,, 14, 24, 23,, 32, are arranged in a 3x3 grid. Formed by screen printing.
  • Electrodes 114, 6—13, 15—22, 24—31, and 33—36 have a square shape, and this square electrode shape has corners to increase the dielectric breakdown strength between the electrodes.
  • electrode 1 has a corner 1 1 1
  • electrode 2 has a corner 1 1 2
  • electrode 103 has a corner 1 1 4
  • electrode 1 9 has a corner 2 1 1
  • electrode 20 has a corner 2. It is desirable that the corners 2 14 of the electrodes 2, 2 1 3 and the electrode 21 be rounded.
  • the outer shape of the electrodes 5, 14, 25, 23 'and 32' is also square, This square electrode shape is preferably rounded at all four corners in order to increase the dielectric breakdown strength.
  • the inside of the electrodes 5 ′, 14 ′, 23 ′, 32 ′ is hollowed out in a circular shape, and circular openings 120, 122, 220, 221 are formed respectively.
  • the top and bottom surfaces of the flat plate 100 are exposed from the openings 120 and 121, respectively, and the top and bottom surfaces of the flat plate 200 are exposed from the openings 220 and 221 respectively.
  • Circular electrodes 5, 14, 23, and 32 are provided concentrically with the circular openings 120, 122, 220, and 221, respectively.
  • the center of the square of the outer shape of the electrode 5 ′ and the center of the circular opening 120 coincide with the center of the circular electrode 5, and the center of the square of the outer shape of the electrode 14 ′ matches the center of the circular electrode.
  • the center of the opening 1 2 1 coincides with the center of the circular electrode 14, and the center of the square electrode, the center of the circular opening 220, and the center of the circular electrode 23, which are the outer shape of the electrode 23 ′,
  • the center of the square shape, which is the outer shape of the electrode 32 ', the center of the circular opening 221 and the center of the circular electrode 32 match.
  • the polarization treatment is performed in oil.
  • the direction of polarization depends on the surrounding areas 101-104, 106-109, 201-204, and 206-209, as shown in Fig. 30A and Fig. 32. It is the direction (z direction) perpendicular to each of the two main surfaces (front and back).
  • the polarization of the region 105 is radiating from the center of the circular electrode 5 in a direction substantially parallel to the main surface (front surface, back surface) of the flat plate 100.
  • a voltage is applied between the electrode terminals B and D so that the polarization direction is oriented.
  • the flat plate 100 between the electrode 5 and the electrode 14 ′ is polarized in a direction perpendicular to the two main surfaces (the front surface and the back surface).
  • the polarization of the region 205 is radial to the center of the circular electrode 23 and substantially parallel to the main surface (front surface, back surface) of the flat plate 200.
  • the piezoelectric transformer element is manufactured by performing an aging process.
  • the flat plate 100 having a square upper plate in a plan view 100 is divided into three regions in the X direction and three regions in the y direction.
  • FIG. 32 is a perspective view of the present piezoelectric transformer 502.
  • the electrical connection is made by the square electrodes 1, 3, which are located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 502 on the surfaces of the regions 101, 103, 107, and 109 on the upper surface of the laminate 5110.
  • the square electrodes 28, which are located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 502 on the surfaces of the regions 201, 203, 207, and 209 on the lower surface of the laminate 5 10 Take out from the center of 30, 34 and 36 respectively.
  • the electrode terminal portion B is taken out from the center of the central circular electrode 5 located at the node of the piezoelectric resonance vibration of the piezoelectric transformer 502, while the electrode terminal portion D is taken out of the outer electrode 5, From the vicinity of the corner. It is desirable to use a conductive elastic body 141-146 or the like for electrical connection. Further, by connecting metal terminals 131, 132, and 134-137 to the conductive elastic members 141-146 and the like, electrical connection with an external circuit is established.
  • the upper plate 1 00 electrode 1 0 1 provided on the back surface of 8, 1 4, connection of the electrodes provided 1 9 2 7, 23 'on the surface of the lower plate 200 and respectively corresponding electrodes to each other are bonded by epoxy adhesive or joined by integral sintering. And by doing so, the upper plate 100 and the lower plate 99/34454
  • a laminated plate 5 10 integrated with the plate 200 is formed. Connection to electrodes 10, 12, 16, 18 provided on the back of upper plate 100 and electrodes 19, 21, 25, 27 provided on the surface of lower plate 200 inhibits vibration It is desirable to solder the metal terminal 137 formed of a soft wire so as not to cause such a problem.
  • electrode pairs 5 and 5 ′ serving as excitation electrodes or output electrodes are arranged on the surface of the central region 105 of the flat plate 100, and the peripheral region 101, Output electrodes or excitation electrodes are placed on 103, 107, and 109, respectively, and output electrodes or excitation electrodes are placed on the peripheral areas 201, 203, 207, and 209 of the flat plate 200, respectively.
  • the cross-sectional area where mechanical resonance energy propagates can be taken in all directions, and therefore, the density of mechanical resonance energy passing per unit area can be reduced, and as a result, It is possible to raise the limit.
  • the areas 101, 103, 107, and 109 at the periphery of the plate 100 are connected in parallel, and the areas 201, 203, 207, and 209 at the periphery of the plate 200 are connected in parallel.
  • the excitation region or the output region it is possible to excite the laminate 5100 composed of the flat plates 100 and 200 without breaking the resonance mode, and as a result, high efficiency can be expected. It has been
  • the regions 105 and 205 which are one of the excitation region and the output region, are divided into two main surfaces (a front surface and a back surface) of a flat plate 100 and two main surfaces (a back surface) of a flat plate 200. (The front and back sides) and the areas 101 1, 103, 107, 109, 201, 203, 207, and 209 which are the other areas of the excitation area and the output area.
  • the polarization is the two principal surfaces of the plate 100 (front, back) and the two principal surfaces of the plate 200 (front. Since the region is almost perpendicular to the back surface, the ratio between the input impedance and the output impedance can be increased. As a result, the step-up ratio or the step-down ratio can be increased.
  • a circular opening 120 is provided inside the outer electrode 5, and a circular electrode 5 concentric with the circular opening 120 is provided in the opening 120.
  • a voltage is applied between these electrodes 5 and 5 ′ to perform polarization, the electric field intensity applied to the element during polarization becomes uniform and the center of the circular electrode 5 is displaced.
  • Radially uniform polarization processing In the region 205, a circular opening 220 is provided inside the outer electrode 23, and a circular electrode concentric with the circular opening 220 is provided in the opening 220. Since a voltage is applied between these electrodes 23 and 23 to perform polarization, the electric field intensity applied to the element during polarization is uniform, and a circular electrode 23 is provided. Can be uniformly polarized radially with respect to the center.
  • This piezoelectric transformer 502 can be used for step-up and step-down applications by changing the electrical connection.
  • Figure 33 shows the electrical connections used for boosting.
  • Figure 34 shows the electrical connections when used for step-down.
  • FIG. 35A, Fig. 35B, Fig. 36A, Fig. 36B, Fig. 37A, Fig. 37B, Fig. 38A, Fig. 38B illustrate the piezoelectric transformer of this embodiment.
  • 35A is a top view of the first layer
  • FIG. 35B is a bottom view
  • FIG. 36A is a top view of the second layer
  • FIG. 36B is a bottom view
  • 37A is a top view of the third layer
  • FIG. 37B is a bottom view
  • FIG. 38A is a top view of the fourth layer
  • FIG. 38B is a bottom view.
  • FIG. 39 is a partially enlarged top view for explaining regions 3 15, 3 25, 3 35, and 3 45 of the piezoelectric transformer of this embodiment.
  • FIG. 39 is a partially enlarged top view for explaining regions 3 15, 3 25, 3 35, and 3 45 of the piezoelectric transformer of this embodiment.
  • FIG. 39 is a partially enlarged top view for explaining regions 3 15, 3 25, 3 35
  • FIG. 40 is a perspective view for explaining the piezoelectric transformer of this embodiment.
  • 4 1 c is a circuit diagram for explaining an electrical connection when the piezoelectric transformer boosting the present embodiment
  • FIG. 42 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of this example at the time of step-down.
  • the flat plate of the piezoelectric transformer 505 of this embodiment is a laminated plate 5 20 (24 mm X 24 mm X 0.5 X) of four layers of PZT-based piezoelectric ceramics 31 0, 320, 330, and 340. 4 mm). Electrodes 4 0 1 — 4 56, 40 1,, 40 6 ′, 4 15 ′, 4 24 ′, 4 3 3 ′, 442 ′, 4 5 1 ′, 4 5 6 ′ are P d — Ag It consists of a conductive paste of the system. The electrode pattern is shown in Fig.
  • 35A-Electrode 40 1-4 56, 40 1 ', 40 6', 4 15 ', 4 24', 4 4 3 3 ′, 442 ′, 45 1 ′, and 45 6 ′ are formed by screen printing.
  • the electrodes on the surfaces exposed to the outside are arranged only in the central area, and the conductive paste is not printed on the other areas. With such a structure, a long distance between the input and output electrodes can be ensured. Therefore, the dielectric strength between input and output will increase. In addition, the effect of preventing migration due to the humidity in the outside air is increased.
  • Electrodes 40 2—4 0 5,40 7—4 1 4,4 1 6—4 2 3,4 2 5—4 3 2,4 34—44 1,44 3—4 5 0,4 5 2 -4 5 5 has a square shape, and it is desirable that the square electrode shape has rounded corners in order to increase the dielectric breakdown strength between the electrodes.
  • the outer shapes of the electrodes 401, 406, 415 ', 424, 433, 442', 451, 456 are also square, and this square electrode shape Preferably, all four corners are rounded to increase the dielectric strength.
  • the inside of the electrodes 40 1 ′, 406 ′, 4 15 ′, 4 24 ′, 4 3 3 ′, 442 ′, 4 5 1 ′, 4 5 6 ′ is hollowed out in a circular shape and has a circular opening.
  • Parts 46 1, 4 65, 4 62, 4 66, 4 63, 4 67, 4 64 and 4 68 are formed respectively. From this opening 4 6 1, 4 6 5 flat plate 3 1 0
  • the top and bottom surfaces of the flat plate 320 are exposed from the openings 462 and 466, respectively, and the top and bottom surfaces of the flat plate 330 are exposed from the openings 463 and 467.
  • the flat plates are exposed from the openings 464 and 468.
  • the surface and bottom of 340 are exposed.
  • the circular openings 46 1, 465, 462, 466, 463, 467, 464, 468 and the concentric circular electrodes 401, 406, 415, 424, 433, 442, 451, respectively. , 456 are provided
  • the center of the square shape, which is the outer shape of the electrode 40 1 ′, and the center of the circular opening 46 1 coincide with the center of the circular electrode 401, and the outer shape of the electrode 406,
  • the center of the opening 465 coincides with the center of the circular electrode 406, and the center of the square opening and the center of the circular opening 462, which is the outer shape of the electrode 415, and the center of the circular electrode 415
  • the center coincides with the center of the square shape which is the outer shape of the electrode 424, the center of the circular opening 466 matches the center of the circular electrode 424, and the square center which is the outer shape of the electrode 433 '.
  • the center of the circular opening 46 3 coincides with the center of the circular electrode 43 3, and the center of the square center and the circular opening 46 7, which is the outer shape of the electrode 442, and the circular electrode 442.
  • Center of the electrode 45 1 ′, the center of the square shape and the center of the circular opening 464 coincide with the center of the circular electrode 45 1, It is coincident with the contour at which the centers of the circular electrode 45 6 square central portion and a circular opening 468 of the pole 456 '.
  • the polarization treatment is performed in oil.
  • the direction of polarization depends on the surrounding area 3 1 1—3 1 4, 3 16—3 19, 32 1—324, 326—329, 3 31—3 34, 336—3 39, 34 1—
  • each of the two main surfaces (front surface and back surface) of the flat plates 310, 320, 330, and 340 are perpendicular to each other. As shown in FIG.
  • the polarization of the c region 3 15 in the direction (z direction) is A voltage is applied between the electrode terminals B and D so that the direction of polarization is radial to the center of 6 and almost parallel to the main surface (front surface, back surface) of the flat plate 310. Do. Further, it is preferable that the flat plate 310 between the electrode 410 and the electrode 406 be polarized in a direction perpendicular to the two main surfaces (the front surface and the back surface). As shown in FIGS.
  • the polarization of the region 325 is radial with respect to the center of the circular electrodes 415 and 424, and the main surface of the flat plate 320 (surface The voltage is applied between the electrode terminals B and D so that the polarization direction is almost parallel to the back surface. Further, it is preferable that the flat plate 320 between the electrodes 415 and 424 ′ is polarized in a direction perpendicular to the two main surfaces (front and back). As shown in FIGS. 37A and 39, the polarization of the region 335 is radial with respect to the center of the circular electrodes 433 and 442, and the principal surface of the flat plate 330 is shown in FIG.
  • the voltage is applied between the electrode terminals B and D so that the polarization direction is almost parallel to the front and back surfaces.
  • the flat plate 330 between the electrode 43 3 ′ and the electrode 44 2 ′ is polarized in a direction perpendicular to the two main surfaces (front and back surfaces). As shown in FIGS. 38A and 39, the polarization of the region 345 is radial with respect to the center of the circular electrodes 451, 456 and the principal surface of the flat plate 340 (surface, The voltage is applied between the electrode terminals B and D so that the polarization direction is almost parallel to the back surface.
  • the flat plate 340 between the electrode 451 'and the electrode 456' be polarized in a direction perpendicular to the two main surfaces (the front surface and the back surface).
  • the piezoelectric transformer element is manufactured by performing aging treatment after polarization treatment.
  • the flat plate 3 1 0 of the first layer which is square in plan view, is divided into three in the X direction and three in the y direction, for a total of three 9-square grids 3 1 1-3 1 9 is divided into two
  • the flat plate of the second layer which is a square shape in plan view, is divided into 3 in the X direction and 3 in the y direction.
  • the 3rd layer of the 3rd layer is divided into 9 areas 3 3 1-3 3 9 in a grid of 3 X 3 divided into a total of 3 divided in the X direction and 3 divided in the y direction.
  • the flat plate 340 of the fourth layer which is square in shape, is divided into nine grid-like regions 34 1 to 349 of a total of 3 ⁇ 3 divided into three in the X direction and three in the y direction.
  • Electrodes 401, 406, 415, 424, 433, 442, 451, and 456 are flat plates 310, 32 0, 3 3 0,
  • FIG. 40 shows a perspective view of the present piezoelectric transformer 50'5.
  • the center of the circular electrode 401 of the region 3 15 located at the node of the piezoelectric resonance vibration of the piezoelectric transformer 505 is connected.
  • the electrode is taken out from the center, but the electrode terminal D is taken out from the vicinity of the corner of the electrode 401, outside the region 315.
  • the electrodes 402-410, 406 ' provided on the back surface of the flat plate 310 of the first layer and the electrodes 41-11-419 provided on the surface of the flat plate 320 of the second layer 4 1 5 'connection, electrodes 4 2 0-4 28, 4 24 ′ provided on the back surface of the second layer flat plate 3 2 0 and electrodes 4 2 provided on the surface of the third layer flat plate 3 30 9 -Electrodes 438-446, 442 'provided on the back of the third flat plate 330, and the electrodes 447-455, provided on the surface of the fourth flat plate 340.
  • the corresponding electrodes are bonded to each other with an epoxy-based adhesive or joined by integral sintering.
  • a laminate 520 in which 320, 330, and 340 are integrated is formed.
  • the metal terminal 353 is drawn so as to be connected only to the region on the right side in the figure, but is similarly connected to the region on the left side in the figure.
  • Connections to 426 and 428, and connections to electrodes 429, 431, 435, and 377 provided on the surface of the third layer flat plate 330 are made of metal terminals 354 formed of soft wires that do not hinder vibration. It is desirable to do this by soldering the tip.
  • the electrode pairs 4 15 and 4 15 and the electrode pairs 424 and 424 ′ serving as excitation electrodes or output electrodes are placed on the front and back surfaces of the central region 325 of the flat plate 320 of the second layer, respectively. And placed on the front and back surfaces of the central area 335 of the third layer flat plate 330, respectively.
  • Electrode pairs 443 3, 433 'and electrode pairs 442, 442', which serve as excitation electrodes or output electrodes, are respectively arranged, and excitation electrodes or electrodes are provided on the front and back surfaces of the central region 345 of the fourth layer flat plate 340.
  • the electrode pairs 45 1, 45 1 and the electrode pairs 456, 456, which serve as output electrodes, are respectively arranged, and the areas 3 1 1, 3 1 3, 3 1 7, 3 1
  • An output electrode or an excitation electrode is arranged at 3 19 respectively, and an output electrode or an excitation electrode is arranged at the area 32 1, 323, 327, 329 of the peripheral portion of the flat plate 320 of the second layer. ,
  • Output electrodes or excitation electrodes are arranged at 33, 33, 337, and 339, respectively, and output electrodes or excitation electrodes are arranged at the area 341, 343, 347, 349 around the fourth layer flat plate 340, respectively. Since the electrodes are arranged, the cross-sectional area where the mechanical resonance energy propagates can be taken in four directions, so that the density of the mechanical resonance energy that passes per unit area can be reduced, and as a result, the power that can be used It is possible to raise the limit value of
  • the regions 3 11, 3 13, 3 17, and 3 19 in the peripheral portion of the first layer flat plate 3 10 are connected in parallel, and the regions 32 1 and 32 in the peripheral portion of the second layer flat plate 320 are connected.
  • Excitation can be performed without destroying the resonance mode of the laminated body 520 composed of 30, 340, and as a result, high efficiency can be expected.
  • the regions 3 15, 325, 335, and 345 which are one of the excitation region and the output region, Main surface (front and back), flat plate 3 20 main surfaces (front and back), flat plate
  • a circular opening 461 is provided inside the outer electrode 401 ′, and a circular electrode 40 concentric with the circular opening 461 is provided in the opening 461.
  • a circular opening 465 is provided inside the outer electrode 406 ′, and a circular electrode 406 concentric with the circular opening 465 is provided in the opening 465.
  • a circular opening 462 is provided inside the outer electrode 4 15 ′, and a circular electrode 4 15 concentric with the circular opening 462 is provided in the opening 462. 424, a circular opening 466 is provided therein, and a circular electrode 424 concentric with the circular opening 466 is provided in the opening 466.
  • a circular opening 463 is provided inside the outer electrode 433, and the circular opening 463 is provided in the opening 463.
  • a circular electrode 43 3 is provided concentrically with 46 3
  • a circular opening 46 7 is provided inside the outer electrode 44 2
  • a circular opening 4 67 is provided concentrically with the circular opening 4 67.
  • a circular electrode 442 is provided, when a voltage is applied between these electrodes 433, 442 and 433, 442 to be polarized, the electric field intensity applied to the element during polarization is It becomes uniform and radially uniform polarization processing can be performed on the center of the circular electrodes 4 3 3 and 442.
  • a circular opening 464 is provided inside the outer electrode 45 1 ′, and a circular electrode 4 5 1 concentric with the circular opening 4 64 is provided in the opening 4 64.
  • the excitation electrode portion and the output electrode portion are not arranged on the same layer or in the same plane, so that the insulation between the excitation electrode and the output electrode can be improved, and the piezoelectric transformer The dielectric strength between input and output can be greatly improved.
  • the piezoelectric transformer of this embodiment is applied to an AC adapter or the like, it becomes possible to increase the electrical independence between the commercial AC power supply and the device.
  • This piezoelectric transformer can be used for both step-up and step-down applications by changing the electrical connection.
  • Figure 41 shows the electrical connections when used for boosting.
  • Fig. 42 shows the electrical connections when used for step-down.
  • FIG. 43A—FIG. 43E is a diagram for explaining the piezoelectric transformer of this embodiment.
  • FIG. 43A is a top view
  • FIG. 43B is a bottom view
  • FIG. 43C is a sectional view.
  • FIG. 44 is an oblique view for explaining the piezoelectric transformer of this embodiment.
  • FIG. 45 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer of the present embodiment.
  • FIG. 46 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of the present embodiment at the time of step-down.
  • the flat plate 100 of the piezoelectric transformer 503 of this embodiment is made of a single plate (24 mm ⁇ 24 mm ⁇ 1 mm) of a PZT system piezoelectric ceramics. Electrodes 1-18, 5 ', 9'14', 18 'are made of Pd-Ag conductive paste. Electrode patterns are formed by screen printing electrodes 1-1,8,5,9,9,14,18 in a 3x3 grid as shown in Fig.43A and Fig.43B. I do.
  • Electrodes 114, 6-8, 10-13, 15-17 are square, and this square electrode shape has corners, for example, electrodes, to increase the dielectric breakdown strength between the electrodes. It is desirable that the corners 1 1 and 1 be rounded at 1, the corners 112 and 1 13 at the electrode 2, and the corners 114 at the electrode 103 be rounded.
  • the outer shapes of the electrodes 5 ', 9', 14 'and 18' are also square. In the electrodes 5 'and 14, this square electrode shape has three corners to increase the dielectric breakdown strength. For the part, for example, electrode 5, it is desirable that the corners 115-117 are rounded.
  • the inside of the electrodes 5 ′, 9 ′, 14,, 18 is hollowed out in a circular shape, and circular openings 120, 122, 122, 123, respectively are formed. ing.
  • the surface of the flat plate 100 is exposed from the openings 120 and 122, and the bottom surface of the flat plate 100 is exposed from the openings 122 and 123.
  • Circular electrodes 5, 9, 14 and 18 are provided concentrically with the circular openings 120, 122, 122 and 123 respectively.
  • the center of the square of the outer shape of the electrode 5 'and the center of the circular opening 1 coincide with the center of the electrode 20 and the center of the electrode 5', and the center of the square of the outer shape of the electrode 9 'and the opening of the circle
  • the center of 1 2 2 coincides with the center of the circular electrode 9
  • the outer shape of the electrode 1 4 ′ is a square center and a circular opening 1 2 1
  • the center of the electrode 4 coincides with the center of the circular electrode 18, and the center of the square opening and the center of the circular opening 123 coincide with the center of the circular electrode 18.
  • the corner 1 118 of the electrode 5 ′ is connected to the corner 1 19 of the electrode 9, and is formed as one integrated electrode 61.
  • the electrode 61 is formed by screen-printing a conductive strip.
  • the corners 1 18 of the electrodes 14, and the corners 1 19 ′ of the electrodes 18 are connected to each other and formed as one integrated electrode 62.
  • the electrodes 62 are formed by screen-printing a conductive paste. As described above, the electrical connection between the two electrodes 5 ', 9 and the two electrodes 14, 14, 18' is realized by screen-printing a conductive paste. The number of parts required for connection can be reduced.
  • the polarization treatment is performed in oil.
  • the polarization direction is the direction perpendicular to the two main surfaces (front and back) of the flat plate 100 as shown in Fig. 43A-Fig. 43E for the surrounding areas 101-104 and 106-108. (Z direction).
  • the polarization of the region 105 is radial with respect to the center of the circular electrodes 5 and 14 and is substantially flat on the main surface (front surface, back surface) of the flat plate 100.
  • a voltage is applied between the electrode terminals B and D so that the polarization direction is in the direction of the row.
  • the flat plate 100 between the electrode 5 ′ and the electrode 14 be polarized in a direction perpendicular to the two main surfaces (the front surface and the back surface).
  • the polarization of the region 109 is radial to the center of the circular electrodes 9 and 18 and almost parallel to the main surface (front surface, back surface) of the flat plate 100.
  • the voltage is applied between the electrode terminals B and D so that the polarization direction is oriented in the appropriate direction.
  • the flat plate 100 between the electrode 9 ′ and the electrode 18 ′ has two main surfaces.
  • the piezoelectric transformer element is manufactured by performing an aging process.
  • the flat plate 100 having a square shape in plan view It is divided into 9 areas 1 0 1 — 1 109 in a grid of 3 x 3 divided into a total of 3 divided in the x direction and 3 divided in the y direction.
  • FIG. 44 shows a perspective view of the piezoelectric transformer 503 of this embodiment.
  • the electrical connection is, for the regions 101, 103, 107, square electrodes 1, 3, 7, 10, 0, 1 located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 503. Take out from the center of each of 2 and 16.
  • the electrode terminal portion B is taken out from the center of the circular electrode 5 and the center of the circular electrode 9 located at the node of the piezoelectric resonance vibration of the piezoelectric transformer 503.
  • the electrode terminal D is taken out from the vicinity of the corner of the outer electrode 9 '. It is desirable to use a conductive elastic body 251-255 for electrical connection. Further, by connecting metal terminals 2 3 1 2 3 8 and 2 4 1-2 4 3 to the conductive elastic body 25 1-255 and the like, electrical connection with an external circuit is established.
  • this piezoelectric transformer 503 three areas 101, 103, and 107 are arranged on the input side (or output side), and two areas are arranged on the output side (or input side). . By changing the number of areas between input and output in this way, it is possible to support various transformation ratios.
  • This piezoelectric transformer can be used for both step-up and step-down applications by changing the electrical connection.
  • Figure 45 shows the electrical connections when used for boosting.
  • Fig. 46 shows the electrical connection when used for step-down.
  • the regions 105 and 109 are connected in parallel to be an excitation region or an output region, and the peripheral regions 101, 103 and 107 are connected in parallel.
  • the vibration mode is aligned in both the excitation area and the output area, and it becomes possible to excite the plate 100 without breaking the resonance mode. As a result, high efficiency can be expected.
  • one of the excitation area and the output area The polarization is a region in the direction almost parallel to the two main surfaces (front and back) of the flat plate 100.
  • the other of the excitation region and the output region is the two main surfaces of the flat plate 100 (front and back). Since the region is in a direction substantially perpendicular to the above, the ratio between the input impedance and the output impedance can be increased, and as a result, the boost ratio or the buck ratio can be increased.
  • a circular opening 120 is provided inside the outer electrode 5, and a circular electrode 5 concentric with the circular opening 120 is provided in the opening 120.
  • a circular opening 122 is provided inside the outer electrode 9, and the opening 122 is concentric with the circular opening 122. Since a circular electrode 9 is provided, when a voltage is applied between these electrodes 5 and 5 'and the electrodes 9 and 9' are polarized, the electric field intensity applied to the element during polarization is reduced. It becomes uniform and radially uniform polarization processing can be performed on the centers of the circular electrodes 5 and 9 respectively.
  • the piezoelectric transformer having one input and one output has been described as an example.
  • the piezoelectric transformer of the present invention has one input, multiple outputs, multiple inputs, one output, and multiple inputs and multiple outputs. It can be easily realized as a piezoelectric transformer of the form (1).
  • an input (excitation) area areas 101, 103 and 107 are connected in parallel to form an excitation area, and an area 105 , 106 connected in parallel to form a first output area, and areas 102, 104, 106, 108 connected in parallel to form a second output area.
  • an input (excitation) area areas 101, 103 and 107 are connected in parallel to form an excitation area, and an area 105 , 106 connected in parallel to form a first output area, and areas 102, 104, 106, 108 connected in parallel to form a second output area.
  • the region which is a region polarized in a direction substantially parallel to the two main surfaces (the front surface and the back surface) of the flat plate 100 in 105, a circular electrode 5 is provided on the inner side, electrodes 5 and 5 are provided on the outer side, and the inner side of the electrode 5 'is cut out in a circular shape to provide a circular opening 120. 5 and electrode 5 ' A voltage was applied to polarize between the electrode 5 and the electrode 5 ′, but only the inner electrode 5 was provided in the center of the region 105, and the outer electrode 5 ′ was not provided.
  • the output can be increased, the efficiency can be reduced, the cost can be reduced, the thickness can be reduced, and the degree of freedom in selecting the transformer ratio can be increased.
  • a piezoelectric transformer that can be used as a transformer and that can have a large ratio of input impedance to output impedance and thus a large step-up ratio or step-down ratio can be provided.
  • the present invention achieves high output, high efficiency, low cost, and low profile, and has a high degree of freedom in selecting a transformer ratio. Further, the present invention is applicable to a transformer with one input and multiple outputs. It can be particularly suitably used for a possible piezoelectric transformer.

Abstract

Square electrodes (1-9) are formed on the front surface of a piezoelectric ceramic plate (100) like a grid having 3x3 regions, and square electrodes (10-18) are formed on the back surface like a grid having 3x3 regions. The portions between corresponding electrodes are polarized in the direction (z direction) vertical to the major surfaces of the plate (100) and in the direction parallel with the plate (100) to divide the plate (100) which is square when viewed from above into three regions in the x direction and three regions in the y direction, that is, into a total of nine (3x3) regions (101-109). A pair of electrodes (5, 14) provided for the front and back surfaces of the central region (105) is used as one electrode for excitation and one electrode for output, respectively; and a pair of electrodes (1, 10), a pair of electrodes (3, 12), a pair of electrodes (7, 16), and a pair of electrodes (9, 18) are used as the other electrodes for excitation and the other electrodes for output, respectively. Thus, it is possible to realize a piezoelectric transformer whose output is high, whose efficiency is high, whose manufacturing cost is low, whose size is small, and which has a high degree of freedom of selection of the transformation ratio.

Description

明細書 圧電トランス 技術分野  Description Piezoelectric transformer Technical field
本発明は圧電トランスに関するものである < 背景技術  TECHNICAL FIELD The present invention relates to a piezoelectric transformer.
近年、 圧電トランスは、 電磁トランスに比較して高効率、 小型、 不燃 性、 低ノイズといった利点を生かして、 変圧器の用途に利用されている。 主な用途は、 昇圧用途としては照明用途 (放電管点灯用) 、 空気清浄 器、 オゾン発生器等である。 また降圧用途としてはスイッチング電源、 A Cアダプタ一等に利用されている。  In recent years, piezoelectric transformers have been used for transformers, taking advantage of their high efficiency, small size, non-combustibility, and low noise compared to electromagnetic transformers. The main applications are lighting applications (for discharge tube lighting), air purifiers, and ozone generators. It is also used in step-down applications such as switching power supplies and AC adapters.
従来、 この種の圧電トランスは図 4 7乃至図 4 9に示すような構成で ある。  Conventionally, this type of piezoelectric transformer has a configuration as shown in FIGS.
図 4 7は、 従来の Rosen 型の圧電トランスを示す斜視図である。 この 圧電トランス 6 0 0は、 左側の一次側領域 6 2 0と右側の二次側領域 6 3 0とから構成されている。 一次側領域 6 2 0においては、 圧電基板 6 1 0の上下面に一次側電極 6 1 2がそれぞれ設けられ圧電基板 6 1 0は 厚さ方向に分極されている。 二次側電極 6 3 0においては、 圧電基板 6 1 0の上面であって右側の端部に二次側電極 6 1 4が設けられ圧電基板 6 1 0は長手方向に分極されている。 一次側電極間に電源 8 0から供給 された交流電圧を圧電トランス 6 0 0により昇圧して二次側電極 6 1 4 より取り出し、 負荷 9 1に印加する。  FIG. 47 is a perspective view showing a conventional Rosen-type piezoelectric transformer. This piezoelectric transformer 600 is composed of a left primary region 620 and a right secondary region 630. In the primary region 620, primary electrodes 612 are provided on upper and lower surfaces of the piezoelectric substrate 610, respectively, and the piezoelectric substrate 610 is polarized in the thickness direction. In the secondary electrode 630, a secondary electrode 614 is provided at the right end on the upper surface of the piezoelectric substrate 610, and the piezoelectric substrate 610 is polarized in the longitudinal direction. The AC voltage supplied from the power supply 80 between the primary electrodes is boosted by the piezoelectric transformer 600, extracted from the secondary electrodes 614, and applied to the load 91.
また近年、 スィツチング電源用として降圧用途に対応した構造の圧電 トランスも発表されている。 以下にその例を示す。 図 4 8は、 従来の (圧電横効果一圧電横効果) 降圧型圧電トランス 7 0 0を示す斜視図であり、 圧電基板 7 1 0の厚さ方向に複数層が積層さ れた一次側領域 7 2 0と厚さ方向に複数層が積層された二次側領域 7 3 0とから構成されている。 In recent years, a piezoelectric transformer having a structure corresponding to a step-down application for a switching power supply has also been announced. An example is shown below. FIG. 48 is a perspective view showing a conventional (piezoelectric lateral effect—piezoelectric lateral effect) step-down piezoelectric transformer 700, in which a primary region in which a plurality of layers are stacked in the thickness direction of the piezoelectric substrate 7100. 7 and a secondary region 730 in which a plurality of layers are stacked in the thickness direction.
図 4 9は、 従来の (圧電縦効果一圧電縦効果) 降圧型圧電トランス 8 0 0を示す斜視図であり、 圧電基板 8 1 0の長手方向に複数層が積層さ れた一次側領域 8 2 0と長手方向に複数層が積層された二次側領域 8 3 0とから構成されている。  FIG. 49 is a perspective view showing a conventional (piezoelectric longitudinal effect-piezoelectric longitudinal effect) step-down piezoelectric transformer 800, in which a primary side region 8 in which a plurality of layers are laminated in the longitudinal direction of the piezoelectric substrate 8100. 20 and a secondary region 830 in which a plurality of layers are stacked in the longitudinal direction.
本発明が解決しようとしている問題点は 2点ある。  The present invention seeks to solve two problems.
第 1点は、 図 4 7に示す Rosen 型圧電トランスのような従来の昇圧用 圧電トランス構造では大出力化が困難な点である。 一般に、 高効率を維 持しつつ出力電力の増大を図る時の有効な対策として、 圧電振動子の体 積を増大させて質量を増大させることが有効と考えられている。 なぜな ら、 機械的振動速度が一定のとき、 圧電振動子の質量が大きいほうが、 振動子内部に蓄積される機械的振動エネルギーが大きくなり、 その結果、 圧電効果により出力電極から取り出すことのできるエネルギーが大きく なる為である。  The first point is that it is difficult to increase the output with a conventional boosting piezoelectric transformer structure such as the Rosen type piezoelectric transformer shown in Fig. 47. Generally, it is considered effective to increase the mass of the piezoelectric vibrator by increasing the volume of the piezoelectric vibrator as an effective measure when increasing the output power while maintaining high efficiency. Because, when the mechanical vibration speed is constant, the larger the mass of the piezoelectric vibrator, the larger the mechanical vibration energy stored inside the vibrator, and as a result, it can be extracted from the output electrode by the piezoelectric effect This is because the energy increases.
図 4 7に示す Rosen 型の圧電トランスの質量を増加しようとするとき、 厚み、 幅、 長さを変えることが方策として考えられるが、 これらは以下 のような問題点がある。  To increase the mass of the Rosen-type piezoelectric transformer shown in Fig. 47, it is conceivable to change the thickness, width, and length, but these have the following problems.
厚みを増す場合の問題点については、 まず入カインピーダンスが高く なり、 その結果昇圧比が下がることが挙げられる。 また厚みを増加する ために薄型化するのが困難になる点である。 さらに厚みを増加するため に単位体積当たりの放熱面積が少なくなり、 放熱効果が下がる点も挙げ られる。  The problem with increasing the thickness is that the input impedance first increases, which results in a lower boost ratio. Also, it is difficult to reduce the thickness due to the increase in thickness. In addition, the heat dissipation area per unit volume is reduced because the thickness is increased, and the heat dissipation effect is reduced.
長手方向を伸ばす場合の問題点は、 もし長手方向を伸ばすと圧電共振 周波数を下げなければならず、 所望の駆動周波数に設定することが困難 な点である。 The problem with extending the longitudinal direction is that if the longitudinal direction is The frequency must be lowered, and it is difficult to set a desired driving frequency.
幅方向を伸ばす場合の問題点は、 幅方向を大きくするほど、 幅方向に 伝播する機械的振動エネルギーの割合が多くなり、 長手方向に伝播する エネルギーを多く とることができなくなる点である。  The problem with stretching in the width direction is that the greater the width, the greater the proportion of mechanical vibration energy that propagates in the width direction, and the more energy that propagates in the longitudinal direction cannot be obtained.
第 2点は、 図 4 8、 図 4 9で示すようなスイッチング電源用の降圧型 圧電トランスでは積層数が多く効率が悪化すること、 また積層数が多い ため製造コス トが高くなることである。 図 4 8、 図 4 9に示す構造では、 単板では入出力インピーダンスの比を変えることができないため、 多積 層化し入力側の積層数と出力側の積層数の比を変化させて所望の昇圧比 を得る必要がある。 しかし、 積層数が多くなると、 エネルギー変換効率 が下がる一方製造コストが増大するという問題点がある。  The second point is that the step-down type piezoelectric transformer for switching power supply as shown in Fig. 48 and Fig. 49 has a large number of stacked layers, which lowers the efficiency, and the large number of stacked layers increases the manufacturing cost. . In the structure shown in Fig. 48 and Fig. 49, the ratio of input / output impedance cannot be changed with a single board, so that the structure is multi-layered and the ratio of the number of layers on the input side to the number of layers on the output side is changed. It is necessary to obtain a boost ratio. However, when the number of layers is increased, there is a problem that energy conversion efficiency is reduced while manufacturing costs are increased.
本発明は以上のような 2つの問題点を解決しようとするもので、 昇圧 用トランスとして用いた場合には出力電力の増大を図ることができ、 降 圧用圧電トランスとして用いた場合には大電力化、 低コスト化、 高効率 化、 薄型化を図ることができる圧電トランスを提供することを目的とし たものである。 発明の開示  The present invention is intended to solve the above two problems. When used as a step-up transformer, the output power can be increased, and when used as a step-down piezoelectric transformer, a large electric power can be obtained. An object of the present invention is to provide a piezoelectric transformer that can achieve cost reduction, cost reduction, high efficiency, and thinness. Disclosure of the invention
本発明者らは、 上記目的を達成するために、 鋭意研究の結果、 次のよ うな知見を得た。  Means for Solving the Problems In order to achieve the above object, the present inventors have earnestly studied and obtained the following findings.
すなわち、 圧電セラミックスからなる平板等の圧電体を格子状の複数 の領域に分割し、 各領域に電極を設け、 各領域を分極処理し、 複数の領 域の内、 少なく とも 1つの領域を圧電体の励振用の領域とし、 残りの領 域の内、 少なく とも 1つの領域を出力用の領域とした構成の圧電トラン スとすることにより、 以下の作用 ·効果が得られることを見出した。 一つは大出力化である。 大電力化を図る上で振動子の質量アップが有 効である。 本圧電トランスでは、 振動周波数を変えずに高次の圧電共振 振動を用いることで、 縦方向または幅方向の 2方向に素子長を長くする ことが可能なので、 体積増加による質量アップが容易になる。 すなわち 大電力化への対応が容易な構造となっている。 次に平板構造であるため 単位面積あたりの放熱面積が大きい。 そのため放熱効果が大きく、 大出 力化に有利な構造となっている。 That is, a piezoelectric body such as a flat plate made of piezoelectric ceramics is divided into a plurality of lattice-shaped regions, electrodes are provided in each region, each region is polarized, and at least one of the plurality of regions is subjected to the piezoelectric treatment. We have found that the following actions and effects can be obtained by using a piezoelectric transformer that is configured as a body excitation area and at least one of the remaining areas is an output area. One is to increase the output. Increasing the mass of the vibrator is effective in increasing power consumption. In this piezoelectric transformer, by using high-order piezoelectric resonance vibration without changing the vibration frequency, it is possible to increase the element length in two directions, the longitudinal direction or the width direction. . In other words, it has a structure that can easily handle high power consumption. Next, because of the flat plate structure, the heat radiation area per unit area is large. As a result, the structure has a large heat dissipation effect and is advantageous for increasing output.
二つめは低コス ト化である。 本圧電トランスは単板構造でも、 平板を 分割する領域数を多くすることで、 変圧比が大きく とれる。 そのため大 きな変圧比を得るのに、 従来の圧電トランスよりも低積層数で済む。 そ の結果、 製造コス トが大幅に削減できる。  The second is cost reduction. Even if this piezoelectric transformer has a single-plate structure, a large transformer ratio can be obtained by increasing the number of regions that divide the flat plate. Therefore, to obtain a large transformation ratio, the number of stacked layers is smaller than that of a conventional piezoelectric transformer. As a result, manufacturing costs can be significantly reduced.
三つめは高効率化である。 本圧電トランスは必要な変圧比を得るのに 従来の圧電トランスに比較して低積層数で済む。 そのため積層板の界面 に生じる機械的損失が低くなり、 高効率化が望める。 また電極取り出し 部を振動の節部に設けることができるので、 圧電振動において機械的損 失が少なく、 高効率化が望める。  The third is higher efficiency. This piezoelectric transformer requires a smaller number of layers to obtain the required transformation ratio than conventional piezoelectric transformers. Therefore, mechanical loss at the interface of the laminated board is reduced, and higher efficiency can be expected. Also, since the electrode take-out part can be provided at the node of the vibration, there is little mechanical loss in piezoelectric vibration, and high efficiency can be expected.
四つめは薄型化である。 本圧電トランスは平板構造で縦と横の面積を 拡大できるため、 同一体積で比較すると従来の圧電トランスに比較し、 薄型化が図れる。  The fourth is thinning. Since this piezoelectric transformer has a flat plate structure and can expand the vertical and horizontal areas, it can be thinner when compared with the conventional piezoelectric transformer when compared with the same volume.
五つめは変圧比の選択の自由度が高いことである。 平板を m X n個の 領域の格子状に分割すると、 励振用領域数は 1個乃至 (m X n— 1 ) 個 の選択の自由度があり、 1入力 1出力にする場合、 出力用領域は (m X n - 1 ) 乃至 1個の選択の自由度がある。 また 1入力多出力にする場合 も同様に領域数の選択の自由度が大きい。  Fifth, there is a high degree of freedom in selecting the transformation ratio. When a flat plate is divided into a grid of m X n areas, the number of excitation areas can be selected from 1 to (m X n-1). Has (m X n -1) to 1 degree of freedom of choice. Similarly, when using one input and multiple outputs, the degree of freedom in selecting the number of regions is large.
六つめは 1入力多出力のトランスとしての対応が可能なことである。 例えば 3 X 3分割の領域を持つ圧電トランスの場合、 1つの領域または 2以上の領域を並列に接続して入力用領域とし、 1つの領域または 2以 上の領域を並列に接続して第 1の出力用領域とし、 他の 1つの領域また は他の 2以上の領域を並列に接続して第 2の出力用領域として 1入力 2 出力の圧電トランスとして動作することが可能となる。 この類推で、 1 入力 3出力等の圧電トランスも容易に構成することが可能である。 Sixth, it can be used as a single-input multiple-output transformer. For example, in the case of a piezoelectric transformer with a 3x3 area, one area or Two or more regions are connected in parallel as an input region, one region or two or more regions are connected in parallel as a first output region, and another one region or another two or more By connecting the areas in parallel, it becomes possible to operate as a 1-input 2-output piezoelectric transformer as a second output area. By this analogy, a one-input three-output piezoelectric transformer can be easily configured.
圧電材料からなる平板を第 1の方向 (例えば長手方向) に m個、 第 2 の方向 (例えば幅方向) に n個の合計 m X n個の格子状の領域に分割し た圧電トランスは、 上記平板に圧電共振振動による定在波を励起させて 動作させることができる。 上記平板のある領域に設けた励振用電極に、 隣接する領域が逆位相の圧電振動をするような周波数の交流電圧波形を 印加することにより、 上記平板に逆圧電横効果を生じさせ、 上記平板面 内に長手方向に m/ 2波長、 幅方向に n / 2波長の圧電共振による機械 的振動の定在波を励起させて動作させる。 このように動作させると、 例 えば図 5に示すような状態となる。 図 5 A、 図 5 B、 図 5 Cは、 3 X 3 に分割した平板の伸縮状態の一例を示す平面図であり、 図 5 Dは図 5 A の状態における応力分布を示す図であり、 図 5 Eは図 5 Aの状態におけ る変位分布を示す図であり、 図 5 Fは図 5 Cの状態における応力分布を 示す図であり、 図 5 Gは図 5 Cの状態における変位分布を示す図である。 また、 励振用電極に上記周波数の交流電圧波形を印加するとき、 格子 状に分割された領域の第 1の方向 (例えば長手方向) の長さと第 2の方 向 (例えば幅方向) の長さの比を 0 . 7乃至 1 . 3、 望ましくは 1 とす ることで、 励振電極部に圧電効果で生じた機械的振動エネルギーが第 1 の方向と第 2の方向に均等に伝播する。 伝播するエネルギーが均等にな ることで、 応力の集中も緩和され、 使用できる電力の限界値をより高く することが可能となる。  A piezoelectric transformer in which a flat plate made of a piezoelectric material is divided into a total of m × n lattice-shaped regions in a first direction (for example, in the longitudinal direction) and in a second direction (for example, in the width direction), and The flat plate can be operated by exciting a standing wave due to piezoelectric resonance vibration. By applying an AC voltage waveform having a frequency such that an adjacent region performs piezoelectric vibration of the opposite phase to the excitation electrode provided in an area of the flat plate, an inverse piezoelectric transverse effect is generated on the flat plate, It operates by exciting a standing wave of mechanical vibration due to piezoelectric resonance of m / 2 wavelength in the longitudinal direction and n / 2 wavelength in the width direction in the plane. When operated in this manner, for example, a state as shown in FIG. 5 is obtained. 5A, 5B, and 5C are plan views showing an example of a stretched state of a flat plate divided into 3 × 3, and FIG. 5D is a view showing a stress distribution in the state of FIG. Fig. 5E is a diagram showing the displacement distribution in the state of Fig. 5A, Fig. 5F is a diagram showing the stress distribution in the state of Fig. 5C, and Fig. 5G is the displacement distribution in the state of Fig. 5C. FIG. When an AC voltage waveform having the above frequency is applied to the excitation electrode, the length of the grid-divided region in the first direction (for example, the longitudinal direction) and the length in the second direction (for example, the width direction) By setting the ratio to 0.7 to 1.3, and preferably 1, the mechanical vibration energy generated by the piezoelectric effect in the excitation electrode portion is evenly transmitted in the first direction and the second direction. Equalization of the transmitted energy also reduces stress concentrations and allows for higher power limits.
また、 格子状に分割された区域数 m、 nが等しく、 さらに第 1の方向 (例えば長手方向) の長さと第 2の方向 (例えば幅方向) の長さが等し いとき、 この圧電トランスの形状は正方形となる。 このとき、 中心の領 域に励振用電極或いは、 出力用電極を配置し、 周辺部の領域にそれぞれ 出力用電極、 或いは励振用電極を配置することで、 エネルギー伝播は四 方に均等に伝播する。 そのため応力集中も緩和され、 使用できる電力の 限界値をより高くすることが可能となる。 In addition, the number m and n of the areas divided in a grid are equal, and the first direction When the length in the longitudinal direction (for example, the longitudinal direction) is equal to the length in the second direction (for example, the width direction), the shape of the piezoelectric transformer is a square. At this time, by disposing the excitation electrode or the output electrode in the central area and disposing the output electrode or the excitation electrode in the peripheral area respectively, the energy propagation is evenly propagated in all directions. . As a result, stress concentration is reduced, and the limit value of usable power can be increased.
また、 圧電トランスの形状が正方形の場合のみならずより一般的な形 状においても、 中心の領域に励振用電極或いは出力用電極を配置し、 周 辺部の領域にそれぞれ出力用電極、 或いは励振用電極を配置することで、 機械的共振エネルギーの伝播する断面積が四方にとれる。 このため、 単 位面積あたりに通過する機械的共振エネルギーの密度を下げることが可 能となり、 結果として使用できる電力の限界値をより高くすることが可 能となる。  Further, not only when the shape of the piezoelectric transformer is square, but also in a more general shape, the excitation electrode or the output electrode is arranged in the center area, and the output electrode or the excitation electrode is arranged in the peripheral area. By arranging the electrodes, the cross-sectional area where the mechanical resonance energy propagates can be taken in all directions. For this reason, it is possible to reduce the density of the mechanical resonance energy passing per unit area, and as a result, it is possible to further increase the limit value of the usable power.
なお、 本発明の圧電トランスにおいては、 上記平板の機械的振動エネ ルギ一を圧電横効果あるいは圧電縦効果により交流の電気的エネルギー に変換し、 前記出力用電極から取り出すことが可能となる。  In the piezoelectric transformer of the present invention, the mechanical vibration energy of the flat plate can be converted into AC electric energy by a piezoelectric transverse effect or a piezoelectric longitudinal effect, and can be extracted from the output electrode.
そして、 前記励振用電極のインピーダンス Z i nと前記出力用電極の ィンピーダンス Z o u tの比により入出力の電圧変換を行うことが可能 となる。 従って、 励振用領域数と出力用領域数の組み合わせを変えて励 振用電極数と出力用電極数の組み合わせを変えることで、 変圧比の選択 の自由度を高くすることが可能となる。 例えば、 入力インピーダンスと 出力インピーダンスを一致させ、 変圧比 1で動作させることができる。 また入力インピーダンスを出力インピーダンスより小さくすると、 変圧 比が 1以上で動作するようになる。 すなわち昇圧用トランスとして動作 する。 また入力インピ一ダンスを出力インピーダンスより大きく し、 変 圧比が 1以下で動作させることができる。 すなわち降圧用トランスとし て動作する。 本発明は上記知見に基づくものであり、 本発明の第 1の態様によれば、 互いに対向し互いにほぼ平行な 2つの主面を備え、 前記主面内の第 1 の方向に m ( mは 2以上の整数) 区分、 前記主面内の第 2の方向であつ て前記第 1の方向と交差する前記第 2の方向に n ( nは 2以上の整数) 区分の格子状に分割された複数の領域を有する圧電体を備える圧電トラ ンスであって、 Then, input / output voltage conversion can be performed based on the ratio of the impedance Zin of the excitation electrode to the impedance Zout of the output electrode. Therefore, by changing the combination of the number of excitation areas and the number of output areas and changing the combination of the number of excitation electrodes and the number of output electrodes, it is possible to increase the degree of freedom in selecting the transformation ratio. For example, the input impedance and output impedance can be matched, and operation can be performed with a transformation ratio of 1. Also, if the input impedance is smaller than the output impedance, it will operate at a transformer ratio of 1 or more. That is, it operates as a step-up transformer. In addition, the input impedance can be made larger than the output impedance, and the operation can be performed with a transformation ratio of 1 or less. That is, as a step-down transformer Works. The present invention is based on the above findings, and according to a first aspect of the present invention, comprises two main surfaces facing each other and substantially parallel to each other, and m (m is (N is an integer greater than or equal to 2) Section, divided into a grid of n (n is an integer of 2 or more) sections in the second direction in the main surface and intersecting with the first direction in the second direction A piezoelectric transformer including a piezoelectric body having a plurality of regions,
前記複数の領域のうちの少なく とも 1つの領域を、 前記圧電体を励振 する励振用電力が供給される励振用領域とし、  At least one of the plurality of regions is an excitation region to which excitation power for exciting the piezoelectric body is supplied,
前記複数の領域の残りの領域のうちの少なく とも 1つの他の領域を前 記圧電トランスから出力を取り出す出力用領域とすることを特徴とする 第 1の圧電トランスが提供される。 また、 本発明の第 2の態様によれば、 上記第 1の圧電トランスにおい て、  A first piezoelectric transformer is provided, wherein at least one other of the remaining regions of the plurality of regions is an output region for extracting an output from the piezoelectric transformer. According to a second aspect of the present invention, in the first piezoelectric transformer,
前記圧電体が平板であり、  The piezoelectric body is a flat plate,
前記励振用領域内の前記 2つの主面に励振用電極対が設けられ、 前記出力用領域内の前記 2つの主面に出力用電極対が設けられている 第 2の圧電トランスが提供される。 また、 本発明の第 3の態様によれば、 上記第 1の圧電トランスにおい て、  A second piezoelectric transformer is provided in which an excitation electrode pair is provided on the two main surfaces in the excitation region, and an output electrode pair is provided on the two main surfaces in the output region. . According to a third aspect of the present invention, in the first piezoelectric transformer,
前記励振用領域内に、 互いに対向する励振用電極対が前記 2つの主面 と実質的に平行に設けられ、  In the excitation area, an excitation electrode pair facing each other is provided substantially parallel to the two main surfaces,
前記出力用領域内に、 互いに対向する出力用電極対が前記 2つの主面 と実質的に平行に設けられ、 In the output area, the output electrode pairs facing each other have the two main surfaces. Is provided substantially in parallel with,
前記励振用電極対のうちの一方が前記 2つの主面のうちのいずれか一 方の主面上または前記圧電体の内部に設けられ、  One of the excitation electrode pairs is provided on one of the two main surfaces or inside the piezoelectric body,
前記励振用電極対のうちの他方が前記 2つの主面のうちの他方の主面 上または前記圧電体の内部に設けられ、  The other of the excitation electrode pair is provided on the other main surface of the two main surfaces or inside the piezoelectric body,
前記出力用電極対のうちの一方が前記 2つの主面のうちのいずれか一 方の主面上または前記圧電体の内部に設けられ、  One of the output electrode pairs is provided on one of the two main surfaces or inside the piezoelectric body,
前記出力用電極対のうちの他方が前記 2つの主面のうちの他方の主面 上または前記圧電体の内部に設けられている第 3の圧電トランスが提供 される。 また、 本発明の第 4の態様によれば、 上記第 3の圧電トランスにおい て、  A third piezoelectric transformer is provided in which the other of the pair of output electrodes is provided on the other main surface of the two main surfaces or inside the piezoelectric body. According to a fourth aspect of the present invention, in the third piezoelectric transformer,
前記圧電体が、 圧電材料からなる複数の平板を積層して構成され、 前記複数の平板が、 前記 2つの主面とほぼ平行な 2つの副主面をそれ ぞれ備え、  The piezoelectric body is configured by laminating a plurality of flat plates made of a piezoelectric material, and the plurality of flat plates each include two sub-main surfaces substantially parallel to the two main surfaces,
前記複数の平板が、 前記第 1の方向に前記 m区分、 前記第 2の方向に 前記 n区分の格子状に分割された複数の副領域をそれぞれ有し、 前記励振用電極対の前記一方が、 前記励振用領域内に積層されている 複数の前記副領域の複数の前記副主面のうちの少なく とも 1つの副主面 上に設けられ、  The plurality of flat plates each have a plurality of sub-regions divided into the m sections in the first direction and the n sections in the second direction in a grid shape, and the one of the excitation electrode pairs is A plurality of sub-main surfaces of the plurality of sub-regions stacked in the excitation region are provided on at least one sub-main surface;
前記励振用電極対の前記他方が、 前記複数の副主面のうち残りの少な く とも 1つの副主面上に設けられ、  The other of the excitation electrode pairs is provided on at least one of the remaining sub-main surfaces of the plurality of sub-main surfaces;
前記出力用電極対の前記一方および前記他方が、 前記出力用領域内に 積層されている複数の前記副領域の複数の前記副主面うちのいずれか 2 つの副主面上にそれぞれ設けられている第 4の圧電トランスが提供され W The one and the other of the output electrode pairs are respectively provided on any two of the plurality of sub-main surfaces of the plurality of sub-regions stacked in the output region. Is provided with a fourth piezoelectric transformer W
る。 You.
この第 4の圧電トランスにおいて、 好ましくは、 圧電トランスの積層 板において、 最上層の上面と最下層の下面の格子状に分割される区域内 の少なく とも一箇所の電極対を励振用電極対とし、 その最上層と最下層 に挟まれる積層間の電極対の内、 少なく とも一箇所の電極対をその出力 用電極とする。  In the fourth piezoelectric transformer, preferably, at least one electrode pair in an area divided into a lattice on the upper surface of the uppermost layer and the lower surface of the lowermost layer in the laminated plate of the piezoelectric transformer is used as an excitation electrode pair. At least one electrode pair among the electrode pairs between the layers sandwiched between the uppermost layer and the lowermost layer is used as the output electrode.
また、 第 4の圧電トランスにおいて、 好ましくは、 圧電トランスの積 層板において、 最上層の上面と最下層の下面の格子状に分割される区域 内の少なく とも一箇所の電極対を出力用電極対とし、 その最上層と最下 層に挟まれる積層間の電極対の内、 少なく とも一箇所の電極対を励振用 電極とする。  In the fourth piezoelectric transformer, preferably, at least one pair of electrodes in an area divided into a grid between the upper surface of the uppermost layer and the lower surface of the lowermost layer is preferably used as the output electrode. At least one electrode pair among the electrode pairs between the layers sandwiched between the uppermost layer and the lowermost layer is used as an excitation electrode.
また、 上記のような積層板からなる圧電トランスにおいては、 好まし くは、 励振用電極部と出力用電極部が同一層または同一面内に配置され ないようにする。  Further, in the above-described piezoelectric transformer formed of a laminated plate, preferably, the excitation electrode section and the output electrode section are not arranged in the same layer or in the same plane.
このようにすることにより、 励振用電極と出力用電極間の絶縁性を向 上することができ、 入出力間の絶縁耐力が大幅に改善でき、 商用交流電 源と機器間の電気的独立性を高めることが可能となる。 また、 本発明の第 5の態様によれば、 上記第 2乃至第 4のいずれかの の圧電トランスにおいて、  By doing so, the insulation between the excitation electrode and the output electrode can be improved, the dielectric strength between the input and output can be significantly improved, and the electrical independence between the commercial AC power supply and the equipment can be improved. It is possible to increase. According to a fifth aspect of the present invention, in any one of the second to fourth piezoelectric transformers,
前記励振用電極対間の前記圧電体および前記出力電極対間の前記圧電 体が、 前記 2つの主面に実質的に直角方向に分極されている第 5の圧電 トランスが提供される。 また、 上記第 1の圧電トランスにおいて、 好ましくは、  A fifth piezoelectric transformer is provided, wherein the piezoelectric body between the excitation electrode pair and the piezoelectric body between the output electrode pair are polarized in a direction substantially perpendicular to the two main surfaces. In the first piezoelectric transformer, preferably,
前記圧電トランスが、 前記 2つの主面に実質的に平行であって互いに 対向して設けられた励振用電極対と、 前記 2つの主面に実質的に平行で あって互いに対向して設けられた出力用電極対とを備え、 The piezoelectric transformers are substantially parallel to the two main surfaces and An excitation electrode pair provided to face each other, and an output electrode pair substantially parallel to the two main surfaces and provided to face each other,
前記励振用電極対の一方が、 前記励振用領域内の前記圧電体の前記 2 つの主面のうちのいずれか一方上、 前記励振用領域内の前記圧電体の前 記一方の主面上に第 1の追加の圧電体が設けられている場合には前記第 1の追加の圧電体上、 または前記励振用領域内の前記圧電体の内部、 に a りれ、  One of the excitation electrode pairs is on one of the two main surfaces of the piezoelectric body in the excitation region, and on the one main surface of the piezoelectric body in the excitation region. When a first additional piezoelectric body is provided, on the first additional piezoelectric body, or inside the piezoelectric body in the excitation region,
前記励振用電極対の他方が、 前記励振用領域內の前記圧電体の前記 2 つの主面のうちの他方上、 前記励振用領域内の前記圧電体の前記他方の 主面上に第 2の追加の圧電体が設けられている場合には前記第 2の追加 の圧電体上、 または前記励振用記領域内の前記圧電体の内部、 に設けら れ、  The other one of the excitation electrode pairs is formed on the other of the two main surfaces of the piezoelectric body in the excitation region 、, and on the other main surface of the piezoelectric body in the excitation region 第When an additional piezoelectric body is provided, the piezoelectric body is provided on the second additional piezoelectric body or inside the piezoelectric body in the excitation recording area,
前記出力用電極対の一方が、 前記出力用領域内の前記圧電体の前記 2 つの主面のうちのいずれか一方上、 前記出力用領域内の前記圧電体の前 記一方の主面上に第 3の追加の圧電体が設けられている場合には前記第 3の追加の圧電体上、 または前記出力用領域内の前記圧電体の内部、 に 設けられ、  One of the output electrode pairs is on one of the two main surfaces of the piezoelectric body in the output region, and is on the one main surface of the piezoelectric body in the output region. When a third additional piezoelectric body is provided, the third additional piezoelectric body is provided on the third additional piezoelectric body or inside the piezoelectric body in the output area.
前記出力用電極対の他方が、 前記出力用領域内の前記圧電体の前記 2 つの主面のうちの他方上、 前記出力用領域内の前記圧電体の前記他方の 主面上に第 4の追加の圧電体が設けられている場合には前記第 4の追加 の圧電体上、 または前記出力用領域内の前記圧電体の内部、 に設けられ ている。  The other of the pair of output electrodes is provided on the other of the two main surfaces of the piezoelectric body in the output region, and on the other main surface of the piezoelectric body in the output region, When the additional piezoelectric body is provided, the piezoelectric body is provided on the fourth additional piezoelectric body or inside the piezoelectric body in the output area.
この場合に、 好ましくは、  In this case, preferably,
前記励振用電極対の前記一方および前記他方が前記励振用領域内の前 記 2つの主面上にそれぞれ設けられ、 前記出力用電極対の前記一方およ び前記他方が前記出力用領域内の前記圧電体の内部に設けられている力 、 または、 The one and the other of the excitation electrode pair are provided on the two main surfaces in the excitation region, respectively, and the one and the other of the output electrode pair are in the output region. A force provided inside the piezoelectric body, Or
前記励振用電極対の前記一方および前記他方が前記励振用領域内の前 記圧電体の内部に設けられ、 前記出力用電極対の前記一方および前記他 方が前記出力用領域内の前記 2つの主面上にそれぞれ設けられている。  The one and the other of the excitation electrode pair are provided inside the piezoelectric body in the excitation region, and the one and the other of the output electrode pair are the two in the output region. Each is provided on the main surface.
この構造とすることで、 励振用電極と出力用電極間の絶縁距離が大き くなり、 その結果、 励振用電極と出力用電極間の絶縁耐力が非常に大き くなる。  With this structure, the insulation distance between the excitation electrode and the output electrode is increased, and as a result, the dielectric strength between the excitation electrode and the output electrode is greatly increased.
また、 好ましくは、 以上の各圧電トランスの前記各領域が、 前記 2つ の主面に対して実質的に垂直方向に分極されている。 また、 本発明の第 6の態様によれば、 上記第 1の圧電トランスにおい て、  Preferably, each of the regions of each of the above piezoelectric transformers is polarized in a direction substantially perpendicular to the two main surfaces. According to a sixth aspect of the present invention, in the first piezoelectric transformer,
前記励振用領域および前記出力用領域のうちの一方の領域内の前記 2 つの主面に励振用電極および出力用電極の一方となる第 1および第 2の 電極がそれぞれ設けられ、  A first electrode and a second electrode that are one of an excitation electrode and an output electrode are respectively provided on the two main surfaces in one of the excitation region and the output region;
前記励振用領域および前記出力用領域のうちの他方の領域内の前記 2 つの主面の少なく とも一方に前記励振用電極および前記出力用電極の他 方となる第 3の電極が設けられ、  A third electrode that is the other of the excitation electrode and the output electrode is provided on at least one of the two main surfaces in the other of the excitation area and the output area;
前記第 1の電極と前記第 2の電極との間の前記圧電体が前記 2つの主 面に実質的に直角方向に分極され、  The piezoelectric body between the first electrode and the second electrode is polarized substantially perpendicular to the two main surfaces;
前記励振用領域および前記出力用領域のうちの前記他方の領域内の前 記圧電体の少なく とも一部が、 前記 2つの主面に平行な分極成分を有す るように分極されている第 6の圧電トランスが提供される。 また、 本発明の第 7の態様によれば、 上記第 1の圧電トランスにおい て、 前記励振用領域および前記出力用領域のうちの一方の領域内に、 励振 用電極および出力用電極の一方となる第 1および第 2の電極が互いに対 向すると共に前記 2つの主面に実質的に平行にそれぞれ設けられ、 前記励振用領域おょぴ前記出力用領域のうちの他方の領域内に、 前記 励振用電極および前記出力用電極の他方となる第 3の電極が設けられ、 前記第 1の電極が前記励振用領域および前記出力用領域のうちの前記 一方の領域内の前記 2つの主面のうちのいずれか一方上または前記励振 用領域おょぴ前記出力用領域のうちの前記一方の領域内の前記圧電体の 内部に設けられ、 At least a part of the piezoelectric body in the other area of the excitation area and the output area is polarized so as to have a polarization component parallel to the two main surfaces. Six piezoelectric transformers are provided. According to a seventh aspect of the present invention, in the first piezoelectric transformer, In one of the excitation area and the output area, a first electrode and a second electrode that are one of the excitation electrode and the output electrode face each other and are substantially on the two main surfaces. A third electrode serving as the other of the excitation electrode and the output electrode is provided in the other of the excitation area and the output area. One of the electrodes is located on one of the two main surfaces in the one of the excitation area and the output area or the excitation area and the output area. Provided inside the piezoelectric body in one region,
前記第 2の電極が前記励振用領域および前記出力用領域のうちの前記 一方の領域内の前記 2つの主面のうちの他方上または前記励振用領域お よび前記出力用領域のうちの前記一方の領域内の前記圧電体の内部に設 けられ、  The second electrode is provided on the other of the two main surfaces in the one of the excitation area and the output area, or the one of the excitation area and the output area. Is provided inside the piezoelectric body in the region of
前記第 1の電極と前記第 2の電極との間の前記圧電体が前記 2つの主 面に実質的に直角方向に分極され、  The piezoelectric body between the first electrode and the second electrode is polarized substantially perpendicular to the two main surfaces;
前記励振用領域および前記出力用領域のうちの前記他方の領域内の少 なく とも一部が、 前記 2つの主面に平行な分極成分を有するように分極 されている第 7の圧電トランスが提供される。  A seventh piezoelectric transformer is provided in which at least a part of the other area of the excitation area and the output area is polarized so as to have a polarization component parallel to the two main surfaces. Is done.
この構造とすることにより、 励振用電極と出力用電極間の絶縁性を向 上することができ、 入出力間の絶縁耐力が大幅に改善でき、 商用交流電 源と機器間の電気的独立性を高めることが可能となる。  With this structure, the insulation between the excitation electrode and the output electrode can be improved, the dielectric strength between the input and output can be significantly improved, and the electrical independence between the commercial AC power supply and the equipment can be improved. It is possible to increase.
また、 上記第 7または第 8の圧電トランスにおいて、 好ましくは、 前記励振用領域および前記出力用領域のうちの前記他方の領域の前記 少なくとも一部が、 前記第 1および前記第 2の電極のいずれか一方と前 記第 3の電極とを結ぶ方向に実質的に沿って分極されている。  In the seventh or eighth piezoelectric transformer, preferably, at least a part of the other area of the excitation area and the output area is any one of the first and second electrodes. It is polarized substantially along the direction connecting one of the electrodes and the third electrode.
また、 上記第 7の圧電トランスにおいて、 好ましくは、 上記第 7の圧電トランスが、 前記励振用領域および前記出力用領域の うちの前記他方の領域内の前記 2つの主面の少なく とも一方に設けられ た第 4の電極であって、 前記主面に垂直な方向から平面図的に見て前記 第 3の電極と離間して設けられた前記第 4の電極をさらに備え、 前記励振用領域および前記出力用領域のうちの前記他方の領域の前記 少なく とも一部が、 前記第 3の電極と前記第 4の電極とを結ぶ方向に実 質的に沿って分極されている。 In the seventh piezoelectric transformer, preferably, The seventh piezoelectric transformer is a fourth electrode provided on at least one of the two main surfaces in the other region of the excitation region and the output region, wherein: And a fourth electrode provided apart from the third electrode when viewed in a plan view from a direction perpendicular to the third electrode, wherein the fourth electrode is provided in the other of the excitation area and the output area. At least a part thereof is polarized substantially along the direction connecting the third electrode and the fourth electrode.
また、 上記第 7の圧電トランスにおいて、 好ましくは、  In the seventh piezoelectric transformer, preferably,
前記励振用領域および前記出力用領域のうちの前記他方の領域内に設 けられた第 4の電極であって、 前記主面に垂直な方向から平面図的に見 て前記第 3の電極と離間して設けられた前記第 4の電極をさらに備え、 前記励振用領域および前記出力用領域のうちの前記他方の領域の前記 少なく とも一部が、 前記第 3の電極と前記第 4の電極とを結ぶ方向に実 質的に沿って分極されている。  A fourth electrode provided in the other one of the excitation area and the output area, wherein the fourth electrode and the third electrode are viewed in a plan view from a direction perpendicular to the main surface. Further comprising the fourth electrode provided at a distance, wherein at least a part of the other area of the excitation area and the output area is the third electrode and the fourth electrode The polarization is substantially along the direction connecting.
また、 好ましくは、  Also preferably,
前記第 3および第 4の電極の一方の外側の形状が、 前記主面に垂直な 方向から平面図的に見てほぼ円形であり、  An outer shape of one of the third and fourth electrodes is substantially circular when viewed in a plan view from a direction perpendicular to the main surface;
前記第 3および第 4の電極の他方の内側の形状が、 前記主面に垂直な 方向から平面図的に見てほぼ円形であり、  The other inner shape of the third and fourth electrodes is substantially circular in plan view from a direction perpendicular to the main surface,
前記第 3および第 4の電極の前記一方が前記第 3および第 4の電極の 前記他方の内側に設けられ、  The one of the third and fourth electrodes is provided inside the other of the third and fourth electrodes,
前記第 3および第 4の電極の前記一方の外側の前記ほぼ円形状と前記 第 3および第 4の電極の前記他方の内側の前記ほぼ円形状とがほぼ同心 円状に配置されている。  The substantially circular shape outside the one of the third and fourth electrodes and the substantially circular shape inside the other of the third and fourth electrodes are substantially concentrically arranged.
この構造とすることにより、 分極時の電界強度がより均一となり、 よ り均一な分極が可能となる。 また、 本発明の第 8の態様によれば、 上記第 7の圧電トランスにおい て、 With this structure, the electric field intensity during polarization becomes more uniform, and more uniform polarization becomes possible. According to an eighth aspect of the present invention, in the seventh piezoelectric transformer,
前記圧電体が、 圧電材料からなる複数の平板を積層して構成され、 前記複数の平板が、 前記 2つの主面とほぼ平行な 2つの副主面をそれ ぞれ備え、  The piezoelectric body is configured by laminating a plurality of flat plates made of a piezoelectric material, and the plurality of flat plates each include two sub-main surfaces substantially parallel to the two main surfaces,
前記複数の平板が、 前記第 1の方向に前記 m区分、 前記第 2の方向に 前記 n区分の格子状に分割された複数の副領域をそれぞれ有し、 前記第 1の電極が、 前記励振用領域および前記出力用領域のうちの前 記一方の領域内に積層されている複数の前記副領域の複数の前記副主面 のうちの少なく とも 1つの副主面上に設けられ、  The plurality of flat plates each have a plurality of sub-regions divided in a grid shape of the m sections in the first direction and the n sections in the second direction, and the first electrode includes the excitation electrode. A plurality of sub-main surfaces of the plurality of sub-regions stacked in the one of the output region and the output region are provided on at least one of the sub-main surfaces,
前記第 2の電極が、 前記複数の副主面のうち残りの副主面のうちの少 なく とも 1つの副主面上に設けられ、  The second electrode is provided on at least one sub-main surface of the remaining sub-main surfaces of the plurality of sub-main surfaces;
前記第 3の電極が、 前記励振用領域おょぴ前記出力用領域のうちの前 記他方の領域内に積層されている複数の前記副領域の複数の前記副主面 うちのいずれかの副主面上に設けられている第 8の圧電トランスが提供 される。  The third electrode may be any one of the plurality of sub-main surfaces of the plurality of sub-regions stacked in the other region of the excitation region and the output region. An eighth piezoelectric transformer provided on the main surface is provided.
なお、 好ましくは、 複数の圧電体層が積層された圧電トランスにおい ては、 励振用電極と出力用電極とが同一の圧電体層または同一面内に配 置されない。  Preferably, in a piezoelectric transformer in which a plurality of piezoelectric layers are stacked, the excitation electrode and the output electrode are not arranged in the same piezoelectric layer or in the same plane.
また、 好ましくは、 前記第 3の電極の形状が、 前記主面に垂直な方向 から平面図的に見てほぼ円形である。  Preferably, the shape of the third electrode is substantially circular when viewed in a plan view from a direction perpendicular to the main surface.
このように、 平面図的に見てほぼ円形の電極形状とすることにより、 分極時におけるこの電極の周囲の電界強度が均一になりやすく、 均一な 分極処理が可能となる。 また、 本発明の第 9の態様によれば、 上記第 1の圧電トランスにおい て、 In this way, by making the shape of the electrode approximately circular in plan view, the electric field intensity around the electrode during polarization tends to be uniform, and uniform polarization processing can be performed. According to a ninth aspect of the present invention, in the first piezoelectric transformer,
前記励振用領域および前記出力用領域のうちの一方の領域の少なく と も一部が前記 2つの主面に実質的に直角方向に分極され、  At least a portion of one of the excitation region and the output region is polarized substantially perpendicular to the two main surfaces;
前記励振用領域および前記出力用領域のうちの他方の領域の少なく と も一部が前記 2つの主面に平行な分極成分を有するように分極されてい る第 9の圧電トランスが提供される。  A ninth piezoelectric transformer is provided in which at least a part of the other of the excitation area and the output area is polarized so as to have a polarization component parallel to the two main surfaces.
このように、 入力側 (励振側) および出力側の一方を分極が面内に向 いた成分を持つ領域、 すなわち、 平板の主面に平行な分極成分を有する ように分極された領域とし、 励振側および出力側の他方を分極が厚さ方 向の領域とすることによって、 入力インピーダンスと出力インピーダン スの比を大きく取ることができ、 その結果昇圧比または降圧比をより大 きく取ることができる。 上記各圧電トランスにおいて、 好ましくは、  As described above, one of the input side (excitation side) and the output side is a region having a component whose polarization is in the plane, that is, a region polarized so as to have a polarization component parallel to the main surface of the flat plate. By setting the other side to the thickness direction on the other side, the ratio between the input impedance and the output impedance can be increased, and as a result, the boost ratio or the buck ratio can be increased. . In each of the above piezoelectric transformers, preferably,
前記格子状に配列された複数の領域のうち前記格子のいずれか 1つの 角の前記領域の座標を前記第 1および前記第 2の方向において共に 1 と し、 前記いずれか 1つの角の領域から前記第 1の方向に沿って p番面の 領域の前記第 1の方向における座標を Pとし、 前記いずれか 1つの角の 領域から前記第 2の方向に沿って q番面の領域の前記第 2の方向におけ る座標を qとした場合に、  The coordinates of the area at any one corner of the grid among the plurality of areas arranged in the grid shape are both set to 1 in the first and second directions, and from the area at any one corner, The coordinate of the area of the p-th surface along the first direction in the first direction is P, and the coordinate of the area of the q-th surface along the second direction from the one corner area along the second direction. If the coordinate in the direction of 2 is q,
前記格子状に配列された複数の領域のうち、 前記 Pと前記 qとの和 ( p + q ) が奇数である領域を第 1の領域群とし、 前記 pと前記 qとの 和 (p + q ) が偶数である領域を第 2の領域群とし、 前記第 1の領域群 または前記第 2の領域群のうちのいずれか一方の領域群のみに含まれる 前記領域のうちの少なく とも 2つの前記領域を並列に接続して、 前記励 振用領域または前記出力用領域とする。 A region in which the sum (p + q) of the P and the q is an odd number among the plurality of regions arranged in a lattice pattern is defined as a first region group, and the sum (p + q) is an even number as a second region group, and at least two of the regions included in only one of the first region group and the second region group Connecting the regions in parallel, This is a transfer area or the output area.
並列に接続した領域群を励振用領域とすることで、 平板の共振モ一ド を崩すことなく励振することが可能となり、 その結果、 高効率が望める。 並列に接続した領域群を出力用領域とすることで、 並列に接続してい る領域の振動モードが揃うことにより、 出力電圧波形が揃い、 出力用電 極間での電荷の移動に伴う発熱が回避され、 その結果、 高効率が望める。 また、 上記各圧電トランスにおいて、 好ましくは、  By setting the group of regions connected in parallel as the excitation region, it is possible to excite the plate without destroying the resonance mode of the plate, and as a result, high efficiency can be expected. By setting the groups of regions connected in parallel as output regions, the vibration modes of the regions connected in parallel are aligned, so that the output voltage waveforms are aligned and the heat generated by the movement of charges between the output electrodes is generated. Avoidance, resulting in higher efficiency. In each of the above piezoelectric transformers, preferably,
前記格子状に配列された複数の領域のうち前記格子のいずれか 1つの 角の前記領域の座標を前記第 1および前記第 2の方向において共に 1 と し、 前記いずれか 1つの角の領域から前記第 1の方向に沿って p番面の 領域の前記第 1の方向における座標を Pとし、 前記いずれか 1つの角の 領域から前記第 2の方向に沿って q番面の領域の前記第 2の方向におけ る座標を qとした場合に、  The coordinates of the area at any one corner of the grid among the plurality of areas arranged in the grid shape are both set to 1 in the first and second directions, and from the area at any one corner, The coordinate of the area of the p-th surface along the first direction in the first direction is P, and the coordinate of the area of the q-th surface along the second direction from the one corner area along the second direction. If the coordinate in the direction of 2 is q,
前記格子状に配列された複数の領域のうち、 前記 Pと前記 qとの和 ( p + q ) が奇数である領域を第 1の領域群とし、 前記 pと前記 qとの 和 (p + q ) が偶数である領域を第 2の領域群とし、 前記励振用領域お よび前記出力用領域を共に前記第 1の領域群または前記第 2の領域群の うちのいずれか一方の領域群のみに設ける。  A region in which the sum (p + q) of the P and the q is an odd number among the plurality of regions arranged in a lattice pattern is defined as a first region group, and the sum (p + q) is an even number as a second area group, and both the excitation area and the output area are only one of the first area group or the second area group. To be provided.
このようにすることにより、 励振用領域および出力用領域の両方にお いて振動モードが揃うことになり、 その結果、 高効率が望めるようにな る。 また、 上記各圧電トランスにおいては、 好ましくは、 前記領域の前記 第 1の方向の長さと前記第 2の方向の長さの比が 0 . 7乃至 1 . 3であ る。 また、 上記各圧電トランスにおいては、 好ましくは、 前記第 1の方向 と前記第 2の方向が実質的に直交している。 By doing so, the vibration modes are aligned in both the excitation area and the output area, and as a result, high efficiency can be expected. In each of the piezoelectric transformers, preferably, a ratio of a length of the region in the first direction to a length of the region in the second direction is 0.7 to 1.3. In each of the piezoelectric transformers, preferably, the first direction and the second direction are substantially orthogonal to each other.
また、 上記各圧電トランスにおいては、 好ましくは、 前記 mと前記 n が等しい。  In each of the above piezoelectric transformers, preferably, m and n are equal.
なお、 上記のように第 1の方向に n区分、 第 2の方向に m区分の格子 状に分割された複数の領域を備える場合において、 励振用領域および出 力用領域の一方を第 1の方向において n区分全部に設ける場合には、 励 振用領域および出力用領域の他方は、 第 1の方向において n区分全部に 設けないことが好ましく、 励振用領域電極および出力用領域の一方を第 2の方向において m区分全部に設ける場合には、 励振用領域および出力 用領域の他方は、 第 2の方向において m区分全部に設けないことが好ま しい。  As described above, in the case where a plurality of regions divided into a grid with n sections in the first direction and m sections in the second direction are provided, one of the excitation area and the output area is set to the first area. When provided in all n sections in the direction, the other of the excitation area and the output area is preferably not provided in the entire n section in the first direction, and one of the excitation area electrode and the output area is When provided in all m sections in the second direction, it is preferable that the other of the excitation area and the output area is not provided in all m sections in the second direction.
また、 mおよび nの上限は特に限定されないが、 実用的にはそれぞれ 1 0 0以下が好ましく、 より好ましくはそれぞれ 1 0以下である。 図面の簡単な説明  The upper limits of m and n are not particularly limited, but are practically preferably 100 or less, more preferably 10 or less, respectively. BRIEF DESCRIPTION OF THE FIGURES
図 1 A—図 1 Eは、 本発明の第 1の実施例の圧電トランスを説明する ための図であり、 図 1 Aは上面図、 図 1 Bは底面図、 図 1 C—図 1 Eは 断面図であり、  1A to 1E are views for explaining a piezoelectric transformer according to a first embodiment of the present invention. FIG. 1A is a top view, FIG. 1B is a bottom view, and FIG. 1C—FIG. 1E. Is a sectional view,
図 2は、 本発明の第 1の実施例の圧電トランスを説明するための斜視 図であり、  FIG. 2 is a perspective view illustrating a piezoelectric transformer according to a first embodiment of the present invention.
図 3は、 本発明の第 1の実施例の圧電トランスの昇圧時の電気的接続 を説明するための回路図であり、  FIG. 3 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer according to the first embodiment of the present invention at the time of boosting.
図 4は、 本発明の第 1の実施例の圧電トランスの降圧時の電気的接続 を説明するための回路図であり、  FIG. 4 is a circuit diagram for explaining electrical connection at the time of step-down of the piezoelectric transformer according to the first embodiment of the present invention.
図 5 A—図 5 Gは、 本発明の第 1および第 6の実施例の圧電トランス の共振動作を説明するための図であり、 図 5 A、 図 5 B、 図 5 Cは単板 の伸縮状態を示す平面図であり、 図 5 Dは図 5 Aの状態における応力分 布を示す図であり、 図 5 Eは図 5 Aの状態における変位分布を示す図で あり、 図 5 Fは図 5 Cの状態における応力分布を示す図であり、 図 5 G は図 5 Cの状態における変位分布を示す図であり、 FIG. 5A—FIG. 5G show the piezoelectric transformers of the first and sixth embodiments of the present invention. 5A, 5B, and 5C are plan views showing the expansion and contraction state of the veneer, and FIG. 5D shows the stress distribution in the state of FIG. 5A. 5E is a diagram showing a displacement distribution in the state of FIG. 5A, FIG. 5F is a diagram showing a stress distribution in the state of FIG. 5C, and FIG. 5G is a state of FIG. 5C. It is a diagram showing the displacement distribution in
図 6 A—図 6 Eは、 本発明の第 2の実施例の圧電トランスを説明する ための図であり、 図 6 Aは上板の上面図、 図 6 Bは底面図、 図 6 C—図 6 Eは断面図であり、  FIGS. 6A to 6E are views for explaining a piezoelectric transformer according to a second embodiment of the present invention. FIG. 6A is a top view of an upper plate, FIG. 6B is a bottom view, and FIG. FIG. 6E is a cross-sectional view.
図 7 A—図 7 Eは、 本発明の第 2の実施例の圧電トランスを説明する ための図であり、 図 7 Aは下板の上面図、 図 7 Bは底面図、 図 7 C—図 7 Eは断面図であり、  FIGS. 7A to 7E are views for explaining a piezoelectric transformer according to a second embodiment of the present invention. FIG. 7A is a top view of a lower plate, FIG. 7B is a bottom view, and FIG. FIG. 7E is a cross-sectional view,
図 8は、 本発明の第 2の実施例の圧電トランスを説明するための斜視 図であり、  FIG. 8 is a perspective view illustrating a piezoelectric transformer according to a second embodiment of the present invention.
図 9は、 本発明の第 2の実施例の圧電トランスの昇圧時の電気的接続 を説明するための回路図であり、  FIG. 9 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the second embodiment of the present invention.
図 1 0は、 本発明の第 2の実施例の圧電トランスの降圧時の電気的接 続を説明するための回路図であり、  FIG. 10 is a circuit diagram for explaining electrical connection at the time of step-down of the piezoelectric transformer according to the second embodiment of the present invention.
図 1 1 A—図 1 1 Bは、 本発明の第 3の実施例の圧電トランスを説明 するための図であり、 図 1 1 Aは上面図、 図 1 1 Bは底面図であり、 図 1 2は、 本発明の第 3の実施例の圧電トランスを説明するための斜 視図であり、  FIG. 11A—FIG. 11B is a diagram for explaining a piezoelectric transformer according to a third embodiment of the present invention. FIG. 11A is a top view, FIG. 11B is a bottom view, and FIG. 12 is a perspective view illustrating a piezoelectric transformer according to a third embodiment of the present invention,
図 1 3は、 本発明の第 3の実施例の圧電トランスの昇圧時の電気的接 続を説明するための回路図であり、  FIG. 13 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the third embodiment of the present invention.
図 1 4は、 本発明の第 3の実施例の圧電トランスの降圧時の電気的接 続を説明するための回路図であり、  FIG. 14 is a circuit diagram for explaining the electrical connection at the time of step-down of the piezoelectric transformer according to the third embodiment of the present invention.
図 1 5 A、 図 1 5 Bは、 本発明の第 4の実施例の圧電トランスを説明 91 FIGS. 15A and 15B illustrate a piezoelectric transformer according to a fourth embodiment of the present invention. 91
19 するための図であり、 図 1 5 Aは上面図、 図 1 5 Bは底面図であり、 図 1 6は、 本発明の第 4の実施例の圧電トランスを説明するための斜視 図であり、 FIG. 15A is a top view, FIG. 15B is a bottom view, and FIG. 16 is a perspective view for explaining a piezoelectric transformer according to a fourth embodiment of the present invention. Yes,
図 1 7は、 本発明の第 4の実施例の圧電トランスの電気的接続を説明 するための回路図であり、  FIG. 17 is a circuit diagram illustrating electrical connection of the piezoelectric transformer according to the fourth embodiment of the present invention.
図 1 8 A、 図 1 8 Bは、 本発明の第 5の実施例の圧電トランスを説明 するための図であり、 図 1 8 Aは第 1層の上面図、 図 1 8 Bは底面図で あり、  FIGS. 18A and 18B are views for explaining a piezoelectric transformer according to a fifth embodiment of the present invention. FIG. 18A is a top view of the first layer, and FIG. 18B is a bottom view. And
図 1 9 A、 図 1 9 Bは、 本発明の第 5の実施例の圧電トランスを説明 するための図であり、 図 1 9 Aは第 2層の上面図、 図 1 9 Bは底面図で あり、  FIGS. 19A and 19B are views for explaining a piezoelectric transformer according to a fifth embodiment of the present invention. FIG. 19A is a top view of the second layer, and FIG. 19B is a bottom view. And
図 2 0 A、 図 2 O Bは、 本発明の第 5の実施例の圧電トランスを説明 するための図であり、 図 2 0 Aは第 3層の上面図、 図 2 0 Bは底面図で あり、  FIGS. 20A and 20B are diagrams for explaining a piezoelectric transformer according to a fifth embodiment of the present invention. FIG. 20A is a top view of the third layer, and FIG. 20B is a bottom view. Yes,
図 2 1 A、 図 2 1 Bは、 本発明の第 5の実施例の圧電トランスを説明 するための図であり、 図 2 1 Aは第 4層の上面図、 図 2 1 Bは底面図で あり、  FIGS. 21A and 21B are views for explaining a piezoelectric transformer according to a fifth embodiment of the present invention. FIG. 21A is a top view of a fourth layer, and FIG. 21B is a bottom view. And
図 2 2は、 本発明の第 5の実施例の圧電トランスを説明するための斜 視図であり、  FIG. 22 is a perspective view illustrating a piezoelectric transformer according to a fifth embodiment of the present invention.
図 2 3は、 本発明の第 5の実施例の圧電トランスの昇圧時の電気的接 続を説明するための回路図であり、  FIG. 23 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the fifth embodiment of the present invention.
図 2 4は、 本発明の第 5の実施例の圧電トランスの降圧時の電気的接 続を説明するための回路図であり、  FIG. 24 is a circuit diagram for explaining the electrical connection at the time of step-down of the piezoelectric transformer according to the fifth embodiment of the present invention.
図 2 5 A—図 2 5 Eは、 本発明の第 6の実施例の圧電トランスを説明 するための図であり、 図 2 5 Aは上面図、 図 2 5 Bは底面図、 図 2 5 C 乃至図 2 5 Eは断面図であり、 図 26A、 図 26 Bは、 本発明の第 6の実施例の圧電トランスを説明 するための部分拡大図であり、 図 26 Aは部分拡大上面図、 図 26 Bは 部分拡大断面図であり、 FIG. 25A—FIG. 25E is a diagram for explaining a piezoelectric transformer according to a sixth embodiment of the present invention. FIG. 25A is a top view, FIG. 25B is a bottom view, and FIG. C to FIG. 25E are sectional views, 26A and 26B are partially enlarged views for explaining a piezoelectric transformer according to a sixth embodiment of the present invention. FIG. 26A is a partially enlarged top view, and FIG. 26B is a partially enlarged sectional view.
図 27は、 本発明の第 6の実施例の圧電トランスを説明するための斜 視図であり、  FIG. 27 is a perspective view illustrating a piezoelectric transformer according to a sixth embodiment of the present invention.
図 28は、 本発明の第 6の実施例の圧電トランスの昇圧時の電気的接 続を説明するための回路図であり、  FIG. 28 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the sixth embodiment of the present invention.
図 29は、 本発明の第 6の実施例の圧電トランスの降圧時の電気的接 続を説明するための回路図であり、  FIG. 29 is a circuit diagram for explaining the electrical connection at the time of step-down of the piezoelectric transformer according to the sixth embodiment of the present invention.
図 3 OA—図 3 O Eは、 本発明の第 7の実施例の圧電トランスを説明 するための図であり、 図 3 OAは上板の上面図、 図 30 Bは底面図、 図 30 C—図 30 Eは断面図であり、  FIG. 3 OA—FIG. 3 OE is a diagram for explaining a piezoelectric transformer according to a seventh embodiment of the present invention. FIG. 3 OA is a top view of an upper plate, FIG. 30B is a bottom view, and FIG. FIG. 30E is a cross-sectional view,
図 3 1 A—図 3 1 Eは、 本発明の第 7の実施例の圧電トランスを説明 するための図であり、 図 3 1 Aは下板の上面図、 図 3 1 Bは底面図、 図 3 1 C—図 3 1 Eは断面図であり、  FIG. 31A—FIG. 31E are views for explaining a piezoelectric transformer according to a seventh embodiment of the present invention. FIG. 31A is a top view of a lower plate, FIG. 31B is a bottom view, Figure 31C-Figure 31E is a cross-sectional view,
図 32は、 本発明の第 7の実施例の圧電トランスを説明するための斜 視図であり、  FIG. 32 is a perspective view illustrating a piezoelectric transformer according to a seventh embodiment of the present invention.
図 33は、 本発明の第 7の実施例の圧電トランスの昇圧時の電気的接 続を説明するための回路図であり、  FIG. 33 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the seventh embodiment of the present invention.
図 34は、 本発明の第 7の実施例の圧電トランスの降圧時の電気的接 続を説明するための回路図であり、  FIG. 34 is a circuit diagram for explaining electrical connection at the time of step-down of the piezoelectric transformer according to the seventh embodiment of the present invention.
図 35 A、 図 3 5 Bは、 本発明の第 8の実施例の圧電トランスを説明 するための図であり、 図 35 Aは第 1層の上面図、 図 35 Bは底面図で あり、  35A and 35B are views for explaining a piezoelectric transformer according to an eighth embodiment of the present invention. FIG. 35A is a top view of the first layer, FIG. 35B is a bottom view,
図 36A、 図 3 6 Bは、 本発明の第 8の実施例の圧電トランスを説明 するための図であり、 図 36 Aは第 2層の上面図、 図 36 Bは底面図で あり、 36A and 36B are views for explaining a piezoelectric transformer according to an eighth embodiment of the present invention. FIG. 36A is a top view of the second layer, and FIG. 36B is a bottom view. Yes,
図 3 7 A、 図 3 7 Bは、 本発明の第 8の実施例の圧電トランスを説明 するための図であり、 図 3 7 Aは第 3層の上面図、 図 3 7 Bは底面図で あり、  FIGS. 37A and 37B are diagrams for explaining a piezoelectric transformer according to an eighth embodiment of the present invention. FIG. 37A is a top view of the third layer, and FIG. 37B is a bottom view. And
図 3 8 A、 図 3 8 Bは、 本発明の第 8の実施例の圧電トランスを説明 するための図であり、 図 3 8 Aは第 4層の上面図、 図 3 8 Bは底面図で あり、  FIGS. 38A and 38B are diagrams for explaining a piezoelectric transformer according to an eighth embodiment of the present invention. FIG. 38A is a top view of the fourth layer, and FIG. 38B is a bottom view. And
図 3 9は、 本発明の第 8の実施例の圧電トランスを説明するための部 分拡大上面図であり、  FIG. 39 is a partially enlarged top view for explaining a piezoelectric transformer according to an eighth embodiment of the present invention.
図 4 0は、 本発明の第 8の実施例の圧電トランスを説明するための斜 視図であり、  FIG. 40 is a perspective view illustrating a piezoelectric transformer according to an eighth embodiment of the present invention.
図 4 1は、 本発明の第 8の実施例の圧電トランスの昇圧時の電気的接 続を説明するための回路図であり、  FIG. 41 is a circuit diagram for explaining an electrical connection at the time of boosting of the piezoelectric transformer according to the eighth embodiment of the present invention.
図 4 2は、 本発明の第 8の実施例の圧電トランスの降圧時の電気的接 続を説明するための回路図であり、  FIG. 42 is a circuit diagram for explaining electrical connection at the time of step-down of the piezoelectric transformer according to the eighth embodiment of the present invention.
図 4 3 A—図 4 3 Eは、 本発明の第 9の実施例の圧電トランスを説明 するための図であり、 図 4 3 Aは上面図、 図 4 3 Bは底面図、 図 4 3 C 一図 4 3 Eは断面図であり、  FIGS. 43A to 43E are views for explaining the piezoelectric transformer according to the ninth embodiment of the present invention. FIG. 43A is a top view, FIG. 43B is a bottom view, and FIG. C Fig. 4 3 E is a sectional view,
図 4 4は、 本発明の第 9の実施例の圧電トランスを説明するための斜 視図であり、  FIG. 44 is a perspective view for explaining a piezoelectric transformer according to a ninth embodiment of the present invention.
図 4 5は、 本発明の第 9の実施例の圧電トランスの昇圧時の電気的接 続を説明するための回路図であり、  FIG. 45 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the ninth embodiment of the present invention.
図 4 6は、 本発明の第 9の実施例の圧電トランスの降圧時の電気的接 続を説明するための回路図であり、  FIG. 46 is a circuit diagram for explaining the electrical connection at the time of step-down of the piezoelectric transformer according to the ninth embodiment of the present invention.
図 4 7は、 従来の Rosen 型の圧電トランスを示す斜視図であり、 図 4 8は、 従来の (圧電横効果一圧電横効果) 降圧型圧電トランスを 示す斜視図であり、 Fig. 47 is a perspective view showing a conventional Rosen-type piezoelectric transformer. Fig. 48 shows a conventional (piezoelectric lateral effect-piezoelectric lateral effect) step-down piezoelectric transformer. FIG.
図 49は、 従来の (圧電縦効果一圧電縦効果) 降圧型圧電トランスを 示す斜視図である。 実施例  FIG. 49 is a perspective view showing a conventional (piezoelectric longitudinal effect-piezoelectric longitudinal effect) step-down piezoelectric transformer. Example
次に、 本発明の実施例を図面を参照して説明する。  Next, embodiments of the present invention will be described with reference to the drawings.
(第 1の実施例)  (First embodiment)
図 1 A—図 1 Eは、 本実施例の圧電トランスを説明するための図であ り、 図 1 Aは上面図、 図 1 Bは底面図、 図 1 C—図 1 Eは断面図である。 図 2は、 本実施例の圧電トランスを説明するための斜視図である。 図 3 は、 本実施例の圧電トランスの昇圧時の電気的接続を説明するための回 路図である。 図 4は、 本実施例の圧電トランスの降圧時の電気的接続を 説明するための回路図である。 図 5 A—図 5 Gは、 本実施例の圧電トラ ンスの共振動作を説明するための図であり、 図 5 A、 図 5 B、 図 5 Cは 単板の伸縮状態を示す平面図であり、 図 5 Dは図 5 Aの状態における応 力分布を示す図であり、 図 5 Eは図 5 Aの状態における変位分布を示す 図であり、 図 5 Fは図 5 Cの状態における応力分布を示す図であり、 図 5 Gは図 5 Cの状態における変位分布を示す図である。  FIGS. 1A to 1E are views for explaining the piezoelectric transformer of this embodiment. FIG. 1A is a top view, FIG. 1B is a bottom view, and FIG. 1C to FIG. is there. FIG. 2 is a perspective view for explaining the piezoelectric transformer of the present embodiment. FIG. 3 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer of the present embodiment. FIG. 4 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of the present embodiment at the time of step-down. FIGS. 5A to 5G are diagrams for explaining the resonance operation of the piezoelectric transformer of the present embodiment, and FIGS. 5A, 5B, and 5C are plan views showing the contracted state of the single plate. 5D shows the stress distribution in the state of FIG. 5A, FIG. 5E shows the displacement distribution in the state of FIG. 5A, and FIG. 5F shows the stress distribution in the state of FIG. 5C. FIG. 5G is a diagram showing a distribution, and FIG. 5G is a diagram showing a displacement distribution in the state of FIG. 5C.
本実施例の圧電トランス 50 1の平板 1 00は P Z T系の圧電セラミ ッタスの単板 (24mmX 24mmX l mm) からなる。 電極 1 - 1 8 は P d— A g系の導電ペース トからなる。 電極パターンは図 1 A、 図 1 Bに示すように 3 X 3分割の格子内に正方形状の電極 1一 1 8をスクリ ーン印刷により形成する。 この正方形状の電極形状は電極間の絶縁破壊 強度を高める為に角部、 例えば電極 1では角部 1 1 1、 電極 2では角部 1 1 2、 1 1 3、 電極 1 03では角部 1 1 4、 中央の電極 5では 4つの 角部全部、 が丸めてあることが望ましい。 分極処理は油中で行う。 分極 方向は、 図 1 A、 図 1 C、 図 1 D、 図 1 Eに示すように平板 1 0 0の 2 つの主面 (表面、 裏面) に垂直な方向 (z方向) である。 なお、 図 1 A において、 〇の中に · を表示している場合には、 上向きの分極方向を示 し、 〇の中に Xを表示している場合には、 下向きの分極方向を示す。 こ のことは第 2の実施例以降についても同様である。 分極処理した後エー ジング処理をすることにより圧電トランス素子を作製する。 このように することにより、 平面図的に見て正方形状の平板 1 0 0は X方向に 3分 割、 y方向に 3分割の合計 3 X 3分割の格子状の 9つの領域 1 0 1— 1 0 9に分割される。 The flat plate 100 of the piezoelectric transformer 501 of this embodiment is a single plate (24 mm × 24 mm × l mm) of a PZT-based piezoelectric ceramics. Electrodes 1-18 are made of Pd-Ag conductive paste. As shown in FIGS. 1A and 1B, the electrode pattern is formed by screen printing square electrodes 118 in a 3 × 3 grid. This square electrode shape has corners to increase the dielectric breakdown strength between the electrodes, for example, corners 1 1 1 for electrode 1, 1 112, 1 1 3 for electrode 2 and 1 for electrode 103. It is desirable that all four corners of the center electrode 5 be rounded. The polarization treatment is performed in oil. polarization The direction is the direction (z direction) perpendicular to the two main surfaces (front and back) of the flat plate 100 as shown in FIGS. 1A, 1C, 1D, and 1E. In Fig. 1A, when "·" is shown in 〇, it indicates an upward polarization direction, and when "X" is shown in 〇, it is a downward polarization direction. This applies to the second and subsequent embodiments. After the polarization process, the piezoelectric transformer element is manufactured by performing the aging process. By doing so, the flat plate 100, which is square in plan view, is divided into three in the X direction and three in the y direction. Divided into 109.
図 2に本圧電トランス 5 0 1の斜視図を示す。 電気的接続は、 本圧電 トランス 5 0 1の圧電共振振動の節点に位置する、 正方形状の電極 1 、 3 、 5 、 7、 9 、 1 0、 1 2 、 1 4 、 1 6 、 1 8のそれぞれの中心部か ら取り出す。 電気的接続には導電性弾性体 1 4 1 一 1 4 5等を用いるこ とが望ましい。 さらに導電性弾性体 1 4 1— 1 4 5等に金属端子 1 3 1 - 1 3 4を接続することにより外部回路との電気的接続をとる。  FIG. 2 is a perspective view of the present piezoelectric transformer 501. The electrical connection is made between the square electrodes 1, 3, 5, 7, 9, 10, 10, 12, 14, 16, and 18 located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 501. Remove from each center. For electrical connection, it is desirable to use a conductive elastic body such as 141-145. Further, an electrical connection with an external circuit is obtained by connecting a metal terminal 131-134 to the conductive elastic body 141-145.
本圧電トランスは電気的接続を変えることで昇圧用途にも降圧用途に も使える。 図 3に昇圧に使用するときの電気的接続を示す。 図 4に降圧 に使用するときの電気的接続を示す。  This piezoelectric transformer can be used for both step-up and step-down applications by changing the electrical connection. Figure 3 shows the electrical connections when used for boosting. Figure 4 shows the electrical connections when used for step-down.
また、 本実施例の圧電トランスは、 図 5 A—図 5 Gに示すような共振 動作する。  Further, the piezoelectric transformer of the present embodiment performs a resonance operation as shown in FIGS. 5A to 5G.
本実施例においては、 中央の領域 1 0 5に励振用電極或いは出力用電 極となる電極対 5 、 1 4を配置し、 周辺部の領域 1 0 1 、 1 0 3 、 1 0 In the present embodiment, electrode pairs 5, 14 serving as excitation electrodes or output electrodes are arranged in the central region 105, and the peripheral regions 101, 103, 100 are arranged.
7 , 1 0 9にそれぞれ出力用電極或いは励振用電極を配置しているので、 機械的共振エネルギーの伝播する断面積が四方にとれ、 このため、 単位 面積あたりに通過する機械的共振エネルギーの密度を下げることが可能 となり、 結果として使用できる電力の限界値をより高くすることが可能 となっている。 Since the output electrode or the excitation electrode is arranged in each of 7, 109, the cross-sectional area where the mechanical resonance energy propagates can be taken in four directions, and therefore the density of the mechanical resonance energy passing per unit area And the resulting power limit can be increased It has become.
また、 周辺部の領域 1 0 1、 1 0 3、 1 0 7、 1 0 9を並列に接続し て励振用領域または出力用領域としているので、 平板 1 0 0の共振モー ドを崩すことなく励振することが可能となり、 その結果、 高効率が望め るようになっている。  In addition, since the peripheral regions 101, 103, 107, and 109 are connected in parallel to form an excitation region or an output region, the resonance mode of the flat plate 100 is maintained. Excitation is possible, and as a result, high efficiency can be expected.
(第 2の実施例)  (Second embodiment)
図 6 A—図 6 Eは、 本実施例の圧電トランスを説明するための図であ り、 図 6 Aは上板の上面図、 図 6 Bは底面図、 図 6 C—図 6 Eは断面図 である。 図 7A—図 7 Eは、 本実施例の圧電トランスを説明するための 図であり、 図 7 Aは下板の上面図、 図 7 Bは底面図、 図 7 C—図 7 Eは 断面図である。 図 8は、 本実施例の圧電トランスを説明するための斜視 図である。 図 9は、 本実施例の圧電トランスの昇圧時の電気的接続を説 明するための回路図である。 図 1 0は、 本実施例の圧電トランスの降圧 時の電気的接続を説明するための回路図である。  FIGS. 6A to 6E are views for explaining the piezoelectric transformer of this embodiment. FIG. 6A is a top view of the upper plate, FIG. 6B is a bottom view, and FIGS. 6C to 6E are It is sectional drawing. 7A to 7E are views for explaining the piezoelectric transformer of the present embodiment. FIG. 7A is a top view of the lower plate, FIG. 7B is a bottom view, and FIG. 7C—FIG. 7E is a cross-sectional view. It is. FIG. 8 is a perspective view for explaining the piezoelectric transformer of the present embodiment. FIG. 9 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the present embodiment. FIG. 10 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of this embodiment at the time of step-down.
本実施例の圧電トランス 5 0 2の平板は P ZT系の圧電セラミックス の平板 1 00、 20 0を 2層積層した積層板 5 1 0 ( 24 mm X 24 m mX 0. 5mmX 2層) からなる。 電極 1一 3 6は P d— A g系の導電 ペース トからなる。 電極パターンは図 6 A、 図 6 B、 図 7 A、 図 7 Bに 示すように 3 X 3分割の格子内に正方形状の電極をスクリーン印刷によ り形成する。 この正方形状の電極形状は電極間の絶縁破壊強度を高める 為に角部、 例えば電極 1では角部 1 1 1、 電極 2では角部 1 1 2、 1 1 3、 電極 1 0 3では角部 1 1 4、 電極 5では 4つの角部、 電極 1 9では 角部 2 1 1、 電極 2 0では角部 2 1 2、 2 1 3、 電極 2 1では角部 2 1 4、 中央の電極 2 3では 4つの角部全部、 が丸めてあることが望ましレ、。 分極処理は油中で行う。 分極方向は、 図 6A、 図 6 C—図 6 E、 図 7A、 図 7 C—図 7 E、 図 8に示すように平板 1 0 0、 20 0のそれぞれの 2 つの主面 (表面、 裏面) に垂直な方向 (z方向) である。 分極処理した 後エージング処理をすることにより圧電トランス素子を作製する。 この ようにすることにより、 平面図的に見て正方形状の上板の平板 1 0 0は X方向に 3分割、 y方向に 3分割の合計 3 X 3分割の格子状の 9つの領 域 1 0 1 — 1 0 9に分割され、 平面図的に見て正方形状の下板の平板 2 0 0は X方向に 3分割、 y方向に 3分割の合計 3 X 3分割の格子状の 9 つの領域 2 0 1 - 2 0 9に分割される。 The flat plate of the piezoelectric transformer 502 of this embodiment is a laminated plate 5 10 (24 mm × 24 mm × 0.5 mm × 2 layers) in which two flat plates 100 and 200 of PZT piezoelectric ceramics are stacked. . The electrodes 113 are made of Pd-Ag conductive paste. As shown in FIG. 6A, FIG. 6B, FIG. 7A, and FIG. 7B, the electrode pattern is formed by screen printing square electrodes in a 3 × 3 grid. This square electrode shape has corners to increase the dielectric breakdown strength between the electrodes, for example, the corners 1 1 and 1 for electrode 1, the corners 1 2 and 1 13 for electrode 2, and the corners for electrode 103. 1 1 4; 4 corners for electrode 5; 2 1 1 for electrode 19; 2 2 and 2 13 for electrode 20; 2 1 4 for electrode 21; 2 1 4 for electrode 21; center electrode 2 In 3, it is desirable that all four corners are rounded. The polarization treatment is performed in oil. As shown in Fig. 6A, Fig. 6C-Fig. 6E, Fig. 7A, Fig. 7C-Fig. 7E, Fig. Direction (z-direction) perpendicular to the two main surfaces (front and back). After the polarization process, the piezoelectric transformer element is manufactured by performing an aging process. By doing so, the upper flat plate 100 of a square shape in plan view is divided into three in the X direction and three in the y direction. 0 1 — 1 0 9 is divided into two, and a flat plate with a square bottom in plan view 2 0 0 is divided into 3 in the X direction and 3 in the y direction. It is divided into the area 201-209.
図 8に本圧電トランス 5 0 2の斜視図を示す。 電気的接続は、 積層板 5 1 0の上面、 下面においては、 圧電トランス 5 0 2の圧電共振振動の 節点に位置する、 正方形状の電極 1、 3、 5、 7、 9、 2 8、 3 0、 3 2、 3 4、 3 6の中心部からそれぞれ取り出す。 電気的接続には導電性 弾性体 1 4 1一 1 4 5等を用いることが望ましい。 さらに導電性弾性体 1 4 1 _ 1 4 5等に金属端子 1 3 1、 1 3 2、 1 3 5、 1 3 8を接続す ることにより外部回路との電気的接続をとる。 なお、 上板 1 0 0の裏面 に設けられた電極 1 0— 1 8と下板 2 0 0の表面に設けられた電極 1 9 一 2 7の接続は、 それぞれ対応する電極同士をエポキシ系接着剤により 貼り合わせるか又は一体焼結により接合する。 そして、 このようにする ことにより上板 1 0 0と下板 2 0 0とを一体化した積層板 5 1 0を形成 する。 上板 1 0 0の裏面に設けられた電極 1 0、 1 2、 1 6、 1 8、 下 板 2 0 0の表面に設けられた電極 1 9、 2 1、 2 5、 2 7への接続は、 振動を阻害しないような軟ぃ線で形成された金属端子 1 3 7をハンダづ け等することにより行うのが望ましい。  FIG. 8 is a perspective view of the present piezoelectric transformer 502. FIG. The electrical connection is made on the upper and lower surfaces of the laminated plate 5 10 by square electrodes 1, 3, 5, 7, 9, 28, 3 located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 502. Take out from the center of 0, 32, 34, 36, respectively. For electrical connection, it is desirable to use a conductive elastic body 141-145. Further, by connecting metal terminals 131, 132, 135, and 138 to the conductive elastic body 141-145, etc., electrical connection to an external circuit is established. The electrodes 10-18 provided on the back surface of the upper plate 100 and the electrodes 19-27 provided on the surface of the lower plate 200 are connected by epoxy-based bonding. Laminate with agents or join by integral sintering. By doing so, a laminated plate 5100 in which the upper plate 100 and the lower plate 200 are integrated is formed. Connection to electrodes 10, 12, 16, 18 provided on the back of upper plate 100, electrodes 19, 21, 25, 27 provided on the surface of lower plate 200 It is preferable that the metal terminal 137 formed of a soft wire that does not hinder vibration be soldered or the like.
本実施例においては、 平板 1 0 0の中央の領域 1 0 5の表面および平 板 2 0 0の中央の領域 2 0 5の裏面に励振用電極或いは出力用電極とな る電極対 5、 3 2を配置し、 平板 1 0 0の周辺部の領域 1 0 1、 1 0 3、 1 0 7、 1 0 9にそれぞれ出力用電極或いは励振用電極を配置し、 平板 2 0 0の周辺部の領域 2 0 1、 2 0 3、 2 0 7、 2 0 9にそれぞれ出力 用電極或いは励振用電極を配置しているので、 機械的共振エネルギーの 伝播する断面積が四方にとれ、 このため、 単位面積あたりに通過する機 械的共振エネルギーの密度を下げることが可能となり、 結果として使用 できる電力の限界値をより高くすることが可能となっている。 In this embodiment, the electrode pairs 5, 3 serving as excitation electrodes or output electrodes are provided on the front surface of the central region 105 of the flat plate 100 and the back surface of the central region 205 of the flat plate 200. 2 and the output electrodes or excitation electrodes are placed in the peripheral areas 101, 103, 107 and 109 of the flat plate 100, respectively. Since the output electrode or the excitation electrode is arranged in each of the peripheral regions 201, 203, 207, and 209 of 200, the cross-sectional area where mechanical resonance energy propagates is square. Therefore, it is possible to reduce the density of the mechanical resonance energy passing per unit area, and as a result, it is possible to further increase the limit value of usable power.
また、 平板 1 0 0の周辺部の領域 1 0 1、 1 0 3、 1 0 7、 1 0 9を 並列に接続し、 平板 2 0 0の周辺部の領域 2 0 1、 2 0 3、 2 0 7、 2 0 9を並列に接続して励振用領域または出力用領域としているので、 平 板 1 0 0、 2 0 0から構成される積層体 5 1 0の共振モードを崩すこと なく励振することが可能となり、 その結果、 高効率が望めるようになつ ている。  In addition, the peripheral areas 101, 103, 107, 109 of the flat plate 100 are connected in parallel, and the peripheral areas 201, 203, 2 of the flat plate 200 are connected. Since 0 7 and 2 0 9 are connected in parallel as an excitation area or an output area, excitation is performed without disturbing the resonance mode of the laminated body 5 10 composed of the flat plates 1 0 0 and 2 0 0 As a result, high efficiency can be expected.
本圧電トランス 5 0 2は電気的接続を変えることで昇圧用途にも降圧 用途にも使える。 図 9に昇圧に使用するときの電気的接続を示す。 図 1 0に降圧に使用するときの電気的接続を示す。  This piezoelectric transformer 502 can be used for step-up and step-down applications by changing the electrical connection. Figure 9 shows the electrical connections used for boosting. FIG. 10 shows the electrical connection when used for step-down.
(第 3の実施例)  (Third embodiment)
図 1 1 A、 図 I Bは、 本実施例の圧電トランスを説明するための図で あり、 図 1 1 Aは上面図、 図 1 1 Bは底面図である。 図 1 2は、 本実施 例の圧電トランスを説明するための斜視図である。 図 1 3は、 本実施例 の圧電トランスの昇圧時の電気的接続を説明するための回路図である。 図 1 4は、 本実施例の圧電トランスの降圧時の電気的接続を説明するた めの回路図である。  FIG. 11A and FIG. IB are views for explaining the piezoelectric transformer of the present embodiment. FIG. 11A is a top view, and FIG. 11B is a bottom view. FIG. 12 is a perspective view for explaining the piezoelectric transformer of the present embodiment. FIG. 13 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer according to the present embodiment at the time of boosting. FIG. 14 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of the present embodiment at the time of step-down.
本実施例の圧電トランス 5 0 3の平板 1 0 0は P Z T系の圧電セラミ ッタスの単板 ( 2 4 m m X 2 4 m m X 1 m m) からなる。 電極 1— 1 8 は P d— A g系の導電ペース トからなる。 電極パターンは図 1 1 A、 図 1 1 Bに示すように 3 X 3分割の格子内に正方形状の電極をスクリーン 印刷により形成する。 この正方形状の電極形状は電極間の絶縁破壊強度 を高める為に角部、 例えば電極 1では角部 1 1 1、 電極 2では角部 1 1 2、 1 1 3、 電極 1 0 3では角部 1 1 4、 中央の電極 5では 4つの角部 全部、 が丸めてあることが望ましい。 分極処理は油中で行う。 分極方向 は、 図 1 1 A、 図 1 2に示すように、 平板 1 00の 2つの主面 (表面、 裏面) に垂直な方向 (Z方向) である。 分極処理した後エージング処理 をすることにより圧電トランス素子を作製する。 このようにすることに より、 平面図的に見て正方形状の平板 1 00は X方向に 3分割、 y方向 に 3分割の合計 3 X 3分割の格子状の 9つの領域 1 0 1— 1 0 9に分割 される。 The flat plate 100 of the piezoelectric transformer 503 of this embodiment is made of a single plate (24 mm × 24 mm × 1 mm) of PZT-based piezoelectric ceramics. Electrodes 1-18 are made of Pd-Ag conductive paste. As shown in FIGS. 11A and 11B, an electrode pattern is formed by screen printing square electrodes in a 3 × 3 grid. This square electrode shape is the dielectric breakdown strength between the electrodes. For example, corner 1 1 1 for electrode 1, corner 1 1 2 and 1 13 for electrode 2, corner 1 1 4 for electrode 103, and 4 corners for center electrode 5. It is desirable that all be rounded. The polarization treatment is performed in oil. The polarization direction is a direction ( Z direction) perpendicular to the two main surfaces (front and back) of the flat plate 100 as shown in FIGS. 11A and 12. After the polarization process, the piezoelectric transformer element is manufactured by performing an aging process. By doing so, the flat plate 100 having a square shape in plan view is divided into three in the X direction and three in the y direction. It is divided into 09.
図 1 2に本実施例の圧電トランス 5 0 3の斜視図を示す。 電気的接続 は、 圧電トランス 5 0 3の圧電共振振動の節点に位置する、 正方形状の 電極 1、 3、 5、 7、 9、 1 0、 1 2、 1 4、 1 6、 1 8の中心部から 取り出す。 また電気的接続には導電性弾性体 1 6 1— 1 6 5等を用いる ことが望ましい。 また電極間の電気的接続には、 導電性塗料を素子表面 に塗布することによって図ることも可能である。 さらに導電性弾性体 1 6 1 - 1 6 5等に金属端子 1 5 1— 1 5 4を接続することにより外部回 路との電気的接続をとる。 本圧電トランス 5 0 3では、 昇圧時のとき入 力側に電極板 3枚、 出力側に電極板 2枚を用いているため、 最大昇圧比 は約 { (3/2) の平方根) で 1. 2倍程度となる。  FIG. 12 is a perspective view of the piezoelectric transformer 503 of this embodiment. The electrical connection is at the center of the square electrodes 1, 3, 5, 7, 9, 10, 0, 12, 14, 16, 18 located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 503 Remove from the part. In addition, it is desirable to use a conductive elastic body 161 to 165 for electrical connection. The electrical connection between the electrodes can be achieved by applying a conductive paint to the element surface. Further, by connecting metal terminals 15 1-15 4 to the conductive elastic body 16 1-16 5 etc., electrical connection with an external circuit is established. In this piezoelectric transformer 503, the maximum step-up ratio is about {(square root of (3/2)) because three electrode plates are used on the input side and two electrode plates are used on the output side during step-up. It will be about twice.
本実施例においては、 領域 1 0 5、 1 0 9を並列に接続して励振用領 域または出力用領域とし、 周辺部の領域 1 0 1、 1 0 3、 1 0 7、 1 0 9を並列に接続して出力用用領域または励振用領域としているので、 励 振用領域および出力用領域の両方において振動モードが揃うことになり、 平板 1 00の共振モードを崩すことなく励振することが可能となり、 そ の結果、 高効率が望めるようになつている。  In the present embodiment, the regions 105 and 109 are connected in parallel to form an excitation region or an output region, and the peripheral regions 101, 103, 107 and 109 are formed. Since they are connected in parallel to form an output area or an excitation area, vibration modes are aligned in both the excitation area and the output area, and excitation can be performed without breaking the resonance mode of the flat plate 100. It is possible, and as a result, high efficiency can be expected.
図 1 3に昇圧動作させるときの電気的接続を示す。 図 1 4に降圧に使 用するときの電気的接続を示す。 Fig. 13 shows the electrical connections for boost operation. Figure 14 shows the Shows the electrical connection for use.
(第 4の実施例)  (Fourth embodiment)
図 1 5 A、 図 5 Bは、 本実施例の圧電トランスを説明するための図で あり、 図 1 5 Aは上面図、 図 1 5 Bは底面図である。 図 1 6は、 本実施 例の圧電トランスを説明するための斜視図である。 図 1 7は、 本実施例 の圧電トランスの電気的接続を説明するための回路図である。  FIGS. 15A and 5B are views for explaining the piezoelectric transformer of the present embodiment. FIG. 15A is a top view and FIG. 15B is a bottom view. FIG. 16 is a perspective view for explaining the piezoelectric transformer of the present embodiment. FIG. 17 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer according to the present embodiment.
本実施例の圧電トランス 5 04の平板 1 00は P Z T系の圧電セラミ ックスの単板 (24mmX 24mmX l mm) 力 らなる。 電極 1一 1 8 は P d— A g系の導電ペーストからなる。 電極パターンは図 1 5 A、 図 1 5 Bに示すように 3 X 3分割の格子内に正方形状の電極をスクリーン 印刷により形成する。 この正方形状の電極形状は電極間の絶縁破壊強度 を高める為に角部、 例えば電極 1では角部 1 1 1、 電極 2では角部 1 1 2、 1 1 3、 電極 1 0 3では角部 1 1 4、 中央の電極 5では 4つの角部 全部、 が丸めてあることが望ましい。 分極処理は油中で行う。 分極方向 は、 図 1 5 A、 図 1 6に示すように、 平板 1 00の 2つの主面 (表面、 裏面) に垂直な方向 (z方向) である。 分極処理した後エージング処理 をすることにより圧電トランス素子を作製する。 このようにすることに より、 平面図的に見て正方形状の平板 1 00は X方向に 3分割、 y方向 に 3分割の合計 3 X 3分割の格子状の 9つの領域 1 0 1— 1 0 9に分割 される。 分極処理した後エージング処理をすることにより圧電トランス 素子を作製する。  The flat plate 100 of the piezoelectric transformer 504 of this embodiment is a single plate (24 mm × 24 mm × l mm) force of a PZT-based piezoelectric ceramic. The electrodes 118 are made of Pd-Ag conductive paste. As shown in FIGS. 15A and 15B, the electrode pattern is formed by screen printing square electrodes in a 3 × 3 grid. This square electrode shape has corners to increase the dielectric breakdown strength between the electrodes, for example, corners 11 1 1 for electrode 1, 112, 1 13 for electrode 2, and corners for electrode 103. It is desirable that all four corners of the center electrode 5 are rounded. The polarization treatment is performed in oil. The polarization direction is a direction (z direction) perpendicular to the two main surfaces (front and back) of the flat plate 100 as shown in FIGS. 15A and 16. After the polarization process, the piezoelectric transformer element is manufactured by performing an aging process. By doing so, the flat plate 100 having a square shape in plan view is divided into three in the X direction and three in the y direction. It is divided into 09. The piezoelectric transformer element is manufactured by performing aging treatment after the polarization treatment.
図 1 6に本圧電トランスの斜視図を示す。 電気的接続は、 本圧電トラ ンスの圧電共振振動の節点に位置する、 正方形状の電極 1一 1 8の中心 部から取り出す。 また電気的接続には導電性弾性体 1 8 1— 1 8 9等を 用いることが望ましい。 また電極間の電気的接続には、 導電性塗料を素 子表面に塗布することによって図ることも可能である。 さらに導電性弹 性体 1 8 1— 1 8 9等に金属端子 1 7 1— 1 7 6を接続することにより 外部回路との電気的接続をとる。 Fig. 16 shows a perspective view of the present piezoelectric transformer. The electrical connection is taken out from the center of the square electrode 118 located at the node of the piezoelectric resonance vibration of the present piezoelectric transformer. It is desirable to use a conductive elastic body 181-189 for electrical connection. The electrical connection between the electrodes can also be achieved by applying a conductive paint to the element surface. More conductive. Electrical connection to external circuits is established by connecting metal terminals 1 7 1-1 7 6 to 18 1 1-18 9 etc.
励振用電極端子部は A、 Dに一箇所、 出力用電極端子部は B、 Eと C、 Fに二箇所とる構成となっている。 このとき電極 B部及び C部に接続し ている電極板の共振モードが一致していることが望ましい。  Excitation electrode terminals are provided at one location in A and D, and output electrode terminals are provided in two locations at B, E, C, and F. At this time, it is desirable that the resonance modes of the electrode plates connected to the electrodes B and C match.
図 1 7に昇圧動作させるときの電気的接続を示す。  Figure 17 shows the electrical connections for boost operation.
(第 5の実施例)  (Fifth embodiment)
図 1 8 A、 図 1 8 B、 図 1 9 A、 図 1 9 B、 図 2 0A、 図 20 B、 図 2 1 A、 図 2 I Bは、 本実施例の圧電トランスを説明するための図であ り、 図 1 8 Aは第 1層の上面図、 図 1 8 Bは底面図であり、 図 1 9 Aは 第 2層の上面図、 図 1 9 Bは底面図であり、 図 20 Aは第 3層の上面図、 図 2 0 Bは底面図であり、 図 2 1 Aは第 4層の上面図、 図 2 1 Bは底面 図である。 図 2 2は、 本実施例の圧電トランスを説明するための斜視図 である。 図 2 3は、 本実施例の圧電トランスの昇圧時の電気的接続を説 明するための回路図である。 図 24は、 本実施例の圧電トランスの降圧 時の電気的接続を説明するための回路図である。  Fig. 18A, Fig. 18B, Fig. 19A, Fig. 19B, Fig. 20A, Fig. 20B, Fig. 21A, Fig. 2 IB are diagrams for explaining the piezoelectric transformer of this embodiment. FIG. 18A is a top view of the first layer, FIG. 18B is a bottom view, FIG. 19A is a top view of the second layer, FIG. 19B is a bottom view, and FIG. A is a top view of the third layer, FIG. 20B is a bottom view, FIG. 21A is a top view of the fourth layer, and FIG. 21B is a bottom view. FIG. 22 is a perspective view for explaining the piezoelectric transformer of the present embodiment. FIG. 23 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer of the present embodiment. FIG. 24 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of the present embodiment at the time of step-down.
本実施例の圧電トランス 5 0 5の平板は P Z T系の圧電セラミックス の 4層 3 1 0、 3 20、 3 3 0、 3 40の積層板 5 2 0 ( 24 mm X 2 4 mmX 0. 5 X 4 mm) からなる。 電極 40 1— 4 5 6は P d— A g 系の導電ペーストからなる。 電極パターンは図 1 8—図 2 1に示すよう に 3 X 3分割の格子内に正方形状の電極をスクリーン印刷により形成す る。 但し、 外側に露出する面 (第 1層 3 1 0の表面および第 4層 3 4 0 の裏面) の電極は中央領域にのみ配置し、 それ以外の領域には導電性ぺ —ストを印刷しない。 このような構造とすることで、 入出力電極間の距 離が長く確保できる。 その為、 入出力間の絶縁耐力が増すことになる。  The flat plate of the piezoelectric transformer 505 of the present embodiment is a laminated plate of four layers 310, 320, 330, 340 of PZT-based piezoelectric ceramics 52 0 (24 mm X 24 mm X 0.5 X 4 mm). The electrodes 401-456 are made of a Pd-Ag-based conductive paste. Electrode patterns are formed by screen printing square electrodes in a 3 × 3 grid as shown in FIGS. However, the electrodes on the surface exposed to the outside (the surface of the first layer 310 and the back surface of the fourth layer 340) are arranged only in the central area, and the conductive paste is not printed on the other areas. . With such a structure, a long distance between the input and output electrodes can be ensured. Therefore, the dielectric strength between input and output will increase.
これらの正方形状の電極 4 0 1 - 4 5 6の形状は電極間の絶縁破壊強 度を高める為に角部が丸めてあることが望ましい。 分極処理は油中で行 う。 分極方向は、 図 1 8— 2 2に示すように平板 3 1 0、 3 2 0、 3 3 0、 3 4 0のそれぞれの 2つの主面 (表面、 裏面) に垂直な方向 (z方 向) である。 分極処理した後エージング処理をすることにより圧電トラ ンス素子を作製する。 このようにすることにより、 平面図的に見て正方 形状の第 1層の平板 3 1 0は X方向に 3分割、 y方向に 3分割の合計 3 X 3分割の格子状の 9つの領域 3 1 1 - 3 1 9に分割され、 平面図的に 見て正方形状の第 2層の平板 3 2 0は X方向に 3分割、 y方向に 3分割 の合計 3 X 3分割の格子状の 9つの領域 3 2 1 - 3 2 9に分割され、 平 面図的に見て正方形状の第 3層の平板 3 3 0は X方向に 3分割、 y方向 に 3分割の合計 3 X 3分割の格子状の 9つの領域 3 3 1 - 3 3 9に分割 され、 平面図的に見て正方形状の第 4層の平板 3 4 0は X方向に 3分割、 y方向に 3分割の合計 3 X 3分割の格子状の 9つの領域 3 4 1 — 3 4 9 に分割される。 The shape of these square electrodes 4 0 1-4 5 6 depends on the breakdown strength between the electrodes. It is desirable that the corners be rounded to increase the degree. The polarization treatment is performed in oil. As shown in Fig. 18-22, the polarization direction is the direction (z direction) perpendicular to the two main surfaces (front and back) of each of the flat plates 310, 320, 3330, and 340. ). After the polarization process, the aging process is performed to produce a piezoelectric transformer element. In this way, the first layer flat plate 310 having a square shape in plan view is divided into three in the X direction and three in the y direction. 1 2-3 1 9 is divided into two, and the flat plate of the second layer, which is square in plan view, is divided into 3 in the X direction and 3 in the y direction. The area is divided into three areas 3 2 1-3 2 9, and the flat plate of the third layer, which is square in plan view, is divided into 3 sections in the X direction and 3 sections in the y direction. Divided into 9 grid-like areas 3 3 1-3 3 9, the flat plate of the fourth layer 3 4 0, which is square in plan view, is divided into 3 in the X direction and 3 in the y direction, totaling 3 X It is divided into three 9-segment grids, 3 4 1 — 3 4 9.
図 2 2に本圧電トランス 5 0 5の斜視図を示す。 電気的接続は、 積層 板 5 2 0の上面、 下面においては、 圧電トランス 5 0 5の圧電共振振動 の節点に位置する、 正方形状の電極 4 0 1、 4 5 6の中心部から取り出 す。 電気的接続には導電性弾性体 3 6 1等を用いることが望ましい。 さ らに導電性弾性体 3 6 1等に金属端子 3 5 1 , 3 5 2を接続することに より外部回路との電気的接続をとる。  FIG. 22 is a perspective view of the present piezoelectric transformer 505. Electrical connection is taken from the center of the square electrodes 401, 456 located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 505 on the upper and lower surfaces of the laminated plate 520 . It is desirable to use a conductive elastic body 361 for electrical connection. Further, by connecting metal terminals 35 1 and 35 2 to the conductive elastic body 36 1 and the like, electrical connection with an external circuit is obtained.
なお、 第 1層の平板 3 1 0の裏面に設けられた電極 4 0 2— 4 1 0と 第 2層の平板 3 2 0の表面に設けられた電極 4 1 1 - 4 1 9の接続、 第 2層の平板 3 2 0の裏面に設けられた電極 4 2 0 - 4 2 8と第 3層の平 板 3 3 0の表面に設けられた電極 4 2 9 - 4 3 7の接続、 第 3層の平板 3 3 0の裏面に設けられた電極 4 3 8 - 4 4 6と第 4層の平板 3 4 0の 表面に設けられた電極 4 4 7 - 4 5 5の接続は、 それぞれ対応する電極 同士をエポキシ系接着剤により貼り合わせをするか、 又は一体焼結によ り接合する。 そして、 このようにすることにより第 1層一第 4層の平板 3 1 0、 320、 3 30、 340を一体化した積層板 520を形成する。 第 1層の平板 3 1 0の裏面に設けられた電極 402、 404、 408、 4 1 0への接続、 第 2層の平板 3 20の表面に設けられた電極 4 1 1、 4 1 3、 4 1 7、 4 1 9への接続、 第 3層の平板 3 30の裏面に設けら れた電極 438、 440、 444、 446への接続、 第 4層の平板 34 0の表面に設けられた電極 44 7、 449、 453、 45 5への接続は 振動を阻害しないような軟ぃ線で形成された金属端子 35 3の先端部を ハンダづけ等することにより行うのが望ましい。 なお、 図 22において は、 金属端子 353は図中右側の領域にのみ接続するように描かれてい るが、 図中左側の領域にも同様で接続されている。 In addition, the connection between the electrode 4 0 2 4 0 provided on the back surface of the first layer flat plate 3 10 and the electrode 4 11 1-4 19 provided on the surface of the second layer flat plate 3 2 0, Connection of the electrodes 420-428 provided on the back surface of the flat plate 320 of the second layer with the electrodes 42-9-438 provided on the surface of the flat plate 330 of the third layer; The connection between the electrode 4 3 8-4 4 6 provided on the back of the three-layer plate 3 3 0 and the electrode 4 4 7-4 5 5 provided on the surface of the fourth layer 3 4 0 Electrode Bond each other with an epoxy-based adhesive, or join them by integral sintering. In this manner, a laminated plate 520 in which the first to fourth flat plates 310, 320, 330, and 340 are integrated is formed. Connection to electrodes 402, 404, 408, 410 provided on the back surface of the first layer flat plate 310, electrodes 411, 413, provided on the surface of the second layer flat plate 320. Connection to 417, 419, connection to electrodes 438, 440, 444, 446 provided on the back surface of the third layer plate 330, provided to the surface of the fourth layer plate 340 The connection to the electrodes 447, 449, 453, 455 is desirably performed by soldering the tip of the metal terminal 353 formed of a soft wire that does not hinder vibration. In FIG. 22, the metal terminal 353 is drawn so as to be connected only to the region on the right side in the figure, but is similarly connected to the region on the left side in the figure.
また、 第 2層の平板 320の裏面に設けられた電極 420、 422、 426、 428への接続、 第 3層の平板 330の表面に設けられた電極 429、 43 1、 435、 43 7への接続は振動を阻害しないような軟 い線で形成された金属端子 354の先端部をハンダづけ等することによ り行うのが望ましい。  In addition, connection to the electrodes 420, 422, 426, and 428 provided on the back surface of the second layer flat plate 320, and connection to the electrodes 429, 431, 435, and 433 provided on the surface of the third layer flat plate 330 It is desirable to make the connection by soldering the tip of the metal terminal 354 formed of a soft wire that does not hinder the vibration.
本実施例においては、 第 1層の平板 3 1 0の中央の領域 3 1 5の表面 および第 4層の平板 340の中央の領域 345の底面に励振用電極或い は出力用電極となる電極対 40 1、 456をそれぞれ配置し、 第 1層の 平板 3 1 0の周辺部の領域 3 1 1、 3 1 3、 3 1 7、 3 1 9にそれぞれ 出力用電極或いは励振用電極を配置し、 第 2層の平板 3 20の周辺部の 領域 32 1、 323、 327、 329にそれぞれ出力用電極或いは励振 用電極を配置し、 第 3層の平板 3 30の周辺部の領域 33 1、 3 33、 3 3 7、 3 39にそれぞれ出力用電極或いは励振用電極を配置し、 第 4 層の平板 340の周辺部の領域 34 1、 343、 34 7、 349にそれ ぞれ出力用電極或いは励振用電極を配置しているので、 機械的共振エネ ルギ一の伝播する断面積が四方にとれ、 このため、 単位面積あたりに通 過する機械的共振エネルギーの密度を下げることが可能となり、 結果と して使用できる電力の限界値をより高くすることが可能となっている。 また、 第 1層の平板 3 1 0の周辺部の領域 3 1 1、 3 1 3、 3 1 7、 3 1 9を並列に接続し、 第 2層の平板 3 2 0の周辺部の領域 3 2 1、 3In this embodiment, an electrode serving as an excitation electrode or an output electrode is provided on the surface of the central region 3 15 of the first layer flat plate 3 10 and the bottom surface of the central region 345 of the fourth layer flat plate 340. Pairs 40 1 and 456 are arranged respectively, and output electrodes or excitation electrodes are arranged in the areas 3 11, 3 13, 3 17 and 3 19 around the first flat plate 3 10 respectively. An output electrode or an excitation electrode is arranged in each of the regions 32 1, 323, 327, and 329 around the second layer flat plate 320, and the regions 33 1, 3 around the third layer flat plate 330 are arranged. Output electrodes or excitation electrodes are placed on 33, 33 7 and 339, respectively, and are placed in the areas 34 1, 343, 34 7 and 349 around the fourth layer flat plate 340. Since the output electrode or the excitation electrode is disposed, the cross-sectional area where the mechanical resonance energy propagates can be taken in four directions, thereby reducing the density of the mechanical resonance energy that passes through per unit area. As a result, it is possible to raise the limit of power that can be used as a result. Also, the regions 3 11, 3 13, 3 17, 3 19 around the first layer flat plate 3 10 are connected in parallel, and the area 3 around the second layer flat plate 3 20 is connected. 2 1, 3
2 3、 3 2 7、 3 2 9を並列に接続し、 第 3層の平板 3 3 0の周辺部の 領域 3 3 1、 3 3 3、 3 3 7、 3 3 9を並列に接続し、 第 4層の平板 3 4 0の周辺部の領域 3 4 1、 3 4 3、 3 4 7、 3 4 9を並列に接続して 出力用領域または励振用領域としているので、 平板 3 1 0、 3 2 0、 32 3, 3 2 7, 3 2 9 are connected in parallel, the area 3 3 1, 3 3 3, 3 3 7, 3 3 9 around the third layer flat plate 3 3 0 are connected in parallel, The area 3 4 1, 3 4 3, 3 4 7, 3 4 9 in the peripheral part of the flat plate 3 4 0 of the fourth layer is connected in parallel to form an output area or an excitation area. 3 2 0, 3
3 0 , 3 4 0から構成される積層体 5 2 0の共振モードを崩すことなく 励振することが可能となり、 その結果、 高効率が望めるようになつてい る。 Excitation can be performed without destroying the resonance mode of the laminate 520 composed of 30 and 340, and as a result, high efficiency can be expected.
本実施例では、 励振用電極部と出力用電極部が同一層または同一面内 に配置されていないため、 励振用電極と出力用電極間の絶縁性を向上す ることができ、 圧電トランスの入出力間の絶縁耐力が大幅に改善でき、 たとえば本実施例の圧電トランスを A Cアダプタなどに応用した場合、 商用交流電源と機器間の電気的独立性を高めることが可能となる。  In the present embodiment, the excitation electrode portion and the output electrode portion are not arranged on the same layer or in the same plane, so that the insulation between the excitation electrode and the output electrode can be improved, and the piezoelectric transformer The dielectric strength between input and output can be greatly improved. For example, when the piezoelectric transformer of this embodiment is applied to an AC adapter or the like, it becomes possible to increase the electrical independence between the commercial AC power supply and the device.
本圧電トランスは電気的接続を変えることで昇圧用途にも降圧用途に も使える。 図 2 3に昇圧に使用するときの電気的接続を示す。 図 2 4に 降圧に使用するときの電気的接続を示す。  This piezoelectric transformer can be used for both step-up and step-down applications by changing the electrical connection. Figure 23 shows the electrical connections used for boosting. Figure 24 shows the electrical connections when used for step-down.
以上のように、 第 1乃至第 5の実施例においては、 大出力化、 高効率 化、 低コス ト化 、 薄型化が図れ、 しかも変圧比の選択の自由度が高く、 さらには、 1入力多出力のトランスとしての対応が可能な圧電トランス が提供される。  As described above, in the first to fifth embodiments, the output can be increased, the efficiency can be reduced, the cost can be reduced, the thickness can be reduced, and the degree of freedom in selecting the transformer ratio is high. A piezoelectric transformer that can be used as a multi-output transformer is provided.
(第 6の実施例) 図 25 A— 25 Eは、 本実施例の圧電トランスを説明するための図で あり、 図 25 Aは上面図、 図 25 Bは底面図、 図 25 C—図 25 Eは断 面図である。 図 26A、 図 26 Bは、 本実施例の圧電トランスを説明す るための部分拡大図であり、 図 26A、 図 26 Bはそれぞれ領域 1 05 の部分拡大上面図、 部分拡大断面図である。 図 27は、 本実施例の圧電 トランスを説明するための斜視図である。 図 28は、 本実施例の圧電ト ランスの昇圧時の電気的接続を説明するための回路図である。 図 29は、 本実施例の圧電トランスの降圧時の電気的接続を説明するための回路図 である。 図 5 A—図 5 Gは、 本実施例の圧電トランスの共振動作を説明 するための図であり、 図 5A、 図 5 B、 図 5 Cは単板の伸縮状態を示す 平面図であり、 図 5 Dは図 5 Aの状態における応力分布を示す図であり、 図 5 Eは図 5 Aの状態における変位分布を示す図であり、 図 5 Fは図 5 Cの状態における応力分布を示す図であり、 図 5 Gは図 5 Cの状態にお ける変位分布を示す図である。 (Sixth embodiment) FIGS. 25A to 25E are views for explaining the piezoelectric transformer of this embodiment. FIG. 25A is a top view, FIG. 25B is a bottom view, and FIG. 25C to FIG. 25E are cross-sectional views. . 26A and 26B are partially enlarged views for explaining the piezoelectric transformer of the present embodiment, and FIGS. 26A and 26B are a partially enlarged top view and a partially enlarged sectional view of a region 105, respectively. FIG. 27 is a perspective view for explaining the piezoelectric transformer of this example. FIG. 28 is a circuit diagram for explaining electrical connection at the time of boosting of the piezoelectric transformer according to the present embodiment. FIG. 29 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of this example at the time of step-down. FIGS. 5A to 5G are diagrams for explaining the resonance operation of the piezoelectric transformer of the present embodiment, and FIGS. 5A, 5B, and 5C are plan views showing the expanded and contracted states of the single plate. 5D is a diagram illustrating the stress distribution in the state of FIG. 5A, FIG. 5E is a diagram illustrating the displacement distribution in the state of FIG. 5A, and FIG. 5F is a diagram illustrating the stress distribution in the state of FIG. 5C. FIG. 5G is a diagram showing a displacement distribution in the state of FIG. 5C.
本実施例の圧電トランス 50 1の平板 1 00は P Z T系の圧電セラミ ッタスの単板 ( 24 mm X 24 mm X 1 mm) からなる。 電極 1一 1 8、 5 ' 、 1 4' は P d— A g系の導電ぺ一ス トからなる。 電極パタ一ンは 図 1に示すように 3 X 3分割の格子内に電極 1— 1 8、 5, 、 1 4' を スクリーン印刷により形成する。  The flat plate 100 of the piezoelectric transformer 501 of this embodiment is a single plate (24 mm X 24 mm X 1 mm) of a PZT-based piezoelectric ceramic. The electrodes 118, 5 ', and 14' are made of a Pd-Ag-based conductive paste. As shown in Fig. 1, the electrode pattern is formed by screen printing electrodes 1-1, 5, 5, 14 'in a 3x3 grid.
電極 1一 4、 6— 1 3、 1 5 - 1 8は正方形状であり、 この正方形状 の電極形状は電極間の絶縁破壊強度を高める為に角部、 例えば電極 1で は角部 1 1 1、 電極 2では角部 1 1 2、 1 1 3、 電極 1 03では角部 1 1 4が丸めてあることが望ましい。 電極 5 ' 、 1 4 ' の外形も正方形状 であり、 この正方形状の電極形状は絶縁破壊強度を高める為に 4つの角 部全部が丸めてあることが望ましい。  Electrodes 1, 4, 6-13, 15-18 have a square shape, and this square electrode shape has corners to increase the dielectric breakdown strength between the electrodes. It is desirable that the corners 112, 113 for the electrode 1, and the electrode 112, and the corners 114 for the electrode 103, be rounded. The outer shapes of the electrodes 5 ′ and 14 ′ are also square, and it is desirable that all the four corners of the square electrode are rounded in order to increase the dielectric strength.
電極 5 ' 、 1 4 ' の内側は円形形状にく り抜かれており、 円形の開口 部 1 2 0、 1 2 1がそれぞれ形成されている。 この開口部 1 20、 1 2 1から平板 1 00の表面、 底面がそれぞれ露出している。 この円形の開 口部 1 20、 1 2 1 とそれぞれ同心円状に円形の電極 5、 1 4がそれぞ れ設けられている。 電極 5 ' の外形である正方形状の中心部と円形の開 口部 1 20の中心と円形の電極 5の中心とは一致し、 電極 1 4 ' の外形 である正方形状の中心部と円形の開口部 1 2 1の中心と円形の電極 1 4 の中心とは一致している。 The inside of the electrodes 5 ′ and 14 ′ is hollowed out in a circular shape and has a circular opening. Parts 120 and 121 are formed respectively. The top and bottom surfaces of the flat plate 100 are exposed from the openings 120 and 121 respectively. Circular electrodes 5 and 14 are provided concentrically with the circular openings 120 and 121, respectively. The center of the square of the outer shape of the electrode 5 'and the center of the circular opening 1 20 coincide with the center of the circular electrode 5, and the center of the square of the outer shape of the electrode 14' matches the center of the circular electrode. The center of the opening 1 21 coincides with the center of the circular electrode 14.
分極処理は油中で行う。 分極方向は、 周囲の領域 1 0 1— 1 04、 1 0 6 - 1 0 9については、 図 2 5 A、 図 2 5 C—図 2 5 Eに示すように 平板 1 00の 2つの主面 (表面、 裏面) に垂直な方向 (z方向) である。 領域 1 0 5の分極は、 図 2 6 A、 図 2 6 Bに示すように、 円状の電極 5 の中心に対して放射状であって平板 1 00の主面 (表面、 裏面) にほぼ 平行な方向に分極方向が向くように電極端子部 Bと Dとの間に電圧を印 加して行う。 また、 電極 5, と電極 1 4, との間の平板 1 00は 2つの 主面 (表面、 裏面) に垂直な方向に分極することが好ましい。 分極処理 した後エージング処理をすることにより圧電トランス素子を作製する。 このようにすることにより、 平面図的に見て正方形状の平板 1 00は X方向に 3分割、 y方向に 3分割の合計 3 X 3分割の格子状の 9つの領 域 1 0 1— 1 0 9に分割される。  The polarization treatment is performed in oil. The direction of polarization is as shown in Fig. 25A, Fig. 25C-Fig. 25E for the surrounding areas 101-104 and 106-109. It is the direction (z direction) perpendicular to (front and back). As shown in FIGS. 26A and 26B, the polarization of the region 105 is radial with respect to the center of the circular electrode 5 and almost parallel to the main surface (front surface, back surface) of the flat plate 100. A voltage is applied between the electrode terminals B and D so that the polarization direction is oriented in the desired direction. Further, it is preferable that the flat plate 100 between the electrode 5 and the electrode 14 be polarized in a direction perpendicular to the two main surfaces (the front surface and the back surface). After the polarization process, the piezoelectric transformer element is manufactured by performing an aging process. By doing so, the flat plate 100 having a square shape in plan view is divided into three in the X direction and three in the y direction. 0 is divided into nine.
図 2 7に本実施例の圧電トランス 5 0 1の斜視図を示す。 電気的接続 は、 領域 1 0 1、 1 0 3、 1 0 7、 1 0 9については、 圧電トランス 5 0 1の圧電共振振動の節点に位置する、 正方形状の電極 1、 3、 7、 9、 1 0、 1 2、 1 6、 1 8のそれぞれの中心部から取り出す。 領域 1 0 5 においては、 電極端子部 Bについては、 圧電トランス 5 0 1の圧電共振 振動の節点に位置する中央の円状の電極 5の中心から取り出すが、 電極 端子部 Dについては、 外側の電極 5 ' の角部近傍から取り出す。 電気的 接続には導電性弾性体 1 4 1— 1 4 6等を用いることが望ましい。 さら に導電性弾性体 1 4 1一 1 4 6等に金属端子 1 3 1— 1 3 4を接続する ことにより外部回路との電気的接続をとる。 FIG. 27 is a perspective view of the piezoelectric transformer 501 of this embodiment. The electrical connection is made in the areas 101, 103, 107, 109 at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 501, and the square electrodes 1, 3, 7, 9 , 10, 12, 16, and 18 are taken out from the center of each. In the region 105, the electrode terminal portion B is taken out from the center of the center circular electrode 5 located at the node of the piezoelectric resonance vibration of the piezoelectric transformer 501, while the electrode terminal portion D is taken out of the outer side. Take out near the corner of electrode 5 '. Electrical It is desirable to use a conductive elastic body 141-146 or the like for the connection. In addition, electrical connection to external circuits is established by connecting metal terminals 13 1 1 to 13 4 to the conductive elastic body 1 4 1 1 1 4 6 and the like.
本圧電トランスは電気的接続を変えることで昇圧用途にも降圧用途に も使える。 図 2 8に昇圧に使用するときの電気的接続を示す。 図 2 9に 降圧に使用するときの電気的接続を示す。  This piezoelectric transformer can be used for both step-up and step-down applications by changing the electrical connection. Figure 28 shows the electrical connections when used for boosting. Figure 29 shows the electrical connections when used for step-down.
また、 本実施例の圧電トランスは、 図 5に示すような共振動作する。 本実施例においては、 中央の領域 1 0 5に励振用電極或いは出力用電 極となる電極対 5、 5 ' を配置し、 周辺部の領域 1 0 1、 1 0 3、 1 0 7、 1 0 9にそれぞれ出力用電極或いは励振用電極を配置しているので、 機械的共振エネルギーの伝播する断面積が四方にとれ、 このため、 単位 面積あたりに通過する機械的共振エネルギーの密度を下げることが可能 となり、 結果として使用できる電力の限界値をより高くすることが可能 となっている。  Further, the piezoelectric transformer of this embodiment performs a resonance operation as shown in FIG. In this embodiment, an electrode pair 5, 5 'serving as an excitation electrode or an output electrode is arranged in a central region 105, and a peripheral region 101, 103, 107, 1 is formed. Since an output electrode or an excitation electrode is placed on each of the components 9, the cross-sectional area where mechanical resonance energy propagates can be taken in four directions, so that the density of mechanical resonance energy that passes through per unit area can be reduced. It is possible to raise the limit of the power that can be used as a result.
また、 周辺部の領域 1 0 1、 1 0 3、 1 0 7、 1 0 9を並列に接続し て励振用領域または出力用領域としているので、 平板 1 0 0の共振モー ドを崩すことなく励振することが可能となり、 その結果、 高効率が望め るようになっている。  In addition, since the peripheral regions 101, 103, 107, and 109 are connected in parallel to form an excitation region or an output region, the resonance mode of the flat plate 100 is maintained. Excitation is possible, and as a result, high efficiency can be expected.
さらに、 本発明においては、 励振用領域および出力用領域の一方を分 極が平板 1 0 0の 2つの主面 (表面、 裏面) にほぼ平行な方向の領域と し、 励振用領域および出力用領域の他方を分極が平板 1 0 0の 2つの主 面 (表面、 裏面) にほぼ垂直な方向の領域としているので、 入力インピ 一ダンスと出力インピーダンスの比を大きく取ることができ、 その結果 昇圧比または降圧比をより大きく取ることができる。  Further, in the present invention, one of the excitation region and the output region is a region in which the polarization is in a direction substantially parallel to the two main surfaces (the front surface and the rear surface) of the flat plate 100, and the excitation region and the output region are arranged. Since the other of the regions is a region in which the polarization is almost perpendicular to the two main surfaces (front surface and back surface) of the flat plate 100, the ratio between the input impedance and the output impedance can be made large, and as a result, the voltage A larger ratio or step-down ratio can be taken.
また、 領域 1 0 5においては、 外側の電極 5, の内部に円形の開口部 1 2 0を設け、 その開口部 1 2 0内にこの円形の開口部 1 2 0と同心の 円形の電極 5を設けているので、 これらの電極 5、 5 ' 間に電圧を印加 して分極する場合には、 分極時に素子に印加される電界強度が均一にな り、 円状の電極 5の中心に対して放射状に均一な分極処理ができる。 (第 7の実施例) Also, in the region 105, a circular opening 120 is provided inside the outer electrode 5, and concentric with the circular opening 120 inside the opening 120. Since the circular electrode 5 is provided, when a voltage is applied between these electrodes 5 and 5 ′ to perform polarization, the electric field intensity applied to the element during polarization becomes uniform, and the circular electrode 5 is formed. Can be uniformly polarized radially with respect to the center. (Seventh embodiment)
図 3 OA- 30 Eは、 本実施例の圧電トランスを説明するための図で あり、 図 3 OAは上板の上面図、 図 30 Bは底面図、 図 30 C—図 30 Eは断面図である。 図 3 1 A- 3 1 Eは、 本実施例の圧電トランスを説 明するための図であり、 図 3 1 Aは下板の上面図、 図 3 1 Bは底面図、 図 3 1 C—図 3 1 Eは断面図である。 図 32は、 本実施例の圧電トラン スを説明するための斜視図である。 図 33は、 本実施例の圧電トランス の昇圧時の電気的接続を説明するための回路図である。 図 34は、 本実 施例の圧電トランスの降圧時の電気的接続を説明するための回路図であ る。  Fig. 3 OA-30E is a diagram for explaining the piezoelectric transformer of this embodiment. Fig. 3 OA is a top view of the upper plate, Fig. 30B is a bottom view, and Fig. 30C-Fig. 30E is a cross-sectional view. It is. FIGS. 31A-31E are views for explaining the piezoelectric transformer of this embodiment. FIG. 31A is a top view of the lower plate, FIG. 31B is a bottom view, and FIG. FIG. 31E is a cross-sectional view. FIG. 32 is a perspective view for explaining the piezoelectric transformer of this example. FIG. 33 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer according to the present embodiment. FIG. 34 is a circuit diagram for explaining the electrical connection at the time of step-down of the piezoelectric transformer according to the present embodiment.
本実施例の圧電トランス 502の平板は P Z T系の圧電セラミックス の平板 1 00、 200を 2層積層した積層板 5 1 0 ( 24 mmX 24m m X 0. 5 mm X 2層) からなる。 電極 1— 36、 5 ' 、 1 4, 、 23 ' , 32 ' は P d— A g系の導電ペーストからなる。 電極パターンは図 30 A、 図 30 B、 図 3 1 A、 図 3 1 Bに示すように 3 X 3分割の格子 内に電極 1— 36、 5, 、 1 4, 、 23, 、 32, をスクリーン印刷に より形成する。  The flat plate of the piezoelectric transformer 502 of this embodiment is a laminated plate 5 10 (24 mm × 24 mm × 0.5 mm × 2 layers) in which two flat plates 100 and 200 of PZT piezoelectric ceramics are stacked. The electrodes 1-36, 5 ', 14, 24, 23', and 32 'are made of Pd-Ag conductive paste. As shown in Fig. 30A, Fig. 30B, Fig. 31A and Fig. 31B, the electrodes 1-36, 5,, 14, 24, 23,, 32, are arranged in a 3x3 grid. Formed by screen printing.
電極 1一 4、 6— 1 3、 1 5— 22、 24— 3 1、 3 3 - 36は正方 形状であり、 この正方形状の電極形状は電極間の絶縁破壊強度を高める 為に角部、 例えば電極 1では角部 1 1 1、 電極 2では角部 1 1 2、 1 1 3、 電極 1 03では角部 1 1 4、 電極 1 9では角部 2 1 1、 電極 20で は角部 2 1 2、 2 1 3、 電極 2 1では角部 2 14が丸めてあることが望 ましい。 電極 5, 、 1 4, 、 23 ' 、 32 ' の外形も正方形状であり、 この正方形状の電極形状は絶縁破壊強度を高めるために 4つの角部全部 が丸めてあることが好ましい。 Electrodes 114, 6—13, 15—22, 24—31, and 33—36 have a square shape, and this square electrode shape has corners to increase the dielectric breakdown strength between the electrodes. For example, electrode 1 has a corner 1 1 1, electrode 2 has a corner 1 1 2, 1 1 3, electrode 103 has a corner 1 1 4, electrode 1 9 has a corner 2 1 1, and electrode 20 has a corner 2. It is desirable that the corners 2 14 of the electrodes 2, 2 1 3 and the electrode 21 be rounded. The outer shape of the electrodes 5, 14, 25, 23 'and 32' is also square, This square electrode shape is preferably rounded at all four corners in order to increase the dielectric breakdown strength.
電極 5 ' 、 1 4 ' 、 23 ' 、 32 ' の内側は円形形状にく り抜かれて おり、 円形の開口部 1 20、 1 2 1、 220、 22 1がそれぞれ形成さ れている。 この開口部 1 20、 1 2 1から平板 1 00.の表面、 底面がそ れぞれ露出し、 開口部 220、 22 1から平板 200の表面、 底面がそ れぞれ露出している。 この円形の開口部 1 20、 1 2 1、 220、 22 1 とそれぞれ同心円状に円形の電極 5、 1 4、 23、 3 2がそれぞれ設 けられている。 電極 5 ' の外形である正方形状の中心部と円形の開口部 1 20の中心と円形の電極 5の中心とは一致し、 電極 1 4 ' の外形であ る正方形状の中心部と円形の開口部 1 2 1の中心と円形の電極 1 4の中 心とは一致し、 電極 23 ' の外形である正方形状の中心部と円形の開口 部 220の中心と円形の電極 23の中心とは一致し、 電極 32 ' の外形 である正方形状の中心部と円形の開口部 22 1の中心と円形の電極 32 の中心とは一致している。  The inside of the electrodes 5 ′, 14 ′, 23 ′, 32 ′ is hollowed out in a circular shape, and circular openings 120, 122, 220, 221 are formed respectively. The top and bottom surfaces of the flat plate 100 are exposed from the openings 120 and 121, respectively, and the top and bottom surfaces of the flat plate 200 are exposed from the openings 220 and 221 respectively. Circular electrodes 5, 14, 23, and 32 are provided concentrically with the circular openings 120, 122, 220, and 221, respectively. The center of the square of the outer shape of the electrode 5 ′ and the center of the circular opening 120 coincide with the center of the circular electrode 5, and the center of the square of the outer shape of the electrode 14 ′ matches the center of the circular electrode. The center of the opening 1 2 1 coincides with the center of the circular electrode 14, and the center of the square electrode, the center of the circular opening 220, and the center of the circular electrode 23, which are the outer shape of the electrode 23 ′, The center of the square shape, which is the outer shape of the electrode 32 ', the center of the circular opening 221 and the center of the circular electrode 32 match.
分極処理は油中で行う。 分極方向は、 周囲の領域 1 0 1— 1 04、 1 06— 1 09、 20 1— 204、 206— 209については、 図 30 A 一図 32に示すように平板 1 00、 200のそれぞれの 2つの主面 (表 面、 裏面) にそれぞれ垂直な方向 (z方向) である。 領域 1 05の分極 は、 図 30A、 図 30Dに示すように、 円状の電極 5の中心に対して放 射状であって平板 1 00の主面 (表面、 裏面) にほぼ平行な方向に分極 方向が向くように電極端子部 Bと Dとの間に電圧を印加して行う。 また、 電極 5, と電極 1 4 ' との間の平板 1 00は 2つの主面 (表面、 裏面) に垂直な方向に分極することが好ましい。 領域 205の分極は、 図 3 1 A、 図 3 I Dに示すように、 円状の電極 23の中心に対して放射状であ つて平板 200の主面 (表面、 裏面) にほぼ平行な方向に分極方向が向 4 n^ ,m The polarization treatment is performed in oil. The direction of polarization depends on the surrounding areas 101-104, 106-109, 201-204, and 206-209, as shown in Fig. 30A and Fig. 32. It is the direction (z direction) perpendicular to each of the two main surfaces (front and back). As shown in FIGS. 30A and 30D, the polarization of the region 105 is radiating from the center of the circular electrode 5 in a direction substantially parallel to the main surface (front surface, back surface) of the flat plate 100. A voltage is applied between the electrode terminals B and D so that the polarization direction is oriented. Further, it is preferable that the flat plate 100 between the electrode 5 and the electrode 14 ′ is polarized in a direction perpendicular to the two main surfaces (the front surface and the back surface). As shown in FIG. 31A and FIG. 3ID, the polarization of the region 205 is radial to the center of the circular electrode 23 and substantially parallel to the main surface (front surface, back surface) of the flat plate 200. Direction 4 n ^, m
PCT/JP98/05891  PCT / JP98 / 05891
38 くように電極 23と電極 23 ' との間に電圧を印加して行う。 また、 電 極 23, と電極 32' との間の平板 200は 2つの主面 (表面、 裏面) に垂直な方向に分極することが好ましい。 分極処理した後エージング処 理をすることにより圧電トランス素子を作製する。 38, a voltage is applied between the electrode 23 and the electrode 23 '. Further, it is preferable that the flat plate 200 between the electrode 23 and the electrode 32 'be polarized in a direction perpendicular to the two main surfaces (the front surface and the back surface). After the polarization process, the piezoelectric transformer element is manufactured by performing an aging process.
このようにすることにより、 平面図的に見て正方形状の上板の平板 1 00は X方向に 3分割、 y方向に 3分割の合計 3 X 3分割の格子状の 9 つの領域 1 0 1— 1 09に分割され、 平面図的に見て正方形状の下板の 平板 2 0 0は X方向に 3分割、 y方向に 3分割の合計 3 X 3分割の格子 状の 9つの領域 201 - 209に分割される。  By doing so, the flat plate 100 having a square upper plate in a plan view 100 is divided into three regions in the X direction and three regions in the y direction. — Nine areas in a grid with a total of 3 X 3 divisions 201- Divided into 209.
図 32に本圧電トランス 502の斜視図を示す。 電気的接続は、 積層 板 5 1 0の上面の領域 1 0 1、 1 03、 1 07、 1 09の表面において は圧電トランス 502の圧電共振振動の節点に位置する正方形状の電極 1、 3、 7、 9の中心部からそれぞれ取り出し、 積層板 5 1 0の下面の 領域 20 1、 203、 207、 209の表面においては圧電トランス 5 02の圧電共振振動の節点に位置する正方形状の電極 28、 30、 34、 36の中心部からそれぞれ取り出す。 領域 1 05においては、 電極端子 部 Bについては、 圧電トランス 502の圧電共振振動の節点に位置する 中央の円状の電極 5の中心から取り出すが、 電極端子部 Dについては、 外側の電極 5, の角部近傍から取り出す。 電気的接続には導電性弾性体 1 4 1 - 1 46等を用いることが望ましい。 さらに導電性弾性体 14 1 - 1 46等に金属端子 1 3 1、 1 32、 1 34 - 1 3 7を接続すること により外部回路との電気的接続をとる。  FIG. 32 is a perspective view of the present piezoelectric transformer 502. The electrical connection is made by the square electrodes 1, 3, which are located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 502 on the surfaces of the regions 101, 103, 107, and 109 on the upper surface of the laminate 5110. The square electrodes 28, which are located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 502 on the surfaces of the regions 201, 203, 207, and 209 on the lower surface of the laminate 5 10 Take out from the center of 30, 34 and 36 respectively. In the region 105, the electrode terminal portion B is taken out from the center of the central circular electrode 5 located at the node of the piezoelectric resonance vibration of the piezoelectric transformer 502, while the electrode terminal portion D is taken out of the outer electrode 5, From the vicinity of the corner. It is desirable to use a conductive elastic body 141-146 or the like for electrical connection. Further, by connecting metal terminals 131, 132, and 134-137 to the conductive elastic members 141-146 and the like, electrical connection with an external circuit is established.
なお、 上板 1 00の裏面に設けられた電極 1 0— 1 8、 1 4, と下板 200の表面に設けられた電極 1 9— 2 7、 23 ' の接続は、 それぞれ 対応する電極同士をエポキシ系接着剤により貼り合わせるか又は一体焼 結により接合する。 そして、 このようにすることにより上板 1 00と下 99/34454 Incidentally, the upper plate 1 00 electrode 1 0 1 provided on the back surface of 8, 1 4, connection of the electrodes provided 1 9 2 7, 23 'on the surface of the lower plate 200 and respectively corresponding electrodes to each other Are bonded by epoxy adhesive or joined by integral sintering. And by doing so, the upper plate 100 and the lower plate 99/34454
PCT/JP98/05891  PCT / JP98 / 05891
39 板 200とを一体化した積層板 5 1 0を形成する。 上板 1 00の裏面に 設けられた電極 1 0、 1 2、 1 6、 1 8、 下板 200の表面に設けられ た電極 1 9、 2 1、 25、 27への接続は、 振動を阻害しないような軟 い線で形成された金属端子 1 3 7をハンダづけ等することにより行うの が望ましい。 39 A laminated plate 5 10 integrated with the plate 200 is formed. Connection to electrodes 10, 12, 16, 18 provided on the back of upper plate 100 and electrodes 19, 21, 25, 27 provided on the surface of lower plate 200 inhibits vibration It is desirable to solder the metal terminal 137 formed of a soft wire so as not to cause such a problem.
本実施例においては、 平板 1 00の中央の領域 1 05の表面に励振用 電極或いは出力用電極となる電極対 5、 5 ' を配置し、 平板 1 00の周 辺部の領域 1 0 1、 1 03、 1 0 7、 1 09にそれぞれ出力用電極或い は励振用電極を配置し、 平板 200の周辺部の領域 20 1、 203、 2 0 7、 209にそれぞれ出力用電極或いは励振用電極を配置しているの で、 機械的共振エネルギーの伝播する断面積が四方にとれ、 このため、 単位面積あたりに通過する機械的共振エネルギーの密度を下げることが 可能となり、 結果として使用できる電力の限界値をより高くすることが 可能となっている。  In the present embodiment, electrode pairs 5 and 5 ′ serving as excitation electrodes or output electrodes are arranged on the surface of the central region 105 of the flat plate 100, and the peripheral region 101, Output electrodes or excitation electrodes are placed on 103, 107, and 109, respectively, and output electrodes or excitation electrodes are placed on the peripheral areas 201, 203, 207, and 209 of the flat plate 200, respectively. , The cross-sectional area where mechanical resonance energy propagates can be taken in all directions, and therefore, the density of mechanical resonance energy passing per unit area can be reduced, and as a result, It is possible to raise the limit.
また、 平板 1 00の周辺部の領域 1 0 1、 1 03、 1 07、 1 09を 並列に接続し、 平板 200の周辺部の領域 20 1、 203、 20 7、 2 09を並列に接続して励振用領域または出力用領域としているので、 平 板 1 00、 200から構成される積層体 5 1 0の共振モードを崩すこと なく励振することが可能となり、 その結果、 高効率が望めるようになつ ている。  Also, the areas 101, 103, 107, and 109 at the periphery of the plate 100 are connected in parallel, and the areas 201, 203, 207, and 209 at the periphery of the plate 200 are connected in parallel. As the excitation region or the output region, it is possible to excite the laminate 5100 composed of the flat plates 100 and 200 without breaking the resonance mode, and as a result, high efficiency can be expected. It has been
さらに、 本実施例においては、 励振用領域および出力用領域の一方で ある領域 1 05、 205を分極が平板 1 00の 2つの主面 (表面、 裏 面) および平板 200の 2つの主面 (表面、 裏面) にほぼ平行な方向の 領域とし、 励振用領域おょぴ出力用領域の他方である領域 1 0 1、 1 0 3、 1 07、 1 09、 20 1、 203、 207、 209を分極が平板 1 00の 2つの主面 (表面、 裏面) および平板 200の 2つの主面 (表面. 裏面) にほぼ垂直な方向の領域としているので、 入力インピーダンスと 出力インピーダンスの比を大きく取ることができ、 その結果昇圧比また は降圧比をより大きく取ることができる。 Further, in this embodiment, the regions 105 and 205, which are one of the excitation region and the output region, are divided into two main surfaces (a front surface and a back surface) of a flat plate 100 and two main surfaces (a back surface) of a flat plate 200. (The front and back sides) and the areas 101 1, 103, 107, 109, 201, 203, 207, and 209 which are the other areas of the excitation area and the output area. The polarization is the two principal surfaces of the plate 100 (front, back) and the two principal surfaces of the plate 200 (front. Since the region is almost perpendicular to the back surface, the ratio between the input impedance and the output impedance can be increased. As a result, the step-up ratio or the step-down ratio can be increased.
また、 領域 1 0 5においては、 外側の電極 5, の内部に円形の開口部 1 2 0を設け、 その開口部 1 2 0内にこの円形の開口部 1 2 0と同心の 円形の電極 5を設けているので、 これらの電極 5、 5 ' 間に電圧を印加 して分極する場合には、 分極時に素子に印加される電界強度が均一にな り、 円状の電極 5の中心に対して放射状に均一な分極処理ができる。 領 域 2 0 5においては、 外側の電極 2 3, の内部に円形の開口部 2 2 0を 設け、 その開口部 2 2 0内にこの円形の開口部 2 2 0と同心の円形の電 極 2 3を設けているので、 これらの電極 2 3、 2 3, 間に電圧を印加し て分極する場合には、 分極時に素子に印加される電界強度が均一になり、 円状の電極 2 3の中心に対して放射状に均一な分極処理ができる。  In the region 105, a circular opening 120 is provided inside the outer electrode 5, and a circular electrode 5 concentric with the circular opening 120 is provided in the opening 120. When a voltage is applied between these electrodes 5 and 5 ′ to perform polarization, the electric field intensity applied to the element during polarization becomes uniform and the center of the circular electrode 5 is displaced. Radially uniform polarization processing. In the region 205, a circular opening 220 is provided inside the outer electrode 23, and a circular electrode concentric with the circular opening 220 is provided in the opening 220. Since a voltage is applied between these electrodes 23 and 23 to perform polarization, the electric field intensity applied to the element during polarization is uniform, and a circular electrode 23 is provided. Can be uniformly polarized radially with respect to the center.
本圧電トランス 5 0 2は電気的接続を変えることで昇圧用途にも降圧 用途にも使える。 図 3 3に昇圧に使用するときの電気的接続を示す。 図 3 4に降圧に使用するときの電気的接続を示す。  This piezoelectric transformer 502 can be used for step-up and step-down applications by changing the electrical connection. Figure 33 shows the electrical connections used for boosting. Figure 34 shows the electrical connections when used for step-down.
(第 8の実施例)  (Eighth embodiment)
図 3 5 A、 図 3 5 B、 図 3 6 A、 図 3 6 B、 図 3 7 A、 図 3 7 B、 図 3 8 A、 図 3 8 Bは、 本実施例の圧電トランスを説明するための図であ り、 図 3 5 Aは第 1層の上面図、 図 3 5 Bは底面図であり、 図 3 6 Aは 第 2層の上面図、 図 3 6 Bは底面図であり、 図 3 7 Aは第 3層の上面図、 図 3 7 Bは底面図であり、 図 3 8 Aは第 4層の上面図、 図 3 8 Bは底面 図である。 図 3 9は本実施例の圧電トランスの領域 3 1 5、 3 2 5、 3 3 5、 3 4 5を説明するための部分拡大上面図である。 図 4 0は、 本実 施例の圧電トランスを説明するための斜視図である。 図 4 1は、 本実施 例の圧電トランスの昇圧時の電気的接続を説明するための回路図である c 図 4 2は、 本実施例の圧電トランスの降圧時の電気的接続を説明するた めの回路図である。 Fig. 35A, Fig. 35B, Fig. 36A, Fig. 36B, Fig. 37A, Fig. 37B, Fig. 38A, Fig. 38B illustrate the piezoelectric transformer of this embodiment. 35A is a top view of the first layer, FIG. 35B is a bottom view, FIG. 36A is a top view of the second layer, and FIG. 36B is a bottom view. 37A is a top view of the third layer, FIG. 37B is a bottom view, FIG. 38A is a top view of the fourth layer, and FIG. 38B is a bottom view. FIG. 39 is a partially enlarged top view for explaining regions 3 15, 3 25, 3 35, and 3 45 of the piezoelectric transformer of this embodiment. FIG. 40 is a perspective view for explaining the piezoelectric transformer of this embodiment. 4 1, c is a circuit diagram for explaining an electrical connection when the piezoelectric transformer boosting the present embodiment FIG. 42 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of this example at the time of step-down.
本実施例の圧電トランス 5 0 5の平板は P Z T系の圧電セラミックス の 4層 3 1 0、 3 20、 3 3 0、 3 40の積層板 5 20 ( 24 mm X 2 4 mm X 0. 5 X 4 mm) からなる。 電極 4 0 1— 4 5 6、 40 1, 、 40 6 ' 、 4 1 5 ' 、 4 24 ' 、 4 3 3 ' 、 44 2 ' 、 4 5 1 ' 、 4 5 6 ' は P d— A g系の導電ペース トからなる。 電極パターンは図 3 5 A —図 3 8 Bに示すように 3 X 3分割の格子内に電極 40 1—4 5 6、 4 0 1 ' 、 40 6 ' 、 4 1 5 ' 、 4 24 ' 、 4 3 3 ' 、 44 2 ' 、 4 5 1 ' , 4 5 6 ' をスクリーン印刷により形成する。 但し、 外側に露出する 面 (第 1層 3 1 0の表面および第 4層 340の裏面) の電極は中央領域 にのみ配置し、 それ以外の領域には導電性ペース トを印刷しない。 この ような構造とすることで、 入出力電極間の距離が長く確保できる。 その 為、 入出力間の絶縁耐力が増すことになる。 また、 外気中の湿度が一因 となるマイグレーションにおいても防止効果があがる。  The flat plate of the piezoelectric transformer 505 of this embodiment is a laminated plate 5 20 (24 mm X 24 mm X 0.5 X) of four layers of PZT-based piezoelectric ceramics 31 0, 320, 330, and 340. 4 mm). Electrodes 4 0 1 — 4 56, 40 1,, 40 6 ′, 4 15 ′, 4 24 ′, 4 3 3 ′, 442 ′, 4 5 1 ′, 4 5 6 ′ are P d — Ag It consists of a conductive paste of the system. The electrode pattern is shown in Fig. 35A-Electrode 40 1-4 56, 40 1 ', 40 6', 4 15 ', 4 24', 4 4 3 3 ′, 442 ′, 45 1 ′, and 45 6 ′ are formed by screen printing. However, the electrodes on the surfaces exposed to the outside (the surface of the first layer 310 and the back surface of the fourth layer 340) are arranged only in the central area, and the conductive paste is not printed on the other areas. With such a structure, a long distance between the input and output electrodes can be ensured. Therefore, the dielectric strength between input and output will increase. In addition, the effect of preventing migration due to the humidity in the outside air is increased.
電極 40 2— 4 0 5、 40 7— 4 1 4、 4 1 6— 4 2 3、 4 2 5— 4 3 2、 4 34— 44 1、 44 3—4 5 0、 4 5 2 - 4 5 5は正方形状で あり、 この正方形状の電極形状は電極間の絶縁破壊強度を高める為に角 部が丸めてあることが望ましい。 電極 40 1, 、 40 6, 、 4 1 5 ' 、 4 24, 、 4 3 3, 、 44 2 ' 、 4 5 1, 、 4 5 6, の外形も正方形状 であり、 この正方形状の電極形状は絶縁破壊強度を高めるために 4つの 角部全部が丸めてあることが好ましい。  Electrodes 40 2—4 0 5,40 7—4 1 4,4 1 6—4 2 3,4 2 5—4 3 2,4 34—44 1,44 3—4 5 0,4 5 2 -4 5 5 has a square shape, and it is desirable that the square electrode shape has rounded corners in order to increase the dielectric breakdown strength between the electrodes. The outer shapes of the electrodes 401, 406, 415 ', 424, 433, 442', 451, 456 are also square, and this square electrode shape Preferably, all four corners are rounded to increase the dielectric strength.
電極 40 1 ' 、 406 ' 、 4 1 5 ' 、 4 24 ' 、 4 3 3 ' 、 44 2 ' , 4 5 1 ' 、 4 5 6 ' の内側は円形形状にく り抜かれており、 円形の開口 部 46 1、 4 6 5、 4 6 2、 4 6 6、 4 6 3、 4 6 7、 4 64、 46 8 がそれぞれ形成されている。 この開口部 4 6 1、 4 6 5から平板 3 1 0 の表面、 底面がそれぞれ露出し、 開口部 462、 466から平板 320 の表面、 底面がそれぞれ露出し、 開口部 463、 467から平板 330 の表面、 底面がそれぞれ露出し、 開口部 464、 468から平板 340 の表面、 底面がそれぞれ露出している。 この円形の開口部 46 1、 46 5、 462、 466、 463、 46 7、 464、 468とそれぞれ同心 円状に円形の電極 40 1、 406、 4 1 5、 424、 43 3、 442、 45 1、 45 6がそれぞれ設けられている。 The inside of the electrodes 40 1 ′, 406 ′, 4 15 ′, 4 24 ′, 4 3 3 ′, 442 ′, 4 5 1 ′, 4 5 6 ′ is hollowed out in a circular shape and has a circular opening. Parts 46 1, 4 65, 4 62, 4 66, 4 63, 4 67, 4 64 and 4 68 are formed respectively. From this opening 4 6 1, 4 6 5 flat plate 3 1 0 The top and bottom surfaces of the flat plate 320 are exposed from the openings 462 and 466, respectively, and the top and bottom surfaces of the flat plate 330 are exposed from the openings 463 and 467.The flat plates are exposed from the openings 464 and 468. The surface and bottom of 340 are exposed. The circular openings 46 1, 465, 462, 466, 463, 467, 464, 468 and the concentric circular electrodes 401, 406, 415, 424, 433, 442, 451, respectively. , 456 are provided respectively.
電極 40 1 ' の外形である正方形状の中心部と円形の開口部 46 1の 中心と円形の電極 40 1の中心とは一致し、 電極 406, の外形である 正方形状の中心部と円形の開口部 46 5の中心と円形の電極 406の中 心とは一致し、 電極 4 1 5, の外形である正方形状の中心部と円形の開 口部 462の中心と円形の電極 4 1 5の中心とは一致し、 電極 424, の外形である正方形状の中心部と円形の開口部 466の中心と円形の電 極 424の中心とは一致し、 電極 433 ' の外形である正方形状の中心 部と円形の開口部 46 3の中心と円形の電極 43 3の中心とは一致し、 電極 442, の外形である正方形状の中心部と円形の開口部 46 7の中 心と円形の電極 442の中心とは一致し、 電極 45 1 ' の外形である正 方形状の中心部と円形の開口部 464の中心と円形の電極 45 1の中心 とは一致し、 電極 456 ' の外形である正方形状の中心部と円形の開口 部 468の中心と円形の電極 45 6の中心とは一致している。  The center of the square shape, which is the outer shape of the electrode 40 1 ′, and the center of the circular opening 46 1 coincide with the center of the circular electrode 401, and the outer shape of the electrode 406, The center of the opening 465 coincides with the center of the circular electrode 406, and the center of the square opening and the center of the circular opening 462, which is the outer shape of the electrode 415, and the center of the circular electrode 415 The center coincides with the center of the square shape which is the outer shape of the electrode 424, the center of the circular opening 466 matches the center of the circular electrode 424, and the square center which is the outer shape of the electrode 433 '. The center of the circular opening 46 3 coincides with the center of the circular electrode 43 3, and the center of the square center and the circular opening 46 7, which is the outer shape of the electrode 442, and the circular electrode 442. Center of the electrode 45 1 ′, the center of the square shape and the center of the circular opening 464 coincide with the center of the circular electrode 45 1, It is coincident with the contour at which the centers of the circular electrode 45 6 square central portion and a circular opening 468 of the pole 456 '.
分極処理は油中で行う。 分極方向は、 周囲の領域 3 1 1— 3 1 4、 3 1 6— 3 1 9、 32 1— 324、 3 26— 329、 3 3 1— 3 34、 3 36— 3 3 9、 34 1— 344、 346— 349については、 図 3 5 A 一図 38 Bに示すように平板 3 1 0、 3 20、 3 30、 340のそれぞ れの 2つの主面 (表面、 裏面) にそれぞれ垂直な方向 (z方向) である c 領域 3 1 5の分極は、 図 35 Aに示すように、 円状の電極 40 1 , 40 6の中心に対して放射状であって平板 3 1 0の主面 (表面、 裏面) にほ ぼ平行な方向に分極方向が向くように電極端子部 Bと Dとの間に電圧を 印加して行う。 また、 電極 4 0 1, と電極 4 0 6, との間の平板 3 1 0 は 2つの主面 (表面、 裏面) に垂直な方向に分極することが好ましい。 領域 3 2 5の分極は、 図 3 6 A、 図 3 9に示すように、 円状の電極 4 1 5、 4 2 4の中心に対して放射状であって平板 3 2 0の主面 (表面、 裏 面) にほぼ平行な方向に分極方向が向くように電極端子部 Bと Dとの間 に電圧を印加して行う。 また、 電極 4 1 5, と電極 4 2 4 ' との間の平 板 3 2 0は 2つの主面 (表面、 裏面) に垂直な方向に分極することが好 ましい。 領域 3 3 5の分極は、 図 3 7 A、 3 9に示すように、 円状の電 極 4 3 3、 4 4 2の中心に対して放射状であって平板 3 3 0の主面 (表 面、 裏面) にほぼ平行な方向に分極方向が向くように電極端子部 Bと D との間に電圧を印加して行う。 また、 電極 4 3 3 ' と電極 4 4 2 ' との 間の平板 3 3 0は 2つの主面 (表面、 裏面) に垂直な方向に分極するこ とが好ましい。 領域 3 4 5の分極は、 図 3 8 A、 3 9に示すように、 円 状の電極 4 5 1、 4 5 6の中心に対して放射状であって平板 3 4 0の主 面 (表面、 裏面) にほぼ平行な方向に分極方向が向くように電極端子部 Bと Dとの間に電圧を印加して行う。 また、 電極 4 5 1 ' と電極 4 5 6 ' との間の平板 3 4 0は 2つの主面 (表面、 裏面) に垂直な方向に分極 することが好ましい。 分極処理した後エージング処理をすることにより 圧電トランス素子を作製する。 The polarization treatment is performed in oil. The direction of polarization depends on the surrounding area 3 1 1—3 1 4, 3 16—3 19, 32 1—324, 326—329, 3 31—3 34, 336—3 39, 34 1— For 344, 346—349, as shown in Fig. 35A and Fig. 38B, each of the two main surfaces (front surface and back surface) of the flat plates 310, 320, 330, and 340 are perpendicular to each other. As shown in FIG. 35A, the polarization of the c region 3 15 in the direction (z direction) is A voltage is applied between the electrode terminals B and D so that the direction of polarization is radial to the center of 6 and almost parallel to the main surface (front surface, back surface) of the flat plate 310. Do. Further, it is preferable that the flat plate 310 between the electrode 410 and the electrode 406 be polarized in a direction perpendicular to the two main surfaces (the front surface and the back surface). As shown in FIGS. 36A and 39, the polarization of the region 325 is radial with respect to the center of the circular electrodes 415 and 424, and the main surface of the flat plate 320 (surface The voltage is applied between the electrode terminals B and D so that the polarization direction is almost parallel to the back surface. Further, it is preferable that the flat plate 320 between the electrodes 415 and 424 ′ is polarized in a direction perpendicular to the two main surfaces (front and back). As shown in FIGS. 37A and 39, the polarization of the region 335 is radial with respect to the center of the circular electrodes 433 and 442, and the principal surface of the flat plate 330 is shown in FIG. The voltage is applied between the electrode terminals B and D so that the polarization direction is almost parallel to the front and back surfaces. Further, it is preferable that the flat plate 330 between the electrode 43 3 ′ and the electrode 44 2 ′ is polarized in a direction perpendicular to the two main surfaces (front and back surfaces). As shown in FIGS. 38A and 39, the polarization of the region 345 is radial with respect to the center of the circular electrodes 451, 456 and the principal surface of the flat plate 340 (surface, The voltage is applied between the electrode terminals B and D so that the polarization direction is almost parallel to the back surface. Further, it is preferable that the flat plate 340 between the electrode 451 'and the electrode 456' be polarized in a direction perpendicular to the two main surfaces (the front surface and the back surface). The piezoelectric transformer element is manufactured by performing aging treatment after polarization treatment.
このようにすることにより、 平面図的に見て正方形状の第 1層の平板 3 1 0は X方向に 3分割、 y方向に 3分割の合計 3 X 3分割の格子状の 9つの領域 3 1 1 - 3 1 9に分割され、 平面図的に見て正方形状の第 2 層の平板 3 2 0は X方向に 3分割、 y方向に 3分割の合計 3 X 3分割の 格子状の 9つの領域 3 2 1 - 3 2 9に分割され、 平面図的に見て正方形 状の第 3層の平板 3 3 0は X方向に 3分割、 y方向に 3分割の合計 3 X 3分割の格子状の 9つの領域 3 3 1 - 3 3 9に分割され、 平面図的に見 て正方形状の第 4層の平板 340は X方向に 3分割、 y方向に 3分割の 合計 3 X 3分割の格子状の 9つの領域 34 1 - 34 9に分割される。 By doing this, the flat plate 3 1 0 of the first layer, which is square in plan view, is divided into three in the X direction and three in the y direction, for a total of three 9-square grids 3 1 1-3 1 9 is divided into two, and the flat plate of the second layer, which is a square shape in plan view, is divided into 3 in the X direction and 3 in the y direction. Divided into three areas 3 2 1-3 2 9, square in plan view The 3rd layer of the 3rd layer is divided into 9 areas 3 3 1-3 3 9 in a grid of 3 X 3 divided into a total of 3 divided in the X direction and 3 divided in the y direction. The flat plate 340 of the fourth layer, which is square in shape, is divided into nine grid-like regions 34 1 to 349 of a total of 3 × 3 divided into three in the X direction and three in the y direction.
図 3 5 A—図 4 0に示すように、 電極 40 1、 40 6、 4 1 5、 4 2 4、 4 3 3、 44 2、 4 5 1、 4 5 6は平板 3 1 0、 3 2 0、 3 3 0、 Figure 35A—As shown in Figure 40, electrodes 401, 406, 415, 424, 433, 442, 451, and 456 are flat plates 310, 32 0, 3 3 0,
340に設けたスルーホール 4 7 1により互いに接続され、 電極 40 1 ' 、 406 ' 、 4 1 5 ' 、 4 24 ' 、 4 3 3 ' 、 44 2 ' 、 4 5 1, 、They are connected to each other by through holes 471 provided in 340, and electrodes 401 ', 406', 415 ', 424', 433 ', 442', 451, ...
4 5 6, は平板 3 1 0、 3 2 0、 3 3 0、 340に設けたスルーホール 4 7 2により互いに接続されている。 このようにスルーホールにより各 平板の電極の導通をとることで、 外部と直接接続している層のみならず、 中間層からも効率よく電気エネルギーを入出力することが可能となる。 図 40に本圧電トランス 5 0' 5の斜視図を示す。 電気的接続は、 積層 板 5 20の上面においては、 電極端子部 Bについては、 圧電トランス 5 0 5の圧電共振振動の節点に位置する領域 3 1 5の中央の円状の電極 4 0 1の中心部から取り出すが、 電極端子部 Dについては、 領域 3 1 5の 外側の電極 4 0 1, の角部近傍から取り出す。 積層板 5 2 0の下面にお いては、 圧電トランス 5 0 5の圧電共振振動の節点に位置する領域 34 5の中央の円状の電極 4 7 1の中心部から電極端子部 Bへの取り出しを 行う。 電気的接続には導電性弾性体 3 6 1、 3 6 2等を用いることが望 ましい。 さらに導電性弾性体 3 6 1、 3 6 2等に金属端子 3 5 1、 3 5 2、 3 5 6を接続することにより外部回路との電気的接続をとる。 456, are connected to each other by through holes 472 provided in the flat plates 310, 320, 330, 340. By conducting the electrodes of each flat plate through the through holes in this way, it is possible to efficiently input and output electric energy not only from the layer directly connected to the outside but also from the intermediate layer. FIG. 40 shows a perspective view of the present piezoelectric transformer 50'5. For the electrical connection, on the upper surface of the laminated plate 520, for the electrode terminal portion B, the center of the circular electrode 401 of the region 3 15 located at the node of the piezoelectric resonance vibration of the piezoelectric transformer 505 is connected. The electrode is taken out from the center, but the electrode terminal D is taken out from the vicinity of the corner of the electrode 401, outside the region 315. On the lower surface of the laminated plate 520, take out from the center of the circular electrode 471 in the center of the region 345 located at the node of the piezoelectric resonance vibration of the piezoelectric transformer 505 to the electrode terminal B. I do. It is desirable to use a conductive elastic body 361, 362 or the like for electrical connection. Further, by connecting metal terminals 351, 352, 356 to the conductive elastic bodies 361, 362 and the like, electrical connection with an external circuit is established.
なお、 第 1層の平板 3 1 0の裏面に設けられた電極 4 0 2— 4 1 0、 406 ' と第 2層の平板 3 2 0の表面に設けられた電極 4 1 1 -4 1 9. 4 1 5 ' の接続、 第 2層の平板 3 2 0の裏面に設けられた電極 4 2 0 - 4 28、 4 24 ' と第 3層の平板 3 30の表面に設けられた電極 4 2 9 - 43 7, 43 3, の接続、 第 3層の平板 3 30の裏面に設けられた電 極 438— 446、 442' と第 4層の平板 340の表面に設けられた 電極 447— 45 5、 45 1 ' の接続は、 それぞれ対応する電極同士を エポキシ系接着剤により貼り合わせをするか、 又は一体焼結により接合 する。 そして、 このようにすることにより第 1層一第 4層の平板 3 1 0、Note that the electrodes 402-410, 406 'provided on the back surface of the flat plate 310 of the first layer and the electrodes 41-11-419 provided on the surface of the flat plate 320 of the second layer 4 1 5 'connection, electrodes 4 2 0-4 28, 4 24 ′ provided on the back surface of the second layer flat plate 3 2 0 and electrodes 4 2 provided on the surface of the third layer flat plate 3 30 9 -Electrodes 438-446, 442 'provided on the back of the third flat plate 330, and the electrodes 447-455, provided on the surface of the fourth flat plate 340. For the connection of 45 1 ′, the corresponding electrodes are bonded to each other with an epoxy-based adhesive or joined by integral sintering. By doing so, the first layer-the fourth layer flat plate 310,
320、 3 30、 340を一体化した積層板 5 20を形成する。 A laminate 520 in which 320, 330, and 340 are integrated is formed.
第 1層の平板 3 1 0の裏面に設けられた電極 402、 404、 408、 4 1 0への接続、 第 2層の平板 320の表面に設けられた電極 4 1 1、 4 1 3、 4 1 7、 4 1 9への接続、 第 3層の平板 3 30の裏面に設けら れた電極 438、 440、 444、 446への接続、 第 4層の平板 34 0の表面に設けられた電極 44 7、 449、 45 3、 455への接続は 振動を阻害しないような軟ぃ線で形成された金属端子 353の先端部を ハンダづけ等することにより行うのが望ましい。 なお、 図 40において は、 金属端子 3 53は図中右側の領域にのみ接続するように描かれてい るが、 図中左側の領域にも同様で接続されている。  Connection to the electrodes 402, 404, 408, 410 provided on the back surface of the first layer flat plate 310, and the electrodes 4 11 1, 413, 4 provided on the surface of the second layer flat plate 320 Connections to 17 and 4 19, Electrodes 438, 440, 444 and 446 provided on the back of the third layer plate 330, Electrodes provided on the surface of the fourth layer plate 330 It is desirable that the connection to 444, 449, 453, and 455 be performed by soldering the tip of the metal terminal 353 formed of a soft wire that does not hinder vibration. In FIG. 40, the metal terminal 353 is drawn so as to be connected only to the region on the right side in the figure, but is similarly connected to the region on the left side in the figure.
また、 第 2層の平板 3 20の裏面に設けられた電極 420、 422、 In addition, electrodes 420, 422, and
426、 428への接続、 第 3層の平板 330の表面に設けられた電極 429、 43 1、 435、 43 7への接続は振動を阻害しないような軟 い線で形成された金属端子 354の先端部をハンダづけ等することによ り行うのが望ましい。 Connections to 426 and 428, and connections to electrodes 429, 431, 435, and 377 provided on the surface of the third layer flat plate 330 are made of metal terminals 354 formed of soft wires that do not hinder vibration. It is desirable to do this by soldering the tip.
本実施例においては、 第 1層の平板 3 1 0の中央の領域 3 1 5の表面 および裏面に励振用電極或いは出力用電極となる電極対 40 1、 40 1 , および電極対 406、 406 ' をそれぞれ配置し、 第 2層の平板 32 0の中央の領域 325の表面および裏面に励振用電極或いは出力用電極 となる電極対 4 1 5、 4 1 5, および電極対 424、 424 ' をそれぞ れ配置し、 第 3層の平板 330の中央の領域 3 35の表面および裏面に 励振用電極或いは出力用電極となる電極対 443 3、 43 3 ' および電 極対 442、 442' をそれぞれ配置し、 第 4層の平板 340の中央の 領域 345の表面および裏面に励振用電極或いは出力用電極となる電極 対 45 1、 45 1, および電極対 456、 456, をそれぞれ配置し、 第 1層の平板 3 1 0の周辺部の領域 3 1 1、 3 1 3、 3 1 7、 3 1 9に それぞれ出力用電極或いは励振用電極を配置し、 第 2層の平板 320の 周辺部の領域 32 1、 323、 32 7、 329にそれぞれ出力用電極或 いは励振用電極を配置し、 第 3層の平板 3 30の周辺部の領域 3 3 1、In this embodiment, an electrode pair 401, 401 serving as an excitation electrode or an output electrode and electrode pairs 406, 406 'are provided on the front and back surfaces of the central region 315 of the first layer flat plate 310. The electrode pairs 4 15 and 4 15 and the electrode pairs 424 and 424 ′ serving as excitation electrodes or output electrodes are placed on the front and back surfaces of the central region 325 of the flat plate 320 of the second layer, respectively. And placed on the front and back surfaces of the central area 335 of the third layer flat plate 330, respectively. Electrode pairs 443 3, 433 'and electrode pairs 442, 442', which serve as excitation electrodes or output electrodes, are respectively arranged, and excitation electrodes or electrodes are provided on the front and back surfaces of the central region 345 of the fourth layer flat plate 340. The electrode pairs 45 1, 45 1 and the electrode pairs 456, 456, which serve as output electrodes, are respectively arranged, and the areas 3 1 1, 3 1 3, 3 1 7, 3 1 An output electrode or an excitation electrode is arranged at 3 19 respectively, and an output electrode or an excitation electrode is arranged at the area 32 1, 323, 327, 329 of the peripheral portion of the flat plate 320 of the second layer. , The area of the periphery of the third layer flat plate 3 30 3 3 1,
3 3 3、 33 7、 3 39にそれぞれ出力用電極或いは励振用電極を配置 し、 第 4層の平板 340の周辺部の領域 34 1、 343、 347、 34 9にそれぞれ出力用電極或いは励振用電極を配置しているので、 機械的 共振エネルギーの伝播する断面積が四方にとれ、 このため、 単位面積あ たりに通過する機械的共振エネルギーの密度を下げることが可能となり、 結果として使用できる電力の限界値をより高くすることが可能となって いる。 Output electrodes or excitation electrodes are arranged at 33, 33, 337, and 339, respectively, and output electrodes or excitation electrodes are arranged at the area 341, 343, 347, 349 around the fourth layer flat plate 340, respectively. Since the electrodes are arranged, the cross-sectional area where the mechanical resonance energy propagates can be taken in four directions, so that the density of the mechanical resonance energy that passes per unit area can be reduced, and as a result, the power that can be used It is possible to raise the limit value of
また、 第 1層の平板 3 1 0の周辺部の領域 3 1 1、 3 1 3、 3 1 7、 3 1 9を並列に接続し、 第 2層の平板 320の周辺部の領域 32 1、 3 In addition, the regions 3 11, 3 13, 3 17, and 3 19 in the peripheral portion of the first layer flat plate 3 10 are connected in parallel, and the regions 32 1 and 32 in the peripheral portion of the second layer flat plate 320 are connected. Three
23、 32 7、 329を並列に接続し、 第 3層の平板 330の周辺部の 領域 33 1、 333、 33 7、 3 39を並列に接続し、 第 4層の平板 323, 327, 329 are connected in parallel, the area 331, 333, 337, 339 around the third layer plate 330 is connected in parallel, and the fourth layer plate 3 is connected.
40の周辺部の領域 34 1、 343、 347、 349を並列に接続して 出力用領域または励振用領域としているので、 平板 3 1 0、 320、 3Since the areas 34 1, 343, 347, and 349 at the periphery of 40 are connected in parallel to form the output area or the excitation area, the flat plates 3 10, 320, 3
30 , 340から構成される積層体 520の共振モードを崩すことなく 励振することが可能となり、 その結果、 高効率が望めるようになつてい る。 Excitation can be performed without destroying the resonance mode of the laminated body 520 composed of 30, 340, and as a result, high efficiency can be expected.
さらに、 本実施例においては、 励振用領域および出力用領域の一方で ある領域 3 1 5、 3 25、 33 5、 345を、 分極が平板 3 1 0の 2つ の主面 (表面、 裏面) 、 平板 3 20の 2つの主面 (表面、 裏面) 、 平板Further, in the present embodiment, the regions 3 15, 325, 335, and 345 which are one of the excitation region and the output region, Main surface (front and back), flat plate 3 20 main surfaces (front and back), flat plate
3 30の 2つの主面 (表面、 裏面) および平板 340の 2つの主面 (表 面、 裏面) にそれぞれほぼ平行な方向の領域とし、 励振用領域および出 力用領域の他方である領域 32 1、 323、 327、 329、 33 1、 3 33、 3 3 7、 3 3 9を、 分極が平板 320の 2つの主面 (表面、 裏 面) および平板 3 30の 2つの主面 (表面、 裏面) にほぼ垂直な方向の 領域としているので、 入カインピーダンスと出カインピーダンスの比を 大きく取ることができ、 その結果昇圧比または降圧比をより大きく取る ことができる。 3 An area that is almost parallel to the two main surfaces (front and back) of 30 and the two main surfaces (front and back) of the flat plate 340, respectively, and is the other of the excitation area and the output area. 1, 323, 327, 329, 33 1, 333, 337, 339, the polarization of the two main surfaces of the plate 320 (surface, back surface) and the two main surfaces of the plate 330 (surface, Since the region is almost perpendicular to the back surface, the ratio between the input impedance and the output impedance can be increased, and as a result, the boost ratio or the buck ratio can be increased.
また、 領域 3 1 5においては、 外側の電極 40 1 ' の内部に円形の開 口部 46 1を設け、 その開口部 46 1内にこの円形の開口部 46 1 と同 心の円形の電極 40 1を設け、 外側の電極 406 ' の内部に円形の開口 部 465を設け、 その開口部 46 5内にこの円形の開口部 46 5と同心 の円形の電極 406を設けているので、 これらの電極 40 1、 406と In the region 3 15, a circular opening 461 is provided inside the outer electrode 401 ′, and a circular electrode 40 concentric with the circular opening 461 is provided in the opening 461. 1, a circular opening 465 is provided inside the outer electrode 406 ′, and a circular electrode 406 concentric with the circular opening 465 is provided in the opening 465. 40 1, 406 and
40 1 ' 、 406 ' との間に電圧を印加して分極する場合には、 分極時 に素子に印加される電界強度が均一になり、 円状の電極 40 1、 406 の中心に対して放射状に均一な分極処理ができる。 領域 325において は、 外側の電極 4 1 5' の内部に円形の開口部 462を設け、 その開口 部 462内にこの円形の開口部 462と同心の円形の電極 4 1 5を設け、 外側の電極 424, の内部に円形の開口部 466を設け、 その開口部 4 66内にこの円形の開口部 46 6と同心の円形の電極 424を設けてい るので、 これらの電極 4 1 5、 424と 4 1 5, 、 424 ' との間に電 圧を印加して分極する場合には、 分極時に素子に印加される電界強度が 均一になり、 円状の電極 4 1 5、 424の中心に対して放射状に均一な 分極処理ができる。 領域 33 5においては、 外側の電極 4 33, の内部 に円形の開口部 46 3を設け、 その開口部 46 3内にこの円形の開口部 46 3と同心の円形の電極 43 3を設け、 外側の電極 44 2, の内部に 円形の開口部 46 7を設け、 その開口部 4 6 7内にこの円形の開口部 4 6 7と同心の円形の電極 442を設けているので、 これらの電極 43 3、 442と 43 3, 、 44 2, との間に電圧を印加して分極する場合には、 分極時に素子に印加される電界強度が均一になり、 円状の電極 4 3 3、 442の中心に対して放射状に均一な分極処理ができる。 領域 34 5に おいては、 外側の電極 45 1 ' の内部に円形の開口部 4 64を設け、 そ の開口部 4 64内にこの円形の開口部 4 64と同心の円形の電極 4 5 1 を設け、 外側の電極 45 6 ' の内部に円形の開口部 46 8を設け、 その 開口部 46 8内にこの円形の開口部 4 6 8と同心の円形の電極 45 6を 設けているので、 これらの電極 45 1、 45 6と 45 1, 、 456 ' と の間に電圧を印加して分極する場合には、 分極時に素子に印加される電 界強度が均一になり、 円状の電極 4 5 1、 4 5 6の中心に対して放射状 に均一な分極処理ができる。 When a voltage is applied between the electrodes 40 1 ′ and 406 ′ for polarization, the electric field intensity applied to the element during polarization becomes uniform, and the electric field intensity is radial with respect to the center of the circular electrodes 401 406. A uniform polarization process can be performed. In the region 325, a circular opening 462 is provided inside the outer electrode 4 15 ′, and a circular electrode 4 15 concentric with the circular opening 462 is provided in the opening 462. 424, a circular opening 466 is provided therein, and a circular electrode 424 concentric with the circular opening 466 is provided in the opening 466. When polarization is applied by applying a voltage between 15 5 and 424 ′, the electric field intensity applied to the element during polarization is uniform, and the center of the circular electrodes 4 15 and 424 is Radially uniform polarization processing can be performed. In the region 335, a circular opening 463 is provided inside the outer electrode 433, and the circular opening 463 is provided in the opening 463. A circular electrode 43 3 is provided concentrically with 46 3, a circular opening 46 7 is provided inside the outer electrode 44 2, and a circular opening 4 67 is provided concentrically with the circular opening 4 67. Since a circular electrode 442 is provided, when a voltage is applied between these electrodes 433, 442 and 433, 442 to be polarized, the electric field intensity applied to the element during polarization is It becomes uniform and radially uniform polarization processing can be performed on the center of the circular electrodes 4 3 3 and 442. In the region 345, a circular opening 464 is provided inside the outer electrode 45 1 ′, and a circular electrode 4 5 1 concentric with the circular opening 4 64 is provided in the opening 4 64. Since a circular opening 468 is provided inside the outer electrode 456 ′, and a circular electrode 456 concentric with the circular opening 468 is provided in the opening 468, When a voltage is applied between these electrodes 45 1, 456 and 45 1, 456 ′ to perform polarization, the electric field applied to the element during polarization becomes uniform, and a circular electrode 4 Radial and uniform polarization processing can be performed on the centers of 51 and 456.
本実施例では、 励振用電極部と出力用電極部が同一層または同一面内 に配置されていないため、 励振用電極と出力用電極間の絶縁性を向上す ることができ、 圧電トランスの入出力間の絶縁耐力が大幅に改善でき、 たとえば本実施例の圧電トランスを ACアダプタなどに応用した場合、 商用交流電源と機器間の電気的独立性を高めることが可能となる。  In the present embodiment, the excitation electrode portion and the output electrode portion are not arranged on the same layer or in the same plane, so that the insulation between the excitation electrode and the output electrode can be improved, and the piezoelectric transformer The dielectric strength between input and output can be greatly improved. For example, when the piezoelectric transformer of this embodiment is applied to an AC adapter or the like, it becomes possible to increase the electrical independence between the commercial AC power supply and the device.
本圧電トランスは電気的接続を変えることで昇圧用途にも降圧用途に も使える。 図 4 1に昇圧に使用するときの電気的接続を示す。 図 4 2に 降圧に使用するときの電気的接続を示す。  This piezoelectric transformer can be used for both step-up and step-down applications by changing the electrical connection. Figure 41 shows the electrical connections when used for boosting. Fig. 42 shows the electrical connections when used for step-down.
(第 9の実施例)  (Ninth embodiment)
図 43 A—図 4 3 Eは、 本実施例の圧電トランスを説明するための図 であり、 図 4 3 Aは上面図、 図 4 3 Bは底面図、 図.4 3 C—図 4 3 Eは 断面図である。 図 44は、 本実施例の圧電トランスを説明するための斜 視図である。 図 4 5は、 本実施例の圧電トランスの昇圧時の電気的接続 を説明するための回路図である。 図 4 6は、 本実施例の圧電トランスの 降圧時の電気的接続を説明するための回路図である。 FIG. 43A—FIG. 43E is a diagram for explaining the piezoelectric transformer of this embodiment. FIG. 43A is a top view, FIG. 43B is a bottom view, and FIG. 43C—FIG. 43. E is a sectional view. FIG. 44 is an oblique view for explaining the piezoelectric transformer of this embodiment. FIG. FIG. 45 is a circuit diagram for explaining the electrical connection at the time of boosting of the piezoelectric transformer of the present embodiment. FIG. 46 is a circuit diagram for explaining the electrical connection of the piezoelectric transformer of the present embodiment at the time of step-down.
本実施例の圧電トランス 5 0 3の平板 1 00は P Z T系の圧電セラミ ッタスの単板 ( 24 mm X 2 4 mm X 1 mm) からなる。 電極 1— 1 8、 5 ' 、 9 ' 1 4 ' 、 1 8 ' は P d— A g系の導電ペース トからなる。 電 極パターンは図 4 3 A、 図 4 3 Bに示すように 3 X 3分割の格子内に電 極 1— 1 8、 5, 、 9 ' 、 1 4, 、 1 8, をスクリーン印刷により形成 する。  The flat plate 100 of the piezoelectric transformer 503 of this embodiment is made of a single plate (24 mm × 24 mm × 1 mm) of a PZT system piezoelectric ceramics. Electrodes 1-18, 5 ', 9'14', 18 'are made of Pd-Ag conductive paste. Electrode patterns are formed by screen printing electrodes 1-1,8,5,9,9,14,18 in a 3x3 grid as shown in Fig.43A and Fig.43B. I do.
電極 1一 4、 6— 8、 1 0— 1 3、 1 5— 1 7は正方形状であり、 こ の正方形状の電極形状は電極間の絶縁破壊強度を高める為に角部、 例え ば電極 1では角部 1 1 1、 電極 2では角部 1 1 2、 1 1 3、 電極 1 0 3 では角部 1 1 4が丸めてあることが望ましい。 電極 5 ' 、 9 ' 、 1 4 ' 、 1 8 ' の外形も正方形状であり、 電極 5 ' 、 1 4, においては、 この正 方形状の電極形状は絶縁破壊強度を高める為に 3つの角部、 例えば電極 5, については角部 1 1 5 _ 1 1 7が丸めてあることが望ましレ、。  Electrodes 114, 6-8, 10-13, 15-17 are square, and this square electrode shape has corners, for example, electrodes, to increase the dielectric breakdown strength between the electrodes. It is desirable that the corners 1 1 and 1 be rounded at 1, the corners 112 and 1 13 at the electrode 2, and the corners 114 at the electrode 103 be rounded. The outer shapes of the electrodes 5 ', 9', 14 'and 18' are also square. In the electrodes 5 'and 14, this square electrode shape has three corners to increase the dielectric breakdown strength. For the part, for example, electrode 5, it is desirable that the corners 115-117 are rounded.
電極 5 ' 、 9 ' 、 1 4, 、 1 8, の内側は円形形状にく り抜かれてお り、 円形の開口部 1 2 0、 1 2 2、 1 2 1、 1 2 3がそれぞれ形成され ている。 この開口部 1 20、 1 2 2から平板 1 00の表面が露出し、 開 口部 1 2 1、 1 2 3から平板 1 0 0の底面がそれぞれ露出している。 こ の円形の開口部 1 20、 1 2 2、 1 2 1、 1 2 3とそれぞれ同心円状に 円形の電極 5、 9、 1 4、 1 8がそれぞれ設けられている。 電極 5 ' の 外形である正方形状の中心部と円形の開口部 1 20の中心と円形の電極 5の中心とは一致し、 電極 9 ' の外形である正方形状の中心部と円形の 開口部 1 2 2の中心と円形の電極 9の中心とは一致し、 電極 1 4 ' の外 形であろ正方形状の中心部と円形の開口部 1 2 1の中心と円形の電極 1 4の中心とは一致し、 電極 1 8, の外形である正方形状の中心部と円形 の開口部 1 23の中心と円形の電極 1 8の中心とは一致している。 The inside of the electrodes 5 ′, 9 ′, 14,, 18 is hollowed out in a circular shape, and circular openings 120, 122, 122, 123, respectively are formed. ing. The surface of the flat plate 100 is exposed from the openings 120 and 122, and the bottom surface of the flat plate 100 is exposed from the openings 122 and 123. Circular electrodes 5, 9, 14 and 18 are provided concentrically with the circular openings 120, 122, 122 and 123 respectively. The center of the square of the outer shape of the electrode 5 'and the center of the circular opening 1 coincide with the center of the electrode 20 and the center of the electrode 5', and the center of the square of the outer shape of the electrode 9 'and the opening of the circle The center of 1 2 2 coincides with the center of the circular electrode 9, and the outer shape of the electrode 1 4 ′ is a square center and a circular opening 1 2 1 The center of 1 and the circular electrode 1 The center of the electrode 4 coincides with the center of the circular electrode 18, and the center of the square opening and the center of the circular opening 123 coincide with the center of the circular electrode 18.
電極 5 ' の角部 1 1 8と電極 9, の角部 1 1 9とはつながっており、 一体化された一つの電極 6 1 として形成されている。 この電極 6 1は導 電ぺ一ス トをスクリーン印刷することにより形成している。 また、 電極 1 4, の角部 1 1 8, と電極 1 8, の角部 1 1 9 ' とはつながっており、 一体化された一つの電極 62として形成されている。 この電極 62は導 電ペース トをスクリーン印刷することにより形成している。 このように 2箇所の電極 5 ' 、 9, 間おょぴ 2箇所の電極 1 4, 、 1 8 ' 間の電気 的接続を導電ペーストをスクリーン印刷することにより実現しているの で、 電気的接続に要する部品点数を削減できる。  The corner 1 118 of the electrode 5 ′ is connected to the corner 1 19 of the electrode 9, and is formed as one integrated electrode 61. The electrode 61 is formed by screen-printing a conductive strip. In addition, the corners 1 18 of the electrodes 14, and the corners 1 19 ′ of the electrodes 18 are connected to each other and formed as one integrated electrode 62. The electrodes 62 are formed by screen-printing a conductive paste. As described above, the electrical connection between the two electrodes 5 ', 9 and the two electrodes 14, 14, 18' is realized by screen-printing a conductive paste. The number of parts required for connection can be reduced.
分極処理は油中で行う。 分極方向は、 周囲の領域 1 0 1— 1 04、 1 06 - 1 08については、 図 43 A—図 43 Eに示すように平板 1 00 の 2つの主面 (表面、 裏面) に垂直な方向 (z方向) である。 領域 1 0 5の分極は、 図 43A、 図 43 Dに示すように、 円状の電極 5、 1 4の 中心に対して放射状であって平板 1 00の主面 (表面、 裏面) にほぼ平 行な方向に分極方向が向くように電極端子部 Bと Dとの間に電圧を印加 して行う。 また、 電極 5 ' と電極 1 4, との間の平板 1 00は 2つの主 面 (表面、 裏面) に垂直な方向に分極することが好ましい。 領域 1 09 の分極は、 図 43A、 図 43 Eに示すように、 円状の電極 9、 1 8の中 心に対して放射状であって平板 1 00の主面 (表面、 裏面) にほぼ平行 な方向に分極方向が向くように電極端子部 Bと Dとの間に電圧を印加し て行う。 また、 電極 9 ' と電極 1 8 ' との間の平板 1 00は 2つの主面 The polarization treatment is performed in oil. The polarization direction is the direction perpendicular to the two main surfaces (front and back) of the flat plate 100 as shown in Fig. 43A-Fig. 43E for the surrounding areas 101-104 and 106-108. (Z direction). As shown in FIGS. 43A and 43D, the polarization of the region 105 is radial with respect to the center of the circular electrodes 5 and 14 and is substantially flat on the main surface (front surface, back surface) of the flat plate 100. A voltage is applied between the electrode terminals B and D so that the polarization direction is in the direction of the row. Further, it is preferable that the flat plate 100 between the electrode 5 ′ and the electrode 14 be polarized in a direction perpendicular to the two main surfaces (the front surface and the back surface). As shown in FIGS. 43A and 43E, the polarization of the region 109 is radial to the center of the circular electrodes 9 and 18 and almost parallel to the main surface (front surface, back surface) of the flat plate 100. The voltage is applied between the electrode terminals B and D so that the polarization direction is oriented in the appropriate direction. The flat plate 100 between the electrode 9 ′ and the electrode 18 ′ has two main surfaces.
(表面、 裏面) に垂直な方向に分極することが好ましい。 分極処理した 後エージング処理をすることにより圧電トランス素子を作製する。 It is preferable to polarize in a direction perpendicular to (front and back). After the polarization process, the piezoelectric transformer element is manufactured by performing an aging process.
このようにすることにより、 平面図的に見て正方形状の平板 1 00は x方向に 3分割、 y方向に 3分割の合計 3 X 3分割の格子状の 9つの領 域 1 0 1— 1 0 9に分割される。 By doing so, the flat plate 100 having a square shape in plan view It is divided into 9 areas 1 0 1 — 1 109 in a grid of 3 x 3 divided into a total of 3 divided in the x direction and 3 divided in the y direction.
図 4 4に本実施例の圧電トランス 5 0 3の斜視図を示す。 電気的接続 は、 領域 1 0 1、 1 0 3、 1 0 7については、 圧電トランス 5 0 3の圧 電共振振動の節点に位置する、 正方形状の電極 1、 3、 7、 1 0、 1 2、 1 6のそれぞれの中心部から取り出す。 領域 1 0 5、 1 0 9においては、 電極端子部 Bについては、 圧電トランス 5 0 3の圧電共振振動の節点に 位置する円状の電極 5の中心および円状の電極 9の中心から取り出すが、 電極端子部 Dについては、 外側の電極 9 ' の角部近傍から取り出す。 電 気的接続には導電性弾性体 2 5 1 - 2 5 5等を用いることが望ましい。 さらに導電性弾性体 2 5 1 - 2 5 5等に金属端子 2 3 1— 2 3 8、 2 4 1 - 2 4 3を接続することにより外部回路との電気的接続をとる。  FIG. 44 shows a perspective view of the piezoelectric transformer 503 of this embodiment. The electrical connection is, for the regions 101, 103, 107, square electrodes 1, 3, 7, 10, 0, 1 located at the nodes of the piezoelectric resonance vibration of the piezoelectric transformer 503. Take out from the center of each of 2 and 16. In the regions 105 and 109, the electrode terminal portion B is taken out from the center of the circular electrode 5 and the center of the circular electrode 9 located at the node of the piezoelectric resonance vibration of the piezoelectric transformer 503. The electrode terminal D is taken out from the vicinity of the corner of the outer electrode 9 '. It is desirable to use a conductive elastic body 251-255 for electrical connection. Further, by connecting metal terminals 2 3 1 2 3 8 and 2 4 1-2 4 3 to the conductive elastic body 25 1-255 and the like, electrical connection with an external circuit is established.
本圧電トランス 5 0 3では、 入力側 (または出力側) に 3つの領域 1 0 1、 1 0 3、 1 0 7を配置し、 出力側 (または入力側) に 2つの領域 を配置している。 このように入出力間の領域数を変えることで、 様々な 変圧比に対応することが可能となる。  In this piezoelectric transformer 503, three areas 101, 103, and 107 are arranged on the input side (or output side), and two areas are arranged on the output side (or input side). . By changing the number of areas between input and output in this way, it is possible to support various transformation ratios.
本圧電トランスは電気的接続を変えることで昇圧用途にも降圧用途に も使える。 図 4 5に昇圧に使用するときの電気的接続を示す。 図 4 6に 降圧に使用するときの電気的接続を示す。  This piezoelectric transformer can be used for both step-up and step-down applications by changing the electrical connection. Figure 45 shows the electrical connections when used for boosting. Fig. 46 shows the electrical connection when used for step-down.
本実施例においては、 領域 1 0 5、 1 0 9を並列に接続して励振用領 域または出力用領域とし、 周辺部の領域 1 0 1、 1 0 3、 1 0 7を並列 に接続して出力用用領域または励振用領域としているので、 励振用領域 および出力用領域の両方において振動モ一ドが揃うことになり、 平板 1 0 0の共振モードを崩すことなく励振することが可能となり、 その結果、 高効率が望めるようになっている。  In this embodiment, the regions 105 and 109 are connected in parallel to be an excitation region or an output region, and the peripheral regions 101, 103 and 107 are connected in parallel. As a result, the vibration mode is aligned in both the excitation area and the output area, and it becomes possible to excite the plate 100 without breaking the resonance mode. As a result, high efficiency can be expected.
さらに、 本実施例においては、 励振用領域および出力用領域の一方を 分極が平板 1 0 0の 2つの主面 (表面、 裏面) にほぼ平行な方向の領域 とし、 励振用領域および出力用領域の他方を分極が平板 1 0 0の 2つの 主面 (表面、 裏面) にほぼ垂直な方向の領域としているので、 入力イン ピーダンスと出力インピーダンスの比を大きく取ることができ、 その結 果昇圧比または降圧比をより大きく取ることができる。 Further, in this embodiment, one of the excitation area and the output area The polarization is a region in the direction almost parallel to the two main surfaces (front and back) of the flat plate 100. The other of the excitation region and the output region is the two main surfaces of the flat plate 100 (front and back). Since the region is in a direction substantially perpendicular to the above, the ratio between the input impedance and the output impedance can be increased, and as a result, the boost ratio or the buck ratio can be increased.
また、 領域 1 0 5においては、 外側の電極 5, の内部に円形の開口部 1 2 0を設け、 その開口部 1 2 0内にこの円形の開口部 1 2 0と同心の 円形の電極 5を設けており、 領域 1 0 9においては、 外側の電極 9, の 内部に円形の開口部 1 2 2を設け、 その開口部 1 2 2内にこの円形の開 口部 1 2 2と同心の円形の電極 9を設けているので、 これらの電極 5、 5 ' 間おょぴ電極 9、 9 ' 間にそれぞれ電圧を印加して分極する場合に は、 分極時に素子に印加される電界強度が均一になり、 円状の電極 5、 9のそれぞれの中心に対してそれぞれ放射状に均一な分極処理ができる。 以上の第 6乃至第 9の実施例においては、 1入力 1出力の圧電トラン スを例として示したが、 本発明の圧電トランスは、 1入力多出力、 多入 力 1出力、 多入力多出力の形態の圧電トランスとしても容易に実現する ことが可能である。 例えば、 図 4 4を参照して説明すれば、 入力用 (励 振用) 領域として、 領域 1 0 1、 1 0 3、 1 0 7を並列に接続して励振 用領域とし、 領域 1 0 5、 1 0 6を並列に接続して第 1の出力用領域と し、 領域 1 0 2、 1 0 4、 1 0 6、 1 0 8を並列に接続して第 2の出力 用領域とすることができる。  In the region 105, a circular opening 120 is provided inside the outer electrode 5, and a circular electrode 5 concentric with the circular opening 120 is provided in the opening 120. In the region 109, a circular opening 122 is provided inside the outer electrode 9, and the opening 122 is concentric with the circular opening 122. Since a circular electrode 9 is provided, when a voltage is applied between these electrodes 5 and 5 'and the electrodes 9 and 9' are polarized, the electric field intensity applied to the element during polarization is reduced. It becomes uniform and radially uniform polarization processing can be performed on the centers of the circular electrodes 5 and 9 respectively. In the above-described sixth to ninth embodiments, the piezoelectric transformer having one input and one output has been described as an example. However, the piezoelectric transformer of the present invention has one input, multiple outputs, multiple inputs, one output, and multiple inputs and multiple outputs. It can be easily realized as a piezoelectric transformer of the form (1). For example, referring to FIG. 44, as an input (excitation) area, areas 101, 103 and 107 are connected in parallel to form an excitation area, and an area 105 , 106 connected in parallel to form a first output area, and areas 102, 104, 106, 108 connected in parallel to form a second output area. Can be.
また、 以上の第 6乃至第 9の実施例においては、 例えば第 6の実施例 においては、 平板 1 0 0の 2つの主面 (表面、 裏面) にほぼ平行な方向 に分極する領域である領域 1 0 5においては、 内側に円形の電極 5を設 け、 その外側に電極 5, を設け、 この電極 5 ' の内側を円形形状にく り 抜いて円形の開口部 1 2 0を設け、 電極 5と電極 5 ' との間に分極用の 電圧を印加して電極 5と電極 5 ' との間を分極したが、 領域 1 0 5の中 央部に内側の電極 5のみを設け、 外側の電極 5 ' は設けずに、 電極 5と、 周囲の領域 1 0 1— 1 0 4、 1 0 5 _ 1 0 9の電極 1 一 4、 6— 9との 間に分極用の電圧を印加して電極 5の周囲を分極することも可能である。 以上のように第 6乃至第 9の実施例によれば、 大出力化、 高効率化、 低コスト化 、 薄型化が図れ、 しかも変圧比の選択の自由度が高く、 1入 力多出力のトランスとしての対応が可能であり、 さらには、 入力インピ —ダンスと出力インピーダンスの比を大きく取ることができその結果昇 圧比または降圧比を大きく取ることができる圧電トランスが提供される。 産業上の利用可能性 In the sixth to ninth embodiments described above, for example, in the sixth embodiment, the region which is a region polarized in a direction substantially parallel to the two main surfaces (the front surface and the back surface) of the flat plate 100. In 105, a circular electrode 5 is provided on the inner side, electrodes 5 and 5 are provided on the outer side, and the inner side of the electrode 5 'is cut out in a circular shape to provide a circular opening 120. 5 and electrode 5 ' A voltage was applied to polarize between the electrode 5 and the electrode 5 ′, but only the inner electrode 5 was provided in the center of the region 105, and the outer electrode 5 ′ was not provided. It is also possible to polarize the area around electrode 5 by applying a voltage for polarization between electrodes 114, 6 and 9 of the surrounding area 10 1—10 4 and 10 5 _ 10 9 is there. As described above, according to the sixth to ninth embodiments, the output can be increased, the efficiency can be reduced, the cost can be reduced, the thickness can be reduced, and the degree of freedom in selecting the transformer ratio can be increased. A piezoelectric transformer that can be used as a transformer and that can have a large ratio of input impedance to output impedance and thus a large step-up ratio or step-down ratio can be provided. Industrial applicability
以上のように、 本発明は、 大出力化、 高効率化、 低コスト化 、 薄型化 が図れ、 しかも変圧比の選択の自由度が高く、 さらには、 1入力多出力 のトランスとしての対応が可能な圧電トランスに特に好適に利用できる。  As described above, the present invention achieves high output, high efficiency, low cost, and low profile, and has a high degree of freedom in selecting a transformer ratio. Further, the present invention is applicable to a transformer with one input and multiple outputs. It can be particularly suitably used for a possible piezoelectric transformer.

Claims

請求の範囲 The scope of the claims
1 . 互いに対向し互いにほぼ平行な 2つの主面を備え、 前記主面内の第 1の方向に m ( mは 2以上の整数) 区分、 前記主面内の第 2の方向であ つて前記第 1の方向と交差する前記第 2の方向に n ( nは 2以上の整 数) 区分の格子状に分割された複数の領域を有する圧電体を備える圧電 トランスであって、 1. It has two main surfaces facing each other and substantially parallel to each other, divided into m (m is an integer of 2 or more) in a first direction in the main surface, and in a second direction in the main surface. A piezoelectric transformer comprising a piezoelectric body having a plurality of regions divided in a grid pattern of n (n is an integer of 2 or more) sections in the second direction crossing a first direction,
前記複数の領域のうちの少なく とも 1つの領域を、 前記圧電体を励振 する励振用電力が供給される励振用領域とし、  At least one of the plurality of regions is an excitation region to which excitation power for exciting the piezoelectric body is supplied,
前記複数の領域の残りの領域のうちの少なく とも 1つの他の領域を前 記圧電トランスから出力を取り出す出力用領域とすることを特徴とする 圧電トランス。  A piezoelectric transformer, wherein at least one of the remaining areas of the plurality of areas is an output area for extracting an output from the piezoelectric transformer.
2 . 前記圧電体が平板であり、 2. The piezoelectric body is a flat plate,
前記励振用領域内の前記 2つの主面に励振用電極対が設けられ、 前記出力用領域内の前記 2つの主面に出力用電極対が設けられている ことを特徴とする請求項 1記載の圧電トランス。  The excitation electrode pair is provided on the two main surfaces in the excitation region, and the output electrode pair is provided on the two main surfaces in the output region. Piezoelectric transformer.
3 . 前記励振用領域内に、 互いに対向する励振用電極対が前記 2つの主 面と実質的に平行に設けられ、 3. An excitation electrode pair facing each other is provided substantially parallel to the two main surfaces in the excitation region,
前記出力用領域内に、 互いに対向する出力用電極対が前記 2つの主面 と実質的に平行に設けられ、  In the output area, output electrode pairs facing each other are provided substantially parallel to the two main surfaces,
前記励振用電極対のうちの一方が前記 2つの主面のうちのいずれか一 方の主面上または前記圧電体の内部に設けられ、  One of the excitation electrode pairs is provided on one of the two main surfaces or inside the piezoelectric body,
前記励振用電極対のうちの他方が前記 2つの主面のうちの他方の主面 上または前記圧電体の内部に設けられ、 前記出力用電極対のうちの一方が前記 2つの主面のうちのいずれか一 方の主面上または前記圧電体の内部に設けられ、 The other of the excitation electrode pair is provided on the other main surface of the two main surfaces or inside the piezoelectric body, One of the output electrode pairs is provided on one of the two main surfaces or inside the piezoelectric body,
前記出力用電極対のうちの他方が前記 2つの主面のうちの他方の主面 上または前記圧電体の内部に設けられていることを特徴とする請求項 1 記載の圧電トランス。  2. The piezoelectric transformer according to claim 1, wherein the other of the pair of output electrodes is provided on the other main surface of the two main surfaces or inside the piezoelectric body.
4 . 前記圧電体が、 圧電材料からなる複数の平板を積層して構成され、 前記複数の平板が、 前記 2つの主面とほぼ平行な 2つの副主面をそれ ぞれ備え、  4. The piezoelectric body is formed by stacking a plurality of flat plates made of a piezoelectric material, and the plurality of flat plates each include two sub-main surfaces substantially parallel to the two main surfaces,
前記複数の平板が、 前記第 1の方向に前記 m区分、 前記第 2の方向に 前記 n区分の格子状に分割された複数の副領域をそれぞれ有し、 前記励振用電極対の前記一方が、 前記励振用領域内に積層されている 複数の前記副領域の複数の前記副主面のうちの少なく とも 1つの副主面 上に設けられ、  The plurality of flat plates each have a plurality of sub-regions divided into the m sections in the first direction and the n sections in the second direction in a grid shape, and the one of the excitation electrode pairs is A plurality of sub-main surfaces of the plurality of sub-regions stacked in the excitation region are provided on at least one sub-main surface;
前記励振用電極対の前記他方が、 前記複数の副主面のうち残りの少な く とも 1つの副主面上に設けられ、  The other of the excitation electrode pairs is provided on at least one of the remaining sub-main surfaces of the plurality of sub-main surfaces;
前記出力用電極対の前記一方および前記他方が、 前記出力用領域内に 積層されている複数の前記副領域の複数の前記副主面うちのいずれか 2 つの副主面上にそれぞれ設けられていることを特徴とする請求項 3記載 の圧電トランス。  The one and the other of the output electrode pairs are respectively provided on any two of the plurality of sub-main surfaces of the plurality of sub-regions stacked in the output region. 4. The piezoelectric transformer according to claim 3, wherein:
5 . 前記励振用電極対間の前記圧電体および前記出力電極対間の前記圧 電体が、 前記 2つの主面に実質的に直角方向に分極されていることを特 徴とする請求項 2乃至 4のいずれかに記載の圧電トランス。  5. The piezoelectric body between the pair of excitation electrodes and the piezoelectric body between the pair of output electrodes are polarized in a direction substantially perpendicular to the two main surfaces. A piezoelectric transformer according to any one of claims 1 to 4.
6 . 前記励振用領域および前記出力用領域のうちの一方の領域内の前記 2つの主面に励振用電極および出力用電極の一方となる第 1および第 2 の電極がそれぞれ設けられ、 6. The one of the excitation area and the output area First and second electrodes, which are one of the excitation electrode and the output electrode, are provided on the two main surfaces, respectively.
前記励振用領域および前記出力用領域のうちの他方の領域内の前記 2 つの主面の少なく とも一方に前記励振用電極および前記出力用電極の他 方となる第 3の電極が設けられ、  A third electrode that is the other of the excitation electrode and the output electrode is provided on at least one of the two main surfaces in the other of the excitation area and the output area;
前記第 1の電極と前記第 2の電極との間の前記圧電体が前記 2つの主 面に実質的に直角方向に分極され、  The piezoelectric body between the first electrode and the second electrode is polarized substantially perpendicular to the two main surfaces;
前記励振用領域および前記出力用領域のうちの前記他方の領域内の前 記圧電体の少なく とも一部が、 前記 2つの主面に平行な分極成分を有す るように分極されていることを特徴とする請求項 1記載の圧電トランス。  At least a part of the piezoelectric body in the other area of the excitation area and the output area is polarized so as to have a polarization component parallel to the two main surfaces. The piezoelectric transformer according to claim 1, wherein:
7 . 前記励振用領域および前記出力用領域のうちの一方の領域内に、 励 振用電極および出力用電極の一方となる第 1および第 2の電極が互いに 対向すると共に前記 2つの主面に実質的に平行にそれぞれ設けられ、 前記励振用領域おょぴ前記出力用領域のうちの他方の領域内に、 前記 励振用電極および前記出力用電極の他方となる第 3の電極が設けられ、 前記第 1の電極が前記励振用領域および前記出力用領域のうちの前記 一方の領域内の前記 2つの主面のうちのいずれか一方上または前記励振 用領域および前記出力用領域のうちの前記一方の領域内の前記圧電体の 内部に設けられ、 7. In one of the excitation area and the output area, a first electrode and a second electrode that are one of the excitation electrode and the output electrode face each other, and are disposed on the two main surfaces. A third electrode which is provided substantially in parallel with each other, and which is the other of the excitation electrode and the output electrode, is provided in the other of the excitation area and the output area; The first electrode is located on one of the two main surfaces in the one of the excitation area and the output area or the one of the excitation area and the output area. Provided inside the piezoelectric body in one region,
前記第 2の電極が前記励振用領域および前記出力用領域のうちの前記 一方の領域内の前記 2つの主面のうちの他方上または前記励振用領域お よび前記出力用領域のうちの前記一方の領域内の前記圧電体の内部に設 けられ、  The second electrode is provided on the other of the two main surfaces in the one of the excitation area and the output area, or the one of the excitation area and the output area. Is provided inside the piezoelectric body in the region of
前記第 1の電極と前記第 2の電極との間の前記圧電体が前記 2つの主 面に実質的に直角方向に分極され、 前記励振用領域および前記出力用領域のうちの前記他方の領域内の少 なく とも一部が、 前記 2つの主面に平行な分極成分を有するように分極 されていることを特徴とする請求項 1記載の圧電トランス。 The piezoelectric body between the first electrode and the second electrode is polarized substantially perpendicular to the two main surfaces; At least a part of the other area of the excitation area and the output area is polarized so as to have a polarization component parallel to the two main surfaces. The piezoelectric transformer according to 1.
8 . 前記圧電体が、 圧電材料からなる複数の平板を積層して構成され、 前記複数の平板が、 前記 2つの主面とほぼ平行な 2つの副主面をそれ ぞれ備え、 8. The piezoelectric body is configured by stacking a plurality of flat plates made of a piezoelectric material, and the plurality of flat plates each include two sub-main surfaces substantially parallel to the two main surfaces,
前記複数の平板が、 前記第 1の方向に前記 m区分、 前記第 2の方向に 前記 n区分の格子状に分割された複数の副領域をそれぞれ有し、 前記第 1の電極が、 前記励振用領域および前記出力用領域のうちの前 記一方の領域内に積層されている複数の前記副領域の複数の前記副主面 のうちの少なく とも 1つの副主面上に設けられ、  The plurality of flat plates each have a plurality of sub-regions divided in a grid shape of the m sections in the first direction and the n sections in the second direction, and the first electrode includes the excitation electrode. A plurality of sub-main surfaces of the plurality of sub-regions stacked in the one of the output region and the output region are provided on at least one of the sub-main surfaces,
前記第 2の電極が、 前記複数の副主面のうち残りの副主面のうちの少 なくも 1つの副主面上に設けられ、  The second electrode is provided on at least one sub-main surface of the remaining sub-main surfaces of the plurality of sub-main surfaces;
前記第 3の電極が、 前記励振用領域および前記出力用領域のうちの前 記他方の領域内に積層されている複数の前記副領域の複数の前記副主面 うちのいずれかの副主面上に設けられていることを特徴とする請求項 7 記載の圧電トランス。  The third electrode is any one of the plurality of sub-main surfaces of the plurality of sub-regions stacked in the other of the excitation region and the output region; 8. The piezoelectric transformer according to claim 7, wherein the piezoelectric transformer is provided on the upper side.
9 . 前記励振用領域および前記出力用領域のうちの一方の領域の少なく とも一部が前記 2つの主面に実質的に直角方向に分極され、  9. At least a portion of one of the excitation region and the output region is polarized substantially perpendicular to the two main surfaces,
前記励振用領域および前記出力用領域のうちの他方の領域の少なく と も一部が前記 2つの主面に平行な分極成分を有するように分極されてい ることを特徴とする請求項 1記載の圧電トランス。  2. The device according to claim 1, wherein at least a part of the other of the excitation area and the output area is polarized so as to have a polarization component parallel to the two main surfaces. Piezo transformer.
PCT/JP1998/005891 1997-12-26 1998-12-25 Piezoelectric transformer WO1999034454A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9367616A JPH11195821A (en) 1997-12-26 1997-12-26 Piezoelectric transducer
JP9/367616 1997-12-26
JP10038108A JPH11220186A (en) 1998-02-03 1998-02-03 Piezoelectric transformer
JP10/38108 1998-02-03

Publications (1)

Publication Number Publication Date
WO1999034454A1 true WO1999034454A1 (en) 1999-07-08

Family

ID=26377300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005891 WO1999034454A1 (en) 1997-12-26 1998-12-25 Piezoelectric transformer

Country Status (1)

Country Link
WO (1) WO1999034454A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267426A2 (en) * 2001-06-14 2002-12-18 Matsushita Electric Industrial Co., Ltd. Piezoelectric transformer
DE102013210561A1 (en) * 2013-06-06 2014-12-11 Albert-Ludwig-Universität Freiburg PIEZOELECTRIC ELEMENT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526600B1 (en) * 1969-10-10 1980-07-14
JPH06177451A (en) * 1992-12-08 1994-06-24 Nec Corp Piezoelectric transformer and driving method thereof
JPH08181361A (en) * 1994-12-26 1996-07-12 Tokin Corp Piezoelectric device
JPH09307150A (en) * 1996-05-14 1997-11-28 Tokin Corp Piezoelectric transformer
JPH10270767A (en) * 1997-03-27 1998-10-09 Alps Electric Co Ltd Piezoelectric transformer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526600B1 (en) * 1969-10-10 1980-07-14
JPH06177451A (en) * 1992-12-08 1994-06-24 Nec Corp Piezoelectric transformer and driving method thereof
JPH08181361A (en) * 1994-12-26 1996-07-12 Tokin Corp Piezoelectric device
JPH09307150A (en) * 1996-05-14 1997-11-28 Tokin Corp Piezoelectric transformer
JPH10270767A (en) * 1997-03-27 1998-10-09 Alps Electric Co Ltd Piezoelectric transformer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267426A2 (en) * 2001-06-14 2002-12-18 Matsushita Electric Industrial Co., Ltd. Piezoelectric transformer
EP1267426A3 (en) * 2001-06-14 2005-06-15 Matsushita Electric Industrial Co., Ltd. Piezoelectric transformer
DE102013210561A1 (en) * 2013-06-06 2014-12-11 Albert-Ludwig-Universität Freiburg PIEZOELECTRIC ELEMENT
DE102013210561B4 (en) * 2013-06-06 2016-11-10 Albert-Ludwig-Universität Freiburg Bending transducer with a piezoelectric element

Similar Documents

Publication Publication Date Title
US5892318A (en) Piezoelectric transformer with multiple output
US20140167571A1 (en) Piezoelectric transformer with high effective electromechanical coupling factors
WO2002007294A1 (en) Inverter circuit with multilayer piezoelectric transformer
US6278227B1 (en) Piezoelectric transformer
JP2004533708A (en) Piezoelectric transformer and operation method
WO1999034454A1 (en) Piezoelectric transformer
JP3706509B2 (en) Piezoelectric transformer
US7202592B2 (en) Piezoelectric transformer, power supply circuit and lighting unit using the same
JPH11220186A (en) Piezoelectric transformer
EP1158586A1 (en) Piezoelectric transformer
JPH11195821A (en) Piezoelectric transducer
JP3022373B2 (en) Piezoelectric transformer and its driving method
EP2764556B1 (en) Slat-constructed autonomic transformers
JP4747540B2 (en) Piezoelectric transformer
JP4721540B2 (en) Piezoelectric transformer and power supply device
JP3709114B2 (en) Piezoelectric transformer
JP3266122B2 (en) Piezoelectric transformer
JP3082726B2 (en) Multilayer piezoelectric transformer and its mounting structure
JP3010896B2 (en) Piezoelectric transformer and its driving method
JP2002111090A (en) Piezoelectric transformer and its driving method
JP4831859B2 (en) Piezoelectric transformer
JPH11145528A (en) Piezoelectric transformer
JP2000261060A (en) Piezoelectric transformer
JP2000252542A (en) Voltage transformer
JP3278059B2 (en) Support structure of piezoelectric transformer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase