WO1999032322A1 - Driving unit for vehicles - Google Patents

Driving unit for vehicles Download PDF

Info

Publication number
WO1999032322A1
WO1999032322A1 PCT/JP1998/004302 JP9804302W WO9932322A1 WO 1999032322 A1 WO1999032322 A1 WO 1999032322A1 JP 9804302 W JP9804302 W JP 9804302W WO 9932322 A1 WO9932322 A1 WO 9932322A1
Authority
WO
WIPO (PCT)
Prior art keywords
mouth
clutch
row
field magnet
stay
Prior art date
Application number
PCT/JP1998/004302
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Seguchi
Keiichiro Banzai
Original Assignee
Denso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9351393A external-priority patent/JPH11187614A/en
Priority claimed from JP10212486A external-priority patent/JP2000050585A/en
Application filed by Denso Corporation filed Critical Denso Corporation
Publication of WO1999032322A1 publication Critical patent/WO1999032322A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention belongs to the technical field of an electromagnetic force coupling drive device for a hybrid vehicle including both an engine and a rotating electric machine. Background art
  • This conventional vehicular drive system includes a stay fixed to a machine frame, a first road connected to an engine output shaft and supported coaxially with the stay, a first stay and a first stay. And a second port connected to the wheel drive shaft.
  • the stay overnight has a stay overnight core and a stay overnight winding, and the stay overnight winding is connected to the inverter of an external drive circuit.
  • the first row has a low core and a low winding, and the low winding is also connected to another driver of the external drive circuit.
  • the second opening is a hollow cylindrical rotor, which faces the stay at the outer peripheral surface forming the outer peripheral field and the inner peripheral surface forming the inner peripheral field. It faces the first row evening.
  • the second row held multiple outer field magnets on the outer face and multiple inner field magnets on the inner face. .
  • a desired torque can be efficiently obtained regardless of the rotational speed difference between the first rotor connected to the engine output shaft and the second rotor connected to the wheel drive shaft. We were able to drive the vehicle over the second mouth.
  • the outer field magnet is disposed so as to form the outer peripheral surface of the second rotor, so that in order to be able to withstand the centrifugal force during high-speed rotation, However, it was necessary to fix the outer field magnet in the second mouth very firmly.
  • the inner field magnets are arranged so as to form the inner peripheral surface of the second opening, vibration such as vibration applied to the mounted vehicle during low-speed rotation is applied. In order to be able to withstand the speed, it was necessary to fix the inner field magnet to the second rotor firmly, if not as strongly as the outer field magnet.
  • an object of the present invention is to provide a vehicle drive device which is further reduced in size and weight and has excellent responsiveness. Disclosure of the invention
  • an armature is formed on each of the stay and the first row, and an outer peripheral magnetic field is formed on the second row interposed therebetween. And an inner peripheral field is formed. Therefore, by appropriately controlling the inner magnetic circuit formed between the first mouth and the second mouth, torque can be transferred between the first mouth and the second morning. Is performed to configure the rotating electric machine, and the rotating electric machine function of the rotation speed adjusting unit is exhibited between the two. Also, by appropriately controlling the outer magnetic circuit formed between the second row and the stay, torque is transmitted and received between the second mouth and the stay and another Thus, the rotating electric machine function of the torque adjusting unit is exhibited.
  • the first port is connected to the engine output shaft and is rotationally driven by the engine
  • the second port is connected to the drive shaft of the drive wheel and whether the same drive shaft is rotationally driven. Conversely, it is rotationally driven from the same drive shaft.
  • the number of revolutions of the engine is substantially determined by conditions such as the degree of throttle and the torque load, and the number of revolutions of the drive shaft of the drive wheels is also uniquely determined by the traveling speed of the mounted vehicle. Therefore, it is considered that the rotation speeds of the first row and the second mouth are determined independently, and the rotation speed is formed between the first mouth and the second mouth.
  • the adjusting of the rotating speed between the two sides is the main operation. This effect is the same regardless of whether the armature consisting of the first core and the first winding has an electric action and a power generation action.
  • the armature consisting of the stay core and the stay winding is required to transmit and receive the appropriate torque in the second row and drive the second port at the desired speed. There is. This is because the second vehicle connected to the drive shaft of the driving wheels must be driven at an appropriate rotation speed in order for the mounted vehicle to travel at the desired speed. Therefore, in the rotating electric machine operation of the torque adjusting section formed between the stay and the second row, the main action is to transmit and receive an appropriate drive torque to the second row.
  • the effect is that the armature of the stay It does not change when the motor is operated by applying torque in the fast direction or when power is generated by applying torque in the deceleration direction over the second opening.
  • the operation of the vehicle drive device of the present means has been described by emphasizing the difference between the operation of the rotating electric machine of the rotation speed adjusting unit and the operation of the rotating electric machine of the torque adjusting unit.
  • the vehicle of this means is to control the armature of the stay and the mouth of the first mouth properly and transmit the power efficiently from the evening of the first mouth to the second morning. It is the key to the driving device for use. In other words, an appropriate torque load is applied to the first port connected to the engine output shaft, and a desired rotational speed is set to the second port connected to the drive shaft of the drive wheels. Is to apply the proper torque to
  • an external circuit so that the control of the armature of the stay and the control of the armature of the first mouth can be performed by the inverter electrically connected to it. It is.
  • the surplus or shortage of electric power generated as a result of the power generation and / or motor operation of the rotating electric machine formed in the rotation speed adjustment unit and the torque adjustment unit, respectively, is determined by the battery (secondary battery) connected to each inverter.
  • the external circuit should be configured so that it can be adjusted by the transfer of electric power to and from the external circuit. If the battery capacity is large enough, there is no power shortage or wasted energy.
  • the vehicle drive system of this means is not only simple in configuration and lightweight and compact, but also has a relatively high power transmission efficiency, making it possible to reduce the size and weight of the onboard vehicle and enhance the power performance. Fuel efficiency and pollution can be reduced.
  • the main field magnet, the inner sub-field magnet, and the outer sub-field magnet are housed in the opening yoke, and each field magnet is disposed in a compact. Therefore, the thickness of the yoke yoke in the radial direction is not so large but formed relatively thin.
  • a plurality of fixing bins or neck-length bolts that penetrate the rope yoke in the axial direction. be able to.
  • at least one of the inner circumferential surface and the outer circumferential surface of the rotor yoke may be integrally fixed by welding in the axial direction, or another fixing method may be employed.
  • the present means it is possible to make the second mouth and night relatively thin and lightweight. As a result, it becomes possible to reduce the size and weight of the vehicle drive device of the present means.
  • the inertia moment of the second mouth can be suppressed to a relatively small value while generating a magnetic field capable of transmitting and receiving sufficient torque to the stay and the first mouth.
  • the response characteristics during acceleration and deceleration are improved (the time constant is shortened).
  • an input shaft switching clutch that can connect the clutch input shaft to one of the first port and the second port, and the clutch output shaft to one of the first port and the second port
  • the unit is equipped with an output shaft switching clutch that can be connected to multiple shafts.
  • An inner magnetic circuit is formed between the first mouth and the second row to transmit and receive torque.
  • an outer magnetic circuit is formed between the first mouth and the second mouth. Is formed to transmit and receive torque.
  • the combination of the clutch input shaft and clutch output shaft and the continuous shaft of the first roaster and the second port can be arbitrarily selected. be able to. Therefore, it is possible to link the shafts in a combination that allows the most efficient transfer of torque between the first mouth and the second row. As a result, the transmission efficiency from the clutch input shaft to the clutch output shaft can be kept high regardless of the magnitude relationship between the rotation speed of the clutch input shaft and the rotation speed of the clutch output shaft.
  • FIG. 1 is a side sectional view showing the overall configuration of a vehicle drive device as a first embodiment.
  • FIG. 2 is an end view showing a main part configuration of the vehicle drive device as the first embodiment.
  • FIG. 3 is an end view showing an example of a magnetic path of the vehicle drive device of the first embodiment.
  • FIG. 4 is an end view showing another example of the magnetic path of the vehicle drive device of the first embodiment.
  • FIG. 5 is an end view showing a configuration of a main part of a vehicle drive device according to a second embodiment.
  • FIG. 6 is an end view showing an example of a magnetic path of the vehicle drive device according to the second embodiment.
  • FIG. 7 is an end view showing another example of the magnetic path of the vehicle drive device according to the second embodiment.
  • FIG. 1 is a side sectional view showing the overall configuration of a vehicle drive device as a first embodiment.
  • FIG. 2 is an end view showing a main part configuration of the vehicle drive device as the first embodiment.
  • FIG. 3 is an end view showing an
  • FIG. 8 is an end view showing a main part configuration of a vehicle drive device according to a first modification of the second embodiment.
  • FIG. 9 is an end view showing the configuration of the vehicle drive device according to the third embodiment.
  • FIG. 10 is an operation conceptual diagram showing each operation mode of the third embodiment in comparison.
  • Fig. 11 is an assembly diagram showing the operation in the deceleration mode of the third embodiment, where (a) a graph showing the shaft input to the clutch input shaft, (b) a graph showing the power generation operation, and (c) a graph showing the electric operation.
  • (D) is a graph showing shaft output to a clutch output shaft.
  • FIGS. 12 and 13 are assembly diagrams showing the operation in the speed increasing mode (low efficiency) of the third embodiment.
  • FIG. 13 is a set diagram showing the operation in the speed increasing mode of the third embodiment, where (a) a graph showing the shaft input to the clutch input shaft, (b) a graph showing the power generation operation, and (c) an electric operation.
  • (D) is a graph showing shaft output to a clutch output shaft.
  • FIGS. 14A and 14B are set diagrams showing the operation of the various operation modes of the third embodiment.
  • FIG. 15 is an end view showing the configuration of the vehicle drive device according to the fourth embodiment.
  • FIG. 16 is an end view showing the configuration of the vehicle drive device as the fifth embodiment.
  • FIG. 17 is an enlarged partial end view showing the configuration of the clutch part of the fifth embodiment.
  • FIG. 18 is an end view showing a configuration of a vehicle drive device according to a sixth embodiment.
  • FIG. 19 is an enlarged partial end view of the configuration of the clutch part of the sixth embodiment.
  • FIG. 20 is a side end view showing the overall configuration of the vehicle drive device as the seventh embodiment.
  • FIG. 21 is a front end view showing a configuration of a main part of a vehicle drive device according to a seventh embodiment.
  • FIG. 22 is a front view showing the shape of the first row of the seventh embodiment.
  • Fig. 23 shows an example of the magnetic path in the main part of the seventh embodiment. It is a front end view shown.
  • FIG. 24 is a front end view showing another example of the magnetic path in the main part of the seventh embodiment.
  • FIG. 25 is a front end view showing the configuration of the first mouth of the eighth embodiment.
  • FIG. 26 is a front end view showing the configuration of the first mouth of the first variation of the eighth embodiment.
  • FIG. 27 is a front end view showing the configuration of the first row of the ninth embodiment.
  • FIG. 22 is a front view showing the shape of the first row of the seventh embodiment.
  • Fig. 23 shows an example of the magnetic path in the main part of the seventh embodiment. It is a front end view shown.
  • FIG. 24 is a front end view showing another example of the magnetic
  • FIG. 28 is a front end view showing the configuration of the first row of Modification 1 of the ninth embodiment.
  • FIG. 29 is a front end view showing the configuration of the first mouth of the variation 2 of the ninth embodiment.
  • FIG. 30 is a side sectional view showing the overall configuration of the vehicle drive device as the tenth embodiment.
  • FIG. 31 is an end view showing a main part configuration of the vehicle drive device as the tenth embodiment.
  • the vehicle drive system 100 as Embodiment 1 of the present invention increases or decreases the shaft output from the output shaft 110 of the engine 100 as necessary, and This is a device for driving the drive wheels 700 with torque and rotation speed. Therefore, taking into account the effect of increasing or decreasing the shaft output, the vehicle drive system 100 of this embodiment is a kind of torque-rotational speed (TS) converter that operates via electromagnetic force. It is also possible to capture that effect.
  • TS torque-rotational speed
  • the main parts of the vehicle drive device 100 of the present embodiment include a stage 1 14 10 fixed to a front frame 1 110 as a machine frame, and an engine output shaft 1 10 0.
  • the first port is connected to the drive wheel 700 and the second port 1310 is connected to the drive wheel 700.
  • Station 1 14 1 0 consists of a steel core 1 4 1 2 made of laminated electromagnetic steel sheet and a steel coil 1 4 1 1, and the coil 1 4 1 1 is Invar 4 It is connected to 00 in three phases.
  • the first mouth 1 2 1 0 has a mouth 1 2 core and a 2 1 1 winding wire, and is supported coaxially with the stay 1 4 1 0 at predetermined intervals. It faces the inner peripheral surface of the evening.
  • the input shaft 1 2 1 3 of the first rotor 1 2 1 0 is formed by the internal gear 1 2 13 a formed at the tip (left end in the figure).
  • the output shaft 1 1 0 of the engine 1 1 0 The first mouth 1 210 is rotationally driven by the shaft output of the engine 100.
  • the mouth-to-mouth winding wire 1 2 1 1 is installed at the rear end (right end in the figure) of the input shaft 1 2 1 3 of the first rotor 1 210. It is connected to another inverter 200 in three phases via a brush unit 1600 that is connected.
  • the brush part 160 ⁇ is composed of a brush 1620 held by a brush holder J610 fixed to the rear frame 1720, and a lead wire 1612 at a lead part 1660. It consists of a slip ring 1 630 connected to 1.
  • the brush holder 1610, the brush 1620, the slip ring 1630, and the lead section 1660 each have three sets.
  • the respective split rings 1630 are insulated from each other by an insulating portion 1650.
  • the brush part 1600 is covered by a cover case 1920 that seals the rear end (right end in the figure) of the rear frame 1720 fixed to the front frame 1710.
  • the second row 1310 is coaxial with the station 1410 and the first row 110.
  • the second row 1310 is rotatably supported by bearings 1510 and 1513 fixed at both ends at both ends.
  • the evening 1 210 is rotatably supported by bearings 1 5 1 1 1 and 1 5 1 4 held at the second opening 13 1 10. Therefore, the first row 1 2 10 and the second row 1 310 can rotate independently of each other, though they have an electromagnetic dynamic relationship.
  • the main parts of the second mouth 1310 will be a main field magnet 1320 (see FIG. 2), which is a permanent magnet, and an inner subfield magnet 1220.
  • the outer sub-field magnet 1420 forms a field.
  • the main part of the second mouth has a hollow cylindrical shape with a relatively thin wall, and the inner peripheral surface of the stay 14 and the outer peripheral surface of the first low Are stored at the above-mentioned predetermined intervals.
  • the first opening 1310 is located on the outer peripheral surface forming the outer peripheral field, facing the inner peripheral surface of the stay 1410, and forming the inner peripheral field. And faces the outer peripheral surface of the first mouth 1 210.
  • the main part of 1/10 is the three types of permanent magnets 1220, 1320, and 1420 that form the outer and inner magnetic fields and the laminated magnets that hold the permanent magnets. It is composed of a mouth yoke 1 3 1 1 made of an electromagnetic steel plate, and a fixing pin 1 333 which penetrates and fixes the mouth yoke 1 3 1 1. Both ends of the main portion of the second mouth 1310 are formed of end plates 1334, 1335 having high rigidity, and each fixing pin 1333 is provided with an end plate 1334, It is press-fitted into the through-hole formed in 1335. Therefore, assembly Even in the middle of the process, the above-mentioned essential parts are not inadvertently disassembled, and assembling becomes easy.
  • each fixing pin 13 33 protruding from the end plate 13 33 4 and 13 33 are respectively a front opening frame 13 33 and a rear row frame 13 33 And is firmly fixed.
  • the above-mentioned bearings 1515 to 1514 are attached to the inner and outer peripheral sides of the front low frame 1 33 1 and the rear opening frame 1 33 2, respectively.
  • An internal gear 1331a is formed on the outer periphery of the front end of the front opening frame 1331 (left end in the figure), and a gear 18 via the internal gear 1331a. 11 is fixed circumferentially to the front end of the front opening frame 1 3 3 1.
  • Gear 1 8 1 1 meshes with the other adjacent gear 1 8 1 2 to form a reduction section 1 800, and the second opening 1 3 1 0 is a reduction section 1 8 0 0 And a drive shaft of the drive wheel 700 via a differential gear section 190.
  • the rotation angles of the first mouth 1 2 1 0 and the second mouth 1 3 10 are measured by two rotation angle sensors 1911 and 1912, respectively.
  • Control device Input to 500.
  • the ECU 500 performs calculations based on information from the two rotation angle sensors 1911 and 1912 and information such as accelerator opening and throttle opening based on an appropriate control law.
  • the two members mentioned above—evening 200 and 400 are controlled.
  • Both inverters 200 and 400 are connected in parallel to the battery 600, and the battery 600 transmits and receives power to and from the inverters 200 and 400, respectively. It supplies power necessary for charging / powering operation by the power generation function of the vehicle drive unit.
  • an inner-peripheral magnetic circuit is formed between the first mouth 1210 and the second row 1310 to transmit and receive torque. Since the number of revolutions is usually different between the first mouth 1 2 1 0 and the second mouth 1 3 1 0, the 1st mouth 1 1 It can be considered that the rotation speed of the mouth is being adjusted during the period from 210 to the second row 1310 connected to the drive wheel 700. Therefore, the portion including the main field magnet 1320 of the second mouth 1310 and the inner subfield magnet 1220 and the first row 1210 and the rotation speed adjusting section Let's call it 1 200. On the other hand, an outer magnetic circuit is formed between the second mouth 1310 and the stay 1410 to transmit and receive torque.
  • the portion including the 1320 and the outer sub-field magnet 1420 and the stay 1410 will be referred to as a torque adjusting section 1400.
  • the main parts of the vehicle drive device 100 of the present embodiment include a first row 1 2 1 0, a second port 1 3 It is composed of 1 4 10
  • the input shaft 1 2 1 3 of the 1st row 1 2 1 0 is connected to the engine output shaft 1 1 0 (see Fig. 1), and the 1st port 1 2 1 0 is free to rotate It is pivoted.
  • the second port 1310 is connected to a drive wheel 700 (see Fig. 1) and is rotatably supported.
  • the rotation direction of the first mouth 1 2 1 0 and the rotation of the second mouth 1 3 10 are normally the same direction.
  • the stay 1410 is housed in a front frame 1710 (see FIG. 1) fixed to the engine 100 and is fixedly held.
  • the main part of the 1st Port 1 2 1 10 is an input 1 2 3 core, consisting of an input shaft 1 2 13 and a number of electromagnetic steel sheets laminated in the axial direction around the input shaft 1 2 13 It is composed of 1 2 1 2 and a 1 1 2 1 1 winding wire wound around a slot 1 2 1 2 a of a 1 2 1 2 core.
  • the stay core 14 1 10 is composed of a stay core 14 2 consisting of a large number of magnetic steel sheets laminated in the axial direction, and a slot 14 1 2 of the stay core 14 2. It is composed of a stay winding wire 1 4 1 1 wound around a.
  • the main field magnets 1320 are arranged at predetermined intervals in the circumferential direction in the rower yoke 1311, and the magnetic poles are directed alternately in the radial direction to form the outer peripheral field magnets 1320. And an even number of permanent magnets forming the inner peripheral field.
  • the fixed bin 1 3 3 3 is a through hole that is punched out of a mouth yoke 1 3 1 1 made of laminated electromagnetic steel sheet at an intermediate portion between the adjacent main field magnets 13 20. It is press-fitted into the pin hole with a tight fit, and the mouth yoke 1311 is integrally connected. Further, since the fixing pin 1 3 3 3 is formed of a soft magnetic material as described above, it serves as a part of the opening yoke 1 3 1 1 that forms a magnetic path and plays a role of transmitting magnetic flux. I have.
  • the outer sub-field magnet 144 and the inner sub-field magnet 122 have their magnetic poles oriented in substantially the same direction as the adjacent main field magnet 132. 2 0, 1 2 2 0 form a pair.
  • the outer sub-field magnets 144 and the inner sub-field magnets 122 are arranged in two pairs in the vicinity of both ends of each main field magnet 132 0. .
  • the outer sub-field magnet 140 and the inner sub-field magnet 122 are close to the circumferential end of the main field magnet 132 whose one end is close, and the other ends are in the centrifugal direction. And are separated in the centripetal direction, and they are held in the rower yokes 1 3 1 1 respectively.
  • the other ends of the outer sub-field magnet 1402 and the inner sub-field magnet 122 are spaced apart from each other with the fixed bin 133 being interposed therebetween.
  • Each of the main field magnet 1320, the inner sub-field magnet 122, and the outer sub-field magnet 14420 is a plate-shaped permanent magnet block having a rectangular cross section.
  • the thickness of the outer sub-field magnet 140 and the thickness of the inner sub-field magnet 122 is larger than the thickness of the main field magnet 132. It is desirable that at least one of the thickness of the outer sub-field magnet 140 and the thickness of the inner sub-field magnet 120 is less than the thickness of the main field magnet 132.
  • the thickness of the main field magnet 1320 is T
  • the thicknesses of the inner sub-field magnet 122 and the outer sub-field magnet 144 are respectively t 1 and t 2
  • the mouth-evening yoke 1 3 1 1 is composed of a number of electromagnetic steel sheets laminated in a hollow cylindrical shape, and has a main field magnet 1 3 2 0 in a rectangular through hole of a predetermined size stamped at a predetermined position.
  • the inner secondary field magnet 122 and the outer secondary field magnet 142 I have Note that voids 1311a to 1311d are formed at the corners of these rectangular through holes to prevent magnetic flux from leaking.
  • an air gap 13-11 b is formed between the main field magnet 1320 and the outer subfield magnet 1420, and the main field magnet 1320 is different from the main field magnet 1320.
  • An air gap 1311a is formed at two places in contact with two corners of the opposite outer subfield magnet 14420.
  • an air gap 1311d is formed between the main field magnet 1320 and the inner field magnet 1220, which is opposite to the main field magnet 1320.
  • a gap 1311c is formed at two places in contact with the two corners of the inner sub-field magnet 122 on the side.
  • the outer yoke 1 3 1 1 1 is formed with an outer circumferential groove 1 3 1 1 f and an inner circumferential groove 1 3 1 1 g. That is, on the outer peripheral surface of the opening yoke 1311, an outer peripheral groove 1311If is formed between two outer sub-field magnets 1420 adjacent to each other, and the magnetic path of that portion is formed. The resistance is increasing. Similarly, an inner circumferential groove 1 3 1 1 g is formed between two inner sub-field magnets 1 220 adjacent to each other on the inner circumferential surface of the low pressure 1 3 1 1. The magnetic path resistance of the part has been increased.
  • the plurality of fixing pins 1 3 3 3 penetrate in the axial direction through a circular through hole punched out of a mouth 1 3 1 1 made of a laminated electromagnetic steel sheet, and a main field magnet 1 3 2 0, the inner sub-field magnet 1 220 and the outer sub-field magnet 1 420 and the mouth 1 3 1 1 are fixed together.
  • Each of the fixing pins 1333 is, for example, a round bar made of a soft magnetic steel material, and is provided so as to penetrate a pin hole of an opening yoke 1311 formed by punching.
  • the outer peripheral surface of the fixing pin 1333 is finished with a single hole, and the fixing pin 1333 is press-fitted and fixed in a pin hole of the first opening yoke 1311 in an assembling process.
  • the outer diameter of the fixing pin 1 3 3 3 and the inner diameter of the bottle hole are slightly tightly fitted with tolerances. Therefore, in combination with the effect of the knurled finish of the fixing pins 1 3 3 3, there is no gap between the low pin yoke 1 3 1 1 and the fixing pin 1 3 3 2 Low 1 1 3 There is no danger of eccentricity. Therefore, the air gap between the inside and outside of the 2nd row 1130 is clogged up due to the connection of the fixing pin 1333, and the dynamic balance of the 1st row 1300 is lost. There is no danger of getting lost.
  • the state of the magnetic flux passing through the yoke 1 311 of the 1st 1st and 1st 1st 1 0 1 0 can be various.
  • the magnetic fluxes ⁇ 1 and ⁇ 2 of the second mouth 1310 reach the same level as the first row 1210 and the stay 1140. is there. That is, in this case, the magnetic flux ⁇ 1 penetrates through the main field magnet 1320 of the second rotor 1310 and becomes To form a closed magnetic path. Further, the magnetic flux ⁇ 2 penetrates through the inner sub-field magnet 122 and the outer sub-field magnet 140 of the second mouth 1310, and the stator 1 A closed magnetic circuit passes through the mouth 1 2 1 0.
  • a relatively short closed magnetic circuit is formed by bypassing the two outer sub-field magnets 144 adjacent to each other.
  • the inner circumferential field formed by the inner sub-field magnets 122 is canceled by the rotating field generated by the low-winding windings 112 of the first mouth 120. Therefore, a stronger interaction (magnetic torque, field-weakening control) between the 1st row 1 2 1 0 and the 2nd mouth 1 3 10 is activated.
  • the magnetic flux ⁇ 1 formed by the main field magnet 1 3 2 0 is also affected. Try to weaken In this case, not only the inner field but also the outer field is weakened, so the amount of magnetic flux passing through the stay 120 decreases.
  • the amount of current correction to flow on the stay side is determined by the amount and position of current to the low-winding winding 1 2 1 1 of the first mouth 1 210, the current supply voltage, rotation speed, etc. It is calculated by means of a map or a calculation that determines the amount of decrease in the field magnetic flux ⁇ 1. According to the above measures, even if the magnetic flux ⁇ 1 of the main field magnet 1320 is affected by the other winding field, the rotating machine having the other winding can output the desired torque. It becomes possible.
  • a part of the magnetic flux ⁇ 2 "from the first row 1 2 1 0 side is converted to a part of the 1st row yoke 1 3 1 1
  • a relatively short closed magnetic circuit is formed by bypassing the two inner sub-field magnets 122 0 adjacent to each other. Formed The outer peripheral field that is generated is offset by the rotation field generated by the stay winding 14 1 11 of the stay 1 14 Stronger magnetic torque is exerted from 410.
  • the thickness of the main part of the hollow cylindrical second row 13 10 can be suppressed to a necessary minimum.
  • the inner sub-field magnets 122 and the outer sub-field magnets 142 can form bypass magnetic paths, respectively. Because it is a target.
  • the main field magnet 13 serving as both the inner field magnet 122 A and the outer field magnet 140 A separately is also compared with the prior art (see FIG. 9). Since 20 is used, the amount of permanent magnet used can be reduced as a whole.
  • the rotating machine having the other winding can output the desired torque. It becomes possible.
  • the outer periphery of the mouth yoke 1 3 1 1 forms a magnetic path in the q-axis direction (circumferential direction) on the outer circumferential surface of the second mouth 1 3 10
  • the fluctuating magnetic field generates reluctance torque.
  • the inner periphery of the Rho-Yoke 1 3 1 1 forms a magnetic path in the q-axis direction on the inner peripheral surface of the 1st Routine 1 3 10 It has the effect of generating reluctance torque by the fluctuating magnetic field. Therefore, the Rho-Yoke 1 3 1 1 1 is not only a structural member that holds each of the field magnets 1 2 0, 1 3 2 0, 1 4 2 0, but also a function that works electromagnetically effectively. It is also a member.
  • the outer peripheral surface and inner peripheral surface of the main part of the first mouth 1 3 1 1 0 1 are formed by a mouth yoke 1 3 1 1 made of laminated steel sheet, so both ends in the axial direction are end plates 1 Cutting or grinding can be easily performed with the 334 and 1335 fixed. Therefore, it is possible to form the minimum air gap with high accuracy by processing the inner peripheral surface of the mouth yoke 1311 in accordance with the outer diameter of the first mouth 1210. Alternatively, process the outer surface of the 1st row 1 2 1 0 to match the inside diameter of the 1st row 1 1 3 1 1 yoke 1 3 1 1 It is also possible. Similarly, machine the outer surface of the lower yoke 1 3 1 1 according to the inner diameter of the stay 1 14 and adjust the outer diameter of the 1 3 1 1 It is possible to form the air gap with high precision.
  • the diameter of the vehicle drive device 1000 of the present embodiment is suppressed to be smaller.
  • the efficiency of the magnetic circuit that crosses the air gap by a narrow portion is improved (the magnetic resistance is reduced).
  • the performance as a rotating electric machine of 1 000 is also improved.
  • the vehicle drive device 1000 of the present embodiment is configured as described above, the vehicle drive device that transmits the shaft output of the engine 100 to the drive wheels 700 and appropriately increases the shaft output or generates electric power. The following effects are exhibited as the device 1000. Please read it again with reference to Figure 1.
  • the shaft output of the engine 100 (that is, the input to the input shaft 1 2 13) is the rotation speed 2 n [rpm] x the torque t [Nm], and the shaft output from the second port 1 3 10 It is assumed that the user wants to convert the speed into n [r pm] x 2 t [Nm].
  • the shaft output is converted from the first mouth 1 2 1 0 to the second low 1 3 10 the shaft output is generated by the rotation speed adjustment unit 1200 and conversely, the torque adjustment unit 1 400 In, the electric action is performed and the shaft output is converted (torque conversion).
  • the electric energy nt generated at 1st night 1 210 is transmitted via an inverter 200 to an external circuit consisting of two inverters 200, 400, Nometery 600 and ECU 500. be introduced.
  • the electric work energy is supplied to the station 1410 from the external circuit via the inverter 400, and is supplied to the second rotor 1310 by the electric action of the torque adjusting unit 1400. Exerts torque t.
  • the ECU 500 controls the inverter 400 to form a rotating magnetic field of 1410, and rotates in the direction of rotation with respect to the second port 1310 rotating at the rotation speed n. Apply torque t to.
  • control of the inverters 200 and 400 as described above is performed by controlling the rotation angle sensors 1911 and 1912 to control the first port 1210 and the second rotor 1310 respectively. This is performed based on the measured value of the rotation angle. That is, the ECU 500 performs appropriate field control calculations based on both rotation angles, and applies power to the first and second rotors 200 and 400 for the first and second rotors. Is properly directed.
  • the shaft output of the engine 100 (that is, the input to the input shaft 1 2 13) is the rotation speed n [rpm] x the torque 2 t [Nm], and Suppose that it is desired to convert the shaft output from 1 310 into 2 n [rpm] x torque t [Nm].
  • the motor operation is performed in the rotation speed adjustment unit 1200, and conversely, the torque adjustment unit 1400 In the power generation action is performed, Conversion of axis output is performed.
  • the first mouth 1 2 1 0 rotates at the rotation speed] !
  • the second low speed 1 3 1 0 rotates at the rotation speed 2 n
  • the first mouth 1 2 10 means that an electric action is exerted in the direction of accelerating the first mouth 1310.
  • the torque of the shaft output applied to the first mouth 1 210 is 2 t
  • the ECU 500 controls the inverter 200 to make the first row 110 2 1 perform an electric action of energy 2 nt.
  • the electric energy 2 nt required for the electric operation in the first mouth 1 210 is supplied from the external circuit through the inverter 200. Then, the electric energy 2 nt is supplied from the station 1410 through the external circuit 400. That is, due to the power generation effect of the torque adjusting unit 140 including the stay 1 140, the stay 1 14 1 0 is rotating at 2 n. Exerts braking on the torque t. In other words, the ECU 500 controls the inverter 400 to form a rotating magnetic field of 140 1 and the second port rotating at 2 n. A torque t is applied to 1310 in the direction opposite to the direction of rotation, and power is generated at station 1410.
  • the torque 2 t applied from the first rotor 1 2 1 0 and the torque applied from the stay 1 4 1 0 are applied to the second mouth 1 3 10 rotating at 2 n. Due to the difference from the torque t, the torque of t is eventually applied in the rotation direction. Therefore, the shaft input 2 nt (rotational speed nx torque 2 t) of the first mouth 1 2 1 0 is increased to the shaft output 2 nt (rotational speed 2 nx torque t) of the second mouth 1 310. The speed is converted.
  • the electric energy transmitted through the external circuit in this speed-up conversion is 2 nt
  • the electric energy transmitted through the external circuit in the above-mentioned speed-down conversion It is twice as large as nt. Therefore, since the speed-up conversion has a larger electromagnetic loss than the speed-down conversion, the vehicle driving device 100 of the present embodiment does not perform the operation in the speed-up conversion so much, and mainly has a slight speed-down conversion. It can be used with high efficiency by operating in
  • the gear ratio from the engine 100 to the drive wheels 700 The setting is such that the vehicle drive unit 1 000 can be operated almost always at a reduced speed.
  • An example of such an extreme case is when an on-board vehicle is braked by applying an engine brake.
  • the output of the shaft is more negative than the input of the shaft is negative, and the rotation field formed by the second port 1310 connected to the drive wheel 700 causes a step.
  • Electricity is generated and stored in the battery 600 not only at 11:00 overnight but also at 12:00 at 1st mouth.
  • the engine brake is applied in this way, the power generation operation is performed both at the station 1410 and the first mouth 1210, and there is no concentration on either side.
  • Neither the 1410 nor the 1st day 1 210 require a large power generation capacity. Therefore, both the stay 11.4 and the first mouth 1210 can be configured to be relatively small and lightweight. Therefore, if the drive system of the on-board vehicle is designed to operate the vehicle drive device 1 000 of this embodiment mainly with a slight deceleration, electromagnetic loss is also minimized, and extremely high efficiency is achieved. Operation in the country becomes possible.
  • the first effect is that it can withstand higher-speed rotation than the conventional technology.
  • the vehicle drive device of the present embodiment since the field magnets 1220, 1320, and 1420 are held inside the mouth yoke 1311, the vehicle drive device of the related art can be used. In comparison, the structure of the second mouth 1310 is more robust. Therefore, even if a strong centrifugal force is applied, there is no possibility that each of the field magnets 1220, 1320, and 1420 will come off the yoke 1311, so that it can withstand higher-speed rotation. it can. As a result, the vehicle drive device of the present embodiment can be operated at a higher rotation speed than the vehicle drive device of the prior art, so that the power transmission of the prior art vehicle Operation at lower torque than the device is possible.
  • the field magnets 122, 130, 140, and 142 are connected to the mouth yoke 1 3 1 1 in comparison with the vehicle drive device of the prior art. Is simple. Therefore, the number of parts and the number of assembling steps for holding the field magnets 122, 132, 140 in the yoke 13 11 are reduced, and the cost is reduced.
  • the second mouth 1310 not only is the second mouth 1310 more robust, and it is possible to operate at a higher rotation speed than the conventional technology, but also it is smaller and lighter and costs lower than the conventional technology. There is an effect that it becomes possible.
  • the second effect is that it is smaller and lighter than the above-mentioned prior art. That is, in the vehicle drive device of the present embodiment, as described above, the second row drive 130 can be formed thinner than the vehicle drive device of the prior art. The outer diameter of 140 1 overnight can be made smaller. As a result, the vehicle drive device of the present embodiment has the effect of not only reducing the size and weight but also reducing the material cost with the reduction in size and weight.
  • the third effect is an improvement in responsiveness.
  • the second rotor 1310 is lighter than the prior art, and the inertia moment of the second mouth 1310 is reduced. Therefore, the responsiveness of the rotation speed of the first mouth 1 310 is improved. Improving the responsiveness of the number of revolutions of the second mouth 1310 will lead to improved responsiveness of the drive wheels, and will also lead to improved acceleration and deceleration of the onboard vehicle. Further, as described above, in the present embodiment, the vehicle drive unit is lighter than the prior art compared to the prior art, so that the onboard vehicle is also reduced in weight and the agility of the onboard vehicle is improved. . Therefore, according to the present embodiment, not only the responsiveness of the vehicle drive device is improved, but also the agility of the mounted vehicle is improved.
  • the fourth effect is cost reduction.
  • the field magnets 122, 132, and 140 are made of plate-shaped permanent magnet blocks, but also the amount of expensive permanent magnets used is reduced as compared with the prior art, as described above. As a result, product costs can be reduced. In addition, the material cost is reduced as a whole by reducing the size and weight compared to the prior art compared to the prior art, and the number of parts and assembly man-hours of the second mouth is reduced compared to the conventional technology. Have been.
  • the vehicle driving device 100 0 is provided by taking into account that the engine 100 has a higher rotation speed than the driving wheels 700. It should be operated on the deceleration side. Then, in the above-described configuration, contrary to the first embodiment, the rotation speed of the first mouth 1210 is lower than the rotation speed of the second mouth 1310, and electromagnetic loss increases. Therefore, it cannot be said that the power transmission efficiency from the first mouth 1 310 to the first row 1 210 is very high.
  • the first disadvantage is that the mechanical loss caused by the reduction gear increases, and the weight and volume of the reduction gear increase, which hinders reduction in size and weight.
  • the second disadvantage is that the vehicle drive unit transmits a large amount of torque at low speeds, which makes it difficult to reduce the size and weight of the vehicle drive unit itself. It is becoming.
  • connection between the engine 100 and the drive wheels 700 and the first mouth 1 210 and the second mouth 1 310 should be performed as in the first embodiment. Effective in most aspects. It is also possible to configure the first mouth 1 210 and the second row 1 310 to rotate in opposite directions during normal operation, that is, when the vehicle is moving forward. However, such a configuration is not preferable because both the electromagnetic loss and the mechanical loss are large and the power transmission efficiency is reduced.
  • the engine 100 need not be limited to a reciprocating engine such as a gasoline engine or a diesel engine, but may be a low-speed engine or an evening-bottle engine. May be.
  • the vehicle drive device has substantially the same configuration as that of the first embodiment, but only the configuration of the second row 1310 ′ is the same as that of the first embodiment.
  • the second mouth is different from the configuration of 1 310. That is, the second opening 1310 of the present embodiment does not have the inner sub-field magnet 122 0 and the outer sub-field magnet 1420, but instead has a main field magnet having an increased circumferential width. With a magnet 1 320 '.
  • the main part of the second mouth 1310 is composed of an even number of main field magnets 1320 'and the mouth yoke 1311 holding the main field magnet 1320, It comprises a plurality of fixing pins 1333.
  • Main field magnet 1 320 5 is made of a flat plate-like permanent magnets proc, disposed at predetermined intervals in the circumferential direction, toward the magnetic poles alternating form an outer peripheral magnetic field and the inner peripheral magnetic field in the radial direction ing.
  • the mouth yoke 1 3 1 1 ′ has a multiplicity of hollow cylinders formed with a through hole in which the main field magnet 1320 is inserted, and the same number of pin holes as the through hole. It is made of magnetic steel sheet.
  • the fixing pin 1 333 is made of a soft magnetic material, and each pin hole has an appropriate thickness of the yoke 1 3 1 1 ′ between the ends of the adjacent main field magnets 13 20 ′. Is formed.
  • the mouth yoke 1 3 1 1 ′ holds the main field magnet 1320 ′ and the fixed pin 1 333.
  • the fixed pin 1 333 passes through the mouth yoke 1 3 1 1 1 in the axial direction between the main field magnets 1 320 ′, and all the main field magnets 1320 ′ and the row yoke 1 3 1 1 and are fixed together.
  • the air gap 1 3 1 1 e appropriately sized to prevent magnetic flux leakage Is formed.
  • the cross-sectional shape of the main field magnet 1320 is rectangular.
  • the magnetic fluxes ⁇ 1 and ⁇ 2 of the second row 1310 reach the 1st mouth 1210 and the stay 11.40 equally. There are cases. That is, in this case, the magnetic fluxes ⁇ 1 and ⁇ 2 penetrate through the main field magnet 1320 ′ of the second port 1310, and the station 1440 and the first port A closed magnetic path passing through 1 210 is formed.
  • part of the magnetic flux ⁇ 2 from the side of the stay 140 1 is part of the part of the yoke 1 3 1 1 ′ of the second mouth 1 310,
  • a relatively short closed magnetic path is formed by bypassing the end of the two main field magnets 1320, which are adjacent to each other.
  • the inner circumferential field formed by both ends of the main field magnet 1320 ' is formed by the rotating It is offset by magnetism, and a stronger interaction between 1st mouth 1 2 1 0 and 2nd mouth 1 3 1 0 'is working.
  • a part of the magnetic flux ⁇ 2 "from the side of the first mouth 1 2 1 0 is changed to the lower yoke 1 3 1 1 of the second mouth 1 3 1 0 '.
  • a relatively short closed magnetic path is formed by bypassing a part and the ends of two adjacent main field magnets 1320 '.
  • the outer peripheral field formed by the end of 1 3 2 0 ′ is canceled by the rotating field generated by the 1 1 1 0 1 3 1 0 ′ is given a stronger magnetic torque from 1 4 10.
  • the hollow cylindrical second permanent magnet 130 2 ′ uses an inexpensive flat permanent magnet as the main field magnet 130 2 ′. It is possible to further reduce the thickness of the main part of the low-temperature 1310 'compared with the first embodiment. The reason is that the ends of the main field magnets 1320 'can each form a bypass magnetic path, so that a magnetic path substantially similar to that of the first embodiment can be formed. . Furthermore, in the present embodiment, the main field magnet 13 which serves both as the inner field magnet 122 A and the outer field magnet 144 A separately from the prior art (see FIG. 9). Since only 20 is adopted, The use of permanent magnets can be greatly reduced.
  • the main field magnet 1320 "held at the second row 1310" has an outer peripheral surface and an inner peripheral surface having respective radii. It is possible to implement a vehicle drive device including a permanent magnet block curved with the above curvature. Also in this modification, voids 1 3 1 1 e are formed at the four corners of the low yoke 1 3 1 1 "through hole, respectively, so that the magnetic flux passing through the main field magnet 1 3 2 0" does not leak. I'm sorry.
  • an outer circumferential groove 1 3 1 1 f and an inner circumferential groove 1 3 1 1 g are formed on the outer circumferential surface and the inner circumferential surface of the opening yoke 1 3 1 1 ", respectively.
  • the magnetic flux passing through 20 " does not leak in the circumferential direction.
  • the main field magnet 1320 has an inner peripheral surface and an outer peripheral surface formed of a primary curved surface along the curvature of the second rotor 1310". 0 "can be formed even thinner. As a result, effects such as further reduction in size and weight and high response characteristics can be obtained.
  • the vehicle drive device is roughly composed of a clutch portion A and a rotating electric machine portion B.
  • the clutch unit A includes an input shaft switching clutch 300 having a clutch input shaft 310 connected to an output shaft 110 from the engine 100, and a driving wheel 7 via a differential gear 900.
  • An output shaft switching clutch 350 having a clutch output shaft 312 connected to 00 is provided.
  • the engine output shaft 110 is connected via a joint (not shown) and a speed reducer (or a speed increaser). Then, the shaft output is transmitted to the clutch input shaft 310 of the input shaft switching clutch 300. From the clutch part A, the tip of the clutch input shaft 310 and the tip of the clutch output shaft 3112 project in the same direction, so that the vehicle drive device 1000 of this embodiment is an FF vehicle or RR. Suitable for cars.
  • the rotating electric machine part B is roughly composed of three functional parts from the center side to the outer side: 1st row 1 210, 2nd mouth 1310 and stay 1 1410. ing.
  • the clutch unit A, the rotating electric machine unit B and the differential gear 900 described above are accommodated in a frame (machine frame) 1100 which is largely divided into three parts.
  • the rotating electric machine section B includes a stay 14 1 0 fixed to the frame 1 100 and a first opening 1 1 facing the inner peripheral surface of the stay 1 14 at a predetermined interval. It mainly consists of 2 10 and the 2nd row at the above intervals.
  • the second rotor 1310 faces the inner peripheral surface of the stay 1410 on the outer peripheral surface with a slight gap, and the outer peripheral surface of the first rotor 1210 on the inner peripheral surface. And facing each other with a slight gap.
  • Both the first mouth 1 2 10 and the second mouth 13 10 are coaxially supported with the stay 1 14 and are rotatable in the interior space of the stay 1 14 Is held.
  • the engine 100 and the drive wheels 700 are gear-connected at the clutch section A so that the first opening and the second opening rotate in the same direction.
  • the stay 1410 has a yoke formed by a part of the frame 110, a stay core 1412, and a stay winding 1411.
  • a three-phase alternating current is applied to the stay coil 1411, an outer rotating magnetic field is formed on the inner periphery of the stay 1410.
  • the three-phase alternating current is supplied from an Invar 400 provided outside the frame 110, and the Invar 400 is controlled by the ECU 500.
  • the first mouth 1 2 1 0 is a cylindrical rotating hollow member fixed to the first mouth 1 2 3 shaft, and the first low shaft 1 2 3 It is rotatably supported in frame 1100.
  • the first opening and closing shaft 1 2 13 is a bearing 15 1 3 having one end on the right side of the figure fixed to the frame 1 100, and the vicinity of the first low gear 3 5 1 on the left side of the figure. The other end is rotatably supported by bearings 1514 fixed to the frame 1100, respectively.
  • the middle part of the first row shaft 1 2 1 3 is fixed to the frame 1 100 It is rotatably supported by a bearing 1512 via an end of a second opening 1310 supported by a bearing 1510.
  • the first rotor 1 210 has a rotor core 1 122 and a rotor winding 1 211 on the outer periphery of the cylindrical body.
  • an inner rotating magnetic field is formed on the outer circumferential side of the first row 1 210.
  • This three-phase alternating current is supplied from an inverter 200 provided outside the frame 110 via a slip ring 1630, and the inverter 200 is supplied in the same manner as the inverter 400 described above. It is controlled by the ECU 500.
  • a brush 1620 held by a brush holder 1610 fixed to the frame 1100 is in sliding contact with the slip ring 1630, and the slip ring 1630 and the mouth-to-end winding wire 1 2 1 1 is connected by a lead section 1 660.
  • a part of the lead portion 1660 is embedded in a groove (not shown) of the shaft 1 1 13 of the first port.
  • the first mouth 1 3 10 has a hollow cylindrical shape, and as described above, one end of the second row shaft 1 3 13 on the right side in the figure is connected to the first row 1 2 1 0 It is rotatably supported by a bearing (not shown) fixed to the shaft.
  • the other end of the second port 1313 is a bearing 1512 fixed to the frame 1100 at the other end of the second port 1313 on the left side of the figure. Supported.
  • the second row 1310 has a hollow mouth yoke 1311 made of a soft magnetic material having a hollow cylindrical shape at an intermediate portion in the axial direction.
  • a plurality of outer permanent magnets 1420 as outer magnetic poles facing the stay 1410 are arranged and fixed on the outer peripheral surface side of the hollow rotor yoke 1311.
  • a plurality of inner permanent magnets 1220 as inner magnetic poles facing the first mouth 1210 are arranged. Has been fixed.
  • an inner magnetic circuit is formed between the first row 1 210 and the second row 1 310.
  • An inner magnetic circuit is formed between the inner rotating magnetic field formed by the first winding 1211 of the first opening 1210 and the inner permanent magnet 1220 of the second lower 1310.
  • Transmission and reception of torque is performed between the first mouth 1210 and the second mouth 1310 via this inner magnetic circuit.
  • the first mouth 1 2 1 0 and the second row 1 3 1 0 form a rotation speed adjusting section 1200. In this rotation speed adjusting section 1200, the interaction between the first rotor 1210 and the second rotor 1310 is performed.
  • the torque generated during use is kept almost constant, and the difference in the number of revolutions between 1st mouth 1 210 and 2nd row 1 310 is adjusted.
  • an outer peripheral magnetic circuit is formed between the stay 1410 and the second opening 1310. That is, an outer peripheral magnetic circuit is formed between the outer peripheral rotating magnetic field formed by the outer coil 1411 of the first station 1410 and the outer permanent magnet 1420 of the second port 1310. Is done. Transmission and reception of torque is performed between the station 1440 and the second port 1310 via this outer peripheral magnetic circuit.
  • the station 1 4 10 and the second port 1 3 1 0 form a torque adjusting section 1400, and the torque adjusting section 1400 changes the rotation speed of the second port 1 3 10 The effect of adjusting the torque applied to the second mouth 1 3 10 without being exerted is exhibited.
  • outer and inner rotating magnetic fields are controlled by members 400 and 200, respectively.
  • the one connected to the clutch input shaft 310 of the first mouth 1 210 and the second mouth 13 110 receives the clutch output shaft via the power generation action and the electric action. Apply rotational drive torque to the mouth connected to 3 1 2.
  • the battery 600 since the battery 600 is connected to the inverters 200 and 400, if the power generated by the power generation operation exceeds the power consumed by the electric operation, surplus power is stored in the battery 600. Charged. Conversely, if the power generated by the power generation operation is lower than the power consumed by the motor operation, the battery 600 discharges to make up for the power shortage. If the surplus power generated by the difference between the power generation action and the motor action is exactly equal to the power consumption for operating the Invar 200, 400, ICU 500, etc., the battery 600 does not store or discharge electricity, and is not necessarily Battery 600 is not required.
  • the rotating electrical machine section B has a rotation detection sensor 1911 that detects the rotation angle and number of rotations of the first shaft 1 2 13
  • a rotation detection sensor 1912 for detecting the number of rotations is provided.
  • the measured values which are the outputs of these rotation detection sensors, are input to the ECU 500 and used to control the inverters 200 and 400, and thus to control the inner and outer rotating magnetic fields. .
  • the input shaft switching clutch 300 has a shaft output from the engine output shaft 110. It has a clutch input shaft 3 10 to be input, and the clutch input shaft 3 10 can be connected to one of the first port-evening 1 210 and the second mouth 1 310. More precisely, the clutch input shaft 310 can be connected not only to one of the first mouth 1 2 1 0 and the second mouth 1 3 10 but also to both. However, it can also take a neutral state in which neither is connected. Therefore, the input shaft switching clutch 300 is configured so that any one of the above four connection states can be arbitrarily set as the connection state of the clutch input shaft 310. The details are as follows. The input shaft switching clutch 300 is roughly composed of a first clutch 330 and a second clutch 340.
  • the first clutch 330 is provided with a clutch mate 320 fixed to the clutch input shaft 310, a gear 336, and a clutch opening interposed between the two 322 and 336. 3 3 2 and an electromagnetic coil 3 3 4 for driving the clutch opening 3 3 2.
  • a clutch pad is fixedly connected to the side of the gear 336 where one end of the clutch opening 332 contacts.
  • the gear 336 is rotatably supported from the clutch input shaft 310 via a bearing 336a, and meshes with the above-mentioned first opening and closing gear 351 to form the first opening. Evening axis linked with 1 2 1 3
  • the clutch opening 332 is attracted to the electromagnetic coil 334 and moves in the axial direction, and the side of the gear 336 At the same time it comes into contact with the clutch pad, it also comes into contact with the clutch armature 320.
  • the clutch input shaft 3 1 0 is connected to the first low gear shaft 1 2 via the clutch mater 3 2 0, the clutch low gear 3 3 2, the gear 3 3 6 It is linked to 1 3 1 1 1 2
  • the clutch opening 3 3 2 moves away from the gear 3 3 6 and the clutch mater 3 2
  • the connected shaft between the clutch input shaft 3 1 0 and the 1st port — evening shaft 1 2 1 3 is released.
  • the second clutch 340 is constituted by a clutch-to-matcher 320 (common) fixed to the clutch input shaft 310, a gear 346, and a clutch low interposed between the two. It consists of an electromagnetic coil 344 that drives a clutch low and a clutch low. Gear 3 4 One end of clutch low gear 3 4 The clutch pad is fixedly connected to the side surface of 6.
  • the gear 346 is rotatably supported from the clutch input shaft 310 via a bearing 346a, and meshes with the above-described second port overnight gear 352 to form the second gear 352.
  • Mouth-to-mouth shaft 1 3 1 3-In second clutch 3400 when electromagnetic coil 344 is energized, clutch mouth-to-mouth shaft 34 2 is attracted to electromagnetic coil 344 and the shaft length In the direction of contact, and abuts the clutch pad on the side of the gear 346, and at the same time, abuts on the clutch armature 320. Then, the clutch input shaft 3 10 is connected to the second low shaft 1 3 1 3 through the clutch mater 3 2 0, the clutch low gear 342, the gear 346, and the second port overnight gear 3 52. In other words, it is connected to the first mouth at 1 310.
  • the shaft is connected to the first rotor 1 2 1 0 via the first clutch 3 3 0
  • the shaft is connected to the second port 1 3 10 via the second clutch 3 4 0.
  • the gear ratios of the clutch input shaft 310 and each of the rotors 110, 130 are the same.
  • the rotation direction of the first row 130 and the rotation of the second row 130 are the same.
  • the output shaft switching clutch 350 has the same configuration and operation as the input shaft switching clutch 300 described above, except that the clutch input shaft 310 is replaced by the clutch output shaft 310. . That is, the output shaft switching clutch 350 has a clutch output shaft 312 for outputting shaft output, and connects the clutch output shaft 312 to the first port 1 2 1 0 and the second port 1 1 Can be connected to one of 3 10. More precisely, the clutch output shaft 3 1 2 can be connected not only to one of the first port 1 2 1 0 and the second row 1 3 10 but also to both. Yes, and it can also be in a neutral state where there is no articulation. Therefore, the output shaft switching clutch 350 is configured to arbitrarily take any one of the four connection states as the connection state of the clutch output shaft 312.
  • the details of the configuration of the output shaft switching clutch 350 are as follows.
  • the output shaft switching clutch 350 is roughly divided into a third clutch 370 and a fourth clutch 380.
  • the third clutch 370 is provided with a clutch-to-matcher 360 fixed to the clutch output shaft 312, a gear 376, and a clutch opening interposed between the both 360 and 376. 3 7 2 and an electromagnetic coil 3 7 4 for driving the clutch roller 3 7 2.
  • a clutch pad is fixedly connected to a side surface of the gear 376 where one end of the clutch opening 372 contacts.
  • the gear 3776 is rotatably supported from the clutch output shaft 312 via a bearing 3776a. Linked with axis 1 2 1 3
  • the clutch opening 372 is attracted by the electromagnetic coil 374 and moves in the axial direction, and the side of the gear 376 At the same time as the clutch pad of the clutch. Then, the clutch output shaft 3 1 2 passes through the clutch 1 mater 360, the clutch low gear 3 7 2, the gear 3 7 6 and the first port 1 gear 3 5 It is linked to 2 1 3, that is, 1 2 1 0. Conversely, when power to the electromagnetic coil 374 is cut off, the clutch spring 372 separates from the gear 376 and the clutch mater 360 by the elastic force of the return spring (not shown), and the clutch The linked axis between the output shaft 3 1 2 and the first port 1 night shaft 1 2 1 3 is released.
  • the fourth clutch 380 includes a clutch-to-matcher 360 (common) fixed to the clutch output shaft 312, a gear 386, and a clutch interposed between the both 360 and 386. It is composed of a mouth 382 and an electromagnetic coil 384 that drives the clutch mouth 382. A clutch pad is joined and fixed to a side surface of the gear 386 with which one end of the clutch gear 38 contacts.
  • the gear 3886 is rotatably supported from the clutch output shaft 312 via a bearing 3886a. It is linked with the mouth 1 3 1 3.
  • the clutch opening 382 is attracted to the electromagnetic coil 384 and moves in the axial direction, and the side of the gear 386 At the same time as it comes into contact with the clutch pad, it also comes into contact with the clutch mater 360. Then, the clutch output shaft 3 1 2 is connected to the clutch 1 mater 3 60, the clutch low gear 3 8 2, the gear 3 8 6 It is connected to 3 1 3 or 1 3 1 0 Conversely, if power to the electromagnetic coil Due to the spring force of the spring (not shown), the clutch opening 3 8 2 is separated from the gear 3 8 6 and the clutch 1 3 6 0, the clutch output shaft 3 1 2 and the second opening 1 3 The link with 3 is released.
  • the gear ratios of the clutch output shaft 312 and the ports 1 210 and 1 310 are the same.
  • the gear ratio in the output shaft switching clutch 350 is the same as the gear ratio in the input shaft switching clutch 300 described above, and the parts are interchangeable.
  • the rotation direction of the first rotor 1 2 1 0 and the rotation of the second port 1 3 10 are the same, and the rotation direction of the clutch output shaft 3 1 2 is the output shaft switching clutch 3 5 0 It does not change by switching.
  • the clutch section A is configured as described above, and includes the clutch input shaft 310 and the clutch output shaft 312, the first port 1 2 1 0 and the second port 1 3 10 Can be connected in any combination.
  • the input shaft switching clutch 300 and the output shaft switching clutch 350 can both be in a neutral state to eliminate the connection with the ports 1 2 1 0 and 1 3 1 0. On the contrary, it is also possible to link with 1 2 1 0, 1 3 10.
  • each of the clutches 330, 340, 370, 380 is an electromagnetic clutch, and its control is electrically performed by an amplifier (not shown) according to a command signal from the ECU 50,000. .
  • the feature of the drive device of the present embodiment is that the control of the clutch unit A (that is, clutch switching) is performed such that the rotation speed of the first row and the second row is equal to or higher than the rotation number of the second row and the left.
  • the first clutch 330 and the fourth clutch 380 are off, and the second clutch 340 and the third clutch 370 are on, contrary to the case described above. Since the gear ratios of the clutches 330, 340, 370, 380 are the same as described above, the number of rotations of the first rotor 1 2 This means that the clutch A is being controlled so that the number of revolutions per night is more than 1310.
  • the shaft input to the clutch input shaft 3110 and the shaft output from the clutch output shaft 3112 are equal, and as a whole of the drive unit 1000, the torque rotation speed converter (T-S converter) Consider the case where it is working.
  • T-S converter torque rotation speed converter
  • the clutch input shaft 310 is driven by the engine 100 with the shaft input of torque t [Nm] x the number of revolutions 2 n [rpm], and the shaft output of the clutch output shaft 3 1 2 is torque 2 t
  • the number of X rotations is n. This corresponds to the case where the torque is doubled and the number of revolutions is reduced by half, so that this corresponds to the first-stage deceleration mode in FIG. 10 and the vehicle driving device 1000 acts as a speed reducer.
  • the number of revolutions of the clutch input shaft 310 exceeds the number of revolutions of the clutch output shaft 312, so that the clutch input shaft 310 While being connected, the clutch output shaft 312 is connected to the second row 1310.
  • the first clutch 330 and the fourth clutch 380 are on, and the second clutch 340 and the third clutch 370 are off (see FIG. 9).
  • a power generation operation is performed at the rotation speed adjustment unit 1200 (between 1st 1st 1st and 1st 1st and 1st 2nd and 1st 3rd), and the generated power is It is supplied from the evening 1 210 to the stay 1 4 1 0 through the member 200 and the member 400 in this order.
  • a controlled three-phase AC is supplied to the station winding 1 4 1 1 to generate an outer peripheral rotating magnetic field, and the outer peripheral rotating magnetic field drives the second port to rotate. Is done. Therefore, 1 2 3
  • the power generated by the power generation action at the 1st mouth, 1 210 It is also driven by an electric action.
  • the output 2 nt of the engine 100 is input to the clutch input shaft 310 as a torque t X rotation speed 2 n as shown in FIG. 11 (a), and as shown in FIG. 11 (d). It is output from the clutch output shaft 3 1 2 with a shaft output of torque 2 t X rotation speed n.
  • the 1st mouth 1st night 1 2 10 and the 2nd mouth 1 3 1 via the magnetic circuit between the 1st mouth 1st night 1 2 10 and the 2nd mouth 1 3 1 0, the 1st mouth 1st 1 2 1 0 and the 2nd mouth 1st 1 3 1
  • the only torque transmitted to 0 is t.
  • the surplus n of the number of revolutions 2 n of the first rotor 1 210 is converted to electric power nt by the power generation action of the first rotor 1 210. , It is absorbed into the Invera 200 from the Mouth Ichiban winding line 1 2 1 1.
  • the power nt absorbed by the inverter 200 is sent to the inverter 400 via a DC line parallel to the battery 600, and is converted to a three-phase AC by the inverter 400 to be converted to a three-phase AC. It is sent to the evening winding line 1 4 1 1.
  • the three-phase alternating current applied to the stay winding 14 14 1 generates an outer peripheral rotating magnetic field to generate an electric action, and the same magnetic field causes the second row 13 10 Driven by torque t. That is, as shown in FIG. 11 (c), the second port 1310 rotates at the rotation speed n in a state where the torque t is applied even in the torque adjustment section 140, so that the torque adjustment section With the electric action of 1400, 2 nt of energy is applied to the 2nd port 1/3 axis.
  • the second mouth and the first shaft 1 3 1 3 have the work nt directly transmitted from the first low shaft 1 2 1 3 by the magnetic torque t and the power generation action of the first mouth and the first 1 2
  • the motor is driven by the above-mentioned energy nt transmitted via the motor operation of the station.
  • the second port 1310 is driven with a torque of 2 t X rotation speed n, and a torque is output from the clutch output shaft 312.
  • Lux 2 tx The shaft output 2 nt with the rotation speed n is obtained. Therefore, the vehicle drive device 100 of the present embodiment operates as a speed reducer having a reduction ratio of 2: 1, that is, a TS comp.
  • the second clutch 340 is turned on, and the clutch input shaft 310 and the second opening 313 are connected to each other, so that the fourth clutch If the clutch output shaft 312 and the first clutch 3330 are connected to each other by turning on the third clutch 370 instead of 380, the transmission efficiency of the shaft output is greatly reduced.
  • the reason for this is the same as the reason explained in the section of the speed increasing mode below, and the detailed explanation is omitted here.
  • the engine output 2 n 1 t 1 is input at the shaft output of torque 2 t 1 x rotation speed n 1, and the vehicle driving device 100 0 of the present embodiment is set to the T-S It is assumed that the shaft output with the torque tlx rotation speed of 2 nl is output.
  • the number of revolutions of the clutch input shaft 310 that is, the first port 1 2 1 0 is n1
  • the number of revolutions of the clutch output shaft 3 1 2 that is, the second port 1 3 1 0 is 2 n Since it is 1, the operation mode corresponds to the second-stage speed-up mode (low efficiency) in Fig. 10.
  • the engine output 2 n 1 t 1 corresponds to the engine output 2 nt in the above-described deceleration mode, and similarly, the torque 2 tl is equal to the torque t and the rotation speed n 1 is equal to the rotation speed 2 n May be assumed.
  • the operation of the vehicle drive system 1000 as a TS converter in this speed-up mode (low efficiency) will be described below with reference to FIGS. 12 (a) to 12 (d). I do.
  • the power action and the power generation action described above are actually performed simultaneously in parallel, for convenience of explanation, the power action and the power generation action are performed as described above (see Fig. 12 (b)). (See Figure 12 (c)).
  • the return of electric energy from the 2nd port-evening 1 310 to the 1st mouth 1 2 1 0 by power generation and electric action is 2 n1 t1. Therefore, it is equal to the work to be transmitted as a T-S converter.
  • the work amount directly transmitted once from the first mouth 1 2 1 0 to the second low speed 1 3 1 0 in the rotation speed adjustment unit 1 200 is 2 n 1 t 1, This is equivalent to the work to be transferred as a TS converter.
  • the electric energy 2 n 1 t 1 and the direct work 2 n 1 t 1 are twice the electric energy n t and the direct work n t in the aforementioned deceleration mode, respectively. This will be described with reference to the second-stage deceleration mode (low efficiency) in FIG. 10. Due to the power generation between the two mouths 1 3 1 0 and 1 4 1 0, the energy is transferred from the 1st mouth 1 3 1 0 through the stay 1 4 1 0 to the first low. Evening There is a backflow to 1 210. Therefore, the electromagnetic energy is circulating again from the first mouth 1 2 1 0 to the 1st mouth 1 night via the 2nd low 1 3 1 0 and the stay 1 4 1 0 in order.
  • the shaft input of torque 2t1 X rotation speed n1 is given to the second port 1310, but first, the torque adjustment unit 1400 It is necessary to reduce the torque applied to the 1st row 1 2 1 0 by half of t1.
  • the torque tlx rotation speed n 1 min energy n 1 t 1 is changed from the second mouth 1 3 1 0 to the 1 1 4 Is absorbed by In parallel with this, the work amount n 1 t 1 is directly transmitted from the second row 1 310 to the first mouth 1 210 via magnetic torque. That is, as shown in Figs.
  • the transmission of electric energy from the second row 1310 to the first row 1210 by the power generation action and the electric action is nIt1, and the T-S That is half of the work to be conveyed overnight.
  • the work amount directly transmitted (via magnetic torque) from the second mouth 1 310 to the first mouth 1 210 by the rotation speed adjustment unit 1 200 is also n It 1 This is also half of the work to be transferred as a T-S Comparator.
  • the sum of these electric energies n 1 t 1 and the direct work n 1 t 1 is equal to the shaft output to be transmitted as T-S-Comparator. This will be described with reference to the third-stage deceleration mode in FIG. 10.
  • the electromagnetic energy from the first row 1 2 1 0 and the first row 1 2 1 0 causes the electromagnetic energy to move forward from the second row 1 3 1 0 to the 1st mouth 1 2 1 0 via the stay 1 4 1 0 Has been transmitted to. Therefore, there is no electromagnetic circulation caused by the reverse flow of electric energy from the first mouth 1 2 1 0 to the second low 1 13 10 and it may cause electromagnetic loss unnecessarily. Absent.
  • the electric capacity and the magnetic capacity can be relatively small in both the deceleration mode and the speed-up mode.
  • the vehicle drive device 100 of the present embodiment when used as a T-S converter, there is an effect that the transmission efficiency of the shaft output is high in both the deceleration mode and the speed-up mode.
  • the electric capacity and the magnetic capacity can be small, there is an effect that the vehicle drive device 100 can be manufactured at a low weight and a low cost.
  • the rotation speed of the first port 1210 is always lower than the rotation speed of the second port 1310 in principle.
  • the switching operation of the clutch unit A is automatically performed by the ECU 500.
  • the shaft input to the clutch input shaft 310 and the shaft output from the clutch output shaft 312 do not always match.
  • the vehicle drive device 100 of this embodiment can be used.
  • the combination of the engine operating state (ne, te) and the driver's accelerator command (nv, tv) is arbitrary within the driving characteristic range surrounded by the envelope in Fig. 14 (a). is there.
  • the vehicle drive device 100 of the present embodiment has a shaft input nete to the clutch input shaft 310 and a shaft from the clutch output shaft 312. It can be used even when the output nv t V substantially matches.
  • the conversion capacity Pn at the rotation speed adjustment unit 1200 and the conversion capacity Pt at the torque adjustment unit 1400 are almost the same, and the engine operating state and the driver's excel command are The farther apart, the larger the two conversion capacities Pn and Pt. Therefore, the shaft output can be converted more efficiently if the engine operation state and the driver's accelerator command are not too far apart.
  • the vehicle drive device 100 of the present embodiment has a case where the axis input nete and the axis output nvtv do not match at all, as shown in FIGS. 14 (c) to (d). Can also be used.
  • the above-mentioned deceleration is performed by switching at the clutch section A so that the rotation speed of the first mouth 1 2 1 0 is maintained at or above the second mouth 1 3 10 10 rotation speed.
  • the shaft output can be converted with high efficiency in the same manner as in the mode and the speed-up mode.
  • the difference between the shaft input nete and the shaft output nVtv is stored in the battery 600 as generated energy, or the shaft output as a motor is provided by receiving power from the battery 600. Either is loaded.
  • the sum of the conversion capacities P n and P t is often large, but it is considered that the drive system follows a driver's accelerator instruction in a transient state. Therefore, since the sum of the conversion capacities Pn and Pt can be regarded as a short-time rating, it is not necessary to increase the capacity of the vehicle drive device 100 of this embodiment more than necessary.
  • the rotation speed of the clutch input shaft 310 determined by the shaft output of the engine 100 and the rotation speed of the clutch output shaft 312 determined by the driver's accelerator command match, the following figure is used. It is possible to operate in the direct connection mode shown in the fourth row of (Conversely, if the direct connection mode is set, the rotation speed ne of the clutch input shaft 310 and the rotation speed nv of the clutch output shaft 312 are They are forced to match).
  • the clutch input shaft 310 and the clutch output shaft 3122 are mechanically gear-coupled via the first opening / closing gear 351 and / or the second low gear 352. Therefore, the transmission efficiency of the shaft output is close to 100%. Then, if there is a difference between the input torque t e and the output torque t V, the electric power may be stored by the rotating electric machine B or the torque may be supplemented by the electric acting of the rotating electric machine B.
  • the vehicle drive device 100 of the present embodiment is configured such that the input shaft switching clutch 300 and the output shaft switching clutch 350 are neutral, and the engine 100 It can also be used in the idling mode, where 0 and the drive wheel 700 are cut off. That is, by making the input shaft switching clutch 300 neutral, the engine 100 can be kept in an idling state, or the engine 100 can be disconnected to reduce the shaft output with the drive wheels 700. It can also be used purely as a motor or generator. This mode of operation as a pure motor allows self-propelled operation, especially in the event of engine failure. It is useful because it works. Alternatively, by setting the output shaft switching clutch 350 to neutral, it can be used as a motor for starting the engine 100 overnight or, conversely, as a generator driven by the engine 100. It is also possible.
  • the vehicle drive system 100 of the present embodiment regardless of the magnitude relationship between the number of rotations of the shaft input and the number of rotations of the shaft output, transmission of the shaft output with the best efficiency is possible. Is possible. Therefore, according to the present embodiment, the required amount of electric capacity and magnetic capacity can be minimized, so that it is possible to provide a lightweight and small vehicle drive device 100 at relatively low cost. is there.
  • the vehicle drive device 100 of the present embodiment not only converts and transmits the shaft output as a T-S converter, but also acts as a generator or an electric motor in the process. You can also.
  • the output shaft switching clutch 350 can be neutralized to be used for all night, or conversely, the input shaft switching clutch 300 can be neutralized to be used as a drive motor for a pure electric vehicle. is there. Therefore, if the vehicle drive device 100 of this embodiment is adopted in a hybrid vehicle, it is not only unnecessary to provide a separate torque converter but also to provide a separate clutch mechanism, which is extremely simple. In addition, there is an effect that an inexpensive electric vehicle can be provided.
  • an electromagnetic clutch is used for the clutch part A and does not require hydraulic pressure, it can be applied not only to vehicles without a hydraulic power source, but also to oil leakage without using seal materials. There is also an effect that there is no fear. Therefore, the configuration is simple and the number of parts is reduced, which is suitable for a small vehicle drive device 100.
  • a modification in which a field pole (either a permanent magnet or an electromagnet) may be provided in the stay and the field pole is provided in the first mouth can be implemented. It is.
  • the row core and the mouth coil are respectively provided on the stay side and the first row side of the second row, and the current control for each row row is performed.
  • this modification will not be as good as that of the third embodiment in terms of lightness and small size, price and responsiveness.
  • the vehicle drive device 100 ′ as the fourth embodiment includes an output shaft switching clutch 350 of the third embodiment with the input shaft switching clutch 30 It is relocated to a position opposite to 1 to provide an output shaft switching clutch 302. Accordingly, the clutch input shaft 310 and the clutch output shaft 3122 are coaxially arranged at positions facing each other, so that the vehicle drive device 100 ′ of the present embodiment is provided. Is suitable for mounting on FR vehicles. A differential gear (not shown) is provided between the clutch output shaft 312 and the driving wheels 700 (two rear wheels).
  • the names of the components of the output shaft switching clutch 302 are described in the description of the reference numerals, and correspond one-to-one with the components of the output shaft switching clutch 350 of the third embodiment. .
  • the shape of the support member of the first mouth 1 210 is different from that of the third embodiment, or the first mouth 1 2 13 is extended and is supported by bearings 15 16 at the right end in the figure.
  • the 1st mouth—evening gear 3 5 3 and 2nd mouth 1 night gear 3 5 4 are added. or, with or have different shapes of the frame 1 1 0 0 5, which is made Rakakoto go configuration as in example 3.
  • the clutch output shaft 312 is relocated as described above.
  • the vehicle drive system 100 ′ of the present embodiment is also similar in operation to the above-described third embodiment, and fits in the propeller shaft position. This is the same as in the third embodiment.
  • a vehicle drive device 100A as a fifth embodiment of the present invention is roughly composed of a clutch portion A1 and a rotating electric machine portion B.
  • the clutch section A1 includes a clutch input shaft 310 and a clutch output shaft 312, which are parallel to each other, a first clutch 2330, a second clutch 2340, and a third clutch 2370.
  • the third embodiment is substantially the same as the third embodiment in having the fourth clutch 2380.
  • each of the clutches 2 3 3 0 and 2 3 4 0, 2370 and 2380 are different from the third embodiment in that they are not electromagnetic clutches but all hydraulic multi-plate clutches.
  • the rotating electric machine section B is composed of 1st mouth 1 2 1 0, 2nd mouth 1 3 10 and stay 1 1 14 0 in order from the center to the outside.
  • the configuration is the same as that of the third embodiment.
  • FIG. 9 showing the configuration of the third embodiment is schematically drawn, in FIG. 16 showing the configuration of the third embodiment, the rotary electric machine according to the present embodiment is merely depicted as being realistic.
  • the part B is the same as the rotating electric machine part B of the third embodiment.
  • the first hydraulic multi-plate clutch 2 3 3 0 includes clutcher mater 2 3 3 1, clutch mouth 2 3 3 2, inner disk 2 3 3 3, inner disk 2 3 3 5 and return spring 2 It is composed of 3 3 7 Clutcher clutch 2 3 3 1 is fixed to clutch input shaft 3 10, and rotates together with clutch input shaft 3 10 ′. Clutch row 2 3 3 2 is held in Weg-Matja 2 3 3 1, and is moved in the axial direction by hydraulic pressure supplied through oil passages 2 3 3 8, 3 10 a, 3 10 b. Extruded with inner disk 2 3 3 3.
  • the inner disk 2 3 3 3 and the rotatably supported disk 2 3 3 5 were connected to each other via wet multi-plates, and applied to the clutch input shaft 3 10 ′.
  • the shaft input is transmitted to the free disk 2 3 3 5.
  • a connecting gear 2 3 3 6 is formed on the outer peripheral surface of the disk 2 3 3 5, and the connecting gear 2 3 3 6 is fixed to the first opening and closing shaft 1 2 1 3 Mating gear 3 5 1 meshes. Therefore, when the above hydraulic pressure is applied, the clutch input shaft 310, the clutch armature 2 331, the clutch port 2 3 3 2, the inner disk 2 3 3 3, the gear disk 2 3 It is connected to the 1st port overnight shaft 1 2 1 3 via the 3 5 and the 1st port overnight gear 3 5 1. That is, the first clutch 2 330 is turned on.
  • the second clutch 2340 has the same configuration and operation as the first clutch 2330 except that it is connected to the second low shaft 1313.
  • the third clutch 2370 has the same configuration as the first clutch 2330 except that the clutch input shaft 3110 'is connected to the clutch output shaft 312,2 instead of the clutch input shaft 3110'.
  • the fourth clutch 2380 has the same configuration as the second clutch 2340.
  • the parts of each clutch 2330, 2340, 2370, and 2380 are in a one-to-one correspondence and are interchangeable. Section.
  • oil seals 2339 and 2349 are provided at important points to prevent hydraulic leakage.
  • the input shaft switching clutch 23 3 ⁇ 0 comprising the first clutch 2 330 and the second clutch 2 340 is a neutral Can also take a position.
  • the output shaft switching clutch 230 comprising the third clutch 230 and the fourth clutch 230 can also assume the neutral position.
  • 70, 2380 is the electromagnetic clutch 330, 340, 370, 3 of the third embodiment.
  • each clutch 2330, 2340, 2370, and 2380 is a hydraulic multi-plate clutch, a half-clutch state can be created by using appropriate sensors and hydraulic control means. it can.
  • the vehicle drive device 100 A of the present embodiment can exhibit the same effects as those of the third embodiment.
  • the hydraulic energy is hardly consumed to maintain the above-mentioned clutches in the on state, so that less energy is consumed in the clutch section A 1 and the efficiency is improved accordingly.
  • the hydraulic multi-plate clutch is used instead of the electromagnetic clutch of the third embodiment, there is also an advantage that it is suitable for transmitting a large output, and the vehicle drive device 100 A of this embodiment is suitable for increasing the output. It is.
  • the adoption of the hydraulic multi-plate clutch can reduce the volume of the clutch portion as compared with the third embodiment, so that there is also an effect that the size and weight can be reduced.
  • each clutch 2330, 2340, 2370, and 2380 can take a half-clutch state by proper hydraulic control, greatly reducing the impact load during clutch connection. can do.
  • the requirements for the mechanical strength of the clutch portion A 1 and the rotating electric machine portion B have been relaxed, so that the vehicle drive device 100 A of the present embodiment can be manufactured even more lightweight, compact and inexpensively.
  • the vehicle drive device 100B as the sixth embodiment of the present invention is roughly composed of a clutch portion A2 and a rotating electric machine portion B.
  • the rotating electric machine part B is composed of 1st mouth 1 210, 2nd mouth 1 3 10 and stay 1 14 10 in order from the center to the outside. It is the same as the rotating electric machine part B of No. 5.
  • the clutch section A 2 includes a clutch input shaft 3 10 "and a clutch output shaft 3 1 2" which are parallel to each other, an input shaft switching clutch 3 3 3 0 and an output shaft switching clutch 3.
  • the third embodiment is almost the same as the fifth embodiment.
  • the input shaft switching clutch 3330 and the output shaft switching clutch 3370 are both the same as in the fifth embodiment in that they are both wet hydraulic multi-plate clutches.
  • the two clutches 3330 and 3370 are not divided into the first clutch and the second clutch, and the third clutch and the fourth clutch, and they are integrated with each other,
  • the clutch unit A2 of the present embodiment employs an integrated wet-hydraulic hydraulic clutch for both the input shaft switching clutch 3330 and the output shaft switching clutch 3370. It is a multi-plate clutch.
  • Input shaft switching clutch 3 3 3 0 and output shaft switching clutch 3 3 7 0 are clutch input shaft 3 1 0 "and clutch
  • the other configuration is the same except for the output shaft 3 1 2 ". Therefore, here, the input shaft switching clutch 3330 will be taken as a representative, and the configuration will be described in detail below.
  • Input shaft switching clutch 3 3 3 0, clutcher clutch 3 3 3 1, clutch mouth 3 3 3 2, inner disk 3 3 3 3a, 3 3 3 3b, free disk 3 3 It consists of 35a, 3335b, and gears 3336, 3336.
  • the clutch 1 3 3 1 is fixed to the clutch input shaft 3 10 ", and is driven to rotate by the clutch input shaft 3 10".
  • the clutch input shaft 310 "and the clutch armature 3331 have oil passages 3110e, 310f, and 33330a, and hydraulic pressure from the outside passes through the oil passages. Through the clutch opening 3 3 3 2.
  • the clutch opening 3 3 3 2 moves in the axial direction (Fig.
  • the inner disk 3 3 3 3b is extruded in the same direction by hydraulic pressure and moves in the same direction to contact the inner disk 3 3 3 5b.
  • the wet discs 3 3 35 b are fixedly held by the gear 3 b and the gear 3346, and the wet multi-plates abut against each other and are connected to each other.
  • the clutch input shaft 3 10 is connected to the clutch mater 3 3 3 1, the clutch port 3 3 3 2, the inner disk 3 3 3 3b, the gear disk 3 3 3 5 b, the gear It is connected to the 2nd port shaft 1 3 13 via the 3 3 4 6 and the 2nd port overnight gear 3 52 in order. That is, the clutch input shaft 3 10 "and the 2nd lowway gear 1 310 is connected to the axis.
  • the clutch input shaft 3 10 is connected to the clutch mater 3 3 3 1, the clutch port 3 3 3 2, the inner disk 3 3 3 3 a, and the The shaft is connected to the first low shaft 1 2 13 via the gear 3 3 3 5 a, the gear 3 3 3 6 and the first opening and closing gear 3 5 1 in this order. That is, the clutch input shaft 3 10 "and the first low speed 1 210 are connected.
  • the input shaft switching clutch 3 3 3 0 having the above configuration, one of the first port 1 2 1 0 1 and the 2 1
  • a special hydraulic control system such as by installing a sensor that detects the position of the clutch opening 3 3 3 2, the neutral state can be maintained.
  • the output shaft switching clutch 3 3 7 0 is different only in that the clutch output shaft 3 1 2 "is provided in place of the clutch input shaft 3 1 0". It is the same as the clutch 3330. Therefore, parts are interchangeable between the input shaft switching clutch 3330 and the output shaft switching clutch 3370. Note that the reference numerals and names of the components of the output shaft switching clutch 3370 are clarified in the description of reference numerals below.
  • the axial length of the clutch portion A2 is shorter than that of the fifth embodiment, and the number of parts is also reduced. Therefore, according to the vehicle drive device 100 B of the present embodiment, there is also an effect that the size, weight, and cost can be further reduced as compared with the fifth embodiment.
  • the first rotor 1 2 1 0 is laminated in the axial direction around the input shaft 1 2 13 and the input shaft 1 2 13 as a rotating shaft. It is composed of a porcelain core 1 2 1 2 composed of a large number of magnetic steel sheets, and a porcelain coil 1 2 1 1 wound around a roa core 1 2 1 2.
  • the rouge core 1 2 1 2 is arranged coaxially with the input shaft 1 2 1 3 and has a ring-shaped yoke 1 2 1 2 c and a centrifuge from the yoke 1 2 1 2 c It comprises a plurality of outer peripheral teeth 1 2 12 d protruding in the direction, and a plurality of inner peripheral teeth 1 2 12 e protruding in the centripetal direction from the yoke 1 2 12 c.
  • the inner teeth 1 2 1 2 e and the outer teeth 1 2 1 2 d have the same number of 36 each, and are equally spaced in the circumferential direction.
  • each inner peripheral tooth portion 1 2 1 2 e and each outer peripheral tooth portion 1 2 1 2 d are opposed to each other with the yoke portion It is protruding. Therefore, the outer peripheral slot 1 2 12 a formed between the adjacent outer peripheral teeth 1 2 1 2 d and the inner peripheral tooth 1 2 1 2 e formed adjacent to each other is formed. Is located at the same position in the circumferential direction.
  • the wrap-around wire 1 2 1 1 passes through the outer slot 1 2 1 2a and the inner slot 1 2 1 2b and passes around the cylindrical yoke 1 2 1 2c. Evening core 1 2 1 2
  • the mouth-to-mouth winding wire 1 2 1 1 is composed of three-phase windings of U, V, and W, and the three phases are wound around the mouth-to-night core 1 2 1 2 in the circumferential direction. As shown in Fig. 0, the mouth-to-mouth winding line 1 2 1 1 1 is wound around the yoke section 1 2 1 2 c of the rowing core 1 2 1 2 in a concentrated winding, and the outer peripheral slot 1 2 1 2 a It extends in the axial length direction inside and inside the inner slot 1 2 1 2b.
  • the circumferential width of the outer teeth 1 2 1 2 d of the low core 1 2 1 2 of the first mouth 1 2 1 0 1 is set to the inner teeth 1 2 It is formed wider than the circumferential width of 12e.
  • the inner peripheral tooth portion 1212e has an extremely narrow circumferential width and forms an inner peripheral slot 1212b that is as wide as possible in the circumferential direction.
  • the shaft output of the engine 100 is transmitted to the drive wheels 700 to appropriately increase the shaft output or generate power.
  • the following functions are exhibited as the vehicle drive device 1000 that is torn down.
  • the shaft output of the engine 100 (ie, the input to the input shaft 1 2 13) is the number of revolutions 2 n [rpm] x the torque t [Nm].
  • n [rpm] x torque 2 t [Nm].
  • the axis from 1st mouth 1 2 1 0 to 2nd mouth 1 3 1 0
  • a power generation operation is performed in the rotation speed adjustment unit 1200, and conversely, an electric operation is performed in the torque adjustment unit 1400, and conversion of the shaft output (torque conversion) is performed. Done.
  • the electric energy nt generated at 1st day 1 2 1 0 is passed through the 2nd night 2 0 0, 2 nights 2 0 0, 4 0 0 It is introduced into an external circuit consisting of 500.
  • the electric work energy is supplied to the station 140 from the external circuit via the electromagnetic circuit 400, and the electric motor is operated by the torque adjusting unit 140 so that the second electric motor is driven.
  • a torque t is applied to 130.
  • the ECU 500 controls the inverter 400 to form a rotating magnetic field of 140 1 and controls the second rotor 13 10 rotating at the rotation speed n. And apply a torque t in the rotation direction.
  • the above-mentioned control of the sensors 200 and 400 is performed by the rotation angle sensors 1911 and 1912 in the first row 1 2 1 0 and the second port 1 2 This is performed based on the measured values of the respective rotation angles of 310. That is, an appropriate field control calculation is performed by the ECU 500 based on the two rotation angles, and the first and second ports 1 2 1 0 and 2 1 1 3 1 0 Energization Evening is properly instructed.
  • the shaft output of the engine 100 (that is, the input shaft 1 2 1 3) is the rotation speed n [rpm] x torque 2 t [Nm], and the shaft output from the second mouth 1 3 10 is the rotation speed 2 n [rpm] x torque t [Nm Suppose you want to convert to].
  • the shaft output is converted from the first mouth 1 2 10 to the 2 1 mouth 1 3 10 the motor operation is performed in the rotation speed adjustment unit 1200, and conversely, the torque adjustment unit 1400 The power generation is performed and the shaft output is converted.
  • the ECU 500 controls the inverter 200 to make the first mouth 1 210 perform an electric operation with an energy of 2 nt.
  • the electric energy required for the electric operation in the first mouth 1 210 is supplied from the external circuit through the inverter 200.
  • the electric energy 2 nt is supplied from the station 1410 via the external circuit 400 to the external circuit.
  • the stay 14 1 ⁇ includes the stay 14 10, and the torque is generated by the torque adjusting unit 1400. exerts t braking.
  • the ECU 500 controls the inverter 400 to form a rotating magnetic field of 1410 a day, and generates a rotating magnetic field of 1100 a second mouth 1310 rotating at a rotation speed of 2 n.
  • a torque t is applied in the direction opposite to the rotating direction, and power is generated at station 1410.
  • the torque 2 t applied from the first rotor 1 210 and the driving torque t applied from the stay 14 1 0 are given to the second rotor 1310 rotating at 2 n.
  • the torque of t is applied in the rotation direction. Therefore, the shaft input 2 nt (rotation speed nx torque 2 t) of the first mouth 1 2 1 0 is increased to the shaft output 2 nt (rotation speed 2 nx torque t) of the second low speed 1 310 Is converted.
  • the electric energy transmitted through an external circuit in this speed-up conversion is 2 nt, Is twice as large as the electric energy nt transmitted through an external circuit.
  • the vehicle driving device 100 of the present embodiment does not perform the operation in the speed-up conversion so much, and mainly has a slight speed-down conversion. It can be used with high efficiency if operated in. Therefore, the setting of the gear ratio and the like from the engine 100 to the driving wheels 700 should be such that the vehicle driving device 100 can be operated with a slight deceleration.
  • the case where the axis input to the first mouth 1 2 1 0 and the axis output from the second mouth 1 1 310 are equal has been described. In most cases this does not match. Therefore, for example, when the shaft input does not reach the shaft output, the difference is due to the electric action of the motor 1401 and / or the motor 1120 by the power supply from the battery 600. Supplemented. Conversely, when the axis input exceeds the axis output, the battery 600 stores the electric energy generated by the station 1401 and / or the first row 120 and stores the electric energy in the battery 600. Done.
  • An example of such an extreme case is when an on-board vehicle is braked by applying an engine brake.
  • the shaft output is significantly negative more than the shaft input is negative, and the rotation field formed by the second port 1310 connected to the drive wheel 700
  • the power is generated not only in the station 1400 but also in the first mouth 1210 and stored in the battery 600.
  • the engine brake is applied in this manner, the power generation operation is performed in both the station 1440 and the first row 1210, and there is no concentration on one side.
  • Neither 1 410 nor 1st mouth 1 210 requires a large power generation capacity. Therefore, both the stay one night and the first mouth one can be configured to be relatively small and light. Therefore, if the drive system of the on-board vehicle is designed to operate the vehicle drive device 100 of the present embodiment mainly with a slight deceleration, the electromagnetic loss is also minimized, and Operation at high efficiency becomes possible.
  • the vehicle drive device 100 of the present embodiment has the above-described configuration and operation, and thus has many effects. These effects are summarized in the following four points.
  • the first effect is a significant reduction in size and weight.
  • the first mouth 1 210 is a mouth in which the outer teeth 1 2 12 d and the thin inner teeth 1 2 1 2 e protrude from the yoke 1 2 1 2 c on the same radius line. It has an overnight core 1 2 1 2 and an open air coil wound around the oral core 1 2 1 2.
  • the low-yellow winding line passes through the outer slot 1 2 1 2a and the inner slot 1 2 1 2b corresponding to the circumferential position, and goes around the yoke 1 2 1 2c. It is wound around the core 1 2 1 2 in a concentrated winding, passing through the plane in the radial direction.
  • the magnetic path in the first row 1 2 1 0 is formed by the outer teeth 1 2 1 2 d and the yoke 1 2 1 2 c, and the thin inner teeth 1 2 1 2 e Not formed.
  • the inner peripheral tooth portion 1 2 1 2 e acts as a partition wall to prevent the buckling of the winding line 1 2 1 1 from collapsing and keeps the first opening 1 2 1 0 coaxial with the input shaft 1 2 1 3 Since it is sufficient to have the function as a structural member, the width in the circumferential direction is narrow as described above.
  • the wrap-around wire 1 2 1 1 is wound around the yoke 1 2 1 2 c in a concentrated winding and has a small radial dimension and is wrapped around a compact. It is possible to reduce the outer diameter of the first mouth and reduce the weight of the first mouth.
  • the low-yield winding wire 1 2 1 1 is concentrated around the yoke 1 2 1 2 c around the outer slot 1 2 1 2 a and the inner slot 1 2 1 2 b.
  • the winding wire 1 2 1 1 can be wound on the core 1 2 1 2 while applying sufficient tension. Therefore, it is possible to improve the area factor of the mouth-to-night winding 1 2 1 1 with respect to the outer peripheral slot 1 2 1 2 a, and the mouth-to-night winding 1 2 1 1 is more densely wound. It is possible to make the outer diameter of 1 210 per mouth even smaller, further reducing the size and weight.
  • the mouth-to-night winding line 1 2 1 1 is concentrated around the yoke 1 2 1 2c, so that the mouth-to-mouth is held firmly by the yoke, The mouth-to-night winding line does not come off the mouth-to-night core even if the heart is applied.
  • high-speed rotation of the first mouth is possible, enabling operation at high rotation and low torque, and as a result, if the same power is transmitted, the size and weight will be further reduced. . Therefore, if it is possible to reduce the size of the 1st row 1 210 and the outer diameter of the 1st row 1 210 is made smaller, then the 1st row 1 The two mouths 1 3 10 and the stay 1 4 10 are also small and light. As a result, the entire vehicle drive system 100 It is possible to reduce the weight.
  • the second reason for the above effect lies in the configuration of the second row 1310, as shown in FIGS. 20 and 21 again.
  • the second row 1310 is extremely rationally configured, and it is possible to further reduce the size while reducing the cost.
  • the inner diameter of the first mouth 1 310 smaller than the outer diameter of the first rotor 1 210, but also the magnetic path formed in the first mouth 1 310 Is designed rationally, and the thickness of the second mouth 1310 will be reduced. Therefore, the outer diameter of the second mouth 1310 is reduced even more than the reduction of the inner diameter, and the size and weight of the second row 1310 are further reduced.
  • the third reason for the above effect is that a refrigerant in a gas-liquid mixed-phase state is supplied to the internal space of the machine frames 1710 and 1720 in which the above-described essential parts of the vehicle drive device are accommodated. This is because one night, 210, the second low 1310 and the stay 1410 are forcibly cooled. Therefore, the restriction on heat dissipation is greatly eased, and the higher the density of the first mouth 1210, the second mouth 1310 and the stay 1140, the more Such a reduction in size and weight becomes possible.
  • the vehicle drive device 1000 of the present embodiment it is possible to reduce the size and weight of the on-board vehicle, which leads to a reduction in product and operation costs of the on-board vehicle.
  • the effect is that it leads to improvement of the quality.
  • the second effect is an improvement in dynamic response.
  • the first mouth 1 210 and the second mouth 13 10 are reduced in size and weight as described above, so that As a result, the moments of inertia of the two mouths are reduced.
  • the reduction of the moment of inertia of the first mouth 1 210 leads to a high response of the engine speed
  • the reduction of the moment of inertia of the second mouth 13 10 This leads to high responsiveness of the speed of the mounted vehicle.
  • the dynamic response performance of the vehicle drive system is improved, and not only is it possible to accelerate and decelerate the on-board vehicle more quickly, but also the fuel efficiency of the on-board vehicle is improved.
  • the third effect is product cost reduction.
  • the first reason lies in the composition of the first mouth, one hundred and twenty one. That is, since the weight of the first mouth is reduced, the material cost is reduced. In addition, the 1st 1st 1st 1st 1st 1st 1st 1st 1st 1st winding line 1 2 1 1 is a concentrated winding Manufacturing costs are also reduced because the number of process steps is reduced. The reason is that the first raw material is provided at lower cost than the conventional technology because the material cost and the manufacturing cost are reduced.
  • the second reason lies in the composition of the second mouth, 1 310.
  • the second row 1310 is reasonably and easily manufactured using off-the-shelf permanent magnets as a material. This is because costs can be reduced.
  • the vehicle equipped with the vehicle drive device 100 of the present embodiment has the effect of reducing not only the above-mentioned operation cost (ie, fuel efficiency) but also the product cost.
  • the cost of the vehicle drive device 100 is reduced, but also the cost of the mounted vehicle is further reduced by reducing the size and weight of the vehicle by reducing the size and weight of the vehicle drive device 100 described above.
  • the combined cost reduction will make it possible to supply onboard vehicles at lower cost.
  • the fourth effect is an improvement in reliability.
  • the first reason lies in the configuration of the first row.
  • the first row of the first row 1 2 1 0 1 2 1 1 1 1 2 1 1 is concentratedly wound around the yoke 1 2 1 2 c of the mouth 1 2 This is because even if a large centrifugal acceleration is applied, the mouth-to-mouth winding line 1 2 1 1 will not easily fall off the mouth-to-night core 1 2 1 2. Therefore, the reliability of the first rotor is improved especially at high speed rotation.
  • a cooling channel 1 2 1 2 f is formed in the first opening 1 2 1 0 1, and the low temperature winding 1 2 11 Overheating of the portion near the input shaft 1 2 1 3 is prevented. Therefore, the reliability especially at high load operation is improved.
  • the second reason for the above-mentioned effect lies in the configuration of the second row 1 310. That is, as described above, since the second row 1310 has no winding or the like and has a simple and highly rigid configuration, a strong centrifugal acceleration is applied to the second port 1310. Even in this case, it is difficult for parts to fall off or cause undesired deformation. Therefore, the reliability of the second mouth 1 310 is improved especially at high speed rotation.
  • the vehicle drive device is different from the seventh embodiment only in the first row 1210 ′, and is otherwise the same as the seventh embodiment. That is, as shown in FIG. 25, in the first mouth 1 210 ′ of the present embodiment, the number of outer teeth 1 2 1 2 d of the low core 1 2 1 2 ′ is equal to the inner teeth. More than the number of parts 1 2 1 2 e 5 , twice the number of inner teeth 1 2 1 2 e ′. In other words, in comparison with the seventh embodiment, the inner peripheral teeth 1 2 1 2 e are thinned out every other, and the number of the inner peripheral teeth 1 2 1 2 e ′ in the present embodiment is This is a half of the inner peripheral tooth portion of the seventh embodiment.
  • the number of inner slots 1 2 1 2 b ′ is halved from that of the seventh embodiment, and the circumferential width of the inner slots 1 12 b is more than double that of the seventh embodiment.
  • the mouth-to-mouth windings 1211a and 1211b are wound in the same manner as in the seventh embodiment, but the inner slot 12a is wound.
  • Example 12b ' different from Example 7, the mouth-to-mouth winding line 121 1a, 12 lib is wound side by side along one of the inner slots 1212b'.
  • the circumferential width of the inner slot 1 2 1 2 b ′ assigned to one of the mouth-to-roll windings 1 2 1 1 a and 1 2 1 1 b having different phases, that is, Half of the circumferential width of the inner slot 1212b ' is somewhat wider than in the seventh embodiment.
  • the space between the input shaft 1 2 1 3 of the first row 1 2 1 0 'and the row 1 1 1 1 in the inner slot 1 2 1 2 b 5 is used for cooling.
  • This embodiment is the same as the seventh embodiment in that the road 1 212 f is formed.
  • the circumferential width of the inner slot 1 2 1 2 b ′ assigned to one of the wraps 1 2 1 1 a and 1 2 1 1 b is It is somewhat more widespread than in Example 7. Therefore, the larger the circumferential width of the wrapped wrapper 1 2 1 1a, 1 2 1 1b, the smaller the height in the radial direction. It is possible to make the outer diameter of 210 ′ smaller. As the outside diameter of the first mouth 1 2 1 0, 1 decreases, the inside and outside diameters of the 2 1 mouth 1 3 1 0 (see Fig. 21) also decrease. 4 1 0 The diameter is reduced, and the entire vehicle drive unit 1000 is further reduced in weight and size.
  • the diameter of the first mouth 1 2 1 0 ′, the second mouth 1 13 1 0, and the: 1 1 10 1 10 is formed to be small, so that the vehicle driving device 1 000 There is an effect that the whole is further reduced in weight and size. Further, for the same reason, there is also an effect that the dynamic response of the vehicle drive device 1000 is further improved.
  • FIG. 26 As a first modified example of the present embodiment, as shown in FIG. 26, as shown in FIG. 26, the winding of the winding wire 1 2 1 1 at the inner circumferential slot 1 2 1 2 b of the first opening 1 2 1 0. It is possible to implement a vehicle drive device in a manner different from that of the eighth embodiment.
  • the mouth 1 2 1 1 of the first row 1 2 1 0 ′ is a three-phase winding composed of U, V, and W phases
  • the low-winding windings 1 2 1 1a, 1 are arranged in the circumferential direction in the order of U, V, W, U, V, W. 2 1 1b is wound.
  • the V-phase on the U-phase, the U-phase on the W-phase, and the On the V-phase, W-phase windings 1 2 1 1a and 1 2 1 1b are wound in the order of W-phase.
  • the three-phase mouth-and-roll winding line 1 2 1 1 is wound in the above order, the low-winding winding line 1 2 1 1 of any phase will be inside the inner slot 1 2 1 2 b '. And outside are wound alternately. Therefore, in this modified embodiment, there is no inconvenience such that the length of the mouth-to-wind winding 1 2 1 1 of only a specific phase becomes longer, and the three-phase mouth-to-wind winding 1 2 1 1 has an equal length. It is wound around.
  • the vehicle drive device according to the ninth embodiment of the present invention is different from the seventh embodiment only in the first mouth 1 2 10 ′′, and is otherwise the same as the seventh embodiment.
  • the mouth core 1 2 1 2 does not have the inner peripheral teeth 1 12 1 e, and the mouth 1 2 Evening core 1 2 1 2 "is composed of yoke 1 2 1 2 c and outer teeth 1 2 1 2 d.
  • the lower core 1 2 1 2" has outer teeth 1 2 1 Through holes are formed at equal intervals in the yoke section 1 2 1 2 c, which is the root part of 2 d, and fixing pins 1 2 14 are placed in each of the through holes. I have.
  • each fixing pin 1 2 1 4 Fixed to the evening frame. Since the two-mouthed frame is fixed to the input shaft 1 2 13 of the first mouthed 1 2 1 0 ", each fixed pin 1 2 1 4 is The evening core 1 2 1 2 "is fixedly held coaxially with the input shaft 1 2 1 3.
  • each fixing pin 1 2 1 4 is made of a material having magnetic properties similar to those of the laminated magnetic steel sheet of the Rho-core 1 2 1 2 ". There is no adverse effect on the formation of the magnetic path.
  • the 1st row of the 1st row 1 2 1 0 "winding 1 2 1 1 does not collapse when it is wound around the yoke 1 2 1 2 c of the row 1 core 1 2 1 2"
  • a jig (not shown) in the side wall shape is wound from the side.
  • the width of line 1 2 1 1 in the circumferential direction can be widened. Therefore, the radial height of the roving winding 1 2 1 1 on the inner peripheral side of the yoke section 1 2 1 2 c can be kept small, and as a result, the first roving 1 2 1 0 "can be realized. It becomes possible to configure the outer diameter even smaller than in the eighth embodiment.
  • the 1st 1st 1st 2nd 1 "1st 1st 1" winding wire 1 2 1 1 is lightly in contact with the outer peripheral surface of the input shaft 1 2 1 3, and the heat conduction of the input shaft 1 2 1 3 Is cooled to some extent.
  • the circumferential width of the space inside the yoke section 1 2 1 2c assigned to one of the mouth-to-mouth winding lines 1 2 1 1a and 1 2 1 1b is It is even wider than in Example 8. Therefore, the wrapped wrap around the mouth 1 2 1 Since the height in the radial direction becomes smaller as the circumferential width of 1a, 1 2 1 1b is larger, the outer diameter of the first row 1 2 1 0 "can be made smaller. If the outer diameter of the first row 1 2 1 0 "becomes smaller, the inner and outer diameters of the second row 1 310 (see Fig. 21) also become smaller. Even if the diameter of 140 1 is further reduced, the entire vehicle drive device 100 is further reduced in weight and size.
  • the outer diameter of the first mouth 1 2 1 0 ", the second mouth 1 3 10 and the stay 1 14 10 are formed with an outer diameter smaller than that of the eighth embodiment. Therefore, there is an effect that the entire vehicle drive device 100 is further reduced in weight and size, and for the same reason, an effect that the dynamic response of the vehicle drive device 100 is further improved. is there.
  • FIG. 28 As a modified embodiment 1 of the present embodiment, as shown in FIG. 28, as shown in FIG. It is possible to implement a vehicle drive device in which a partition wall 1 2 12 g separating 1 a and 1 2 1 1 b is provided.
  • the partition wall members 1 12 12 g are rectangular steel plate members, which are disposed at positions corresponding to the center lines of the respective outer peripheral tooth portions 1 12 12 d. It is fixed to the mouth-to-mouth frame (not shown).
  • the bulkhead members 1 2 1 2 g those that are arranged in the part where the fixing pin 1 2 1 4 is not installed on the yoke 1 2 1 2 c of the mouth core 1 2 1 2 "
  • the yoke portion 1 2 1 2 c is fitted into a groove formed in the axial direction on the inner peripheral surface and is fixed so as not to be inclined even at the intermediate portion. It is made of the same material as the low-frequency core 1 2 1 2 "made of laminated magnetic steel sheets, and does not adversely affect the magnetic path of the 1-inch core 1 2 1".
  • the partition member 1 2 1 2 g supported from behind by the above-mentioned jig (not shown) is connected to the 1-in-1 winding wire. Partitions the winding space of "and forms an inner slot 1 2 1 2b". Therefore, according to this modification, the width of the inner circumference slot 1 2 1 2 b "is hardly reduced from the ninth embodiment by making the width of the winding wire 1 2 1 1 per outer slot 1 2 1 2 a". Thus, there is an effect that the collapse is more completely prevented while maintaining the effect of the ninth embodiment.
  • the partition member 1 2 12 g has the inner peripheral teeth 1 of Examples 7 and 8. Similar to 2 1 2 e and 1 2 1 2 e ′, it also has a function as a structural member for keeping the low core 1 2 1 2 ”coaxial with the input shaft 1 2 13. According to this, there is also an effect that the reliability particularly at the time of high-speed rotation is improved as compared with the ninth embodiment.
  • the above-mentioned double port 1 frame of the first row 1 2 1 0 (Not shown), a plurality of through holes are formed.
  • the through-hole also serves to reduce the thickness of the above-mentioned two-way frame, and also has the effect of reducing the weight and inertia moment of the first row.
  • the configuration of the main part of the second mouth 1310 which is a feature of the present embodiment, will be described in detail below with reference to FIGS.
  • the main part of the second mouth 1310 is to hold the outer field magnet 144 and the inner field magnet 122 and both of them at predetermined positions. It is composed of yoke 1 3 1 1 ⁇ : L 3 1 3. Further, the mouth yoke 1 3 1 1 to 1 3 1 3 is composed of a notch yoke 1 3 1 1, an inner ring 1 3 12 and an outer ring 13 13.
  • the outer field magnets 1402 are plate-shaped permanent magnets each having a predetermined thickness, and the second row magnets 13 are arranged so that the magnetic poles are alternately directed to the outer peripheral surface of the second row magnets 1310. It is arranged on the outer peripheral side of 10 and forms an outer peripheral field.
  • the inner field magnets 122 are plate-shaped permanent magnets each having a predetermined thickness of about half the circumferential width as compared with the outer field magnets 140, and are formed in pairs. Has become. So Then, the inner field magnets 122 are aligned with the outer field magnets 140 at the positions corresponding to the respective outer field magnets 140, and the magnetization directions (magnetic pole directions) are aligned.
  • the main part of the second mouth 1310 is composed of two kinds of permanent magnets (inner field magnets 1 2 0 And the outer field magnets 1420), and the mouth yoke 1311 to 1313 holding the permanent magnets inside.
  • Outer field magnets 1 420 are arranged in the circumferential direction with N poles and S poles alternately arranged.Inner field magnets 122 are replaced with outer field magnets 140 Twenty-four sheets are arranged in the direction to match the direction of the magnetic flux.
  • the circumferential width of the inner field magnet 1 220 is about half of the circumferential width of the outer field magnet 140, and the inner field magnet 122 is the outer field magnet. Two cards are provided for each one of the 0 cards.
  • the mouth yoke 1 3 1 1-: L 3 13 is composed of a back yoke 1 3 1 1 made of a soft magnetic mass material, an inner ring 1 3 1 2 made of laminated magnetic steel sheets, and an outer ring 1 3 1 3
  • the metal yoke 1 3 1 1 1 is a substantially hollow cylindrical member in which thick spaced portions 1 3 1 1 d and thin spaced portions 1 3 1 1 d are formed alternately, and is a soft magnetic steel material. Is formed from. That is, the back yoke 1311 is formed by first rolling a cold-rolled steel plate or mild steel plate (such as S10C or S15C) to form a hollow cylinder by welding, and then forming an outer peripheral surface of the hollow cylinder. And the inner peripheral surface is cut out and added.
  • a cold-rolled steel plate or mild steel plate such as S10C or S15C
  • the protrusions 1311a and 1311b are formed in the same number (12 rows each), but the outer peripheral recesses 1311f are 12 places and the inner peripheral recesses 1311. 1 e is formed in 24 places. Also, in the vicinity of the circumferentially intermediate portion of the outer field magnets 144 of the back yoke 1311, the outer field magnets and the inner field magnets approach each other, Thin yoke 1 3 1 1 is formed with thin adjacent portion 1 3 1 1 c . Conversely, near the circumferential end of the outer field magnet 144 of the back yoke 1311, the outer field magnet 1420 and the inner field magnet 1220 are separated from each other. The back yoke 1311 has a thick spaced portion 1311d formed thereon.
  • the inner ring 1 3 1 2 is a member in which a large number of substantially ring-shaped laminated electromagnetic steel sheets are stacked, and the length in the axial direction is equal to the back yoke 1 3 1 1.
  • the inner field magnets 1 220 are pressed and held in the inner peripheral recesses 1 3 1 1 e of the inner peripheral surface of 1 1.
  • the inner ring 1 3 1 2 is engaged with each inner field magnet 1 2 0 0, and the outer peripheral surface of the inner ring 1 3 1 2 is located on the inner side of each inner field magnet 1 2 2 0. It is in contact with the surface without gaps.
  • the outer peripheral ring 13 13 is a member in which a large number of substantially ring-shaped laminated electromagnetic steel sheets are laminated, and the length in the axial direction is equal to the back yoke 13
  • Each outer field magnet 1402 0 is pressed and held between the outer peripheral recesses 1311f of the outer peripheral surface of 11.
  • the outer ring 1 3 1 3 is engaged with each outer field magnet 1 420, and the inner peripheral surface of the outer ring 1 3 1 3 is attached to the outer surface of each outer field magnet 1 420. They are in contact without any gap.
  • the projections 1 3 1 1 a and 1 3 1 1 b of the knock yoke 1 3 1 1 are opposed to each other with the thick section 1 3 1 1 d of the knock 1 3 1 d sandwiched in the radial direction. And protrude outward and inward, respectively.
  • the protrusions 1311a and 1311b of the back yoke 1311 are welded to the inner ring 1312 and the outer ring 1313 at their respective tips. That is, the tip of the projection 1311a formed on the inner peripheral surface of the back yoke 1311 is resistance-welded to the outer peripheral surface of the inner ring 1312 in the entire axial direction. .
  • the tip of the projection 1311b formed on the outer peripheral surface of the back yoke 1311 is resistance-welded to the inner peripheral surface of the outer ring 1313 in the axial length direction. ing. These resistance weldings are carried out by applying electrodes for resistance welding to the inner peripheral surface of the inner ring 1312 and the outer peripheral surface of the outer ring 1313 while shifting them at a predetermined pitch in the axial direction. Will be
  • the inner ring 1 3 1 2, back yoke 1 3 1 1, and outer ring 1 3 1 3 are welded to the body while holding the inner field magnet 1 2 0 and the outer field magnet 1 4 2 0
  • the stiffness of the yoke 1 3 1 1 to 1 3 1 3 is very high. Therefore, even when the second mouth is rotating at high speed, the displacement of the middle part of the mouth yoke 1 3 1 1 to 1 3 13 in the axial direction in the centrifugal direction is extremely small. Has been suppressed.
  • the inner ring 1 3 1 2 and the outer ring 1 3 1 3 and the back yoke 1 3 1 1 are welded to each other, and the inner field magnet 1 2 0 and the outer field magnet 1 4
  • the air gaps dl and d2 of the second row 1310 may be clogged due to the connection of the fixed pins 1333, and the dynamic balance of the 1st row 1310 may be lost. There is no danger of collapsing.
  • the electromagnetic efficiency of the second mouth 1310 is extremely high.
  • the above-mentioned proximity portion 1 3 1 1 c and the separation portion 1 3 1 1 d are formed.
  • Dimensions of the back yoke 1311 of the mouth—evening yoke 1 3 1 ⁇ ⁇ ⁇ 3 13, particularly the separation portion 1 3 Consider the dimensions of 1 1 d.
  • the magnetic flux of the field of the rotation speed adjustment unit 1200 including the inner field magnets 122 is completely canceled by the electromagnetic action of the armature of the first mouth.
  • the thickness of the back yoke 1 3 1 1 of the mouth yoke 1 3 1 1 to 1 3 1 3 1 3 1 1 d is included in the torque adjustment section 1 400
  • the outer field magnet 1 What is necessary is to have a width enough to pass the 420 magnetic flux.
  • the outer field magnet 144 and the inner field magnet 122 are both rare earth magnets made of the same material.
  • the magnetic flux density generated by the rare-earth magnet in the magnetic path is usually about 0.8 Tesla, and the magnetic flux density of the magnetic path formed in the mouth yoke 1 3 1 1 to 1 3 13 is a maximum. Usually it is around 1.0 to 2.0 Tesla. Then, let t be the radial width of the spaced portion 1 3 1 1 d of the back yoke 1 3 1 1 acting as a magnetic path. Assuming that the circumferential width of L is L, the following relationship holds between both t and L. 1.0 t ⁇ 0.8 L / 2 ⁇ 2.0 t
  • the radial width t of the spaced portion 1311d of the back yoke 1311 is sufficient if it is within the range of the following expression.
  • the magnetic properties of the outer field magnet 1420 and the inner field magnet 1220 and the magnetic properties of the back yoke 1311 can be given fairly accurately. Therefore, in the actual operation, the maximum amount of magnetic flux that should pass through the separated portion 1311d of the back yoke 1311 is set, and the radial width t of the separated portion 1311d is set based on the above-mentioned concept. Can be determined to a minimum.
  • the radial width As narrow as the strength allows. Then, while the outer field magnet 1420 and the inner field magnet 1220 are plate-shaped, the back yoke 1311 moves along with the transition from the adjacent section 1311c to the separated section 1311d. Radial width increases. The magnetic flux passing through the back yoke 1311 increases as the distance from the proximity 1311c to the separation 1311d increases, and as a result, the inside of the back yoke 1311 has a substantially constant magnetic flux density.
  • the volume efficiency of the back yoke 1311 is excellent.From the above considerations, while using inexpensive flat permanent magnets for the outer field magnet 1420 and the inner field magnet 1220, It can be seen that the thickness of the main part of the hollow cylindrical second row 13.10 can be reduced to a necessary minimum.
  • the vehicle drive device 1000 according to the present embodiment has the above-described configuration and operation, and thus has many effects.
  • the effects are summarized in the following three points.
  • the first effect is a significant reduction in size and weight.
  • the vehicle drive device 1000 of the present embodiment unlike the prior art, a differential wheel assembly (automatic transmission in a normal AT vehicle) is not required, and accordingly, a large amount is required. Small size and light weight are possible. Also, compared to a vehicle drive device having a configuration in which a generator and an electric motor are separately provided, the vehicle drive device 1000 of this embodiment is simple, small, and lightweight. This is because the vehicle drive device of the present embodiment
  • the rotation speed adjustment unit 1200 and the torque adjustment unit 1400 This is because two rotating electric machines having a power generation function and an electric function are coaxially integrated by the structure.
  • the second row 10 is extremely rationally configured and has high magnetic efficiency, so that high performance can be obtained.
  • the second mouth 1310 is robust and has high rigidity and can be made thinner, so that it is possible to reduce the cost and further downsize.
  • the effect of improving the dynamic response characteristic is also produced by the reduction of the inertial moment of the second row 1310.
  • the vehicle drive device 100 of the present embodiment it is possible to reduce the size and weight of the mounted vehicle, which leads to a reduction in the product cost and operation cost of the mounted vehicle. This has the effect of improving power performance.
  • the second effect is improvement in conversion efficiency of shaft output.
  • the vehicle drive system 100 of the present embodiment if the drive system of the on-board vehicle is designed to operate with a slight deceleration as described above, the electromagnetic loss is minimized. And operation at extremely high efficiency becomes possible. Therefore, compared to the conventional technology having a differential 'wheel assembly, there is no mechanical loss due to meshing of a large number of gears, so that there is an effect that power transmission efficiency is improved.
  • the vehicle drive system 100 of the present embodiment power can be transmitted with high efficiency from the engine 100 to the drive wheels 700, thereby reducing the fuel consumption of the on-board vehicle and reducing it. There is an effect that the accompanying low pollution is achieved.
  • the third effect is product cost reduction.
  • the vehicle drive device 100 of the present embodiment has a simple configuration and does not require a differential wheel assembly and a separate generator and electric motor, so that the product cost is reduced.
  • the second row of products was manufactured from off-the-shelf permanent magnets in a reasonable and PT / 04302
  • the manufacturing cost of the second mouth 1310 can be suppressed, and the product cost of the vehicle drive device 100 is further reduced.
  • the vehicle equipped with the vehicle drive device 100 of the present embodiment has the effect of reducing not only the above-mentioned operation cost (ie, fuel efficiency) but also the product cost.
  • the present invention relates to an electromagnetic coupling drive device for a hybrid vehicle equipped with both an engine and a rotating electric machine.
  • the drive device is not only simple and lightweight, but also has a relatively high power transmission efficiency.
  • it is possible to reduce the size and weight of the onboard vehicle and enhance the power performance, thereby achieving low fuel consumption and low pollution of the onboard vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A driving unit for vehicles, comprising a stator (1410) having a stator winding (1411), a first rotor (1210) having a rotor winding (1211) and driven by an engine, and a second rotor (1310) disposed between the stator and first rotor and driving wheels, the second rotor (1310) holding a main field magnet (1320), an inner sub-field magnet (1220), and an outer sub-field magnet (1420) in a rotor yoke (1311), whereby a magnetic path is formed, so that the thicknesses of the field magnets (1220, 1320, 1420) may be set to minimum levels, this enabling the thickness of the second rotor (1310), the outer diameters of the second rotor (1310) and stator (1410), and the inertial moment of the second rotor (1310) to be reduced.

Description

明細書 車両用駆動装置 技術分野  Description Vehicle drive device Technical field
本発明は、 エンジンと回転電機との両方を備えているハイプリ ッ ド型車 両用の電磁力ップリング駆動装置の技術分野に属する。 背景技術  The present invention belongs to the technical field of an electromagnetic force coupling drive device for a hybrid vehicle including both an engine and a rotating electric machine. Background art
この分野の従来技術としては、 本願出願人により出願された特開平 9 一 5 6 0 1 0号公報に開示されている車両用駆動装置がある。  As a prior art in this field, there is a vehicle drive device disclosed in Japanese Patent Application Laid-Open No. Hei 9-56010 filed by the present applicant.
この従来の車両用駆動装置は、 機枠に固定されたステ一夕と、 エンジン 出力軸と接続されてこのステ一夕と同軸に軸支された第 1 ロー夕と、 ステ 一夕と第 1 口一夕との間に配設されホイール駆動軸に接続された第 2口一 夕とを有する。  This conventional vehicular drive system includes a stay fixed to a machine frame, a first road connected to an engine output shaft and supported coaxially with the stay, a first stay and a first stay. And a second port connected to the wheel drive shaft.
ここで、 ステ一夕は、 ステ一夕コアおよびステ一夕卷線を持ち、 同ステ 一夕卷線は、 外付けの駆動回路のイ ンバー夕に接続されている。 また、 第 1 ロー夕は、 ロー夕コアおよびロー夕卷線を持ち、 同ロー夕卷線も外付け の駆動回路の他のィンバ一夕に接続されている。  Here, the stay overnight has a stay overnight core and a stay overnight winding, and the stay overnight winding is connected to the inverter of an external drive circuit. In addition, the first row has a low core and a low winding, and the low winding is also connected to another driver of the external drive circuit.
一方、 第 2口一夕は、 中空円筒状の回転子であり、 外周界磁を形成して いる外周面でステ一夕に対向し、 内周界磁を形成している内周面でこの第 1 ロー夕に対向している。 外周界磁および内周界磁を形成する目的で、 第 2ロー夕は、 外周面に複数の外側界磁磁石を保持しており、 内周面に複数 の内側界磁磁石を保持していた。  On the other hand, the second opening is a hollow cylindrical rotor, which faces the stay at the outer peripheral surface forming the outer peripheral field and the inner peripheral surface forming the inner peripheral field. It faces the first row evening. In order to form the outer and inner fields, the second row held multiple outer field magnets on the outer face and multiple inner field magnets on the inner face. .
この従来の車両用駆動装置によれば、 エンジン出力軸に接続された第 1 ロー夕とホイール駆動軸に接続された第 2ロー夕との回転数差にもかかわ らず、 効率よく所望の トルクを第 2口一夕にかけて車両を駆動することが できた。  According to this conventional vehicle drive device, a desired torque can be efficiently obtained regardless of the rotational speed difference between the first rotor connected to the engine output shaft and the second rotor connected to the wheel drive shaft. We were able to drive the vehicle over the second mouth.
しかしながら上記公報の車両用駆動装置では、 外側界磁磁石が第 2ロー 夕の外周面を形成して配設されていたので、 高速回転時の遠心力に耐える ことができるようにするためには、 よほど強固に外側界磁磁石を第 2口一 夕に固定する必要があった。 また、 内側界磁磁石が第 2口一夕の内周面を 形成して配設されていたので、 低速回転時に搭載車両に加わる振動等の加 速度に耐えることができるようにするには、 外側界磁磁石ほどではないに しても強固に内側界磁磁石を第 2ロータに固定する必要があった。 However, in the vehicle drive device disclosed in the above publication, the outer field magnet is disposed so as to form the outer peripheral surface of the second rotor, so that in order to be able to withstand the centrifugal force during high-speed rotation, However, it was necessary to fix the outer field magnet in the second mouth very firmly. In addition, since the inner field magnets are arranged so as to form the inner peripheral surface of the second opening, vibration such as vibration applied to the mounted vehicle during low-speed rotation is applied. In order to be able to withstand the speed, it was necessary to fix the inner field magnet to the second rotor firmly, if not as strongly as the outer field magnet.
そこで本発明は、 いっそう小型軽量化され応答性に優れた車両用駆動装 置を提供することを解決すべき課題とする。 発明の開示  Therefore, an object of the present invention is to provide a vehicle drive device which is further reduced in size and weight and has excellent responsiveness. Disclosure of the invention
上記課題を解決するために、 本発明の第 1手段では、 ステ一夕と第 1 ロー 夕とにそれぞれ電機子が形成されており、 両者の間に介在する第 2 ロー夕 には外周界磁および内周界磁が形成されている。 それゆえ、 第 1 口一夕と 第 2口一夕との間に形成される内周磁気回路を適正に制御することにより 、 第 1 口一夕と第 2ロー夕との間で トルクの授受が行われて回転電機が構 成され、 両者の間で回転数調整部の回転電機作用が発揮される。 また、 第 2 ロー夕とステ一夕との間に形成される外周磁気回路を適正に制御するこ とにより、 第 2口一夕とステ一夕との間で トルクの授受が行われて別の回 転電機が構成され、 トルク調整部の回転電機作用が発揮される。 In order to solve the above problems, in the first means of the present invention, an armature is formed on each of the stay and the first row, and an outer peripheral magnetic field is formed on the second row interposed therebetween. And an inner peripheral field is formed. Therefore, by appropriately controlling the inner magnetic circuit formed between the first mouth and the second mouth, torque can be transferred between the first mouth and the second morning. Is performed to configure the rotating electric machine, and the rotating electric machine function of the rotation speed adjusting unit is exhibited between the two. Also, by appropriately controlling the outer magnetic circuit formed between the second row and the stay, torque is transmitted and received between the second mouth and the stay and another Thus, the rotating electric machine function of the torque adjusting unit is exhibited.
ここで、 第 1 口一夕はエンジン出力軸に接続されていてエンジンにより 回転駆動され、 一方、 第 2口一夕は駆動輪の駆動軸に接続されており、 同 駆動軸を回転駆動するか逆に同駆動軸から回転駆動される。 エンジンの回 転数はス口ッ トル閧度およびトルク負荷等の条件によりほぼ決まっており 、 駆動輪の駆動軸の回転数も搭載車両の走行速度によって一意に決まって いる。 それゆえ、 第 1 ロー夕の回転数と第 2口一夕の回転数とはそれぞれ 独立に決まっているものと考えられ、 第 1 口一夕と第 2口一夕との間で形 成される回転数調整部の回転電機作用では、 両口一夕の間での回転数の調 整が主たる作用となる。 この作用は、 第 1 ロー夕のロー夕コアおよびロー 夕巻線からなる電機子が、 電動作用をもつ場合にも発電作用をもつ場合に も変わらない。  Here, the first port is connected to the engine output shaft and is rotationally driven by the engine, while the second port is connected to the drive shaft of the drive wheel and whether the same drive shaft is rotationally driven. Conversely, it is rotationally driven from the same drive shaft. The number of revolutions of the engine is substantially determined by conditions such as the degree of throttle and the torque load, and the number of revolutions of the drive shaft of the drive wheels is also uniquely determined by the traveling speed of the mounted vehicle. Therefore, it is considered that the rotation speeds of the first row and the second mouth are determined independently, and the rotation speed is formed between the first mouth and the second mouth. In the operation of the rotating electrical machine of the rotating speed adjusting unit, the adjusting of the rotating speed between the two sides is the main operation. This effect is the same regardless of whether the armature consisting of the first core and the first winding has an electric action and a power generation action.
—方、 ステ一夕のステ一夕コアおよびステ一夕巻線からなる電機子は、 第 2ロー夕に適正な トルクを授受して、 第 2口一夕を所望の回転数で駆動 する必要がある。 なぜなら、 搭載車両を所望の速度で走行させるには、 駆 動輪の駆動軸に連なる第 2ロー夕を適正な回転数で駆動する必要があるか らである。 それゆえ、 ステ一夕と第 2ロー夕との間で形成される トルク調 整部の回転電機作用では、 第 2 ロー夕に適正な駆動トルクを授受すること が主たる作用となる。 この作用は、 ステ一夕の電機子が、 第 2口一夕に加 速方向に トルクを加えて電動作用をもつ場合にも、 第 2口一夕に減速方向 に トルクを加えて発電作用を行う場合にも、 変わらない。 —The armature consisting of the stay core and the stay winding is required to transmit and receive the appropriate torque in the second row and drive the second port at the desired speed. There is. This is because the second vehicle connected to the drive shaft of the driving wheels must be driven at an appropriate rotation speed in order for the mounted vehicle to travel at the desired speed. Therefore, in the rotating electric machine operation of the torque adjusting section formed between the stay and the second row, the main action is to transmit and receive an appropriate drive torque to the second row. The effect is that the armature of the stay It does not change when the motor is operated by applying torque in the fast direction or when power is generated by applying torque in the deceleration direction over the second opening.
以上では、 回転数調整部の回転電機作用と トルク調整部の回転電機作用 との作用の違いを強調して、 本手段の車両用駆動装置の作用を説明した。 しかしながら要するに、 ステ一夕の電機子と第 1 口一夕の電機子とを適正 に制御して、 第 1 口一夕から第 2ロー夕へ効率よく動力の伝達を行うこと が本手段の車両用駆動装置の要諦である。 すなわち、 エンジン出力軸に接 続されている第 1 口一夕には適正な トルク負荷がかかるようにし、 駆動輪 の駆動軸に接続されている第 2 ロー夕には所望の回転数になるように適正 な トルクをかけることである。  In the above, the operation of the vehicle drive device of the present means has been described by emphasizing the difference between the operation of the rotating electric machine of the rotation speed adjusting unit and the operation of the rotating electric machine of the torque adjusting unit. However, in short, the vehicle of this means is to control the armature of the stay and the mouth of the first mouth properly and transmit the power efficiently from the evening of the first mouth to the second morning. It is the key to the driving device for use. In other words, an appropriate torque load is applied to the first port connected to the engine output shaft, and a desired rotational speed is set to the second port connected to the drive shaft of the drive wheels. Is to apply the proper torque to
なお、 ステ一夕の電機子の制御と第 1 口一夕の電機子の制御とは、 それ それに電気的に接続されているィンバ一夕によってなされるように外部回 路を構成することが可能である。 また、 回転数調整部およびトルク調整部 にそれぞれ形成されている回転電機の発電作用およびまたは電動作用の結 果生じる電力の余剰分や不足分は、 各インバー夕に接続されたバッテリー (二次電池) との電力の授受で調整できるように外部回路を構成すると良 い。 そのうえでバッテリーの容量が十分に大きければ、 電力が不足したり 無駄に消費されたりすることはない。  It is possible to configure an external circuit so that the control of the armature of the stay and the control of the armature of the first mouth can be performed by the inverter electrically connected to it. It is. The surplus or shortage of electric power generated as a result of the power generation and / or motor operation of the rotating electric machine formed in the rotation speed adjustment unit and the torque adjustment unit, respectively, is determined by the battery (secondary battery) connected to each inverter. The external circuit should be configured so that it can be adjusted by the transfer of electric power to and from the external circuit. If the battery capacity is large enough, there is no power shortage or wasted energy.
また、 通常の運転状態である搭載車両の前進時には、 第 1 ロー夕の回転 方向と第 2口一夕の回転方向とは同一方向であるから、 第 1 口一夕から第 2ロー夕への電磁力を介する動力伝達は比較的高い効率で行われる。  Also, when the mounted vehicle moves forward in the normal driving state, the rotation direction of the first row and the second port is the same, so the direction of the first row to the second row is the same. Power transmission via electromagnetic force is performed with relatively high efficiency.
本手段の車両用駆動装置は、 構成がシンプルで軽量小型であるばかりで はなく動力の伝達効率も比較的高いので、 搭載車両を小型軽量で動力性能 が高くすることが可能になり、 搭載車両の低燃費化および低公害化が達成 され得る。  The vehicle drive system of this means is not only simple in configuration and lightweight and compact, but also has a relatively high power transmission efficiency, making it possible to reduce the size and weight of the onboard vehicle and enhance the power performance. Fuel efficiency and pollution can be reduced.
すなわち本手段によれば、 小型軽量化された高効率の車両用駆動装置を 提供することができるという効果がある。  That is, according to this means, there is an effect that it is possible to provide a small and lightweight highly efficient vehicle drive device.
本手段ではまた、 主界磁磁石と、 内側副界磁磁石および外側副界磁磁石 とが、 口一夕ヨークに収容されており、 各界磁磁石はコンパク トに配設さ れている。 それゆえ、 ロー夕ヨークの半径方向の厚さはあま り厚くならず 、 比較的薄く形成されている。 ここで、 多数枚の電磁鋼板が中空円筒状に 積層された口一夕ヨークを一体的に固定するには、 ロー夕ヨークを軸長方 向に貫通する複数の固定ビンまたは首長ボルトを使用することができる。 あるいは、 ロータヨークの内周面および外周面のうち少なく とも一方を軸 長方向に溶接して一体的に固定しても良く、 またはその他の固定方法を取 ることもできる。 In this means, the main field magnet, the inner sub-field magnet, and the outer sub-field magnet are housed in the opening yoke, and each field magnet is disposed in a compact. Therefore, the thickness of the yoke yoke in the radial direction is not so large but formed relatively thin. Here, in order to integrally fix the mouth yoke in which a large number of magnetic steel sheets are stacked in a hollow cylindrical shape, use a plurality of fixing bins or neck-length bolts that penetrate the rope yoke in the axial direction. be able to. Alternatively, at least one of the inner circumferential surface and the outer circumferential surface of the rotor yoke may be integrally fixed by welding in the axial direction, or another fixing method may be employed.
したがって本手段によれば、 第 2口一夕を比較的薄くかつ軽量に構成す ることが可能である。 その結果、 本手段の車両用駆動装置をいつそう小型 軽量化することが可能になる。 また、 ステ一夕および第 1 口一夕に対して 充分な トルクの授受が行えるだけの界磁を発生させながら、 第 2口一夕の 慣性モ一メン トを比較的小さく抑えることができるので、 加速時および減 速時の応答特性が向上する (時定数が短縮される) 。  Therefore, according to the present means, it is possible to make the second mouth and night relatively thin and lightweight. As a result, it becomes possible to reduce the size and weight of the vehicle drive device of the present means. In addition, the inertia moment of the second mouth can be suppressed to a relatively small value while generating a magnetic field capable of transmitting and receiving sufficient torque to the stay and the first mouth. The response characteristics during acceleration and deceleration are improved (the time constant is shortened).
したがって、 本手段によれば、 前述の効果に加えて、 車両用駆動装置を いっそう小型軽量化することが可能になるばかりではなく、 搭載車両の加 速時および減速時の応答特性が向上するという効果がある。  Therefore, according to this means, in addition to the above-described effects, not only can the vehicle drive device be further reduced in size and weight, but also the response characteristics during acceleration and deceleration of the mounted vehicle can be improved. effective.
また、 クラッチ入力軸を第 1 口一夕および第 2口一夕のうち一方に連軸 可能な入力軸切替えクラツチと、 クラッチ出力軸をこの第 1 ロー夕および この第 2口一夕のうち一方に連軸可能な出力軸切替えクラツチとが装備さ れている。 そして、 第 1 口一夕および第 2 ロー夕との間に内周磁気回路が 形成されて トルクの授受が行われ、 同様に、 ステ一夕および第 2口一夕と の間に外周磁気回路が形成されて トルクの授受が行われる。  Also, an input shaft switching clutch that can connect the clutch input shaft to one of the first port and the second port, and the clutch output shaft to one of the first port and the second port The unit is equipped with an output shaft switching clutch that can be connected to multiple shafts. An inner magnetic circuit is formed between the first mouth and the second row to transmit and receive torque. Similarly, an outer magnetic circuit is formed between the first mouth and the second mouth. Is formed to transmit and receive torque.
それゆえ、 入力軸切替えクラッチの切替と、 出力軸切替えクラッチの切 替とにより、 クラッチ入力軸およびクラッチ出力軸と第 1 ロー夕および第 2口一夕の連軸の組み合わせを、 任意に選択することができる。 そこで、 第 1 口一夕と第 2ロー夕との間での トルクの授受が最も効率よく行われる 組み合わせで連軸することが可能となる。 その結果、 クラッチ入力軸から クラツチ出力軸までの伝達効率を、 クラツチ入力軸の回転数とクラッチ出 力軸の回転数との大小関係の如何にかかわらず、 高く保つことが可能にな る。  Therefore, by switching the input shaft switching clutch and switching the output shaft switching clutch, the combination of the clutch input shaft and clutch output shaft and the continuous shaft of the first roaster and the second port can be arbitrarily selected. be able to. Therefore, it is possible to link the shafts in a combination that allows the most efficient transfer of torque between the first mouth and the second row. As a result, the transmission efficiency from the clutch input shaft to the clutch output shaft can be kept high regardless of the magnitude relationship between the rotation speed of the clutch input shaft and the rotation speed of the clutch output shaft.
さらに、 第 1 口一夕およびまたは第 2口一夕を介して、 クラッチ入力軸 とクラッチ出力軸とを直結することも可能になる。 この場合には、 電磁的 な損失はほとんど無くなり、 わずかの機械的な損失があるのみで、 非常に 高い伝達効率が発揮される。  Further, it is possible to directly connect the clutch input shaft and the clutch output shaft via the first opening and / or the second opening. In this case, there is almost no electromagnetic loss, and very high transmission efficiency is exhibited with only a small mechanical loss.
したがって、 クラツチ入力軸の回転数とクラツチ出力軸の回転数との大 小関係の如何にかかわらず、 高い伝達効率を発揮し得る車両用駆動装置を 提供することができるという効果がある。 図面の簡単な説明 Therefore, regardless of the magnitude relationship between the rotation speed of the clutch input shaft and the rotation speed of the clutch output shaft, it is possible to provide a vehicle drive device that can exhibit high transmission efficiency. BRIEF DESCRIPTION OF THE FIGURES
図 1は実施例 1 としての車両用駆動装置の全体構成を示す側断面図であ る。 図 2は実施例 1 としての車両用駆動装置の要部構成を示す端面図であ る。 図 3は実施例 1の車両用駆動装置の磁路の一例を示す端面図である。 図 4は実施例 1の車両用駆動装置の磁路の他の例を示す端面図である。 図 5は実施例 2としての車両用駆動装置の要部構成を示す端面図である。 図 6は実施例 2の車両用駆動装置の磁路の一例を示す端面図である。 図 7は 実施例 2の車両用駆動装置の磁路の他の例を示す端面図である。 図 8は実 施例 2の変形態様 1の車両用駆動装置の要部構成を示す端面図である。 図 9は実施例 3としての車両用駆動装置の構成を示す端面図である。 図 1 0 は実施例 3の各作動モードを比較して示す作動概念図である。 図 1 1は実 施例 3の減速モードでの作用を示す組図であり、 ( a ) クラッチ入力軸へ の軸入力を示すグラフ、 (b ) 発電作用を示すグラフ、 ( c ) 電動作用を 示すグラフ、 ( d ) クラッチ出力軸への軸出力を示すグラフである。 図 1 2は実施例 3の増速モード (低効率) での作用を示す組図であり、 ( a ) クラッチ入力軸への軸入力を示すグラフ、 ( b ) 電動作用を示すグラフ、 ( c ) 発電作用を示すグラフ、 (d ) クラッチ出力軸への軸出力を示すグ ラフである。 図 1 3は実施例 3の増速モードでの作用を示す組図であり、 ( a ) クラッチ入力軸への軸入力を示すグラフ、 (b ) 発電作用を示すグ ラフ、 ( c ) 電動作用を示すグラフ、 (d ) クラッチ出力軸への軸出力を 示すグラフである。 図 1 4は実施例 3の各種運用モードの作用を示す組図 であり、 ( a ) 増速モードでの作用を示すグラフ、 (b ) 減速モードでの 作用を示すグラフ、 ( c ) 電動モードでの作用を示すグラフ、 ( d ) 発電 モードでの作用を示すグラフである。 図 1 5は実施例 4としての車両用駆 動装置の構成を示す端面図である。 図 1 6は実施例 5としての車両用駆動 装置の構成を示す端面図である。 図 1 7は実施例 5のクラツチ部の構成を 拡大して示す部分端面図である。 図 1 8は実施例 6としての車両用駆動装 置の構成を示す端面図である。 図 1 9は実施例 6のクラツチ部の構成を拡 大して示す部分端面図である。 図 2 0は実施例 7としての車両用駆動装置 の全体構成を示す側端面図である。 図 2 1は実施例 7としての車両用駆動 装置の要部構成を示す正端面図である。 図 2 2は実施例 7の第 1 ロー夕の 形状を示す正面図である。 図 2 3は実施例 7の要部における磁路の一例を 示す正端面図である。 図 2 4は実施例 7の要部における磁路の他の例を示 す正端面図である。 図 2 5は実施例 8の第 1 口一夕の構成を示す正端面図 である。 図 2 6は実施例 8の変形態様 1の第 1 口一夕の構成を示す正端面 図である。 図 2 7は実施例 9の第 1 ロー夕の構成を示す正端面図である。 図 2 8は実施例 9の変形態様 1の第 1 ロー夕の構成を示す正端面図である 。 図 2 9は実施例 9の変形態様 2の第 1 口一夕の構成を示す正端面図であ る。 図 3 0は実施例 1 0 としての車両用駆動装置の全体構成を示す側断面 図である。 図 3 1は実施例 1 0 としての車両用駆動装置の要部構成を示す 端面図である。 発明を実施するための最良の形態 FIG. 1 is a side sectional view showing the overall configuration of a vehicle drive device as a first embodiment. FIG. 2 is an end view showing a main part configuration of the vehicle drive device as the first embodiment. FIG. 3 is an end view showing an example of a magnetic path of the vehicle drive device of the first embodiment. FIG. 4 is an end view showing another example of the magnetic path of the vehicle drive device of the first embodiment. FIG. 5 is an end view showing a configuration of a main part of a vehicle drive device according to a second embodiment. FIG. 6 is an end view showing an example of a magnetic path of the vehicle drive device according to the second embodiment. FIG. 7 is an end view showing another example of the magnetic path of the vehicle drive device according to the second embodiment. FIG. 8 is an end view showing a main part configuration of a vehicle drive device according to a first modification of the second embodiment. FIG. 9 is an end view showing the configuration of the vehicle drive device according to the third embodiment. FIG. 10 is an operation conceptual diagram showing each operation mode of the third embodiment in comparison. Fig. 11 is an assembly diagram showing the operation in the deceleration mode of the third embodiment, where (a) a graph showing the shaft input to the clutch input shaft, (b) a graph showing the power generation operation, and (c) a graph showing the electric operation. (D) is a graph showing shaft output to a clutch output shaft. FIGS. 12 and 13 are assembly diagrams showing the operation in the speed increasing mode (low efficiency) of the third embodiment. (A) A graph showing the shaft input to the clutch input shaft, (b) a graph showing the electric operation, and (c) ) A graph showing the power generation action, and (d) a graph showing the shaft output to the clutch output shaft. FIG. 13 is a set diagram showing the operation in the speed increasing mode of the third embodiment, where (a) a graph showing the shaft input to the clutch input shaft, (b) a graph showing the power generation operation, and (c) an electric operation. (D) is a graph showing shaft output to a clutch output shaft. FIGS. 14A and 14B are set diagrams showing the operation of the various operation modes of the third embodiment. (A) A graph showing the operation in the speed increasing mode, (b) a graph showing the operation in the deceleration mode, and (c) the electric mode. (D) is a graph showing the operation in the power generation mode. FIG. 15 is an end view showing the configuration of the vehicle drive device according to the fourth embodiment. FIG. 16 is an end view showing the configuration of the vehicle drive device as the fifth embodiment. FIG. 17 is an enlarged partial end view showing the configuration of the clutch part of the fifth embodiment. FIG. 18 is an end view showing a configuration of a vehicle drive device according to a sixth embodiment. FIG. 19 is an enlarged partial end view of the configuration of the clutch part of the sixth embodiment. FIG. 20 is a side end view showing the overall configuration of the vehicle drive device as the seventh embodiment. FIG. 21 is a front end view showing a configuration of a main part of a vehicle drive device according to a seventh embodiment. FIG. 22 is a front view showing the shape of the first row of the seventh embodiment. Fig. 23 shows an example of the magnetic path in the main part of the seventh embodiment. It is a front end view shown. FIG. 24 is a front end view showing another example of the magnetic path in the main part of the seventh embodiment. FIG. 25 is a front end view showing the configuration of the first mouth of the eighth embodiment. FIG. 26 is a front end view showing the configuration of the first mouth of the first variation of the eighth embodiment. FIG. 27 is a front end view showing the configuration of the first row of the ninth embodiment. FIG. 28 is a front end view showing the configuration of the first row of Modification 1 of the ninth embodiment. FIG. 29 is a front end view showing the configuration of the first mouth of the variation 2 of the ninth embodiment. FIG. 30 is a side sectional view showing the overall configuration of the vehicle drive device as the tenth embodiment. FIG. 31 is an end view showing a main part configuration of the vehicle drive device as the tenth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
[実施例 1 ]  [Example 1]
(実施例 1の全体構成)  (Overall configuration of Example 1)
本発明の実施例 1 としての車両用駆動装置 1 0 0 0は、 図 1 に示すよう に、 エンジン 1 0 0の出力軸 1 1 0からの軸出力を、 必要に応じて増減し 、 適正な トルクおよび回転数で駆動輪 7 0 0を駆動する装置である。 それ ゆえ、 軸出力の増減作用を除いて考えれば、 本実施例の車両用駆動装置 1 0 0 0は、 電磁力を介して作動する一種の トルク—回転数 ( T— S ) コン バー夕としてその作用をとらえることも可能である。  As shown in FIG. 1, the vehicle drive system 100 as Embodiment 1 of the present invention increases or decreases the shaft output from the output shaft 110 of the engine 100 as necessary, and This is a device for driving the drive wheels 700 with torque and rotation speed. Therefore, taking into account the effect of increasing or decreasing the shaft output, the vehicle drive system 100 of this embodiment is a kind of torque-rotational speed (TS) converter that operates via electromagnetic force. It is also possible to capture that effect.
本実施例の車両用駆動装置 1 0 0 0の要部は、 機枠としての前部フ レー ム 1 Ί 1 0に固定されているステ一夕 1 4 1 0 と、 エンジン出力軸 1 1 0 に接続されている第 1 口一夕 1 2 1 0 と、 駆動輪 7 0 0に接続されている 第 2 口一夕 1 3 1 0 とからなる。  The main parts of the vehicle drive device 100 of the present embodiment include a stage 1 14 10 fixed to a front frame 1 110 as a machine frame, and an engine output shaft 1 10 0. The first port is connected to the drive wheel 700 and the second port 1310 is connected to the drive wheel 700.
ステ一夕 1 4 1 0は、 積層電磁鋼板からなるステ一夕コア 1 4 1 2 とス テ一夕卷線 1 4 1 1 とからなり、 ステ一夕卷線 1 4 1 1はインバー夕 4 0 0に三相で接続されている。  Station 1 14 1 0 consists of a steel core 1 4 1 2 made of laminated electromagnetic steel sheet and a steel coil 1 4 1 1, and the coil 1 4 1 1 is Invar 4 It is connected to 00 in three phases.
第 1 口一夕 1 2 1 0は、 口一夕コア 1 2 1 2およびロー夕卷線 1 2 1 1 をもち、 ステ一夕 1 4 1 0 と同軸に軸支され、 所定の間隔を空けてステー 夕 1 4 1 0の内周面に対向している。 第 1 ロー夕 1 2 1 0の入力軸 1 2 1 3は、 先端部 (図中左端部) に形成されている内部ギヤ 1 2 1 3 aでェン ジン 1 0 0の出力軸 1 1 0 と接続されており、 第 1 口一夕 1 2 1 0はェン ジン 1 0 0の軸出力によって回転駆動される。 一方、 口一夕卷線 1 2 1 1 は、 第 1 ロータ 1 2 1 0の入力軸 1 2 1 3の後端部 (図中右端部) に装置 されているブラシ部 1 600を介して、 三相で別のィ ンバ一夕 200に接 続されている。 The first mouth 1 2 1 0 has a mouth 1 2 core and a 2 1 1 winding wire, and is supported coaxially with the stay 1 4 1 0 at predetermined intervals. It faces the inner peripheral surface of the evening. The input shaft 1 2 1 3 of the first rotor 1 2 1 0 is formed by the internal gear 1 2 13 a formed at the tip (left end in the figure). The output shaft 1 1 0 of the engine 1 1 0 The first mouth 1 210 is rotationally driven by the shaft output of the engine 100. On the other hand, the mouth-to-mouth winding wire 1 2 1 1 is installed at the rear end (right end in the figure) of the input shaft 1 2 1 3 of the first rotor 1 210. It is connected to another inverter 200 in three phases via a brush unit 1600 that is connected.
ここでブラシ部 1 60◦は、 後部フレーム 1 720に固定されているプ ラシホルダ J 6 1 0に保持されているブラシ 1 620と、 リード部 1 6 6 0で各口一夕卷線 1 2 1 1に接続されているスリ ップリング 1 630とか らなる。 ブラシホルダ 1 6 1 0、 ブラシ 1 620、 スリ ップリング 1 63 0およびリード部 1 6 60は、 それぞれ三セッ トある。 各スリ ツプリング 1 630の間は、 絶縁部 1 6 50により互いに絶縁されている。 なお、 ブ ラシ部 1 600は、 前部フレーム 1 7 1 0に固定されている後部フレーム 1 720の後端 (図中右端) を封止するカバーケース 1 9 20によって覆 われている。  Here, the brush part 160 ◦ is composed of a brush 1620 held by a brush holder J610 fixed to the rear frame 1720, and a lead wire 1612 at a lead part 1660. It consists of a slip ring 1 630 connected to 1. The brush holder 1610, the brush 1620, the slip ring 1630, and the lead section 1660 each have three sets. The respective split rings 1630 are insulated from each other by an insulating portion 1650. The brush part 1600 is covered by a cover case 1920 that seals the rear end (right end in the figure) of the rear frame 1720 fixed to the front frame 1710.
第 2ロー夕 1 3 1 0は、 ステ一夕 14 1 0および第 1ロー夕 1 2 1 0と 同軸に配設されている。 すなわち、 第 2ロー夕 1 3 1 0はその両端でステ —夕 14 1 0に固定されているベアリ ング 1 5 1 0, 1 5 1 3に回転自在 に軸支されており、 第 1口一夕 1 2 1 0はその両端付近で第 2口一夕 1 3 1 0に保持されているベアリ ング 1 5 1 1 , 1 5 1 4に回転自在に軸支さ れている。 それゆえ、 第 1ロー夕 1 2 10と第 2ロー夕 1 3 1 0とは、 電 磁的な力学関係はあるものの、 互いに独立に回転することができる。  The second row 1310 is coaxial with the station 1410 and the first row 110. In other words, the second row 1310 is rotatably supported by bearings 1510 and 1513 fixed at both ends at both ends. In the vicinity of both ends, the evening 1 210 is rotatably supported by bearings 1 5 1 1 1 and 1 5 1 4 held at the second opening 13 1 10. Therefore, the first row 1 2 10 and the second row 1 310 can rotate independently of each other, though they have an electromagnetic dynamic relationship.
第 2口一夕 1 3 1 0の要部は、 後ほど図 2を参照して詳しく説明するよ うに、 永久磁石である主界磁磁石 1 320 (図 2参照) 、 内側副界磁磁石 1 220および外側副界磁磁石 1420により界磁を形成している。 そし て第 2口一夕の要部は、 肉厚が比較的薄い中空円筒状の形状をもち、 ステ —夕 14 1 0の内周面と第 1ロー夕 1 2 1 0の外周面との間の前述の所定 の間隔に収容されている。 すなわち第 2口一夕 1 3 1 0は、 外周界磁を形 成している外周面でステ一夕 14 1 0の内周面に対向し、 内周界磁を形成 している内周面で第 1口一夕 1 2 1 0の外周面に対向している。 第 2口 一夕 1 3 10の上記要部は、 外周界磁および内周界磁を形成する前述の三 種類の永久磁石 1 220, 1 320 , 1420と、 同永久磁石を保持して いる積層電磁鋼板からなる口一夕ヨーク 1 3 1 1と、 口一夕ヨーク 1 3 1 1を貫通して固定している固定ピン 1 333とからなる。 第 2口一夕 1 3 1 0の上記要部の両端は、 剛性が高いェン ドブレ一ト 1 334 , 1 33 5 から形成されており、 各固定ピン 1 333は、 エン ドプレート 1 334, 1 33 5に形成されている貫通孔に圧入されている。 それゆえ、 組み立て 工程の途中であっても上記要部が不用意に分解してしまうことはなくなり 、 組立が容易になる。 As will be described in detail later with reference to FIG. 2, the main parts of the second mouth 1310 will be a main field magnet 1320 (see FIG. 2), which is a permanent magnet, and an inner subfield magnet 1220. The outer sub-field magnet 1420 forms a field. The main part of the second mouth has a hollow cylindrical shape with a relatively thin wall, and the inner peripheral surface of the stay 14 and the outer peripheral surface of the first low Are stored at the above-mentioned predetermined intervals. In other words, the first opening 1310 is located on the outer peripheral surface forming the outer peripheral field, facing the inner peripheral surface of the stay 1410, and forming the inner peripheral field. And faces the outer peripheral surface of the first mouth 1 210. Portion 2 The main part of 1/10 is the three types of permanent magnets 1220, 1320, and 1420 that form the outer and inner magnetic fields and the laminated magnets that hold the permanent magnets. It is composed of a mouth yoke 1 3 1 1 made of an electromagnetic steel plate, and a fixing pin 1 333 which penetrates and fixes the mouth yoke 1 3 1 1. Both ends of the main portion of the second mouth 1310 are formed of end plates 1334, 1335 having high rigidity, and each fixing pin 1333 is provided with an end plate 1334, It is press-fitted into the through-hole formed in 1335. Therefore, assembly Even in the middle of the process, the above-mentioned essential parts are not inadvertently disassembled, and assembling becomes easy.
エン ドプレート 1 3 3 4, 1 3 3 5からさらに突出している各固定ピン 1 3 3 3の両端部は、 それぞれ前部口一タフレーム 1 3 3 1 と後部ロー夕 フ レーム 1 3 3 2とに圧入されて強固に固定されている。 前述の各ベアリ ング 1 5 1 0〜 1 5 1 4は、 前部ロー夕フ レーム 1 3 3 1および後部口一 夕フレーム 1 3 3 2の内周側および外周側に、 それぞれ取り付けられてい る。 前部口一夕フ レーム 1 3 3 1の先端部 (図中左端部) の外周には内部 ギヤ 1 3 3 1 aが形成されており、 内部ギヤ 1 3 3 1 aを介してギヤ 1 8 1 1が前部口一夕フレーム 1 3 3 1の先端部に周方向に固定されている。 ギヤ 1 8 1 1は、 隣接する他のギヤ 1 8 1 2と嚙み合って減速部 1 8 0 0 を構成しており、 第 2口一夕 1 3 1 0は、 減速部 1 8 0 0およびディ ファ レンシャル · ギヤ部 1 9 0 0を介して駆動輪 7 0 0の駆動軸と接続されて いる。  Both ends of each fixing pin 13 33 protruding from the end plate 13 33 4 and 13 33 are respectively a front opening frame 13 33 and a rear row frame 13 33 And is firmly fixed. The above-mentioned bearings 1515 to 1514 are attached to the inner and outer peripheral sides of the front low frame 1 33 1 and the rear opening frame 1 33 2, respectively. . An internal gear 1331a is formed on the outer periphery of the front end of the front opening frame 1331 (left end in the figure), and a gear 18 via the internal gear 1331a. 11 is fixed circumferentially to the front end of the front opening frame 1 3 3 1. Gear 1 8 1 1 meshes with the other adjacent gear 1 8 1 2 to form a reduction section 1 800, and the second opening 1 3 1 0 is a reduction section 1 8 0 0 And a drive shaft of the drive wheel 700 via a differential gear section 190.
なお、 第 1口一夕 1 2 1 0および第 2口一夕 1 3 1 0の回転角度は、 二 つの回転角センサ 1 9 1 1, 1 9 1 2によつてそれぞれ計測され、 E C U (電子制御装置) 5 0 0に入力される。 E CU 5 0 0は、 二つの回転角セ ンサ 1 9 1 1 , 1 9 1 2からの情報と、 アクセル開度やスロッ トル開度な どの情報とから適正な制御則に基づいて演算を行い、 前述の二つのィ ンバ —夕 2 0 0, 4 0 0を制御する。 両イ ンバー夕 2 0 0, 4 0 0は並列にバ ヅテリ 6 0 0に接続されており 、 ノ ッテリ 6 0 0は両ィンバ一夕 2 0 0 , 4 0 0と電力の授受を行って、 車両用駆動装置の発電作用による充電ゃ電 動作用に必要な給電を行う。  The rotation angles of the first mouth 1 2 1 0 and the second mouth 1 3 10 are measured by two rotation angle sensors 1911 and 1912, respectively. Control device) Input to 500. The ECU 500 performs calculations based on information from the two rotation angle sensors 1911 and 1912 and information such as accelerator opening and throttle opening based on an appropriate control law. The two members mentioned above—evening 200 and 400 are controlled. Both inverters 200 and 400 are connected in parallel to the battery 600, and the battery 600 transmits and receives power to and from the inverters 200 and 400, respectively. It supplies power necessary for charging / powering operation by the power generation function of the vehicle drive unit.
ここで、 第 1口一夕 1 2 1 0と第 2ロー夕 1 3 1 0との間には、 内周磁 気回路が形成されて、 トルクの授受が行われる。 そして、 第 1口一夕 1 2 1 0と第 2口一夕 1 3 1 0との間では回転数が通常は異なっているので、 エンジン 1 0 0に接続されている第 1口一夕 1 2 1 0から駆動輪 7 0 0に 接続されている第 2ロー夕 1 3 1 0に至る間に、 口一夕回転数の調整が行 われているものと見なすことができる。 それゆえ、 第 2口一夕 1 3 1 0の 主界磁磁石 1 3 2 0および内側副界磁磁石 1 2 2 0を含む部分と第 1ロー 夕 1 2 1 0とをもって、 回転数調整部 1 2 0 0と呼ぶことにする。 一方 、 第 2口一夕 1 3 1 0とステ一夕 1 4 1 0との間には、 外周磁気回路が形 成されて トルクの授受が行われる。 そして、 ステ一夕 1 4 1 0が第 2ロー 夕 1 3 1 0に及ぼすトルクによって、 第 1口一夕 1 2 1 0が第 2ロー夕 1 3 1 0に及ぼすトルクにつき、 適正な第 2ロー夕 1 3 1 0の トルクに対す る過不足の調整が行われる。 それゆえ、 第 2ロー夕 1 3 1 0の主界磁磁石Here, an inner-peripheral magnetic circuit is formed between the first mouth 1210 and the second row 1310 to transmit and receive torque. Since the number of revolutions is usually different between the first mouth 1 2 1 0 and the second mouth 1 3 1 0, the 1st mouth 1 1 It can be considered that the rotation speed of the mouth is being adjusted during the period from 210 to the second row 1310 connected to the drive wheel 700. Therefore, the portion including the main field magnet 1320 of the second mouth 1310 and the inner subfield magnet 1220 and the first row 1210 and the rotation speed adjusting section Let's call it 1 200. On the other hand, an outer magnetic circuit is formed between the second mouth 1310 and the stay 1410 to transmit and receive torque. And, stay overnight 1 4 1 0 is the second row Due to the torque exerted on the evening 1 310, the torque that the first mouth 1 2 1 0 will exert on the second row 1 3 Is adjusted. Therefore, the field magnet of the 2nd row 1 3 1 0
1 3 2 0および外側副界磁磁石 1 4 2 0を含む部分とステ一夕 1 4 1 0と をもって、 トルク調整部 1 4 0 0と呼ぶことにする。 The portion including the 1320 and the outer sub-field magnet 1420 and the stay 1410 will be referred to as a torque adjusting section 1400.
なお、 第 1口一夕 1 2 1 0の回転方向と第 2口一夕 1 3 1 0の回転方向 とは、 通常時すなわち搭載車両の前進時には、 同一方向である。  Note that the rotation direction of the first mouth 1210 and the rotation of the second mouth 1310 are the same during normal times, that is, when the mounted vehicle moves forward.
(実施例 1の要部構成)  (Main part configuration of Example 1)
本実施例の車両用駆動装置 1 0 0 0の要部は、 図 2に示すように、 同軸 に配設されている第 1ロー夕 1 2 1 0、 第 2口一夕 1 3 1 0およびステ一 夕 1 4 1 0から構成されている。  As shown in FIG. 2, the main parts of the vehicle drive device 100 of the present embodiment include a first row 1 2 1 0, a second port 1 3 It is composed of 1 4 10
前述のように、 第 1ロー夕 1 2 1 0の入力軸 1 2 1 3はエンジン出力軸 1 1 0 (図 1参照) に接続されており、 第 1 口一夕 1 2 1 0は回転自在に 軸支されている。 また、 第 2口一夕 1 3 1 0は駆動輪 7 0 0 (図 1参照) に接続され、 回転自在に軸支されている。 そして第 1 口一夕 1 2 1 0の回 転方向と第 2口一夕 1 3 1 0の回転方向とは、 通常時には同一方向である 。 一方、 ステ一夕 1 4 1 0は、 エンジン 1 0 0に対して固定されている前 部フレーム 1 7 1 0 (図 1参照) に収容されて、 固定保持されている。 第 1口一夕 1 2 1 0の要部は、 入力軸 1 2 1 3と、 入力軸 1 2 1 3の周 囲に軸長方向に積層された多数枚の電磁鋼板からなる口一夕コア 1 2 1 2 と、 口一夕コア 1 2 1 2のスロッ ト 1 2 1 2 aに巻装されている口一夕巻 線 1 2 1 1 とから構成されている。 一方、 ステ一夕 1 4 1 0は、 軸長方向 に積層された多数枚の電磁鋼板からなるステ一夕コア 1 4 1 2と、 ステ一 夕コア 1 4 1 2のスロッ ト 1 4 1 2 aに巻装されているステ一夕卷線 1 4 1 1 とから構成されている。  As mentioned above, the input shaft 1 2 1 3 of the 1st row 1 2 1 0 is connected to the engine output shaft 1 1 0 (see Fig. 1), and the 1st port 1 2 1 0 is free to rotate It is pivoted. The second port 1310 is connected to a drive wheel 700 (see Fig. 1) and is rotatably supported. The rotation direction of the first mouth 1 2 1 0 and the rotation of the second mouth 1 3 10 are normally the same direction. On the other hand, the stay 1410 is housed in a front frame 1710 (see FIG. 1) fixed to the engine 100 and is fixedly held. The main part of the 1st Port 1 2 1 10 is an input 1 2 3 core, consisting of an input shaft 1 2 13 and a number of electromagnetic steel sheets laminated in the axial direction around the input shaft 1 2 13 It is composed of 1 2 1 2 and a 1 1 2 1 1 winding wire wound around a slot 1 2 1 2 a of a 1 2 1 2 core. On the other hand, the stay core 14 1 10 is composed of a stay core 14 2 consisting of a large number of magnetic steel sheets laminated in the axial direction, and a slot 14 1 2 of the stay core 14 2. It is composed of a stay winding wire 1 4 1 1 wound around a.
本実施例で特徴的である第 2ロー夕 1 3 1 0の要部の構成については、 以下に詳説する。  The configuration of the main part of the second row 1310 which is characteristic of the present embodiment will be described in detail below.
第 2口一夕 1 3 1 0の要部は、 主界磁磁石 1 3 2 0、 内側副界磁磁石 1 The main parts of the first mouth 1 3 1 0 1 main field magnet 1 3 2 0, inner sub-field magnet 1
2 2 0および外側副界磁磁石 1 4 2 0と、 これら各界磁磁石を所定の位置 に保持しているロー夕ヨーク 1 3 1 1 と、 ロー夕ヨーク 1 3 1 1を貫通し ている複数の軟磁性体からなる固定ピン 1 3 3 3とから構成されている。 すなわち、 主界磁磁石 1 3 2 0は、 ロー夕ヨーク 1 3 1 1内に周方向に 所定間隔を空けて配設され、 半径方向に交番に磁極を向けて外周界磁およ び内周界磁を形成する偶数個の永久磁石である。 ここで、 固定ビン 1 3 3 3は、 互いに隣り合う主界磁磁石 1 3 2 0の中間部分で、 積層電磁鋼板か らなる口一夕ヨーク 1 3 1 1に打ち抜かれている貫通孔であるピン孔に締 まり嵌めで圧入されており、 口一夕ヨーク 1 3 1 1を一体的に連結してい る。 また、 固定ピン 1 3 3 3は、 前述のように軟磁性体から形成されてい るので、 磁路を形成する口一夕ヨーク 1 3 1 1の一部になって磁束を通す 作用を担っている。 220 and outer sub-field magnets 1420, a rower yoke 1311 holding these field magnets in place, and a plurality penetrating the rower yoke 1311 And fixed pins 1 3 3 3 made of a soft magnetic material. In other words, the main field magnets 1320 are arranged at predetermined intervals in the circumferential direction in the rower yoke 1311, and the magnetic poles are directed alternately in the radial direction to form the outer peripheral field magnets 1320. And an even number of permanent magnets forming the inner peripheral field. Here, the fixed bin 1 3 3 3 is a through hole that is punched out of a mouth yoke 1 3 1 1 made of laminated electromagnetic steel sheet at an intermediate portion between the adjacent main field magnets 13 20. It is press-fitted into the pin hole with a tight fit, and the mouth yoke 1311 is integrally connected. Further, since the fixing pin 1 3 3 3 is formed of a soft magnetic material as described above, it serves as a part of the opening yoke 1 3 1 1 that forms a magnetic path and plays a role of transmitting magnetic flux. I have.
一方、 外側副界磁磁石 1 4 2 0および内側副界磁磁石 1 2 2 0は、 近接 している主界磁磁石 1 3 2 0とほぼ同一の方向に磁極を向けており、 両者 1 4 2 0 , 1 2 2 0で一組になついる。 そして、 外側副界磁磁石 1 4 2 0 および内側副界磁磁石 1 2 2 0は、 各主界磁磁石 1 3 2 0の両端部に近接 して、 それぞれ二組ずつが配設されている。  On the other hand, the outer sub-field magnet 144 and the inner sub-field magnet 122 have their magnetic poles oriented in substantially the same direction as the adjacent main field magnet 132. 2 0, 1 2 2 0 form a pair. The outer sub-field magnets 144 and the inner sub-field magnets 122 are arranged in two pairs in the vicinity of both ends of each main field magnet 132 0. .
すなわち、 外側副界磁磁石 1 4 2 0および内側副界磁磁石 1 2 2 0は、 一端が近接する主界磁磁石 1 3 2 0の周方向端部に近接し、 他端が互いに 遠心方向および求心方向に分かれて配設され、 それぞれロー夕ヨーク 1 3 1 1に保持されている。 外側副界磁磁石 1 4 2 0および内側副界磁磁石 1 2 2 0の上記他端は、 固定ビン 1 3 3 3を挟むようにして互いに距離を空 けて配設されている。 主界磁磁石 1 3 2 0、 内側副界磁磁石 1 2 2 0およ び外側副界磁磁石 1 4 2 0は、 いずれも平板状であって断面が矩形の永久 磁石ブロックからなる。  That is, the outer sub-field magnet 140 and the inner sub-field magnet 122 are close to the circumferential end of the main field magnet 132 whose one end is close, and the other ends are in the centrifugal direction. And are separated in the centripetal direction, and they are held in the rower yokes 1 3 1 1 respectively. The other ends of the outer sub-field magnet 1402 and the inner sub-field magnet 122 are spaced apart from each other with the fixed bin 133 being interposed therebetween. Each of the main field magnet 1320, the inner sub-field magnet 122, and the outer sub-field magnet 14420 is a plate-shaped permanent magnet block having a rectangular cross section.
ここで、 外側副界磁磁石 1 4 2 0の厚さと内側副界磁磁石 1 2 2 0の厚 さとの和は、 主界磁磁石 1 3 2 0の厚さよりも厚いことが望ましい。 また 、 外側副界磁磁石 1 4 2 0の厚さおよび内側副界磁磁石 1 2 2 0の厚さの うち少なくとも一方は、 主界磁磁石 1 3 2 0の厚さ未満であることが望ま しい。 すなわち、 主界磁磁石 1 3 2 0の厚さを Tとし、 内側副界磁磁石 1 2 2 0および外側副界磁磁石 1 4 2 0の厚さをそれぞれ t 1 , t 2とする と、 t l < T < ( t 1 + t 2 ) または t 2 < T < ( t l + t 2 ) であるこ とが望ましい。 それゆえ本実施例では、 内側副界磁磁石 1 2 2 0の厚さお よび外側副界磁磁石 1 4 2 0の厚さは、 ともに主界磁磁石 1 3 2 0の厚さ の 7割程度に設定されている。  Here, it is desirable that the sum of the thickness of the outer sub-field magnet 140 and the thickness of the inner sub-field magnet 122 is larger than the thickness of the main field magnet 132. It is desirable that at least one of the thickness of the outer sub-field magnet 140 and the thickness of the inner sub-field magnet 120 is less than the thickness of the main field magnet 132. New That is, assuming that the thickness of the main field magnet 1320 is T, and the thicknesses of the inner sub-field magnet 122 and the outer sub-field magnet 144 are respectively t 1 and t 2, Preferably, tl <T <(t1 + t2) or t2 <T <(tl + t2). Therefore, in the present embodiment, the thickness of the inner sub-field magnet 122 and the thickness of the outer sub-field magnet 142 are both 70% of the thickness of the main field magnet 132. Set to about.
口—夕ヨーク 1 3 1 1は、 中空円筒状に積層された多数の電磁鋼板から なり、 所定の位置に打ち抜かれた所定の大きさの矩形の貫通孔に主界磁磁 石 1 3 2 0、 内側副界磁磁石 1 2 2 0および外側副界磁磁石 1 4 2 0を保 持している。 なお、 これら矩形の貫通孔の隅には、 磁束が漏洩しないよう にするために、 空隙部 1 3 1 1 a〜 1 3 1 1 dが形成されている。 The mouth-evening yoke 1 3 1 1 is composed of a number of electromagnetic steel sheets laminated in a hollow cylindrical shape, and has a main field magnet 1 3 2 0 in a rectangular through hole of a predetermined size stamped at a predetermined position. , The inner secondary field magnet 122 and the outer secondary field magnet 142 I have Note that voids 1311a to 1311d are formed at the corners of these rectangular through holes to prevent magnetic flux from leaking.
すなわち、 主界磁磁石 1 3 2 0 と外側副界磁磁石 1 4 2 0 との間には、 空隙部 1 3—1 1 bが形成されており、 主界磁磁石 1 3 2 0 とは反対側の外 側副界磁磁石 1 4 2 0の二つの角部に接してニケ所の空隙部 1 3 1 1 aが 形成されている。 同様に、 主界磁磁石 1 3 2 0 と内側界磁磁石 1 2 2 0 と の間には、 空隙部 1 3 1 1 dが形成されており、 主界磁磁石 1 3 2 0 とは 反対側の内側副界磁磁石 1 2 2 0の二つの角部に接してニケ所の空隙部 1 3 1 1 cが形成されている。  That is, an air gap 13-11 b is formed between the main field magnet 1320 and the outer subfield magnet 1420, and the main field magnet 1320 is different from the main field magnet 1320. An air gap 1311a is formed at two places in contact with two corners of the opposite outer subfield magnet 14420. Similarly, an air gap 1311d is formed between the main field magnet 1320 and the inner field magnet 1220, which is opposite to the main field magnet 1320. A gap 1311c is formed at two places in contact with the two corners of the inner sub-field magnet 122 on the side.
さらに、 主界磁磁石 1 3 2 0、 内側副界磁磁石 1 2 2 0および外側副界 磁磁石 1 4 2 0を通らずに第 2 ロー夕 1 3 1 0を貫通する磁路の形成を防 止するために、 ロー夕ヨーク 1 3 1 1には外周溝 1 3 1 1 f および内周溝 1 3 1 1 gが形成されている。 すなわち、 口一夕ヨーク 1 3 1 1の外周面 には、 互いに隣り合う二つの外側副界磁磁石 1 4 2 0の間に外周溝 1 3 1 I f が形成されて、 その部分の磁路抵抗を増している。 同様に、 ロー夕ョ —ク 1 3 1 1の内周面には、 互いに隣り合う二つの内側副界磁磁石 1 2 2 0の間に内周溝 1 3 1 1 gが形成されて、 その部分の磁路抵抗を増してい る。  Furthermore, the formation of a magnetic path that passes through the second rotor 1310 without passing through the main field magnet 1320, the inner subfield magnet 1222, and the outer subfield magnet 14420 is required. In order to prevent this, the outer yoke 1 3 1 1 1 is formed with an outer circumferential groove 1 3 1 1 f and an inner circumferential groove 1 3 1 1 g. That is, on the outer peripheral surface of the opening yoke 1311, an outer peripheral groove 1311If is formed between two outer sub-field magnets 1420 adjacent to each other, and the magnetic path of that portion is formed. The resistance is increasing. Similarly, an inner circumferential groove 1 3 1 1 g is formed between two inner sub-field magnets 1 220 adjacent to each other on the inner circumferential surface of the low pressure 1 3 1 1. The magnetic path resistance of the part has been increased.
また、 複数本の固定ピン 1 3 3 3は、 積層電磁鋼板からなる口一夕ョー ク 1 3 1 1に打ち抜かれた円形の貫通孔を軸長方向に貫通し、 主界磁磁石 1 3 2 0、 内側副界磁磁石 1 2 2 0および外側副界磁磁石 1 4 2 0 と口一 夕ョ一ク 1 3 1 1 とを一体に固定している。 そして各固定ピン 1 3 3 3は 、 例えば軟磁性の鋼材からなる丸棒であり、 打ち抜きで形成されている口 一夕ヨーク 1 3 1 1のピン孔を貫通して配設されている。 なお、 固定ピン 1 3 3 3の外周面は口一レツ ト仕上げされており、 組立過程において固定 ピン 1 3 3 3は口一夕ヨーク 1 3 1 1のピン孔に圧入固定されている。 固定ピン 1 3 3 3の外径とビン孔の内径とは、 やや締まりばめ気味に公差 が設定されている。 それゆえ、 固定ピン 1 3 3 3のローレツ ト仕上げの効 果とも相まって、 ロー夕ヨーク 1 3 1 1 とそれを固定している固定ピン 1 3 3 3 との間にガ夕がないので、 第 2 ロー夕 1 3 1 0が偏心する恐れがな い。 したがって、 固定ピン 1 3 3 3のガ夕に起因して、 第 2ロー夕 1 3 1 0の内外のエアギヤヅプが詰まってしまったり、 第 2口一夕 1 3 1 0のダ イナミ ックバランスが崩れてしまったりする恐れがなくなる。 第 2口一夕 1 3 1 0の口一夕ヨーク 1 3 1 1 を透過する磁束の状態には 、 様々な場合があり得る。 In addition, the plurality of fixing pins 1 3 3 3 penetrate in the axial direction through a circular through hole punched out of a mouth 1 3 1 1 made of a laminated electromagnetic steel sheet, and a main field magnet 1 3 2 0, the inner sub-field magnet 1 220 and the outer sub-field magnet 1 420 and the mouth 1 3 1 1 are fixed together. Each of the fixing pins 1333 is, for example, a round bar made of a soft magnetic steel material, and is provided so as to penetrate a pin hole of an opening yoke 1311 formed by punching. In addition, the outer peripheral surface of the fixing pin 1333 is finished with a single hole, and the fixing pin 1333 is press-fitted and fixed in a pin hole of the first opening yoke 1311 in an assembling process. The outer diameter of the fixing pin 1 3 3 3 and the inner diameter of the bottle hole are slightly tightly fitted with tolerances. Therefore, in combination with the effect of the knurled finish of the fixing pins 1 3 3 3, there is no gap between the low pin yoke 1 3 1 1 and the fixing pin 1 3 3 2 Low 1 1 3 There is no danger of eccentricity. Therefore, the air gap between the inside and outside of the 2nd row 1130 is clogged up due to the connection of the fixing pin 1333, and the dynamic balance of the 1st row 1300 is lost. There is no danger of getting lost. The state of the magnetic flux passing through the yoke 1 311 of the 1st 1st and 1st 1st 1 0 1 0 can be various.
たとえば、 同じく図 2に示すように、 第 2 口一夕 1 3 1 0の磁束 Φ1 , Φ2 がそのまま第 1 ロー夕 1 2 1 0およびステ一夕 1 4 1 0に同等に達し ている場合がある。 すなわちこの場合には、 磁束 Φ1 は、 第 2 ロー夕 1 3 1 0の主界磁磁石 1 3 2 0を貫通して、 ステ一夕 1 4 1 0 と第 1 口一夕 1 2 1 0 とを通る閉磁路を形成している。 また、 磁束 Φ2 は、 第 2口一夕 1 3 1 0の内側副界磁磁石 1 2 2 0および外側副界磁磁石 1 4 2 0を貫通し て、 ステ一夕 1 4 1 0 と第 1 口一夕 1 2 1 0 とを通る閉磁路を形成してい る。  For example, as also shown in FIG. 2, there are cases where the magnetic fluxes Φ1 and Φ2 of the second mouth 1310 reach the same level as the first row 1210 and the stay 1140. is there. That is, in this case, the magnetic flux Φ1 penetrates through the main field magnet 1320 of the second rotor 1310 and becomes To form a closed magnetic path. Further, the magnetic flux Φ2 penetrates through the inner sub-field magnet 122 and the outer sub-field magnet 140 of the second mouth 1310, and the stator 1 A closed magnetic circuit passes through the mouth 1 2 1 0.
一方、 図 3に示すように、 ステ一夕 1 4 1 0側からの磁束の一部 Φ 2 , が、 第 2口一夕 1 3 1 0の口一夕ヨーク 1 3 1 1の一部と互いに隣り合う 二つの外側副界磁磁石 1 4 2 0 とをバイパスして、 比較的短い閉磁路を形 成している場合もある。 この場合には、 内側副界磁磁石 1 2 2 0が形成す る内周界磁は、 第 1 口一夕 1 2 1 0のロー夕卷線 1 2 1 1が生成する回転 界磁によって相殺されており、 第 1 ロー夕 1 2 1 0 と第 2口一夕 1 3 1 0 との間でより強い相互作用 (磁気トルク、 弱め界磁制御) が働く。  On the other hand, as shown in FIG. 3, a part of the magnetic flux Φ 2, from the stay 140 1 side, is part of the mouth 1 yoke 1 3 1 1 of the second mouth 1 310. In some cases, a relatively short closed magnetic circuit is formed by bypassing the two outer sub-field magnets 144 adjacent to each other. In this case, the inner circumferential field formed by the inner sub-field magnets 122 is canceled by the rotating field generated by the low-winding windings 112 of the first mouth 120. Therefore, a stronger interaction (magnetic torque, field-weakening control) between the 1st row 1 2 1 0 and the 2nd mouth 1 3 10 is activated.
さらに、 第 1 口一夕 1 2 1 0の口一夕卷線 1 2 1 1が生成する回転磁界 が増強場合は、 主界磁磁石 1 3 2 0の形成する磁束 Φ1 にも影響を与え これを弱めよう とする。 この場合は、 内周界磁のみならず外周界磁も弱ま るのでステ一夕 1 4 2 0を通る磁束量は減少する。  In addition, when the rotating magnetic field generated by the winding 1 2 1 1 of the first opening 1 2 1 0 increases, the magnetic flux Φ1 formed by the main field magnet 1 3 2 0 is also affected. Try to weaken In this case, not only the inner field but also the outer field is weakened, so the amount of magnetic flux passing through the stay 120 decreases.
これに対し、 トルク調整部 1 4 0 0が必要とする トルクを出力するには 、 ステ一夕側を流れる電流を補正することにより対応が可能である。 この 場合、 ステ一夕側を流す電流補正量は、 第 1 口一夕 1 2 1 0のロー夕卷線 1 2 1 1への通電量及び通電位置、 さらに通電電圧、 回転数等で決定する 主界磁磁束 Φ1 の減少量を求めたマツプもしくは演算により算出する。 上記対応により、 主界磁磁石 1 3 2 0の磁束 Φ1 が他方の卷線界磁ょり 影響を受けた場合でも、 もう一方の卷線をもつ回転機は所望のトルクを出 力することが可能となる。  On the other hand, it is possible to output the torque required by the torque adjusting section 1404 by correcting the current flowing through the stay side. In this case, the amount of current correction to flow on the stay side is determined by the amount and position of current to the low-winding winding 1 2 1 1 of the first mouth 1 210, the current supply voltage, rotation speed, etc. It is calculated by means of a map or a calculation that determines the amount of decrease in the field magnetic flux Φ1. According to the above measures, even if the magnetic flux Φ1 of the main field magnet 1320 is affected by the other winding field, the rotating machine having the other winding can output the desired torque. It becomes possible.
逆に、 図 4に示すように、 第 1 ロー夕 1 2 1 0側からの磁束の一部 Φ2 " が、 第 2口一夕 1 3 1 0の口一夕ヨーク 1 3 1 1の一部と互いに隣り合 う二つの内側副界磁磁石 1 2 2 0 とをバイパスして、 比較的短い閉磁路を 形成している場合もある。 この場合には、 外側副界磁磁石 1 4 2 0が形成 する外周界磁は、 ステ一夕 1 4 1 0のステ一夕卷線 1 4 1 1が生成する回 転界磁によって相殺されており、 第 2ロー夕 1 3 1 0にはステ一夕 1 4 1 0からより強い磁気トルクが及ぼされている。 Conversely, as shown in Fig. 4, a part of the magnetic flux Φ2 "from the first row 1 2 1 0 side is converted to a part of the 1st row yoke 1 3 1 1 In some cases, a relatively short closed magnetic circuit is formed by bypassing the two inner sub-field magnets 122 0 adjacent to each other. Formed The outer peripheral field that is generated is offset by the rotation field generated by the stay winding 14 1 11 of the stay 1 14 Stronger magnetic torque is exerted from 410.
すなわち、 本実施例では、 主界磁磁石 1 3 2 0、 内側副界磁磁石 1 2 2 0および外側副界磁磁石 1 4 2 0に安価な平板状の永久磁石を使用しなが ら、 中空円筒状の第 2ロー夕 1 3 1 0の要部の厚みを必要最小限に抑制す ることができる。 その理由は、 内側副界磁磁石 1 2 2 0および外側副界磁 磁石 1 4 2 0が、 それぞれバイパス磁路を形成することができるので、 第 2口一夕 1 3 1 0の構成が合理的だからである。 さらに、 内側界磁磁石 1 2 2 0 Aおよび外側界磁磁石 1 4 2 0 Aを別個にもつ先行技術 (図 9参照 ) に比べて、 本実施例では両者を兼務する主界磁磁石 1 3 2 0を採用して いるので、 永久磁石の使用量を全体として節減することができる。  That is, in the present embodiment, while using inexpensive flat permanent magnets for the main field magnet 1320, the inner sub-field magnet 122, and the outer sub-field magnet 144, The thickness of the main part of the hollow cylindrical second row 13 10 can be suppressed to a necessary minimum. The reason is that the inner sub-field magnets 122 and the outer sub-field magnets 142 can form bypass magnetic paths, respectively. Because it is a target. Furthermore, in the present embodiment, the main field magnet 13 serving as both the inner field magnet 122 A and the outer field magnet 140 A separately (see FIG. 9) is also compared with the prior art (see FIG. 9). Since 20 is used, the amount of permanent magnet used can be reduced as a whole.
さらに、 ステ一夕 1 4 1 0のステ一夕卷線 1 4 1 1が生成する回転界磁 が増強され、 主界磁磁石 1 3 2 0の形成する磁束 Φ1 が弱められた場合も 上述した通りである。  Furthermore, the above description was also applied to the case where the rotating field generated by the stay winding 1411 of the stay magnet 1410 was strengthened and the magnetic flux Φ1 formed by the main field magnet 1320 was weakened. It is on the street.
すなわち、 第 1口一夕 1 2 1 0の口一夕巻線 1 2 1 1に対し、 ステ一夕 巻線 1 4 1 1への通電量及び通電位置、 さらに通電電圧、 回転数等で決定 する主界磁磁束 Φ1 の減少量に対応して電流補正を行う。 この場合、 磁束 量 Φ1 の減少量の算出は、 マップもしくは演算によって求める。  That is, for the 1st 1st 1st 1st 1st 1st 1st 1st 1st winding 1 2 1 1 it is determined by the amount of current and the energizing position to the 1st opening 1st winding 1 4 1 1 1 Current correction is performed in accordance with the decrease in the main field magnetic flux Φ1. In this case, the amount of decrease in the amount of magnetic flux Φ1 is calculated by a map or calculation.
上記対応により、 主界磁磁石 1 3 2 0の磁束 Φ1 が他方の卷線界磁ょり 影響を受けた場合でも、 もう一方の卷線をもつ回転機は所望のトルクを出 力することが可能となる。  According to the above measures, even if the magnetic flux Φ1 of the main field magnet 1320 is affected by the other winding field, the rotating machine having the other winding can output the desired torque. It becomes possible.
以下では図 2に基き、 本実施例の車両用駆動装置 1 0 0 0の要部につい て説明する。  Hereinafter, based on FIG. 2, the main part of the vehicle drive device 100 of the present embodiment will be described.
口一夕ヨーク 1 3 1 1のうち外周部は、 第 2口一夕 1 3 1 0の外周面に q軸方向 (周方向) の磁路を形成しており、 ステ一夕 1 4 1 0の変動磁界 により リラクタンス トルクを発生させる作用がある。 また、 ロー夕ヨーク 1 3 1 1のうち内周部は、 第 2口一夕 1 3 1 0の内周面に q軸方向の磁路 を形成しており、 第 1 ロー夕 1 2 1 0の変動磁界により リラクタンス トル クを発生させる作用がある。 それゆえ、 ロー夕ヨーク 1 3 1 1は、 各界磁 磁石 1 2 2 0, 1 3 2 0 , 1 4 2 0を保持する構造部材であるだけではな く、 電磁的にも有効に作用する機能部材でもある。  The outer periphery of the mouth yoke 1 3 1 1 forms a magnetic path in the q-axis direction (circumferential direction) on the outer circumferential surface of the second mouth 1 3 10 The fluctuating magnetic field generates reluctance torque. In addition, the inner periphery of the Rho-Yoke 1 3 1 1 forms a magnetic path in the q-axis direction on the inner peripheral surface of the 1st Routine 1 3 10 It has the effect of generating reluctance torque by the fluctuating magnetic field. Therefore, the Rho-Yoke 1 3 1 1 is not only a structural member that holds each of the field magnets 1 2 0, 1 3 2 0, 1 4 2 0, but also a function that works electromagnetically effectively. It is also a member.
最後に、 第 1 口一夕 1 2 1 0と第 2口一夕 1 3 1 0との間のエアギヤッ プと、 第 2口一夕 1 3 1 ◦ とステ一夕 14 1 0との間のエアギャップとに ついて言及する。 Finally, the air gap between the first mouth 1 2 1 0 and the second mouth 1 3 1 0 And the air gap between the second mouth 13 1 ◦ and the stay 1 14 ◦.
第 2口一夕 1 3 1 0の要部の外周面および内周面は、 積層鋼板からなる 口一夕ヨーク 1 3 1 1により形成されているので、 軸長方向両端をェン ド プレート 1 334, 1 335で固定されている状態で容易に切削ないし研 削加工ができる。 それゆえ、 第 1口一夕 1 2 1 0の外径に合わせて口一夕 ヨーク 1 3 1 1の内周面を加工し、 最小限のエアギヤップを精度良く形成 することが可能である。 または、 第 2口一夕 1 3 1 0の口一夕ヨーク 1 3 1 1の内径に合わせて第 1ロー夕 1 2 1 0の外周面を加工し、 最小限のェ ァギャップを精度良く構成することも可能である。 同様に、 ステ一夕 14 1 0の内径に合わせてロー夕ヨーク 1 3 1 1の外周面を加工し、 口一夕ョ ーク 1 3 1 1の外径を適正に形成して、 最小限のエアギヤップを精度良く 形成することが可能である。  The outer peripheral surface and inner peripheral surface of the main part of the first mouth 1 3 1 1 0 1 are formed by a mouth yoke 1 3 1 1 made of laminated steel sheet, so both ends in the axial direction are end plates 1 Cutting or grinding can be easily performed with the 334 and 1335 fixed. Therefore, it is possible to form the minimum air gap with high accuracy by processing the inner peripheral surface of the mouth yoke 1311 in accordance with the outer diameter of the first mouth 1210. Alternatively, process the outer surface of the 1st row 1 2 1 0 to match the inside diameter of the 1st row 1 1 3 1 1 yoke 1 3 1 1 It is also possible. Similarly, machine the outer surface of the lower yoke 1 3 1 1 according to the inner diameter of the stay 1 14 and adjust the outer diameter of the 1 3 1 1 It is possible to form the air gap with high precision.
したがって、 最小限の両エアギャップをもって第 1口一夕 1 2 1 0、 第 2口一夕 13 1 0およびステ一夕 1 4 1 0からなる二重構造の回転電機を 構成することができるので、 本実施例の車両用駆動装置 1 000の直径は より小さく抑制される。 また、 両エアギャップが狭い分だけそこを横切る 磁気回路の効率が向上し (磁気抵抗が減り) 、 本実施例の車両用駆動装置 Therefore, it is possible to construct a rotating electric machine with a double structure consisting of the first mouth 1 210, the second mouth 13 10 and the stay 1 140 with the minimum air gap. However, the diameter of the vehicle drive device 1000 of the present embodiment is suppressed to be smaller. In addition, the efficiency of the magnetic circuit that crosses the air gap by a narrow portion is improved (the magnetic resistance is reduced).
1 000の回転電機としての性能も向上する。 The performance as a rotating electric machine of 1 000 is also improved.
(実施例 1の作用)  (Operation of Example 1)
本実施例の車両用駆動装置 1 000は、 以上のように構成されているの で、 エンジン 1 00の軸出力を駆動輪 700に伝達し適宜に軸出力を増し たり発電したりする車両用駆動装置 1 000として、 以下のような作用を 発揮する。 再び図 1を参照しつつ読み進められたい。  Since the vehicle drive device 1000 of the present embodiment is configured as described above, the vehicle drive device that transmits the shaft output of the engine 100 to the drive wheels 700 and appropriately increases the shaft output or generates electric power. The following effects are exhibited as the device 1000. Please read it again with reference to Figure 1.
先ず、 エンジン 1 00の軸出力 (すなわち入力軸 1 2 1 3への入力) が 回転数 2 n [ r p m] x トルク t [Nm] であり、 第 2口一夕 1 3 10か らの軸出力を回転数 n [r pm] x トルク 2 t [Nm] に変換したい場合 を想定する。 この場合、 第 1口一夕 1 2 1 0から第 2ロー夕 1 3 1 0へ軸 出力が変換されるにあたり、 回転数調整部 1 200では発電作用が行われ 、 逆に トルク調整部 1 400では電動作用が行われて、 軸出力の変換 ( ト ルクコンバート) が行われる。  First, the shaft output of the engine 100 (that is, the input to the input shaft 1 2 13) is the rotation speed 2 n [rpm] x the torque t [Nm], and the shaft output from the second port 1 3 10 It is assumed that the user wants to convert the speed into n [r pm] x 2 t [Nm]. In this case, when the shaft output is converted from the first mouth 1 2 1 0 to the second low 1 3 10 the shaft output is generated by the rotation speed adjustment unit 1200 and conversely, the torque adjustment unit 1 400 In, the electric action is performed and the shaft output is converted (torque conversion).
すなわち、 第 1ロー夕 1 2 1 0が回転数 2 nで回転しているのに対し、 第 2口一夕 1 3 1 0は回転数 nでしか回転していないので、 第 1口一夕 1 2 1 0は第 2口一夕 1 3 1 0から制動作用を受けていることになる。 その 際、 第 1ロー夕 1 2 1 0に加えられている軸出力の トルクは tでしかない から、 第 1口一夕 1 2 1 0から第 2ロー夕 1 3 1 0へのトルク伝達量は t に限定され—る。 したがって、 以下の説明では簡単化のために電磁気的な損 失を無視して考えると、 第 1口一夕 1 2 1 0では回転数 ( 2 n— n = n) X トルク t =エネルギー n tの発電が行われる。 言い換えると、 E CU 5 00は、 ィンバ一夕 200を制御して第 1口一夕 1 2 1 0にエネルギー n tだけの発電を行わせる。 That is, while the first row 1 2 1 0 is rotating at a rotation speed of 2 n, the 1st mouth 1 3 1 0 is rotating only at a rotation speed n. 1 210 is under braking from the second mouth 1310. At this time, the torque of the shaft output applied to the 1st row 1 2 1 0 is only t, so the amount of torque transmitted from the 1st row 1 2 1 0 to the 2nd row 1 13 10 Is restricted to t. Therefore, in the following description, ignoring the electromagnetic loss for the sake of simplicity, we consider that the rotation speed (2n—n = n) X torque t = energy nt Power generation is performed. In other words, the ECU 500 controls the inverter 200 to cause the first mouth 1210 to generate power only with energy nt.
第 1口一夕 1 2 1 0で発電された電気エネルギー n tは、 イ ンバ一夕 2 00を介して、 二つのイ ンバ一夕 200, 400、 ノ メテリ 600および E CU 500からなる外部回路に導入される。 そして、 上記電気工ネルギ — n tは、 同外部回路からィ ンバ一夕 400を介してステ一夕 14 10に 供給され、 トルク調整部 1400での電動作用により第 2ロー夕 1 3 1 0 に対して トルク tを及ぼす。 言い換えると、 E C U 500は、 ィ ンバ一夕 400を制御してステ一夕 14 1 0の回転磁界を形成し、 回転数 nで回転 している第 2口一夕 1 3 10に対して回転方向に トルク tを加える。 こ こで、 前述のようなイ ンバ一夕 200, 400の制御は、 回転角センサ 1 9 1 1 , 19 1 2による第 1口一夕 1 2 1 0および第 2ロータ 1 3 10の それぞれの回転角の測定値に基づいて行われる。 すなわち、 E CU 500 で両回転角に基づいて適正な界磁制御計算が行われ、 インバ一夕 200 , 400に対して、 第 1ロー夕 1 2 1 0およびステ一夕 14 1 0への通電夕 イ ミングが、 適正に指示される。  The electric energy nt generated at 1st night 1 210 is transmitted via an inverter 200 to an external circuit consisting of two inverters 200, 400, Nometery 600 and ECU 500. be introduced. The electric work energy is supplied to the station 1410 from the external circuit via the inverter 400, and is supplied to the second rotor 1310 by the electric action of the torque adjusting unit 1400. Exerts torque t. In other words, the ECU 500 controls the inverter 400 to form a rotating magnetic field of 1410, and rotates in the direction of rotation with respect to the second port 1310 rotating at the rotation speed n. Apply torque t to. Here, the control of the inverters 200 and 400 as described above is performed by controlling the rotation angle sensors 1911 and 1912 to control the first port 1210 and the second rotor 1310 respectively. This is performed based on the measured value of the rotation angle. That is, the ECU 500 performs appropriate field control calculations based on both rotation angles, and applies power to the first and second rotors 200 and 400 for the first and second rotors. Is properly directed.
その結果、 回転数 nで回転している第 2ロー夕 1 3 1 0に対し、 第 1口 —夕 1 2 1 0からのトルク tとステ一夕 14 1 0からのトルク とで、 合 計 2 tの トルクが回転方向にかかる。 したがって、 第 1口一夕 1 2 1 0の 軸入力 2 nt (回転数 2 nx トルク t ) は、 第 2口一夕 1 3 1 0の軸出力 2 n t (回転数 n X トルク 2 t ) に減速変換される。  As a result, for the 2nd row 1310 rotating at the rotation speed n, the total torque of the 1st mouth-the torque t from the evening 1 210 and the torque from the stay 1 14 2 t of torque is applied in the direction of rotation. Therefore, the shaft input 2 nt (rotation speed 2 nx torque t) of the first mouth 1 2 1 0 is converted to the shaft output 2 nt (rotation speed n X torque 2 t) of the second mouth 1 3 10 Deceleration conversion is performed.
次に、 先ほどとは逆に、 エンジン 1 00の軸出力 (すなわち入力軸 1 2 1 3への入力) が回転数 n [ r pm] xトルク 2 t [Nm] であり、 第 2 口一夕 1 3 1 0からの軸出力を回転数 2 n [ r p m] xトルク t [Nm] に変換したい場合を想定する。 この場合、 第 1口一夕 1 2 1 0から第 2口 一夕 1 3 10へ軸出力が変換されるにあたり、 回転数調整部 1 20 0では 電動作用が行われ、 逆に トルク調整部 1400では発電作用が行われて、 軸出力の変換が行われる。 Next, contrary to the above, the shaft output of the engine 100 (that is, the input to the input shaft 1 2 13) is the rotation speed n [rpm] x the torque 2 t [Nm], and Suppose that it is desired to convert the shaft output from 1 310 into 2 n [rpm] x torque t [Nm]. In this case, when the shaft output is converted from the first mouth 1 2 1 0 to the 2 1 mouth 1 3 10 the motor operation is performed in the rotation speed adjustment unit 1200, and conversely, the torque adjustment unit 1400 In the power generation action is performed, Conversion of axis output is performed.
すなわち、 第 1 口一夕 1 2 1 0が回転数]!で回転しているのに対し、 第 2ロー夕 1 3 1 0は回転数 2 nで回転するので、 第 1口一夕 1 2 1 0は第 2口一夕 1 3 1 0を加速する方向に電動作用を及ぼすことになる。 その際 、 第 1 口一夕 1 2 1 0に加えられている軸出力の トルクは 2 tであるから 、 この トルクを吸収するためには第 1ロー夕 1 2 1 0から第 2口一夕 1 3 1 0へのトルク伝達量は 2 tでなければならない。 したがって、 第 1口一 夕 1 2 1 0では回転数 ( 2 n— n = n) x トルク 2 t =エネルギー 2 n t の電動作用が行われる。 言い換えると、 E C U 5 0 0は、 イ ンバ一夕 2 0 0を制御して第 1 ロー夕 1 2 1 0にエネルギー 2 n tもの電動作用を行わ せる。  In other words, while the first mouth 1 2 1 0 rotates at the rotation speed] !, the second low speed 1 3 1 0 rotates at the rotation speed 2 n, so the first mouth 1 2 10 means that an electric action is exerted in the direction of accelerating the first mouth 1310. At this time, since the torque of the shaft output applied to the first mouth 1 210 is 2 t, in order to absorb this torque, the first mouth 12 1 0 The amount of torque transmitted to 1 310 must be 2 t. Therefore, in the first mouth 1 2 1 0, the motor action of rotation speed (2n-n = n) x torque 2t = energy 2nt is performed. In other words, the ECU 500 controls the inverter 200 to make the first row 110 2 1 perform an electric action of energy 2 nt.
第 1口一夕 1 2 1 0での電動作用に要する電気エネルギー 2 n tは、 ィ ンバ一夕 2 0 0を介して、 上記外部回路から供給される。 そして、 上記電 気エネルギー 2 n tは、 同外部回路ヘインバ一夕 4 0 0を介してステ一夕 1 4 1 0から供給されている。 すなわち、 ステ一夕 1 4 1 0は、 ステ一夕 1 4 1 0を含むトルク調整部 1 40 0での発電作用により、 回転数 2 nで 回転している第 2口一夕 1 3 1 0に対して トルク tの制動を及ぼす。 言い 換えると、 E CU 5 0 0は、 イ ンバ一夕 4 0 0を制御してステ一夕 1 4 1 0の回転磁界を形成し、 回転数 2 nで回転している第 2口一夕 1 3 1 0に 対して回転方向とは逆方向に トルク tを加えて、 ステ一夕 1 4 1 0で発電 を行わせる。  The electric energy 2 nt required for the electric operation in the first mouth 1 210 is supplied from the external circuit through the inverter 200. Then, the electric energy 2 nt is supplied from the station 1410 through the external circuit 400. That is, due to the power generation effect of the torque adjusting unit 140 including the stay 1 140, the stay 1 14 1 0 is rotating at 2 n. Exerts braking on the torque t. In other words, the ECU 500 controls the inverter 400 to form a rotating magnetic field of 140 1 and the second port rotating at 2 n. A torque t is applied to 1310 in the direction opposite to the direction of rotation, and power is generated at station 1410.
その結果、 回転数 2 nで回転している第 2口一夕 1 3 1 0に対し、 第 1 ロー夕 1 2 1 0から加わる トルク 2 t と、 ステ一夕 1 4 1 0から加わる制 動トルク t との差で、 結局 tの トルクが回転方向にかかる。 従って、 第 1 口一夕 1 2 1 0の軸入力 2 n t (回転数 n x トルク 2 t ) は、 第 2口一夕 1 3 1 0の軸出力 2 n t (回転数 2 n x トルク t ) に増速変換される。 この増速変換と前述の減速変換とを比較すると、 この増速変換では外部 回路を介して伝達される電気エネルギーは 2 n tであり、 前述の減速変換 において外部回路を介して伝達される電気エネルギー n tに比べて倍と大 きい。 それゆえ、 増速変換は減速変換よりも電磁気的な損失が大きいので 、 本実施例の車両用駆動装置 1 0 0 0は、 あまり増速変換での運用を行わ ず、 主にやや減速変換気味で運用するようにした方が高効率で使用できる As a result, the torque 2 t applied from the first rotor 1 2 1 0 and the torque applied from the stay 1 4 1 0 are applied to the second mouth 1 3 10 rotating at 2 n. Due to the difference from the torque t, the torque of t is eventually applied in the rotation direction. Therefore, the shaft input 2 nt (rotational speed nx torque 2 t) of the first mouth 1 2 1 0 is increased to the shaft output 2 nt (rotational speed 2 nx torque t) of the second mouth 1 310. The speed is converted. Comparing this speed-up conversion with the above-mentioned speed-down conversion, the electric energy transmitted through the external circuit in this speed-up conversion is 2 nt, and the electric energy transmitted through the external circuit in the above-mentioned speed-down conversion It is twice as large as nt. Therefore, since the speed-up conversion has a larger electromagnetic loss than the speed-down conversion, the vehicle driving device 100 of the present embodiment does not perform the operation in the speed-up conversion so much, and mainly has a slight speed-down conversion. It can be used with high efficiency by operating in
。 したがって、 エンジン 1 0 0から駆動輪 7 0 0に至るまでのギヤ比等の 設定は、 車両用駆動装置 1 000をおおむね常に減速気味で運用できるよ うになされている。 . Therefore, the gear ratio from the engine 100 to the drive wheels 700 The setting is such that the vehicle drive unit 1 000 can be operated almost always at a reduced speed.
以上では第 1口一夕 1 2 1 0への軸入力と第 2口一夕 1 3 1 0からの軸 出力とが等しい場合を取り上げて説明したが、 実際には上記軸入力と上記 軸出力とは一致しない場合がほとんどである。 そこで、 例えば上記軸入力 が上記軸出力に及ばない場合には、 その差はバッテリ 600からの給電に よるステ一夕 1 4 1 0およびまたは第 1口一夕 1 2 1 0の電動作用で補わ れる。 逆に、 上記軸入力が上記軸出力を上回っている場合には、 ステ一夕 14 1 0およびまたは第 1口一夕 1 2 1 0で発電された電気エネルギーを もってバッテリ 600に蓄電がなされる。  In the above, the case where the axis input to the first mouth 1 2 1 0 and the axis output from the second mouth 1 310 were the same was described, but in actuality, the axis input and the axis output In most cases this does not match. Therefore, for example, when the axis input does not reach the axis output, the difference is compensated for by the electric action of the station 1401 and / or the port 1 1201 by the power supply from the battery 600. It is. Conversely, when the shaft input exceeds the shaft output, the battery 600 is charged with the electric energy generated at the station 1410 and / or the port 1 1210. .
その極端な場合の一例に、 エンジンブレーキをかけて搭載車両を制動す る場合がある。 この場合には、 上記軸入力が負である以上に上記軸出力が 大きく負であり、 駆動輪 700に接続されている第 2口一夕 1 3 1 0が形 成する回転界磁によって、 ステ一夕 14 1 0だけではなく第 1口一夕 1 2 1 0でも発電が行われてバヅテリ 600に蓄電される。 このようにェンジ ンブレーキをかける場合には、 発電作用がステ一夕 14 1 0と第 1口一夕 1 2 1 0との両方で行われ、 一方に集中することがないので、 ステ一夕 1 4 1 0も第 1口一夕 1 2 10もあま り大きな発電容量を必要とされない。 それゆえ、 ステ一夕 1 4 1 0も第 1口一夕 1 2 1 0もともに、 比較的小型 軽量に構成されうる。 したがって、 本実施例の車両用駆動装置 1 000 を主にやや減速気味で運用するように搭載車両の駆動系の設計がなされて いれば、 電磁気的な損失も最小限に抑制され、 極めて高効率での運用が可 能になる。  An example of such an extreme case is when an on-board vehicle is braked by applying an engine brake. In this case, the output of the shaft is more negative than the input of the shaft is negative, and the rotation field formed by the second port 1310 connected to the drive wheel 700 causes a step. Electricity is generated and stored in the battery 600 not only at 11:00 overnight but also at 12:00 at 1st mouth. When the engine brake is applied in this way, the power generation operation is performed both at the station 1410 and the first mouth 1210, and there is no concentration on either side. Neither the 1410 nor the 1st day 1 210 require a large power generation capacity. Therefore, both the stay 11.4 and the first mouth 1210 can be configured to be relatively small and lightweight. Therefore, if the drive system of the on-board vehicle is designed to operate the vehicle drive device 1 000 of this embodiment mainly with a slight deceleration, electromagnetic loss is also minimized, and extremely high efficiency is achieved. Operation in the country becomes possible.
(実施例 1の効果)  (Effect of Embodiment 1)
本実施例の車両用駆動装置 1 000は、 以上のような構成及び作用を有 するので、 それらの効果は次の四点に要約される。  Since the vehicle drive device 1000 of this embodiment has the above-described configuration and operation, the effects thereof are summarized in the following four points.
第 1の効果は、 従来技術よりも高速回転に耐えうることである。  The first effect is that it can withstand higher-speed rotation than the conventional technology.
すなわち、 本実施例の車両用駆動装置では、 各界磁磁石 1 220 , 1 3 20, 1420が口一夕ヨーク 1 3 1 1の内部に保持されているので、 従 来技術の車両用駆動装置に比べて第 2口一夕 1 3 1 0の構造が堅牢である 。 それゆえ、 強大な遠心力がかかっても、 各界磁磁石 1 220, 1 320 , 1420が口一夕ヨーク 1 3 1 1から外れてしまう可能性はなくなるの で、 より高速な回転に耐えることができる。 その結果、 本実施例の車両用駆動装置は、 従来技術の車両用駆動装置よ りも高速回転での運用が可能になるので、 伝達する仕事率が同じであれば 、 従来技術の車両用駆動装置よりも低トルクでの運用が可能になる。 低ト ルクでの運用が可能になれば、 車両用駆動装置を小型軽量化することが可 能になり、 小型軽量化が可能になればさらに高速回転での運用が可能にな つてよりいっそうの小型軽量化が可能になる。 小型軽量化は材料費の低減 につながるので、 コス トダウンも併せて達成される。 That is, in the vehicle drive device of the present embodiment, since the field magnets 1220, 1320, and 1420 are held inside the mouth yoke 1311, the vehicle drive device of the related art can be used. In comparison, the structure of the second mouth 1310 is more robust. Therefore, even if a strong centrifugal force is applied, there is no possibility that each of the field magnets 1220, 1320, and 1420 will come off the yoke 1311, so that it can withstand higher-speed rotation. it can. As a result, the vehicle drive device of the present embodiment can be operated at a higher rotation speed than the vehicle drive device of the prior art, so that the power transmission of the prior art vehicle Operation at lower torque than the device is possible. If it is possible to operate at low torque, it will be possible to reduce the size and weight of the vehicle drive unit, and if it becomes possible to reduce the size and weight, it will be possible to operate at even higher speeds. It is possible to reduce the size and weight. Reduction in size and weight leads to a reduction in material costs, so cost reduction is also achieved.
また、 従来技術の車両用駆動装置に比べて、 本実施例の車両用駆動装置 においては、 各界磁磁石 1 2 2 0 , 1 3 2 0 , 1 4 2 0を口一夕ヨーク 1 3 1 1に保持するための構成が簡素である。 それゆえ、 各界磁磁石 1 2 2 0 , 1 3 2 0, 1 4 2 0を口一夕ヨーク 1 3 1 1に保持するための部品点 数および組立工数が節減され、 コス トダウンになる。  Further, in the vehicle drive device of the present embodiment, the field magnets 122, 130, 140, and 142 are connected to the mouth yoke 1 3 1 1 in comparison with the vehicle drive device of the prior art. Is simple. Therefore, the number of parts and the number of assembling steps for holding the field magnets 122, 132, 140 in the yoke 13 11 are reduced, and the cost is reduced.
したがって本実施例によれば、 第 2口一夕 1 3 1 0が堅牢になって従来 技術よりも高速回転での運用が可能になるばかりではなく、 従来技術より も小型軽量化およびコス トダウンが可能になるという効果がある。  Therefore, according to the present embodiment, not only is the second mouth 1310 more robust, and it is possible to operate at a higher rotation speed than the conventional technology, but also it is smaller and lighter and costs lower than the conventional technology. There is an effect that it becomes possible.
第 2の効果は、 前述の先行技術に比べても、 さらに小型軽量化されてい ることである。 すなわち、 本実施例の車両用駆動装置では、 前述のよう に第 2ロー夕 1 3 1 0を先行技術の車両用駆動装置よりも薄く形成できる ので、 第 2口一夕 1 3 1 0およびステ一夕 1 4 1 0の外径をより小さく形 成することができる。 その結果、 本実施例の車両用駆動装置は、 さらに小 型軽量化されるばかりではなく、 小型軽量化に伴って材料費が低減される という効果がある。  The second effect is that it is smaller and lighter than the above-mentioned prior art. That is, in the vehicle drive device of the present embodiment, as described above, the second row drive 130 can be formed thinner than the vehicle drive device of the prior art. The outer diameter of 140 1 overnight can be made smaller. As a result, the vehicle drive device of the present embodiment has the effect of not only reducing the size and weight but also reducing the material cost with the reduction in size and weight.
したがって本実施例によれば、 先行技術に比べても、 さらなる小型軽量 化およびコス トダウンが可能になるという効果がある。  Therefore, according to the present embodiment, there is an effect that the size and weight can be further reduced and the cost can be reduced as compared with the prior art.
第 3の効果は、 応答性の向上である。  The third effect is an improvement in responsiveness.
すなわち、 本実施例の車両用駆動装置では、 先行技術よりも第 2ロー夕 1 3 1 0が軽量化されており、 第 2口一夕 1 3 1 0の慣性モーメン トが低 減されているので、 第 2口一夕 1 3 1 0の回転数の応答性が向上している ことである。 第 2口一夕 1 3 1 0の回転数の応答性の向上は、 と りもなお さず駆動輪の応答性の向上につながり、 搭載車両の加速性および減速性の 向上につながる。 また、 前述のように、 本実施例では従来技術よりも先行 技術よ りも車両用駆動装置が軽量化されているので、 搭載車両も対応して 軽量化され、 搭載車両の俊敏性も向上する。 したがって本実施例によれば、 車両用駆動装置の応答性が向上するばか りではなく、 搭載車両の俊敏性も向上するという効果がある。 That is, in the vehicle drive device of the present embodiment, the second rotor 1310 is lighter than the prior art, and the inertia moment of the second mouth 1310 is reduced. Therefore, the responsiveness of the rotation speed of the first mouth 1 310 is improved. Improving the responsiveness of the number of revolutions of the second mouth 1310 will lead to improved responsiveness of the drive wheels, and will also lead to improved acceleration and deceleration of the onboard vehicle. Further, as described above, in the present embodiment, the vehicle drive unit is lighter than the prior art compared to the prior art, so that the onboard vehicle is also reduced in weight and the agility of the onboard vehicle is improved. . Therefore, according to the present embodiment, not only the responsiveness of the vehicle drive device is improved, but also the agility of the mounted vehicle is improved.
第 4の効果は、 コス トダウンである。  The fourth effect is cost reduction.
すなわち 各界磁磁石 1 2 2 0 , 1 3 2 0 , 1 4 2 0が板状の永久磁石 ブロックからなるばかりではなく、 前述のように高価な永久磁石の使用量 が先行技術よりも節減されているので、 製品価格のコス トダウンが可能で ある。 また、 従来技術よりも先行技術よりも小型軽量化されて材料費が全 体的に低減されているうえに、 従来技術よりも第 2口一夕 1 3 1 0の部品 点数および組立工数が低減されている。  In other words, not only the field magnets 122, 132, and 140 are made of plate-shaped permanent magnet blocks, but also the amount of expensive permanent magnets used is reduced as compared with the prior art, as described above. As a result, product costs can be reduced. In addition, the material cost is reduced as a whole by reducing the size and weight compared to the prior art compared to the prior art, and the number of parts and assembly man-hours of the second mouth is reduced compared to the conventional technology. Have been.
したがって本実施例によれば、 車両用駆動装置をより安価に提供するこ とができるようになるという効果がある。  Therefore, according to the present embodiment, there is an effect that the vehicle drive device can be provided at lower cost.
(実施例 1の付記)  (Supplementary note of Example 1)
前述の実施例 1 とは逆に、 第 1 口一夕 1 2 1 0を駆動輪 7 0 0に接続し 、 第 2口一夕 1 3 1 0をエンジン 1 0 0に接続する構成でも、 車両用駆動 装置を構成することも可能ではある。  Contrary to the above-described first embodiment, even in a configuration in which the first mouth 1 210 is connected to the drive wheel 700 and the second mouth 1 310 is connected to the engine 100, It is also possible to configure a driving device for the vehicle.
しかしながら、 エンジンブレーキ作動時等を除く通常の運用においては 、 エンジン 1 0 0の方が駆動輪 7 0 0 よりも回転数が高いことを考慮に入 れれば、 車両用駆動装置 1 0 0 0は減速側で運用されるべきものである。 すると、 前述の構成では実施例 1 とは逆に、 第 1口一夕 1 2 1 0の回転数 が第 2口一夕 1 3 1 0の回転数よりも低くなり、 電磁的な損失が増えるの で第 2口一夕 1 3 1 0から第 1 ロー夕 1 2 1 0への動力伝達効率はあまり 高いとは言えない。  However, in normal operation except when the engine brakes are activated, the vehicle driving device 100 0 is provided by taking into account that the engine 100 has a higher rotation speed than the driving wheels 700. It should be operated on the deceleration side. Then, in the above-described configuration, contrary to the first embodiment, the rotation speed of the first mouth 1210 is lower than the rotation speed of the second mouth 1310, and electromagnetic loss increases. Therefore, it cannot be said that the power transmission efficiency from the first mouth 1 310 to the first row 1 210 is very high.
かといつて、 エンジン 1 0 0から第 2口一夕 1 3 1 0に至るまでに減速 比の大きい減速機を挿置すれば、 第 1 口一夕 1 2 1 0の回転数を第 2口一 夕 1 3 1 0の回転数よりも高くできるが、 新たに二つの不都合を生じる。 第 1の不都合は、 減速機による機械的な損失が大きくなることと、 減速機 の重量及び容積が増えて小型軽量化の妨げになることである。 第 2の不都 合は、 車両用駆動装置が低速回転で強大な トルクを伝達するようになるの で、 車両用駆動装置自身を小型軽量化するのが難しくなり、 やはり小型軽 量化の妨げになることである。  By the way, if a reducer with a large reduction ratio is inserted between the engine 100 and the second port 1310, the rotation speed of the first port 1120 will be reduced to the second port. Although it can be higher than 1 310 overnight, there are two new disadvantages. The first disadvantage is that the mechanical loss caused by the reduction gear increases, and the weight and volume of the reduction gear increase, which hinders reduction in size and weight. The second disadvantage is that the vehicle drive unit transmits a large amount of torque at low speeds, which makes it difficult to reduce the size and weight of the vehicle drive unit itself. It is becoming.
それゆえ、 エンジン 1 0 0および駆動輪 7 0 0と第 1口一夕 1 2 1 0お よび第 2口一夕 1 3 1 0 との接続は、 前述の実施例 1のようにするのがほ とんどの面で実効性が高い。 また、 通常の運用時すなわち車両の前進時に、 第 1口一夕 1 2 1 0と第 2ロー夕 1 3 1 0とが逆方向に回転するように構成することも可能ではあ る。 しかし、 このような構成では電磁的な損失も機械的な損失も大きくな り、 動力伝達効率の低下をきたすので、 好ましいことではない。 なお、 エンジン 1 00としては、 ガソリンエンジンやディーゼルエンジンなどの レシプロエンジンに限定される必要はなく、 ロー夕 リエンジンや夕一ボシ ャフ トエンジンなどであっても良く、 極論すれば蒸気機関などであっても 良い。 Therefore, the connection between the engine 100 and the drive wheels 700 and the first mouth 1 210 and the second mouth 1 310 should be performed as in the first embodiment. Effective in most aspects. It is also possible to configure the first mouth 1 210 and the second row 1 310 to rotate in opposite directions during normal operation, that is, when the vehicle is moving forward. However, such a configuration is not preferable because both the electromagnetic loss and the mechanical loss are large and the power transmission efficiency is reduced. The engine 100 need not be limited to a reciprocating engine such as a gasoline engine or a diesel engine, but may be a low-speed engine or an evening-bottle engine. May be.
[実施例 2]  [Example 2]
(実施例 2の構成)  (Configuration of Embodiment 2)
本発明の実施例 2としての車両用駆動装置は、 図 5に示すように、 実施 例 1とほぼ同様の構成であるが、 第 2ロー夕 1 3 1 0 ' の構成だけが実施 例 1の第 2口一夕 1 3 1 0の構成と異なっている。 すなわち、 本実施例の 第 2口一夕 1 3 1 0, は、 内側副界磁磁石 1 22 0および外側副界磁磁石 1420を有せず、 その代わり周方向の幅が増した主界磁磁石 1 320 ' を持つ。  As shown in FIG. 5, the vehicle drive device according to the second embodiment of the present invention has substantially the same configuration as that of the first embodiment, but only the configuration of the second row 1310 ′ is the same as that of the first embodiment. The second mouth is different from the configuration of 1 310. That is, the second opening 1310 of the present embodiment does not have the inner sub-field magnet 122 0 and the outer sub-field magnet 1420, but instead has a main field magnet having an increased circumferential width. With a magnet 1 320 '.
第 2口一夕 1 3 1 0, の要部は、 偶数個の主界磁磁石 1 320 ' と、 主 界磁磁石 1 320, を保持している口一夕ヨーク 1 3 1 1, と、 複数の固 定ピン 1 333とから構成されている。 主界磁磁石 1 3205 は、 平板状 の永久磁石プロックからなり、 周方向に所定間隔を空けて配設され、 半径 方向に交番に磁極を向けて外周界磁および内周界磁を形成している。 口一 夕ヨーク 1 3 1 1 ' は、 主界磁磁石 1 320, が挿置されている貫通孔と 、 同貫通孔と同数のピン孔とが形成された中空円筒状に積層された多数の 電磁鋼板からなる。 固定ピン 1 333は軟磁性体からなり、 各ピン孔は互 いに隣り合う主界磁磁石 13 20 ' の端部の間に適正な口一夕ヨーク 1 3 1 1 ' の肉厚を残して形成されている。 口一夕ヨーク 1 3 1 1 ' は、 主界 磁磁石 1 320 ' および固定ピン 1 333を保持している。 一方、 固定ピ ン 1 333は、 口一夕ヨーク 1 3 1 1, を各主界磁磁石 1 320 ' の間で 軸長方向に貫通し、 全ての主界磁磁石 1320' とロー夕ヨーク 1 3 1 1 , とを一体に固定している。 The main part of the second mouth 1310 is composed of an even number of main field magnets 1320 'and the mouth yoke 1311 holding the main field magnet 1320, It comprises a plurality of fixing pins 1333. Main field magnet 1 320 5 is made of a flat plate-like permanent magnets proc, disposed at predetermined intervals in the circumferential direction, toward the magnetic poles alternating form an outer peripheral magnetic field and the inner peripheral magnetic field in the radial direction ing. The mouth yoke 1 3 1 1 ′ has a multiplicity of hollow cylinders formed with a through hole in which the main field magnet 1320 is inserted, and the same number of pin holes as the through hole. It is made of magnetic steel sheet. The fixing pin 1 333 is made of a soft magnetic material, and each pin hole has an appropriate thickness of the yoke 1 3 1 1 ′ between the ends of the adjacent main field magnets 13 20 ′. Is formed. The mouth yoke 1 3 1 1 ′ holds the main field magnet 1320 ′ and the fixed pin 1 333. On the other hand, the fixed pin 1 333 passes through the mouth yoke 1 3 1 1 1 in the axial direction between the main field magnets 1 320 ′, and all the main field magnets 1320 ′ and the row yoke 1 3 1 1 and are fixed together.
口—夕ヨーク 1 3 1 1, の主界磁磁石 1 320 ' を保持している貫通孔 の四隅には、 磁束の漏洩を防止するために適正な大きさの空隙部 1 3 1 1 eが形成されている。 一方、 主界磁磁石 1 320, の断面形状は矩形であ る。 また、 口一夕ヨーク 1 3 1 1 ' の外周面および内周面には、 実施例 1 と同様に、 それぞれ外周溝 1 3 1 1 f および内周溝 1 3 1 1 gが形成され て、 磁束の周方向への漏洩を防止している。 Mouth - the four corners of the evening yoke 1 3 1 1, through hole of holding the main field magnet 1 320 ', the air gap 1 3 1 1 e appropriately sized to prevent magnetic flux leakage Is formed. On the other hand, the cross-sectional shape of the main field magnet 1320 is rectangular. You. Further, on the outer peripheral surface and the inner peripheral surface of the mouth yoke 1 3 1 1 ′, an outer peripheral groove 1 3 1 1 f and an inner peripheral groove 1 3 1 1 g are formed as in the first embodiment, respectively. The magnetic flux is prevented from leaking in the circumferential direction.
(実施例 2の作用)  (Operation of Embodiment 2)
第 2口一夕 1 3 1 0の口一夕ヨーク 1 3 1 1 ' を透過する磁束の状態に は、 実施例 1の場合と同様に、 様々な場合があり得る。  As in the case of the first embodiment, there may be various cases in the state of the magnetic flux passing through the yoke 1 3 1 1 ′ of the second opening 13 1 10.
たとえば、 同じく図 5に示すように、 第 2ロー夕 1 3 1 0, の磁束 Φ1 , Φ2 がそのまま第 1 口一夕 1 2 1 0およびステ一夕 1 4 1 0に同等に達 している場合がある。 すなわちこの場合には、 磁束 Φ1 , Φ2 は、 第 2口 一夕 1 3 1 0, の主界磁磁石 1 3 2 0 ' を貫通して、 ステ一夕 1 4 1 0 と 第 1 口一夕 1 2 1 0 とを通る閉磁路を形成している。  For example, as also shown in FIG. 5, the magnetic fluxes Φ1 and Φ2 of the second row 1310, reach the 1st mouth 1210 and the stay 11.40 equally. There are cases. That is, in this case, the magnetic fluxes Φ1 and Φ2 penetrate through the main field magnet 1320 ′ of the second port 1310, and the station 1440 and the first port A closed magnetic path passing through 1 210 is formed.
一方、 図 6に示すように、 ステ一夕 1 4 1 0側からの磁束の一部 Φ 2 , が、 第 2口一夕 1 3 1 0, のロー夕ヨーク 1 3 1 1 ' の一部と互いに隣り 合う二つの主界磁磁石 1 3 2 0, の端部とをバイパスして、 比較的短い閉 磁路を形成している場合もある。 この場合には、 主界磁磁石 1 3 2 0 ' の 両端部が形成する内周界磁は、 第 1 口一夕 1 2 1 0の口一夕卷線 1 2 1 1 が生成する回転界磁によって相殺されており、 第 1 口一夕 1 2 1 0 と第 2 ロー夕 1 3 1 0 ' との間により強い相互作用が働いている。  On the other hand, as shown in Fig. 6, part of the magnetic flux Φ 2, from the side of the stay 140 1, is part of the part of the yoke 1 3 1 1 ′ of the second mouth 1 310, In some cases, a relatively short closed magnetic path is formed by bypassing the end of the two main field magnets 1320, which are adjacent to each other. In this case, the inner circumferential field formed by both ends of the main field magnet 1320 'is formed by the rotating It is offset by magnetism, and a stronger interaction between 1st mouth 1 2 1 0 and 2nd mouth 1 3 1 0 'is working.
逆に、 図 Ίに示すように、 第 1 口一夕 1 2 1 0側からの磁束の一部 Φ2 " が、 第 2口一夕 1 3 1 0 ' のロー夕ヨーク 1 3 1 1 , の一部と互いに隣 り合う二つの主界磁磁石 1 3 2 0 ' の端部とをバイパスして、 比較的短い 閉磁路を形成している場合もある。 この場合には、 主界磁磁石 1 3 2 0 ' の端部が形成する外周界磁は、 ステ一夕 1 4 1 0のステ一夕卷線 1 4 1 1 が生成する回転界磁によって相殺されており、 第 2口一夕 1 3 1 0 ' には ステ一夕 1 4 1 0からより強い磁気トルクが及ぼされている。  Conversely, as shown in Fig. Ί, a part of the magnetic flux Φ2 "from the side of the first mouth 1 2 1 0 is changed to the lower yoke 1 3 1 1 of the second mouth 1 3 1 0 '. In some cases, a relatively short closed magnetic path is formed by bypassing a part and the ends of two adjacent main field magnets 1320 '. The outer peripheral field formed by the end of 1 3 2 0 ′ is canceled by the rotating field generated by the 1 1 1 0 1 3 1 0 ′ is given a stronger magnetic torque from 1 4 10.
すなわち、 本実施例の車両用駆動装置では、 第 2ロー夕 1 3 1 0, の主 界磁磁石 1 3 2 0 ' に安価な平板状の永久磁石を使用しながら、 中空円筒 状の第 2ロー夕 1 3 1 0 ' の要部の厚みを実施例 1 よりもさらに抑制する ことができる。 その理由は、 主界磁磁石 1 3 2 0 ' の端部が、 それぞれバ ィパス磁路を形成することができるので、 実施例 1 とほぼ同様の磁路を形 成することができるからである。 さらに、 内側界磁磁石 1 2 2 0 Aおよび 外側界磁磁石 1 4 2 0 Aを別個にもつ先行技術 (図 9参照) に比べて、 本 実施例では両者を兼務する主界磁磁石 1 3 2 0だけを採用しているので、 永久磁石の使用量を大幅に節減することができる。 That is, in the vehicle drive device of the present embodiment, the hollow cylindrical second permanent magnet 130 2 ′ uses an inexpensive flat permanent magnet as the main field magnet 130 2 ′. It is possible to further reduce the thickness of the main part of the low-temperature 1310 'compared with the first embodiment. The reason is that the ends of the main field magnets 1320 'can each form a bypass magnetic path, so that a magnetic path substantially similar to that of the first embodiment can be formed. . Furthermore, in the present embodiment, the main field magnet 13 which serves both as the inner field magnet 122 A and the outer field magnet 144 A separately from the prior art (see FIG. 9). Since only 20 is adopted, The use of permanent magnets can be greatly reduced.
以上のように、 本実施例でも実施例 1 とほぼ同様の磁路を形成すること ができるので、 本実施例の車両用駆動装置でも実施例 1 と同様に効率的な 動力伝達作用が発揮される。  As described above, almost the same magnetic path as that of the first embodiment can be formed in the present embodiment, so that the vehicle drive device of the present embodiment also exhibits an efficient power transmission function as in the first embodiment. You.
(実施例 2の効果)  (Effect of Embodiment 2)
以上詳述したように、 本実施例では第 2ロー夕 1 3 1 0 ' の構成が極め て簡素でありながら、 前述の実施例 1 とほぼ同様の作用が得られるので、 実施例 1 とほぼ同等の効果も得られる。 そればかりではなく、 本実施例 では第 2ロー夕 1 3 1 0 ' の構成が簡素化されているので、 実施例 1を上 回る小型軽量化、 高応答特性およびコス トダウン等の効果が得られる。  As described in detail above, in this embodiment, although the configuration of the second row 1310 'is extremely simple, the same operation as that of the first embodiment can be obtained. An equivalent effect can be obtained. In addition, in this embodiment, since the configuration of the second row 1310 'is simplified, effects such as smaller size, lighter weight, higher response characteristics, and cost reduction than in Embodiment 1 can be obtained. .
(実施例 2の変形態様 1 )  (Modification 1 of Example 2)
本実施例の変形態様 1 として、 図 8に示すように、 第 2ロー夕 1 3 1 0 " に保持された主界磁磁石 1 3 2 0 " は、 外周面および内周面がそれぞれ の半径の曲率をもって湾曲した永久磁石ブロックからなる車両用駆動装置 の実施が可能である。 本変形態様でも、 ロー夕ヨーク 1 3 1 1 " 貫通孔の 四隅にはそれぞれ空隙部 1 3 1 1 eが形成されており、 主界磁磁石 1 3 2 0 " を通る磁束が漏れないようになつている。 また、 口一夕ヨーク 1 3 1 1 " の外周面および内周面には、 それぞれ外周溝 1 3 1 1 f および内周溝 1 3 1 1 gが形成されており、 主界磁磁石 1 3 2 0 " を通る磁束が周方向 へ漏れないようになつている。  As a modification 1 of the present embodiment, as shown in FIG. 8, the main field magnet 1320 "held at the second row 1310" has an outer peripheral surface and an inner peripheral surface having respective radii. It is possible to implement a vehicle drive device including a permanent magnet block curved with the above curvature. Also in this modification, voids 1 3 1 1 e are formed at the four corners of the low yoke 1 3 1 1 "through hole, respectively, so that the magnetic flux passing through the main field magnet 1 3 2 0" does not leak. I'm sorry. In addition, an outer circumferential groove 1 3 1 1 f and an inner circumferential groove 1 3 1 1 g are formed on the outer circumferential surface and the inner circumferential surface of the opening yoke 1 3 1 1 ", respectively. The magnetic flux passing through 20 "does not leak in the circumferential direction.
本変形態様では、 主界磁磁石 1 3 2 0 " が第 2ロー夕 1 3 1 0 " の曲率 に沿った一次曲面からなる内周面および外周面を有するので、 第 2ロー夕 1 3 1 0 " をさらに薄く形成することが可能になる。 その結果、 さらなる 小型軽量化および高応答特性等の効果が得られる。  In the present modified embodiment, the main field magnet 1320 "has an inner peripheral surface and an outer peripheral surface formed of a primary curved surface along the curvature of the second rotor 1310". 0 "can be formed even thinner. As a result, effects such as further reduction in size and weight and high response characteristics can be obtained.
[実施例 3 ]  [Example 3]
(実施例 3の全体構成)  (Overall configuration of Example 3)
本発明の実施例 3 としての車両用駆動装置は、 図 9に示すように、 大き く分けてクラツチ部 Aと回転電機部 Bとから構成されている。  As shown in FIG. 9, the vehicle drive device according to the third embodiment of the present invention is roughly composed of a clutch portion A and a rotating electric machine portion B.
クラッチ部 Aは、 エンジン 1 0 0からの出力軸 1 1 0 と接続されている クラッチ入力軸 3 1 0を有する入力軸切替えクラッチ 3 0 0 と、 差動ギヤ 9 0 0を介して駆動輪 7 0 0に接続されているクラッチ出力軸 3 1 2を有 する出力軸切替えクラッチ 3 5 0 とから構成されている。 エンジン出力軸 1 1 0は、 図示しないジョイ ン ト部および減速機 (ないし増速機) 等を介 して、 入力軸切替えクラツチ 300のクラッチ入力軸 3 1 0に軸出力を伝 達する。 クラッチ部 Aからは、 クラッチ入力軸 3 1 0の先端部およびクラ ツチ出力軸 3 1 2の先端部が同一方向に突出しているので、 本実施例の車 両用駆動装置 1 000は F F車ないし RR車に対して好適である。 The clutch unit A includes an input shaft switching clutch 300 having a clutch input shaft 310 connected to an output shaft 110 from the engine 100, and a driving wheel 7 via a differential gear 900. An output shaft switching clutch 350 having a clutch output shaft 312 connected to 00 is provided. The engine output shaft 110 is connected via a joint (not shown) and a speed reducer (or a speed increaser). Then, the shaft output is transmitted to the clutch input shaft 310 of the input shaft switching clutch 300. From the clutch part A, the tip of the clutch input shaft 310 and the tip of the clutch output shaft 3112 project in the same direction, so that the vehicle drive device 1000 of this embodiment is an FF vehicle or RR. Suitable for cars.
一方、 回転電機部 Bは、 大きく分けて中心側から外側に、 第 1ロー夕 1 2 10、 第 2口一夕 1 3 1 0およびステ一夕 14 1 0の三つの機能部品か ら構成されている。  On the other hand, the rotating electric machine part B is roughly composed of three functional parts from the center side to the outer side: 1st row 1 210, 2nd mouth 1310 and stay 1 1410. ing.
前述のクラッチ部 A、 回転電機部 Bおよび差動ギヤ 9 00は、 大きく三 分割されるフ レーム (機枠) 1 100に収容されている。  The clutch unit A, the rotating electric machine unit B and the differential gear 900 described above are accommodated in a frame (machine frame) 1100 which is largely divided into three parts.
(実施例 3の回転電機部の構成および作用)  (Configuration and Function of the Rotating Electric Machine of Embodiment 3)
回転電機部 Bは、 フレーム 1 1 00に固定されているステ一夕 14 1 0 と、 所定の間隔を空けてステ一夕 14 1 0の内周面と対向している第 1口 一夕 1 2 10と、 上記間隔に配設されている第 2ロー夕とから、 主に構成 されている。 第 2ロー夕 1 3 1 0は、 外周面でステ一夕 14 1 0の内周面 とわずかの間隙を空けて対向しており、 内周面で第 1ロータ 1 2 1 0の外 周面とわずかの間隙を空けて対向している。 第 1口一夕 1 2 1 0および第 2口一夕 13 1 0は、 いずれもステ一夕 14 1 0と同軸に軸支されており 、 回転自在にステ一夕 14 1 0の内部空間に保持されている。 通常の運転 時には、 第 1口一夕と第 2口一夕とは同一方向に回転するように、 クラヅ チ部 Aでェンジン 1 00および駆動輪 700と歯車接続されている。  The rotating electric machine section B includes a stay 14 1 0 fixed to the frame 1 100 and a first opening 1 1 facing the inner peripheral surface of the stay 1 14 at a predetermined interval. It mainly consists of 2 10 and the 2nd row at the above intervals. The second rotor 1310 faces the inner peripheral surface of the stay 1410 on the outer peripheral surface with a slight gap, and the outer peripheral surface of the first rotor 1210 on the inner peripheral surface. And facing each other with a slight gap. Both the first mouth 1 2 10 and the second mouth 13 10 are coaxially supported with the stay 1 14 and are rotatable in the interior space of the stay 1 14 Is held. During normal operation, the engine 100 and the drive wheels 700 are gear-connected at the clutch section A so that the first opening and the second opening rotate in the same direction.
ステ一夕 14 1 0は、 フレーム 1 1 00の一部が形成しているヨークと ステ一夕コア 14 1 2およびステ一夕巻線 14 1 1とを有している。 ステ 一夕卷線 14 1 1に三相交流が通電されると、 ステ一夕 14 1 0の内周側 には外周回転磁界が形成される。 この三相交流は、 フ レーム 1 1 00の外 部に付設されているインバ一夕 400から供給され、 インバ一夕 400は E CU 500によって制御されている。  The stay 1410 has a yoke formed by a part of the frame 110, a stay core 1412, and a stay winding 1411. When a three-phase alternating current is applied to the stay coil 1411, an outer rotating magnetic field is formed on the inner periphery of the stay 1410. The three-phase alternating current is supplied from an Invar 400 provided outside the frame 110, and the Invar 400 is controlled by the ECU 500.
第 1口一夕 1 2 1 0は、 第 1口一夕軸 1 2 1 3に固定されている円筒体 状の回転中空部材であり、 第 1ロー夕軸 1 2 1 3は、 三点でフ レーム 1 1 00内に回転自在に軸支されている。 すなわち、 第 1口一夕軸 1 2 1 3は 、 図中右側の一端をフレーム 1 1 00に固定されている軸受け 1 5 1 3で 、 図中左側の第 1ロー夕ギヤ 3 5 1付近の他端をフレーム 1 1 00に固定 されている軸受け 1 5 14で、 それぞれ回転自在に軸支されている。 また 、 第 1ロー夕軸 1 2 1 3の中間部は、 フレーム 1 1 00に固定されている 軸受け 1 5 1 0に軸支されている第 2口一夕 1 3 1 0の端部を介して、 軸 受け 1 5 12により回転自在に軸支されている。 The first mouth 1 2 1 0 is a cylindrical rotating hollow member fixed to the first mouth 1 2 3 shaft, and the first low shaft 1 2 3 It is rotatably supported in frame 1100. In other words, the first opening and closing shaft 1 2 13 is a bearing 15 1 3 having one end on the right side of the figure fixed to the frame 1 100, and the vicinity of the first low gear 3 5 1 on the left side of the figure. The other end is rotatably supported by bearings 1514 fixed to the frame 1100, respectively. Also, the middle part of the first row shaft 1 2 1 3 is fixed to the frame 1 100 It is rotatably supported by a bearing 1512 via an end of a second opening 1310 supported by a bearing 1510.
第 1ロー夕 1 2 1 0は、 上記円筒体の外周部にロー夕コア 1 2 1 2およ びロー夕卷線 1 2 1 1を有している。 口一夕卷線 1 2 1 1に三相交流が通 電されると、 第 1ロー夕 1 2 1 0の外周側には内周回転磁界が形成される 。 この三相交流は、 フレーム 1 1 00の外部に付設されているィンバ一夕 200からスリ ップリ ング 1 6 30を介して供給され、 インバ一夕 200 は、 前述のィ ンバ一夕 400と同様に E CU 500によって制御されてい る。  The first rotor 1 210 has a rotor core 1 122 and a rotor winding 1 211 on the outer periphery of the cylindrical body. When the three-phase alternating current is applied to the wrap-around wire 1 211, an inner rotating magnetic field is formed on the outer circumferential side of the first row 1 210. This three-phase alternating current is supplied from an inverter 200 provided outside the frame 110 via a slip ring 1630, and the inverter 200 is supplied in the same manner as the inverter 400 described above. It is controlled by the ECU 500.
なお、 スリ ップリ ング 1 630には、 フレーム 1 1 00に固定されてい るブラシホルダ 1 6 1 0に保持されているブラシ 1 620が摺接しており 、 スリ ップリング 1 630と口一夕卷線 1 2 1 1とは、 リード部 1 660 で接続されている。 リード部 1 660の一部は、 第 1口一夕軸 1 2 1 3の 溝 (図略) に埋め込まれている。  A brush 1620 held by a brush holder 1610 fixed to the frame 1100 is in sliding contact with the slip ring 1630, and the slip ring 1630 and the mouth-to-end winding wire 1 2 1 1 is connected by a lead section 1 660. A part of the lead portion 1660 is embedded in a groove (not shown) of the shaft 1 1 13 of the first port.
第 2口一夕 1 3 1 0は、 中空円筒体状の形状をしており、 前述のように 図中右側の第 2ロー夕軸 1 3 1 3の一端を第 1ロー夕 1 2 1 0に固定され ている軸受け (図略) で、 回転自在に軸支されている。 また、 第 2口一夕 1 3 1 0は、 図中左側の第 2口一夕軸 13 1 3の他端をフレーム 1 1 00 に固定されている軸受け 1 5 1 2で、 回転自在に軸支されている。  The first mouth 1 3 10 has a hollow cylindrical shape, and as described above, one end of the second row shaft 1 3 13 on the right side in the figure is connected to the first row 1 2 1 0 It is rotatably supported by a bearing (not shown) fixed to the shaft. The other end of the second port 1313 is a bearing 1512 fixed to the frame 1100 at the other end of the second port 1313 on the left side of the figure. Supported.
第 2ロー夕 1 3 1 0は、 軸長方向の中間部に中空円筒状の軟磁性体から なる中空口一夕ヨーク 1 3 1 1を有する。 中空ロー夕ヨーク 1 3 1 1の外 周面側には、 ステ一夕 14 1 0と対向している外周磁極としての外周永久 磁石 1420が複数個配設されて固定されている。 逆に、 中空口一夕ョ一 ク 13 1 1の内壁面側には、 第 1口一夕 1 2 1 0と対向している内周磁極 としての内周永久磁石 1 220が複数個配設されて固定されている。  The second row 1310 has a hollow mouth yoke 1311 made of a soft magnetic material having a hollow cylindrical shape at an intermediate portion in the axial direction. A plurality of outer permanent magnets 1420 as outer magnetic poles facing the stay 1410 are arranged and fixed on the outer peripheral surface side of the hollow rotor yoke 1311. Conversely, on the inner wall side of the hollow mouth 1311, a plurality of inner permanent magnets 1220 as inner magnetic poles facing the first mouth 1210 are arranged. Has been fixed.
したがって、 口一夕卷線 1 2 1 1に通電されると、 第 1ロー夕 1 2 10 と第 2ロー夕 1 3 1 0との間に内周磁気回路が形成される。 すなわち、 第 1口一夕 12 1 0の口一夕卷線 1 2 1 1により形成される内周回転磁界と 、 第 2ロー夕 1 3 1 0の内周永久磁石 1 220との間に、 内周磁気回路が 形成される。 この内周磁気回路を介して、 第 1口一夕 1 2 1 0と第 2口一 夕 1 3 1 0との間で トルクの授受が行われる。 第 1口一夕 1 2 1 0と第 2 ロー夕 1 3 1 0とは回転数調整部 1 200を形成している。 この回転数調 整部 1 200では、 第 1ロータ 1 2 1 0と第 2口一夕 1 3 1 0との相互作 用で生じる トルクはほぼ一定に保たれており、 第 1口一夕 1 2 1 0と第 2 ロー夕 1 3 1 0との回転数差が調整される。 Therefore, when power is supplied to the mouth-to-mouth winding line 1 211, an inner magnetic circuit is formed between the first row 1 210 and the second row 1 310. In other words, between the inner rotating magnetic field formed by the first winding 1211 of the first opening 1210 and the inner permanent magnet 1220 of the second lower 1310, An inner magnetic circuit is formed. Transmission and reception of torque is performed between the first mouth 1210 and the second mouth 1310 via this inner magnetic circuit. The first mouth 1 2 1 0 and the second row 1 3 1 0 form a rotation speed adjusting section 1200. In this rotation speed adjusting section 1200, the interaction between the first rotor 1210 and the second rotor 1310 is performed. The torque generated during use is kept almost constant, and the difference in the number of revolutions between 1st mouth 1 210 and 2nd row 1 310 is adjusted.
同様に、 ステ一夕卷線 14 1 1に通電されると、 ステ一夕 14 1 0と第 2口一夕 13 1 0との間に外周磁気回路が形成される。 すなわち、 ステ一 夕 14 1 0のステ一夕卷線 14 1 1により形成される外周回転磁界と、 第 2口一夕 1 3 1 0の外周永久磁石 1420との間に、 外周磁気回路が形成 される。 この外周磁気回路を介して、 ステ一夕 1 4 1 0と第 2口一夕 1 3 1 0との間で トルクの授受が行われる。 ステ一夕 1 4 1 0と第 2口一夕 1 3 1 0とはトルク調整部 1400を形成しており、 トルク調整部 1400 では、 第 2口一夕 1 3 1 0の回転数を変化させずに第 2口一夕 1 3 10に かかる トルクを調整する作用が発揮される。  Similarly, when power is supplied to the stay winding wire 1411, an outer peripheral magnetic circuit is formed between the stay 1410 and the second opening 1310. That is, an outer peripheral magnetic circuit is formed between the outer peripheral rotating magnetic field formed by the outer coil 1411 of the first station 1410 and the outer permanent magnet 1420 of the second port 1310. Is done. Transmission and reception of torque is performed between the station 1440 and the second port 1310 via this outer peripheral magnetic circuit. The station 1 4 10 and the second port 1 3 1 0 form a torque adjusting section 1400, and the torque adjusting section 1400 changes the rotation speed of the second port 1 3 10 The effect of adjusting the torque applied to the second mouth 1 3 10 without being exerted is exhibited.
これらの外周回転磁界および内周回転磁界は、 それぞれィ ンバ一夕 40 0 , 200により制御されている。 そして、 第 1口一夕 1 2 1 0および第 2口一夕 13 1 0のうちクラッチ入力軸 3 1 0に連軸されている方が、 発 電作用および電動作用を介して、 クラッチ出力軸 3 1 2に連軸されている 方の口一夕に回転駆動トルクを与える。  These outer and inner rotating magnetic fields are controlled by members 400 and 200, respectively. The one connected to the clutch input shaft 310 of the first mouth 1 210 and the second mouth 13 110 receives the clutch output shaft via the power generation action and the electric action. Apply rotational drive torque to the mouth connected to 3 1 2.
この際、 インバー夕 2 00, 400にはバッテリ 600が接続されてい るので、 上記発電作用で発生する電力が上記電動作用で消費される電力を 上回っている場合には、 余剰電力がバッテリ 600に充電される。 逆に、 上記発電作用で発生する電力が上記電動作用で消費される電力に及ばない 場合には、 バッテリ 600は放電して電力の不足分を補う。 上記発電作用 と上記電動作用との差によって生じる余剰電力が、 ちょうどインバ一夕 2 00, 400および I C U 500等を作動させるための消費電力に等しい 場合は、 バッテリ 600は蓄電も放電もせず、 必ずしもバッテリ 600は 必要とされない。  At this time, since the battery 600 is connected to the inverters 200 and 400, if the power generated by the power generation operation exceeds the power consumed by the electric operation, surplus power is stored in the battery 600. Charged. Conversely, if the power generated by the power generation operation is lower than the power consumed by the motor operation, the battery 600 discharges to make up for the power shortage. If the surplus power generated by the difference between the power generation action and the motor action is exactly equal to the power consumption for operating the Invar 200, 400, ICU 500, etc., the battery 600 does not store or discharge electricity, and is not necessarily Battery 600 is not required.
なお、 回転電機部 Bには、 第 1口一夕軸 1 2 1 3の回転角度および回転 数を検出する回転検出センサ 1 9 1 1と、 第 2口一夕 1 3 1 0の回転角度 および回転数を検出する回転検出センサ 1 9 1 2とが装備されている。 こ れらの回転検出センサの出力である計測値は、 E CU 500に入力されて イ ンバー夕 200 , 400を制御し、 ひいては内周回転磁界および外周回 転磁界を制御するために使用される。  The rotating electrical machine section B has a rotation detection sensor 1911 that detects the rotation angle and number of rotations of the first shaft 1 2 13 A rotation detection sensor 1912 for detecting the number of rotations is provided. The measured values, which are the outputs of these rotation detection sensors, are input to the ECU 500 and used to control the inverters 200 and 400, and thus to control the inner and outer rotating magnetic fields. .
(実施例 3のクラツチ部の構成および作用)  (Configuration and operation of the clutch part of the third embodiment)
入力軸切替えクラツチ 300は、 エンジン出力軸 1 1 0からの軸出力が 入力されるクラッチ入力軸 3 1 0をもち、 クラッチ入力軸 3 1 0を第 1 口 —夕 1 2 1 0および第 2口一夕 1 3 1 0のうち一方に連軸可能である。 よ り正確には、 クラッチ入力軸 3 1 0を第 1 口一夕 1 2 1 0および第 2口一 夕 1 3 1 0のうち一方に連軸可能であるばかりではなく、 両方に連軸可能 でもあり、 またいずれにも連軸しない中立状態をも取り得る。 したがって 、 入力軸切替えクラッチ 3 0 0は、 クラツチ入力軸 3 1 0の接続状態とし て上記四つの接続状態のうちいずれかを任意に取りうる構成になっている 入力軸切替えクラッチ 3 0 0の構成の詳細は、 以下の通りである。 入力 軸切替えクラッチ 3 0 0は、 大きく分けて第 1クラッチ 3 3 0と第 2クラ ツチ 3 4 0とから構成されている。 The input shaft switching clutch 300 has a shaft output from the engine output shaft 110. It has a clutch input shaft 3 10 to be input, and the clutch input shaft 3 10 can be connected to one of the first port-evening 1 210 and the second mouth 1 310. More precisely, the clutch input shaft 310 can be connected not only to one of the first mouth 1 2 1 0 and the second mouth 1 3 10 but also to both. However, it can also take a neutral state in which neither is connected. Therefore, the input shaft switching clutch 300 is configured so that any one of the above four connection states can be arbitrarily set as the connection state of the clutch input shaft 310. The details are as follows. The input shaft switching clutch 300 is roughly composed of a first clutch 330 and a second clutch 340.
第 1クラッチ 3 3 0は、 クラツチ入力軸 3 1 0に固定されているクラヅ チア一マチヤ 3 2 0と、 ギヤ 3 3 6と、 両者 3 2 0 , 3 3 6に介在するク ラッチ口一夕 3 3 2と、 クラッチ口一夕 3 3 2を駆動する電磁コィル 3 3 4とからなる。 クラッチ口一夕 3 3 2の一端が当接するギヤ 3 3 6の側面 には、 クラッチパッ ドが接合固定されている。 ギヤ 3 3 6は、 軸受け 3 3 6 aを介してクラッチ入力軸 3 1 0から回転自在に軸支されており、 前述 の第 1口一夕ギヤ 3 5 1 と嚙み合って第 1 口一夕軸 1 2 1 3と連動してい る。  The first clutch 330 is provided with a clutch mate 320 fixed to the clutch input shaft 310, a gear 336, and a clutch opening interposed between the two 322 and 336. 3 3 2 and an electromagnetic coil 3 3 4 for driving the clutch opening 3 3 2. A clutch pad is fixedly connected to the side of the gear 336 where one end of the clutch opening 332 contacts. The gear 336 is rotatably supported from the clutch input shaft 310 via a bearing 336a, and meshes with the above-mentioned first opening and closing gear 351 to form the first opening. Evening axis linked with 1 2 1 3
第 1クラッチ 3 3 0では、 電磁コイル 3 3 4に通電されると、 クラッチ 口一夕 3 3 2は電磁コィル 3 34に引きつけられて軸長方向に移動し、 ギ ャ 3 3 6の側面のクラヅチパッ ドに当接すると同時に、 クラッチア一マチ ャ 3 2 0にも当接する。 すると、 クラッチ入力軸 3 1 0は、 クラッチァ一 マチヤ 3 2 0、 クラッチロー夕 3 3 2、 ギヤ 3 3 6および第 1口一夕ギヤ 3 5 1を順に介して、 第 1ロー夕軸 1 2 1 3すなわち第 1口一夕 1 2 1 0 に連軸される。 逆に、 電磁コイル 3 3 4への通電がなくなると、 リターン スプリング (図略) のバネ弾性力でクラツチ口一夕 3 3 2はギヤ 3 3 6お よびクラッチァーマチヤ 3 2 0から離れ、 クラッチ入力軸 3 1 0と第 1 口 —夕軸 1 2 1 3との連軸は解除される。  In the first clutch 330, when the electromagnetic coil 334 is energized, the clutch opening 332 is attracted to the electromagnetic coil 334 and moves in the axial direction, and the side of the gear 336 At the same time it comes into contact with the clutch pad, it also comes into contact with the clutch armature 320. Then, the clutch input shaft 3 1 0 is connected to the first low gear shaft 1 2 via the clutch mater 3 2 0, the clutch low gear 3 3 2, the gear 3 3 6 It is linked to 1 3 1 1 1 2 Conversely, when the power supply to the electromagnetic coil 3 3 4 is stopped, the clutch opening 3 3 2 moves away from the gear 3 3 6 and the clutch mater 3 2 The connected shaft between the clutch input shaft 3 1 0 and the 1st port — evening shaft 1 2 1 3 is released.
第 2クラッチ 3 4 0は、 クラッチ入力軸 3 1 0に固定されているクラッ チア一マチヤ 3 2 0 (共通) と、 ギヤ 34 6と、 両者 3 2 0 , 3 4 6に介 在するクラッチロー夕 34 2 と、 クラッチロー夕 3 4 2を駆動する電磁コ ィル 344とからなる。 クラッチロー夕 3 4 2の一端が当接するギヤ 3 4 6の側面には、 クラッチパッ ドが接合固定されている。 ギヤ 3 4 6は、 軸 受け 3 4 6 aを介してクラッチ入力軸 3 1 0から回転自在に軸支されてお り、 前述の第 2口一夕ギヤ 3 5 2と嚙み合って第 2口一夕軸 1 3 1 3と連 動している - 第 2クラヅチ 3 4 0では、 電磁コイル 3 44に通電されると、 クラッチ 口一夕 34 2は電磁コイル 3 44に引きつけられて軸長方向に移動し、 ギ ャ 34 6の側面のクラツチパッ ドに当接すると同時に、 クラッチア一マチ ャ 3 2 0にも当接する。 すると、 クラッチ入力軸 3 1 0は、 クラッチァ一 マチヤ 3 2 0、 クラッチロー夕 34 2、 ギヤ 34 6および第 2口一夕ギヤ 3 5 2を順に介して、 第 2ロー夕軸 1 3 1 3すなわち第 2口一夕 1 3 1 0 に連軸される。 逆に、 電磁コィル 3 44への通電がなくなると、 リターン スプリング (図略) のパネ弾性力でクラッチ口一夕 34 2はギヤ 3 4 6お よびクラッチァ一マチヤ 3 2 0から離れ、 クラッチ入力軸 3 1 0と第 2口 一夕軸 1 3 1 3 との連軸は解除される。 The second clutch 340 is constituted by a clutch-to-matcher 320 (common) fixed to the clutch input shaft 310, a gear 346, and a clutch low interposed between the two. It consists of an electromagnetic coil 344 that drives a clutch low and a clutch low. Gear 3 4 One end of clutch low gear 3 4 The clutch pad is fixedly connected to the side surface of 6. The gear 346 is rotatably supported from the clutch input shaft 310 via a bearing 346a, and meshes with the above-described second port overnight gear 352 to form the second gear 352. Mouth-to-mouth shaft 1 3 1 3-In second clutch 3400, when electromagnetic coil 344 is energized, clutch mouth-to-mouth shaft 34 2 is attracted to electromagnetic coil 344 and the shaft length In the direction of contact, and abuts the clutch pad on the side of the gear 346, and at the same time, abuts on the clutch armature 320. Then, the clutch input shaft 3 10 is connected to the second low shaft 1 3 1 3 through the clutch mater 3 2 0, the clutch low gear 342, the gear 346, and the second port overnight gear 3 52. In other words, it is connected to the first mouth at 1 310. Conversely, when power to the electromagnetic coil 344 is cut off, the clutch port 342 is separated from the gear 346 and the clutch mat 322 by the elastic force of the return spring (not shown), and the clutch input shaft The link between 3110 and the 2nd mouth overnight shaft 1 3 1 3 is released.
ここで、 第 1クラッチ 3 3 0を介して第 1ロー夕 1 2 1 0に連軸する場 合でも、 第 2クラッチ 34 0を介して第 2口一夕 1 3 1 0に連軸する場合 でも、 クラッチ入力軸 3 1 0 と各ロー夕 1 2 1 0, 1 3 1 0とのギヤ比は 同一である。 また、 第 1ロー夕 1 2 1 0の回転方向および第 2ロー夕 1 3 1 0の回転方向も同一である。  Here, even when the shaft is connected to the first rotor 1 2 1 0 via the first clutch 3 3 0, the shaft is connected to the second port 1 3 10 via the second clutch 3 4 0. However, the gear ratios of the clutch input shaft 310 and each of the rotors 110, 130 are the same. In addition, the rotation direction of the first row 130 and the rotation of the second row 130 are the same.
一方、 出力軸切替えクラツチ 3 5 0は、 クラッチ入力軸 3 1 0がクラッ チ出力軸 3 1 2に替わっているだけで、 前述の入力軸切替えクラッチ 3 0 0と同様の構成と作用とをもっている。 すなわち、 出力軸切替えクラッ チ 3 5 0は、 軸出力を出力するクラッチ出力軸 3 1 2をもち、 クラッチ出 力軸 3 1 2を第 1口一夕 1 2 1 0および第 2口一夕 1 3 1 0のうち一方に 連軸可能である。 より正確には、 クラヅチ出力軸 3 1 2を第 1口一夕 1 2 1 0および第 2ロー夕 1 3 1 0のうち一方に連軸可能であるばかりではな く、 両方に連軸可能でもあり、 またいずれにも連軸しない中立状態をも取 り得る。 したがって、 出力軸切替えクラッチ 3 5 0は、 クラッチ出力軸 3 1 2の接続状態として上記四つの接続状態のうちいずれかを任意に取りう る構成になっている。  On the other hand, the output shaft switching clutch 350 has the same configuration and operation as the input shaft switching clutch 300 described above, except that the clutch input shaft 310 is replaced by the clutch output shaft 310. . That is, the output shaft switching clutch 350 has a clutch output shaft 312 for outputting shaft output, and connects the clutch output shaft 312 to the first port 1 2 1 0 and the second port 1 1 Can be connected to one of 3 10. More precisely, the clutch output shaft 3 1 2 can be connected not only to one of the first port 1 2 1 0 and the second row 1 3 10 but also to both. Yes, and it can also be in a neutral state where there is no articulation. Therefore, the output shaft switching clutch 350 is configured to arbitrarily take any one of the four connection states as the connection state of the clutch output shaft 312.
出力軸切替えクラッチ 3 5 0の構成の詳細は以下の通りであり、 出力軸 切替えクラツチ 3 5 0は、 大きく分けて第 3クラッチ 3 7 0と第 4クラッ チ 3 8 0とから構成されている。 第 3クラッチ 3 7 0は、 クラツチ出力軸 3 1 2に固定されているクラッ チア一マチヤ 3 6 0と、 ギヤ 3 7 6と、 両者 3 6 0 , 3 7 6に介在するク ラッチ口一夕 3 7 2と、 クラッチロー夕 3 7 2を駆動する電磁コィル 3 7 4とからなる。 クラッチ口一夕 3 7 2の一端が当接するギヤ 3 7 6の側面 には、 クラッチパッ ドが接合固定されている。 ギヤ 3 7 6は、 軸受け 3 7 6 aを介してクラッチ出力軸 3 1 2から回転自在に軸支されており、 前述 の第 1ロー夕ギヤ 3 5 1 と嚙み合って第 1 口一夕軸 1 2 1 3と連動してい る。 The details of the configuration of the output shaft switching clutch 350 are as follows.The output shaft switching clutch 350 is roughly divided into a third clutch 370 and a fourth clutch 380. . The third clutch 370 is provided with a clutch-to-matcher 360 fixed to the clutch output shaft 312, a gear 376, and a clutch opening interposed between the both 360 and 376. 3 7 2 and an electromagnetic coil 3 7 4 for driving the clutch roller 3 7 2. A clutch pad is fixedly connected to a side surface of the gear 376 where one end of the clutch opening 372 contacts. The gear 3776 is rotatably supported from the clutch output shaft 312 via a bearing 3776a. Linked with axis 1 2 1 3
第 3クラッチ 3 7 0では、 電磁コイル 3 7 4に通電されると、 クラッチ 口一夕 3 7 2は電磁コイル 3 7 4に引きつけられて軸長方向に移動し、 ギ ャ 3 7 6の側面のクラツチパッ ドに当接すると同時に、 クラッチア一マチ ャ 3 6 0にも当接する。 すると、 クラッチ出力軸 3 1 2は、 クラッチァ一 マチヤ 3 6 0、 クラッチロー夕 3 7 2、 ギヤ 3 7 6および第 1口一夕ギヤ 3 5 1を順に介して、 第 1口一夕軸 1 2 1 3すなわち第 1口一夕 1 2 1 0 に連軸される。 逆に、 電磁コイル 3 7 4への通電がなくなると、 リターン スプリ ング (図略) のパネ弾性力でクラッチロー夕 3 7 2はギヤ 3 7 6お よびクラッチァ一マチヤ 3 6 0から離れ、 クラッチ出力軸 3 1 2と第 1口 一夕軸 1 2 1 3との連軸は解除される。  In the third clutch 370, when the electromagnetic coil 374 is energized, the clutch opening 372 is attracted by the electromagnetic coil 374 and moves in the axial direction, and the side of the gear 376 At the same time as the clutch pad of the clutch. Then, the clutch output shaft 3 1 2 passes through the clutch 1 mater 360, the clutch low gear 3 7 2, the gear 3 7 6 and the first port 1 gear 3 5 It is linked to 2 1 3, that is, 1 2 1 0. Conversely, when power to the electromagnetic coil 374 is cut off, the clutch spring 372 separates from the gear 376 and the clutch mater 360 by the elastic force of the return spring (not shown), and the clutch The linked axis between the output shaft 3 1 2 and the first port 1 night shaft 1 2 1 3 is released.
第 4クラッチ 3 8 0は、 クラツチ出力軸 3 1 2に固定されているクラヅ チア一マチヤ 3 6 0 (共通) と、 ギヤ 3 8 6と、 両者 3 6 0, 3 8 6に介 在するクラッチ口一夕 3 8 2と、 クラッチ口一夕 3 8 2を駆動する電磁コ ィル 3 84とからなる。 クラッチロー夕 3 8 2の一端が当接するギヤ 3 8 6の側面には、 クラッチパッ ドが接合固定されている。 ギヤ 3 8 6は、 軸 受け 3 8 6 aを介してクラッチ出力軸 3 1 2から回転自在に軸支されてお り、 前述の第 2口一夕ギヤ 3 5 2と嚙み合って第 2口一夕軸 1 3 1 3と連 動している。  The fourth clutch 380 includes a clutch-to-matcher 360 (common) fixed to the clutch output shaft 312, a gear 386, and a clutch interposed between the both 360 and 386. It is composed of a mouth 382 and an electromagnetic coil 384 that drives the clutch mouth 382. A clutch pad is joined and fixed to a side surface of the gear 386 with which one end of the clutch gear 38 contacts. The gear 3886 is rotatably supported from the clutch output shaft 312 via a bearing 3886a. It is linked with the mouth 1 3 1 3.
第 4クラッチ 3 8 0では、 電磁コイル 3 8 4に通電されると、 クラッチ 口一夕 3 8 2は電磁コイル 3 8 4に引きつけられて軸長方向に移動し、 ギ ャ 3 8 6の側面のクラッチパヅ ドに当接すると同時に、 クラッチァ一マチ ャ 3 6 0にも当接する。 すると、 クラッチ出力軸 3 1 2は、 クラッチァ一 マチヤ 3 6 0、 クラッチロー夕 3 8 2、 ギヤ 3 8 6および第 2口一夕ギヤ 3 5 2を順に介して、 第 2口一夕軸 1 3 1 3すなわち第 2口一夕 1 3 1 0 に連軸される。 逆に、 電磁コイル 3 8 4への通電がなくなると、 リターン スプリ ング (図略) のバネ弹性力でクラッチ口一夕 3 8 2はギヤ 3 8 6お よびクラヅチア一マチヤ 3 6 0から離れ、 クラッチ出力軸 3 1 2と第 2口 一夕軸 1 3 1 3との連軸は解除される。 In the fourth clutch 380, when the electromagnetic coil 384 is energized, the clutch opening 382 is attracted to the electromagnetic coil 384 and moves in the axial direction, and the side of the gear 386 At the same time as it comes into contact with the clutch pad, it also comes into contact with the clutch mater 360. Then, the clutch output shaft 3 1 2 is connected to the clutch 1 mater 3 60, the clutch low gear 3 8 2, the gear 3 8 6 It is connected to 3 1 3 or 1 3 1 0 Conversely, if power to the electromagnetic coil Due to the spring force of the spring (not shown), the clutch opening 3 8 2 is separated from the gear 3 8 6 and the clutch 1 3 6 0, the clutch output shaft 3 1 2 and the second opening 1 3 The link with 3 is released.
ここで、 第 3クラッチ 3 7 0を介して第 1口一夕 1 2 1 0に連軸する場 合でも、 第 4クラッチ 3 8 0を介して第 2口一夕 1 3 1 0に連軸する場合 でも、 クラッチ出力軸 3 1 2と各口一夕 1 2 1 0, 1 3 1 0とのギヤ比は 同一である。 同様に、 出力軸切替えクラッチ 3 5 0での上記ギヤ比と前述 の入力軸切替えクラッチ 3 0 0でのギヤ比も同一であって、 各パーツには 互換性がある。 また、 第 1ロー夕 1 2 1 0の回転方向および第 2口一夕 1 3 1 0の回転方向は同一であって、 クラッチ出力軸 3 1 2の回転方向は出 力軸切替えクラッチ 3 5 0の切替えによって変わることがない。 クラヅ チ部 Aは以上のように構成されており、 クラッチ入力軸 3 1 0およびクラ ツチ出力軸 3 1 2と、 第 1口一夕 1 2 1 0および第 2口一夕 1 3 1 0とを 任意の組み合わせで連軸することができる。 また、 入力軸切替えクラッチ 3 0 0および出力軸切替えクラッチ 3 5 0は、 いずれも中立状態を取って 各口一夕 1 2 1 0 , 1 3 1 0との連軸を解消することもできるし、 逆に両 口一夕 1 2 1 0 , 1 3 1 0と連軸することもできる。  Here, even when the shaft is connected to the first port 1 2 1 0 via the third clutch 3 7 0, it is connected to the 2nd port 1 3 1 0 via the 4th clutch 3 8 0. However, the gear ratios of the clutch output shaft 312 and the ports 1 210 and 1 310 are the same. Similarly, the gear ratio in the output shaft switching clutch 350 is the same as the gear ratio in the input shaft switching clutch 300 described above, and the parts are interchangeable. The rotation direction of the first rotor 1 2 1 0 and the rotation of the second port 1 3 10 are the same, and the rotation direction of the clutch output shaft 3 1 2 is the output shaft switching clutch 3 5 0 It does not change by switching. The clutch section A is configured as described above, and includes the clutch input shaft 310 and the clutch output shaft 312, the first port 1 2 1 0 and the second port 1 3 10 Can be connected in any combination. In addition, the input shaft switching clutch 300 and the output shaft switching clutch 350 can both be in a neutral state to eliminate the connection with the ports 1 2 1 0 and 1 3 1 0. On the contrary, it is also possible to link with 1 2 1 0, 1 3 10.
なお、 表現を簡易にするため、 各クラッチ 3 3 0 , 3 40, 3 7 0 , 3 8 0が連軸状態にあることを 「オン」 になっていると表現し、 連軸が解か れている状態にあることを 「オフ」 になっていると表現するものとする。 さらに、 各クラッチ 3 3 0, 3 4 0 , 3 7 0 , 3 8 0は電磁クラッチであ り、 その制御は E C U 5 0 0からの指令信号により、 図示しないアンプに よつて電気的に行われる。  In order to simplify the expression, the state in which the clutches 330, 340, 370, 380 are in the linked state is expressed as "on", and the connected axes are released. State is referred to as “off”. Each of the clutches 330, 340, 370, 380 is an electromagnetic clutch, and its control is electrically performed by an amplifier (not shown) according to a command signal from the ECU 50,000. .
(実施例 3の作用)  (Operation of Embodiment 3)
本実施例の駆動装置の特徴は、 第 1ロー夕の回転数が第 2ロー夕の回転 数以上になるように、 クラッチ部 Aの制御 (すなわちクラッチ切替え) が 行われることである。  The feature of the drive device of the present embodiment is that the control of the clutch unit A (that is, clutch switching) is performed such that the rotation speed of the first row and the second row is equal to or higher than the rotation number of the second row and the left.
すなわち、 クラッチ入力軸 3 1 0の回転数がクラッチ出力軸 3 1 2の回 転数を上回っている場合には、 クラッチ入力軸 3 1 0は第 1ロー夕 1 2 1 0に連軸されると共に、 クラッチ出力軸 3 1 2は第 2口一夕 1 3 1 0に連 軸される。 このとき、 第 1クラッチ 3 3 0および第 4クラッチ 3 8 0がォ ンになり、 第 2クラッチ 34 0および第 3クラッチ 3 7 0はオフになって いる。 逆に、 クラッチ入力軸 3 1 0の回転数がクラッチ出力軸 3 1 2の回転数 に及ばない場合には、 クラッチ入力軸 3 1 0は第 2口一夕 1 3 1 0に連軸 されると共に、 クラッチ出力軸 3 1 2は第 1 ロー夕 1 2 1 0に連軸される 。 このとき、 先ほどの場合とは逆に、 第 1クラッチ 3 3 0および第 4クラ ツチ 3 8 0がオフになり、 第 2クラッチ 3 4 0および第 3クラッチ 3 7 0 はオンになっている。 ここで、 前述のように各クラッチ 3 3 0, 3 4 0 , 3 7 0 , 3 8 0でのギヤ比は同一であるから、 第 1 ロー夕 1 2 1 0の回 転数は第 2口一夕 1 3 1 0の回転数以上になるように、 クラッチ部 Aの制 御が行われていることになる。 In other words, when the rotation speed of the clutch input shaft 310 exceeds the rotation speed of the clutch output shaft 312, the clutch input shaft 310 is connected to the first row 1 2 1 0 At the same time, the clutch output shaft 312 is connected to the second port 1310. At this time, the first clutch 330 and the fourth clutch 380 are on, and the second clutch 340 and the third clutch 370 are off. Conversely, when the rotation speed of the clutch input shaft 310 is less than the rotation speed of the clutch output shaft 312, the clutch input shaft 310 is connected to the second port 1310. At the same time, the clutch output shaft 3 1 2 is connected to the first row 1 2 1 0. At this time, the first clutch 330 and the fourth clutch 380 are off, and the second clutch 340 and the third clutch 370 are on, contrary to the case described above. Since the gear ratios of the clutches 330, 340, 370, 380 are the same as described above, the number of rotations of the first rotor 1 2 This means that the clutch A is being controlled so that the number of revolutions per night is more than 1310.
以下、 本実施例の車両用駆動装置 1 0 0 0の作用について、 具体的な場 合分けを行って詳細に説明する。  Hereinafter, the operation of the vehicle drive device 100 of the present embodiment will be described in detail with specific cases.
先ず、 クラッチ入力軸 3 1 0への軸入力とクラッチ出力軸 3 1 2からの 軸出力とが等しく、 駆動装置 1 0 0 0全体として トルク回転速度コンバ一 夕 (T— Sコンパ一夕) として作用している場合を考える。  First, the shaft input to the clutch input shaft 3110 and the shaft output from the clutch output shaft 3112 are equal, and as a whole of the drive unit 1000, the torque rotation speed converter (T-S converter) Consider the case where it is working.
(実施例 3の減速モードでの作用)  (Operation in the deceleration mode of the third embodiment)
第 1に、 トルク t [Nm] x回転数 2 n [ r pm」 の軸入力でクラッチ 入力軸 3 1 0がエンジン 1 0 0によって駆動され、 クラツチ出力軸 3 1 2 の軸出力がトルク 2 t X回転数 nである場合を想定する。 これはトルクが 倍増され、 回転数が半減している場合であるので、 図 1 0の第 1段の減速 モードに相当し、 車両用駆動装置 1 0 0 0は減速機として作用している。 この場合、 クラッチ入力軸 3 1 0の回転数がクラツチ出力軸 3 1 2の回 転数を上回っているので、 前述のようにクラッチ入力軸 3 1 0は第 1口一 夕 1 2 1 0に連軸されると共に、 クラツチ出力軸 3 1 2は第 2ロー夕 1 3 1 0に連軸される。 このとき、 第 1クラッチ 3 3 0および第 4クラッチ 3 8 0がオンになり、 第 2クラッチ 3 4 0および第 3クラッチ 3 7 0はオフ になっている (図 9参照) 。  First, the clutch input shaft 310 is driven by the engine 100 with the shaft input of torque t [Nm] x the number of revolutions 2 n [rpm], and the shaft output of the clutch output shaft 3 1 2 is torque 2 t It is assumed that the number of X rotations is n. This corresponds to the case where the torque is doubled and the number of revolutions is reduced by half, so that this corresponds to the first-stage deceleration mode in FIG. 10 and the vehicle driving device 1000 acts as a speed reducer. In this case, the number of revolutions of the clutch input shaft 310 exceeds the number of revolutions of the clutch output shaft 312, so that the clutch input shaft 310 While being connected, the clutch output shaft 312 is connected to the second row 1310. At this time, the first clutch 330 and the fourth clutch 380 are on, and the second clutch 340 and the third clutch 370 are off (see FIG. 9).
すると、 回転数調整部 1 2 0 0 (第 1口一夕 1 2 1 0と第 2口一夕 1 3 1 0との間) で発電作用が行われ、 発電された電力は第 1口一夕 1 2 1 0 からィ ンバ一夕 2 0 0およびィ ンバ一夕 4 0 0を順に介してステ一夕 1 4 1 0に供給される。 ステ一夕 1 4 1 0では、 制御された三相交流がステ一 夕巻線 1 4 1 1に通電されて外周回転磁界が発生し、 この外周回転磁界に よって第 2口一夕が回転駆動される。 したがって、 第 2口一夕 1 3 1 0は 、 第 1口一夕 1 2 1 0から直接磁気トルクを受けて駆動されるばかりでは なく、 第 1口一夕 1 2 1 0での発電作用によって発生した電力で、 ステ一 夕 1 4 1 0からも電動作用を受けて駆動される。 Then, a power generation operation is performed at the rotation speed adjustment unit 1200 (between 1st 1st 1st and 1st 1st and 1st 2nd and 1st 3rd), and the generated power is It is supplied from the evening 1 210 to the stay 1 4 1 0 through the member 200 and the member 400 in this order. In the station 1 410, a controlled three-phase AC is supplied to the station winding 1 4 1 1 to generate an outer peripheral rotating magnetic field, and the outer peripheral rotating magnetic field drives the second port to rotate. Is done. Therefore, 1 2 3 In addition to being driven directly by magnetic torque from the 1st mouth, 1 210, the power generated by the power generation action at the 1st mouth, 1 210 It is also driven by an electric action.
この作用は、 図 1 1 ( a) 〜 ( d) を参照して説明することができる。 以下の説明では、 理解しやすいようにクラッチ入力軸 3 1 0およびクラッ チ出力軸 3 1 2と第 1ロー夕軸 1 2 1 3および第 2口一夕軸 1 3 1 3との ギヤ比を、 すべて 1 : 1 と仮定して説明する。  This effect can be explained with reference to FIGS. 11 (a) to 11 (d). In the following description, the gear ratios of the clutch input shaft 310 and clutch output shaft 312 to the first low-speed shaft 1 2 13 and the second-port high-speed shaft 1 3 1 3 are shown for easy understanding. , All explanations assume 1: 1.
すなわち、 エンジン 1 0 0の出力 2 n tは、 図 1 1 ( a) に示すように トルク t X回転数 2 nとしてクラッチ入力軸 3 1 0に入力され、 図 1 1 ( d ) に示すように トルク 2 t X回転数 nの軸出力でクラツチ出力軸 3 1 2 から出力される。 この際、 第 1 口一夕 1 2 1 0と第 2口一夕 1 3 1 0との 間の磁気回路を介して、 第 1口一夕 1 2 1 0から第 2口一夕 1 3 1 0へ伝 達される トルクは tのみである。 そして、 第 2口一夕 1 3 1 0の回転数は nであるので、 第 1口一夕 1 2 1 0から第 2ロー夕 1 3 1 0へ磁気トルク tにより伝達される仕事量は、 図 1 1 ( a) と図 1 2 (d) とに共通して いる斜線の領域 (原点に接している領域) n tのみである。  That is, the output 2 nt of the engine 100 is input to the clutch input shaft 310 as a torque t X rotation speed 2 n as shown in FIG. 11 (a), and as shown in FIG. 11 (d). It is output from the clutch output shaft 3 1 2 with a shaft output of torque 2 t X rotation speed n. At this time, via the magnetic circuit between the 1st mouth 1st night 1 2 10 and the 2nd mouth 1 3 1 0, the 1st mouth 1st 1 2 1 0 and the 2nd mouth 1st 1 3 1 The only torque transmitted to 0 is t. And, since the rotation speed of the second mouth 1 3 1 0 is n, the work transmitted by the magnetic torque t from the first mouth 1 2 1 0 to the second low 1 13 10 is: Only the shaded area (the area in contact with the origin) nt which is common to Figs. 11 (a) and 12 (d).
一方、 図 1 1 (b) に示すように、 第 1ロー夕 1 2 1 0の回転数 2 nの 余剰分 nは、 第 1口一夕 1 2 1 0の発電作用により電力 n tに変換され、 口一夕卷線 1 2 1 1からインバー夕 2 0 0に吸収される。 イ ンバー夕 2 0 0で吸収された電力 n tは、 バッテリ 6 0 0に並列な直流電線を介してィ ンバ一夕 40 0に送られ、 インバー夕 40 0で三相交流に変換されてステ —夕卷線 1 4 1 1に送られる。 ステ一夕 1 4 1 0では、 ステ一夕卷線 1 4 1 1に印加された三相交流により外周回転磁界が発生して電動作用が生じ 、 同磁界によって第 2ロー夕 1 3 1 0がトルク tで駆動される。 すなわち 、 図 1 1 ( c ) に示すように、 トルク調整部 1 4 0 0でも トルク tがかけ られた状態で第 2口一夕 1 3 1 0が回転数 nで回転するので、 トルク調整 部 1 4 0 0の電動作用で 2 n tのエネルギーが第 2口一夕軸 1 3 1 3に加 えられる。  On the other hand, as shown in Fig. 11 (b), the surplus n of the number of revolutions 2 n of the first rotor 1 210 is converted to electric power nt by the power generation action of the first rotor 1 210. , It is absorbed into the Invera 200 from the Mouth Ichiban winding line 1 2 1 1. The power nt absorbed by the inverter 200 is sent to the inverter 400 via a DC line parallel to the battery 600, and is converted to a three-phase AC by the inverter 400 to be converted to a three-phase AC. It is sent to the evening winding line 1 4 1 1. In the stay 1 14 10, the three-phase alternating current applied to the stay winding 14 14 1 generates an outer peripheral rotating magnetic field to generate an electric action, and the same magnetic field causes the second row 13 10 Driven by torque t. That is, as shown in FIG. 11 (c), the second port 1310 rotates at the rotation speed n in a state where the torque t is applied even in the torque adjustment section 140, so that the torque adjustment section With the electric action of 1400, 2 nt of energy is applied to the 2nd port 1/3 axis.
つまり、 第 2口一夕軸 1 3 1 3は、 第 1ロー夕軸 1 2 1 3から直接磁気 トルク tにより伝達される仕事量 n t と、 第 1口一夕 1 2 1 0の発電作用 とステ一夕 1 4 1 0の電動作用とを介して伝達される上記エネルギー n t とで駆動される。 その結果、 図 1 1 ( d) に示すように、 第 2口一夕 1 3 1 0は トルク 2 t X回転数 nで駆動され、 クラッチ出力軸 3 1 2からは ト ルク 2 t x回転数 nの軸出力 2 n tが得られる。 したがって、 本実施例の 車両用駆動装置 1 0 0 0は、 減速比 2 : 1の減速機すなわち T - Sコンパ —夕として作用している。 In other words, the second mouth and the first shaft 1 3 1 3 have the work nt directly transmitted from the first low shaft 1 2 1 3 by the magnetic torque t and the power generation action of the first mouth and the first 1 2 The motor is driven by the above-mentioned energy nt transmitted via the motor operation of the station. As a result, as shown in Fig. 11 (d), the second port 1310 is driven with a torque of 2 t X rotation speed n, and a torque is output from the clutch output shaft 312. Lux 2 tx The shaft output 2 nt with the rotation speed n is obtained. Therefore, the vehicle drive device 100 of the present embodiment operates as a speed reducer having a reduction ratio of 2: 1, that is, a TS comp.
ここで逆に、 第 1クラッチ 3 3 0の代わりに第 2クラッチ 3 4 0をオン にしてクラッチ入力軸 3 1 0 と第 2口一夕 1 3 1 0とを連軸し、 第 4クラ ツチ 3 8 0の代わりに第 3クラッチ 3 7 0をオンにしてクラツチ出力軸 3 1 2と第 1クラッチ 3 3 0とを連軸した場合には、 軸出力の伝達効率が非 常に落ちる。 この理由は、 以下の増速モードの節で説明する理由と同様で あるので、 ここでの詳細な説明は省略する。  On the contrary, instead of the first clutch 330, the second clutch 340 is turned on, and the clutch input shaft 310 and the second opening 313 are connected to each other, so that the fourth clutch If the clutch output shaft 312 and the first clutch 3330 are connected to each other by turning on the third clutch 370 instead of 380, the transmission efficiency of the shaft output is greatly reduced. The reason for this is the same as the reason explained in the section of the speed increasing mode below, and the detailed explanation is omitted here.
(実施例 3の増速モード (低効率) での作用)  (Operation in the speed increasing mode (low efficiency) of the third embodiment)
第 2に、 本実施例の本来のクラッチ切替えとは異なるが、 比較のために 、 前述の減速モードと同一のクラッチの状態のままで、 クラッチ入力軸 3 1 0の回転数よりもクラツチ出力軸 3 1 2の回転数が高い場合を想定して 説明する。  Second, although different from the original clutch switching of the present embodiment, for the sake of comparison, the same clutch state as that in the above-described deceleration mode is used, and the clutch output shaft is higher than the rotational speed of the clutch input shaft 310. The following description is based on the assumption that the rotation speed of 3 1 2 is high.
より具体的には、 エンジン出力 2 n 1 t 1がトルク 2 t 1 x回転数 n 1 の軸出力で入力され、 本実施例の車両用駆動装置 1 0 0 0を T一 Sコンパ —夕として作用させて、 トルク t l x回転数 2 n lの軸出力を出力する場 合を想定する。 この場合、 クラツチ入力軸 3 1 0すなわち第 1口一夕 1 2 1 0の回転数は n 1であり、 クラッチ出力軸 3 1 2すなわち第 2口一夕 1 3 1 0の回転数は 2 n 1であるから、 作動モードは図 1 0の 2段目の増速 モード (低効率) に相当する。 ここで、 エンジン出力 2 n 1 t 1が前述の 減速モードのエンジン出力 2 n tに相当するものと想定し、 同様に トルク 2 t lはトルク t と等しく回転数 n 1は回転数 2 nと等しいものと想定し ても良い。 この増速モ一ド (低効率) での車両用駆動装置 1 0 0 0の T— Sコンパ一夕としての作用については、 図 1 2 ( a) 〜 ( d) を参照して 以下に説明する。  More specifically, the engine output 2 n 1 t 1 is input at the shaft output of torque 2 t 1 x rotation speed n 1, and the vehicle driving device 100 0 of the present embodiment is set to the T-S It is assumed that the shaft output with the torque tlx rotation speed of 2 nl is output. In this case, the number of revolutions of the clutch input shaft 310, that is, the first port 1 2 1 0 is n1, and the number of revolutions of the clutch output shaft 3 1 2, that is, the second port 1 3 1 0 is 2 n Since it is 1, the operation mode corresponds to the second-stage speed-up mode (low efficiency) in Fig. 10. Here, it is assumed that the engine output 2 n 1 t 1 corresponds to the engine output 2 nt in the above-described deceleration mode, and similarly, the torque 2 tl is equal to the torque t and the rotation speed n 1 is equal to the rotation speed 2 n May be assumed. The operation of the vehicle drive system 1000 as a TS converter in this speed-up mode (low efficiency) will be described below with reference to FIGS. 12 (a) to 12 (d). I do.
すなわち、 図 1 2 ( a) に示すように、 第 1口一夕 1 2 1 0には トルク 2 t 1 X回転数 n 1の軸入力が与えられるが、 先ず回転数調整部 1 2 0 0 で第 2口一夕 1 3 1 0を倍の回転数 2 n 1で回転駆動させる必要がある。 そのためには、 図 1 2 ( b ) に示すように、 電動作用により トルク 2 t 1 回転数 n 1分のエネルギー 2 n 1 t 1が与えられなくてはならない。 これと並行して、 第 1ロー夕 1 2 1 0から第 2口一夕 1 3 1 0へ磁気ト ルクを介して直接的に仕事量 2 n 1 t 1が伝達されるので、 図 1 2 ( b ) に示すように、 第 2口一夕 1 3 1 0にはいつたん 2 n l x 2 t l = 4 n l t 1のエネルギーが与えられる。 これでは第 2口一夕 1 3 1 0からの軸出 力が必要以上に大きくなるので、 図 1 2 ( c ) に示すように、 トルク調整 部 1 4 0 0の発電作用で トルクが吸収され、 2 n l x t l = 2 n l t lの 発電エネルギーが得られる。 その結果、 図 1 2 ( d ) に示すように、 第 2 ロー夕 1 3 1 0からは、 トルク t l x回転数 2 n 1の軸出力 (軸入力と同 じ) 2 n 1 t 1が得られる。 That is, as shown in FIG. 12 (a), the shaft input of torque 2 t 1 X rotation speed n 1 is given to the first mouth 1 2 1 0, but first, the rotation speed adjustment unit 1 200 Therefore, it is necessary to rotate the first mouth 1 3 1 0 at double speed 2 n 1. For that purpose, as shown in Fig. 12 (b), the electric action must give the torque 2t1 the energy 2n1t1 for the rotation speed n1. In parallel with this, the work 2n1t1 is directly transmitted from the first row 1 2 1 0 to the 2nd mouth 1 3 10 via magnetic torque. (b) As shown in the figure, the energy of 2 nlx 2 tl = 4 nlt 1 is given to the second mouth 1 3 10 at once. In this case, the shaft output from the second mouth 1310 will be unnecessarily large, so as shown in Fig. 12 (c), the torque is absorbed by the power generation operation of the torque adjustment unit 1400. , 2 nlxtl = 2 nltl of generated energy. As a result, as shown in Fig. 12 (d), the shaft output (same as the shaft input) 2 n 1 t 1 with the torque tlx rotation speed 2 n 1 is obtained from the second rotor 13 10 .
以上で説明した電動作用と発電作用とは、 実際には並行して同時に行わ れているのであるが、 説明の便宜上前述のように電動作用 (図 1 2 ( b ) 参照) の後、 発電作用 (図 1 2 ( c ) 参照) があるものとして説明した。 以上の増速モード (低効率) では、 発電作用および電動作用による第 2口 —夕 1 3 1 0から第 1口一夕 1 2 1 0への電気エネルギーの返送は 2 n 1 t 1であって、 T— Sコンバータとして伝達すべき仕事量と等しい。 また 、 回転数調整部 1 2 0 0で、 第 1口一夕 1 2 1 0から第 2ロー夕 1 3 1 0 へ直接的にいったん伝達される仕事量は 2 n 1 t 1であって、 これは T— Sコンバータとして伝達すべき仕事量と同等である。  Although the electric action and the power generation action described above are actually performed simultaneously in parallel, for convenience of explanation, the power action and the power generation action are performed as described above (see Fig. 12 (b)). (See Figure 12 (c)). In the above speed-up mode (low efficiency), the return of electric energy from the 2nd port-evening 1 310 to the 1st mouth 1 2 1 0 by power generation and electric action is 2 n1 t1. Therefore, it is equal to the work to be transmitted as a T-S converter. In addition, the work amount directly transmitted once from the first mouth 1 2 1 0 to the second low speed 1 3 1 0 in the rotation speed adjustment unit 1 200 is 2 n 1 t 1, This is equivalent to the work to be transferred as a TS converter.
これらの電気エネルギー 2 n 1 t 1および直接的な仕事量 2 n 1 t 1は 、 それぞれ前述の減速モードでの電気エネルギー n tおよび直接的な仕事 量 n tの倍である。 これを図 1 0の二段目の減速モード (低効率) を参照 して説明すると、 第 1 ロー夕 1 2 1 0および第 2口一夕 1 3 1 0の間での 電動作用と、 第 2口一夕 1 3 1 0およびステ一夕 1 4 1 0の間での発電作 用により、 エネルギーは第 2口一夕 1 3 1 0からステ一夕 1 4 1 0を介し て第 1ロー夕 1 2 1 0へと逆流している。 それゆえ、 第 1口一夕 1 2 1 0 から、 第 2ロー夕 1 3 1 0およびステ一夕 1 4 1 0を順に介して、 再び第 1 口一夕へ電磁気のエネルギーが循環しており、 この循環は軸出力の伝達 に寄与することなく、 いたずらに電磁気的な損失を生じさせてしまう。 それゆえ、 減速モードでのクラッチ切替えの設定のままでは、 この増速 モード (低効率) では電磁気的な損失が大きくなり、 軸出力の伝達を減速 モードのような高い効率ですることはできない。 したがってこのままでは 、 より大きな電気容量および磁気容量を有する構成の回転電機部 Bが必要 となり、 軸出力の伝達効率が低いばかりではなく、 価格や容積、 重量のい ずれにおいても不利にならざるを得ないという不都合が生じる。  The electric energy 2 n 1 t 1 and the direct work 2 n 1 t 1 are twice the electric energy n t and the direct work n t in the aforementioned deceleration mode, respectively. This will be described with reference to the second-stage deceleration mode (low efficiency) in FIG. 10. Due to the power generation between the two mouths 1 3 1 0 and 1 4 1 0, the energy is transferred from the 1st mouth 1 3 1 0 through the stay 1 4 1 0 to the first low. Evening There is a backflow to 1 210. Therefore, the electromagnetic energy is circulating again from the first mouth 1 2 1 0 to the 1st mouth 1 night via the 2nd low 1 3 1 0 and the stay 1 4 1 0 in order. However, this circulation unnecessarily causes electromagnetic loss without contributing to transmission of shaft output. Therefore, if the clutch switching is set in the deceleration mode, the electromagnetic loss increases in this speed-up mode (low efficiency), and the transmission of shaft output cannot be as efficient as in the deceleration mode. Therefore, in this state, the rotating electric machine part B having a larger electric capacity and a larger magnetic capacity is required, and not only is the transmission efficiency of the shaft output low, but also disadvantageous in terms of price, volume, and weight. The inconvenience that there is not occurs.
(実施例 3の増速モードでの作用) そこで第 3に、 入力軸切替えクラッチ 3 0 0および出力軸切替えクラッ チ 3 5 0を逆に切り替え、 第 1クラッチ 3 3 0に代わって第 2クラッチ 3 4 0をオンにし、 第 4クラッチ 3 8 0に代わって第 3クラッチ 3 7 0をォ ンにする。 すると、 クラッチ入力軸 3 1 0と第 2口一夕 1 3 1 0とが連軸 され、 クラッチ出力軸 3 1 2と第 1 ロー夕 1 2 1 0とが連軸されて、 第 1 ロー夕 1 2 1 0の回転数が第 2ロー夕 1 3 1 0の回転数を上回る状態で運 転される。 (Operation in the speed increasing mode of the third embodiment) Therefore, third, the input shaft switching clutch 300 and the output shaft switching clutch 350 are switched in reverse, the second clutch 340 is turned on in place of the first clutch 340, and the fourth clutch 380 Turn on the third clutch 370 in place of 0. Then, the clutch input shaft 3 10 and the second port 1 3 10 are connected to each other, the clutch output shaft 3 12 and the first row 1 2 1 0 are connected, and the first low The motor is operated with the rotation speed of 1 210 exceeding the rotation speed of 1 320 at the second row.
この増速モ一ドでの本実施例の車両用駆動装置 1 0 0 0の T— Sコンパ 一夕としての作用は、 図 1 3 ( a) 〜 ( d ) を参照して説明することがで きる。  The operation of the vehicle drive system 100 of the present embodiment in this speed-up mode as a TS converter will be described with reference to FIGS. 13 (a) to 13 (d). it can.
すなわち、 図 1 3 (a) に示すように、 第 2口一夕 1 3 1 0には トルク 2 t 1 X回転数 n 1の軸入力が与えられるが、 先ずトルク調整部 1 4 0 0 で第 1ロー夕 1 2 1 0にかかる トルクを半分の t 1にする必要がある。 そ のために、 図 1 3 ( b ) に示すように、 発電作用により トルク t l x回転 数 n 1分のエネルギー n 1 t 1が第 2口一夕 1 3 1 0からステ一夕 1 4 1 0に吸収される。 これと並行して、 第 2ロー夕 1 3 1 0から第 1口一夕 1 2 1 0へ磁気トルクを介して直接的に仕事量 n 1 t 1が伝達される。 す なわち、 図 1 3 ( b ) 〜 ( c ) に示すように、 第 1口一夕 1 2 1 0に n l X t l = n l t 1のエネルギーが、 第 2口一夕 1 3 1 0から直接与えられ る。 これと並行して、 図 1 3 ( c ) に示すように、 回転数調整部 1 2 0 0 の電動作用により第 1 口一夕 1 2 1 0が増速され、 n l x t l = n l t l の電動エネルギーが別途第 1口一夕 1 2 1 0に与えられる。 その結果、 図 1 2 ( d) に示すように、 第 1口一夕 1 2 1 0からは、 トルク t l x回転 数 2 n 1の軸出力 2 n 1 t 1 (軸入力と同じ) が得られる。  That is, as shown in FIG. 13 (a), the shaft input of torque 2t1 X rotation speed n1 is given to the second port 1310, but first, the torque adjustment unit 1400 It is necessary to reduce the torque applied to the 1st row 1 2 1 0 by half of t1. For this purpose, as shown in Fig. 13 (b), the torque tlx rotation speed n 1 min energy n 1 t 1 is changed from the second mouth 1 3 1 0 to the 1 1 4 Is absorbed by In parallel with this, the work amount n 1 t 1 is directly transmitted from the second row 1 310 to the first mouth 1 210 via magnetic torque. That is, as shown in Figs. 13 (b) to (c), the energy of nl Xtl = nlt 1 is applied to the first mouth 1 2 1 0 directly from the second mouth 1 3 10 Given. In parallel with this, as shown in Fig. 13 (c), the speed of the first mouth 1 2 1 0 is increased by the electric action of the rotation speed adjustment unit 1 200, and the electric energy of nlxtl = nltl is reduced. Separately given to 1st mouth 1 210. As a result, as shown in Fig. 12 (d), shaft output 2n1t1 (same as shaft input) with torque tlx rotation speed 2n1 is obtained from 1st mouth 1 2 1 0 .
以上の増速モードでは、 発電作用および電動作用による第 2ロー夕 1 3 1 0から第 1ロ一夕 1 2 1 0への電気エネルギーの伝送は n I t 1であつ て、 T— Sコンパ一夕として伝達すべき仕事量の半分である。 また、 回転 数調整部 1 2 0 0で、 第 2口一夕 1 3 1 0から第 1口一夕 1 2 1 0へ直接 (磁気トルクを介して) 伝達される仕事量も n I t 1であって、 これも T — Sコンパ一夕として伝達すべき仕事量の半分である。  In the above speed-up mode, the transmission of electric energy from the second row 1310 to the first row 1210 by the power generation action and the electric action is nIt1, and the T-S That is half of the work to be conveyed overnight. In addition, the work amount directly transmitted (via magnetic torque) from the second mouth 1 310 to the first mouth 1 210 by the rotation speed adjustment unit 1 200 is also n It 1 This is also half of the work to be transferred as a T-S Comparator.
これらの電気工ネルギ一 n 1 t 1および直接的な仕事量 n 1 t 1の和は 、 T一 Sコンパ一夕として伝達すべき軸出力と等しい。 これを図 1 0の三 段目の減速モードを参照して説明すると、 ステ一夕 1 4 1 0での発電作用 と第 1 ロー夕 1 2 1 0での電動作用により、 電磁気エネルギーは第 2ロー 夕 1 3 1 0からステ一夕 1 4 1 0を介して第 1口一夕 1 2 1 0へと順方向 に伝達されている。 それゆえ、 第 1 口一夕 1 2 1 0から第 2ロー夕 1 3 1 0への電気エネルギーの逆流によって生じる電磁気的な循環はなく、 いた ずらに電磁気的な損失を生じさせてしまうことがない。 The sum of these electric energies n 1 t 1 and the direct work n 1 t 1 is equal to the shaft output to be transmitted as T-S-Comparator. This will be described with reference to the third-stage deceleration mode in FIG. 10. The electromagnetic energy from the first row 1 2 1 0 and the first row 1 2 1 0 causes the electromagnetic energy to move forward from the second row 1 3 1 0 to the 1st mouth 1 2 1 0 via the stay 1 4 1 0 Has been transmitted to. Therefore, there is no electromagnetic circulation caused by the reverse flow of electric energy from the first mouth 1 2 1 0 to the second low 1 13 10 and it may cause electromagnetic loss unnecessarily. Absent.
それゆえ、 このように増速モードでのクラツチ切替えを行っていれば、 増速モードでも電磁気的な損失は最小限に抑えられ、 軸出力の伝達を前述 の減速モードと同様に高い効率行うことができる。 したがって、 本実施例 の車両用駆動装置 1 0 0 0によれば、 減速モードでも増速モ一ドでも電気 容量および磁気容量が比較的小さくて済む。  Therefore, if the clutch switching is performed in the speed-up mode, the electromagnetic loss can be minimized even in the speed-up mode, and the shaft output can be transmitted with high efficiency as in the above-mentioned deceleration mode. Can be. Therefore, according to the vehicle drive device 100 of the present embodiment, the electric capacity and the magnetic capacity can be relatively small in both the deceleration mode and the speed-up mode.
したがって、 本実施例の車両用駆動装置 1 0 0 0によれば、 T一 Sコン バー夕として使用する場合に、 減速モードでも増速モードでも軸出力の伝 達効率が高いという効果がある。 また、 電気容量や磁気容量が小さくて済 むので、 車両用駆動装置 1 0 0 0を軽量小型かつ安価に製造できるという 効果がある。  Therefore, according to the vehicle drive device 100 of the present embodiment, when used as a T-S converter, there is an effect that the transmission efficiency of the shaft output is high in both the deceleration mode and the speed-up mode. In addition, since the electric capacity and the magnetic capacity can be small, there is an effect that the vehicle drive device 100 can be manufactured at a low weight and a low cost.
以上で説明したように、 本実施例の車両用駆動装置 1 0 0 0では、 原則 として常に第 1口一夕 1 2 1 0の回転数が第 2口一夕 1 3 1 0の回転数以 上であるように、 クラッチ部 Aの切替え操作が E CU 5 0 0によって自動 的に行われる。  As described above, in the vehicle drive device 100 of the present embodiment, in principle, the rotation speed of the first port 1210 is always lower than the rotation speed of the second port 1310 in principle. As described above, the switching operation of the clutch unit A is automatically performed by the ECU 500.
そして、 T一 Sコンパ一夕としての減速モードおよび増速モードとは異 なり、 必ずしもクラツチ入力軸 3 1 0への軸入力とクラツチ出力軸 3 1 2 からの軸出力とがー致していない一般的な場合にも、 本実施例の車両用駆 動装置 1 0 0 0は使用可能である。 すなわち、 図 1 4 ( a) の包絡線で囲 まれた走行特性範囲の中であれば、 エンジン作動状態 (n e, t e ) と運 転者のアクセル指令 (nv, t v) との組み合わせは任意である。  Unlike the deceleration mode and the speed-up mode as the T-S-comparator, the shaft input to the clutch input shaft 310 and the shaft output from the clutch output shaft 312 do not always match. In this case, the vehicle drive device 100 of this embodiment can be used. In other words, the combination of the engine operating state (ne, te) and the driver's accelerator command (nv, tv) is arbitrary within the driving characteristic range surrounded by the envelope in Fig. 14 (a). is there.
本実施例の車両用駆動装置 1 0 0 0は、 図 1 4 ( a) 〜 (b) に示すよ うに、 クラッチ入力軸 3 1 0への軸入力 n e t eとクラッチ出力軸 3 1 2 からの軸出力 nv t Vとがほぼ一致している場合にも使用可能である。 こ の場合、 回転数調整部 1 2 0 0での変換容量 P nと トルク調整部 1 4 0 0 での変換容量 P t とほぼ同等であり、 エンジン作動状態と運転者のァクセ ル指令とがかけ離れているほど、 両変換容量 P n, P tは大きくなる。 そ れゆえ、 エンジン作動状態と運転者のアクセル指令とはあま り離れていな い方が効率よく軸出力の変換が可能である。 また逆に、 本実施例の車両用駆動装置 1 0 0 0は、 図 1 4 ( c ) 〜 ( d ) に示すように、 上記軸入力 n e t e と上記軸出力 n v t vとが全く一致 していない場合にも使用可能である。 この場合にも、 第 1 口一夕 1 2 1 0 の回転数を第 2口一夕 1 3 1 0の回転数以上に保つように、 クラッチ部 A での切替えを行うことにより、 前述の減速モードおよび増速モードと同様 に高い効率で軸出力の変換が可能である。 この際、 上記軸入力 n e t eと 上記軸出力 n V t vとの差は、 発電エネルギーとしてバヅテリ 6 0 0に蓄 電されるか、 バッテリ 6 0 0からの電力の供給を受けて電動機として軸出 力に負荷されるかのいずれかである。 As shown in FIGS. 14 (a) and 14 (b), the vehicle drive device 100 of the present embodiment has a shaft input nete to the clutch input shaft 310 and a shaft from the clutch output shaft 312. It can be used even when the output nv t V substantially matches. In this case, the conversion capacity Pn at the rotation speed adjustment unit 1200 and the conversion capacity Pt at the torque adjustment unit 1400 are almost the same, and the engine operating state and the driver's excel command are The farther apart, the larger the two conversion capacities Pn and Pt. Therefore, the shaft output can be converted more efficiently if the engine operation state and the driver's accelerator command are not too far apart. Conversely, the vehicle drive device 100 of the present embodiment has a case where the axis input nete and the axis output nvtv do not match at all, as shown in FIGS. 14 (c) to (d). Can also be used. In this case as well, the above-mentioned deceleration is performed by switching at the clutch section A so that the rotation speed of the first mouth 1 2 1 0 is maintained at or above the second mouth 1 3 10 10 rotation speed. The shaft output can be converted with high efficiency in the same manner as in the mode and the speed-up mode. At this time, the difference between the shaft input nete and the shaft output nVtv is stored in the battery 600 as generated energy, or the shaft output as a motor is provided by receiving power from the battery 600. Either is loaded.
なお、 この様な場合には、 各変換容量 P n , P tの和は大きくなること が多いが、 運転者のアクセル指示に駆動系が追随する過渡的な状態にある と考えられる。 それゆえ、 各変換容量 P n, P tの和は短時間定格である と見なすことができるので、 本実施例の車両用駆動装置 1 0 0 0の容量を 必要以上に大きくする必要はなくなる。  In such a case, the sum of the conversion capacities P n and P t is often large, but it is considered that the drive system follows a driver's accelerator instruction in a transient state. Therefore, since the sum of the conversion capacities Pn and Pt can be regarded as a short-time rating, it is not necessary to increase the capacity of the vehicle drive device 100 of this embodiment more than necessary.
なお、 エンジン 1 0 0の軸出力によって決まるクラツチ入力軸 3 1 0の 回転数と、 運転者のアクセル指示によって決まるクラツチ出力軸 3 1 2の 回転数とがー致する場合には、 図 1 0の四段目に示す直結モードでの運用 が可能である (逆に、 直結モードにしてしまえば、 クラッチ入力軸 3 1 0 の回転数 n eとクラッチ出力軸 3 1 2の回転数 n vとは、 強制的に一致さ せられる) 。 この直結モードでは、 第 1 口一夕ギヤ 3 5 1およびまたは第 2ロー夕ギヤ 3 5 2を介して、 クラッチ入力軸 3 1 0 とクラッチ出力軸 3 1 2 とが機械的に歯車結合されるので、 軸出力の伝達効率は 1 0 0 %近く になる。 そのうえで、 入力トルク t e と出力 トルク t Vとに差があれば、 回転電機部 Bの発電作用で蓄電するか、 回転電機部 Bの電動作用で トルク を補うかすれば良い。  If the rotation speed of the clutch input shaft 310 determined by the shaft output of the engine 100 and the rotation speed of the clutch output shaft 312 determined by the driver's accelerator command match, the following figure is used. It is possible to operate in the direct connection mode shown in the fourth row of (Conversely, if the direct connection mode is set, the rotation speed ne of the clutch input shaft 310 and the rotation speed nv of the clutch output shaft 312 are They are forced to match). In this direct connection mode, the clutch input shaft 310 and the clutch output shaft 3122 are mechanically gear-coupled via the first opening / closing gear 351 and / or the second low gear 352. Therefore, the transmission efficiency of the shaft output is close to 100%. Then, if there is a difference between the input torque t e and the output torque t V, the electric power may be stored by the rotating electric machine B or the torque may be supplemented by the electric acting of the rotating electric machine B.
また、 本実施例の車両用駆動装置 1 0 0 0は、 図 1 0の最下段に示すよ うに、 入力軸切替えクラッチ 3 0 0および出力軸切替えクラツチ 3 5 0を 中立にして、 エンジン 1 0 0 と駆動輪 7 0 0 とを断絶させるアイ ドリング モードでも使用できる。 すなわち、 入力軸切替えクラッチ 3 0 0を中立に することにより、 エンジン 1 0 0をアイ ドリング状態に保ったり、 あるい はエンジン 1 0 0を切り離して駆動輪 7 0 0 との間で軸出力をやり とり し 、 純粋に電動機または発電機として使用したりすることも可能である。 こ の純粋な電動機としての運用モードは、 特にエンジン故障時にも自走を可 能とするので、 有用である。 あるいは、 出力軸切替えクラツチ 3 5 0を中 立にすることにより、 エンジン 1 0 0を始動するス夕一夕電動機として使 用したり、 逆にエンジン 1 0 0により駆動される発電機としての使用も可 能である。 Further, as shown in the lowermost part of FIG. 10, the vehicle drive device 100 of the present embodiment is configured such that the input shaft switching clutch 300 and the output shaft switching clutch 350 are neutral, and the engine 100 It can also be used in the idling mode, where 0 and the drive wheel 700 are cut off. That is, by making the input shaft switching clutch 300 neutral, the engine 100 can be kept in an idling state, or the engine 100 can be disconnected to reduce the shaft output with the drive wheels 700. It can also be used purely as a motor or generator. This mode of operation as a pure motor allows self-propelled operation, especially in the event of engine failure. It is useful because it works. Alternatively, by setting the output shaft switching clutch 350 to neutral, it can be used as a motor for starting the engine 100 overnight or, conversely, as a generator driven by the engine 100. It is also possible.
(実施例 3の効果)  (Effect of Embodiment 3)
以上詳述したように、 本実施例の車両用駆動装置 1 0 0 0によれば、 軸 入力の回転数と軸出力の回転数の大小関係如何にかかわらず、 最良の効率 で軸出力の伝達が可能である。 したがって本実施例によれば、 電気容量お よび磁気容量の必要量が最小限で済むので、 軽量小型の車両用駆動装置 1 0 0 0を比較的安価に提供することが可能になるという効果がある。  As described in detail above, according to the vehicle drive system 100 of the present embodiment, regardless of the magnitude relationship between the number of rotations of the shaft input and the number of rotations of the shaft output, transmission of the shaft output with the best efficiency is possible. Is possible. Therefore, according to the present embodiment, the required amount of electric capacity and magnetic capacity can be minimized, so that it is possible to provide a lightweight and small vehicle drive device 100 at relatively low cost. is there.
また、 本実施例の車両用駆動装置 1 0 0 0は、 軸出力を T一 Sコンパ一 夕として変換して伝達するばかりではなく、 その過程で発電機として作用 させたり電動機として作用させたりすることもできる。 さらに、 出力軸切 替えクラッチ 3 5 0を中立にしてス夕一夕として使用したり、 逆に入力軸 切替えクラッチ 3 0 0を中立にして純粋な電気自動車の駆動電動機として 使用することも可能である。 したがって、 本実施例の車両用駆動装置 1 0 0 0をハイブリ ッ ド型自動車に採用すれば、 トルクコンバ一夕を別に設け る必要がないばかりではなく、 別途クラツチ機構を設ける必要もなくなり 、 極めて簡素かつ安価な電気自動車を提供できるという効果がある。  In addition, the vehicle drive device 100 of the present embodiment not only converts and transmits the shaft output as a T-S converter, but also acts as a generator or an electric motor in the process. You can also. In addition, the output shaft switching clutch 350 can be neutralized to be used for all night, or conversely, the input shaft switching clutch 300 can be neutralized to be used as a drive motor for a pure electric vehicle. is there. Therefore, if the vehicle drive device 100 of this embodiment is adopted in a hybrid vehicle, it is not only unnecessary to provide a separate torque converter but also to provide a separate clutch mechanism, which is extremely simple. In addition, there is an effect that an inexpensive electric vehicle can be provided.
その他にも、 クラッチ部 Aに電磁クラッチを採用していて油圧を必要と しないので、 油圧源のない車両への適用が可能であるばかりではなく、 シ 一ル材等を施さなくても油漏れの恐れがないという効果もある。 それゆえ 、 構成が簡素で部品点数が少なくなり、 小型の車両用駆動装置 1 0 0 0に 好適である。  In addition, since an electromagnetic clutch is used for the clutch part A and does not require hydraulic pressure, it can be applied not only to vehicles without a hydraulic power source, but also to oil leakage without using seal materials. There is also an effect that there is no fear. Therefore, the configuration is simple and the number of parts is reduced, which is suitable for a small vehicle drive device 100.
(実施例 3の変形態様)  (Modification of Example 3)
前述の車両用駆動装置 1 0 0 0に対し、 ステ一夕に界磁磁極 (永久磁石 でも電磁石でもよい) を備え、 第 1 口一夕にも界磁磁極を備えている変形 態様が実施可能である。 本変形態様では、 第 2 ロー夕のステ一夕側および 第 1 ロー夕側にそれぞれロー夕コアおよび口一夕卷線が装備されており、 この各ロー夕卷線への電流制御を行うことで、 実施例 3 と同様の作用をも たらすことができる。 ただし、 第 2ロー夕の容積や慣性モーメン トが増大 するので、 軽量小型の面や価格面および応答性の面では、 本変形態様は実 施例 3に及ばないであろう。 [実施例 4 ] In contrast to the above-described vehicle driving device 100, a modification in which a field pole (either a permanent magnet or an electromagnet) may be provided in the stay and the field pole is provided in the first mouth can be implemented. It is. In this modified embodiment, the row core and the mouth coil are respectively provided on the stay side and the first row side of the second row, and the current control for each row row is performed. Thus, an effect similar to that of the third embodiment can be obtained. However, since the volume and inertia moment of the second row are increased, this modification will not be as good as that of the third embodiment in terms of lightness and small size, price and responsiveness. [Example 4]
(実施例 4の構成)  (Configuration of Example 4)
実施例 4 としての車両用駆動装置 1 0 0 0 ' は、 図 1 5に示すように、 実施例 3の出力軸切替えクラッチ 3 5 0を回転電機部 B ' を挟んで入力軸 切替えクラッチ 3 0 1 と対向する位置に移設し、 出力軸切替えクラッチ 3 0 2 としたものである。 これに伴い、 クラヅチ入力軸 3 1 0 とクラッチ出 力軸 3 1 2とが、 同軸で互いに背向する位置に配設されているので、 本実 施例の車両用駆動装置 1 0 0 0 ' は F R車への搭載に好適となっている。 クラッチ出力軸 3 1 2 と駆動輪 7 0 0 (後輪の二輪) との間には、 差動ギ ャ (図略) が装置されている。 なお、 出力軸切替えクラツチ 3 0 2の各部 品の名称については、 符号の説明の欄に記されており、 実施例 3の出力軸 切替えクラッチ 3 5 0の各部品と一対一に対応している。  As shown in FIG. 15, the vehicle drive device 100 ′ as the fourth embodiment includes an output shaft switching clutch 350 of the third embodiment with the input shaft switching clutch 30 It is relocated to a position opposite to 1 to provide an output shaft switching clutch 302. Accordingly, the clutch input shaft 310 and the clutch output shaft 3122 are coaxially arranged at positions facing each other, so that the vehicle drive device 100 ′ of the present embodiment is provided. Is suitable for mounting on FR vehicles. A differential gear (not shown) is provided between the clutch output shaft 312 and the driving wheels 700 (two rear wheels). The names of the components of the output shaft switching clutch 302 are described in the description of the reference numerals, and correspond one-to-one with the components of the output shaft switching clutch 350 of the third embodiment. .
その他にも、 本実施例の車両用駆動装置 1 0 0 0 ' では、 第 1 口一夕 1 2 1 0の支持部材の形状が実施例 3 と異なっていたり、 第 1 口一夕軸 1 2 1 3が延長されて図中右端で軸受け 1 5 1 6に軸支されていたりする。 ま た、 第 1 口一夕 1 2 1 0および第 2 ロー夕 1 3 1 0の図中右側にも第 1 口 —夕ギヤ 3 5 3および第 2 口一夕ギヤ 3 5 4が付加されていたり、 フレー ム 1 1 0 0 5 の形状が異なっていたり して、 実施例 3 と構成がいく らか異 なってはいる。 しかしながら、 前述のようにクラッチ出力軸 3 1 2が移設 されている点以外に、 構成上の本質的な違いはない。 In addition, in the vehicle driving device 100 ′ of the present embodiment, the shape of the support member of the first mouth 1 210 is different from that of the third embodiment, or the first mouth 1 2 13 is extended and is supported by bearings 15 16 at the right end in the figure. Also, on the right side of 1st mouth 1 2 1 0 and 2nd row 1 3 1 0, the 1st mouth—evening gear 3 5 3 and 2nd mouth 1 night gear 3 5 4 are added. or, with or have different shapes of the frame 1 1 0 0 5, which is made Rakakoto go configuration as in example 3. However, there is no essential difference in configuration except that the clutch output shaft 312 is relocated as described above.
(実施例 4の効果)  (Effect of Embodiment 4)
したがって、 本実施例の車両用駆動装置 1 0 0 0 ' は、 作用の面でも前 述の実施例 3 と同様であり、 プロペラシャフ トの位置に収まるので F R車 に好適である他は、 効果の点でも実施例 3 と同様である。  Therefore, the vehicle drive system 100 ′ of the present embodiment is also similar in operation to the above-described third embodiment, and fits in the propeller shaft position. This is the same as in the third embodiment.
[実施例 5 ]  [Example 5]
(実施例 5の全体構成)  (Overall Configuration of Example 5)
本発明の実施例 5 としての車両用駆動装置 1 0 0 0 Aは、 図 1 6に示す ように、 大きく分けてクラッチ部 A 1 と回転電機部 Bとから構成されてい る。  As shown in FIG. 16, a vehicle drive device 100A as a fifth embodiment of the present invention is roughly composed of a clutch portion A1 and a rotating electric machine portion B.
クラツチ部 A 1は、 互いに平行なクラツチ入力軸 3 1 0, およびクラッ チ出力軸 3 1 2, と、 第 1クラッチ 2 3 3 0、 第 2クラッチ 2 3 4 0、 第 3クラッチ 2 3 7 0および第 4クラッチ 2 3 8 0 とを有する点では、 実施 例 3 とほぼ同様である。 しかしながら、 上記各クラッチ 2 3 3 0 , 2 3 4 0 , 2 3 7 0 , 2 3 8 0は、 電磁クラツチではなく、 全て油圧多板クラッ チである点が実施例 3と異なっている。 The clutch section A1 includes a clutch input shaft 310 and a clutch output shaft 312, which are parallel to each other, a first clutch 2330, a second clutch 2340, and a third clutch 2370. The third embodiment is substantially the same as the third embodiment in having the fourth clutch 2380. However, each of the clutches 2 3 3 0 and 2 3 4 0, 2370 and 2380 are different from the third embodiment in that they are not electromagnetic clutches but all hydraulic multi-plate clutches.
一方、 回転電機部 Bは、 中心部から外側に向かって順に、 第 1口一夕 1 2 1 0、 第 2口一夕 1 3 1 0およびステ一夕 1 4 1 0から構成されており 、 実施例 3の構成と同様である。 なお、 実施例 3の構成を示す図 9では模 式的に作図されていたが、 本実施例の構成を示す図 1 6では写実的に作図 されているというだけで、 本実施例の回転電機部 Bは実施例 3の回転電機 部 Bと同一である。  On the other hand, the rotating electric machine section B is composed of 1st mouth 1 2 1 0, 2nd mouth 1 3 10 and stay 1 1 14 0 in order from the center to the outside. The configuration is the same as that of the third embodiment. Although FIG. 9 showing the configuration of the third embodiment is schematically drawn, in FIG. 16 showing the configuration of the third embodiment, the rotary electric machine according to the present embodiment is merely depicted as being realistic. The part B is the same as the rotating electric machine part B of the third embodiment.
(実施例 5のクラツチ部の構成および作用)  (Structure and operation of the clutch part of the fifth embodiment)
前述のように本実施例のクラッチ部 A 1に採用されているのは、 全て湿 式の油圧多板クラツチであり、 図 1 7に示すように、 各クラッチ 2 3 3 0 , 2 3 4 0 , 2 3 7 0 , 2 3 8 0は互いに同一の構成をとつている。 そこ で、 代表として第 1油圧多板クラッチ 2 3 3 0を例に取り、 その構成およ び作用を以下に詳細に説明する。  As described above, all of the clutch units A1 of the present embodiment employ wet-type hydraulic multi-plate clutches, and as shown in FIG. , 2370 and 2380 have the same configuration. Therefore, the configuration and operation of the first hydraulic multiple disc clutch 233 will be described in detail below as an example.
第 1油圧多板クラッチ 2 3 3 0は、 クラッチァ一マチヤ 2 3 3 1、 クラ ツチ口一夕 2 3 3 2 , イ ンナディスク 2 3 3 3、 ァゥ夕ディスク 2 3 3 5 およびリターンスプリング 2 3 3 7から構成されている。 クラッチァ一マ チヤ 2 3 3 1は、 クラッチ入力軸 3 1 0, に固定されていて、 クラッチ入 力軸 3 1 0 ' と一緒に回転する。 クラッチロー夕 2 3 3 2は、 クラヅチア —マチヤ 2 3 3 1に保持されており、 油路 2 3 3 8, 3 1 0 a, 3 1 0 b を通って供給される油圧により軸長方向にイ ンナディスク 2 3 3 3と共に 押し出される。  The first hydraulic multi-plate clutch 2 3 3 0 includes clutcher mater 2 3 3 1, clutch mouth 2 3 3 2, inner disk 2 3 3 3, inner disk 2 3 3 5 and return spring 2 It is composed of 3 3 7 Clutcher clutch 2 3 3 1 is fixed to clutch input shaft 3 10, and rotates together with clutch input shaft 3 10 ′. Clutch row 2 3 3 2 is held in Croatia-Matja 2 3 3 1, and is moved in the axial direction by hydraulic pressure supplied through oil passages 2 3 3 8, 3 10 a, 3 10 b. Extruded with inner disk 2 3 3 3.
すると、 インナディスク 2 3 3 3と回転自在に軸支されているァゥ夕デ イスク 2 3 3 5とが湿式の多板を介して連軸され、 クラッチ入力軸 3 1 0 ' に加えられた軸入力は、 ァゥ夕ディスク 2 3 3 5に伝達される。 ァゥ夕 ディスク 2 3 3 5の外周面には連結ギヤ 2 3 3 6が形成されており、 連結 ギヤ 2 3 3 6は、 第 1口一夕軸 1 2 1 3に固定されている第 1口一夕ギヤ 3 5 1 と嚙み合っている。 それゆえ、 上記油圧が加えられると、 クラッチ 入力軸 3 1 0, は、 クラッチア一マチヤ 2 3 3 1、 クラッチ口一夕 2 3 3 2、 イ ンナディスク 2 3 3 3、 ァゥ夕ディスク 2 3 3 5および第 1口一夕 ギヤ 3 5 1を介して、 第 1口一夕軸 1 2 1 3に連軸される。 すなわち、 第 1クラッチ 2 3 3 0がオンになる。  Then, the inner disk 2 3 3 3 and the rotatably supported disk 2 3 3 5 were connected to each other via wet multi-plates, and applied to the clutch input shaft 3 10 ′. The shaft input is transmitted to the free disk 2 3 3 5. A connecting gear 2 3 3 6 is formed on the outer peripheral surface of the disk 2 3 3 5, and the connecting gear 2 3 3 6 is fixed to the first opening and closing shaft 1 2 1 3 Mating gear 3 5 1 meshes. Therefore, when the above hydraulic pressure is applied, the clutch input shaft 310, the clutch armature 2 331, the clutch port 2 3 3 2, the inner disk 2 3 3 3, the gear disk 2 3 It is connected to the 1st port overnight shaft 1 2 1 3 via the 3 5 and the 1st port overnight gear 3 5 1. That is, the first clutch 2 330 is turned on.
逆に、 上記油圧が抜けると、 リターンスプリング 2 3 3 7のパネ弾性作 用でイ ンナディスク 2 3 3 3は、 軸長方向に移動して元の位置に戻り、 ィ ンナディスク 2 3 3 3とァゥ夕ディスク 2 3 3 5との連軸は解除される。 すると、 インナディスク 2 3 3 3とァゥ夕ディスク 2 3 3 5との間に滑り が生じ、 クラツチ入力軸 3 1 0 ' と第 1ロー夕軸 t 2 1 3との連軸は解か れる。 すなわち、 第 1クラッチ 2 3 3 0は、 オフになる。 Conversely, when the above oil pressure is released, the return spring 2 3 3 7 As a result, the inner disk 2 3 3 3 moves in the axial direction and returns to the original position, and the linked axis between the inner disk 2 3 3 and the disk 2 3 3 5 is released. Then, a slip occurs between the inner disk 2 3 3 3 and the magnetic disk 2 3 3 5, and the connected axis between the clutch input shaft 3 10 ′ and the first row shaft t 2 13 is released. That is, the first clutch 2 330 is turned off.
以下、 第 2クラッチ 2 3 4 0は、 第 2ロー夕軸 1 3 1 3に連軸される点 を除いて第 1クラッチ 2 3 3 0と同一の構成および作用を持っている。 同 様に、 クラッチ入力軸 3 1 0 ' に代わってクラッチ出力軸 3 1 2, に連軸 される点を除いて、 第 3クラヅチ 2 3 7 0は第 1クラッチ 2 3 3 0と同一 構成であり、 第 4クラッチ 2 3 8 0は第 2クラッチ 2 34 0と同一構成で ある。 なお、 各クラッチ 2 3 3 0, 2 34 0, 2 3 7 0 , 2 3 8 0の各部 品は、 一対一に対応していて互換性があり、 各部品の名称は符号の後記の 説明の項で明らかにされている。 また、 オイルシール 2 3 3 9, 2 34 9 が要所に配設されていて、 油圧漏れを防いでいる。  Hereinafter, the second clutch 2340 has the same configuration and operation as the first clutch 2330 except that it is connected to the second low shaft 1313. Similarly, the third clutch 2370 has the same configuration as the first clutch 2330 except that the clutch input shaft 3110 'is connected to the clutch output shaft 312,2 instead of the clutch input shaft 3110'. The fourth clutch 2380 has the same configuration as the second clutch 2340. The parts of each clutch 2330, 2340, 2370, and 2380 are in a one-to-one correspondence and are interchangeable. Section. In addition, oil seals 2339 and 2349 are provided at important points to prevent hydraulic leakage.
以上の構成から明らかなように、 第 1クラッチ 2 3 3 0および第 2クラ ツチ 2 3 40からなる入力軸切替えクラツチ 2 3 ◦ 0は、 いすれの口一夕 軸とも連軸していない中立位置をも取りうる。 同様に、 第 3クラッチ 2 3 7 0および第 4クラッチ 2 3 8 0からなる出力軸切替えクラッチ 2 3 5 0 もまた、 中立の位置を取りうる。  As is evident from the above configuration, the input shaft switching clutch 23 3 ◦ 0 comprising the first clutch 2 330 and the second clutch 2 340 is a neutral Can also take a position. Similarly, the output shaft switching clutch 230 comprising the third clutch 230 and the fourth clutch 230 can also assume the neutral position.
したがって、 本実施例の各油圧多板クラッチ 2 3 3 0 , 2 3 4 0 , 2 3 Therefore, each hydraulic multi-plate clutch 2 3 3 0, 2 3 4 0, 2 3
7 0, 2 3 8 0は、 実施例 3の電磁クラッチ 3 3 0 , 34 0, 3 7 0 , 370, 2380 is the electromagnetic clutch 330, 340, 370, 3 of the third embodiment.
8 0と同様の連軸作用を発揮する。 ただし、 実施例 3の電磁クラッチとは 異なり、 本実施例の上記油圧クラッチは、 クラッチをオンにする瞬間にだ け油圧エネルギーが消費され、 クラッチをオンに保持するのに油圧エネル ギーをほとんど消費することがない。 また、 各クラッチ 2 3 3 0, 2 34 0 , 2 3 7 0, 2 3 8 0は、 油圧多板クラツチであるから、 適正なセンサ と油圧制御手段を用いれば、 半クラツチ状態を作り出すことができる。 Exhibits the same interlocking action as 80. However, unlike the electromagnetic clutch of the third embodiment, the hydraulic clutch of the present embodiment consumes hydraulic energy only at the moment of turning on the clutch, and almost consumes hydraulic energy to keep the clutch on. Never do. Also, since each clutch 2330, 2340, 2370, and 2380 is a hydraulic multi-plate clutch, a half-clutch state can be created by using appropriate sensors and hydraulic control means. it can.
(実施例 5の効果)  (Effect of Embodiment 5)
以上詳述したように、 本実施例の車両用駆動装置 1 0 0 0 Aは、 実施例 3と同様の効果を発揮することができる。  As described in detail above, the vehicle drive device 100 A of the present embodiment can exhibit the same effects as those of the third embodiment.
そのうえ、 前述のように上記各クラツチのオン状態を維持するために油 圧エネルギーをほとんど消費しないので、 クラッチ部 A 1で消費されるェ ネルギ一が少なく、 その分効率が向上しているという長所もある。 また、 実施例 3の電磁クラツチに替えて油圧多板クラツチを使用しているので、 大出力の伝達に適するという利点もあり、 本実施例の車両用駆動装置 1 0 0 0 Aは大出力化に好適である。 その一方で、 油圧多板クラッチの採用に より、 実施例 3よりもクラッチ部の容積を低減できるので、 小型軽量化が 可能であるという効果もある。 In addition, as described above, the hydraulic energy is hardly consumed to maintain the above-mentioned clutches in the on state, so that less energy is consumed in the clutch section A 1 and the efficiency is improved accordingly. There is also. Also, Since the hydraulic multi-plate clutch is used instead of the electromagnetic clutch of the third embodiment, there is also an advantage that it is suitable for transmitting a large output, and the vehicle drive device 100 A of this embodiment is suitable for increasing the output. It is. On the other hand, the adoption of the hydraulic multi-plate clutch can reduce the volume of the clutch portion as compared with the third embodiment, so that there is also an effect that the size and weight can be reduced.
さらに、 各クラッチ 2 3 3 0, 2 3 4 0 , 2 3 7 0 , 2 3 8 0は、 適正 な油圧制御により半クラツチ状態を取ることができるので、 クラツチ接合 時の衝撃荷重を大幅に緩和することができる。 その結果、 クラッチ部 A 1 および回転電機部 Bの機械強度に対する要求が緩和されているので、 本実 施例の車両用駆動装置 1 0 0 0 Aを、 よりいつそう軽量小型かつ安価に製 造することができるという効果もある。 また、 同じ理由により、 大出力化 が容易になるという効果もある。  In addition, each clutch 2330, 2340, 2370, and 2380 can take a half-clutch state by proper hydraulic control, greatly reducing the impact load during clutch connection. can do. As a result, the requirements for the mechanical strength of the clutch portion A 1 and the rotating electric machine portion B have been relaxed, so that the vehicle drive device 100 A of the present embodiment can be manufactured even more lightweight, compact and inexpensively. There is also an effect that can be done. Also, for the same reason, there is an effect that it is easy to increase the output.
[実施例 6 ]  [Example 6]
(実施例 6の構成)  (Configuration of Example 6)
本発明の実施例 6としての車両用駆動装置 1 0 0 0 Bは、 図 1 8に示す ように、 大きく分けてクラッチ部 A 2と回転電機部 Bとから構成されてい る。  As shown in FIG. 18, the vehicle drive device 100B as the sixth embodiment of the present invention is roughly composed of a clutch portion A2 and a rotating electric machine portion B.
回転電機部 Bは、 中心部から外側に向かって順に、 第 1口一夕 1 2 1 0 、 第 2口一夕 1 3 1 0およびステ一夕 1 4 1 0から構成されており、 実施 例 5の回転電機部 Bと同一である。  The rotating electric machine part B is composed of 1st mouth 1 210, 2nd mouth 1 3 10 and stay 1 14 10 in order from the center to the outside. It is the same as the rotating electric machine part B of No. 5.
一方、 クラツチ部 A 2は、 図 1 9に示すように、 互いに平行なクラツチ 入力軸 3 1 0 " およびクラッチ出力軸 3 1 2 " と、 入力軸切替えクラッチ 3 3 3 0および出力軸切替えクラツチ 3 3 7 0とを有する点では、 実施例 5とほぼ同様である。 また、 入力軸切替えクラッチ 3 3 3 0および出力軸 切替えクラッチ 3 3 7 0は、 いずれも湿式の油圧多板クラッチである点も 実施例 5と同様である。 しかし、 両クラッチ 3 3 3 0 , 3 3 7 0は、 第 1 クラッチおよび第 2クラッチと第 3クラッチおよび第 4クラッチとに分割 されておらず、 それぞれ一体化されている点が実施例 5とは相違している 前述のように本実施例のクラッチ部 A 2に採用されているのは、 入力軸 切替えクラッチ 3 3 3 0および出力軸切替えクラッチ 3 3 7 0とも、 一体 化された湿式油圧多板クラツチである。 入力軸切替えクラッチ 3 3 3 0と 出力軸切替えクラッチ 3 3 7 0とは、 クラッチ入力軸 3 1 0" とクラッチ 出力軸 3 1 2" とが異なるだけで、 その他の構成は同様である。 そこで、 ここでは代表として入力軸切替えクラツチ 3 3 3 0を取り上げ、 以下にそ の構成を詳細に説明する。 On the other hand, as shown in FIG. 19, the clutch section A 2 includes a clutch input shaft 3 10 "and a clutch output shaft 3 1 2" which are parallel to each other, an input shaft switching clutch 3 3 3 0 and an output shaft switching clutch 3. The third embodiment is almost the same as the fifth embodiment. Further, the input shaft switching clutch 3330 and the output shaft switching clutch 3370 are both the same as in the fifth embodiment in that they are both wet hydraulic multi-plate clutches. However, the two clutches 3330 and 3370 are not divided into the first clutch and the second clutch, and the third clutch and the fourth clutch, and they are integrated with each other, As described above, the clutch unit A2 of the present embodiment employs an integrated wet-hydraulic hydraulic clutch for both the input shaft switching clutch 3330 and the output shaft switching clutch 3370. It is a multi-plate clutch. Input shaft switching clutch 3 3 3 0 and output shaft switching clutch 3 3 7 0 are clutch input shaft 3 1 0 "and clutch The other configuration is the same except for the output shaft 3 1 2 ". Therefore, here, the input shaft switching clutch 3330 will be taken as a representative, and the configuration will be described in detail below.
入力軸切替えクラッチ 3 3 3 0は、 クラッチァ一マチヤ 3 3 3 1、 クラ ツチ口一夕 3 3 3 2、 イ ンナディスク 3 3 3 3 a, 3 3 3 3 b、 ァゥ夕デ イスク 3 3 3 5 a, 3 3 3 5 bおよびギヤ 3 3 3 6, 3 3 4 6から構成さ れている。 クラヅチア一マチヤ 3 3 3 1は、 クラツチ入力軸 3 1 0 " に固 定されており、 クラッチ入力軸 3 1 0" により回転駆動される。  Input shaft switching clutch 3 3 3 0, clutcher clutch 3 3 3 1, clutch mouth 3 3 3 2, inner disk 3 3 3 3a, 3 3 3 3b, free disk 3 3 It consists of 35a, 3335b, and gears 3336, 3336. The clutch 1 3 3 1 is fixed to the clutch input shaft 3 10 ", and is driven to rotate by the clutch input shaft 3 10".
クラツチ入力軸 3 1 0 " およびクラッチア一マチヤ 3 3 3 1には、 油路 3 1 0 e, 3 1 0 f , 3 3 3 0 aが形成されており、 外部からの油圧は同 油路を通ってクラツチ口一夕 3 3 3 2の背面側に導入される。 同油圧が入 力軸切替えクラッチ 3 3 3 0に導入されると、 クラッチ口一夕 3 3 3 2は 軸長方向 (図中右方) に油圧で押し出されて移動し、 インナディスク 3 3 3 3 bを同方向に押し出してァゥ夕ディスク 3 3 3 5 bに当接させる。 す ると、 イ ンナディスク 3 3 3 3 bとギヤ 3 34 6に固定保持されているァ ウタディスク 3 3 3 5 bとは、 湿式の多板同士で当接し合い互いに連軸さ れる。  The clutch input shaft 310 "and the clutch armature 3331 have oil passages 3110e, 310f, and 33330a, and hydraulic pressure from the outside passes through the oil passages. Through the clutch opening 3 3 3 2. When the same oil pressure is introduced into the input shaft switching clutch 3 3 3 0, the clutch opening 3 3 3 2 moves in the axial direction (Fig. The inner disk 3 3 3 3b is extruded in the same direction by hydraulic pressure and moves in the same direction to contact the inner disk 3 3 3 5b. The wet discs 3 3 35 b are fixedly held by the gear 3 b and the gear 3346, and the wet multi-plates abut against each other and are connected to each other.
この状態では、 クラッチ入力軸 3 1 0 " は、 クラッチァ一マチヤ 3 3 3 1、 クラッチ口一夕 3 3 3 2、 インナディスク 3 3 3 3 b、 ァゥ夕デイス ク 3 3 3 5 b、 ギヤ 3 3 4 6および第 2口一夕ギヤ 3 5 2を順に介して、 第 2口一夕軸 1 3 1 3に連軸されている。 すなわち、 クラッチ入力軸 3 1 0" と第 2ロー夕 1 3 1 0とが連軸されている。  In this state, the clutch input shaft 3 10 "is connected to the clutch mater 3 3 3 1, the clutch port 3 3 3 2, the inner disk 3 3 3 3b, the gear disk 3 3 3 5 b, the gear It is connected to the 2nd port shaft 1 3 13 via the 3 3 4 6 and the 2nd port overnight gear 3 52 in order. That is, the clutch input shaft 3 10 "and the 2nd lowway gear 1 310 is connected to the axis.
逆に上記油圧が抜けると、 クラッチァ一マチヤ 3 3 3 1に固定されて圧 縮されていたリターンスプリ ング 3 3 3 7の反発力により、 クラッチ口一 夕 3 3 3 2は先ほどとは逆方向 (図中左方) に移動して元の位置に復帰す る。 その際、 クラッチ口一夕 3 3 3 2の外周部は図中左方に延在しており 、 この外周部でクラッチ口一夕 3 3 3 2は、 もう一つのインナディスク 3 3 3 3 aを軸長方向 (図中左方) に押圧して移動させ、 インナディスク 3 3 3 3 aをァゥ夕ディスク 3 3 3 5 aに当接させる。 すると、 イ ンナディ スク 3 3 3 3 aとギヤ 3 3 3 6に固定保持されているァゥ夕ディスク 3 3 3 5 aとは、 湿式の多板同士で当接し合い互いに連軸される。  Conversely, when the above oil pressure is released, the clutch spring mat 33 3 3 2 is fixed to the clutch spring 3 3 3 1 and the rebound force of the compressed return spring 3 3 3 7 causes the clutch opening 3 3 3 2 to move in the opposite direction to the previous direction. (Left side in the figure) and return to the original position. At this time, the outer peripheral portion of the clutch opening 3 3 3 2 extends to the left in the figure, and the clutch opening 3 3 3 2 is connected to another inner disk 3 3 3 3 a at this outer peripheral portion. Is pressed in the axial direction (to the left in the figure) to move it, and the inner disc 3 3 3 3 a is brought into contact with the outer disc 3 3 3 5 a. Then, the inner disk 33 33 a and the disk 33 33 35 a fixedly held by the gear 33 33 abut against each other by wet multi-plates and are connected to each other.
この状態では、 クラッチ入力軸 3 1 0 " は、 クラッチァ一マチヤ 3 3 3 1、 クラッチ口一夕 3 3 3 2、 イ ンナディスク 3 3 3 3 a、 ァゥ夕デイス ク 3 3 3 5 a、 ギヤ 3 3 3 6および第 1口一夕ギヤ 3 5 1を順に介して、 第 1ロー夕軸 1 2 1 3に連軸されている。 すなわち、 クラッチ入力軸 3 1 0 " と第 1ロー夕 1 2 1 0とが連軸されている。 In this state, the clutch input shaft 3 10 "is connected to the clutch mater 3 3 3 1, the clutch port 3 3 3 2, the inner disk 3 3 3 3 a, and the The shaft is connected to the first low shaft 1 2 13 via the gear 3 3 3 5 a, the gear 3 3 3 6 and the first opening and closing gear 3 5 1 in this order. That is, the clutch input shaft 3 10 "and the first low speed 1 210 are connected.
以上の構成の入力軸切替えクラツチ 3 3 3 0では、 第 1口一夕 1 2 1 0 および第 2口一夕 1 3 1 0のうちいずれか一方に連軸状態にすることと、 半クラツチ状態にすることはできるが、 通常の油圧制御では中立状態にす ることは難しい。 ただし、 クラッチ口一夕 3 3 3 2の位置を検出するセン サを装備するなどして特別の油圧制御系を用いれば、 中立状態を保つこと も可能になる。 出力軸切替えクラッチ 3 3 7 0は、 クラッチ入力軸 3 1 0 " に代わってクラツチ出力軸 3 1 2 " が配設されている点だけが異なつ ているだけで、 その他の点では入力軸切替えクラツチ 3 3 3 0と同一であ る。 それゆえ、 入力軸切替えクラッチ 3 3 3 0と出力軸切替えクラツチ 3 3 7 0との間で部品の互換性もある。 なお、 出力軸切替えクラッチ 3 3 7 0の各部品の符号と名称とについては、 後記の符号の説明の欄で明らかに されている。  With the input shaft switching clutch 3 3 3 0 having the above configuration, one of the first port 1 2 1 0 1 and the 2 1 However, it is difficult to achieve a neutral state with normal hydraulic control. However, if a special hydraulic control system is used, such as by installing a sensor that detects the position of the clutch opening 3 3 3 2, the neutral state can be maintained. The output shaft switching clutch 3 3 7 0 is different only in that the clutch output shaft 3 1 2 "is provided in place of the clutch input shaft 3 1 0". It is the same as the clutch 3330. Therefore, parts are interchangeable between the input shaft switching clutch 3330 and the output shaft switching clutch 3370. Note that the reference numerals and names of the components of the output shaft switching clutch 3370 are clarified in the description of reference numerals below.
(実施例 6の効果)  (Effect of Embodiment 6)
以上詳述したように、 本実施例の車両用駆動装置 1 0 0 0 Bによれば、 実施例 5と同様の作用効果が得られる。  As described in detail above, according to the vehicle drive device 100 B of the present embodiment, the same operational effects as those of the fifth embodiment can be obtained.
さらに、 図 1 6と図 1 8とを見比べれば明らかなように、 クラツチ部 A 2の軸長方向の長さは実施例 5のそれよりも短く、 部品点数も減っている 。 従って、 本実施例の車両用駆動装置 1 0 0 0 Bによれば、 実施例 5より もいっそうの小型軽量化および低廉化が可能であるという効果もある。  Further, as apparent from comparison between FIG. 16 and FIG. 18, the axial length of the clutch portion A2 is shorter than that of the fifth embodiment, and the number of parts is also reduced. Therefore, according to the vehicle drive device 100 B of the present embodiment, there is also an effect that the size, weight, and cost can be further reduced as compared with the fifth embodiment.
[実施例 7 ]  [Example 7]
(実施例 7の要部構成)  (Main part configuration of Example 7)
図 2 0及び図 2 1に示すように、 第 1 ロー夕 1 2 1 0は、 回転軸として の入力軸 1 2 1 3と、 入力軸 1 2 1 3の周囲に軸長方向に積層された多数 枚の電磁鋼板からなる口一夕コア 1 2 1 2と、 ロー夕コア 1 2 1 2に卷装 されている口一夕卷線 1 2 1 1 とから、 構成されている。  As shown in Figs. 20 and 21, the first rotor 1 2 1 0 is laminated in the axial direction around the input shaft 1 2 13 and the input shaft 1 2 13 as a rotating shaft. It is composed of a porcelain core 1 2 1 2 composed of a large number of magnetic steel sheets, and a porcelain coil 1 2 1 1 wound around a roa core 1 2 1 2.
ロー夕コア 1 2 1 2は、 入力軸 1 2 1 3と同軸に配設されリ ング状に形 成されている継鉄部 1 2 1 2 cと、 継鉄部 1 2 1 2 cから遠心方向に突出 している複数の外周歯部 1 2 1 2 dと、 継鉄部 1 2 1 2 cから求心方向に 突出している複数の内周歯部 1 2 1 2 eとからなる。 内周歯部 1 2 1 2 e と外周歯部 1 2 1 2 dとはそれぞれ 3 6本で同数あり、 周方向等間隔に配 2 The rouge core 1 2 1 2 is arranged coaxially with the input shaft 1 2 1 3 and has a ring-shaped yoke 1 2 1 2 c and a centrifuge from the yoke 1 2 1 2 c It comprises a plurality of outer peripheral teeth 1 2 12 d protruding in the direction, and a plurality of inner peripheral teeth 1 2 12 e protruding in the centripetal direction from the yoke 1 2 12 c. The inner teeth 1 2 1 2 e and the outer teeth 1 2 1 2 d have the same number of 36 each, and are equally spaced in the circumferential direction. Two
44  44
設されていて互いに同一半径線上に配設されている。 And are arranged on the same radius line with each other.
すなわち、 各内周歯部 1 2 1 2 eと各外周歯部 1 2 1 2 dとは、 継鉄部 1 2 1 2 cを挟んで互いに背向して継鉄部 1 2 1 2 cから突出している。 それゆえ、 互いに隣り合う外周歯部 1 2 1 2 dの間に形成されている外周 スロッ ト 1 2 1 2 aと、 互いに隣り合う内周歯部 1 2 1 2 eの間に形成さ れている内周スロヅ ト 1 2 1 2 bとは、 周方向に同一の位置にある。  That is, each inner peripheral tooth portion 1 2 1 2 e and each outer peripheral tooth portion 1 2 1 2 d are opposed to each other with the yoke portion It is protruding. Therefore, the outer peripheral slot 1 2 12 a formed between the adjacent outer peripheral teeth 1 2 1 2 d and the inner peripheral tooth 1 2 1 2 e formed adjacent to each other is formed. Is located at the same position in the circumferential direction.
口一夕卷線 1 2 1 1は、 外周スロッ ト 1 2 1 2 aおよび内周スロッ ト 1 2 1 2 bを通り、 円筒体状の継鉄部 1 2 1 2 cの周囲を巡ってロー夕コア 1 2 1 2に巻装されている。 口一夕卷線 1 2 1 1は、 U, V, Wの三相の 巻線からなり、 三相が周方向に順に口一夕コア 1 2 1 2に巻装されている すなわち、 図 2 0に示すように、 口一夕卷線 1 2 1 1は、 ロー夕コア 1 2 1 2の継鉄部 1 2 1 2 cに集中巻きで巻かれており、 外周スロッ ト 1 2 1 2 a内および内周スロッ 卜 1 2 1 2 b内で軸長方向に延在している。 また、 ロー夕コア 1 2 1 2および口一夕卷線 1 2 1 1だけを図 2 2に示 すように、 外周スロッ ト 1 2 1 2 aの中の口一夕卷線 1 2 1 1 と、 内周ス ロッ ト 1 2 1 2 bの中のロー夕卷線 1 2 1 1 とは、 軸長方向の両端部で互 いに連続している。 それゆえ、 図 2 2に示すように、 ロー夕卷線 1 2 1 1 は上記両端部では半径方向に延在しているように見える。  The wrap-around wire 1 2 1 1 passes through the outer slot 1 2 1 2a and the inner slot 1 2 1 2b and passes around the cylindrical yoke 1 2 1 2c. Evening core 1 2 1 2 The mouth-to-mouth winding wire 1 2 1 1 is composed of three-phase windings of U, V, and W, and the three phases are wound around the mouth-to-night core 1 2 1 2 in the circumferential direction. As shown in Fig. 0, the mouth-to-mouth winding line 1 2 1 1 is wound around the yoke section 1 2 1 2 c of the rowing core 1 2 1 2 in a concentrated winding, and the outer peripheral slot 1 2 1 2 a It extends in the axial length direction inside and inside the inner slot 1 2 1 2b. In addition, as shown in Fig. 22, only the low-speed core 1 2 1 2 and the high-speed coil 1 2 1 1 are connected to the high-speed coil 1 2 1 1 in the outer slot 1 2 1 2a. And the row winding 1 2 1 1 in the inner slot 1 2 1 2 b are continuous with each other at both ends in the axial direction. Therefore, as shown in FIG. 22, the row windings 1 2 1 1 appear to extend in the radial direction at the both ends.
なお、 再び図 2 1に示すように、 第 1口一夕 1 2 1 0のロー夕コア 1 2 1 2の外周歯部 1 2 1 2 dの周方向の幅は、 内周歯部 1 2 1 2 eの周方向 の幅よりも広く形成されている。 換言すると、 内周歯部 1 2 1 2 eは、 周 方向の幅が極端に狭く形成されており、 できるだけ周方向に幅が広い内周 スロッ ト 1 2 1 2 bを形成している。  As shown in FIG. 21 again, the circumferential width of the outer teeth 1 2 1 2 d of the low core 1 2 1 2 of the first mouth 1 2 1 0 1 is set to the inner teeth 1 2 It is formed wider than the circumferential width of 12e. In other words, the inner peripheral tooth portion 1212e has an extremely narrow circumferential width and forms an inner peripheral slot 1212b that is as wide as possible in the circumferential direction.
(実施例 7の作用)  (Operation of Embodiment 7)
本実施例の車両用駆動装置 1 0 0 0は、 以上のように構成されているの で、 エンジン 1 0 0の軸出力を駆動輪 7 0 0に伝達し適宜に軸出力を増し たり発電したりする車両用駆動装置 1 0 0 0として、 以下のような作用を 発揮する。  Since the vehicle drive device 100 of the present embodiment is configured as described above, the shaft output of the engine 100 is transmitted to the drive wheels 700 to appropriately increase the shaft output or generate power. The following functions are exhibited as the vehicle drive device 1000 that is torn down.
先ず、 エンジン 1 0 0の軸出力 (すなわち入力軸 1 2 1 3への入力) が 回転数 2 n [ r p m] x トルク t [Nm] であり、 第 2口一夕 1 3 1 0か らの軸出力を回転数 n [ r pm] x トルク 2 t [Nm] に変換したい場合 を想定する。 この場合、 第 1口一夕 1 2 1 0から第 2口一夕 1 3 1 0へ軸 出力が変換されるにあたり、 回転数調整部 1 2 0 0では発電作用が行われ 、 逆に トルク調整部 1 4 0 0では電動作用が行われて、 軸出力の変換 ( ト ルクコンパ一ト) が行われる。 First, the shaft output of the engine 100 (ie, the input to the input shaft 1 2 13) is the number of revolutions 2 n [rpm] x the torque t [Nm]. Suppose that you want to convert the shaft output to rotation speed n [rpm] x torque 2 t [Nm]. In this case, the axis from 1st mouth 1 2 1 0 to 2nd mouth 1 3 1 0 When the output is converted, a power generation operation is performed in the rotation speed adjustment unit 1200, and conversely, an electric operation is performed in the torque adjustment unit 1400, and conversion of the shaft output (torque conversion) is performed. Done.
すなわち、 第 1口一夕 1 2 1 0が回転数 2 nで回転しているのに対し、 第 2ロー夕 1 3 1 0は回転数 nでしか回転していないので、 第 1 ロー夕 1 2 1 0は第 2口一夕 1 3 1 0から制動作用を受けていることになる。 その 際、 第 1口一夕 1 2 1 0に加えられている軸出力のトルクは tでしかない から、 第 1口一夕 1 2 1 0から第 2ロー夕 1 3 1 0へのトルク伝達量は t に限定される。 したがって、 以下の説明では簡単化のために電磁気的な損 失を無視して考えると、 第 1ロー夕 1 2 1 0では回転数 ( 2 n— n = n) X トルク t =エネルギー n tの発電が行われる。 言い換えると、 E CU 5 0 0は、 ィンバ一夕 2 0 0を制御して第 1 口一夕 1 2 1 0にエネルギー n tだけの発電を行わせる。  In other words, while the first mouth 1 2 1 0 is rotating at the rotation speed 2 n, the second row 1 3 1 0 is rotating only at the rotation speed n, 210 is under braking from the second mouth 1310. At this time, since the torque of the shaft output applied to the first port 1 210 is only t, the torque is transmitted from the first port 1 210 to the second row 1 310 The quantity is limited to t. Therefore, in the following description, ignoring the electromagnetic loss for the sake of simplicity, the first row 1 2 1 0 will generate a rotation speed (2n—n = n) X torque t = energy nt Is performed. In other words, the ECU 500 controls the inverter 200 to cause the first mouth 1210 to generate power of n t only.
第 1口一夕 1 2 1 0で発電された電気エネルギー n tは、 イ ンバー夕 2 0 0を介して、 二つのイ ンバ一夕 2 0 0 , 4 0 0、 ノ ソテリ 6 0 0および E CU 5 0 0からなる外部回路に導入される。 そして、 上記電気工ネルギ 一 n tは、 同外部回路からィンバ一夕 4 0 0を介してステ一夕 1 4 1 0に 供給され、 トルク調整部 1 4 0 0での電動作用により第 2口一夕 1 3 1 0 に対して トルク tを及ぼす。 言い換えると、 E C U 5 0 0は、 イ ンバー夕 4 0 0を制御してステ一夕 1 4 1 0の回転磁界を形成し、 回転数 nで回転 している第 2ロータ 1 3 1 0に対して回転方向に トルク tを加える。 こ こで、 前述のようなィンバ一夕 2 0 0 , 4 0 0の制御は、 回転角センサ 1 9 1 1 , 1 9 1 2による第 1ロー夕 1 2 1 0および第 2口一夕 1 3 1 0の それぞれの回転角の測定値に基づいて行われる。 すなわち、 E CU 5 0 0 で両回転角に基づいて適正な界磁制御計算が行われ、 インバー夕 2 0 0 , 4 0 0に対して、 第 1口一夕 1 2 1 0および第 2口一夕 1 3 1 0への通電 夕イ ミングが適正に指示される。  The electric energy nt generated at 1st day 1 2 1 0 is passed through the 2nd night 2 0 0, 2 nights 2 0 0, 4 0 0 It is introduced into an external circuit consisting of 500. The electric work energy is supplied to the station 140 from the external circuit via the electromagnetic circuit 400, and the electric motor is operated by the torque adjusting unit 140 so that the second electric motor is driven. In the evening, a torque t is applied to 130. In other words, the ECU 500 controls the inverter 400 to form a rotating magnetic field of 140 1 and controls the second rotor 13 10 rotating at the rotation speed n. And apply a torque t in the rotation direction. Here, the above-mentioned control of the sensors 200 and 400 is performed by the rotation angle sensors 1911 and 1912 in the first row 1 2 1 0 and the second port 1 2 This is performed based on the measured values of the respective rotation angles of 310. That is, an appropriate field control calculation is performed by the ECU 500 based on the two rotation angles, and the first and second ports 1 2 1 0 and 2 1 1 3 1 0 Energization Evening is properly instructed.
その結果、 回転数 nで回転している第 2口一夕 1 3 1 0に対し、 第 1口 —夕 1 2 1 0からの トルク t とステ一夕 1 4 1 0からのトルク t とで、 合 計 2 tの トルクが回転方向にかかる。 したがって、 第 1ロー夕 1 2 1 0の 軸入力 2 n t (回転数 2 n x トルク t ) は、 第 2口一夕 1 3 1 0の軸出力 2 n t (回転数 n X トルク 2 t ) に減速変換される。  As a result, for the second mouth 1 3 1 0 rotating at the rotation speed n, the 1st mouth-the torque t from the evening 1 210 and the torque t from the stay 1 4 1 0 , And a total torque of 2 t is applied in the rotation direction. Therefore, the shaft input 2 nt (rotation speed 2 nx torque t) of the first rotor 1 2 1 0 is reduced to the shaft output 2 nt (rotation speed n X torque 2 t) of the second port 1 310 Is converted.
次に、 先ほどとは逆に、 エンジン 1 0 0の軸出力 (すなわち入力軸 1 2 1 3への入力) が回転数 n [ r pm] x トルク 2 t [Nm] であり、 第 2 口一夕 1 3 1 0からの軸出力を回転数 2 n [ r p m] x トルク t [Nm] に変換したい場合を想定する。 この場合、 第 1口一夕 1 2 1 0から第 2口 一夕 1 3 10へ軸出力が変換されるにあたり、 回転数調整部 1 200では 電動作用が行われ、 逆に トルク調整部 1400では発電作用が行われて、 軸出力の変換が行われる。 Next, on the contrary, the shaft output of the engine 100 (that is, the input shaft 1 2 1 3) is the rotation speed n [rpm] x torque 2 t [Nm], and the shaft output from the second mouth 1 3 10 is the rotation speed 2 n [rpm] x torque t [Nm Suppose you want to convert to]. In this case, when the shaft output is converted from the first mouth 1 2 10 to the 2 1 mouth 1 3 10 the motor operation is performed in the rotation speed adjustment unit 1200, and conversely, the torque adjustment unit 1400 The power generation is performed and the shaft output is converted.
すなわち、 第 1ロー夕 1 2 1 0が回転数 nで回転しているのに対し、 第 2ロー夕 13 1 0は回転数 2 nで回転するので、 第 1口一夕 1 2 1 0は第 2口一夕 1 3 1 0を加速する方向に電動作用を及ぼすことになる。 その際 、 第 1口一夕 1 2 1 0に加えられている軸出力の トルクは 2 tであるから 、 この トルクを吸収するためには第 1口一夕 1 2 1 0から第 2ロー夕 1 3 1 0への トルク伝達量は 2 tでなければならない。 したがって、 第 1口一 夕 1 2 1 0では回転数 ( 2 n— n = n) x トルク 2 t =エネルギー 2 n t の電動作用が行われる。 言い換えると、 E CU 500は、 ィンバ一夕 20 0を制御して第 1口一夕 1 2 1 0にエネルギー 2 n tもの電動作用を行わ せる。  In other words, while the first row 1 2 1 0 rotates at the rotation speed n, the 2nd row 1310 rotates at the rotation speed 2 n, so the first mouth 1 2 1 0 The second mouth will have an electric action in the direction of accelerating 1 310. At this time, since the torque of the shaft output applied to the first mouth 1 210 is 2 t, in order to absorb this torque, the second mouth 1 2 1 The torque transmission to 1 310 must be 2 t. Therefore, in the first mouth 1 2 1 0, the motor action of rotation speed (2n-n = n) x torque 2t = energy 2nt is performed. In other words, the ECU 500 controls the inverter 200 to make the first mouth 1 210 perform an electric operation with an energy of 2 nt.
第 1口一夕 1 2 1 0での電動作用に要する電気工ネルギ一 2 n tは、 ィ ンバ一夕 200を介して、 上記外部回路から供給される。 そして、 上記電 気エネルギー 2 n tは、 同外部回路ヘインバ一夕 400を介してステ一夕 14 1 0から供給されている。 すなわち、 ステ一夕 14 1 ◦は、 ステ一夕 14 1 0を含む トルク調整部 1400での発電作用により、 回転数 2 nで 回転している第 2口一夕 1 3 1 0に対して トルク tの制動を及ぼす。 言い 換えると、 E CU 500は、 イ ンバー夕 400を制御してステ一夕 14 1 0の回転磁界を形成し、 回転数 2 nで回転している第 2口一夕 1 3 1 0に 対して回転方向とは逆方向に トルク tを加えて、 ステ一夕 14 1 0で発電 を行わせる。  The electric energy required for the electric operation in the first mouth 1 210 is supplied from the external circuit through the inverter 200. The electric energy 2 nt is supplied from the station 1410 via the external circuit 400 to the external circuit. In other words, the stay 14 1 ◦ includes the stay 14 10, and the torque is generated by the torque adjusting unit 1400. exerts t braking. In other words, the ECU 500 controls the inverter 400 to form a rotating magnetic field of 1410 a day, and generates a rotating magnetic field of 1100 a second mouth 1310 rotating at a rotation speed of 2 n. A torque t is applied in the direction opposite to the rotating direction, and power is generated at station 1410.
その結果、 回転数 2 nで回転している第 2口一夕 1 3 1 0に対し、 第 1 ロータ 1 2 1 0から加わる トルク 2 tと、 ステ一夕 14 1 0から加わる制 動トルク tとの差で、 結局 tの トルクが回転方向にかかる。 従って、 第 1 口一夕 1 2 1 0の軸入力 2 n t (回転数 n x トルク 2 t ) は、 第 2ロー夕 1 3 1 0の軸出力 2 n t (回転数 2 n x トルク t ) に増速変換される。 この増速変換と前述の減速変換とを比較すると、 この増速変換では外部 回路を介して伝達される電気工ネルギ一は 2 n tであり、 前述の減速変換 において外部回路を介して伝達される電気エネルギー n tに比べて倍と大 きい。 それゆえ、 増速変換は減速変換よりも電磁気的な損失が大きいので 、 本実施例の車両用駆動装置 1 0 0 0は、 あまり増速変換での運用を行わ ず、 主にやや減速変換気味で運用するようにした方が高効率で使用できる 。 したがって、 エンジン 1 0 0から駆動輪 7 0 0に至るまでのギヤ比等の 設定は、 車両用駆動装置 1 0 0 0を減速気味で運用できるようになされて いるべきである。 As a result, the torque 2 t applied from the first rotor 1 210 and the driving torque t applied from the stay 14 1 0 are given to the second rotor 1310 rotating at 2 n. After all, the torque of t is applied in the rotation direction. Therefore, the shaft input 2 nt (rotation speed nx torque 2 t) of the first mouth 1 2 1 0 is increased to the shaft output 2 nt (rotation speed 2 nx torque t) of the second low speed 1 310 Is converted. Comparing this speed-up conversion with the above-mentioned speed-down conversion, the electric energy transmitted through an external circuit in this speed-up conversion is 2 nt, Is twice as large as the electric energy nt transmitted through an external circuit. Therefore, since the speed-up conversion has a larger electromagnetic loss than the speed-down conversion, the vehicle driving device 100 of the present embodiment does not perform the operation in the speed-up conversion so much, and mainly has a slight speed-down conversion. It can be used with high efficiency if operated in. Therefore, the setting of the gear ratio and the like from the engine 100 to the driving wheels 700 should be such that the vehicle driving device 100 can be operated with a slight deceleration.
以上では第 1 口一夕 1 2 1 0への軸入力と第 2口一夕 1 3 1 0からの軸 出力とが等しい場合を取り上げて説明したが、 実際には上記軸入力と上記 軸出力とは一致しない場合がほとんどである。 そこで、 例えば上記軸入力 が上記軸出力に及ばない場合には、 その差はバッテリ 6 0 0からの給電に よるステ一夕 1 4 1 0およびまたは第 1 ロー夕 1 2 1 0の電動作用で補わ れる。 逆に、 上記軸入力が上記軸出力を上回っている場合には、 ステ一夕 1 4 1 0およびまたは第 1 ロー夕 1 2 1 0で発電された電気エネルギーを もってバッテリ 6 0 0に蓄電がなされる。  In the above description, the case where the axis input to the first mouth 1 2 1 0 and the axis output from the second mouth 1 1 310 are equal has been described. In most cases this does not match. Therefore, for example, when the shaft input does not reach the shaft output, the difference is due to the electric action of the motor 1401 and / or the motor 1120 by the power supply from the battery 600. Supplemented. Conversely, when the axis input exceeds the axis output, the battery 600 stores the electric energy generated by the station 1401 and / or the first row 120 and stores the electric energy in the battery 600. Done.
その極端な場合の一例に、 エンジンブレーキをかけて搭載車両を制動す る場合がある。 この場合には、 上記軸入力が負である以上に上記軸出力が 大きく負であり、 駆動輪 7 0 0に接続されている第 2口一夕 1 3 1 0が形 成する回転界磁によって、 ステ一夕 1 4 1 0だけではなく第 1 口一夕 1 2 1 0でも発電が行われてバッテリ 6 0 0に蓄電される。 このようにェンジ ンブレーキをかける場合には、 発電作用がステ一夕 1 4 1 0 と第 1 ロー夕 1 2 1 0 との両方で行われ、 一方に集中することがないので、 ステ一夕 1 4 1 0も第 1 口一夕 1 2 1 0もあま り大きな発電容量を必要とされない。 それゆえ、 ステ一夕 1 4 1 0も第 1 口一夕 1 2 1 0もともに、 比較的小型 軽量に構成されうる。 したがって、 本実施例の車両用駆動装置 1 0 0 0 を主にやや減速気味で運用するように搭載車両の駆動系の設計がなされて いれば、 電磁気的な損失も最小限に抑制され、 極めて高効率での運用が可 能になる。  An example of such an extreme case is when an on-board vehicle is braked by applying an engine brake. In this case, the shaft output is significantly negative more than the shaft input is negative, and the rotation field formed by the second port 1310 connected to the drive wheel 700 The power is generated not only in the station 1400 but also in the first mouth 1210 and stored in the battery 600. When the engine brake is applied in this manner, the power generation operation is performed in both the station 1440 and the first row 1210, and there is no concentration on one side. Neither 1 410 nor 1st mouth 1 210 requires a large power generation capacity. Therefore, both the stay one night and the first mouth one can be configured to be relatively small and light. Therefore, if the drive system of the on-board vehicle is designed to operate the vehicle drive device 100 of the present embodiment mainly with a slight deceleration, the electromagnetic loss is also minimized, and Operation at high efficiency becomes possible.
(実施例 7の効果)  (Effect of Embodiment 7)
本実施例の車両用駆動装置 1 0 0 0は、 以上の構成及び作用を有するの で数々の効果を有するが、 それらの効果は次の四点に要約される。  The vehicle drive device 100 of the present embodiment has the above-described configuration and operation, and thus has many effects. These effects are summarized in the following four points.
第 1の効果は、 大幅な小型軽量化である。  The first effect is a significant reduction in size and weight.
その第 1の理由は、 再び図 2 0〜図 2 2に示すように、 第 1 口一夕 1 2 1 0の構成にある。 すなわち、 第 1 口一夕 1 2 1 0は、 外周歯部 1 2 1 2 dおよび細い内周歯部 1 2 1 2 eが継鉄部 1 2 1 2 cから同一半径線上に 突出している口一夕コア 1 2 1 2と、 口一夕コア 1 2 1 2に卷装されてい る口一夕卷線とを有する。 ロー夕卷線は、 周方向の位置が対応している外 周スロッ ト 1 2 1 2 aおよび内周スロッ ト 1 2 1 2 bを通り、 継鉄部 1 2 1 2 cの周囲を巡って、 おおむね半径方向の面内を通り集中巻きで口一夕 コア 1 2 1 2に卷装されている。 The first reason is that, as shown again in Figs. There are 10 configurations. In other words, the first mouth 1 210 is a mouth in which the outer teeth 1 2 12 d and the thin inner teeth 1 2 1 2 e protrude from the yoke 1 2 1 2 c on the same radius line. It has an overnight core 1 2 1 2 and an open air coil wound around the oral core 1 2 1 2. The low-yellow winding line passes through the outer slot 1 2 1 2a and the inner slot 1 2 1 2b corresponding to the circumferential position, and goes around the yoke 1 2 1 2c. It is wound around the core 1 2 1 2 in a concentrated winding, passing through the plane in the radial direction.
それゆえ、 第 1ロー夕 1 2 1 0内の磁路は、 外周歯部 1 2 1 2 dと継鉄 部 1 2 1 2 cに形成され、 細い内周歯部 1 2 1 2 eには形成されない。 内 周歯部 1 2 1 2 eは、 ロー夕卷線 1 2 1 1の卷き崩れを防ぐ隔壁の作用と 、 第 1口一夕 1 2 1 0を入力軸 1 2 1 3と同軸に保つ構造部材としての作 用とを有すればよいので、 前述のように周方向の幅が狭く形成されている 。 その結果、 口一夕卷線 1 2 1 1は、 継鉄部 1 2 1 2 c周りに集中巻きで 卷装され、 半径方向の寸法が小さくコンパク トに巻装されるので、 第 1口 一夕 1 2 1 0の外径を小さく収めて第 1口一夕 1 2 1 0を軽量化すること が可能になる。  Therefore, the magnetic path in the first row 1 2 1 0 is formed by the outer teeth 1 2 1 2 d and the yoke 1 2 1 2 c, and the thin inner teeth 1 2 1 2 e Not formed. The inner peripheral tooth portion 1 2 1 2 e acts as a partition wall to prevent the buckling of the winding line 1 2 1 1 from collapsing and keeps the first opening 1 2 1 0 coaxial with the input shaft 1 2 1 3 Since it is sufficient to have the function as a structural member, the width in the circumferential direction is narrow as described above. As a result, the wrap-around wire 1 2 1 1 is wound around the yoke 1 2 1 2 c in a concentrated winding and has a small radial dimension and is wrapped around a compact. It is possible to reduce the outer diameter of the first mouth and reduce the weight of the first mouth.
また、 ロー夕卷線 1 2 1 1は継鉄部 1 2 1 2 cを巡って外周スロッ ト 1 2 1 2 aおよび内周スロッ ト 1 2 1 2 bに集中巻きされているので、 製造 時の卷装工程において、 張力を十分に強くかけながらロー夕卷線 1 2 1 1 を口一夕コア 1 2 1 2に巻装することができる。 それゆえ、 外周スロッ ト 1 2 1 2 aに対する口一夕卷線 1 2 1 1の線積率を向上させることができ 、 口一夕卷線 1 2 1 1がより密に卷かれるので、 第 1口一夕 1 2 1 0の外 径をさらに小さく形成することが可能になり、 さらなる小型軽量化が可能 となる。  In addition, the low-yield winding wire 1 2 1 1 is concentrated around the yoke 1 2 1 2 c around the outer slot 1 2 1 2 a and the inner slot 1 2 1 2 b. In the winding step, the winding wire 1 2 1 1 can be wound on the core 1 2 1 2 while applying sufficient tension. Therefore, it is possible to improve the area factor of the mouth-to-night winding 1 2 1 1 with respect to the outer peripheral slot 1 2 1 2 a, and the mouth-to-night winding 1 2 1 1 is more densely wound. It is possible to make the outer diameter of 1 210 per mouth even smaller, further reducing the size and weight.
そのうえ、 口一夕卷線 1 2 1 1が継鉄部 1 2 1 2 cを中心に集中卷きさ れているので、 継鉄部によって口一夕が強固に保持されており、 強大な遠 心力がかかっても口一夕卷線が口一夕コアから外れることがない。 それゆ え、 第 1口一夕の高速回転が可能となるので、 高回転低トルクでの運用が 可能となり、 その結果、 同じ仕事率を伝達するのであればよりいつそう小 型軽量化が進む。 したがって、 第 1 ロー夕 1 2 1 0の小型化が可能で第 1ロー夕 1 2 1 0の外径が小さく形成されれば、 第 1口一夕 1 2 1 0の外 径に合わせて第 2口一夕 1 3 1 0およびステ一夕 1 4 1 0も小型軽量に構 成される。 その結果、 車両用駆動装置 1 0 0 0全体を、 よりいつそう小型 軽量化することが可能になる。 In addition, the mouth-to-night winding line 1 2 1 1 is concentrated around the yoke 1 2 1 2c, so that the mouth-to-mouth is held firmly by the yoke, The mouth-to-night winding line does not come off the mouth-to-night core even if the heart is applied. As a result, high-speed rotation of the first mouth is possible, enabling operation at high rotation and low torque, and as a result, if the same power is transmitted, the size and weight will be further reduced. . Therefore, if it is possible to reduce the size of the 1st row 1 210 and the outer diameter of the 1st row 1 210 is made smaller, then the 1st row 1 The two mouths 1 3 10 and the stay 1 4 10 are also small and light. As a result, the entire vehicle drive system 100 It is possible to reduce the weight.
上記効果の第 2の理由は、 再び図 20および図 2 1に示すように、 第 2 ロー夕 1 3 1 0の構成にある。 すなわち、 前述のように、 第 2ロー夕 1 3 1 0が極めて合理的に構成されており、 低廉化と同時にさらなる小型化が 可能になっている。 第 1ロー夕 1 2 1 0の外径に合わせて第 2口一夕 1 3 1 0の内径が小さくなつているばかりではなく、 第 2口一夕 1 3 1 0に形 成される磁路が合理的に設計されているので、 第 2口一夕 1 3 1 0の薄型 化が進む。 それゆえ、 第 2口一夕 1 3 10の外径が内径の縮小分以上にさ らに縮小され、 第 2ロー夕 1 3 1 0の小型軽量化が進むからである。 上 記効果の第 3の理由は、 車両用駆動装置の上記要部が収容されている機枠 1 7 1 0, 1 720の内部空間に、 気液混相状態の冷媒が供給され、 第 1 口一夕 1 2 1 0、 第 2ロー夕 1 3 1 0およびステ一夕 14 1 0が強制冷却 されているからである。 それゆえ、 放熱に関する制約が大幅に緩和され、 より高密度で第 1口一夕 12 1 0、 第 2口一夕 1 3 1 0およびステ一夕 1 4 1 0が構成されるので、 よりいつそうの小型軽量化が可能になる。  The second reason for the above effect lies in the configuration of the second row 1310, as shown in FIGS. 20 and 21 again. In other words, as described above, the second row 1310 is extremely rationally configured, and it is possible to further reduce the size while reducing the cost. Not only is the inner diameter of the first mouth 1 310 smaller than the outer diameter of the first rotor 1 210, but also the magnetic path formed in the first mouth 1 310 Is designed rationally, and the thickness of the second mouth 1310 will be reduced. Therefore, the outer diameter of the second mouth 1310 is reduced even more than the reduction of the inner diameter, and the size and weight of the second row 1310 are further reduced. The third reason for the above effect is that a refrigerant in a gas-liquid mixed-phase state is supplied to the internal space of the machine frames 1710 and 1720 in which the above-described essential parts of the vehicle drive device are accommodated. This is because one night, 210, the second low 1310 and the stay 1410 are forcibly cooled. Therefore, the restriction on heat dissipation is greatly eased, and the higher the density of the first mouth 1210, the second mouth 1310 and the stay 1140, the more Such a reduction in size and weight becomes possible.
その結果、 本実施例の車両用駆動装置 1 000によれば、 搭載車両の小 型軽量化が可能になり、 搭載車両の製品コス 卜および運用コス 卜の低廉化 につながるとともに、 軽量なので動力性能の向上にもつながるという効果 が発揮される。  As a result, according to the vehicle drive device 1000 of the present embodiment, it is possible to reduce the size and weight of the on-board vehicle, which leads to a reduction in product and operation costs of the on-board vehicle. The effect is that it leads to improvement of the quality.
第 2の効果は、 動的応答性の向上である。  The second effect is an improvement in dynamic response.
すなわち、 本実施例の車両用駆動装置 1 00 0では、 前述のように第 1 口一夕 1 2 1 0および第 2口一夕 1 3 1 0が小型軽量化されているので、 さらに大きな割合で両口一夕 1 2 1 0, 1 3 1 0の慣性モ一メン トが低減 されている。 すなわち、 第 1口一夕 1 2 1 0の慣性モーメン 卜の低減はェ ンジンの回転数の高応答性につながり、 第 2口一夕 1 3 1 0の慣性モーメ ン 卜の低減は駆動輪ひいては搭載車両の速度の高応答性につながる。 その 結果、 車両用駆動装置の動的な応答性能も向上し、 搭載車両のより急速な 加速や減速も可能となるばかりではなく、 搭載車両の燃費も向上するとい う効果も生じる。  That is, in the vehicle driving device 100 0 of the present embodiment, the first mouth 1 210 and the second mouth 13 10 are reduced in size and weight as described above, so that As a result, the moments of inertia of the two mouths are reduced. In other words, the reduction of the moment of inertia of the first mouth 1 210 leads to a high response of the engine speed, and the reduction of the moment of inertia of the second mouth 13 10 This leads to high responsiveness of the speed of the mounted vehicle. As a result, the dynamic response performance of the vehicle drive system is improved, and not only is it possible to accelerate and decelerate the on-board vehicle more quickly, but also the fuel efficiency of the on-board vehicle is improved.
第 3の効果は、 製品のコス トダウンである。  The third effect is product cost reduction.
その第 1の理由は、 第 1口一夕 1 2 1 0の構成にある。 すなわち、 第 1 口一夕 1 2 1 0は軽量化されているので、 材料コス トが低減されている。 さらに、 第 1口一夕 1 2 1 0の口一夕卷線 1 2 1 1は集中卷きであり卷装 工程の工数が節減されているので、 製造コス トも低減されている。 それゆ え、 第 1 ロー夕 1 2 1 0は、 材料コス トおよび製造コス トが低減されてい るので、 従来技術に比べてより安価に提供されるからである。 The first reason lies in the composition of the first mouth, one hundred and twenty one. That is, since the weight of the first mouth is reduced, the material cost is reduced. In addition, the 1st 1st 1st 1st 1st 1st 1st 1st 1st winding line 1 2 1 1 is a concentrated winding Manufacturing costs are also reduced because the number of process steps is reduced. The reason is that the first raw material is provided at lower cost than the conventional technology because the material cost and the manufacturing cost are reduced.
その第 2の理由は、 第 2口一夕 1 3 1 0の構成にある。 すなわち、 前述 のように第 2ロー夕 1 3 1 0が既製品の永久磁石を材料として合理的かつ 製造容易に構成されているので、 第 2口一夕 1 3 1 0の材料コス トおよび 製造コス トを抑制することができるからである。  The second reason lies in the composition of the second mouth, 1 310. In other words, as mentioned above, the second row 1310 is reasonably and easily manufactured using off-the-shelf permanent magnets as a material. This is because costs can be reduced.
したがって、 本実施例の車両用駆動装置 1 0 0 0を搭載した車両は、 前 述の運用費 (すなわち燃費) ばかりではなく、 製品コス トまで低廉化され るという効果がある。 すなわち、 車両用駆動装置 1 0 0 0のコス トダウン ばかりではなく、 前述の車両用駆動装置 1 0 0 0の小型軽量化による車両 の小型軽量化によって搭載車両のコス トダウンがさらに進むので、 両者の コス トダウンが相まって搭載車両をより安価に供給できるようになる。 第 4の効果は、 信頼性の向上である。  Therefore, the vehicle equipped with the vehicle drive device 100 of the present embodiment has the effect of reducing not only the above-mentioned operation cost (ie, fuel efficiency) but also the product cost. In other words, not only the cost of the vehicle drive device 100 is reduced, but also the cost of the mounted vehicle is further reduced by reducing the size and weight of the vehicle by reducing the size and weight of the vehicle drive device 100 described above. The combined cost reduction will make it possible to supply onboard vehicles at lower cost. The fourth effect is an improvement in reliability.
その第 1の理由は、 第 1 ロー夕 1 2 1 0の構成にある。 すなわち、 第 1 ロー夕 1 2 1 0のロー夕卷線 1 2 1 1は、 口一夕コア 1 2 1 2の継鉄部 1 2 1 2 cに集中巻きで卷装されているので、 強力な遠心加速度がかかって も口一夕卷線 1 2 1 1が口一夕コア 1 2 1 2から脱落しにくいからである 。 それゆえ、 第 1 ロー夕 1 2 1 0は、 特に高速回転時の信頼性が向上して いる。  The first reason lies in the configuration of the first row. In other words, since the first row of the first row 1 2 1 0 1 2 1 1 1 1 2 1 1 is concentratedly wound around the yoke 1 2 1 2 c of the mouth 1 2 This is because even if a large centrifugal acceleration is applied, the mouth-to-mouth winding line 1 2 1 1 will not easily fall off the mouth-to-night core 1 2 1 2. Therefore, the reliability of the first rotor is improved especially at high speed rotation.
また、 第 1 口一夕 1 2 1 0に冷却用流路 1 2 1 2 f が形成されており、 車両用駆動装置 1 0 0 0の要部中で最も過熱しやすいロー夕巻線 1 2 1 1 の入力軸 1 2 1 3に近い部分の過熱が防止されている。 それゆえ、 特に高 負荷運転時の信頼性が向上している。  In addition, a cooling channel 1 2 1 2 f is formed in the first opening 1 2 1 0 1, and the low temperature winding 1 2 11 Overheating of the portion near the input shaft 1 2 1 3 is prevented. Therefore, the reliability especially at high load operation is improved.
上記効果の第 2の理由は、 第 2ロー夕 1 3 1 0の構成にある。 すなわち 、 前述のように、 第 2ロー夕 1 3 1 0には卷線などが無く、 簡素で剛性の 高い構成をしているので、 第 2口一夕 1 3 1 0に強力な遠心加速度がかか つても、 部品の脱落や不都合な変形が生じにくいからである。 それゆえ、 第 2口一夕 1 3 1 0は、 特に高速回転時の信頼性が向上している。  The second reason for the above-mentioned effect lies in the configuration of the second row 1 310. That is, as described above, since the second row 1310 has no winding or the like and has a simple and highly rigid configuration, a strong centrifugal acceleration is applied to the second port 1310. Even in this case, it is difficult for parts to fall off or cause undesired deformation. Therefore, the reliability of the second mouth 1 310 is improved especially at high speed rotation.
[実施例 8 ]  [Example 8]
(実施例 8の構成)  (Configuration of Example 8)
本発明の実施例 8 としての車両用駆動装置は、 第 1 ロー夕 1 2 1 0 ' の みが実施例 7 と異なり、 その他の点では実施例 7 と同様である。 すなわち、 図 2 5に示すように、 本実施例の第 1口一夕 1 2 1 0 ' では 、 ロー夕コア 1 2 1 2 ' の外周歯部 1 2 1 2 dの数は、 内周歯部 1 2 1 2 e 5 の数よりも多く、 内周歯部 1 2 1 2 e ' の数の二倍である。 分かり易 く言う と、 実施例 7と比較して内周歯部 1 2 1 2 eがー本置きに間引かれ ており、 本実施例の内周歯部 1 2 1 2 e ' の数は実施例 7の内周歯部 1 2 1 2 eの半分である。 すなわち、 内周スロ ッ ト 1 2 1 2 b ' の数が実施例 7から半減しており、 内周スロッ ト 1 2 1 2 bの周方向の幅は実施例 7の 二倍以上に増えている。 口一夕コア 1 2 1 2 ' のうち、 内周歯部 1 2 1 2 e 5 だけが実施例 7と異なっており、 外周歯部 1 2 1 2 dおよび継鉄部 1 2 1 2 cは実施例 7と同様である。 The vehicle drive device according to the eighth embodiment of the present invention is different from the seventh embodiment only in the first row 1210 ′, and is otherwise the same as the seventh embodiment. That is, as shown in FIG. 25, in the first mouth 1 210 ′ of the present embodiment, the number of outer teeth 1 2 1 2 d of the low core 1 2 1 2 ′ is equal to the inner teeth. More than the number of parts 1 2 1 2 e 5 , twice the number of inner teeth 1 2 1 2 e ′. In other words, in comparison with the seventh embodiment, the inner peripheral teeth 1 2 1 2 e are thinned out every other, and the number of the inner peripheral teeth 1 2 1 2 e ′ in the present embodiment is This is a half of the inner peripheral tooth portion of the seventh embodiment. That is, the number of inner slots 1 2 1 2 b ′ is halved from that of the seventh embodiment, and the circumferential width of the inner slots 1 12 b is more than double that of the seventh embodiment. I have. Only the inner teeth 1 2 1 2 e 5 of the mouth-to-night core 1 2 1 2 ′ are different from those in Example 7, and the outer teeth 1 2 1 2 d and the yoke 1 2 1 2 c This is the same as Example 7.
それゆえ、 外周スロ ッ ト 1 2 1 2 aでは実施例 7と同様に口一夕卷線 1 2 1 1 a , 1 2 1 1 bが卷装されているが、 内周スロ ッ ト 1 2 1 2 b ' で は実施例 7と異なって、 口一夕卷線 1 2 1 1 a, 1 2 l i bがーつの内周 スロ ッ ト 1 2 1 2 b ' に並んで卷装されている。 そして、 互いに相が異な る口一夕卷線 1 2 1 1 a, 1 2 1 1 bの一つあたりに割り当てられている 内周スロ ッ ト 1 2 1 2 b ' の周方向の幅、 すなわち内周スロ ヅ ト 1 2 1 2 b ' の周方向の幅の半分は、 実施例 7よりもいくぶん広く取られている。 内周スロッ ト 1 2 1 2 b ' を半割にして、 その中に二つの相の口一夕卷 線 1 2 1 1 a, 1 2 1 1 bを卷装するには、 互いにノズルが対向する二台 の捲線機を同期して運転するなどし、 ロー夕卷線 1 2 1 1 a , 1 2 1 1 b を並行して卷装すればよい。  Therefore, in the outer slot 1212a, the mouth-to-mouth windings 1211a and 1211b are wound in the same manner as in the seventh embodiment, but the inner slot 12a is wound. In Example 12b ', different from Example 7, the mouth-to-mouth winding line 121 1a, 12 lib is wound side by side along one of the inner slots 1212b'. Then, the circumferential width of the inner slot 1 2 1 2 b ′ assigned to one of the mouth-to-roll windings 1 2 1 1 a and 1 2 1 1 b having different phases, that is, Half of the circumferential width of the inner slot 1212b 'is somewhat wider than in the seventh embodiment. When the inner slot 1 2 1 2 b 'is halved and the two windings 1 2 1 1 a and 1 2 1 1 b are wound inside, the nozzles face each other. It is sufficient to operate the two winding machines in synchronization with each other, and to wind the row windings 1 2 1 1 a and 1 2 1 1 b in parallel.
なお、 第 1ロー夕 1 2 1 0 ' の入力軸 1 2 1 3と内周スロッ ト 1 2 1 2 b 5 内のロー夕卷線 1 2 1 1 との間にできる空間が、 冷却用流路 1 2 1 2 f を形成している点では、 本実施例は実施例 7と同様である。 The space between the input shaft 1 2 1 3 of the first row 1 2 1 0 'and the row 1 1 1 1 in the inner slot 1 2 1 2 b 5 is used for cooling. This embodiment is the same as the seventh embodiment in that the road 1 212 f is formed.
(実施例 8の効果)  (Effect of Example 8)
前述のように、 口一夕卷線 1 2 1 1 a , 1 2 1 1 bの一つあたりに割り 当てられている内周スロ ヅ ト 1 2 1 2 b ' の周方向の幅は、 実施例 7より もいくぶん広く取られている。 それゆえ、 巻装された口一夕卷線 1 2 1 1 a, 1 2 1 1 bの周方向の幅が大きい分、 半径方向の高さは小さ くなるの で、 第 1口一夕 1 2 1 0 ' の外径をより小さく構成することが可能になる 。 第 1口一夕 1 2 1 0, の外径が小さ くなれば、 第 2口一夕 1 3 1 0 (図 2 1参照) の内径および外径も小さ くなり、 同様にステ一夕 1 4 1 0の直 径も小さくなって、 車両用駆動装置 1 000全体がさらに軽量小型化され る。 As described above, the circumferential width of the inner slot 1 2 1 2 b ′ assigned to one of the wraps 1 2 1 1 a and 1 2 1 1 b is It is somewhat more widespread than in Example 7. Therefore, the larger the circumferential width of the wrapped wrapper 1 2 1 1a, 1 2 1 1b, the smaller the height in the radial direction. It is possible to make the outer diameter of 210 ′ smaller. As the outside diameter of the first mouth 1 2 1 0, 1 decreases, the inside and outside diameters of the 2 1 mouth 1 3 1 0 (see Fig. 21) also decrease. 4 1 0 The diameter is reduced, and the entire vehicle drive unit 1000 is further reduced in weight and size.
したがって本実施例によれば、 第 1口一夕 1 2 1 0 ' 、 第 2口一夕 13 1 0および:ステ一夕 14 1 0の直径が小さく形成されるので、 車両用駆動 装置 1 000全体がさらに軽量小型化されるという効果がある。 また、 同 様の理由で、 車両用駆動装置 1 000の動的応答性がさらに向上するとい う効果もある。  Therefore, according to the present embodiment, the diameter of the first mouth 1 2 1 0 ′, the second mouth 1 13 1 0, and the: 1 1 10 1 10 is formed to be small, so that the vehicle driving device 1 000 There is an effect that the whole is further reduced in weight and size. Further, for the same reason, there is also an effect that the dynamic response of the vehicle drive device 1000 is further improved.
(実施例 8の変形態様 1 )  (Modification 1 of Example 8)
本実施例の変形態様 1として、 図 26に示すように、 第 1口一夕 1 2 1 0, の内周スロッ ト 1 2 1 2 b, での口一夕卷線 1 2 1 1の巻装の仕方が 、 実施例 8と異なる車両用駆動装置の実施が可能である。  As a first modified example of the present embodiment, as shown in FIG. 26, as shown in FIG. 26, the winding of the winding wire 1 2 1 1 at the inner circumferential slot 1 2 1 2 b of the first opening 1 2 1 0. It is possible to implement a vehicle drive device in a manner different from that of the eighth embodiment.
すなわち本変形態様では、 第 1ロー夕 1 2 1 0 ' の口一夕卷線 1 2 1 1 は、 U, V, Wの各相からなる三相卷線であり、 第 1口一夕 1 2 1 0 ' に 形成されている各外周スロッ ト 1 2 1 2 aには、 周方向に U , V , W, U , V, Wの順でこのロー夕卷線 1 2 1 1 a, 1 2 1 1 bが巻装されている 。 そして、 これらの外周スロッ ト 1 2 1 2 aに対応する内周スロッ ト 1 2 1 2 b' には、 それぞれ同じ周方向に、 U相の上に V相、 W相の上に U相 、 V相の上に W相の順でロー夕卷線 1 2 1 1 a, 1 2 1 1 bが卷装されて いる。  That is, in the present modified embodiment, the mouth 1 2 1 1 of the first row 1 2 1 0 ′ is a three-phase winding composed of U, V, and W phases, In each of the outer peripheral slots 1 2 1 2a formed in 2 1 0 ', the low-winding windings 1 2 1 1a, 1 are arranged in the circumferential direction in the order of U, V, W, U, V, W. 2 1 1b is wound. And, in the same circumferential direction, the V-phase on the U-phase, the U-phase on the W-phase, and the On the V-phase, W-phase windings 1 2 1 1a and 1 2 1 1b are wound in the order of W-phase.
それゆえ、 本変形態様では、 前述の実施例 8のように二つの捲線機を使 用する必要性はなく、 一つの捲線機で順に卷装していけばよいので、 巻き 崩れの可能性がないばかりではなく、 捲線機に対する特別な設備投資が必 要ない。  Therefore, in the present modified embodiment, it is not necessary to use two winding machines as in the above-described Embodiment 8, and it is sufficient to wind one winding machine in order. Not only does it require no special capital investment for winding machines.
また、 上記の順で三相の口一夕卷線 1 2 1 1を卷装していけば、 どの相 のロー夕卷線 1 2 1 1も内周スロッ ト 1 2 1 2 b ' の内側と外側とに交互 に卷装される。 それゆえ本変形態様では、 特定の相だけの口一夕卷線 1 2 1 1が長くなるような不都合が起きることがなく、 三相の口一夕卷線 1 2 1 1は互いに均等な長さで巻装される。  Also, if the three-phase mouth-and-roll winding line 1 2 1 1 is wound in the above order, the low-winding winding line 1 2 1 1 of any phase will be inside the inner slot 1 2 1 2 b '. And outside are wound alternately. Therefore, in this modified embodiment, there is no inconvenience such that the length of the mouth-to-wind winding 1 2 1 1 of only a specific phase becomes longer, and the three-phase mouth-to-wind winding 1 2 1 1 has an equal length. It is wound around.
したがって本変形態様によれば、 前述の実施例 8の効果に加えて、 電気 抵抗等の電磁気的な特性を三相の口一夕卷線 1 2 1 1の間で均等に保ちな がら、 捲線機に対する特別な設備投資が必要ないのでいっそうのコス トダ ゥンができるという効果がある。  Therefore, according to the present modified embodiment, in addition to the effect of the eighth embodiment described above, while maintaining the electromagnetic characteristics such as the electric resistance uniformly between the three-phase open / close windings 1 2 1 1 1 1 1 Since there is no need for special equipment investment for the machine, there is the effect that further cost down can be achieved.
[実施例 9] (実施例 9の構成) [Example 9] (Configuration of Example 9)
本発明の実施例 9としての車両用駆動装置は、 第 1 口一夕 1 2 1 0 " の みが実施例 7 と異なり、 その他の点では実施例 7 と同様である。  The vehicle drive device according to the ninth embodiment of the present invention is different from the seventh embodiment only in the first mouth 1 2 10 ″, and is otherwise the same as the seventh embodiment.
すなわち、 図 2 7に示すように、 本実施例の第 1 口一夕 1 2 1 0 " では 、 口一夕コア 1 2 1 2 " に内周歯部 1 2 1 2 eが無く、 口一夕コア 1 2 1 2 " は継鉄部 1 2 1 2 cおよび外周歯部 1 2 1 2 dから構成されている。 そして、 ロー夕コア 1 2 1 2 " には、 外周歯部 1 2 1 2 dの根本部分にあ たる継鉄部 1 2 1 2 cに、 一つ置きに等間隔で貫通孔が形成されており、 それぞれの同貫通孔に固定ピン 1 2 1 4が揷置されている。  That is, as shown in FIG. 27, in the first mouth 1 2 10 "of the present embodiment, the mouth core 1 2 1 2" does not have the inner peripheral teeth 1 12 1 e, and the mouth 1 2 Evening core 1 2 1 2 "is composed of yoke 1 2 1 2 c and outer teeth 1 2 1 2 d. And the lower core 1 2 1 2" has outer teeth 1 2 1 Through holes are formed at equal intervals in the yoke section 1 2 1 2 c, which is the root part of 2 d, and fixing pins 1 2 14 are placed in each of the through holes. I have.
第 1口一夕 1 2 1 0" のロー夕コア 1 2 1 2 " の両端部には、 それぞれ 図示しない口一夕フレームが接合されており、 各固定ピン 1 2 1 4は、 両 口一夕フレームに固定されている。 両口一夕フレームは、 第 1口一夕 1 2 1 0" の入力軸 1 2 1 3に固定されているので、 各固定ピン 1 2 1 4は、 両口一夕フレームを介して口一夕コア 1 2 1 2" を入力軸 1 2 1 3に対し て同軸に固定保持している。  At both ends of the core 1 2 1 2 "of the first port 1 2 1 0", a not-shown port frame is joined to each end, and each fixing pin 1 2 1 4 Fixed to the evening frame. Since the two-mouthed frame is fixed to the input shaft 1 2 13 of the first mouthed 1 2 1 0 ", each fixed pin 1 2 1 4 is The evening core 1 2 1 2 "is fixedly held coaxially with the input shaft 1 2 1 3.
なお、 各固定ピン 1 2 1 4は、 ロー夕コア 1 2 1 2 " の積層電磁鋼板と 同程度の磁気特性をもつ材質で形成されているので、 口一夕コア 1 2 1 2 " 中の磁路の形成に対して悪影響を与えることがない。  Note that each fixing pin 1 2 1 4 is made of a material having magnetic properties similar to those of the laminated magnetic steel sheet of the Rho-core 1 2 1 2 ". There is no adverse effect on the formation of the magnetic path.
第 1ロー夕 1 2 1 0" の口一夕卷線 1 2 1 1は、 ロー夕コア 1 2 1 2 " の継鉄部 1 2 1 2 cに集中卷きされる際に、 巻き崩れしないように側面か ら側壁状の治具 (図略) を当接された状態で卷装される。 実施例 7および 実施例 8と異なって内周歯部 1 2 1 2 e , 1 2 1 2 e ' がないので、 その 分継鉄部 1 2 1 2 cの内周側での口一夕卷線 1 2 1 1の周方向の幅が広く 取れる。 それゆえ、 継鉄部 1 2 1 2 cの内周側でのロー夕卷線 1 2 1 1の 半径方向の高さが小さく抑えられ、 その結果、 第 1 ロー夕 1 2 1 0" を実 施例 8よりもさらに小さな外径で構成することが可能になる。  The 1st row of the 1st row 1 2 1 0 "winding 1 2 1 1 does not collapse when it is wound around the yoke 1 2 1 2 c of the row 1 core 1 2 1 2" As shown in the figure, a jig (not shown) in the side wall shape is wound from the side. Unlike Example 7 and Example 8, there is no inner peripheral tooth portion 1 2 1 2 e, 1 2 1 2 e ′. The width of line 1 2 1 1 in the circumferential direction can be widened. Therefore, the radial height of the roving winding 1 2 1 1 on the inner peripheral side of the yoke section 1 2 1 2 c can be kept small, and as a result, the first roving 1 2 1 0 "can be realized. It becomes possible to configure the outer diameter even smaller than in the eighth embodiment.
また、 第 1口一夕 1 2 1 0" の口一夕卷線 1 2 1 1は、 入力軸 1 2 1 3 の外周面に軽く当接しており、 入力軸 1 2 1 3の熱伝導作用によってある 程度冷却される。  Also, the 1st 1st 1st 2nd 1 "1st 1st 1" winding wire 1 2 1 1 is lightly in contact with the outer peripheral surface of the input shaft 1 2 1 3, and the heat conduction of the input shaft 1 2 1 3 Is cooled to some extent.
(実施例 9の効果)  (Effect of Embodiment 9)
前述のように、 口一夕卷線 1 2 1 1 a, 1 2 1 1 bの一つあたりに割り 当てられている継鉄部 1 2 1 2 cの内側の空間の周方向の幅は、 実施例 8 よりもさらに広く取られている。 それゆえ、 巻装された口一夕卷線 1 2 1 1 a, 1 2 1 1 bの周方向の幅が大きい分、 半径方向の高さはさらに小さ くなるので、 第 1 ロー夕 1 2 1 0" の外径をより小さく構成することが可 能になる。 第 1ロー夕 1 2 1 0 " の外径がさらに小さ くなれば、 第 2ロー 夕 1 3 1 0 (図 2 1参照) の内径および外径もさらに小さくなり、 同様に ステ一夕 1 4 1 0の直径もさらに小さくなつて、 車両用駆動装置 1 0 0 0 全体がさらに軽量小型化される。 As described above, the circumferential width of the space inside the yoke section 1 2 1 2c assigned to one of the mouth-to-mouth winding lines 1 2 1 1a and 1 2 1 1b is It is even wider than in Example 8. Therefore, the wrapped wrap around the mouth 1 2 1 Since the height in the radial direction becomes smaller as the circumferential width of 1a, 1 2 1 1b is larger, the outer diameter of the first row 1 2 1 0 "can be made smaller. If the outer diameter of the first row 1 2 1 0 "becomes smaller, the inner and outer diameters of the second row 1 310 (see Fig. 21) also become smaller. Even if the diameter of 140 1 is further reduced, the entire vehicle drive device 100 is further reduced in weight and size.
したがって本実施例によれば、 実施例 8よりもさらに小さい外径で第 1 口一夕 1 2 1 0" 、 第 2口一夕 1 3 1 0およびステ一夕 1 4 1 0が構成さ れるので、 車両用駆動装置 1 0 0 0全体がさらに軽量小型化されるという 効果がある。 また、 同様の理由で、 車両用駆動装置 1 0 0 0の動的応答性 がさらに向上するという効果もある。  Therefore, according to the present embodiment, the outer diameter of the first mouth 1 2 1 0 ", the second mouth 1 3 10 and the stay 1 14 10 are formed with an outer diameter smaller than that of the eighth embodiment. Therefore, there is an effect that the entire vehicle drive device 100 is further reduced in weight and size, and for the same reason, an effect that the dynamic response of the vehicle drive device 100 is further improved. is there.
(実施例 9の変形態様 1 )  (Modification 1 of Example 9)
本実施例の変形態様 1 として、 図 2 8に示すように、 第 1 口一夕 1 2 1 0 " のロー夕コア 1 2 1 2 " の内周側に各口一夕卷線 1 2 1 1 a, 1 2 1 1 bを区切る隔壁部材 1 2 1 2 gが配設されている車両用駆動装置の実施 が可能である。  As a modified embodiment 1 of the present embodiment, as shown in FIG. 28, as shown in FIG. It is possible to implement a vehicle drive device in which a partition wall 1 2 12 g separating 1 a and 1 2 1 1 b is provided.
隔壁部材 1 2 1 2 gは、 長方形の鋼板部材であって、 各外周歯部 1 2 1 2 dの中心線と対応する位置にそれぞれ配設されており、 軸長方向の両端 部で上記両口一夕フレーム (図略) に固定されている。 隔壁部材 1 2 1 2 gのうち、 口一夕コア 1 2 1 2 " の継鉄部 1 2 1 2 cに固定ピン 1 2 1 4 が揷置されていない部分に配設されているものは、 継鉄部 1 2 1 2 cの内 周面に軸長方向に形成された溝に嵌合して中間部でも傾かないように固定 されている。 なお、 隔壁部材 1 2 1 2 gは、 積層電磁鋼板製のロー夕コア 1 2 1 2" と同一の材質から形成されており、 口一夕コア 1 2 1 2 " の磁 路としての作用に悪影響を与えることはない。  The partition wall members 1 12 12 g are rectangular steel plate members, which are disposed at positions corresponding to the center lines of the respective outer peripheral tooth portions 1 12 12 d. It is fixed to the mouth-to-mouth frame (not shown). Of the bulkhead members 1 2 1 2 g, those that are arranged in the part where the fixing pin 1 2 1 4 is not installed on the yoke 1 2 1 2 c of the mouth core 1 2 1 2 " The yoke portion 1 2 1 2 c is fitted into a groove formed in the axial direction on the inner peripheral surface and is fixed so as not to be inclined even at the intermediate portion. It is made of the same material as the low-frequency core 1 2 1 2 "made of laminated magnetic steel sheets, and does not adversely affect the magnetic path of the 1-inch core 1 2 1".
本変形態様では、 ロー夕卷線 1 2 1 1の卷装作業時に、 前述の治具 (図 略) に背後から支えられた隔壁部材 1 2 1 2 gが口一夕卷線 1 2 1 1 " の 卷装空間を区画し、 内周スロッ ト 1 2 1 2 b" を形成する。 したがって本 変形態様によれば、 外周スロッ ト 1 2 1 2 a—つあたりの口一夕卷線 1 2 1 1の幅を実施例 9からほとんど狭めることなく内周スロッ ト 1 2 1 2 b " が形成されるので、 実施例 9の効果を保ったまま、 巻き崩れがより完全 に防止されるという効果がある。  In this modified embodiment, during the winding work of the low-winding wire 1 2 1 1, the partition member 1 2 1 2 g supported from behind by the above-mentioned jig (not shown) is connected to the 1-in-1 winding wire. Partitions the winding space of "and forms an inner slot 1 2 1 2b". Therefore, according to this modification, the width of the inner circumference slot 1 2 1 2 b "is hardly reduced from the ninth embodiment by making the width of the winding wire 1 2 1 1 per outer slot 1 2 1 2 a". Thus, there is an effect that the collapse is more completely prevented while maintaining the effect of the ninth embodiment.
また、 隔壁部材 1 2 1 2 gには、 実施例 7および実施例 8の内周歯部 1 2 1 2 e , 1 2 1 2 e ' と同様に、 ロー夕コア 1 2 1 2" を入力軸 1 2 1 3に対して同軸に保つ構造部材としての作用もある。 したがって本変形態 様によれば、 特に高速回転時の信頼性が実施例 9と比較して向上するとい う効果もある。 In addition, the partition member 1 2 12 g has the inner peripheral teeth 1 of Examples 7 and 8. Similar to 2 1 2 e and 1 2 1 2 e ′, it also has a function as a structural member for keeping the low core 1 2 1 2 ”coaxial with the input shaft 1 2 13. According to this, there is also an effect that the reliability particularly at the time of high-speed rotation is improved as compared with the ninth embodiment.
(実施例 9の変形態様 2 )  (Modification 2 of Example 9)
本実施例の変形態様 2として、 図 2 9に示すように、 第 1 口一夕 1 2 1 0 " の入力軸 1 2 1 3の外周面とロー夕卷線 1 2 1 1 との間に、 冷却用流 路 1 2 1 2 f が形成されている車両用駆動装置の実施が可能である。  As a modification 2 of the present embodiment, as shown in FIG. 29, between the outer peripheral surface of the input shaft 1 2 1 3 of the first opening 1 2 1 0 "and the low winding line 1 2 1 1 However, it is possible to implement a vehicle drive device in which the cooling channel 1 2 1 2 f is formed.
本変形態様では、 第 1口一夕 1 2 1 0" の冷却用流路 1 2 1 2 f へ冷媒 を流通させる目的で、 第 1ロー夕 1 2 1 0 " の上記両口一夕フレーム (図 略) に複数の貫通孔が形成されている。 同貫通孔は、 上記両口一夕フレー ムの肉抜きにもなつており、 第 1ロー夕 1 2 1 0 " の重量軽減および慣性 モーメン ト軽減の効果をも生じさせる。  In this modified embodiment, in order to allow the refrigerant to flow through the cooling channel 1 2 1 2 f of the first port 1 2 1 0 ”, the above-mentioned double port 1 frame of the first row 1 2 1 0” ( (Not shown), a plurality of through holes are formed. The through-hole also serves to reduce the thickness of the above-mentioned two-way frame, and also has the effect of reducing the weight and inertia moment of the first row.
本変形態様によれば、 実施例 7および実施例 8と同様の冷却作用が、 ほ ぼ実施例 9の構成のままで得られるという効果がある。 なお、 前述の実施 例 9の変形態様 1のように隔壁部材 1 2 1 2 gを有すれば、 高速回転時の 信頼性が向上するばかりではなく、 隔壁部材 1 2 1 2 gが冷却フィ ンの作 用をしてロー夕卷線 1 2 1 1がより有効に冷却されるようになるという効 果もある。  According to this modification, there is an effect that the same cooling action as that of the seventh and eighth embodiments can be obtained with almost the same configuration as that of the ninth embodiment. It should be noted that the presence of the partition wall member 12 12 g as in Modification 1 of Embodiment 9 described above not only improves the reliability during high-speed rotation, but also allows the partition wall member 121 There is also an effect that the low-winding winding 1 2 1 1 can be cooled more effectively by the operation of (1).
[実施例 1 0 ]  [Example 10]
(実施例 1 0の要部構成)  (Main Configuration of Example 10)
本実施例で特徴的である第 2口一夕 1 3 1 0の要部の構成については、 図 3 0及び図 3 1を用いて以下に詳説する。 第 2口一夕 1 3 1 0の要部 は、 外側界磁磁石 1 4 2 0および内側界磁磁石 1 2 2 0と、 両者 1 2 2 0 , 1 4 2 0を所定の位置に保持している口一夕ヨーク 1 3 1 1〜 : L 3 1 3 とから構成されている。 さらに口一夕ヨーク 1 3 1 1〜 1 3 1 3は、 ノ ツ クヨーク 1 3 1 1 と、 内周リ ング 1 3 1 2および外周リング 1 3 1 3とか ら構成されている。  The configuration of the main part of the second mouth 1310, which is a feature of the present embodiment, will be described in detail below with reference to FIGS. The main part of the second mouth 1310 is to hold the outer field magnet 144 and the inner field magnet 122 and both of them at predetermined positions. It is composed of yoke 1 3 1 1 ~: L 3 1 3. Further, the mouth yoke 1 3 1 1 to 1 3 1 3 is composed of a notch yoke 1 3 1 1, an inner ring 1 3 12 and an outer ring 13 13.
外側界磁磁石 1 4 2 0は、 それぞれ所定の厚さの平板状の永久磁石であ り、 第 2ロー夕 1 3 1 0の外周面に交番に磁極を向けるように第 2ロー夕 1 3 1 0の外周側に配設され、 外周界磁を形成している。 一方、 内側界磁 磁石 1 2 2 0は、 それぞれ外側界磁磁石 1 4 2 0に比べて周方向の幅が約 半分の所定の厚さの平板状の永久磁石であり、 二枚一組になっている。 そ して内側界磁磁石 1 2 2 0は、 それぞれの外側界磁磁石 1 4 2 0 と対応す る位置で、 各外側界磁磁石 1 4 2 0 と磁化方向 (磁極方向) をそろえて、 第 2ロー夕 1 3 1 0の内周側に配設され、 内周界磁を形成している。 さ らに詳しく! ½明すると、 第 2 口一夕 1 3 1 0の上記要部は、 前述のように 、 それぞれ外周界磁および内周界磁を形成する二種類の永久磁石 (内側界 磁磁石 1 2 2 0および外側界磁磁石 1 4 2 0 ) と、 同永久磁石を内部に保 持している口一夕ヨーク 1 3 1 1〜 1 3 1 3 とからなる。 The outer field magnets 1402 are plate-shaped permanent magnets each having a predetermined thickness, and the second row magnets 13 are arranged so that the magnetic poles are alternately directed to the outer peripheral surface of the second row magnets 1310. It is arranged on the outer peripheral side of 10 and forms an outer peripheral field. On the other hand, the inner field magnets 122 are plate-shaped permanent magnets each having a predetermined thickness of about half the circumferential width as compared with the outer field magnets 140, and are formed in pairs. Has become. So Then, the inner field magnets 122 are aligned with the outer field magnets 140 at the positions corresponding to the respective outer field magnets 140, and the magnetization directions (magnetic pole directions) are aligned. It is arranged on the inner circumference side of the 2nd row 1310 to form the inner circumference field. Learn more! In detail, the main part of the second mouth 1310 is composed of two kinds of permanent magnets (inner field magnets 1 2 0 And the outer field magnets 1420), and the mouth yoke 1311 to 1313 holding the permanent magnets inside.
外側界磁磁石 1 4 2 0は、 N極 S極を交番にして周方向に 1 2枚が配設 されており、 内側界磁磁石 1 2 2 0は、 外側界磁磁石 1 4 2 0に磁束の方 向を合わせる向きで 2 4枚が配設されている。 内側界磁磁石 1 2 2 0の周 方向の幅は、 外側界磁磁石 1 4 2 0の周方向の幅の約半分であり、 内側界 磁磁石 1 2 2 0は外側界磁磁石 1 4 2 0の一枚につき二枚が配設されてい る。 一方、 口一夕ヨーク 1 3 1 1〜: L 3 1 3は、 軟磁性塊材からなるバッ クヨーク 1 3 1 1 と、 積層電磁鋼板からなる内周リ ング 1 3 1 2および外 周リング 1 3 1 3 とから構成されている。  Outer field magnets 1 420 are arranged in the circumferential direction with N poles and S poles alternately arranged.Inner field magnets 122 are replaced with outer field magnets 140 Twenty-four sheets are arranged in the direction to match the direction of the magnetic flux. The circumferential width of the inner field magnet 1 220 is about half of the circumferential width of the outer field magnet 140, and the inner field magnet 122 is the outer field magnet. Two cards are provided for each one of the 0 cards. On the other hand, the mouth yoke 1 3 1 1-: L 3 13 is composed of a back yoke 1 3 1 1 made of a soft magnetic mass material, an inner ring 1 3 1 2 made of laminated magnetic steel sheets, and an outer ring 1 3 1 3
ノ ヅクヨーク 1 3 1 1は、 肉厚の離間部 1 3 1 1 dと薄肉の離間部 1 3 1 1 dとが交互に形成されている略中空円筒状の部材であって、 軟磁性の 鋼材から形成されている。 すなわち、 バックヨーク 1 3 1 1は、 先ず冷間 圧延鋼板または軟鋼板 ( S 1 0 Cや S 1 5 C等) が丸められて溶接により 中空円筒が作成され、 次に同中空円筒の外周面および内周面が削りだし加 ェされて形成されている。  The metal yoke 1 3 1 1 1 is a substantially hollow cylindrical member in which thick spaced portions 1 3 1 1 d and thin spaced portions 1 3 1 1 d are formed alternately, and is a soft magnetic steel material. Is formed from. That is, the back yoke 1311 is formed by first rolling a cold-rolled steel plate or mild steel plate (such as S10C or S15C) to form a hollow cylinder by welding, and then forming an outer peripheral surface of the hollow cylinder. And the inner peripheral surface is cut out and added.
バックヨーク 1 3 1 1の外周面には、 外側界磁磁石 1 4 2 0の厚さの半 分程度が埋設される外周凹部 1 3 1 1 f と、 離間部 1 3 1 1 dから外側界 磁磁石 1 4 2 0の間に突出している突条である突起部 1 3 1 1 bとが、 交 互に形成されている。 一方、 バックヨーク 1 3 1 1 の内周面には、 内側界 磁磁石 1 2 2 0の厚さの半分程度が埋設される内周凹部 1 3 1 1 eと、 離 間部 1 3 1 1 dから内側界磁磁石 1 2 2 0の間に突出している突条である 突起部 1 3 1 1 aとが形成されている。 ここで、 突起部 1 3 1 1 a , 1 3 1 1 bは互いに同数 ( 1 2条ずつ) だけ形成されているが、 外周凹部 1 3 1 1 f は 1 2ケ所、 内周凹部 1 3 1 1 eは 2 4ケ所に形成されている。 また、 バックヨーク 1 3 1 1の外側界磁磁石 1 4 2 0の周方向中間部の 付近では、 外側界磁磁石 1 4 2 0 と内側界磁磁石 1 2 2 0 とが互いに近接 して、 ノ ヅクヨーク 1 3 1 1 に薄肉の近接部 1 3 1 1 cが形成されている 。 逆に、 バックヨーク 1 3 1 1の外側界磁磁石 1 4 2 0の周方向端部の付 近では、 外側界磁磁石 1 4 2 0 と内側界磁磁石 1 2 2 0 とが互いに離間し て、 バックヨーク 1 3 1 1に厚肉の離間部 1 3 1 1 dが形成されている。 内周リ ング 1 3 1 2は、 略リ ング状の積層電磁鋼板が多数積層された部 材であって、 軸長方向の長さはバックヨーク 1 3 1 1 と等しく、 バックョ —ク 1 3 1 1の内周面の内周凹部 1 3 1 1 eに各内側界磁磁石 1 2 2 0を 押圧挟持している。 内周リング 1 3 1 2は各内側界磁磁石 1 2 2 0に係合 しており、 内周リ ング 1 3 1 2の外周面は、 各内側界磁磁石 1 2 2 0の内 側の表面に隙間なく当接している。 On the outer peripheral surface of the back yoke 1 3 1 1, there is an outer concave 1 3 1 1 f in which about half of the thickness of the outer field magnet 14 2 0 is buried, and the outer Protrusions 1311b, which are ridges protruding between the magnets 140, are formed alternately. On the other hand, on the inner peripheral surface of the back yoke 1 3 1 1, an inner peripheral concave portion 1 3 1 1 e in which about half of the thickness of the inner field magnet 1 2 0 2 is buried, and a spaced portion 1 3 1 1 A projection 1311a, which is a ridge protruding from the inner field magnet 122 from d, is formed. Here, the protrusions 1311a and 1311b are formed in the same number (12 rows each), but the outer peripheral recesses 1311f are 12 places and the inner peripheral recesses 1311. 1 e is formed in 24 places. Also, in the vicinity of the circumferentially intermediate portion of the outer field magnets 144 of the back yoke 1311, the outer field magnets and the inner field magnets approach each other, Thin yoke 1 3 1 1 is formed with thin adjacent portion 1 3 1 1 c . Conversely, near the circumferential end of the outer field magnet 144 of the back yoke 1311, the outer field magnet 1420 and the inner field magnet 1220 are separated from each other. The back yoke 1311 has a thick spaced portion 1311d formed thereon. The inner ring 1 3 1 2 is a member in which a large number of substantially ring-shaped laminated electromagnetic steel sheets are stacked, and the length in the axial direction is equal to the back yoke 1 3 1 1. The inner field magnets 1 220 are pressed and held in the inner peripheral recesses 1 3 1 1 e of the inner peripheral surface of 1 1. The inner ring 1 3 1 2 is engaged with each inner field magnet 1 2 0 0, and the outer peripheral surface of the inner ring 1 3 1 2 is located on the inner side of each inner field magnet 1 2 2 0. It is in contact with the surface without gaps.
一方、 外周リ ング 1 3 1 3は、 略リ ング状の積層電磁鋼板が多数積層さ れた部材であって、 軸長方向の長さはバックヨーク 1 3 1 1 と等しく、 バ ックヨーク 1 3 1 1の外周面の外周凹部 1 3 1 1 f に各外側界磁磁石 1 4 2 0を押圧挟持している。 外周リング 1 3 1 3は各外側界磁磁石 1 4 2 0 に係合しており、 外周リ ング 1 3 1 3の内周面は、 各外側界磁磁石 1 4 2 0の外側の表面に隙間なく当接している。  On the other hand, the outer peripheral ring 13 13 is a member in which a large number of substantially ring-shaped laminated electromagnetic steel sheets are laminated, and the length in the axial direction is equal to the back yoke 13 Each outer field magnet 1402 0 is pressed and held between the outer peripheral recesses 1311f of the outer peripheral surface of 11. The outer ring 1 3 1 3 is engaged with each outer field magnet 1 420, and the inner peripheral surface of the outer ring 1 3 1 3 is attached to the outer surface of each outer field magnet 1 420. They are in contact without any gap.
ノ ックヨーク 1 3 1 1の突起部 1 3 1 1 a , 1 3 1 1 bは、 ノ ックョ一 ク 1 3 1 1の肉厚の離間部 1 3 1 1 dを半径方向に挟んで互いに背向し、 それぞれ外側と内側とへ突出している。 そして、 バックヨーク 1 3 1 1の 突起部 1 3 1 1 a , 1 3 1 1 bは、 それぞれの先端で内周リ ング 1 3 1 2 および外周リング 1 3 1 3に溶接されている。 すなわち、 バックヨーク 1 3 1 1の内周面に形成されている突起部 1 3 1 1 aの先端は、 内周リング 1 3 1 2の外周面に軸長方向の全部にわたって抵抗溶接されている。 同様 に、 バックヨーク 1 3 1 1の外周面に形成されている突起部 1 3 1 1 bの 先端は、 外周リ ング 1 3 1 3の内周面に軸長方向の全部にわたって抵抗溶 接されている。 これらの抵抗溶接は、 内周リ ング 1 3 1 2の内周面と外周 リング 1 3 1 3の外周面とに抵抗溶接用の電極を当てて、 軸長方向に所定 のピッチでずらしながら行われる。  The projections 1 3 1 1 a and 1 3 1 1 b of the knock yoke 1 3 1 1 are opposed to each other with the thick section 1 3 1 1 d of the knock 1 3 1 d sandwiched in the radial direction. And protrude outward and inward, respectively. The protrusions 1311a and 1311b of the back yoke 1311 are welded to the inner ring 1312 and the outer ring 1313 at their respective tips. That is, the tip of the projection 1311a formed on the inner peripheral surface of the back yoke 1311 is resistance-welded to the outer peripheral surface of the inner ring 1312 in the entire axial direction. . Similarly, the tip of the projection 1311b formed on the outer peripheral surface of the back yoke 1311 is resistance-welded to the inner peripheral surface of the outer ring 1313 in the axial length direction. ing. These resistance weldings are carried out by applying electrodes for resistance welding to the inner peripheral surface of the inner ring 1312 and the outer peripheral surface of the outer ring 1313 while shifting them at a predetermined pitch in the axial direction. Will be
内側界磁磁石 1 2 2 0および外側界磁磁石 1 4 2 0を挟持しながら、 内 周リング 1 3 1 2 とバックヨーク 1 3 1 1 と外周リ ング 1 3 1 3 とがー体 に溶接されているので、 口一夕ヨーク 1 3 1 1〜 1 3 1 3の剛性は非常に 高い。 それゆえ、 第 2口一夕が高速回転した場合にも、 口一夕ヨーク 1 3 1 1〜 1 3 1 3の軸長方向の中間部が遠心方向へ膨らむ変位は極めて小さ く抑制されている。 また、 内周リ ング 1 3 1 2および外周リング 1 3 1 3とバックヨーク 1 3 1 1 とが互いに溶接されており、 内側界磁磁石 1 2 2 0および外側界磁磁石 1 4 2 0を押圧挟持してガ夕がないので、 第 2口 —夕 1 3 1 0が偏心する恐れがない。 したがって、 固定ピン 1 3 3 3のガ 夕に起因して、 第 2ロー夕 1 3 1 0のエアギャップ d l , d 2が詰まって しまったり、 第 2口一夕 1 3 1 0のダイナミ ックバランスが崩れてしまつ たりする恐れがなくなる。 The inner ring 1 3 1 2, back yoke 1 3 1 1, and outer ring 1 3 1 3 are welded to the body while holding the inner field magnet 1 2 0 and the outer field magnet 1 4 2 0 The stiffness of the yoke 1 3 1 1 to 1 3 1 3 is very high. Therefore, even when the second mouth is rotating at high speed, the displacement of the middle part of the mouth yoke 1 3 1 1 to 1 3 13 in the axial direction in the centrifugal direction is extremely small. Has been suppressed. In addition, the inner ring 1 3 1 2 and the outer ring 1 3 1 3 and the back yoke 1 3 1 1 are welded to each other, and the inner field magnet 1 2 0 and the outer field magnet 1 4 There is no danger of eccentricity of the 2nd mouth-evening 1 310 because there is no pressing and holding. Therefore, the air gaps dl and d2 of the second row 1310 may be clogged due to the connection of the fixed pins 1333, and the dynamic balance of the 1st row 1310 may be lost. There is no danger of collapsing.
そればかりではなく、 内側界磁磁石 1 2 2 0および外側界磁磁石 1 4 2 0と口一夕ヨーク 1 3 1 1〜 1 3 1 3との間に隙間がほとんど形成されな いので、 第 2口一夕 1 3 1 0の内部での磁気抵抗が少なく電磁的な損失が 少ない。 それゆえ、 第 2口一夕 1 3 1 0の電磁的な効率は極めて高い。 ここで、 前述の近接部 1 3 1 1 cおよび離間部 1 3 1 1 dを形成している 口—夕ヨーク 131 ι〜ι 313のバックヨーク 1311の寸法、 特に離 間部 1 3 1 1 dの寸法について考察を加えることにする。 Not only that, there is almost no gap between the inner field magnets 122 and the outer field magnets 140 and the mouth yoke 1311 to 1313. Low magnetic resistance inside 1 3 1 0 1 and low electromagnetic loss. Therefore, the electromagnetic efficiency of the second mouth 1310 is extremely high. Here, the above-mentioned proximity portion 1 3 1 1 c and the separation portion 1 3 1 1 d are formed. Dimensions of the back yoke 1311 of the mouth—evening yoke 1 3 1 ι ~ ι 3 13, particularly the separation portion 1 3 Consider the dimensions of 1 1 d.
第 2口一夕 1 3 1 0の口一夕ヨーク 1 3 1 1〜: 1 3 1 3を透過する磁束 の状態には、 図示はしないが、 様々な場合があり得る。 たとえば、 第 2口 一夕 1 3 1 0の磁束がそのまま第 1ロー夕 1 2 1 0およびステ一夕 1 4 1 0に同等に達している場合がある。 また、 ステ一夕 1 4 1 0側からの磁束 の一部が第 2ロー夕 1 3 1 0のバックヨーク 1 3 1 1をバイパスして、 比 較的短い閉磁路を形成している場合もある。 逆に、 第 1口一夕 1 2 1 0側 からの磁束の一部が第 2口一夕 1 3 1 0のバックヨーク 1 3 1 1をバイパ スして、 比較的短い閉磁路を形成している場合もある。  1st mouth 1 3 1 0 1 mouth 1 yoke 1 3 1 1 ~: The state of the magnetic flux passing through 1 3 13 is not shown, but there are various cases. For example, there is a case where the magnetic flux of the second mouth 1310 reaches the first low 1211 and the stay 1410 equivalently. Also, when a part of the magnetic flux from the stay 1401 side bypasses the back yoke 1311 of the second row 1310, a relatively short closed magnetic circuit is formed. is there. Conversely, part of the magnetic flux from the first mouth 1 2 1 0 side bypasses the back yoke 1 3 1 1 of the 2 1 mouth 1 3 10 0, forming a relatively short closed magnetic circuit. In some cases.
仮に、 内側界磁磁石 1 2 2 0を含む回転数調整部 1 2 0 0の界磁の磁束 が、 第 1口一夕 1 2 1 0の電機子の電磁作用により完全に相殺された場合 を想定しょう。 すると、 口一夕ヨーク 1 3 1 1〜 1 3 1 3のバックヨーク 1 3 1 1の離間部 1 3 1 1 dの厚さは、 トルク調整部 1 4 0 0に含まれる 外側界磁磁石 1 4 2 0の磁束が通れるだけの幅を有すれば良いことになる 。 ここで、 外側界磁磁石 1 4 2 0および内側界磁磁石 1 2 2 0は、 ともに 同一材料からなる希土類磁石である。 また、 希土類磁石が磁路内で生じる 磁束密度は、 通常 0. 8テスラ程度であり、 口一夕ヨーク 1 3 1 1〜 1 3 1 3内に形成される磁路の磁束密度は、 最大で通常 1. 0〜 2. 0テスラ 程度である。 そして、 磁路として作用するバックヨーク 1 3 1 1の離間部 1 3 1 1 dの半径方向の幅を t とし、 外側界磁磁石 1 4 2 0の一つあたり の周方向の幅を Lとすれば、 両者 t, Lの間には次式の関係が成り立つ。 1. 0 t < 0. 8 L/2 < 2. 0 t Suppose that the magnetic flux of the field of the rotation speed adjustment unit 1200 including the inner field magnets 122 is completely canceled by the electromagnetic action of the armature of the first mouth. Let's assume. Then, the thickness of the back yoke 1 3 1 1 of the mouth yoke 1 3 1 1 to 1 3 1 3 1 3 1 1 d is included in the torque adjustment section 1 400 The outer field magnet 1 What is necessary is to have a width enough to pass the 420 magnetic flux. Here, the outer field magnet 144 and the inner field magnet 122 are both rare earth magnets made of the same material. The magnetic flux density generated by the rare-earth magnet in the magnetic path is usually about 0.8 Tesla, and the magnetic flux density of the magnetic path formed in the mouth yoke 1 3 1 1 to 1 3 13 is a maximum. Usually it is around 1.0 to 2.0 Tesla. Then, let t be the radial width of the spaced portion 1 3 1 1 d of the back yoke 1 3 1 1 acting as a magnetic path. Assuming that the circumferential width of L is L, the following relationship holds between both t and L. 1.0 t <0.8 L / 2 <2.0 t
したがって、 バ ヅクヨーク 1 3 1 1の離間部 1 3 1 1 dの半径方向の幅 tは、 次式の範囲にあれば必要十分であることになる。  Therefore, the radial width t of the spaced portion 1311d of the back yoke 1311 is sufficient if it is within the range of the following expression.
0. 2 L < t < 0. 4 L  0.2 L <t <0.4 L
実際の設計にあたっては、 外側界磁磁石 1420および内側界磁磁石 1 220の磁気特性と、 バックヨーク 1 3 1 1の磁気特性とが、 かなり正確 に与えられ得る。 そこで、 実運用上でバックヨーク 1 3 1 1の離間部 1 3 1 1 dを通すべき磁束の最大量を設定し、 前述の考え方に基づいて離間部 1 3 1 1 dの半径方向の幅 tを最小限に決定することが可能である。  In an actual design, the magnetic properties of the outer field magnet 1420 and the inner field magnet 1220 and the magnetic properties of the back yoke 1311 can be given fairly accurately. Therefore, in the actual operation, the maximum amount of magnetic flux that should pass through the separated portion 1311d of the back yoke 1311 is set, and the radial width t of the separated portion 1311d is set based on the above-mentioned concept. Can be determined to a minimum.
一方、 ノ ックヨーク 1 3 1 1の近接部 1 3 1 1 cにはほとんど磁束が通 らないので、 強度の許す範囲で半径方向の幅を狭く設定することが可能で ある。 そして、 外側界磁磁石 1420および内側界磁磁石 1 220が平板 状でありながら、 近接部 1 3 1 1 cから離間部 1 3 1 1 dに移行するに連 れてバックヨーク 1 3 1 1の半径方向の幅が増える。 近接部 13 1 1 cか ら離間部 13 1 1 dに移るにつれてバックヨーク 1 3 1 1を通すべき磁束 は増大するので、 その結果、 バックヨーク 1 3 1 1内はほぼ一定の磁束密 度に保たれ、 バ ヅクヨーク 1 3 1 1の容積効率は優れたものとなっている 以上の考察から、 外側界磁磁石 1420および内側界磁磁石 1 220に 安価な平板状の永久磁石を使用しながら、 中空円筒状の第 2ロー夕 13 1 0の要部の厚みを必要最小限に抑制することができることが分かる。  On the other hand, since almost no magnetic flux passes through the adjacent portion 1311c of the knock yoke 1311, it is possible to set the radial width as narrow as the strength allows. Then, while the outer field magnet 1420 and the inner field magnet 1220 are plate-shaped, the back yoke 1311 moves along with the transition from the adjacent section 1311c to the separated section 1311d. Radial width increases. The magnetic flux passing through the back yoke 1311 increases as the distance from the proximity 1311c to the separation 1311d increases, and as a result, the inside of the back yoke 1311 has a substantially constant magnetic flux density. The volume efficiency of the back yoke 1311 is excellent.From the above considerations, while using inexpensive flat permanent magnets for the outer field magnet 1420 and the inner field magnet 1220, It can be seen that the thickness of the main part of the hollow cylindrical second row 13.10 can be reduced to a necessary minimum.
(実施例 1 0の効果)  (Effect of Example 10)
本実施例の車両用駆動装置 1 000は、 以上の構成及び作用を有するの で数々の効果を有するが、 それらの効果は次の三点に要約される。  The vehicle drive device 1000 according to the present embodiment has the above-described configuration and operation, and thus has many effects. The effects are summarized in the following three points.
第 1の効果は、 大幅な小型軽量化である。  The first effect is a significant reduction in size and weight.
すなわち、 本実施例の車両用駆動装置 1 000によれば、 従来技術と異 なってディ ファレンシャル · ホイールアセンブリ (通常の AT車ではォ一 トマチック . トランスミ ッション) が必要ないので、 その分大幅な小型軽 量化が可能である。 また、 発電機と電動機とを別個にもつ構成の車両用駆 動装置と比較しても、 本実施例の車両用駆動装置 1 000は、 簡素にして 小型かつ軽量に構成されている。 なぜならば、 本実施例の車両用駆動装置 That is, according to the vehicle drive device 1000 of the present embodiment, unlike the prior art, a differential wheel assembly (automatic transmission in a normal AT vehicle) is not required, and accordingly, a large amount is required. Small size and light weight are possible. Also, compared to a vehicle drive device having a configuration in which a generator and an electric motor are separately provided, the vehicle drive device 1000 of this embodiment is simple, small, and lightweight. This is because the vehicle drive device of the present embodiment
1 000では、 回転数調整部 1 200と トルク調整部 1400との二重構 造により、 発電機能と電動機能とをもつ二つの回転電機が同軸で一体化さ れているからである。 For 1 000, the rotation speed adjustment unit 1200 and the torque adjustment unit 1400 This is because two rotating electric machines having a power generation function and an electric function are coaxially integrated by the structure.
また、 本実施例の車両用駆動装置 1 0 0 0によれば、 前述のように、 第 2ロー夕 1 0が極めて合理的に構成されており、 磁気的な効率が高い ので高性能が得られる。 そればかりではなく、 第 2口一夕 1 3 1 0が堅牢 で剛性が高く薄肉化が可能であるので、 低廉化と同時にさらなる小型化が 可能である。 また、 第 2ロー夕 1 3 1 0の慣性モ一メン 卜の低減により、 動的な応答特性が向上しているという効果も生じる。  Further, according to the vehicle drive system 100 of the present embodiment, as described above, the second row 10 is extremely rationally configured and has high magnetic efficiency, so that high performance can be obtained. Can be Not only that, but the second mouth 1310 is robust and has high rigidity and can be made thinner, so that it is possible to reduce the cost and further downsize. In addition, the effect of improving the dynamic response characteristic is also produced by the reduction of the inertial moment of the second row 1310.
その結果、 本実施例の車両用駆動装置 1 0 0 0によれば、 搭載車両の小 型軽量化が可能になり、 搭載車両の製品コス トおよび運用コス トの低廉化 につながるとともに、 軽量なので動力性能の向上にもつながるという効果 が発揮される。  As a result, according to the vehicle drive device 100 of the present embodiment, it is possible to reduce the size and weight of the mounted vehicle, which leads to a reduction in the product cost and operation cost of the mounted vehicle. This has the effect of improving power performance.
第 2の効果は、 軸出力の変換効率の向上である。  The second effect is improvement in conversion efficiency of shaft output.
すなわち、 本実施例の車両用駆動装置 1 0 0 0によれば、 前述のように やや減速気味で運用するように搭載車両の駆動系の設計がなされていれば 、 電磁気的な損失も最小限に抑制され、 極めて高効率での運用が可能にな る。 それゆえ、 ディ ファレンシャル ' ホイールアセンブリを有する従来技 術に比べ、 多数の歯車の嚙み合いによる機械的な損失もないので、 動力の 伝達効率が向上するという効果がある。  That is, according to the vehicle drive system 100 of the present embodiment, if the drive system of the on-board vehicle is designed to operate with a slight deceleration as described above, the electromagnetic loss is minimized. And operation at extremely high efficiency becomes possible. Therefore, compared to the conventional technology having a differential 'wheel assembly, there is no mechanical loss due to meshing of a large number of gears, so that there is an effect that power transmission efficiency is improved.
また、 発電機と電動機とを別個にもつ構成の車両用駆動装置では、 全て の軸入力を発電機で吸収し外部回路を経由して電動機を駆動するが、 本実 施例では第 1 口一夕 1 2 1 0から第 2ロー夕 1 3 1 0をある程度直接駆動 する。 それゆえ、 本実施例の駆動装置によれば電気的な損失が少ないので 、 発電機と電動機とを別個にもつ構成の車両用駆動装置と比較しても、 高 効率の動力伝達が可能である。  In a vehicle drive device having a generator and a motor separately, all the shaft inputs are absorbed by the generator and the motor is driven via an external circuit. Driving the second row evening 1 310 from evening 1 210 to some extent. Therefore, according to the drive device of the present embodiment, since electric loss is small, high-efficiency power transmission is possible as compared with a vehicle drive device having a configuration in which a generator and an electric motor are separately provided. .
したがって、 本実施例の車両用駆動装置 1 0 0 0によれば、 エンジン 1 0 0から駆動輪 7 0 0まで高効率での動力伝達が可能であるので、 搭載車 両の低燃費化とそれに伴う低公害化とが達成されるという効果がある。 第 3の効果は、 製品のコス トダウンである。  Therefore, according to the vehicle drive system 100 of the present embodiment, power can be transmitted with high efficiency from the engine 100 to the drive wheels 700, thereby reducing the fuel consumption of the on-board vehicle and reducing it. There is an effect that the accompanying low pollution is achieved. The third effect is product cost reduction.
すなわち、 本実施例の車両用駆動装置 1 0 0 0では、 構成が簡素であり 、 ディ ファレンシャル · ホイールアセンブリも別個の発電機および電動機 も必要とされないので、 製品コス トが低減されている。 さらに、 前述のよ うに第 2ロー夕 1 3 1 0が既製品の永久磁石を材料として合理的かつ製造 P T /04302 That is, the vehicle drive device 100 of the present embodiment has a simple configuration and does not require a differential wheel assembly and a separate generator and electric motor, so that the product cost is reduced. In addition, as mentioned above, the second row of products was manufactured from off-the-shelf permanent magnets in a reasonable and PT / 04302
6 1  6 1
容易に構成されているので、 第 2 口 一夕 1 3 1 0の製造コス トを抑制する ことができ、 よりいっそう車両用駆動装置 1 0 0 0の製品コス トが低減さ れている。 Since it is easily configured, the manufacturing cost of the second mouth 1310 can be suppressed, and the product cost of the vehicle drive device 100 is further reduced.
したがって、 本実施例の車両用駆動装置 1 0 0 0を搭載した車両は、 前 述の運用費 (すなわち燃費) ばかりではなく、 製品コス トまで低廉化され るという効果がある。  Therefore, the vehicle equipped with the vehicle drive device 100 of the present embodiment has the effect of reducing not only the above-mentioned operation cost (ie, fuel efficiency) but also the product cost.
(実施例 1 0の変形態様 1 )  (Modification 1 of Example 10)
本実施例の変形態様 1 として、 バックヨーク 1 3 1 1から突出する突起 部 1 3 1 1 a , 1 3 1 1 bの代わりに、 逆に内周リ ング 1 3 1 2および外 周リング 1 3 1 3からそれぞれバ ヅクヨーク 1 3 1 1に対して突出する突 起部が形成されている第 2 ロ ー夕 1 3 1 0をもつ車両用駆動装置の実施も 可能である。 本変形態様によれば、 前述の実施例 1 0の効果に加えて、 バ ックヨーク 1 3 1 1の削り出し量が低減されるので、 ノ ックヨーク 1 3 1 1の材料費および加工工数が低減されるというコス トダウン効果がある。  As a modified embodiment 1 of the present embodiment, instead of the projections 1 3 1 1 a and 1 3 1 1 b protruding from the back yoke 1 3 1 1, instead of the inner ring 1 3 1 2 and the outer ring 1, It is also possible to implement a vehicle drive device having a second row 1310 in which a projection projecting from 313 to the back yoke 1311 is formed. According to this modification, in addition to the effect of the above-described embodiment 10, the amount of cut-out of the back yoke 1 3 1 1 1 is reduced, so that the material cost and processing man-hour of the knock yoke 1 3 1 1 1 are reduced. This has the effect of reducing costs.
産業上の利用可能性 Industrial applicability
本発明は、 エンジンと回転電機との両方を備えているハイプリ ッ ド型車 両用の電磁カップリング駆動装置に関し、 構成がシンプルで軽量小型であ るばかりではなく動力の伝達効率も比較的高いので、 搭載車両を小型軽量 で動力性能が高くすることが可能になり、 搭載車両の低燃費化および低公 害化が達成され得る。  The present invention relates to an electromagnetic coupling drive device for a hybrid vehicle equipped with both an engine and a rotating electric machine. The drive device is not only simple and lightweight, but also has a relatively high power transmission efficiency. In addition, it is possible to reduce the size and weight of the onboard vehicle and enhance the power performance, thereby achieving low fuel consumption and low pollution of the onboard vehicle.

Claims

請求の範囲 The scope of the claims
1 . ステ一夕コアおよびステ一夕卷線をもち、 機枠に固定されているス テ一夕と、  1. A station that has a stationary core and a stationary winding wire and is fixed to the machine frame.
ロー夕コアおよびロー夕卷線をもち、 エンジン出力軸と接続されてこの ステ一夕と同軸に軸支され、 所定の間隔を空けてこのステ一夕に対向して いる第 1 ロー夕と、  A first rotor having a low core and a low winding, connected to the engine output shaft, coaxially supported with the stay, and facing the stay at a predetermined interval;
駆動輪の駆動軸と接続されてこのステ一夕と同軸に軸支され、 外周界磁 を形成している外周面でこのステ一夕に対向し、 内周界磁を形成している 内周面でこの第 1 口一夕に対向している第 2口一夕と、  The inner periphery is connected to the drive shaft of the drive wheel, is coaxially supported with the stay, and faces the stay on the outer peripheral surface forming the outer peripheral field, and forms the inner peripheral field. The second mouth, which faces the first mouth,
を有する車両用駆動装置において、 In the vehicle drive device having
前記第 2口一夕は、  In the second mouth,
周方向に所定間隔を空けて配設され、 半径方向に交番に磁極を向けて前 記外周界磁および前記内周界磁を形成する複数の主界磁磁石と、  A plurality of main field magnets arranged at predetermined intervals in the circumferential direction, forming the outer peripheral field and the inner peripheral field by turning the magnetic poles alternately in the radial direction,
中空円筒状に積層された多数の電磁鋼板からなり、 これらの主界磁磁石 を保持している口一夕ヨークとを有し、  It has a large number of magnetic steel sheets stacked in a hollow cylindrical shape, and has a mouth yoke that holds these main field magnets,
前記第 1 ロー夕と前記第 2口一夕との間に内周磁気回路が形成されて ト ルクの授受が行われ、  An inner magnetic circuit is formed between the first row and the second row to transmit and receive torque,
前記第 2ロー夕と前記ステ一夕との間に外周磁気回路が形成されて トル クの授受が行われ、  An outer peripheral magnetic circuit is formed between the second row and the first night to exchange torque,
前記第 1 ロー夕の回転方向と前記第 2ロー夕の回転方向とは、 搭載車両 の前進時に同一方向であることを特徴とする車両用駆動装置。  The vehicle drive device according to claim 1, wherein the rotation direction of the first row and the second row is the same direction when the mounted vehicle moves forward.
2 . 前記主界磁磁石は、 平板状の永久磁石ブロックからなる、  2. The main field magnet is composed of a plate-shaped permanent magnet block,
請求項 1記載の車両用駆動装置。  The vehicle drive device according to claim 1.
3 . 前記主界磁磁石は、 外周面および内周面がそれぞれの半径の曲率を もつて湾曲した永久磁石プロックからなる、  3. The main field magnet comprises a permanent magnet block whose outer peripheral surface and inner peripheral surface are curved with curvatures of respective radii.
請求項 1記載の車両用駆動装置。  The vehicle drive device according to claim 1.
4 . 前記第 2口一夕は、  4. In the second mouth,
近接した前記主界磁磁石に磁極の方向が一致しており、 一端がこれらの 主界磁磁石の周方向端部に近接し、 他端が互いに遠心方向および求心方向 に分かれて配設され、 それぞれ前記口一夕ヨークに保持されている外側副 界磁磁石および内側副界磁磁石を、  The directions of the magnetic poles coincide with the main magnetic field magnets adjacent to each other, one end is close to the circumferential ends of these main magnetic field magnets, and the other end is arranged separately in the centrifugal direction and the centripetal direction, The outer sub-field magnet and the inner sub-field magnet respectively held by the mouth yoke are
前記各主界磁磁石について少なく とも 1組を有する、  Having at least one set for each said field magnet;
請求項 1記載の車両用駆動装置。 The vehicle drive device according to claim 1.
5 . 前記外側副界磁磁石の厚さと前記内側副界磁磁石の厚さとの和は、 前記主界磁磁石の厚さよりも厚く、 5. The sum of the thickness of the outer sub-field magnet and the thickness of the inner sub-field magnet is greater than the thickness of the main field magnet,
該外側副界磁磁石の厚さおよび該内側副界磁磁石の厚さのうち少なく と も一方は、 該主界磁磁石の厚さ未満である、  At least one of the thickness of the outer sub-field magnet and the thickness of the inner sub-field magnet is less than the thickness of the main field magnet,
請求項 4記載の車両用駆動装置。  The vehicle drive device according to claim 4.
6 . 前記主界磁磁石、 前記外側副界磁磁石および前記内側副界磁磁石は 、 いずれも平板状の永久磁石ブロックからなる、  6. The main field magnet, the outer sub-field magnet, and the inner sub-field magnet are each formed of a plate-shaped permanent magnet block.
請求項 4記載の車両用駆動装置。  The vehicle drive device according to claim 4.
7 . 前記主界磁磁石による磁束が前記第 1 ロー夕あるいはステ一夕の卷 線に起因する電機子反作用により、 増加あるいは減少した場合には、 他方の卷線の通電量を補正して トルクを補正する、  7. When the magnetic flux generated by the main field magnet increases or decreases due to the armature reaction caused by the winding of the first rotor or the stator, the amount of current supplied to the other winding is corrected to reduce the torque. To correct,
請求項 1記載の車両用駆動装置。  The vehicle drive device according to claim 1.
8 . 機枠に固定されているステ一夕と、 8. With the stay fixed to the machine frame,
このステ一夕と同軸に軸支されており、 所定の間隔を空けてこのステー 夕と対向している第 1 ロー夕と、  A first row shaft that is coaxially supported with the stay and that faces the stay at a predetermined interval;
このステ一夕と同軸に軸支されており、 このステ一夕とこの第 1 口一夕 との間のこの間隔に配設されて、 このステ一夕およびこの第 1 ロー夕と対 向している第 2口一夕と、  It is coaxially supported with the stay, and is disposed at the interval between the stay and the first mouth, facing the stay and the first row. And the second mouth that is
軸出力が入力されるクラツチ入力軸をもち、 このクラッチ入力軸をこの 第 1 口一夕およびこの第 2口一夕のうち一方に連軸可能な入力軸切替えク ラツチと、  An input shaft switching clutch which has a clutch input shaft to which shaft output is input, and is capable of connecting the clutch input shaft to one of the first port and the second port.
軸出力を出力するクラッチ出力軸をもち、 このクラッチ出力軸をこの第 1 口一夕およびこの第 2口一夕のうち一方に連軸可能な出力軸切替えクラ ツチと、  An output shaft switching clutch which has a clutch output shaft for outputting shaft output, and is capable of connecting the clutch output shaft to one of the first port and the second port.
を有し、 Has,
前記第 1 ロー夕および前記第 2ロー夕のうち一方に形成されている内周 回転磁界と、 他方に形成されている内周磁極との間に、 内周磁気回路が形 成されて トルクの授受が行われ、  An inner magnetic circuit is formed between an inner rotating magnetic field formed on one of the first rotor and the second rotor and an inner magnetic pole formed on the other of the first rotor and the second rotor. Exchange is performed,
前記ステ一夕および前記第 2口一夕のうち一方に形成されている外周回 転磁界と、 他方に形成されている外周磁極との間に、 外周磁気回路が形成 されて トルクの授受が行われることを特徴とする、  An outer peripheral magnetic circuit is formed between the outer peripheral rotating magnetic field formed on one of the stay and the second opening and the outer peripheral magnetic pole formed on the other, and torque is transferred. Characterized by being
車両用駆動装置。  Vehicle drive unit.
9 . 前記第 1 口一夕と前記第 2 口一夕とは、 搭載車両が前進中には同一 方向に回転する、 9. The first mouth and the second mouth are the same while the mounted vehicle is moving forward. Rotate in the direction,
請求項 7もしくは 8のうちいずれかに記載の車両用駆動装置。  The vehicle drive device according to claim 7 or 8.
1 0 . 前記クラッチ入力軸の回転数が前記クラツチ出力軸の回転数を上 回っている場合には、 このクラツチ入力軸は前記第 1 口一夕に連軸される と共に、 このクラツチ出力軸は前記第 2口一夕に連軸され、  10. If the rotational speed of the clutch input shaft is higher than the rotational speed of the clutch output shaft, the clutch input shaft is connected to the first port and the clutch output shaft is Connected to the second mouth overnight,
逆にこのクラツチ入力軸の回転数がこのクラツチ出力軸の回転数に及ば ない場合には、 このクラッチ入力軸はこの第 2口一夕に連軸されると共に 、 このクラッチ出力軸はこの第 1 口一夕に連軸されて、  Conversely, when the rotation speed of the clutch input shaft does not reach the rotation speed of the clutch output shaft, the clutch input shaft is connected to the second port and the clutch output shaft is connected to the first port. It is connected to the mouth overnight,
第 1 ロー夕の回転数は、 第 2口一夕の回転数以上になる、  The rotation speed of the first row is more than the rotation speed of the second mouth,
請求項 7ないし 9のうちいずれかに記載の車両用駆動装置。  A vehicle drive device according to any one of claims 7 to 9.
1 1 . 前記外周回転磁界および前記内周回転磁界は、 それぞれインバ一 夕により制御され、  11. The outer peripheral rotating magnetic field and the inner peripheral rotating magnetic field are each controlled by an inverter,
刖記第 1 口一夕および前記第 2 ロー夕のうち前記クラッチ入力軸に連軸 されている一方のロー夕が、 発電作用および電動作用を介して、 前記クラ ツチ出力軸に連軸されている他方のロー夕に回転駆動トルクを与える、 請求項 7ないし 1 0のうちいずれかに記載の車両用駆動装置。  の う ち One of the first port and the second port connected to the clutch input shaft is connected to the clutch output shaft via a power generating action and an electric action. The vehicle drive device according to any one of claims 7 to 10, wherein a rotational drive torque is applied to the other rotor.
1 2 . 各前記ィ ンバ一夕に接続されているバヅテリを有することを特徴 とする 請求項 1 1記載の車両用駆動装置。  12. The vehicle drive device according to claim 11, further comprising a battery connected to each of the members.
1 3 . 機枠に固定されており、 中空円筒状に配設されたステ一夕コアお よびステ一夕卷線を持つステ一夕と、  1 3. A stay core fixed to the machine frame and having a stay core and a stay coil wound in a hollow cylindrical shape.
このステ一夕と同軸にこの機枠に対して回転自在に軸支されており、 所 定の間隔を空けてこのステ一夕に対向し、 エンジン出力軸と接続されてい る第 1 口一夕と、  It is rotatably supported on this machine frame coaxially with this stay, and faces this stay at a predetermined interval, and is connected to the engine output shaft. When,
このステ一夕と同軸にこの機枠に対して回転自在に軸支されており、 外 周界磁が貫通する外周面でこのステ一夕に対向し、 内周界磁が貫通する内 周面でこの第 1 口一夕に対向し、 駆動輪の駆動軸と接続されている第 2口 一夕と、  An inner peripheral surface which is rotatably supported on the machine frame coaxially with the stay and is opposed to the outer peripheral surface through which the outer peripheral field penetrates, and which penetrates the inner peripheral field. The second mouth, which is connected to the drive shaft of the drive wheel, faces the first mouth,
を有する車両用駆動装置において、 In the vehicle drive device having
前記第 1 ロー夕は、  On the first row,
前記エンジン出力軸と接続されている回転軸と、  A rotating shaft connected to the engine output shaft;
この回転軸と同軸に配設されリ ング状に形成されている継鉄部とこの継 鉄部から遠心方向に突出している複数の外周歯部とを持つ積層電磁鋼板か らなるロー夕コアと、 互いに隣り合うこの外周歯部の間に形成されている外周スロッ トを通り 、 この継鉄部の周囲を巡ってこのロー夕コアに巻装されている口一夕卷線 と、 A rotatable core made of laminated electromagnetic steel sheets having a ring-shaped yoke portion arranged coaxially with the rotation axis and formed in a ring shape and a plurality of outer teeth protruding in a centrifugal direction from the yoke portion. , A mouth-and-winding wire wound around the yoke core around the yoke portion, passing through an outer peripheral slot formed between the adjacent outer peripheral tooth portions;
を有し、 Has,
前記第 1 口一夕と前記第 2ロー夕との間に内周磁気回路が形成されてト ルクの授受が行われ、 この第 2ロー夕と前記ステ一夕との間に外周磁気回 路が形成されて トルクの授受が行われ、 この第 1 口一夕の回転方向とこの 第 2口一夕の回転方向とは搭載車両の前進時に同一方向であることを特徴 とする、  An inner magnetic circuit is formed between the first mouth and the second row to exchange torque, and an outer magnetic circuit is provided between the second row and the stay. Is formed to transmit and receive torque, and the rotation direction of the first mouth and the second mouth is the same direction when the mounted vehicle moves forward,
車両用駆動装置。  Vehicle drive unit.
1 4 . 前記第 1 口一夕の前記口一夕コアは、 前記継鉄部から求心方向に 突出している複数の内周歯部を持ち、  1 4. The first mouth core of the first mouth has a plurality of inner peripheral teeth projecting in the centripetal direction from the yoke portion.
前記ロー夕卷線は、 互いに隣り合うこの内周歯部の間に形成されている 内周スロッ トと前記外周スロッ トとを通って前記継鉄部の周囲に巻装され ている、  The low winding wire is wound around the yoke through an inner slot and an outer slot formed between the inner teeth adjacent to each other.
請求項 1 3記載の車両用駆動装置。  14. The vehicle drive device according to claim 13.
1 5 . 前記第 1 ロー夕の前記口一夕コアの前記外周歯部および前記内周 歯部は、 互いに同数あり、 それぞれ同一半径線上に配設されている、 請求項 1 4記載の車両用駆動装置。  15. The vehicle according to claim 14, wherein the outer peripheral tooth portion and the inner peripheral tooth portion of the mouth core of the first row have the same number as each other and are respectively disposed on the same radius line. Drive.
1 6 . 前記第 1 口一夕の前記ロー夕コアの前記外周歯部の周方向の幅は 、 前記内周歯部の周方向の幅よりも広い、  16. The circumferential width of the outer peripheral teeth of the raw core of the first mouth is wider than the circumferential width of the inner peripheral teeth.
請求項 1 4もしくは 1 5のうちいずれかに記載の車両用駆動装置。  A vehicle drive device according to any one of claims 14 and 15.
1 7 . 前記第 1 口一夕の前記ロー夕コアの前記外周歯部の数は、 前記内 周歯部の数よりも多い、 請求項 1 4記載の車両用駆動装置。  17. The vehicle drive device according to claim 14, wherein the number of the outer peripheral teeth of the raw core of the first mouth is greater than the number of the inner peripheral teeth.
1 8 . 前記第 1 ロー夕の前記ロー夕コアの前記外周歯部の数は、 前記内 周歯部の数の二倍である、 請求項 1 7記載の車両用駆動装置。  18. The vehicle drive device according to claim 17, wherein the number of the outer peripheral teeth of the first core of the first rotor is twice the number of the inner peripheral teeth.
1 9 . 前記第 1 ロー夕の前記口一夕卷線は、 U , V , Wの各相からなる 三相卷線であり、  1 9. The mouth of the first row is a three-phase winding composed of U, V, and W phases,
前記第 1 口一夕に形成されている各外周スロッ トには、 周方向に U , V , W , U , V , Wの順でこのロー夕卷線が卷装されており、  On each of the outer peripheral slots formed in the first opening, the row windings are wound in the circumferential direction in the order of U, V, W, U, U, V, W,
これらの外周スロッ トに対応する内周スロッ トには、 それぞれ同じ周方 向に、 U相の上に V相、 W相の上に U相、 V相の上に W相の順でこの口一 夕卷線が卷装されている、 請求項 1 8記載の車両用駆動装置。 The inner slots corresponding to these outer slots have, in the same circumferential direction, the V-phase above the U-phase, the U-phase above the W-phase, and the W-phase above the V-phase. One evening winding line is wound, 19. The vehicle drive device according to claim 18.
2 0 . 前記第 1 ロー夕の前記回転軸と前記口一夕卷線との間に形成され ている空間は、 冷却用の流体が流通する冷却用流路である、  20. A space formed between the rotating shaft of the first rotor and the winding wire is a cooling passage through which a cooling fluid flows.
請求項 1 3ないし 1 9のうちいずれかに記載の車両用駆動装置。  A vehicle drive device according to any one of claims 13 to 19.
2 1 . ステ一夕コアおよびステ一夕卷線をもち、 機枠に固定されている ステ一夕と、  2 1. Stay staying core and stay winding wire fixed to the machine frame
口一夕コアおよびロー夕卷線をもち、 エンジン出力軸と接続されてこの ステ一夕と同軸に軸支され、 所定の間隔を空けてこのステ一夕に対向して いる第 1 口一夕と、  The first opening and closing, which has an opening and closing core and a winding line, is connected to the engine output shaft, is coaxially supported with the stay, and faces the stay at a predetermined interval. When,
駆動輪の駆動軸と接続されてこのステ一夕と同軸に軸支され、 外周界磁 を形成している外周面でこのステ一夕に対向し、 内周界磁を形成している 内周面でこの第 1 口一夕に対向している第 2 ロー夕と、  The inner periphery is connected to the drive shaft of the drive wheel, is coaxially supported with the stay, and faces the stay on the outer peripheral surface forming the outer peripheral field, and forms the inner peripheral field. A second row, facing the first mouth,
を有する車両用駆動装置において、 In the vehicle drive device having
前記第 2口一夕は、  In the second mouth,
前記外周面に交番に磁極を向けるように外周側に配設され、 前記外周界 磁を形成する外側界磁磁石と、  An outer field magnet that is disposed on the outer peripheral side so that the magnetic poles are alternately directed to the outer peripheral surface and forms the outer peripheral field;
この外側界磁磁石と対応する位置で各外側界磁磁石と磁化方向をそろえ て内周側に配設され、 前記内周界磁を形成する内側界磁磁石と、  An inner field magnet that is disposed on the inner circumference side at a position corresponding to the outer field magnet so as to have the same magnetization direction as each outer field magnet and forms the inner circumference field;
この外側界磁磁石およびこの内側界磁磁石を保持している中空円筒状の 口一夕ヨークとを有し、  A hollow cylindrical mouth yoke holding the outer field magnet and the inner field magnet,
この口一夕ヨークは、  This mouth overnight York
略中空円筒状の軟磁性塊材からなるバックヨークと、  A back yoke made of a substantially hollow cylindrical soft magnetic mass material,
このバックヨークの内周面に前記内側界磁磁石を押圧挟持し、 略リ ング 状の積層電磁鋼板が多数積層された内周リ ングと、  An inner ring having a large number of substantially ring-shaped laminated electromagnetic steel sheets laminated by pressing and holding the inner field magnet on the inner peripheral surface of the back yoke;
このバックヨークの外周面に前記外側界磁磁石を押圧挟持し、 略リ ング 状の積層電磁鋼板が多数積層された外周リングとからなり、  An outer ring formed by laminating a plurality of substantially ring-shaped laminated electromagnetic steel sheets by pressing and holding the outer field magnet on the outer peripheral surface of the back yoke;
前記第 1 ロー夕と前記第 2 ロー夕との間に内周磁気回路が形成されて ト ルクの授受が行われ、  An inner magnetic circuit is formed between the first row and the second row to transmit and receive torque,
前記第 2 ロー夕と前記ステ一夕との間に外周磁気回路が形成されて トル クの授受が行われ、  An outer peripheral magnetic circuit is formed between the second row and the first row to transmit and receive torque,
前記第 1 ロー夕の回転方向と前記第 2 ロー夕の回転方向とは、 搭載車両 の前進時に同一方向であることを特徴とする、  The rotation direction of the first row and the second row is the same direction when the on-board vehicle moves forward.
車両用駆動装置。 Vehicle drive unit.
2 2 . 前記外側界磁磁石の形状および前記内側界磁磁石の形状は、 それ それ所定の厚さの平板形状であり、 2 2. The shape of the outer field magnet and the shape of the inner field magnet are each a plate shape having a predetermined thickness,
前記内側界磁磁石は、 前記外側界磁磁石の一枚に対して二枚が周方向に 並べられており、  The inner field magnet has two outer field magnets arranged circumferentially with respect to one outer field magnet.
この外側界磁磁石の周方向中間部では、 この外側界磁磁石にこの内側界 磁磁石が近接して、 前記バックヨークに薄肉の近接部が形成され、  In the circumferentially intermediate portion of the outer field magnet, the inner field magnet approaches the outer field magnet, and a thin-walled adjacent portion is formed in the back yoke.
この外側界磁磁石の周方向端部では、 この外側界磁磁石とこの内側界磁 磁石が離間して、 このバックヨークに厚肉の離間部が形成されている、 請求項 2 1記載の車両用駆動装置。  21. The vehicle according to claim 21, wherein at a circumferential end of the outer field magnet, the outer field magnet and the inner field magnet are separated from each other, and a thick-walled separated portion is formed in the back yoke. Drive.
2 3 . 前記バヅクヨークは、  23. The back yoke is
外周面に形成されており前記外側界磁磁石の少なく とも一部が埋設され る外周凹部と、 内周面に形成されており前記内側界磁磁石の少なく とも一 部が埋設される内周凹部とを有する、 請求項 2 1〜 2 2のうちいずれかに 記載の車両用駆動装置。  An outer peripheral recess formed on the outer peripheral surface and at least partially embedded in the outer field magnet; and an inner peripheral recess formed on the inner peripheral surface and embedded at least partially in the inner field magnet. The vehicle drive device according to any one of claims 21 to 22, comprising:
2 4 . 前記バックヨークおよび前記外周リ ングのうち一方は、 前記外側 界磁磁石の間に突出して他方に溶接されている突起部を有し、  24. One of the back yoke and the outer peripheral ring has a projection projecting between the outer field magnets and welded to the other.
このバックヨークおよび前記内周リングのうち一方は、 前記内側界磁磁 石の間に突出して他方に溶接されている突起部を有する、  One of the back yoke and the inner peripheral ring has a projection projecting between the inner field magnets and welded to the other.
請求項 2 1〜 2 3のうちいずれかに記載の車両用駆動装置。  The vehicle drive device according to any one of claims 21 to 23.
PCT/JP1998/004302 1997-12-19 1998-09-24 Driving unit for vehicles WO1999032322A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/351393 1997-12-19
JP9351393A JPH11187614A (en) 1997-12-19 1997-12-19 Driving device for vehicle
JP10/212486 1998-07-28
JP10212486A JP2000050585A (en) 1998-07-28 1998-07-28 Driver for vehicle

Publications (1)

Publication Number Publication Date
WO1999032322A1 true WO1999032322A1 (en) 1999-07-01

Family

ID=26519259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004302 WO1999032322A1 (en) 1997-12-19 1998-09-24 Driving unit for vehicles

Country Status (1)

Country Link
WO (1) WO1999032322A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072834A3 (en) * 2014-11-05 2017-01-12 Xair Pulsecor Sdn Bhd Energy convertor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956010A (en) * 1995-01-31 1997-02-25 Denso Corp Driver for vehicle and drive control method
JPH09130916A (en) * 1995-10-31 1997-05-16 Denso Corp Driver for vehicle
JPH09163695A (en) * 1995-12-07 1997-06-20 Denso Corp Driver for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956010A (en) * 1995-01-31 1997-02-25 Denso Corp Driver for vehicle and drive control method
JPH09130916A (en) * 1995-10-31 1997-05-16 Denso Corp Driver for vehicle
JPH09163695A (en) * 1995-12-07 1997-06-20 Denso Corp Driver for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072834A3 (en) * 2014-11-05 2017-01-12 Xair Pulsecor Sdn Bhd Energy convertor

Similar Documents

Publication Publication Date Title
US10752104B2 (en) Bearing device for wheels with auxiliary power device
US7654355B1 (en) Flywheel system for use with electric wheels in a hybrid vehicle
JP2004328991A (en) Left and right wheel driving device for vehicle
PH12015500081B1 (en) A dual-structured electric drive and power system for hybrid vehicles
JP2004042894A (en) All wheel drive vehicle with hybrid drive
JP2000350309A (en) Power converting system and driving system in vehicle
US10836247B2 (en) Vehicle power assist system
JP3052820B2 (en) Vehicle drive device and drive control method thereof
JP3052786B2 (en) Vehicle drive device and drive control method thereof
US20070107957A1 (en) Automobile propulsion system
JP2005178479A (en) Vehicular power output device
JP2000050585A (en) Driver for vehicle
JP2004242498A (en) Device and method of converting mechanical energy into electric energy and electric energy into mechanical energy
US20080315698A1 (en) Motor apparatus and method
KR100999606B1 (en) A hybrid system for electric vehicles
JP3651727B2 (en) Vehicle drive device
JP3067594B2 (en) Vehicle drive device and drive control method thereof
WO1999032322A1 (en) Driving unit for vehicles
US11712961B2 (en) Dual-rotor in-wheel motor based on axial magnetic field and control method thereof
JPH09222036A (en) Engine controller of vehicle and its control method
JP3578306B2 (en) Vehicle drive system
WO2020179639A1 (en) Electric motor, power generator, and vehicle device equipped with same
JPH11187614A (en) Driving device for vehicle
JP4062472B2 (en) Rotating electric machine for vehicles
JP3578308B2 (en) Vehicle drive system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642