WO1999031781A1 - A method of applying a tube member in a stator slot in a rotating electrical machine - Google Patents

A method of applying a tube member in a stator slot in a rotating electrical machine Download PDF

Info

Publication number
WO1999031781A1
WO1999031781A1 PCT/SE1998/002162 SE9802162W WO9931781A1 WO 1999031781 A1 WO1999031781 A1 WO 1999031781A1 SE 9802162 W SE9802162 W SE 9802162W WO 9931781 A1 WO9931781 A1 WO 9931781A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine
stator
tube means
layers
tube
Prior art date
Application number
PCT/SE1998/002162
Other languages
French (fr)
Swedish (sv)
Inventor
Bertil Larsson
Bengt Rothman
Original Assignee
Abb Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Ab filed Critical Abb Ab
Priority to BR9814705-6A priority Critical patent/BR9814705A/en
Priority to AU15162/99A priority patent/AU1516299A/en
Priority to EP98959342A priority patent/EP1034601A1/en
Priority to CA002310596A priority patent/CA2310596A1/en
Priority to PL98340703A priority patent/PL340703A1/en
Priority to US09/554,884 priority patent/US7019429B1/en
Publication of WO1999031781A1 publication Critical patent/WO1999031781A1/en
Priority to NO20002717A priority patent/NO20002717L/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/15Machines characterised by cable windings, e.g. high-voltage cables, ribbon cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/32High voltage cable, e.g. above 10kv, corona prevention having means for cooling

Definitions

  • the present invention relates to rotating electric machines such as synchronous machines. It also relates to double-fed machines, applications in asynchronous static current converter cascades, external pole machines and synchronous flux machines, as well as to alternating current machines intended primarily as generators in a power station for generating electric power.
  • the invention par- ticularly relates to the stator in such machines and a method for fixing the windings, as well as cooling the stator teeth and the insulated electric conductor constituting the stator winding.
  • Axial liquid cooling, e.g. water-cooling, by means of cooling tubes, e.g. of metal, in the stator yoke has been known for some time.
  • One drawback is that eddy currents are induced in metal tubes if they are present in a magnetic flux varying with time, thus leading to certain power losses when used in an electric machine.
  • the object of the present invention is to provide a method for mounting a cooling tube in a cooling tube channel, and also a rotating electric machine comprising cooling tubes mounted using this method in conjunction with direct cooling of the stator and particularly the stator teeth in such a machine.
  • Another object of the invention is to eliminate ventilation ducts, thereby resulting in shorter and stronger stators, at the same time as ensuring that the magnetic flux in the stator teeth is disturbed as little as possible by said cooling.
  • the object is also to achieve a higher degree of efficiency.
  • a further object of the invention is to achieve a steady fixing of the cables in the stator slots by means of these cooling tubes.
  • the insulated conductor or high-voltage cable used in the present invention is flexible and is of the type described in more detail in WO 97/45919 and WO 97/45847.
  • the insulated conductor or cable is described further in WO 97/45918, WO 97/45930 and WO 97/45931.
  • the windings are preferably of a type corresponding to cables having solid, extruded insulation, like those currently used for power distribution, such as XLPE-cables or cables with EPR-insulation.
  • a cable comprises an inner conductor composed of one or more strand parts, an inner semiconducting layer surrounding the conductor, a solid insulating layer surrounding this and an outer semiconducting layer surrounding the insulating layer.
  • Such cables are flexible, which is an important property in this context since the technology for the device according to the inven- tion is based primarily on winding systems in which ⁇ the winding is formed from conductors which are bent during assembly.
  • the flexibility of a XLPE-cable normally corresponds to a radius of curvature of approximately 20 cm for a cable 30 mm in diameter, and a radius of curvature of approximately 65 cm for a cable 80 mm in diameter.
  • the term "flexible" is used to indicate that the winding is flexible down to a radius of curvature in the order of four times the cable diameter, preferably eight to twelve times the cable diameter.
  • the winding should be constructed to retain its properties even when it is bent and when it is subjected to thermal or mechanical stress during operation. It is vital that the layers retain their adhesion to each other in this context.
  • the mate- rial properties of the layers are decisive here, particularly their elasticity and relative coefficients of thermal expansion.
  • the insulating layer consists of cross-linked, low-density polyethylene, and the semiconducting layers consist of polyethylene with soot and metal particles mixed in.
  • the inner and outer semiconducting layers may be of the same basic material but with particles of conducting material such as soot or metal powder mixed in.
  • the mechanical properties of these materials are affected relatively little by whether soot or metal powder is mixed in or not - at least in the proportions required to achieve the conductivity necessary according to the invention.
  • the insulating layer and the semiconducting layers thus have substantially the same coefficients of thermal expansion.
  • Ethylene-vinyl-acetate copolymer/nitrile rubber, butylymp polyethylene, ethylene-acrylate-copolymers and ethylene-ethyl-acrylate copolymers may also constitute suitable polymers for the semiconducting layers.
  • the materials listed above have relatively good elasticity, with an E- modulus of E ⁇ 500 MPa, preferably ⁇ 200 MPa.
  • the elasticity is sufficient for any minor differences between the coefficients of thermal expansion for the materials in the layers to be absorbed in the radial direction of the elasticity so that no cracks or other damage appear and so that the layers are not released from each other.
  • the material in the layers is elastic, and the adhesion between the layers is at least of the same magnitude as in the weakest of the materials.
  • the conductivity of the two semiconducting layers is sufficient to substan- tially equalize the potential along each layer.
  • the conductivity of the outer semiconducting layer is sufficiently large to contain the electrical field in the cable, but at the same time sufficiently small not to give rise to significant losses due to currents induced in the longitudinal direction of the layer.
  • each of the two semiconducting layers essentially constitutes one equipotential surface, and the winding composed of these layers will substantially enclose the electrical field within it.
  • the invention relates to a method for fixing the cable in a high-voltage generator by means of a pre-shaped triangular tube of XLPE that during operation is also used for cooling the windings and the tooth section of the stator core.
  • the pre-shaped tube is inserted into the triangular space between cables and tooth.
  • the shape of the tube should provide enough clearance to permit easy insertion of the tube.
  • the tube is heated to a temperature of 125-130°C at which it may be shaped.
  • an overpressure is applied to the inside of the tube in order to press the tube against the cables and the slot wall.
  • Both heating and pressurising of the tube are achieved by heating and pressurising a pressure medium, causing the tube to soften and expand, whereby its outer periphery assumes a shape fitting against cables and slot wall. While retaining the overpressure, the tube is then cooled by exchanging the warm pres- sure medium against a cold pressure medium, e.g. cold water, which fills the expanded tube and causes it to solidify and permanently assume this expanded shape.
  • a cold pressure medium e.g. cold water
  • the tube will now act as an elastic element, absorbing the thermal expansion of the cables during operation.
  • the tube is also used as a cooling tube during operation, the overpressure of the cooling medium providing a steadying pressure on the cables. This pressure against cables and the slot wall improves the heat transfer as well.
  • the tubes are placed against one of the slot walls in every or every other cable interspace.
  • the invention also relates to a rotating electric machine provided with cooling tubes/fixing means mounted by this method.
  • the machine comprises axially running cooling tubes made of a dielectric material, e.g. a polymer, and drawn through the triangular cable interspaces in the stator teeth.
  • the tubes are expanded in the interspaces so that good heat transfer occurs when coolant is circulated in the tubes.
  • the tubes run in the stator yoke and in the stator teeth along the entire axial length of the stator and, if necessary, they can be spliced in the stator teeth.
  • Polymer cooling tubes are non-conducting and the risk of short-circuiting is therefore eliminated, nor can eddy currents occur in them. Polymer cooling tubes can also be bent cold and drawn through several cooling tube channels without splicing, which is a great advantage.
  • Polymer cooling tubes can be produced from many materials, such as polyethylene, polypropene, polybut ⁇ ne, polyvinylidene fluoride, polytetrafluoroeth- ylene, as well as filled and reinforced elastomers. Of these materials, polyethylene with high density, HDPE, is preferred since its thermal conductivity increases with increased density. If the polyethylene is cross-linked, which can be achieved by splitting a peroxide, silane cross-linking or radiation patterning, its ability to withstand pressure at increased temperature is enhanced, at the same time as the risk of voltage corrosion disappears.
  • Cross-linked polyethylene e.g. XLPE tubing from Wirsbo bruks AB, is used, for instance, for water pipes.
  • the windings are preferably of a type corresponding to cables having solid, extruded insulation, like those currently used for power distribution, such as XLPE-cables or cables with EPR-insulation.
  • a cable comprises an inner conductor composed of one or more strand parts, an inner semiconducting layer surrounding the conductor, a solid insulating layer surrounding this and an outer semiconducting layer surrounding the insulating layer.
  • Such cables are flexible, which is an important property in this context since the technology for the device according to the inven- tion is based primarily on winding systems in which the winding is drawn back and forth in a plurality of turns, i.e.
  • the flexibility of a XLPE-cable normally corresponds to a radius of curvature of approximately 20 cm for a cable 30 mm in diameter, and a radius of curvature of approximately 65 cm for a cable 80 mm in diameter.
  • the term "flexible" is used to indicate that the winding is flexible down to a radius of curvature in the order of eight to twenty-five times the cable diameter.
  • the winding should be constructed to retain its properties even when it is bent and when it is subjected to thermal stress during operation. It is vital that the layers retain their adhesion to each other in this context.
  • the material properties of the layers are decisive here, particularly their elasticity and relative coefficients of thermal expansion.
  • the insulating layer consists of cross-linked, low-density polyethylene
  • the semiconducting layers consist of polyethylene with soot and metal particles mixed in. Changes in volume as a result of temperature fluctuations are completely absorbed as changes in radius in the cable and, thanks to the comparatively slight difference between the coeffi- cients of thermal expansion in the layers in relation to the elasticity of these materials, the radial expansion can take place without the adhesion between the layers being lost.
  • the insulating layer may consist of a solid thermoplastic material such as low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP), polybutylene (PB), polymethyl-pentene (PMP), cross-linked materials such as cross-linked polyethylene (XLPE), or rubber such as ethylene-propylene rubber (EPR) or silicone rubber.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • PP polypropylene
  • PB polybutylene
  • PMP polymethyl-pentene
  • XLPE cross-linked polyethylene
  • EPR ethylene-propylene rubber
  • the inner and outer semiconducting layers may be of the same basic material but with particles of conducting material such as soot or metal powder mixed in.
  • the mechanical properties of these materials are affected relatively little by whether soot or metal powder is mixed in or not.
  • the insulating layer and the semiconducting layers thus have substantially the same coefficients of thermal expansion.
  • Ethylene-vinyl-acetate copolymer/nitrile rubber, butylymp polyethylene, ethylene-acrylate-copolymers and ethylene-ethyl-acrylate copolymers may also constitute suitable polymers for the semiconducting layers. Even when different types of material are used as base in the various layers, it is desirable for their coefficients of thermal expansion to be substantially the same. This is the case with the combination of the materials listed above.
  • the materials listed above have an elasticity which is sufficient to absorb minor differences between the coefficients of thermal expansion for the materials in the layers in the radial direction of the elasticity, so that no cracks or other damage appear, and so that the layers are not released from each other.
  • the conductivity of the two semiconducting layers is sufficient to substantially equalize the potential along each layer. At the same time, the conductivity is so small that the outer semiconducting layer has sufficient resistivity to contain the electrical field in the cable.
  • each of the two semiconducting layers essentially constitutes one equipotential surface, and the winding composed of these layers will substantially enclose the electrical field within it. There is, of course, nothing to prevent one or more additional semiconducting layers being arranged in the insulating layer.
  • Figure 1 shows schematically a perspective view of a section diagonally through the stator of a rotating electric machine
  • Figure 2 shows a cross section through a high-voltage cable in accordance with the present invention
  • Figure 3 shows schematically a sector of a rotating electric machine
  • Figure 4 shows a cross section through part of the sector shown in Fig. 3 where the cross section is marked by a rectangle.
  • FIG 1 shows part of an electric machine in which the rotor has been removed to reveal more clearly how a stator 1 is arranged.
  • the main parts of the stator 1 consist of a stator frame 2, a stator core 3 comprising stator teeth 4 and a stator yoke 5.
  • the stator also comprises a stator winding 6 in the form of a high- voltage cable, placed in a space 7 shaped like a bicycle chain, see Figure 3, formed between each individual stator tooth 4.
  • the stator winding 6 is only indicated by its electric conductors.
  • the stator winding 6 forms a coil-end bundle 8 on each side of the stator 1.
  • Figure 3 also reveals that the insulation of the high-voltage cable is stepped in several dimensions depending on its radial location in the stator 1. For the sake of simplicity only one coil-end bundle is shown in Figure 1 at each end of the stator.
  • stator frame 2 In large conventional machines the stator frame 2 often consists of a welded steel plate construction.
  • stator core 3 also known as the laminated core, is normally made of 0.35 mm core sheet, divided into stacks having an axial length of approximately 50 mm and separated from each other by partitions forming ventilation ducts 5 mm wide.
  • ventilation ducts have been eliminated.
  • each laminated stack is formed by placing sheet metal segments 9, punched to a suitable size, together to form a first layer, each subsequent layer being laid crosswise to form a complete laminated part of a stator core 3.
  • the parts and partitions are held together by pressure brackets 10 which are pressed against pressure rings, fingers or segments, not shown. Only two pressure brackets are shown in Figure 1.
  • FIG. 2 illustrates a cross section through a high-voltage cable 11 in accordance with the invention.
  • the high-voltage cable 11 comprises a number of strand parts 12 made of copper (Cu), for instance, and having circular cross section. These strand parts 12 are arranged in the middle of the high-voltage cable 11.
  • Around the strand parts 12 is a first semiconducting layer 13.
  • Around the first semiconducting layer 13 is an insulating layer 14, e.g. XLPE insulation.
  • insulating layer 14 Around the insulating layer 14 is a second semiconducting layer 15.
  • the concept "high- voltage cable” in the present application thus does not comprise the outer protective sheath that normally surrounds a cable for power distribution.
  • the high- voltage cable has a diameter within the interval 20-250 mm and a conducting area within the interval 80-3000 mm2.
  • the three layers are such that they adhere to each other even when the cable is bent.
  • the shown cable is flexible and this property is retained throughout the service life of the cable.
  • Figure 3 shows schematically a radial sector of a machine with a sheet metal segment 9 of the stator 1 and a rotor pole 16 on the rotor 17 of the machine. It is also clear that the high-voltage cable 11 is arranged in the space 7 resembling a bicycle chain, formed between each stator tooth 4. Space 7 is shown in the figure in the shape of a bicycle chain, though as shown in Figure 4, according to one embodiment of the present invention, one side of the slot is entirely flat.
  • Figure 4 shows four cable parts 18 of the high-voltage cable 11 , which parts are fitted into an asymmetric stator tooth slot 20 having an undulated side 21 in order to fit against the cable parts and a flat side 22.
  • stator tooth slots 20 results in triangular spaces 23 between each cable part 18.
  • tube members 24 are placed having been pre- shaped to correspond to the shape of space 23, though of a lesser dimension in order to permit easy insertion into the space 23.
  • the term "tube member” designates in the following both the member's function as “cooling tube” and as a “fixing means”.
  • the tube member 24 is inserted into the space 23 and a pressure medium is heated pressurising the tube member 24 which will soften and expand, its outer periphery assuming the shape of the restricting area of space 23 delimited by the cable parts second semiconducting layer 15 and the flat side 22 of the stator tooth slot 20, whereafter, maintaining a constant pressure, the warm pressure medium is substituted by a cold pressure medium filling the expanded tube member 24 and causing it to solidify and permanently assuming this expanded shape. It is possible to use the same pressure medium, though at different temperatures.
  • each tube member 24 is made of a dielectric material, e.g. a polymer, preferably XLPE, in order to prevent electric contact with the plate of the stator tooth 4 or with the second semiconducting layer 15 of the cable parts 18.
  • tube member 24 During expansion the wall thickness of tube member 24 is reduced.
  • the tube member 24 is allowed to expand until 50 % of its original wall thickness G remains.
  • the wall thickness and other properties of the tube member are chosen in order to ensure that, after being expanded, the remaining wall thickness is sufficient to completely fill out the space between the outer periphery of the tube member and the second semiconducting layer 15 of the cable parts and the flat side 22 of the stator tooth slot respectively.
  • the material of the tube member is determined with respect to factors like coefficient of thermal conductivity, coefficient of linear expansion as well as hot forming property.
  • the described embodiment relates to a triangular cable interspace
  • the cables may be arranged at a larger radial distance thereby forming a hour-glass-shaped interspace in which a pre-shaped cooling tube/fixing means of hour-glass shape may be arranged according to the present invention.
  • the tube member prior to being expanded presents a different cross section than the space itself, e.g. an elliptic cross section, but that the tube member has a wall thickness al- lowing sufficient expansion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

A method for mounting a tube member (24) in a space (23) having a shape corresponding to the shape of the tube member (24), the tube member (24) being inserted into the space (23), after which a pressure medium is heated and pressurises the tube member (24) so that this softens and expands, its outer periphery assuming the shape of the limiting areas of space (23), after which the hot pressure medium is replaced with or converted to a cold pressure medium which fills out the expanded tube member (24) and causes it to solidify and permanently assume this expanded shape, and also a rotating electric machine arranged in accordance with the method.

Description

A METHOD OF APPLYING A TUBE MEMBER IN A STATOR SLOT IN A ROTATING ELECTRICAL MACHINE
Technical field The present invention relates to rotating electric machines such as synchronous machines. It also relates to double-fed machines, applications in asynchronous static current converter cascades, external pole machines and synchronous flux machines, as well as to alternating current machines intended primarily as generators in a power station for generating electric power. The invention par- ticularly relates to the stator in such machines and a method for fixing the windings, as well as cooling the stator teeth and the insulated electric conductor constituting the stator winding.
Background art Similar machines have conventionally been designed for voltages in the range 15-30 kV, and 30 kV has normally been considered to be an upper limit. This generally means that a generator must be connected to the power network via a transformer which steps up the voltage to the level of the power network, which is in the range of approximately 130-400 kV. The present invention is in- tended primarily for use with high voltages. High voltages shall be understood here to mean voltages in excess of 10 kV. A typical operating range for the machine according to the invention may be voltages from 36 kV up to 800 kV. The invention is secondarily intended for use in the stated technical area at voltages below 36 kV. Two different air-cooled systems exist for conventional cooling: radial cooling where the air passes the rotor through the hub and radial channels in the rotor, and axial cooling where the air is blown into the pole gaps by axial fans. The stator is divided into radial air ducts created by means of (often straight) spacers that are welded in place. Due to the poor thermal conductivity axially through the stator laminations the air ducts must be frequently repeated. The drawback with air-cooling is that the ventilation losses are considerable and that, because of the ventilation ducts, the stator becomes longer. Furthermore, particularly with said high-voltage generators with long teeth, the ventilation ducts may also weaken the structure mechanically.
Axial liquid cooling, e.g. water-cooling, by means of cooling tubes, e.g. of metal, in the stator yoke has been known for some time. One drawback is that eddy currents are induced in metal tubes if they are present in a magnetic flux varying with time, thus leading to certain power losses when used in an electric machine.
Object of the invention The object of the present invention is to provide a method for mounting a cooling tube in a cooling tube channel, and also a rotating electric machine comprising cooling tubes mounted using this method in conjunction with direct cooling of the stator and particularly the stator teeth in such a machine.
Another object of the invention is to eliminate ventilation ducts, thereby resulting in shorter and stronger stators, at the same time as ensuring that the magnetic flux in the stator teeth is disturbed as little as possible by said cooling. The object is also to achieve a higher degree of efficiency.
A further object of the invention is to achieve a steady fixing of the cables in the stator slots by means of these cooling tubes.
Summary of the invention
The above-mentioned object is achieved by the method and the arrangement in accordance with the invention having the features defined in the appended claims. By using high-voltage insulated electric conductors with solid insulation similar to that used in cables for transmitting electric power (e.g. XLPE-cables) the voltage of the machine can be increased to such levels that it can be connected directly to the power network without an intermediate transformer. The conventional transformer can thus be eliminated. The concept generally requires the slots in which the cables are placed in the stator to be deeper than with conventional technology (thicker insulation due to higher voltage and more turns in the winding). This means that the distribution of losses differs from that in a conventional machine, which in turn entails new problems in cooling the stator, for instance, and particularly the stator teeth.
The insulated conductor or high-voltage cable used in the present invention is flexible and is of the type described in more detail in WO 97/45919 and WO 97/45847. The insulated conductor or cable is described further in WO 97/45918, WO 97/45930 and WO 97/45931.
Thus, in the device in accordance with the invention the windings are preferably of a type corresponding to cables having solid, extruded insulation, like those currently used for power distribution, such as XLPE-cables or cables with EPR-insulation. Such a cable comprises an inner conductor composed of one or more strand parts, an inner semiconducting layer surrounding the conductor, a solid insulating layer surrounding this and an outer semiconducting layer surrounding the insulating layer. Such cables are flexible, which is an important property in this context since the technology for the device according to the inven- tion is based primarily on winding systems in whichΛthe winding is formed from conductors which are bent during assembly. The flexibility of a XLPE-cable normally corresponds to a radius of curvature of approximately 20 cm for a cable 30 mm in diameter, and a radius of curvature of approximately 65 cm for a cable 80 mm in diameter. In the present application the term "flexible" is used to indicate that the winding is flexible down to a radius of curvature in the order of four times the cable diameter, preferably eight to twelve times the cable diameter.
The winding should be constructed to retain its properties even when it is bent and when it is subjected to thermal or mechanical stress during operation. It is vital that the layers retain their adhesion to each other in this context. The mate- rial properties of the layers are decisive here, particularly their elasticity and relative coefficients of thermal expansion. In a XLPE-cable, for instance, the insulating layer consists of cross-linked, low-density polyethylene, and the semiconducting layers consist of polyethylene with soot and metal particles mixed in. Changes in volume as a result of temperature fluctuations are completely ab- sorbed as changes in radius in the cable and, thanks to the comparatively slight difference between the coefficients of thermal expansion in the layers in relation to the elasticity of these materials, the radial expansion can take place without the adhesion between the layers being lost.
The material combinations stated above should be considered only as examples. Other combinations fulfilling the conditions specified and also the condi- tion of being semiconducting, i.e. having a resistivity within the range of 10-1 - 106 ohm-cm, e.g. 1-500 ohm-cm, or 10-200 ohm-cm, naturally also fall within the scope of the invention.
The inner and outer semiconducting layers may be of the same basic material but with particles of conducting material such as soot or metal powder mixed in.
The mechanical properties of these materials, particularly their coefficients of thermal expansion, are affected relatively little by whether soot or metal powder is mixed in or not - at least in the proportions required to achieve the conductivity necessary according to the invention. The insulating layer and the semiconducting layers thus have substantially the same coefficients of thermal expansion.
Ethylene-vinyl-acetate copolymer/nitrile rubber, butylymp polyethylene, ethylene-acrylate-copolymers and ethylene-ethyl-acrylate copolymers may also constitute suitable polymers for the semiconducting layers.
Even when different types of material are used as base in the various lay- ers, it is desirable for their coefficients of thermal expansion to be substantially the same. This is the case with the combination of the materials listed above.
The materials listed above have relatively good elasticity, with an E- modulus of E<500 MPa, preferably <200 MPa. The elasticity is sufficient for any minor differences between the coefficients of thermal expansion for the materials in the layers to be absorbed in the radial direction of the elasticity so that no cracks or other damage appear and so that the layers are not released from each other. The material in the layers is elastic, and the adhesion between the layers is at least of the same magnitude as in the weakest of the materials.
The conductivity of the two semiconducting layers is sufficient to substan- tially equalize the potential along each layer. The conductivity of the outer semiconducting layer is sufficiently large to contain the electrical field in the cable, but at the same time sufficiently small not to give rise to significant losses due to currents induced in the longitudinal direction of the layer.
Thus, each of the two semiconducting layers essentially constitutes one equipotential surface, and the winding composed of these layers will substantially enclose the electrical field within it.
There is, of course, nothing to prevent one or more additional semiconducting layers being arranged in the insulating layer.
The invention relates to a method for fixing the cable in a high-voltage generator by means of a pre-shaped triangular tube of XLPE that during operation is also used for cooling the windings and the tooth section of the stator core. At the assembly, the pre-shaped tube is inserted into the triangular space between cables and tooth. The shape of the tube should provide enough clearance to permit easy insertion of the tube. When the tube is in place, it is heated to a temperature of 125-130°C at which it may be shaped. Moreover, an overpressure is applied to the inside of the tube in order to press the tube against the cables and the slot wall. Both heating and pressurising of the tube are achieved by heating and pressurising a pressure medium, causing the tube to soften and expand, whereby its outer periphery assumes a shape fitting against cables and slot wall. While retaining the overpressure, the tube is then cooled by exchanging the warm pres- sure medium against a cold pressure medium, e.g. cold water, which fills the expanded tube and causes it to solidify and permanently assume this expanded shape. The tube will now act as an elastic element, absorbing the thermal expansion of the cables during operation. The tube is also used as a cooling tube during operation, the overpressure of the cooling medium providing a steadying pressure on the cables. This pressure against cables and the slot wall improves the heat transfer as well. The tubes are placed against one of the slot walls in every or every other cable interspace.
The invention also relates to a rotating electric machine provided with cooling tubes/fixing means mounted by this method. The machine comprises axially running cooling tubes made of a dielectric material, e.g. a polymer, and drawn through the triangular cable interspaces in the stator teeth. The tubes are expanded in the interspaces so that good heat transfer occurs when coolant is circulated in the tubes. The tubes run in the stator yoke and in the stator teeth along the entire axial length of the stator and, if necessary, they can be spliced in the stator teeth.
Polymer cooling tubes are non-conducting and the risk of short-circuiting is therefore eliminated, nor can eddy currents occur in them. Polymer cooling tubes can also be bent cold and drawn through several cooling tube channels without splicing, which is a great advantage.
Polymer cooling tubes can be produced from many materials, such as polyethylene, polypropene, polybutβne, polyvinylidene fluoride, polytetrafluoroeth- ylene, as well as filled and reinforced elastomers. Of these materials, polyethylene with high density, HDPE, is preferred since its thermal conductivity increases with increased density. If the polyethylene is cross-linked, which can be achieved by splitting a peroxide, silane cross-linking or radiation patterning, its ability to withstand pressure at increased temperature is enhanced, at the same time as the risk of voltage corrosion disappears. Cross-linked polyethylene, e.g. XLPE tubing from Wirsbo bruks AB, is used, for instance, for water pipes.
In a method and a device in accordance with the invention, the windings are preferably of a type corresponding to cables having solid, extruded insulation, like those currently used for power distribution, such as XLPE-cables or cables with EPR-insulation. Such a cable comprises an inner conductor composed of one or more strand parts, an inner semiconducting layer surrounding the conductor, a solid insulating layer surrounding this and an outer semiconducting layer surrounding the insulating layer. Such cables are flexible, which is an important property in this context since the technology for the device according to the inven- tion is based primarily on winding systems in which the winding is drawn back and forth in a plurality of turns, i.e. without being spliced at the coil ends as required when the winding in the core consists of rigid conductors. The flexibility of a XLPE-cable normally corresponds to a radius of curvature of approximately 20 cm for a cable 30 mm in diameter, and a radius of curvature of approximately 65 cm for a cable 80 mm in diameter. In the present application the term "flexible" is used to indicate that the winding is flexible down to a radius of curvature in the order of eight to twenty-five times the cable diameter. The winding should be constructed to retain its properties even when it is bent and when it is subjected to thermal stress during operation. It is vital that the layers retain their adhesion to each other in this context. The material properties of the layers are decisive here, particularly their elasticity and relative coefficients of thermal expansion. In a XLPE-cable, for instance, the insulating layer consists of cross-linked, low-density polyethylene, and the semiconducting layers consist of polyethylene with soot and metal particles mixed in. Changes in volume as a result of temperature fluctuations are completely absorbed as changes in radius in the cable and, thanks to the comparatively slight difference between the coeffi- cients of thermal expansion in the layers in relation to the elasticity of these materials, the radial expansion can take place without the adhesion between the layers being lost.
The material combinations stated above should be considered only as examples. Other combinations fulfilling the conditions specified and also the condi- tion of being semiconducting, i.e. having a conductivity within the range of 1-10*5 ohm-cm, and being insulating respectively, i.e. with a conductivity less than 10*5 ohm-cm.
For example, the insulating layer may consist of a solid thermoplastic material such as low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP), polybutylene (PB), polymethyl-pentene (PMP), cross-linked materials such as cross-linked polyethylene (XLPE), or rubber such as ethylene-propylene rubber (EPR) or silicone rubber.
The inner and outer semiconducting layers may be of the same basic material but with particles of conducting material such as soot or metal powder mixed in.
The mechanical properties of these materials, particularly their coefficients of thermal expansion, are affected relatively little by whether soot or metal powder is mixed in or not. The insulating layer and the semiconducting layers thus have substantially the same coefficients of thermal expansion. Ethylene-vinyl-acetate copolymer/nitrile rubber, butylymp polyethylene, ethylene-acrylate-copolymers and ethylene-ethyl-acrylate copolymers may also constitute suitable polymers for the semiconducting layers. Even when different types of material are used as base in the various layers, it is desirable for their coefficients of thermal expansion to be substantially the same. This is the case with the combination of the materials listed above.
The materials listed above have an elasticity which is sufficient to absorb minor differences between the coefficients of thermal expansion for the materials in the layers in the radial direction of the elasticity, so that no cracks or other damage appear, and so that the layers are not released from each other.
The conductivity of the two semiconducting layers is sufficient to substantially equalize the potential along each layer. At the same time, the conductivity is so small that the outer semiconducting layer has sufficient resistivity to contain the electrical field in the cable.
Thus, each of the two semiconducting layers essentially constitutes one equipotential surface, and the winding composed of these layers will substantially enclose the electrical field within it. There is, of course, nothing to prevent one or more additional semiconducting layers being arranged in the insulating layer.
Brief description of the drawings
The invention will now be described in more detail with reference desig- nations as in the accompanying drawings.
Figure 1 shows schematically a perspective view of a section diagonally through the stator of a rotating electric machine; Figure 2 shows a cross section through a high-voltage cable in accordance with the present invention; Figure 3 shows schematically a sector of a rotating electric machine;
Figure 4 shows a cross section through part of the sector shown in Fig. 3 where the cross section is marked by a rectangle.
Description of the invention Figure 1 shows part of an electric machine in which the rotor has been removed to reveal more clearly how a stator 1 is arranged. The main parts of the stator 1 consist of a stator frame 2, a stator core 3 comprising stator teeth 4 and a stator yoke 5. The stator also comprises a stator winding 6 in the form of a high- voltage cable, placed in a space 7 shaped like a bicycle chain, see Figure 3, formed between each individual stator tooth 4. In Figure 3 the stator winding 6 is only indicated by its electric conductors. As shown in Figure 1 , the stator winding 6 forms a coil-end bundle 8 on each side of the stator 1. Figure 3 also reveals that the insulation of the high-voltage cable is stepped in several dimensions depending on its radial location in the stator 1. For the sake of simplicity only one coil-end bundle is shown in Figure 1 at each end of the stator.
In large conventional machines the stator frame 2 often consists of a welded steel plate construction. In large machines the stator core 3, also known as the laminated core, is normally made of 0.35 mm core sheet, divided into stacks having an axial length of approximately 50 mm and separated from each other by partitions forming ventilation ducts 5 mm wide. However, in the machine described the ventilation ducts have been eliminated. In large machines each laminated stack is formed by placing sheet metal segments 9, punched to a suitable size, together to form a first layer, each subsequent layer being laid crosswise to form a complete laminated part of a stator core 3. The parts and partitions are held together by pressure brackets 10 which are pressed against pressure rings, fingers or segments, not shown. Only two pressure brackets are shown in Figure 1.
Figure 2 illustrates a cross section through a high-voltage cable 11 in accordance with the invention. The high-voltage cable 11 comprises a number of strand parts 12 made of copper (Cu), for instance, and having circular cross section. These strand parts 12 are arranged in the middle of the high-voltage cable 11. Around the strand parts 12 is a first semiconducting layer 13. Around the first semiconducting layer 13 is an insulating layer 14, e.g. XLPE insulation. Around the insulating layer 14 is a second semiconducting layer 15. The concept "high- voltage cable" in the present application thus does not comprise the outer protective sheath that normally surrounds a cable for power distribution. The high- voltage cable has a diameter within the interval 20-250 mm and a conducting area within the interval 80-3000 mm2. In the figure showing the component forming the insulated conductor or cable, the three layers are such that they adhere to each other even when the cable is bent. The shown cable is flexible and this property is retained throughout the service life of the cable.
Figure 3 shows schematically a radial sector of a machine with a sheet metal segment 9 of the stator 1 and a rotor pole 16 on the rotor 17 of the machine. It is also clear that the high-voltage cable 11 is arranged in the space 7 resembling a bicycle chain, formed between each stator tooth 4. Space 7 is shown in the figure in the shape of a bicycle chain, though as shown in Figure 4, according to one embodiment of the present invention, one side of the slot is entirely flat. Figure 4 shows four cable parts 18 of the high-voltage cable 11 , which parts are fitted into an asymmetric stator tooth slot 20 having an undulated side 21 in order to fit against the cable parts and a flat side 22. This shape of the stator tooth slots 20 results in triangular spaces 23 between each cable part 18. In each or in some of these spaces 23, tube members 24 are placed having been pre- shaped to correspond to the shape of space 23, though of a lesser dimension in order to permit easy insertion into the space 23. The term "tube member" designates in the following both the member's function as "cooling tube" and as a "fixing means".
The tube member 24 is inserted into the space 23 and a pressure medium is heated pressurising the tube member 24 which will soften and expand, its outer periphery assuming the shape of the restricting area of space 23 delimited by the cable parts second semiconducting layer 15 and the flat side 22 of the stator tooth slot 20, whereafter, maintaining a constant pressure, the warm pressure medium is substituted by a cold pressure medium filling the expanded tube member 24 and causing it to solidify and permanently assuming this expanded shape. It is possible to use the same pressure medium, though at different temperatures.
In that case, the temperature of the warm pressure medium will be higher than the softening temperature of the tube member while the temperature of the cold pressure medium will keep below the softening temperature of the tube member. In order to prevent expansion of the free parts of the tube member, i.e. the parts situated outside the stator, these parts are provided with an expansion guard before the pressurisation of the cooling tube is started. Each tube member 24 is made of a dielectric material, e.g. a polymer, preferably XLPE, in order to prevent electric contact with the plate of the stator tooth 4 or with the second semiconducting layer 15 of the cable parts 18.
During expansion the wall thickness of tube member 24 is reduced. The tube member 24 is allowed to expand until 50 % of its original wall thickness G remains. The wall thickness and other properties of the tube member are chosen in order to ensure that, after being expanded, the remaining wall thickness is sufficient to completely fill out the space between the outer periphery of the tube member and the second semiconducting layer 15 of the cable parts and the flat side 22 of the stator tooth slot respectively. The material of the tube member is determined with respect to factors like coefficient of thermal conductivity, coefficient of linear expansion as well as hot forming property.
Although the described embodiment relates to a triangular cable interspace, other forms of interspaces are possible, e.g. the cables may be arranged at a larger radial distance thereby forming a hour-glass-shaped interspace in which a pre-shaped cooling tube/fixing means of hour-glass shape may be arranged according to the present invention. It is also possible that the tube member prior to being expanded presents a different cross section than the space itself, e.g. an elliptic cross section, but that the tube member has a wall thickness al- lowing sufficient expansion.

Claims

1. A method for mounting a tube means (24) in a space (23) having a shape corresponding to the shape of the tube means (24), characterized in that the tube means (24) is inserted into the space (23) situated in a stator tooth slot (20) of a stator (1) of a rotating electric machine, having windings of high-voltage cable (11), after which a pressure medium is heated and pressurises the tube means (24) so that this softens and expands, its outer periphery assuming the shape of the restricting area of space (23), after which the hot pressure medium is replaced with or converted to a cold pressure medium which fills out the expanded tube means (24) and causes it to solidify and permanently assume this expanded shape, whereupon the tube means (24) is used as a cooling tube.
2. A method as claimed in claim 1 , characterized in that the tube means (24) acts as a cooling tube on one hand and as a fixing means for the high-voltage cable (11) on the other hand.
3. A method as claimed in any of claims 1-2, characterized in that the tube means (24) is allowed to expanded until 50% remains of its original wall thickness.
4. A rotating electric machine with at least one tube means (24) mounted according to the method as claimed in any of claims 2-3, characterized in that the stator is provided with stator teeth (4) extending inwardly from a stator yoke (5), which teeth between each other form stator teeth slots (20), in which stator wind- ings (6) are provided, and in that the slots (20) are provided with at least one tube means (24) made of dielectric material, each inserted into a space (23) extending substantially axially through the stator and formed between cable parts (18) and an even side (22) provided in the stator tooth slot (20).
5. A machine as claimed in claim 4, characterized in that the tube means
(24) is made of polymer material.
6. A machine as claimed in claim 4, characterized in that the tube means (24) is made of high-density polyethylene (HDPE).
7. A machine as claimed in claim 4, characterized in that the tube means (24) is made of cross-linked polyethylene (XLPE).
8. A machine as claimed in any of claims 4-7, characterized in that the space (23) is triangular and that also the tube means (24) is triangular.
9. A machine as claimed in claim 8, characterized in that tube means (24) are arranged in all spaces (23) in a stator tooth slot (20).
10. A machine as claimed in any of claims 8-9, characterized in that the high- voltage cable (11) is of a kind which comprises a conductor having of a plurality of strand parts (12), an inner semiconducting layer (13) enclosing the conductor, an insulating layer (14) enclosing the inner semiconducting layer, and an outer semiconducting layer (15) enclosing the insulating layer.
11. A machine as claimed in claim 10, characterized in that the high-voltage cable (11) has a diameter within the interval 20-250 mm and a conducting area within the interval 80-3000 mm2.
12. A machine as claimed in any of claims 4-11 , characterized in that said insulated conductor or high-voltage cable (11) is flexible.
13. A machine as claimed in claim 12, characterized in that said layers (8, 9, 10) are arranged to adhere to each another even when the insulated conductor or high-voltage cable (11) is bent.
14. A machine as claimed in any of claims 4-13, characterized in that at least two adjacent layers (13,14,15) of the machine winding have substantially the same coefficients of thermal expansion.
15. A machine as claimed in any of claims 4-14, characterized in that the winding is flexible and comprises an current conducting core surrounded by an inner semiconducting layer enclosing the core, an insulating layer of solid material enclosing the inner semiconducting layer, and an outer semiconducting layer enclosing the insulating layer, said layers adhering to each other.
16. A machine as claimed in any of claims 4-15, characterized in that said layers are made of materials having-such an elasticity and such a relation be- tween their coefficients of thermal expansion that the volume changes of the layers caused by temperature variations during operation can be absorbed by the elasticity of the material so that the layers maintain their contact with each other at the temperature variations occurring during operation.
17. A machine as claimed in any of claims 4-16, characterized in that the materials used in said layers are of high elasticity.
18. A machine as claimed in any of claims 4-17, characterized in that the coefficients of thermal expansion for the materials in said layers are substantially the same.
19. A machine as claimed in any of claims 4-18, characterized in that each of the semiconducting layers is arranged to constitute a substantially equipotential surface.
PCT/SE1998/002162 1997-11-27 1998-11-27 A method of applying a tube member in a stator slot in a rotating electrical machine WO1999031781A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR9814705-6A BR9814705A (en) 1997-11-27 1998-11-27 Method for mounting a pipe element on an electrical rotating machine
AU15162/99A AU1516299A (en) 1997-11-27 1998-11-27 A method of applying a tube member in a stator slot in a rotating electrical machine
EP98959342A EP1034601A1 (en) 1997-11-27 1998-11-27 A method of applying a tube member in a stator slot in a rotating electrical machine
CA002310596A CA2310596A1 (en) 1997-11-27 1998-11-27 A method of applying a tube member in a stator slot in a rotating electrical machine
PL98340703A PL340703A1 (en) 1997-11-27 1998-11-27 Method of securing a tubular component in a slot of electric machine stator
US09/554,884 US7019429B1 (en) 1997-11-27 1998-11-27 Method of applying a tube member in a stator slot in a rotating electrical machine
NO20002717A NO20002717L (en) 1997-11-27 2000-05-26 Method of mounting a pipe element in a stator slot in a rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9704380A SE513555C2 (en) 1997-11-27 1997-11-27 Method of applying a pipe means in a space of a rotating electric machine and rotating electric machine according to the method
SE9704380-6 1997-11-27

Publications (1)

Publication Number Publication Date
WO1999031781A1 true WO1999031781A1 (en) 1999-06-24

Family

ID=20409159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1998/002162 WO1999031781A1 (en) 1997-11-27 1998-11-27 A method of applying a tube member in a stator slot in a rotating electrical machine

Country Status (10)

Country Link
US (1) US7019429B1 (en)
EP (1) EP1034601A1 (en)
CN (1) CN1201464C (en)
AU (1) AU1516299A (en)
BR (1) BR9814705A (en)
CA (1) CA2310596A1 (en)
NO (1) NO20002717L (en)
PL (1) PL340703A1 (en)
SE (1) SE513555C2 (en)
WO (1) WO1999031781A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361731A1 (en) * 2003-12-29 2005-09-15 Voith Siemens Hydro Power Generation Gmbh & Co. Kg Machine component with an electrical winding of an electrical machine
FR3004868A1 (en) * 2013-04-22 2014-10-24 Renault Sa ELECTRICAL TRACTION MOTOR WITH BLOW-CONDITIONED THERMOFORMED COOLING CHANNELS

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10244202A1 (en) * 2002-09-23 2004-03-25 Alstom (Switzerland) Ltd. Electrical machine with stator with cooled winding rods, has distancing arrangement for winding rods consisting of axial tubular distance elements whose internal volumes form cooling medium channels
US7466046B2 (en) * 2006-07-05 2008-12-16 General Electric Company Methods and apparatus for operating an electric machine
US7821164B2 (en) * 2007-02-15 2010-10-26 General Electric Company Method and apparatus for a superconducting generator driven by wind turbine
US7800276B2 (en) * 2007-05-17 2010-09-21 Kurz-Kasch, Inc. Rotor assembly
GB2462257B (en) * 2008-07-29 2010-09-29 Clean Current Power Systems Electrical machine with dual insulated coil assembly
CN101814783A (en) * 2010-04-16 2010-08-25 江苏王牌直流电机制造有限公司 Stator multi-air-duct direct current motor
US9729020B2 (en) * 2011-03-22 2017-08-08 Hamilton Sundstrand Corporation Motor stator having channels used for cooling and method of providing the channels
EP2560269A3 (en) * 2011-08-16 2017-10-18 LG Innotek Co., Ltd. Stator of Motor
US8901790B2 (en) 2012-01-03 2014-12-02 General Electric Company Cooling of stator core flange
JP2017524232A (en) 2014-08-07 2017-08-24 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Electroceramic coating of wires for use in bundled transmission cables
JP2017118719A (en) * 2015-12-25 2017-06-29 株式会社日立製作所 Rotary electric machine
US11025137B2 (en) 2016-09-14 2021-06-01 Mts Systems Corporation Electric machine with stator cooling channels
US10971975B2 (en) 2016-12-14 2021-04-06 American Axle & Manufacturing, Inc. System and method for stator slot encapsulation using injected polymer
FI128225B (en) * 2018-03-20 2020-01-15 Lappeenrannan Teknillinen Yliopisto A stator of an electric machine and an electric machine
CN109936227B (en) * 2019-04-11 2020-07-10 浙江大学 Wind power generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2556146A1 (en) * 1983-12-05 1985-06-07 Paris & Du Rhone Device for mounting and insulating conductors on the rotors of electric rotating machines
US5587126A (en) * 1986-03-31 1996-12-24 Nupipe, Inc. Method of manufacturing a pipe liner for installation in an existing conduit
WO1997045935A1 (en) * 1996-05-29 1997-12-04 Asea Brown Boveri Ab Rotating electrical machine comprising high-voltage stator winding and elongated support devices supporting the winding and method for manufacturing such machine

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1304451A (en) 1919-05-20 Locke h
US681800A (en) 1901-06-18 1901-09-03 Oskar Lasche Stationary armature and inductor.
US847008A (en) 1904-06-10 1907-03-12 Isidor Kitsee Converter.
US1418856A (en) 1919-05-02 1922-06-06 Allischalmers Mfg Company Dynamo-electric machine
US1481585A (en) 1919-09-16 1924-01-22 Electrical Improvements Ltd Electric reactive winding
US1756672A (en) 1922-10-12 1930-04-29 Allis Louis Co Dynamo-electric machine
US1508456A (en) 1924-01-04 1924-09-16 Perfection Mfg Co Ground clamp
US1728915A (en) 1928-05-05 1929-09-24 Earl P Blankenship Line saver and restrainer for drilling cables
US1781308A (en) 1928-05-30 1930-11-11 Ericsson Telefon Ab L M High-frequency differential transformer
US1762775A (en) 1928-09-19 1930-06-10 Bell Telephone Labor Inc Inductance device
US1747507A (en) 1929-05-10 1930-02-18 Westinghouse Electric & Mfg Co Reactor structure
US1742985A (en) 1929-05-20 1930-01-07 Gen Electric Transformer
US1861182A (en) 1930-01-31 1932-05-31 Okonite Co Electric conductor
US1904885A (en) 1930-06-13 1933-04-18 Western Electric Co Capstan
US1974406A (en) 1930-12-13 1934-09-25 Herbert F Apple Dynamo electric machine core slot lining
US2006170A (en) 1933-05-11 1935-06-25 Gen Electric Winding for the stationary members of alternating current dynamo-electric machines
US2217430A (en) 1938-02-26 1940-10-08 Westinghouse Electric & Mfg Co Water-cooled stator for dynamoelectric machines
US2206856A (en) 1938-05-31 1940-07-02 William E Shearer Transformer
US2241832A (en) 1940-05-07 1941-05-13 Hugo W Wahlquist Method and apparatus for reducing harmonics in power systems
US2256897A (en) 1940-07-24 1941-09-23 Cons Edison Co New York Inc Insulating joint for electric cable sheaths and method of making same
US2295415A (en) 1940-08-02 1942-09-08 Westinghouse Electric & Mfg Co Air-cooled, air-insulated transformer
US2251291A (en) 1940-08-10 1941-08-05 Western Electric Co Strand handling apparatus
US2415652A (en) 1942-06-03 1947-02-11 Kerite Company High-voltage cable
US2462651A (en) 1944-06-12 1949-02-22 Gen Electric Electric induction apparatus
US2424443A (en) 1944-12-06 1947-07-22 Gen Electric Dynamoelectric machine
US2459322A (en) 1945-03-16 1949-01-18 Allis Chalmers Mfg Co Stationary induction apparatus
US2409893A (en) 1945-04-30 1946-10-22 Westinghouse Electric Corp Semiconducting composition
US2436306A (en) 1945-06-16 1948-02-17 Westinghouse Electric Corp Corona elimination in generator end windings
US2446999A (en) 1945-11-07 1948-08-17 Gen Electric Magnetic core
US2498238A (en) 1947-04-30 1950-02-21 Westinghouse Electric Corp Resistance compositions and products thereof
US2650350A (en) 1948-11-04 1953-08-25 Gen Electric Angular modulating system
US2721905A (en) 1949-03-04 1955-10-25 Webster Electric Co Inc Transducer
US2749456A (en) 1952-06-23 1956-06-05 Us Electrical Motors Inc Waterproof stator construction for submersible dynamo-electric machine
US2780771A (en) 1953-04-21 1957-02-05 Vickers Inc Magnetic amplifier
US2962679A (en) 1955-07-25 1960-11-29 Gen Electric Coaxial core inductive structures
US2846599A (en) 1956-01-23 1958-08-05 Wetomore Hodges Electric motor components and the like and method for making the same
US2947957A (en) 1957-04-22 1960-08-02 Zenith Radio Corp Transformers
US2885581A (en) 1957-04-29 1959-05-05 Gen Electric Arrangement for preventing displacement of stator end turns
CA635218A (en) 1958-01-02 1962-01-23 W. Smith John Reinforced end turns in dynamoelectric machines
US2943242A (en) 1958-02-05 1960-06-28 Pure Oil Co Anti-static grounding device
US2975309A (en) 1958-07-18 1961-03-14 Komplex Nagyberendezesek Expor Oil-cooled stators for turboalternators
US3014139A (en) * 1959-10-27 1961-12-19 Gen Electric Direct-cooled cable winding for electro magnetic device
US3157806A (en) 1959-11-05 1964-11-17 Bbc Brown Boveri & Cie Synchronous machine with salient poles
US3158770A (en) 1960-12-14 1964-11-24 Gen Electric Armature bar vibration damping arrangement
US3098893A (en) 1961-03-30 1963-07-23 Gen Electric Low electrical resistance composition and cable made therefrom
US3130335A (en) 1961-04-17 1964-04-21 Epoxylite Corp Dynamo-electric machine
US3197723A (en) 1961-04-26 1965-07-27 Ite Circuit Breaker Ltd Cascaded coaxial cable transformer
US3143269A (en) 1961-11-29 1964-08-04 Crompton & Knowles Corp Tractor-type stock feed
US3268766A (en) 1964-02-04 1966-08-23 Du Pont Apparatus for removal of electric charges from dielectric film surfaces
US3372283A (en) 1965-02-15 1968-03-05 Ampex Attenuation control device
SE318939B (en) 1965-03-17 1969-12-22 Asea Ab
US3304599A (en) 1965-03-30 1967-02-21 Teletype Corp Method of manufacturing an electromagnet having a u-shaped core
DE1488353A1 (en) 1965-07-15 1969-06-26 Siemens Ag Permanent magnet excited electrical machine
US3365657A (en) 1966-03-04 1968-01-23 Nasa Usa Power supply
GB1117433A (en) 1966-06-07 1968-06-19 English Electric Co Ltd Improvements in alternating current generators
US3444407A (en) 1966-07-20 1969-05-13 Gen Electric Rigid conductor bars in dynamoelectric machine slots
US3484690A (en) 1966-08-23 1969-12-16 Herman Wald Three current winding single stator network meter for 3-wire 120/208 volt service
US3418530A (en) 1966-09-07 1968-12-24 Army Usa Electronic crowbar
US3354331A (en) 1966-09-26 1967-11-21 Gen Electric High voltage grading for dynamoelectric machine
US3392779A (en) 1966-10-03 1968-07-16 Certain Teed Prod Corp Glass fiber cooling means
US3437858A (en) 1966-11-17 1969-04-08 Glastic Corp Slot wedge for electric motors or generators
SU469196A1 (en) 1967-10-30 1975-04-30 Engine-generator installation for power supply of passenger cars
FR1555807A (en) 1967-12-11 1969-01-31
GB1226451A (en) 1968-03-15 1971-03-31
CH479975A (en) 1968-08-19 1969-10-15 Oerlikon Maschf Head bandage for an electrical machine
US3651402A (en) 1969-01-27 1972-03-21 Honeywell Inc Supervisory apparatus
US3813764A (en) 1969-06-09 1974-06-04 Res Inst Iron Steel Method of producing laminated pancake type superconductive magnets
US3651244A (en) 1969-10-15 1972-03-21 Gen Cable Corp Power cable with corrugated or smooth longitudinally folded metallic shielding tape
SE326758B (en) 1969-10-29 1970-08-03 Asea Ab
US3666876A (en) 1970-07-17 1972-05-30 Exxon Research Engineering Co Novel compositions with controlled electrical properties
US3631519A (en) 1970-12-21 1971-12-28 Gen Electric Stress graded cable termination
US3675056A (en) 1971-01-04 1972-07-04 Gen Electric Hermetically sealed dynamoelectric machine
US3644662A (en) 1971-01-11 1972-02-22 Gen Electric Stress cascade-graded cable termination
US3660721A (en) 1971-02-01 1972-05-02 Gen Electric Protective equipment for an alternating current power distribution system
US3684906A (en) 1971-03-26 1972-08-15 Gen Electric Castable rotor having radially venting laminations
US3684821A (en) 1971-03-30 1972-08-15 Sumitomo Electric Industries High voltage insulated electric cable having outer semiconductive layer
US3716719A (en) 1971-06-07 1973-02-13 Aerco Corp Modulated output transformers
JPS4831403A (en) 1971-08-27 1973-04-25
US3746954A (en) 1971-09-17 1973-07-17 Sqare D Co Adjustable voltage thyristor-controlled hoist control for a dc motor
US3727085A (en) 1971-09-30 1973-04-10 Gen Dynamics Corp Electric motor with facility for liquid cooling
US3740600A (en) 1971-12-12 1973-06-19 Gen Electric Self-supporting coil brace
US3743867A (en) 1971-12-20 1973-07-03 Massachusetts Inst Technology High voltage oil insulated and cooled armature windings
DE2164078A1 (en) 1971-12-23 1973-06-28 Siemens Ag DRIVE ARRANGEMENT WITH A LINEAR MOTOR DESIGNED IN THE TYPE OF A SYNCHRONOUS MACHINE
US3699238A (en) 1972-02-29 1972-10-17 Anaconda Wire & Cable Co Flexible power cable
US3758699A (en) 1972-03-15 1973-09-11 G & W Electric Speciality Co Apparatus and method for dynamically cooling a cable termination
US3716652A (en) 1972-04-18 1973-02-13 G & W Electric Speciality Co System for dynamically cooling a high voltage cable termination
US3787607A (en) 1972-05-31 1974-01-22 Teleprompter Corp Coaxial cable splice
JPS5213612B2 (en) 1972-06-07 1977-04-15
CH547028A (en) 1972-06-16 1974-03-15 Bbc Brown Boveri & Cie GLIME PROTECTION FILM, THE PROCESS FOR ITS MANUFACTURING AND THEIR USE IN HIGH VOLTAGE WINDINGS.
US3801843A (en) 1972-06-16 1974-04-02 Gen Electric Rotating electrical machine having rotor and stator cooled by means of heat pipes
US3792399A (en) 1972-08-28 1974-02-12 Nasa Banded transformer cores
US3778891A (en) 1972-10-30 1973-12-18 Westinghouse Electric Corp Method of securing dynamoelectric machine coils by slot wedge and filler locking means
US3932791A (en) 1973-01-22 1976-01-13 Oswald Joseph V Multi-range, high-speed A.C. over-current protection means including a static switch
SE371348B (en) 1973-03-22 1974-11-11 Asea Ab
US3781739A (en) 1973-03-28 1973-12-25 Westinghouse Electric Corp Interleaved winding for electrical inductive apparatus
US3881647A (en) 1973-04-30 1975-05-06 Lebus International Inc Anti-slack line handling device
US3828115A (en) 1973-07-27 1974-08-06 Kerite Co High voltage cable having high sic insulation layer between low sic insulation layers and terminal construction thereof
US3912957A (en) 1973-12-27 1975-10-14 Gen Electric Dynamoelectric machine stator assembly with multi-barrel connection insulator
US3902000A (en) 1974-11-12 1975-08-26 Us Energy Termination for superconducting power transmission systems
US3943392A (en) 1974-11-27 1976-03-09 Allis-Chalmers Corporation Combination slot liner and retainer for dynamoelectric machine conductor bars
JP2593101B2 (en) * 1990-06-08 1997-03-26 サンケン電気株式会社 Coil device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2556146A1 (en) * 1983-12-05 1985-06-07 Paris & Du Rhone Device for mounting and insulating conductors on the rotors of electric rotating machines
US5587126A (en) * 1986-03-31 1996-12-24 Nupipe, Inc. Method of manufacturing a pipe liner for installation in an existing conduit
WO1997045935A1 (en) * 1996-05-29 1997-12-04 Asea Brown Boveri Ab Rotating electrical machine comprising high-voltage stator winding and elongated support devices supporting the winding and method for manufacturing such machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361731A1 (en) * 2003-12-29 2005-09-15 Voith Siemens Hydro Power Generation Gmbh & Co. Kg Machine component with an electrical winding of an electrical machine
FR3004868A1 (en) * 2013-04-22 2014-10-24 Renault Sa ELECTRICAL TRACTION MOTOR WITH BLOW-CONDITIONED THERMOFORMED COOLING CHANNELS

Also Published As

Publication number Publication date
AU1516299A (en) 1999-07-05
US7019429B1 (en) 2006-03-28
CN1279834A (en) 2001-01-10
CN1201464C (en) 2005-05-11
BR9814705A (en) 2000-10-03
CA2310596A1 (en) 1999-06-24
PL340703A1 (en) 2001-02-26
NO20002717D0 (en) 2000-05-26
EP1034601A1 (en) 2000-09-13
SE9704380D0 (en) 1997-11-27
SE9704380L (en) 1999-05-28
SE513555C2 (en) 2000-10-02
NO20002717L (en) 2000-07-03

Similar Documents

Publication Publication Date Title
US7019429B1 (en) Method of applying a tube member in a stator slot in a rotating electrical machine
AU724972B2 (en) Axial air-cooling of transformers
WO1999017422A1 (en) Method for mounting a cooling tube in a cooling tube channel
US6825585B1 (en) End plate
WO1999017429A1 (en) Device for a rotating electric machine
EP1016183B1 (en) A rotating electric machine
MXPA00005115A (en) A method of applying a tube member in a stator slot in a rotating electrical machine
AU737267B2 (en) A method of repairing a winding system including splicing a high-voltage cable
WO1997045932A1 (en) Rotating electrical machine comprising high-voltage winding and elastic bodies supporting the winding and method for manufacturing such machine
EP1016099A1 (en) Horizontal air-cooling in a transformer
WO1999029017A1 (en) A method for manufacturing a stator for a rotating electric machine, where the stator winding includes joints, a stator and a rotating electric machine
EP0956635A2 (en) A rotating electric machine
WO2000077913A1 (en) A method for a rotating electric machine and a machine for carrying out the method
WO1999029026A1 (en) A method in electric machines
WO1997045936A1 (en) Rotating electrical machine comprising high-voltage stator winding and radially extending support devices mounted in radially extending recesses in the stator slots and method for manufacturing such machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98811467.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK DK EE ES FI FI GB GD GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2310596

Country of ref document: CA

Ref document number: 2310596

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/005115

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1998959342

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09554884

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998959342

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1998959342

Country of ref document: EP