WO1999031746A1 - Nonaqueous battery electrode and battery using the electrode - Google Patents

Nonaqueous battery electrode and battery using the electrode Download PDF

Info

Publication number
WO1999031746A1
WO1999031746A1 PCT/JP1997/004667 JP9704667W WO9931746A1 WO 1999031746 A1 WO1999031746 A1 WO 1999031746A1 JP 9704667 W JP9704667 W JP 9704667W WO 9931746 A1 WO9931746 A1 WO 9931746A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
battery
polyvinyl alcohol
degree
negative electrode
Prior art date
Application number
PCT/JP1997/004667
Other languages
French (fr)
Japanese (ja)
Inventor
Michio Murai
Takayuki Inuzuka
Yasuhiro Yoshida
Hisashi Shiota
Shigeru Aihara
Daigo Takemura
Hiroaki Urushibata
Jun Aragane
Kouji Hamano
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP1997/004667 priority Critical patent/WO1999031746A1/en
Publication of WO1999031746A1 publication Critical patent/WO1999031746A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous battery electrode and a non-aqueous battery using the same. More specifically, the present invention relates to an electrode formed using a binder and a battery using the electrode.
  • Non-aqueous batteries have attracted attention because satisfying such demands is impossible with conventional batteries using a common aqueous electrolyte.
  • the lithium-ion battery is a secondary battery that is expected to achieve the highest voltage and the highest energy density among batteries to date, and improvements are being actively made at present.
  • binders for electrodes for non-aqueous batteries such as lithium ion batteries, for example, as disclosed in Japanese Patent Application Laid-Open No. 63-121262, polyvinyl fluoride and polyvinylidene fluoride are disclosed. And fluoropolymers such as copolymers thereof.
  • NMP N-methyl-2-pyrrolidone
  • Japanese Patent Application Laid-Open No. Sho 63-121212 discloses an example in which PVDF Koborimar is used as a binder. This solves the problem that PVDF homopolymer is soluble only in limited solvents such as NMP by using PVDF copolymer.
  • PVDF and its copolymers have been used as binders for non-aqueous battery electrodes.However, PVDF and its copolymers dissolve or swell in electrolyte at high temperatures. However, a battery using such an electrode has a problem that the charge / discharge characteristics are deteriorated at a high temperature.
  • the present invention has been made to solve the above problems, and has good electrical contact between electrode active materials without the electrode binder dissolving or swelling in the electrolytic solution even at a high temperature.
  • An object of the present invention is to form an electrode body, thereby obtaining a practical non-aqueous battery with high reliability, high charge / discharge characteristics, and high heat resistance at low cost and efficiency. Disclosure of the invention
  • a first non-aqueous battery electrode according to the present invention is a non-aqueous battery electrode having an electrode active material bound with a binder, wherein the binder contains polyvinyl alcohol.
  • a second non-aqueous battery electrode according to the present invention is the above-mentioned first non-aqueous battery electrode, wherein the degree of saponification of polyvinyl alcohol is 97% or more.
  • the third non-aqueous battery electrode according to the present invention includes the first non-aqueous battery electrode.
  • the degree of polymerization of polyvinyl alcohol is 170 or more.
  • a fourth nonaqueous battery electrode according to the present invention is the third nonaqueous battery electrode, wherein the degree of saponification of polyvinyl alcohol is 97% or more.
  • a first battery according to the present invention is a battery including an electrode laminate including an electrolyte layer and an electrode for a non-aqueous battery having an electrode active material bound by a binder containing polyvinyl alcohol.
  • a second battery according to the present invention is the first battery, wherein the degree of saponification of polyvinyl alcohol is 97% or more.
  • a third battery according to the present invention is the first battery, wherein the degree of polymerization of polyvinyl alcohol is 170 or more.
  • a fourth battery according to the present invention is the above-described third battery, wherein the degree of saponification of polyvinyl alcohol is 97% or more.
  • a fifth battery according to the present invention is a battery according to the first battery, having a plurality of layers of the electrode laminate.
  • the binder contains polyvinyl alcohol, it is possible to realize high heat resistance, excellent electrolyte solution resistance of the electrode active material layer in a wide temperature range, and high battery charge / discharge characteristics. In addition, a reliable battery can be obtained over a wide temperature range, and the charge / discharge characteristics are high, so that a practical battery can be obtained.
  • the battery charge / discharge characteristics can be further improved.
  • FIG. 1 is a schematic cross-sectional view illustrating one embodiment of a battery according to the present invention.
  • FIGS. 2, 3, and 4 illustrate other embodiments of the battery according to the present invention. It is a principal part cross section schematic diagram. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present inventors have conducted intensive studies on a non-aqueous battery having excellent charge / discharge characteristics and heat resistance and an electrode thereof, and as a result, have reached the present invention.
  • the present invention provides a positive electrode 1 having a positive electrode active material layer 3 in which a positive electrode active material is bound to a positive electrode current collector 2 by a binder, and a negative electrode A negative electrode 4 having a negative electrode active material layer 6 to which an active material is bound; and an electrolyte layer 9 between the positive electrode 1 and the negative electrode 4, i.e., a separator 7 holding a non-aqueous electrolyte.
  • Battery Although the adhesive layer 8 shown in the figure is not required, the structure in which the positive electrode 1 and the negative electrode 4 are joined to the separator 7 with the adhesive layer 8 eliminates the need for a strong outer can, and is lightweight, thin, and of any shape. Battery is obtained.
  • the battery case 10 and the current collector 11 are further provided, and the electrode active material layers 3 and 6 and the separator 7 bound by a binder contain a non-aqueous electrolyte.
  • a feature of the present invention is that the positive electrode active material and the negative electrode active material (both are referred to as electrode active materials) are bound to form the electrode active material layers 3 and 6, and the active material layers 3 and 6 and the current collector 2 are combined.
  • the composition of the binder that bonds 5 and 5 is in the composition.
  • the present inventors have conducted various studies on a secondary battery that has been studied as to how thin and reliable the battery can be, and that the charge / discharge efficiency is increased.
  • the binder contains polyvinyl alcohol in the binder. It has been found that the use of a non-aqueous battery ensures high reliability, high charge / discharge efficiency, and high heat resistance, and has completed the present invention. That is, the present inventors have accumulated various researches and found that polyvinyl alcohol is excellent in electrolytic solution resistance and exhibits strong adhesive strength as a binder for forming the electrode binder, that is, the positive electrode 1 and the negative electrode 4. However, they have found that an electrode body having good electrical contact between electrode active materials can be formed and maintained without dissolving or swelling in an electrolytic solution even at a high temperature.
  • Examples of the polar organic solvent contained in the electrolyte include propylene carbonate, acetyl lactone, ethylene carbonate, tetrahydrofuran, 2-tetrahydrofuran, 1,3-dioxolan, and 4,4-dimethyl-1,3—
  • Use dioxolane getylcarbonate, dimethylcarbonate, sulfolane, 3-methylsulfolane, tert-butylethyl, iso-butylethyl, 1,2-dimethyloxetane, 1,2-ethoxymethoxetane, etc. Can be.
  • the form of the battery using the non-aqueous battery electrode obtained by the present invention is not particularly limited.
  • a positive electrode, a negative electrode and a negative electrode as shown in FIG.
  • An electrode stack comprising a single layer of an electrode stack consisting of an electrolyte layer (separator).
  • an electrode stack with a positive electrode and a negative electrode alternately arranged in a separated separator overnight.
  • a positive electrode and a negative electrode were alternately arranged between the rolled-up separators as shown in FIGS. 3 and 4 to form a plurality of layers of an electrode laminate.
  • Examples include a wound battery and a polymer gel battery using a polymer gel containing an electrolyte as an electrolyte.
  • the binder of the present invention When the binder of the present invention is used, a method in which an electrode active material is dispersed in a binder solution obtained by dissolving the binder in a solvent is used as a coating liquid. A method of applying a solution or a dispersion of the binder is mentioned as an example.
  • the amount of the binder to be used is not particularly limited. 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight.
  • the solvent for dissolving the binder include N-methyl-2-pyrrolidone and dimethyl sulfoxide.
  • Is not particularly limited electrode active material used in the present invention if example embodiment, Mn_ ⁇ 2, Mo 0 3, V 2 0 5, V 6 ⁇ 13, F e 2 0 3, F e 3 ⁇ 4 , L - x) C o 0 2, L i (1 - x) N i 0 2, N I_ ⁇ 2, T i S 2, Mo S 3, F e S 2, CuF 2, N i F 2 , etc.
  • Inorganic compounds fluorinated carbon, graphite, vapor grown carbon fiber and / or its crushed material, polyacrylonitrile-based carbon fiber and / or its crushed material, pitch-based carbon fiber and / or its crushed material
  • Examples include conductive materials such as carbon materials, polyacetylene, and poly (p-phenylene).
  • the method of manufacturing the electrode will be described using a lithium ion secondary battery as an example. That is, the binder of the present invention, the electrode active material, and a solvent for dissolving the binder in a non-aqueous system are uniformly mixed, and the obtained paste is prepared by a conventionally known method such as a copper foil, an aluminum foil or a stainless steel foil as a current collector.
  • the electrode film is uniformly applied to the metal foil and dried by heating at 60 to 150 ° C. for 3 to 120 minutes to form an electrode film in which the electrode active material is bound to the metal foil by the binder.
  • Examples of the solvent for dissolving the binder used to obtain the above paste include N-methyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, and a mixed solvent obtained by combining these. be able to.
  • any material having sufficient strength such as a porous film made of an electrically insulating material, a net, and a nonwoven fabric, can be used.
  • the material is not particularly limited, but a single porous film or a laminated porous film of polyethylene or polypropylene is preferable from the viewpoint of battery performance.
  • the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
  • the positive electrode active material paste prepared by heating and mixing was adjusted to a thickness of 300 ⁇ m by the doctor blade method to form an active material thin film.
  • An aluminum foil with a thickness of 30 ⁇ m serving as the positive electrode current collector is placed on the upper part, and the thickness of the aluminum foil is adjusted to 300 / zm by a dough-blade method to apply the positive electrode active material paste. Applied. This was left to dry in a dryer at 60 ° C for 60 minutes.
  • a positive electrode was produced by rolling the produced laminate to 400 ⁇ m.
  • the negative electrode active material paste prepared by mixing was applied to a thickness of 300 / zm while adjusting the thickness to 300 / zm by a docu-blade method to form an active material thin film.
  • a 20-m-thick strip-shaped copper foil serving as a negative electrode current collector is placed on the upper part, and the upper part is adjusted to a thickness of 300 // m by a dough-blade method to apply the negative-electrode active material paste. Applied. This was left to dry in a dryer at 60 ° C for 60 minutes.
  • a negative electrode was fabricated by rolling the fabricated laminate to 400 m.
  • the positive and negative electrodes obtained as described above were cut into 5 cm x 5 cm, and assembled as shown in Fig. 1 to assemble a battery.
  • the charge / discharge characteristics of the assembled battery were measured under the following conditions, for example, by the method described in the Battery Handbook (Battery Handbook Editing Committee, published by Maruzen 1990).
  • Charge / discharge efficiency (%) Discharge electric capacity ⁇ Charge electric capacity X 100
  • the charge / discharge was repeated at 100 cycles at 25 ° C. and 80 ° C.
  • the charge / discharge characteristics at the first cycle and at the 100th cycle were determined based on the following criteria (A) and (X). The results are shown in Table 1.
  • Example 2 In place of the polyvinyl alcohol having a degree of polymerization of 300 and a degree of saponification of 97% used in Example 1 above, polyvinyl alcohol having a degree of polymerization of 1,000 and a degree of saponification of 97% was used, and the other conditions were the same as in Example 1. .
  • polyvinyl alcohol having a degree of polymerization of 300 and a degree of saponification of 97% used in Example 1 above, polyvinyl alcohol having a degree of polymerization of 1700 and a degree of saponification of 97% was used. did.
  • polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 97% used in Example 1 above, polyvinyl alcohol having a polymerization degree of 2400 and a saponification degree of 97% was used, and the other conditions were the same as in Example 1. I made it.
  • polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 97% used in Example 1 above, polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 85% was used, and the other conditions were the same as in Example 1. did.
  • Example 2 In place of the polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 97% used in Example 1 above, a polyvinyl alcohol having a polymerization degree of 1 000 and a saponification degree of 85% was used. Same as.
  • polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 97% used in Example 1 above, polyvinyl alcohol having a polymerization degree of 1700 and a saponification degree of 85% was used, and the other conditions were the same as in Example 1. did.
  • Example 2400 instead of the polyvinyl alcohol having a degree of polymerization of 300 and a degree of saponification of 97% used in Example 1 above, the polymer having a degree of polymerization of 2400 and a degree of saponification of 85% was used. The same operation as in Example 1 was performed except for using vinyl alcohol.
  • a battery having a plurality of layers of the electrode laminate shown in FIG. 2 was produced using the positive electrode and the negative electrode of Examples 1 to 8 described above.
  • NMP solution in which 3 wt% of the same polyvinyl alcohol as that used for the binder was dissolved was applied to one side of a porous polypropylene sheet (Celgard # 2400, manufactured by Hoechst) used as two separators 7. . Then, before the adhesive was dried, the positive electrode 1 (or the negative electrode) produced above was sandwiched between the separators and adhered to each other, bonded together, and dried at 80 ° C. The separator where the positive electrode 1 (or the negative electrode) is bonded is punched into a predetermined size, the NMP solution is applied to one surface of the separated separator, and the negative electrode 4 is punched into a predetermined size.
  • the positive and negative electrode current collectors of the flat plate-shaped laminated battery body and the current collecting tabs connected to the ends of the positive and negative electrode current collectors are spot-welded to each other between the positive electrode and the negative electrode. Connected in parallel.
  • the tabular laminated structure cell body (a molar ratio of 1: 1) mixed solvent of ethylene carbonate and Jimechiruka one Boneto. 1 to 6 Futsui spoon lithium phosphate O mo electrolyte dissolved in concentration of 1 / dm 3 After being immersed in the solution, the battery was sealed by heat fusion in a bag made of an aluminum laminate film.
  • Example 10 A battery having a plurality of layers of the electrode laminate shown in FIG. 3 was manufactured using the positive electrode and the negative electrode of Examples 1 to 8 described above.
  • the evening is rolled up in an elliptical shape, and the process of rolling up the separator while adhering another negative electrode (or positive electrode) is repeated to form a battery body having a plurality of electrode laminates, and drying while pressing this battery body Then, a flat wound type laminated structure battery body as shown in FIG. 3 was produced.
  • the current collector tabs connected to the respective ends of the positive electrode and the negative electrode current collector of the flat plate-shaped laminated battery body are spot-welded to each other between the positive electrode and the negative electrode, thereby electrically connecting the plate-shaped laminated battery element. Connected in parallel.
  • the tabular laminated structure cell body (a molar ratio of 1: 1) mixed solvent of ethylene carbonate and Jimechiruka one Boneto.
  • the negative electrode 4 (or the positive electrode) may be interposed between the separators while the band-shaped separator in which the positive electrode 1 (or the negative electrode) is joined is folded.
  • a battery having a plurality of layers of the electrode laminate shown in FIG. 4 was manufactured using the positive electrode and the negative electrode of Examples 1 to 8 described above.
  • the strip-shaped positive electrode 1 (or negative electrode) is placed between two strip-shaped separators made of a porous polypropylene sheet (Celgard # 2400, manufactured by Hoechst) to be used as separator 7 overnight.
  • the negative electrode 4 (or the positive electrode) is placed so as to protrude outside of one of the separators by a certain amount.
  • An NMP solution containing 3 wt% of the same polyvinyl alcohol as that used for the binder was applied to the inner surface of each separator and the outer surface of the separator where the negative electrode 4 (or positive electrode) was placed.
  • the positive and negative electrode current collectors connected to the ends of the positive and negative electrode current collectors of this flat plate-shaped laminated battery body are spot-welded to each other between the positive electrode and the negative electrode, so that the flat laminated battery element is electrically connected. Were connected in parallel.
  • This plate-shaped laminated structure battery was prepared by adding lithium 6-phosphate to a mixed solvent of ethylene carbonate and dimethyl carbonate (molar ratio: 1: 1). After being immersed in an electrolyte solution dissolved at a concentration of O mo 1 / dm 3 , the battery was sealed by heat fusion in a bag made of an aluminum laminate film;
  • Polyvinylidene fluoride was used in place of the polyvinyl alcohol having a degree of polymerization of 300 and a degree of saponification of 97% used in Example 1 above, and was otherwise the same as Example 1.
  • polyvinylidene fluoride: polyhexafluoropropylene 6: 4 (molar ratio)
  • It is used as a secondary battery for portable electronic devices such as mobile personal computers and mobile phones, and can be made smaller, lighter, and arbitrarily shaped as well as improving battery performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

The electrolyte resistance of an electrode for a battery using nonaqueous electrolyte is improved and a useful secondary battery with the excellent charge/discharge characteristics and heat-resistant properties is obtained by employing the electrode. A binder including polyvinyl alcohol is used to bind electrode activating material and to form an electrode so as to produce the nonaqueous battery electrode which has the resisting properties against the nonaqueous electrolyte. The battery which has the electrodes and the electrolyte layer has the excellent charge/discharge characteristics and heat-resistant properties.

Description

明細書 非水系電池用電極及びそれを用いた電池 技術分野  Description Electrode for non-aqueous battery and battery using the same
本発明は非水系電池用電極およびそれを用いた非水系電池に関するも のである。 詳しくは、 バインダーを用いて成形した電極およびこの電極 を用いた電池に関するものである。 背景技術  The present invention relates to a non-aqueous battery electrode and a non-aqueous battery using the same. More specifically, the present invention relates to an electrode formed using a binder and a battery using the electrode. Background art
携帯用電子機器の小型 ·軽量化への要望は非常に大きいが、 その実現 のためには電池の性能向上と小型化が不可欠であり、 そのために現在、 種々の電池開発、 改良が進められている。電池に要求されている特性は、 高電圧、 高エネルギー密度、 信頼性などである。 かかる要求を満足する には従来の一般的な水系電解液を用いた電池では不可能なことから、 非 水系電池が注目されている。 なかでもリチウムイオン電池は、 これまで の電池の中で最も高電圧かつ高エネルギー密度が実現されることが期待 される二次電池であり、 現在でもその改良が盛んに進められている。 リチウムイオン電池をはじめとする非水系電池用電極のバインダ一に は従来、 例えば特開昭 6 3 - 1 2 1 2 6 2号公報に開示されているよう に、 フヅ化ビニル、 ポリフヅ化ビニリデン及びそれらのコポリマ一など のフッ素系ポリマーが使用されている。  There is a great demand for smaller and lighter portable electronic devices, but in order to achieve this, it is essential to improve the performance and size of batteries, and various battery developments and improvements are currently being promoted. I have. Characteristics required for batteries include high voltage, high energy density, and reliability. Non-aqueous batteries have attracted attention because satisfying such demands is impossible with conventional batteries using a common aqueous electrolyte. Among them, the lithium-ion battery is a secondary battery that is expected to achieve the highest voltage and the highest energy density among batteries to date, and improvements are being actively made at present. Conventionally, as binders for electrodes for non-aqueous batteries such as lithium ion batteries, for example, as disclosed in Japanese Patent Application Laid-Open No. 63-121262, polyvinyl fluoride and polyvinylidene fluoride are disclosed. And fluoropolymers such as copolymers thereof.
電極を作成する際には、 特閧昭 6 3— 1 2 1 2 6 2号公報によれば、 上記のポリマーを溶解する、 例えば N—メチル— 2—ピロリ ドン (以下 N M Pと略する) のような有機溶剤とともにペーストにされ、 これを集 電体上に塗布し、 乾燥することにより得られる。 特に、 特開昭 6 3 - 1 2 1 2 6 2号公報においてはバインダ一に P V D Fコボリマ一を使用する例が示されている。 これは P V D Fコポリマ —を用いることにより、 P V D Fホモポリマーが N M Pなどの限られた 溶媒にしか溶解しないという問題点を解決したものである。 When preparing an electrode, according to Japanese Patent Application Publication No. 63-112212, the above polymer is dissolved, for example, N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). It is obtained by forming a paste together with such an organic solvent, applying the paste on a current collector, and drying. In particular, Japanese Patent Application Laid-Open No. Sho 63-121212 discloses an example in which PVDF Koborimar is used as a binder. This solves the problem that PVDF homopolymer is soluble only in limited solvents such as NMP by using PVDF copolymer.
上記のように非水系電池用電極のバインダ一には P V D Fやそのコポ リマ一が用いられてきたが、 P V D Fやそのコポリマ一が電解液に対し て、 高温時に溶解したり膨潤したりするために、 このような電極を用い た電池は高温時に充放電特性が低下する問題があった。  As mentioned above, PVDF and its copolymers have been used as binders for non-aqueous battery electrodes.However, PVDF and its copolymers dissolve or swell in electrolyte at high temperatures. However, a battery using such an electrode has a problem that the charge / discharge characteristics are deteriorated at a high temperature.
また、 特閧昭 6 3— 1 2 1 2 6 2号公報に示されているように、 バイ ンダ一に P V D Fコポリマ一を用いた場合では、 P V D Fホモポリマ一 を使用した場合よりもさらに電解液に対して溶解あるいは膨潤しゃすく なる問題がある。  In addition, as shown in Japanese Patent Publication No. 63-112121, the use of PVDF copolymer for the binder is more effective than the use of PVDF homopolymer for the electrolyte. On the other hand, there is a problem of melting or swelling.
本発明は上記のような問題点を解消するためになされたものであり、 高温時においても電極バインダーが電解液に溶解または膨潤することな く、 電極活物質間の良好な電気的接触を有する電極体を形成せしめ、 そ れにより信頼性が高く、 充放電特性、 耐熱性が高く実用的な非水系電池 を安価で効率よく得ることを目的とするものである。 発明の開示  The present invention has been made to solve the above problems, and has good electrical contact between electrode active materials without the electrode binder dissolving or swelling in the electrolytic solution even at a high temperature. An object of the present invention is to form an electrode body, thereby obtaining a practical non-aqueous battery with high reliability, high charge / discharge characteristics, and high heat resistance at low cost and efficiency. Disclosure of the invention
本発明に係る第 1の非水系電池用電極は、 バインダーで結合した電極 活物質を有する非水系電池用電極にあって、 該バインダ一がポリビニル アルコールを含むものである。  A first non-aqueous battery electrode according to the present invention is a non-aqueous battery electrode having an electrode active material bound with a binder, wherein the binder contains polyvinyl alcohol.
本発明に係る第 2の非水系電池用電極は、 上記第 1の非水系電池用電 極において、 ポリビニルアルコールのけん化度が 9 7 %以上であるもの である。  A second non-aqueous battery electrode according to the present invention is the above-mentioned first non-aqueous battery electrode, wherein the degree of saponification of polyvinyl alcohol is 97% or more.
本発明に係る第 3の非水系電池用電極は、 上記第 1の非水系電池用電 極において、 ボリビニルアルコールの重合度が 1 7 0 0以上であるもの である。 The third non-aqueous battery electrode according to the present invention includes the first non-aqueous battery electrode. In the electrode, the degree of polymerization of polyvinyl alcohol is 170 or more.
本発明に係る第 4の非水系電池用電極は、 上記第 3の非水系電池用電 極において、 ポリビニルアルコールのけん化度が 9 7 %以上であるもの である。  A fourth nonaqueous battery electrode according to the present invention is the third nonaqueous battery electrode, wherein the degree of saponification of polyvinyl alcohol is 97% or more.
本発明に係る第 1の電池は、 電解質層と、 ポリビニルアルコールを含 むバインダ一で結合された電極活物質を有する非水系電池用電極とから なる電極積層体を備えた電池である。  A first battery according to the present invention is a battery including an electrode laminate including an electrolyte layer and an electrode for a non-aqueous battery having an electrode active material bound by a binder containing polyvinyl alcohol.
本発明に係る第 2の電池は、 上記第 1の電池において、 ポリビニルァ ルコールのけん化度が 9 7 %以上であるものである。  A second battery according to the present invention is the first battery, wherein the degree of saponification of polyvinyl alcohol is 97% or more.
本発明に係る第 3の電池は、 上記第 1の電池において、 ボリビニルァ ルコールの重合度が 1 7 0 0以上であるものである。  A third battery according to the present invention is the first battery, wherein the degree of polymerization of polyvinyl alcohol is 170 or more.
本発明に係る第 4の電池は、 上記第 3の電池において、 ポリビニルァ ルコールのけん化度が 9 7 %以上であるものである。  A fourth battery according to the present invention is the above-described third battery, wherein the degree of saponification of polyvinyl alcohol is 97% or more.
本発明に係る第 5の電池は、 上記第 1の電池において、 電極積層体の 複数層を有するものである。  A fifth battery according to the present invention is a battery according to the first battery, having a plurality of layers of the electrode laminate.
以上のように、 本発明によれば、 バインダーがポリビニルアルコール を含むことにより、 耐熱性に優れ広い温度範囲での電極活物質層の耐電 解液性と、 電池充放電特性の高さを実現でき、 広い温度範囲で信頼性が 確保され、 なおかつ充放電特性が高く、 実用的な電池を得ることができ る。  As described above, according to the present invention, since the binder contains polyvinyl alcohol, it is possible to realize high heat resistance, excellent electrolyte solution resistance of the electrode active material layer in a wide temperature range, and high battery charge / discharge characteristics. In addition, a reliable battery can be obtained over a wide temperature range, and the charge / discharge characteristics are high, so that a practical battery can be obtained.
また、 ポリビニルアルコールのけん化度を 9 7 %以上とすることによ つて、 電池充放電特性をさらに向上することができる。  Further, by setting the degree of saponification of polyvinyl alcohol to 97% or more, the battery charge / discharge characteristics can be further improved.
また、 ポリビニルアルコールの重合度を 1 7 0 0以上とすることによ つても、 電池充放電特性を向上することができる。 図面の簡単な説明 Also, by setting the degree of polymerization of polyvinyl alcohol to 170 or more, the battery charge / discharge characteristics can be improved. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明になる電池野一実施形態を説明する断面模式図であ り、 第 2図、 第 3図および第 4図は、 本発明になる電池の他の実施形態 を説明する主要部断面模式図である。 発明を実施するための最良の形態  FIG. 1 is a schematic cross-sectional view illustrating one embodiment of a battery according to the present invention. FIGS. 2, 3, and 4 illustrate other embodiments of the battery according to the present invention. It is a principal part cross section schematic diagram. BEST MODE FOR CARRYING OUT THE INVENTION
本発明者らは、 充放電特性及び耐熱性に優れた非水系電池とその電極 に関し鋭意検討した結果、 本発明に達した。  The present inventors have conducted intensive studies on a non-aqueous battery having excellent charge / discharge characteristics and heat resistance and an electrode thereof, and as a result, have reached the present invention.
すなわち本発明は、 第 1図ないし第 4図に示すように、 正極集電体 2 に正極活物質をバインダ一で結着した正極活物質層 3を有する正極 1、 負極集電体 5に負極活物質を結着した負極活物質層 6を有する負極 4、 正極 1と負極 4との間にある電解質層、 すなわち非水系電解液を保持す るセパレー夕 7とからなる電極積層体 9を備えた電池に関するものであ る。 図に示した接着層 8はなくてもよいが、 正極 1および負極 4を接着 層 8でセパレ一タ 7に接合した構造とすることによって強固な外装缶を 不要とし、 軽量で薄型かつ任意形状の電池が得られる。 第 1図において は、 さらに電池ケ一ス 1 0と集電線 1 1を備え、 バインダーで結着され た電極活物質層 3、 6とセパレー夕 7は非水系電解液を含有する。  That is, as shown in FIGS. 1 to 4, the present invention provides a positive electrode 1 having a positive electrode active material layer 3 in which a positive electrode active material is bound to a positive electrode current collector 2 by a binder, and a negative electrode A negative electrode 4 having a negative electrode active material layer 6 to which an active material is bound; and an electrolyte layer 9 between the positive electrode 1 and the negative electrode 4, i.e., a separator 7 holding a non-aqueous electrolyte. Battery. Although the adhesive layer 8 shown in the figure is not required, the structure in which the positive electrode 1 and the negative electrode 4 are joined to the separator 7 with the adhesive layer 8 eliminates the need for a strong outer can, and is lightweight, thin, and of any shape. Battery is obtained. In FIG. 1, the battery case 10 and the current collector 11 are further provided, and the electrode active material layers 3 and 6 and the separator 7 bound by a binder contain a non-aqueous electrolyte.
本発明の特徴は、 正極活物質および負極活物質 (両者を電極活物質と いう) を結着して電極活物質層 3、 6を形成するとともに、 活物質層 3、 6と集電体 2、 5を接着せしめるバインダ一の組成にある。  A feature of the present invention is that the positive electrode active material and the negative electrode active material (both are referred to as electrode active materials) are bound to form the electrode active material layers 3 and 6, and the active material layers 3 and 6 and the current collector 2 are combined. The composition of the binder that bonds 5 and 5 is in the composition.
本発明者等は、 二次電池にあって、 いかに薄型で信頼性が確保され、 なおかつ充放電効率を高くするかに関し、 種々の研究を重ねた結果、 バ ィンダ一にポリビニルアルコールを含有するものを用いることにより、 信頼性が確保され、 なおかつ充放電効率、 耐熱性が高い非水系電池を作 製できることを見いだし、 本発明を完成させたのである。 即ち、 本発明者等は、 種々の研究を積み重ね、 ポリビニルアルコール が電極用バインダ一、 すなわち正極 1および負極 4を形成するためのバ インダーとして、 耐電解液性に優れ、 強力な接着力を発現し、 高温下に おいても電解液に溶解または膨潤することなく、 電極活物質間の良好な 電気的接触を有する電極体を形成、 維持できることを見いだした。 The present inventors have conducted various studies on a secondary battery that has been studied as to how thin and reliable the battery can be, and that the charge / discharge efficiency is increased. As a result, the binder contains polyvinyl alcohol in the binder. It has been found that the use of a non-aqueous battery ensures high reliability, high charge / discharge efficiency, and high heat resistance, and has completed the present invention. That is, the present inventors have accumulated various researches and found that polyvinyl alcohol is excellent in electrolytic solution resistance and exhibits strong adhesive strength as a binder for forming the electrode binder, that is, the positive electrode 1 and the negative electrode 4. However, they have found that an electrode body having good electrical contact between electrode active materials can be formed and maintained without dissolving or swelling in an electrolytic solution even at a high temperature.
電解液に含まれる極性有機溶媒としては、 例えば、 プロピレンカーボ ネート、 ァ一プチルラク トン、 エチレンカーボネート、 テトラヒ ドロフ ラン、 2 —テ トラヒ ドロフラン、 1 , 3—ジォキソラン、 4, 4ージメ チルー 1 , 3—ジォキソラン、 ジェチルカ一ボネート、 ジメチルカ一ボ ネート、 スルホラン、 3—メチルスルホラン、 t e r t —プチルェ一テ ル、 i s o—プチルェ一テル、 1, 2—ジメ トキシェタン、 1 , 2—ェ トキシメ トキシェタン等を使用することができる。  Examples of the polar organic solvent contained in the electrolyte include propylene carbonate, acetyl lactone, ethylene carbonate, tetrahydrofuran, 2-tetrahydrofuran, 1,3-dioxolan, and 4,4-dimethyl-1,3— Use dioxolane, getylcarbonate, dimethylcarbonate, sulfolane, 3-methylsulfolane, tert-butylethyl, iso-butylethyl, 1,2-dimethyloxetane, 1,2-ethoxymethoxetane, etc. Can be.
本発明により得られた非水系電池用電極を用いた電池の形態としては、 特に限定されるものではないが、 従来の液体型電池に加え、 第 1図に示 したような、 正極、 負極および電解質層 (セパレ一タ) からなる電極積 層体の単層を備えたもの、 第 2図に示したような、 切り離されたセパレ 一夕間に正極および負極を交互に配置して電極積層体の複数層を形成し たもの、 また第 3図および第 4図に示したような、 ロール状に巻き上げ たセパレー夕間に正極および負極を交互に配置して電極積層体の複数層 を形成した卷型電池、 電解液を包含するボリマーゲルを電解質とするポ リマ一ゲル電池などが挙げられる。  The form of the battery using the non-aqueous battery electrode obtained by the present invention is not particularly limited. In addition to a conventional liquid battery, a positive electrode, a negative electrode and a negative electrode as shown in FIG. An electrode stack comprising a single layer of an electrode stack consisting of an electrolyte layer (separator). As shown in Fig. 2, an electrode stack with a positive electrode and a negative electrode alternately arranged in a separated separator overnight. A positive electrode and a negative electrode were alternately arranged between the rolled-up separators as shown in FIGS. 3 and 4 to form a plurality of layers of an electrode laminate. Examples include a wound battery and a polymer gel battery using a polymer gel containing an electrolyte as an electrolyte.
本発明のバインダ一を用いる際には、 該バインダーを溶媒に溶解せし めたバインダー溶液に電極活物質を分散させたものを塗工液として用い る方法、 予め予備成形された電極活物質に該バインダーの溶液、 又は分 散液を塗布する方法が一例として挙げられる。 使用するバインダー量は 特に限定されるものではないが、 通常、 電極活物質 1 0 0重量部に対し て 0. 1〜2 0重量部、 好ましくは 0. 5〜 1 0重量部の範囲である。 またバインダーを溶解せしめる溶媒としては、 N—メチルー 2—ピロリ ドン、 ジメチルスルホキサイ ドなどが挙げられる。 When the binder of the present invention is used, a method in which an electrode active material is dispersed in a binder solution obtained by dissolving the binder in a solvent is used as a coating liquid. A method of applying a solution or a dispersion of the binder is mentioned as an example. The amount of the binder to be used is not particularly limited. 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight. Examples of the solvent for dissolving the binder include N-methyl-2-pyrrolidone and dimethyl sulfoxide.
本発明で用いられる電極活物質は特に限定されるものではないが、 例 えば、 Mn〇2、 Mo 03、 V 205、 V613、 F e 203、 F e 34、 L — x) C o 02、 L i (1x) N i 02、 N i〇2、 T i S2、 Mo S3、 F e S2、 CuF2、 N i F2等の無機化合物、 フッ化力一ボン、 グラフ アイ ト、 気相成長炭素繊維及び/又はその粉碎物、 ポリアクリロニトリ ル系炭素繊維及び/又はその粉砕物、 ピッチ系炭素繊維及び/又はその 粉砕物の炭素材料、 ポリアセチレン、 ポリ一 p—フエ二レン等の導電性 高分子などが挙げられる。 Is not particularly limited electrode active material used in the present invention, if example embodiment, Mn_〇 2, Mo 0 3, V 2 0 5, V 6 〇 13, F e 2 0 3, F e 3 〇 4 , L - x) C o 0 2, L i (1 - x) N i 0 2, N I_〇 2, T i S 2, Mo S 3, F e S 2, CuF 2, N i F 2 , etc. Inorganic compounds, fluorinated carbon, graphite, vapor grown carbon fiber and / or its crushed material, polyacrylonitrile-based carbon fiber and / or its crushed material, pitch-based carbon fiber and / or its crushed material Examples include conductive materials such as carbon materials, polyacetylene, and poly (p-phenylene).
電極の製造法をリチウムイオン 2次電池を例に説明する。 即ち本発明 のバインダ一、 電極活物質及び非水系でバインダーを溶解させる溶剤を 均一に混合し、得られたペーストを従来既知の方法で集電体である銅箔、 アルミニウム箔またはステンレス箔などの金属箔に均一に塗布し、 6 0 〜 1 50°Cで 3〜 1 20分加熱乾燥して、 電極活物質を該バインダ一に て金属箔に結着した電極フィルムが形成される。  The method of manufacturing the electrode will be described using a lithium ion secondary battery as an example. That is, the binder of the present invention, the electrode active material, and a solvent for dissolving the binder in a non-aqueous system are uniformly mixed, and the obtained paste is prepared by a conventionally known method such as a copper foil, an aluminum foil or a stainless steel foil as a current collector. The electrode film is uniformly applied to the metal foil and dried by heating at 60 to 150 ° C. for 3 to 120 minutes to form an electrode film in which the electrode active material is bound to the metal foil by the binder.
上記のペーストを得るために使用される、 バインダ一を溶解させる溶 剤としては、 N—メチルー 2—ピロリ ドン、 ジメチルスルホキシド、 γ —プチロラク トン等及びこれらを組み合わせてなる混合溶媒など例とし て挙げることができる。  Examples of the solvent for dissolving the binder used to obtain the above paste include N-methyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, and a mixed solvent obtained by combining these. be able to.
電池作製時に使用されるセパレ一夕としては、 電気絶縁性材料からな る多孔質膜、 網、 不織布など、 十分な強度を有するものであれば、 どの ようなものでも使用可能である。 材質は特に限定しないが、 ポリエチレ ン、 ポリプロピレンの単独多孔質膜あるいは積層多孔質膜が電池性能の 観点から望ましい。 以下に実施例及び比較例を挙げて本発明をさらに詳しく説明するが、 本発明はこれらに限定されるものではない。 As the separator used during the production of the battery, any material having sufficient strength, such as a porous film made of an electrically insulating material, a net, and a nonwoven fabric, can be used. The material is not particularly limited, but a single porous film or a laminated porous film of polyethylene or polypropylene is preferable from the viewpoint of battery performance. Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
実施例 1 . Example 1
〈正極の作成〉  <Creation of positive electrode>
L i C o 0 2を 9 1重量部、黒鉛粉を 6重量部、重合度 3 0 0でケン化 度 9 7 %のポリビニルアルコールを 3重量部、 N—メチルー 2—ピロリ ドン 9 5重量部を加熱混合することにより調製した正極活物質ペースト を, ドク夕一ブレ一ド法で厚さ 3 0 0〃mに調整しつつ塗布して活物質 薄膜を形成した。 その上部に正極集電体となる厚さ 3 0 χ mのアルミ二 ゥム箔を載せ, さらにその上部にドク夕一ブレード法で厚さ 3 0 0 /z m に調整して正極活物質ペーストを塗布した。 これを 6 0 °Cの乾燥機中に 6 0分間放置して乾燥した。 この作製した積層体を 4 0 0〃mになるよ うに圧延することにより正極を作製した。 L i C o 0 2 9 1 part by weight, 6 parts by weight of graphite powder, a polymerization degree of 3 0 3 parts by weight of a saponification degree of 9 7% polyvinyl alcohol in 0, N-methyl-2-pyrrolidone 9 5 parts by weight The positive electrode active material paste prepared by heating and mixing was adjusted to a thickness of 300 μm by the doctor blade method to form an active material thin film. An aluminum foil with a thickness of 30 μm serving as the positive electrode current collector is placed on the upper part, and the thickness of the aluminum foil is adjusted to 300 / zm by a dough-blade method to apply the positive electrode active material paste. Applied. This was left to dry in a dryer at 60 ° C for 60 minutes. A positive electrode was produced by rolling the produced laminate to 400 μm.
〈負極の作成〉  <Creation of negative electrode>
メソフェーズマイクロビーズ力一ボン (大阪ガス製) を 9 5重量部, 重 合度 3 0 0でケン化度 9 7 %のポリビニルアルコールを 5重量部、 N— メチルー 2 —ピロリ ドン 9 5重量部を加熱混合することにより調製した 負極活物質ペーストを, ドク夕一ブレード法で厚さ 3 0 0 /z mに調整し つつ塗布して活物質薄膜を形成した。 その上部に負極集電体となる厚さ 2 0〃mの帯状の銅箔を載せ, さらにその上部にドク夕一ブレード法で 厚さ 3 0 0 // mに調整して負極活物質ペーストを塗布した。 これを 6 0 °Cの乾燥機中に 6 0分間放置して乾燥した。 この作製した積層体を 4 0 0 mになるように圧延することにより, 負極を作製した。 95 parts by weight of mesophase microbeads (made by Osaka Gas), 5 parts by weight of polyvinyl alcohol with a degree of polymerization of 300 and a saponification degree of 97%, and 95 parts by weight of N-methyl-2-pyrrolidone The negative electrode active material paste prepared by mixing was applied to a thickness of 300 / zm while adjusting the thickness to 300 / zm by a docu-blade method to form an active material thin film. A 20-m-thick strip-shaped copper foil serving as a negative electrode current collector is placed on the upper part, and the upper part is adjusted to a thickness of 300 // m by a dough-blade method to apply the negative-electrode active material paste. Applied. This was left to dry in a dryer at 60 ° C for 60 minutes. A negative electrode was fabricated by rolling the fabricated laminate to 400 m.
〈電極の耐電解液性評価〉  <Evaluation of Electrolyte Resistance of Electrode>
前記のように得られた正極、 負極それそれを 1 c m x 5 c mに切り出 し、 エチレンカーボネート : ジェチルカ一ポネート = 1 : 1 (重量比) の混合溶剤中に、 23°C及び 80°Cで 30日間浸漬させ、 活物質薄膜の 金属箔からの剥離及び耐溶剤性について調べ下記〇及び Xの基準で判定 し、 結果を表 1に示した。 Cut the positive and negative electrodes obtained as described above into 1 cm x 5 cm, and ethylene carbonate: getylcapone-1: 1: 1 (weight ratio) Immersed in a mixed solvent at 23 ° C and 80 ° C for 30 days.Examine the peeling of the active material thin film from the metal foil and the solvent resistance.The results are shown in Table 1 and the results are shown in Table 1. Was.
表 1において、  In Table 1,
〇:活物質薄膜に変化なし 〇: No change in active material thin film
:活物質薄膜に、 剥離、 割れ、 膨潤、 溶解のいずれかの現象が発生 であることを示している。  : Indicates that any of the following phenomena occurs in the active material thin film: peeling, cracking, swelling, and dissolution.
〈電池作成及び充放電特性評価〉  <Battery preparation and charge / discharge characteristics evaluation>
上記のように得られた正極、 負極それそれを 5 cmx 5 cmに切り出 し、 第 1図のように組み合わせて電池を組立てた。 組み立てた電池の充 放電特性は例えば電池便覧 (電池便覧編集委員会編 丸善 平成 2年発 行) に記載されている方法で、 以下の条件で測定した。  The positive and negative electrodes obtained as described above were cut into 5 cm x 5 cm, and assembled as shown in Fig. 1 to assemble a battery. The charge / discharge characteristics of the assembled battery were measured under the following conditions, for example, by the method described in the Battery Handbook (Battery Handbook Editing Committee, published by Maruzen 1990).
充電:定電流 +定電圧法、 上限電圧 4. 2 V  Charging: constant current + constant voltage method, upper limit voltage 4.2 V
放電:定電流法 下限電圧 2. 5 V  Discharge: Constant current method Lower limit voltage 2.5 V
電池電極容量: 1 00mA h  Battery electrode capacity: 100 mAh
充放電電流値: 1 00 mA  Charge / discharge current value: 100 mA
充放電効率 (%) =放電電気容量 ÷充電電気容量 X 1 00  Charge / discharge efficiency (%) = Discharge electric capacity ÷ Charge electric capacity X 100
充放電を、 2 5 C及び 80°Cにおいて、 1 0 0サイクル繰り返し、 1 サイクル目及び 1 00サイクル目の充放電特性を下記〇及び Xの基準で 判定し、 結果を表 1に示した。  The charge / discharge was repeated at 100 cycles at 25 ° C. and 80 ° C. The charge / discharge characteristics at the first cycle and at the 100th cycle were determined based on the following criteria (A) and (X). The results are shown in Table 1.
表 1において、  In Table 1,
〇:充放電効率が 90%以上  〇: Charge and discharge efficiency is 90% or more
△:充放電効率が 70 %以上  △: Charge and discharge efficiency is 70% or more
X :充放電効率が 70 %未満もしくは充放電が不可能  X: Charge / discharge efficiency is less than 70% or charge / discharge is not possible
であることを示している。 Is shown.
実施例 2. 上記実施例 1において用いられた、 重合度 300、 けん化度 97%の ポリビニルアルコールにかえて、 重合度 1 000、 けん化度 97%のポ リビニルアルコールを用い、 他は実施例 1と同様にした。 Example 2. In place of the polyvinyl alcohol having a degree of polymerization of 300 and a degree of saponification of 97% used in Example 1 above, polyvinyl alcohol having a degree of polymerization of 1,000 and a degree of saponification of 97% was used, and the other conditions were the same as in Example 1. .
実施例 3. Example 3.
上記実施例 1において用いられた、 重合度 3 00、 けん化度 97%の ポリビニルアルコールにかえて、 重合度 1 700、 けん化度 97%のポ リビニルアルコールを用い、 他は実施例 1と同様にした。  In place of the polyvinyl alcohol having a degree of polymerization of 300 and a degree of saponification of 97% used in Example 1 above, polyvinyl alcohol having a degree of polymerization of 1700 and a degree of saponification of 97% was used. did.
実施例 4. Example 4.
上記実施例 1において用いられた、 重合度 3 00、 けん化度 9 7%の ポリビニルアルコールにかえて、 重合度 2400、 けん化度 9 7%のポ リビニルアルコールを用い、 他は実施例 1と同様にした。  In place of the polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 97% used in Example 1 above, polyvinyl alcohol having a polymerization degree of 2400 and a saponification degree of 97% was used, and the other conditions were the same as in Example 1. I made it.
実施例 5. Example 5.
上記実施例 1において用いられた、 重合度 3 00、 けん化度 9 7%の ポリビニルアルコールにかえて、 重合度 300、 けん化度 8 5%のポリ ビニルアルコールを用い、 他は実施例 1と同様にした。  In place of the polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 97% used in Example 1 above, polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 85% was used, and the other conditions were the same as in Example 1. did.
実施例 6. Example 6.
上記実施例 1において用いられた、 重合度 3 00、 けん化度 9 7%の ボリビニルアルコールにかえて、 重合度 1 000、 けん化度 8 5%のボ リビニルアルコールを用い、 他は実施例 1と同様にした。  In place of the polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 97% used in Example 1 above, a polyvinyl alcohol having a polymerization degree of 1 000 and a saponification degree of 85% was used. Same as.
実施例 7. Example 7.
上記実施例 1において用いられた、 重合度 300、 けん化度 97%の ポリビニルアルコールにかえて、 重合度 1 700、 けん化度 8 5%のポ リビニルアルコールを用い、 他は実施例 1と同様にした。  In place of the polyvinyl alcohol having a polymerization degree of 300 and a saponification degree of 97% used in Example 1 above, polyvinyl alcohol having a polymerization degree of 1700 and a saponification degree of 85% was used, and the other conditions were the same as in Example 1. did.
実施例 8. Example 8.
上記実施例 1において用いられた、 重合度 300、 けん化度 9 7%の ポリビニルアルコールにかえて、 重合度 2400、 けん化度 8 5%のポ リビニルアルコールを用い、 他は実施例 1と同様にした。 Instead of the polyvinyl alcohol having a degree of polymerization of 300 and a degree of saponification of 97% used in Example 1 above, the polymer having a degree of polymerization of 2400 and a degree of saponification of 85% was used. The same operation as in Example 1 was performed except for using vinyl alcohol.
実施例 9 . Embodiment 9.
上記実施例 1ないし 8の正極および負極を用いて第 2図に示した電極 積層体の複数層を有する電池を作製した。  A battery having a plurality of layers of the electrode laminate shown in FIG. 2 was produced using the positive electrode and the negative electrode of Examples 1 to 8 described above.
〈電池の作製〉  <Production of battery>
2枚のセパレー夕 7として用いる多孔性のポリプロピレンシート (へ キスト製商品名セルガード # 2 4 0 0 ) の片面に、 バインダに使用した ものと同じポリビニルアルコールを 3 w t %溶解した N M P溶液を塗布 した。 その後、 接着剤が乾燥する前に上記製作した正極 1 (または負極) をセパレー夕の間に挟んで密着させ、 貼り合わせ、 8 0 °Cで乾燥させた。 正極 1 (または負極) を間に接合したセパレー夕を所定の大きさに打 ち抜き、 この打ち抜いたセパレ一夕の一方の面に上記 N M P溶液を塗布 し、 所定の大きさに打ち抜いた負極 4 (または正極) を張り合わせ、 さ らに、 所定の大きさに打ち抜いた別のセパレ一夕の一方の面に上記 N M P溶液を塗布し、 この別のセパレ一夕の塗布面を先に張り合わせた負極 4 (または正極) の面に張り合わせた。 この工程を繰り返し、 1 0層の 電極積層体を有する電池体を形成し、この電池体を加圧しながら乾燥し、 第 2図に示したような平板状積層構造電池体を作製した。  An NMP solution in which 3 wt% of the same polyvinyl alcohol as that used for the binder was dissolved was applied to one side of a porous polypropylene sheet (Celgard # 2400, manufactured by Hoechst) used as two separators 7. . Then, before the adhesive was dried, the positive electrode 1 (or the negative electrode) produced above was sandwiched between the separators and adhered to each other, bonded together, and dried at 80 ° C. The separator where the positive electrode 1 (or the negative electrode) is bonded is punched into a predetermined size, the NMP solution is applied to one surface of the separated separator, and the negative electrode 4 is punched into a predetermined size. (Or the positive electrode), and then apply the above NMP solution to one surface of another separator that has been punched to a predetermined size, and then apply the coated surface of this separate separator first. 4 (or the positive electrode). This step was repeated to form a battery body having 10 layers of electrode laminates, and this battery body was dried while being pressurized, thereby producing a flat laminated battery body as shown in FIG.
この平板状積層構造電池体の正極及び負極集電体それそれの端部に接 続した集電タブを、正極同士、 負極同士スポット溶接することによって、 上記平板状積層構造電池体素を電気的に並列に接続した。  The positive and negative electrode current collectors of the flat plate-shaped laminated battery body and the current collecting tabs connected to the ends of the positive and negative electrode current collectors are spot-welded to each other between the positive electrode and the negative electrode. Connected in parallel.
この平板状積層構造電池体を、 エチレンカーボネートとジメチルカ一 ボネートの混合溶媒(モル比で 1 : 1 ) に 6フツイ匕リン酸リチウムを 1 . O m o 1 / d m 3の濃 度で溶解させた電解液中に浸した後、 アルミラミ ネートフィルムで作製した袋に熱融着で封入し電池とした。 The tabular laminated structure cell body, (a molar ratio of 1: 1) mixed solvent of ethylene carbonate and Jimechiruka one Boneto. 1 to 6 Futsui spoon lithium phosphate O mo electrolyte dissolved in concentration of 1 / dm 3 After being immersed in the solution, the battery was sealed by heat fusion in a bag made of an aluminum laminate film.
実施例 1 0 . 上記実施例 1ないし 8の正極および負極を用いて第 3図に示した電極 積層体の複数層を有する電池を作製した。 Example 10 A battery having a plurality of layers of the electrode laminate shown in FIG. 3 was manufactured using the positive electrode and the negative electrode of Examples 1 to 8 described above.
〈電池の作製〉  <Production of battery>
多孔性のポリプロピレンシ一ト (へキスト製商品名セルガ一ド # 2 4 0 0 ) からなる帯状の 2枚のセパレ一夕のそれぞれの片面に、 バインダ に使用したものと同じポリビニルアルコ一ルを 3 w t %溶解した N M P 溶液を塗布し、 この塗布した面の間に帯状の正極 1 (または負極) を挟 み、 密着させて張り合わせた後、 8 0 °Cの温風乾燥機に 2時間入れ N M Pを蒸発させた。  The same polyvinyl alcohol as that used for the binder was applied to one side of each of two strip-shaped separators made of porous polypropylene sheet (Selgard # 2400) made by Hoechst. A 3 wt% NMP solution is applied, and a band-shaped positive electrode 1 (or negative electrode) is sandwiched between the coated surfaces, adhered and adhered, and then placed in a hot air drier at 80 ° C for 2 hours. The NMP was evaporated.
正極 1 (または負極) を間に接合した帯状のセパレ一夕の一方の面に 上記 N M P溶液を塗布し、 このセパレ一夕の一端を一定量折り曲げ、 折 り目に負極 4 (または正極) を挟み、 重ね合わせてラミネ一夕に通した。 引き続いて、 帯状のセパレ一夕の他方の面に上記 N M P溶液を塗布し、 先に折り目に挟んだ負極 (または正極) と対向する位置に別の負極 (ま たは正極) を張り合わせ、 セパレ一夕を長円状に巻き上げ、 さらに別の 負極 (または正極) を張り合わせつつセパレータをまきあげる工程を繰 り返し、 複数層の電極積層体を有する電池体を形成し、 この電池体を加 圧しながら乾燥し、 第 3図に示したような平板状卷型積層構造電池体を 作製した。  Apply the above NMP solution to one side of the strip-shaped separator with the positive electrode 1 (or the negative electrode) joined between them. Bend one end of this separator a certain amount, and fold the negative electrode 4 (or positive electrode) at the fold. We sandwiched them and put them on Lamine overnight. Subsequently, the NMP solution was applied to the other surface of the strip-shaped separator, and another negative electrode (or positive electrode) was attached to a position opposite to the negative electrode (or positive electrode) sandwiched between the folds, and then separated. The evening is rolled up in an elliptical shape, and the process of rolling up the separator while adhering another negative electrode (or positive electrode) is repeated to form a battery body having a plurality of electrode laminates, and drying while pressing this battery body Then, a flat wound type laminated structure battery body as shown in FIG. 3 was produced.
この平板状積層構造電池体の正極及び負極集電体それぞれの端部に接 続した集電タブを、 正極同士、 負極同士スポット溶接することによって、 上記平板状積層構造電池体素を電気的に並列に接続した。  The current collector tabs connected to the respective ends of the positive electrode and the negative electrode current collector of the flat plate-shaped laminated battery body are spot-welded to each other between the positive electrode and the negative electrode, thereby electrically connecting the plate-shaped laminated battery element. Connected in parallel.
この平板状積層構造電池体を、 エチレンカーボネートとジメチルカ一 ボネートの混合溶媒(モル比で 1 : 1 ) に 6フツイヒリン酸リチウムを 1 . O m o 1 / d m 3の濃度で溶解させた電解液中に浸した後、 アルミラミ ネートフィルムで作製した袋に熱融着で封入し電池とした。 なお、 本実施例において、 正極 1 (または負極) を間に接合した帯状 のセパレータ折り畳みつつ、 負極 4 (または正極) をセパレー夕間に挟 むようにしてもよい。 The tabular laminated structure cell body, (a molar ratio of 1: 1) mixed solvent of ethylene carbonate and Jimechiruka one Boneto. To 6 lithium Futsuihirin acid 1 O mo 1 / dm 3 of the electrolytic solution and dissolved at a concentration After soaking, the battery was sealed by heat sealing in a bag made of an aluminum laminate film. In this embodiment, the negative electrode 4 (or the positive electrode) may be interposed between the separators while the band-shaped separator in which the positive electrode 1 (or the negative electrode) is joined is folded.
実施例 1 1 . Example 11 1.
上記実施例 1ないし 8の正極および負極を用いて第 4図に示した電極 積層体の複数層を有する電池を作製した。  A battery having a plurality of layers of the electrode laminate shown in FIG. 4 was manufactured using the positive electrode and the negative electrode of Examples 1 to 8 described above.
〈電池の作製〉  <Production of battery>
帯状の正極 1 (または負極) を、 セパレ一夕 7として用いる多孔性の ポリプロピレンシート (へキスト製商品名セルガード # 2 4 0 0 ) から なる帯状の 2枚のセパレ一夕間に配置し、 帯状の負極 4 (または正極) を一方のセパレ一夕の外側に一定量突出させて配置する。 各セパレー夕 の内側の面および負極 4 (または正極) を配置したセパレ一夕の外側の 面に、 バインダに使用したものと同じポリビニルアルコ一ルを 3 w t % 溶解した N M P溶液を塗布し、 負極 4 (または正極) と 2枚のセパレ一 夕と正極 1 (または負極) とを重ね合わせてラミネ一夕に通し、 引き続 き他方のセパレ一夕の外側の面に上記 N M P溶液を塗布し、 突出した負 極 4 (または正極) をこの塗布面に折り曲げて張り合わせ、 この折り曲 げた負極 4 (または正極) を内側に包み込むようにラミネートしたセパ レ一タを長円状に巻き上げ、 複数層の電極積層体を有する電池体を形成 し、 この電池体を加圧しながら乾燥し、 平板状卷型積層構造電池体を作 製した。  The strip-shaped positive electrode 1 (or negative electrode) is placed between two strip-shaped separators made of a porous polypropylene sheet (Celgard # 2400, manufactured by Hoechst) to be used as separator 7 overnight. The negative electrode 4 (or the positive electrode) is placed so as to protrude outside of one of the separators by a certain amount. An NMP solution containing 3 wt% of the same polyvinyl alcohol as that used for the binder was applied to the inner surface of each separator and the outer surface of the separator where the negative electrode 4 (or positive electrode) was placed. 4 (or positive electrode), two separators, and positive electrode 1 (or negative electrode) are overlapped and passed through the laminator, and then the above NMP solution is applied to the outer surface of the other separator. A protruding negative electrode 4 (or positive electrode) is folded over this coated surface and attached, and a separator laminated so that the bent negative electrode 4 (or positive electrode) is wrapped inside is rolled up in an elliptical shape, and multiple layers are formed. A battery body having an electrode laminate was formed, and the battery body was dried while being pressurized, thereby producing a flat wound-type laminated structure battery body.
この平板状積層構造電池体の正極及び負極集電体それそれの端部に接 続した集電夕ブを、正極同士、負極同士スポット溶接することによって、 上記平板状積層構造電池体素を電気的に並列に接続した。  The positive and negative electrode current collectors connected to the ends of the positive and negative electrode current collectors of this flat plate-shaped laminated battery body are spot-welded to each other between the positive electrode and the negative electrode, so that the flat laminated battery element is electrically connected. Were connected in parallel.
この平板状積層構造電池体を、 エチレンカーボネートとジメチルカ一 ポネートの混合溶媒(モル比で 1 : 1 ) に 6フヅィ匕リン酸リチウムを 1 . O m o 1 / d m3 ,の濃 度で溶解させた電解液中に浸した後、アルミラミ ネ一トフィルムで作製した袋に熱融着で封入し電池としす;。 This plate-shaped laminated structure battery was prepared by adding lithium 6-phosphate to a mixed solvent of ethylene carbonate and dimethyl carbonate (molar ratio: 1: 1). After being immersed in an electrolyte solution dissolved at a concentration of O mo 1 / dm 3 , the battery was sealed by heat fusion in a bag made of an aluminum laminate film;
上記実施例 9ないし 1 1の電池において積層体の積層数を種々変化させ た結果、 積層体の積層数に比例した電池容量が得られた。 As a result of variously changing the number of stacked layers in the batteries of Examples 9 to 11, a battery capacity proportional to the number of stacked layers was obtained.
比較例 1 . Comparative Example 1.
上記実施例 1において用いられた、 重合度 3 0 0、 けん化度 9 7 %の ボリビニルアルコールにかえて、 ポリフヅ化ビニリデンを用い、 他は実 施例 1と同様にした。  Polyvinylidene fluoride was used in place of the polyvinyl alcohol having a degree of polymerization of 300 and a degree of saponification of 97% used in Example 1 above, and was otherwise the same as Example 1.
比較例 2 . Comparative example 2.
' 上記実施例 1において用いられた、 重合度 3 0 0、 けん化度 9 7 %の ポリビニルアルコールにかえて、 ポリフッ化ビニリデン一ポリへキサフ ルォロブロビレンコポリマ一 (ポリフヅ化ビニリデン :ポリへキサフル ォロプロピレン = 6 : 4 (モル比) ) を用い、 他は実施例 1と同様にし た。  'Instead of the polyvinyl alcohol having a degree of polymerization of 300 and a degree of saponification of 97% used in Example 1 above, polyvinylidene fluoride-polyhexafluorofluorovinylene copolymer (polyvinylidene fluoride: polyhexafluoropropylene = 6: 4 (molar ratio)), and the other conditions were the same as in Example 1.
耐電解液性 充放 特性 正極 負極 1サ 「クル 100サイクルElectrolyte resistance Charging / discharging characteristics Positive electrode Negative electrode 1 cycle 100 cycles
23°C 80°C 23°C 80°C 23°C 80°C 23°C 80°C 実 1 〇 〇 〇 〇 〇 〇 〇 Δ 施 2 〇 〇 〇 〇 〇 〇 〇 〇 例 3 O 〇 〇 〇 〇 〇 0 〇23 ° C 80 ° C 23 ° C 80 ° C 23 ° C 80 ° C 23 ° C 80 ° C Actual 1 〇 〇 〇 〇 〇 〇 〇 ΔApplication 2 〇 〇 〇 〇 〇 〇 〇 〇 Example 3 O 〇 〇 〇 〇 〇 0 〇
4 〇 〇 〇 〇 〇 〇 〇 Ο4 〇 〇 〇 〇 〇 〇 〇 〇
5 〇 〇 〇 〇 〇 〇 Δ Δ5 〇 〇 〇 〇 〇 〇 Δ Δ
6 o 〇 〇 〇 〇 〇 〇 Δ6 o 〇 〇 〇 〇 〇 〇 Δ
7 〇 〇 〇 〇 〇 〇 〇 〇7 〇 〇 〇 〇 〇 〇 〇 〇
8 〇 〇 〇 〇 〇 〇 0 〇 比 1 〇 X 〇 X 〇 Δ Ο X 較 2 〇 X 〇 X 〇 X 〇 X 例 上記表 1の結果に明らかに示されているように、 比較例 1および 2で は、温度 2 3 °Cでは耐電解液性および充放電特性は良好な結果を示すが、 温度 8 0 °Cでは耐電解液性および充放電特性とも十分な特性が得られな かった。 一方、 実施例 1〜8によれば、 2 3 °C、 8 0 °Cいずれの温度で も、 正極、 負極ともに活物質層の耐電解液性が優れており、 かつ電池充 放電特性が優れた電池が得られる。 産業上の利用可能性 8 〇 〇 〇 〇 〇 〇 0 比 Ratio 1 〇 X 〇 X 〇 Δ Ο X Compare 2 〇 X 〇 X 〇 X 〇 X Example As clearly shown in the results of Table 1 above, in Comparative Examples 1 and 2, the electrolytic solution resistance and the charge / discharge characteristics were good at a temperature of 23 ° C, but the temperature was 80 ° C. In this case, sufficient characteristics were not obtained in both the electrolyte resistance and the charge / discharge characteristics. On the other hand, according to Examples 1 to 8, at both 23 ° C. and 80 ° C., both the positive electrode and the negative electrode have excellent electrolytic solution resistance of the active material layer and excellent battery charge / discharge characteristics. Battery is obtained. Industrial applicability
携帯パソコン、 携帯電話等の携帯用電子機器の二次電池として用いら れ、 電池の性能向上とともに、 小型 ·軽量化、 任意形状化が可能となる。  It is used as a secondary battery for portable electronic devices such as mobile personal computers and mobile phones, and can be made smaller, lighter, and arbitrarily shaped as well as improving battery performance.

Claims

請求の範囲 The scope of the claims
1 . バインダ一で結合した電極活物質を有する非水系電池用電極にあつ て、 該バインダ一がポリビニルアルコールを含むことを特徴とする非水 系電池用電極。 1. A non-aqueous battery electrode having an electrode active material bound by a binder, wherein the binder contains polyvinyl alcohol.
2 . ポリビニルアルコールのけん化度が 9 7 %以上であること特徴とす る請求の範囲第 1項記載の非水系電池用電極。  2. The electrode for a non-aqueous battery according to claim 1, wherein the degree of saponification of polyvinyl alcohol is 97% or more.
3 . ポリビニルアルコールの重合度が 1 7 0 0以上であること特徴とす る請求の範囲第 1項記載の非水系電池用電極。  3. The electrode for a non-aqueous battery according to claim 1, wherein the degree of polymerization of polyvinyl alcohol is 170 or more.
4 . ポリビニルアルコールのけん化度が 9 7 %以上であること特徴とす る請求の範囲第 1項記載の非水系電池用電極。  4. The electrode for a non-aqueous battery according to claim 1, wherein the degree of saponification of polyvinyl alcohol is 97% or more.
5 . 電解質層と、 ポリビニルアルコールを含むバインダーで結合された 電極活物質を有する非水系電池用電極とからなる電極積層体を備えたこ とを特徴とする電池。  5. A battery comprising an electrode laminate including an electrolyte layer and an electrode for a non-aqueous battery having an electrode active material bonded with a binder containing polyvinyl alcohol.
6 . ポリビニルアルコールのけん化度が 9 7 %以上であること特徴とす る請求の範囲第 5項記載の電池。  6. The battery according to claim 5, wherein the degree of saponification of polyvinyl alcohol is 97% or more.
7 . ポリビニルアルコールの重合度が 1 7 0 0以上であること特徴とす る請求の範囲第 5項記載の電池。  7. The battery according to claim 5, wherein the degree of polymerization of polyvinyl alcohol is 170 or more.
8 . ポリビニルアルコールのけん化度が 9 7 %以上であること特徴とす る請求の範囲第 7項記載の電池。  8. The battery according to claim 7, wherein the degree of saponification of polyvinyl alcohol is 97% or more.
9 . 電極積層体の複数層を有すること特徴とする請求の範囲第 5項記載 の電池。  9. The battery according to claim 5, comprising a plurality of layers of the electrode laminate.
PCT/JP1997/004667 1997-12-18 1997-12-18 Nonaqueous battery electrode and battery using the electrode WO1999031746A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/004667 WO1999031746A1 (en) 1997-12-18 1997-12-18 Nonaqueous battery electrode and battery using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/004667 WO1999031746A1 (en) 1997-12-18 1997-12-18 Nonaqueous battery electrode and battery using the electrode

Publications (1)

Publication Number Publication Date
WO1999031746A1 true WO1999031746A1 (en) 1999-06-24

Family

ID=14181671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004667 WO1999031746A1 (en) 1997-12-18 1997-12-18 Nonaqueous battery electrode and battery using the electrode

Country Status (1)

Country Link
WO (1) WO1999031746A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7206190B2 (en) 2002-11-29 2007-04-17 Honda Motor Co., Ltd. Electrode for electric double layer capacitor
JP2009238681A (en) * 2008-03-28 2009-10-15 Nissan Motor Co Ltd Electrode for lithium-ion battery
JP2013144442A (en) * 2013-02-27 2013-07-25 Asahi Kasei Chemicals Corp Porous film including both high heat resistance and high transmittance, and method for manufacturing the same
JP2019008924A (en) * 2017-06-22 2019-01-17 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299152A (en) * 1989-05-15 1990-12-11 Furukawa Battery Co Ltd:The Manufacture of electrode for secondary battery
JPH04267054A (en) * 1991-02-21 1992-09-22 Sanyo Electric Co Ltd Manufacture of positive electrode for organic electrolyte battery
JPH05234594A (en) * 1992-02-20 1993-09-10 Matsushita Electric Ind Co Ltd Solid electrode composition
JPH07263029A (en) * 1994-03-25 1995-10-13 Mitsubishi Chem Corp Lithium ion secondary battery
JPH09293498A (en) * 1996-04-26 1997-11-11 Sanyo Electric Co Ltd Negative electrode for lithium ion battery and manufacture thereof
JPH09306503A (en) * 1996-05-16 1997-11-28 Hitachi Maxell Ltd Lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299152A (en) * 1989-05-15 1990-12-11 Furukawa Battery Co Ltd:The Manufacture of electrode for secondary battery
JPH04267054A (en) * 1991-02-21 1992-09-22 Sanyo Electric Co Ltd Manufacture of positive electrode for organic electrolyte battery
JPH05234594A (en) * 1992-02-20 1993-09-10 Matsushita Electric Ind Co Ltd Solid electrode composition
JPH07263029A (en) * 1994-03-25 1995-10-13 Mitsubishi Chem Corp Lithium ion secondary battery
JPH09293498A (en) * 1996-04-26 1997-11-11 Sanyo Electric Co Ltd Negative electrode for lithium ion battery and manufacture thereof
JPH09306503A (en) * 1996-05-16 1997-11-28 Hitachi Maxell Ltd Lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7206190B2 (en) 2002-11-29 2007-04-17 Honda Motor Co., Ltd. Electrode for electric double layer capacitor
JP2009238681A (en) * 2008-03-28 2009-10-15 Nissan Motor Co Ltd Electrode for lithium-ion battery
JP2013144442A (en) * 2013-02-27 2013-07-25 Asahi Kasei Chemicals Corp Porous film including both high heat resistance and high transmittance, and method for manufacturing the same
JP2019008924A (en) * 2017-06-22 2019-01-17 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3997573B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP3225867B2 (en) Lithium ion secondary battery and method of manufacturing the same
US6225010B1 (en) Lithium ion secondary battery and manufacture thereof
JP5526488B2 (en) Electrochemical devices
JP5195341B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
US9831480B2 (en) Fiber-containing polymer film and method of manufacturing same, and electrochemical device and method of manufacturing same
JP4008508B2 (en) Method for producing lithium ion secondary battery
US6291102B1 (en) Lithium ion secondary battery
JP3563646B2 (en) Electrochemical device
JP4549992B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP3474853B2 (en) Manufacturing method of lithium ion secondary battery
JP3811353B2 (en) Lithium ion secondary battery
KR19980071000A (en) Electrode for Lithium Ion Secondary Battery and Lithium Ion Secondary Battery Using It
JP2000251944A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2008293982A (en) Nonaqueous electrolyte secondary battery
WO1999031750A1 (en) Adhesive for cells, a cell using the same and a process for producing cells
US6537705B1 (en) Lithium ion secondary battery and its manufacture
JP4959048B2 (en) Sheet-like lithium secondary battery
KR100329294B1 (en) Method for manufacturing lithium ion battery
WO1999026308A1 (en) Bonding agent for cells and cell using the same
WO1999031746A1 (en) Nonaqueous battery electrode and battery using the electrode
JP2012074230A (en) Collector and electrode for battery, and battery
JP4800580B2 (en) Secondary battery
KR100301996B1 (en) Manufacture of lithium ion secondary battery
KR100301995B1 (en) Lithium ion secondary battery and its manufacture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000539539

Format of ref document f/p: F