WO1999031703A1 - Deflecting coil winder - Google Patents

Deflecting coil winder Download PDF

Info

Publication number
WO1999031703A1
WO1999031703A1 PCT/JP1997/004630 JP9704630W WO9931703A1 WO 1999031703 A1 WO1999031703 A1 WO 1999031703A1 JP 9704630 W JP9704630 W JP 9704630W WO 9931703 A1 WO9931703 A1 WO 9931703A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
conductive member
transformer
crimping
winding machine
Prior art date
Application number
PCT/JP1997/004630
Other languages
French (fr)
Japanese (ja)
Inventor
Ken Saruta
Original Assignee
Nittoku Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittoku Engineering Co., Ltd. filed Critical Nittoku Engineering Co., Ltd.
Priority to PCT/JP1997/004630 priority Critical patent/WO1999031703A1/en
Publication of WO1999031703A1 publication Critical patent/WO1999031703A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/236Manufacture of magnetic deflecting devices for cathode-ray tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2209/00Apparatus and processes for manufacture of discharge tubes
    • H01J2209/236Manufacture of magnetic deflecting devices
    • H01J2209/2363Coils
    • H01J2209/2366Machines therefor, e.g. winding, forming, welding, or the like

Definitions

  • the present invention relates to an improvement in a deflecting coil winding machine in which electrodes made of a conductive member are welded to lead wires at both ends of a deflecting coil, and a voltage is applied between these electrodes to form a deflecting coil.
  • a deflection coil used for a brown tube or the like is generally wound into a special shape such as a saddle shape due to required characteristics, and is molded and fixed so that the shape can be maintained in a state of a coil without a core.
  • the wire material for winding for example, in order to reduce induction loss, a wire in which a plurality of covered wires insulated around a thin conductive wire are used. Winding is performed using a special mold, and the coil that has been wound is energized at a predetermined voltage to generate heat based on the resistance of the conductor, thereby heating and melting the covering material of the covered wire. Are welded to each other. As a result, the wire material increases the rigidity due to the integral wire of the covered wire, and the deflection coil retains the saddle shape without being deformed even when it is removed from the mold.
  • the energization after this coil winding is performed by connecting electrodes made of metal pieces to the lead wires at both ends of the wound deflection coil, and for connecting the metal pieces to these lead wires, a winding machine is used.
  • a winding machine Is provided with a welding device as shown in FIG. 33, for example.
  • electrodes were pressed against both sides of a plate-shaped metal piece 202 sandwiching the lead wire 201, and the electrodes were adjusted to this electrode by a transformer 203 and a switching circuit 204.
  • the insulation film of the lead wire 201 is destroyed, The metal pieces and the leads are electrically connected, and these are thermally welded.
  • energization heating for forming and fixing the deflection coil is performed by supplying a higher voltage and a smaller current to both ends of the deflection coil than in the case of welding. For this reason, a separate transformer is required for welding the lead wire of the deflection coil and for energizing and heating the deflection coil.
  • a heating device as shown in Fig. 36 to Fig. 36 is provided.
  • the current-carrying heating device shown in Fig. 34 first converts the input current (for example, commercial AC 200 V) input to the input terminal 211 into a solid state relay (SSR) 213. Then, the signal is received by the primary side of the insulating transformer 211, rectified by the rectifier 214 provided on the secondary side of the transformer 212, and supplied to the deflection coil 200. In this case, the power applied to the deflection coil 200 is adjusted by turning on and off the solid state relay 2 13 by the timer circuit 2 15. In addition, since the resistance value differs depending on the size and type (for TV and monitor) of the deflection coil 200, the voltage applied to the deflection coil 200 needs to be changed. This was done by switching the secondary tap 2 1 6 of 1 2.
  • SSR solid state relay
  • a triac 22 1 is interposed in front of the rectifier 2 14 on the secondary side of the insulating transformer 21.
  • the voltage and current on the secondary side are detected by a voltmeter 222 and an ammeter 222 and input to the controller 222.
  • the controller 222 controls the firing angle of the triac 221 in a feedback manner, adjusts the power applied to the deflection coil 200, and absorbs the variation in the resistance value of the deflection coil. .
  • the current-carrying heating device shown in FIG. 36 uses the duty ratio of the current rectified by the rectifier 2 14 on the secondary side of the insulating transformer 211 to the high-speed switching of the transistor 231 (up to 200
  • the control can be performed by the controller 2 1 2 based on the voltage value detected by the voltmeter 2 23 and the current value detected by the ammeter 2 24. Filter the switching of transistor 2 3 1 —By performing the feedback control, the voltage applied to the deflection coil 200 is adjusted to absorb the resistance value of the deflection coil 200.
  • the on / off control of the input voltage of the commercial ill wave number (for example, 200 V AC) and the adjustment of the voltage applied to the deflection coil 200 are performed by the insulating transformer 21. It is difficult to perform fine power control by switching the two taps 2 16, and it is also difficult to absorb the effects of power supply voltage fluctuations.
  • the triac 221 can be controlled to fire at a frequency of about 1 kHz at the maximum, and the feedback coil is controlled. Although the controllability of the power applied to 200 and the like is improved to some extent, the variable range of the frequency is still narrow, and it is difficult to control power over a wide range. Further, the voltage applied to the deflection coil 200 cannot be increased beyond the voltage on the secondary side of the insulating transformer 211.
  • the transistor 231 can be controlled by high-speed switching at a frequency of about 20 kHz at the maximum, so that the controllability is improved and the deflection coil 20 is controlled. If the inductance of 0 is small or if there is a short circuit in the deflection coil 200, the inrush current to the transistor 2 31 may destroy the transistor 2 3 1 Circuit is required. Further, similarly to the apparatus shown in FIG. 34, the voltage applied to the deflection coil 200 cannot be increased beyond the voltage on the secondary side of the insulating transformer 212.
  • the present invention has been made in view of such a problem, and the welding of the electrodes to the lead wires at both ends of the deflection coil and the electric heating for molding and fixing the deflection coil are performed by one apparatus.
  • a winding machine of a deflection coil equipped with an electric heating and welding device capable of controlling the applied voltage, applied current, and applied power to the deflection coil at a wide and fine precision at this time. The purpose is to provide. Disclosure of the invention
  • the present invention relates to a deflecting coil winding machine comprising: a wire supply mechanism for supplying a wire made of a coated conductor; and a mold for winding a wire supplied from the wire supply mechanism to form a deflection coil.
  • a conductive member provided on both sides of the circumference of the wire supplied from the wire supply mechanism, crimping means for crimping the conductive member to the wire, and a first electrode for sandwiching the conductive material crimping portion of the wire.
  • Welding means for applying a predetermined voltage between the first electrodes to weld the conductive member to the wire; moving means for moving the conductive member crimping portion; and the moving means.
  • Locking means for locking the conductive member crimping portion, a conductive member crimping portion locked by the locking means, and a winding end side of the deflecting coil wound with the conductive member crimping portion as a winding start side
  • Second electrodes connected to each other, energizing heating means for applying a predetermined voltage between the second electrodes to mold and fix the deflection coil, and rectification for rectifying an external alternating current to a direct current.
  • an inverter circuit for converting the DC current into a pulse wave current having a predetermined duty ratio
  • feedback control means for detecting the voltage or current value of the pulse wave and performing feedback control of the duty ratio
  • Switching means for connecting the welding means, and selectively switching connection of the inverter circuit to the energizing heating means or the welding means via the transformer means.
  • the welding means applies a voltage to the conductive member press-fit portion of the wire by the first electrode, so that the coating of the wire is melted, and the welding member moves to the side of the conductive member to be pressed.
  • the moving means of the conductive member moves the conductive member crimped to the wire, and the locking means locks the conductive member. Winding is performed in the state.
  • the energizing heating means applies a voltage to these conductive members via the second electrode, thereby forming a coil (the energizing heating step). Is performed.
  • an alternating current from the outside is rectified into a direct current by a rectifying means, and then converted into a loose wave current by an inverter circuit.
  • the connection to the electric heating means or the welding means via the transformer means of the inverter circuit is made selectively by switching means. Therefore, both heating of the deflection coil using a high voltage and welding of conductive members to the conductors at both ends of the deflection coil using a low voltage can be performed by a single device. Can be simplified. Also, by performing feedback control of the duty ratio of the pulse wave current from the inverter circuit, it is possible to precisely converge the voltage or current generated on the secondary side of the transformer to the target value.
  • a first transformer as the step-up side transformer
  • a second transformer as the step-down transformer
  • the switching means comprises a first transformer of the inverter circuit. Or, switch the connection to the second transformer.
  • connection can be selectively switched by the connection switching means of the inverter circuit to the first or second transforming means, so that the heating of the deflecting coil and the leading ends at both ends of the deflecting coil can be performed.
  • a single device can be used for both welding and welding of metal members to the transformer, and by controlling the duty ratio of the pulse wave current from the inverter circuit to the secondary side of the transformer, The convergence control of the voltage or current to be performed to the target value can be performed accurately.
  • the switching means selectively switches between a connection between a pressure increasing side of the transformer and the energization heating means and a connection between a pressure decreasing side of the transformer and the welding means.
  • the heating and heating of the deflection coil and the gold on the leads at both ends of the deflection coil are performed.
  • Both welding and welding of metal members can be performed by a single device, as well as inverter circuits.
  • the inverter circuit is a chopper type inverter circuit for performing high-speed switching of a switching element such as a transistor.
  • the inverter circuit is switched at a high speed by a switching element such as a transistor.
  • the duty ratio of the Loose wave current is fine and wide, and it is possible to control it.Improvement of the controllability of the voltage, current, and power applied to the deflection coil, and it is applied corresponding to various deflection coils Power can be controlled, and variations in resistance of the deflection coil can be easily dealt with.
  • the transformer is a high-frequency insulating transformer.
  • the high-frequency insulating transformer separates the power supply heating means and the welding means from the inverter circuit side, even if the inductance of the deflecting coil is low or the deflecting coil has a short circuit failure, etc.
  • a large current does not flow in the transistor area of the inverter circuit, and there is little danger that the transistor area will be destroyed.
  • the high-frequency insulating transformer is small, the size of the entire device can be reduced.
  • the conductive member is constituted by a conductive strip-shaped continuous member, a means for supplying the strip-shaped continuous member to the crimping means, and a means for cutting the strip-shaped continuous member at a predetermined position.
  • a conductive strip-shaped continuous member constituted by a conductive strip-shaped continuous member, a means for supplying the strip-shaped continuous member to the crimping means, and a means for cutting the strip-shaped continuous member at a predetermined position.
  • the conductive member is formed of a hoop material obtained by cutting and raising a part of a conductive strip-shaped continuous member at a predetermined interval and bending the hoop material, and supplying the hoop material to the crimping means; Means for cutting the material at a predetermined position. This facilitates pressure bonding of the conductive member to the wire.
  • a crimping portion to be crimped to a wire is formed at a predetermined interval by cutting and raising a part of the wrapping material. Use hoops with claws to prevent them from sticking out.
  • the wire when the crimping portion is crimped to the wire for forming the electrode, the wire does not protrude outside the crimping portion, but is securely crimped to the crimping portion, and the electrode can be formed more reliably. .
  • the means for moving the conductive member is a wire rod supply mechanism including a movement mechanism.
  • the conductive member crimped on the wire can be moved without using a dedicated moving means, and the configuration of the winding machine can be simplified.
  • the means for moving the conductive member is a first electrode provided with a moving mechanism and a mechanism for holding the conductive member.
  • the conductive member crimped to the wire can be moved without using any special moving means, and the configuration of the winding machine can be simplified.
  • Means for cutting the wire between the conductive member and the mold were provided.
  • the wire is cut between the conductive member and the mold, so that the conductive member is left pressed against the wire on the wire feed mechanism side.
  • By locking the conductive member to the locking means and winding the next coil one coil can be formed by using substantially only one conductive member. Therefore, it is possible to reduce the amount of the conductive rate used and the labor of the crimping operation.
  • the crimping means and the first electrode are constituted by a pair of opposing members provided with an axial relative movement mechanism.
  • the structure of the device can be simplified.
  • FIG. 1 is a perspective view showing a deflection coil winding machine of the present invention.
  • FIG. 2 is a perspective view of a pressure welding mechanism.
  • FIG. 3 is a perspective view of a hoop material feeding mechanism.
  • FIG. 4 is a configuration diagram showing an electric heating and welding device of the present invention.
  • FIG. 5 is a characteristic diagram showing a state of current control by the inverter circuit.
  • FIG. 6 is a characteristic diagram showing a state of current control by an inverter circuit.
  • FIG. 7 is an assembly diagram showing a coil winding and a molding process.
  • FIG. 8 is an assembling diagram showing a coil winding and a molding process. '
  • FIG. 9 is a perspective view showing a long material as a conductive member.
  • FIG. 10 is a longitudinal sectional view showing an example of an electrode of the current welding mechanism.
  • FIG. 11 is a perspective view of a conductive member crimped to a wire according to the embodiment shown in FIG.
  • FIG. 12 is a configuration diagram showing an electric heating and welding apparatus according to another embodiment of the present invention.
  • FIG. 13 is a perspective view of a main part of the pressure welding mechanism and the robot hand.
  • FIG. 14 is a perspective view of an essential part of the pressure welding mechanism, the robot hand, and the feed mechanism.
  • FIG. 15 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
  • FIG. 16 is a partial perspective view of a nozzle, a pressure welding mechanism, and a feeding mechanism showing still another embodiment of the present invention.
  • FIG. 17 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
  • FIG. 18 is a perspective view of a winding machine showing still another embodiment of the present invention.
  • FIG. 19 is a perspective view of a winding machine showing still another embodiment of the present invention.
  • FIG. 20 is a perspective view of a main part of a crimping part, a power supply part, and a feed mechanism.
  • FIG. 21 is a perspective view of a main part of a crimping section, a current-carrying section, and a feed mechanism showing still another embodiment of the present invention.
  • FIG. 22 is a perspective view of a main part of a crimping part, a current-carrying part, a parts feeder and a robot hand showing still another embodiment of the present invention.
  • FIG. 23 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
  • FIG. 24 is a perspective view of a part of the winding machine shown in FIG. 23 in different situations.
  • FIG. 25 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
  • FIG. 26 is a perspective view of a part of the winding machine shown in FIG.
  • FIG. 27 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
  • FIG. 28 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
  • FIG. 29 is a perspective view of a winding machine showing still another embodiment of the present invention.
  • FIG. 30 is a perspective view of a winding machine showing still another embodiment of the present invention.
  • FIG. 31 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
  • FIG. 32 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
  • FIG. 33 is a configuration diagram showing a conventional welding apparatus.
  • FIG. 34 is a configuration diagram showing a conventional electric heating device.
  • FIG. 35 is a configuration diagram showing another conventional energization heating device.
  • FIG. 36 is a configuration diagram showing another conventional energization heating device. BEST MODE FOR CARRYING OUT THE INVENTION
  • the winding machine is a wire rod supply mechanism that supplies wire rod for coil winding. And a die 2 around which the wire 8 is wound.
  • the nozzle 1 is supported via a support mechanism 7 on a movable base 3 that moves in three axial directions by a front-rear motor 4, a left-right motor 5, and a vertical motor 6, and is configured to be able to move arbitrarily in three-axial directions. .
  • a wire 8 to which a thin wire is twisted is guided from a wire feeding mechanism (not shown), and the wire 8 is supplied from the tip of the nozzle 1 under a predetermined tension.
  • the male mold 2a and the female mold 2b are provided with mold motors 9a and 9b, respectively, and the male mold 2a and the female mold 2b are brought close to each other.
  • the motors 9a and 9b By rotating the motors 9a and 9b synchronously, the male mold 2a and the female mold 2b rotate integrally.
  • the wire 8 supplied from the nozzle 1 is wound into the gap formed between the male mold 2a and the female mold 2b, and the winding is formed in a saddle shape.
  • a crimp welding mechanism 13 as shown in FIG. 2 is used. Is provided on the side of the mold 2.
  • the pressure welding mechanism 13 includes upper and lower electrodes 14 and 15 facing each other, a telescopic cylinder 16 for driving the electrode 14 toward the electrode 15, and a cutter 17 integrally supported with the electrode 14. Prepare.
  • Electrodes 14 and 15 are connected to a welding circuit 114 of an energizing heating and welding device 100 (see FIG. 4) described later via wirings 91 and 92, respectively. These electrodes 14 and 15 constitute a first electrode.
  • the wiring 91 from the electrode 14 is also connected to the energization heating circuit 113 of the energization heating and welding device 100.
  • the conductive member 12 is obtained by cutting and raising a part of a hoop material 18 that is continuous in a belt shape at a predetermined interval, and bending the hoop material 18 rearward so as to have a substantially U-shaped cross section. Yes, cut and used at 17
  • the press-welding mechanism 13 is provided with a cut 32 as shown in FIG. 8 (b) for cutting the wire 8.
  • the cutout 32 has a drive mechanism (not shown) independent of the electrode 14, and cuts the wire 8 near the conductive member 12 crimped to the wire 8 and at a position on the mold 2 side.
  • the hoop material 18 is supplied to the pressure welding mechanism 13 via a reel 20 shown in FIG. 1 and a feed mechanism 19 shown in FIG.
  • the feed mechanism 19 includes a groove-shaped guide 21 extending from immediately below the reel 20 to a pressure welding mechanism 13, and a slider 23 provided in the middle of the guide 21.
  • the slider 23 slides along the guide 21 according to the expansion and contraction of the telescopic cylinder 24 interposed between the slider 23 and the guide 21.
  • Rectangular notches 25 are formed at predetermined intervals on both sides of the hoop material 18, and inside the slider 23, the hoop material 18 is engaged with the notch 25 to move the hoop material 18 to the slider 23.
  • the claws 22 that move toward the pressure welding mechanism 13 are integrally housed.
  • the claw 22 is urged toward the inside of the slider 23 by the spring 26, and projects a wedge-shaped tip toward the inside of the slider 23 when viewed from above.
  • the front surface of the claw 22 is perpendicular to the moving direction of the slider 18, and the rear surface is inclined so as to form an acute angle with the front surface.
  • the chuck 27 opens and closes according to the expansion and contraction of the built-in cylinder, and the nozzle 1 moves to lock the conductive member 12 carried from the pressure welding mechanism 13 to the male mold 2a. I do.
  • the chuck 27 is made of a conductive material, and is connected via a wiring 93 to an energization heating and welding circuit 110 of an energization heating and welding device 100 (see FIG. 4) described later.
  • the chuck 27 and the electrode 15 constitute a second electrode.
  • the connection between the chuck 27 and the wiring 93 is made by the non-rotation of the base of the male mold 2a as shown in Fig. 8 (a). This is performed via a brush 30 provided in the section 2c.
  • FIG. 4 shows an electric heating and welding apparatus 100.
  • This electric heating and welding device serves as electric heating and welding means in the winding machine.
  • the transistor 103 as a switching element (for example, IGBT, etc.) and a chopper-type inverter circuit 104.
  • the transistor overnight circuit 104 converts a direct current into a high-frequency pulse wave having a predetermined duty ratio by a transistor 103 which is controlled by high-speed switching by a controller 105. And variably controls the power supplied to the high-frequency insulating transformers 109 and 110 to be described later. Specifically, for example, in the case of a duty ratio of 50%, as shown in FIG. 5 (current is represented on the vertical axis and time is represented on the horizontal axis), the on / off timing of the transistor 3 is set to 1 / 2, and in the case of a duty ratio of 25%, as shown in FIG. A pulse wave is generated.
  • the pulse wave after passing through the inverter circuit 4 is sent to the primary side of the high-frequency insulating transformer 109 on the boosting side via the switch 125 or to the high-frequency insulating transformer 1 on the buck side via the switch 126. Guided to the primary side of 10.
  • the switches 1 2 5 and 1 2 6 are selectively turned on by the switching circuit 1 2 7, so that the inverter circuit 1 4 is connected to the heating circuit 1 1 3 or the welding circuit 1 1 Any one of 4 Will be connected to
  • the pulse wave guided to the primary side of the high-frequency insulating transformer 1109 or 110 is converted to a substantially predetermined voltage on the secondary side of the high-frequency insulating transformer 1109 or 110. That is, on the secondary side of the high-frequency insulating transformers 109 and 110, the voltage is detected by the voltage sensor 106, and the current is detected by the electric sensor 107.
  • the controller 105 controls the switching operation of the transistor 103 by feedback, thereby adjusting the adjustment of the duty ratio of the pulse wave to provide high-frequency insulation.
  • a constant voltage or current is obtained on the secondary side of the transformers 109 and 110.
  • the voltage is raised to a high voltage of, for example, 240 V, which is connected to the energization heating circuit 113.
  • the energization heating circuit 113 applies energization heating between the electrode 14 and the chuck 27 connected to both ends of the deflecting coil after the winding, melts the coating of the winding, and creates a gap between the windings. They are made to adhere to each other to form and fix them, and require a higher voltage and lower current than in the case of welding, so that high voltage passing through the secondary side of the high-frequency insulating transformer 109 is used. Low current is supplied.
  • a rectifier circuit 29 is interposed on the secondary side of the high-frequency insulating transformer 109 so as to rectify the current supplied to the coil 20.
  • the voltage is reduced to a low voltage of, for example, 5 V, which is connected to the welding circuit 114. That is, this welding circuit 114 welds the conductive member 12 to the lead wire at the end of the deflection coil, and requires a low voltage and a large current as compared with electric heating. A low voltage and a large current are supplied through the transformer 10.
  • the nozzle 1 is moved by operating the motors 4, 5, and 6, and the wire 8 coming out of the nozzle 1 is guided between the electrodes 14 and 15, and the rearward position located at the forefront of the hoop material 18 Between the bent portion and the unfolded portion below the bent portion.
  • the cutter 17 cuts the top end of the hoop material 18 by one span.
  • the cut portion is crimped to the wire 8 as the conductive member 12.
  • the cut conductive member 12 is pressed against the wire rod 8 sandwiched between the electrode member 14 so that the electrode member 14 crushes the electrode member 15 against the electrode member 15 facing the electrode member 14.
  • a voltage is applied to the electrodes 14 and 15 from the welding circuit 114. That is, the energizing heating and welding circuit 100 is turned on by the switching circuit 127 so that the switch 125 is turned off and the switch 126 is turned on, and the welding circuit 111 is turned on via the high-frequency insulating transformer 110. Supply low voltage and large current to the side.
  • the heat generated by this energization melts the coating of the coated wire that composes the wire 8, and the melted coating is pushed to the side by the pressure applied to the conductive member 12, and the conductive member 12 is coated. crimp directly inner conductor of the line, the conductive member 1 2 to the wire 8 is then c welded, described winding and molding step of the coil (current heating process).
  • FIG. 7 (a) shows a state in which the conductive member 12 is crimped to the tip of the wire coming out of the nozzle 1.
  • the nozzle 1 is moved to move the conductive member 12 to the male mold 2a, and as shown in FIG. 7 (b), the conductive member 12 is gripped by the chuck 27. You.
  • the female mold 2b is moved down by the mold up / down mode 10 to bring the male mold 2a and the female mold 2b into close contact with each other, and the synchronized operation of the mold motors 9a and 9b is performed.
  • the male mold 2a and the female mold 2b are rotated integrally.
  • the wire 8 sent out from the nozzle 1 under a predetermined tension is wound around the gap formed between the male mold 2a and the female mold 2b.
  • the tip of the nozzle 1 is swung up and down as shown in Fig. 7 (c) to adjust the shape of the winding.
  • a saddle-shaped coil is formed on the outer periphery of the mold 2.
  • the nozzle 1 is moved from the mold 2 to the opposite side of the mold 2 over the electrodes 14 and 15 as shown in Fig. 7 (d), so that the wire 8 guided from the mold 2 is moved. Is sandwiched between the conductive members 12. Then, a new conductive member 12 is pressure-bonded to the wire 8 as shown in FIG.
  • FIG. 8 (a) while the conductive member 12 is sandwiched between the electrodes 14 and 15, the heating circuit 1 1 3 between the electrode 15 and the chuck 27 is maintained.
  • a predetermined voltage is applied from. That is, the electric heating and welding apparatus 100 turns on the switch 125 and turns off the switch 126 by the switching circuit 127, and the electrode 15 and the chuck 2 via the high-frequency insulating transformer 110. Supply high voltage and low current between 7
  • the coil 200 on the mold 2 is energized through the conductive members 12 at both ends, and the coating of the coated wire of the wire 8 constituting the coil 200 is melted by the heat generated by the energization, The twisted covered wires are welded to each other. As a result of this welding, the rigidity of the winding of the coil 200 is increased, and the coil 200 is molded so as to maintain the saddle shape even when it is detached from the mold 2.
  • the switching circuit 127 by switching by the switching circuit 127, molding by energizing and heating the deflection coil 200 using a high voltage, and leading of the deflection coil 200 end using a low voltage are performed.
  • the welding of the conductive member 12 to the wire can be selectively performed by one device.
  • the inverter circuit 104 since the inverter circuit 104 performs high-speed switching (for example, up to about 20 kHz) by using the transistor 103, the duty ratio of the inverter circuit 104 can be changed to the deflection coil 200 by adjusting the duty ratio. It is possible to finely and broadly control the applied voltage, current, and power. Power can be controlled to a predetermined state, and variation in the resistance value of the deflection coil 200 can be easily dealt with by voltage or current feedback control.
  • the heating circuit 113 and the welding circuit 114 are separated from the inverter circuit 104 by high-frequency insulating transformers 109 and 110, they are short-circuited to the deflection coil 200. Even if a defect or the like occurs, there is little danger that the transistor 103 of the inverter circuit 104 will be destroyed.
  • the size of the transformer can be reduced, and the size of the entire device can be reduced.
  • the wire 8 is cut by the force cutter 32 as shown in FIG. 8 (b). Since this cutting is performed on the mold 2 side, as a result, the coil 200 has the conductive member 12 crimped only to the lead wire at the beginning of winding, and the lead wire at the end of winding remains simply cut. State. In this state, the coil 200 is removed from the mold, and the conductive member 12 is cut off. The conductive member is used only for energizing in the molding process of the coil 200 and becomes unnecessary after the completion of the coil. Therefore, one of the lead wires of the coil 200 removed from the mold already has the conductive member 12 Since they are not crimped, the labor for cutting off the conductive member 12 can be reduced.
  • the nozzle 1 having the moving mechanism also serves as a moving means of the conductive member 12, There is no need to provide a separate moving means. Since the nozzle 1 guides the wire 8 to the pressure welding mechanism 13 and holds it between the conductive members 12, a special mechanism for disposing the conductive member 12 on the outer periphery of the wire 8 is not necessary. Become. Furthermore, since the nozzle 1 moves, even if the dimensions of the mold 2 are changed, the molding operation can be performed with the same equipment without any special change.
  • long members 50 to 54 having various cross-sectional shapes as shown in FIG. 9 are used instead of the hoop member 18 which is partially cut and raised in FIG. be able to.
  • the shape of the crimping means (the electrodes 14 and 15 in this embodiment) is changed according to the shape of the conductive member 12. For example, if the tip of each of the electrodes 14 and 15 is formed into a concave surface as shown in FIG. 10, the conductive member 12 pressed between the electrodes 14 and 15 becomes a wire 8 To wrap around from both sides. By continuing the pressing while applying a voltage between the electrodes 14 and 15, the coating of the coated wire constituting the wire 8 is melted and pushed to the side by the press, and the conductive member is pressed. 1 2 is crimped to the conductor inside the covered wire.
  • FIG. 11 shows the shape of the conductive member 12 after compression by the electrodes 14 and 15 having the shape shown in FIG.
  • the conductive member 12 can be formed in various shapes.
  • a mechanism such as a pressure rod to be described later is provided separately from the electrodes 14 and 15 so that the conductive member can be formed before energization. Molding and crimping of 1 and 2 may be performed.
  • FIG. 12 shows another embodiment of the present invention.
  • the pulse wave current after passing through the inverter circuit 104 is led to the primary side of the high-frequency insulating transformer 108, and the voltage of the secondary side of the high-frequency insulating transformer 108 is boosted.
  • the voltage is increased to a high voltage of, for example, 240 V in the circuit 111, and the voltage is reduced to a low voltage of, for example, 5 V in the step-down circuit 112 on the secondary side of the high-frequency insulating transformer 108.
  • the booster circuit 1 1 1 is connected to the heating circuit 1 1 3 via the switch 1 1 5 and the step-down circuit 1 1 2 is connected to the welding circuit 1 1 4 via the switch 1 16, respectively.
  • These switches 1 15 and 1 16 have their connections selectively switched by a switching circuit 1 17.
  • the secondary side of the high-frequency insulating transformer 108 is selectively connected to either the energization heating circuit 113 or the welding circuit 114.
  • the energization heating circuit 113 and the welding circuit 114 can be provided in one device and selectively used. Become. Also, based on the voltage or current on the secondary side of the high frequency insulation transformer 108 detected by the voltage sensor 106 or the current sensor 107, the duty ratio of the pulse wave current from the inverter circuit 104 is determined. By performing the feedback control on the voltage, the voltage or current generated on the secondary side of the high-frequency insulating transformer 108 can be precisely controlled to the target value.
  • the inverter circuit 104 is separated from the energization heating circuit 113 and the welding circuit 111 by the high-frequency insulating transformer 108, even if the deflection coil 200 has a short-circuit failure, etc. In addition, a large current does not flow through the transistors and the like of the inverter circuit 104, and the risk of damaging the transistors and the like can be reduced.
  • FIGS. 13 (a) and (b) show still another embodiment of the present invention.
  • a robot hand 3 having a moving mechanism 3 4 It is sandwiched between 1 and 2.
  • the robot hand 34 includes a pair of hand members having an opening / closing mechanism for holding the wire 8.
  • FIG. 14 shows still another embodiment of the present invention.
  • the robot hand 34 of the embodiment shown in FIG. 13 is used for supplying the conductive member 12, and a position where the pressure welding mechanism 13 and the feed mechanism 19 are separated from each other.
  • Robot hand 34 transports conductive member 12 to crimping and welding mechanism 13 It is designed to be sent. Then, the conductive member 12 composed of the hoop material 52 shown in FIG. 9 is cut by the cutter 17 provided in the feed mechanism 19, and then the crimp welding mechanism is fed from the feed mechanism 19 by the robot hand 34. Go to 1 3
  • FIGS. 15 (a) and (b) show still another embodiment of the present invention.
  • the robot hand 34 is used as a means for moving the conductive member 12 crimped to the wire 8 to the chuck 27, as shown in FIG. 15 (a). 4 first moves to the crimping and welding mechanism 13 to grip the conductive member 12 crimped to the wire 8, and then moves to the chuck 27 as shown in FIG. When the wire 7 is gripped by the wire 7, the wire 8 is released.
  • the mechanism for moving the nozzle 1 can be omitted.
  • FIGS. 16 (a) and (b) show still another embodiment of the present invention.
  • a moving mechanism for integrally moving the pressure welding mechanism 13 and the feeding mechanism 19 is provided, and the mounting of the conductive member 12 to the wire 8 is performed by these movements.
  • FIG. 16 (a) the end fed out from the nozzle 1 is wound around a mold (not shown). From this state, the wire crimping mechanism 13 and the feed mechanism 19 are moved, and the wire 8 is sandwiched between the conductive members 12 at the tip of the feed mechanism 19 as shown in FIG. 16 (b).
  • the electric conductor crimped to the wire 8 is provided.
  • the elastic member 12 can be moved to the chuck 27 by the pressure welding mechanism 13.
  • the pressure welding mechanism 13 holding the conductive member 12 is moved to the vicinity of the chuck 27 on the mold 2a, and the electrodes 14 and 15 are moved away from each other as shown in FIG. 17 (c). While moving, the conductive member 12 may be pushed forward by the feed mechanism 19 and held by the chuck 27.
  • FIG. 18 shows still another embodiment of the present invention.
  • the press-welding mechanism 13 includes a press-contact portion 13a and a current-carrying portion 13b individually.
  • the crimping part 13a is provided with pressure ports 39a and 39b for crimping the wire 8 with a conductive member from above and below in the vertical direction
  • the conducting part 13b is provided with electrodes 40a and 4b. 0 b.
  • the pressure rods 39a, 39b and the electrodes 40a, 4Ob are arranged parallel to the center axis of the mold 2, and the nozzle 1 is located in the direction of the center axis of the mold 2 and the direction perpendicular to the center axis. It is supported by the moving mechanism 41 in the direction.
  • the conductive member 12 is supplied to the crimping portion 13a by the same feed mechanism 19 and reel 20 as in the embodiment of FIG.
  • the nozzle 1 is moved in parallel with the center axis of the mold 2 to move the conductive member crimped to the wire 8 to the conducting part 13b. And move to energize.
  • the conductive member crimped to the wire 8 is conveyed to the chuck 27 by moving the nozzle 1 in a direction orthogonal to the center axis of the mold 2.
  • FIG. 19 shows still another embodiment of the present invention.
  • the pressure welding mechanism 13 and the chuck 27 are arranged on the same line as the nozzle 1, and the nozzle 1 is provided with a moving mechanism 42 for moving along the line.
  • the wire from the nozzle 1 to the mold 2 passes between the electrodes 14 and 15 of the crimping and welding mechanism 13, and does not move the wire 8 in particular. Can be crimped.
  • the conductive member pressed onto the wire 8 is conveyed to the chuck 27 by moving the nozzle 1 in a direction orthogonal to the center axis of the mold 2 as in the ninth embodiment.
  • the moving direction can be limited, whereby the moving mechanism can be simplified.
  • FIG. 20 shows still another embodiment of the present invention.
  • the crimping welding mechanism 13 is separated into a crimping portion 13a and a current-carrying portion 13b similarly to the embodiment of FIG. 18 and the feeding of the conductive member therebetween is illustrated. This is performed by the feed mechanism 19 as described above.
  • the crimping welding mechanism 13 is separated into a crimping part 13 a and a current-carrying part 13 b, and the crimping welding mechanism 13 is provided with a transfer mechanism. ing. Then, the crimping and welding mechanism 13 moves to the conductive member 12 crimped to the wire 8 by the crimping portion 13a, so that the crimping portion 13a of the conductive member 12 moves from the crimping portion 13a to the conducting portion 13b. Make a move.
  • both the crimping section 13a and the current-carrying section 13b have a function of holding the conductive member 12, a moving mechanism is provided on one of them to move the conductive member 12 to the crimping section 13. It is also possible to move from a to the conducting part 13 b. As shown in FIG. 22, the movement of the conductive member 12 from the crimping portion 13 a to the energizing portion 13 b is performed as shown in FIG. 22 by using the robot of the embodiment shown in FIGS. It may be done with hands 34.
  • FIG. 23 shows still another embodiment of the present invention.
  • This embodiment relates to the connection of the heating coil and the welding device 100 to the deflection coil 200 on the mold 2, and an electrode 43 for current supply is provided separately from the pressure welding mechanism 13.
  • the conductive conductive member 12 crimped to the wire 8 is moved to the electrode 43 and locked on the electrode 43.
  • the electrode 43 has a function of clamping the conveyed conductive member 12, and a current-carrying circuit for the current-heating and welding device 100. 7 and connected to.
  • the movement of the conductive member 12 from the pressure welding mechanism 13 to the electrode is performed by, for example, a robot hand 34 similar to the embodiment shown in FIGS. 13 and 14.
  • the wire rod 8 may be cut after the conductive member 12 is crimped after the completion of the winding.
  • two conductive members are used for one coil.
  • FIGS. 25 (a) and (b) show still another embodiment of the present invention.
  • an electrode 44 configured in the same manner as the electrode 43 is provided separately from the chuck 27 on the mold 2, and a robot hand is formed in the coil forming step in the same manner as in the first embodiment.
  • 3 4 moves the conductive member 1 2 from the pressure welding mechanism 1 3 to the electrode 4 3
  • the robot hand 34 moves the conductive member 1 2 held on the chuck 27 to the electrode 44
  • the coils are connected to the current-carrying heating circuit 113 by holding the conductive members 12 crimped on both sides of the wire 8 of the coil 3 and 4, respectively.
  • FIGS. 27 (a) and (b) show still another embodiment of the present invention.
  • the crimping welding mechanism 13 is provided with a moving mechanism, and the conductive member 12 crimped to the wire 8 is moved from the crimping welding mechanism 13 to the electrode 43 by moving the crimping welding mechanism 13. .
  • FIGS. 28 (a) to (c) show still another embodiment of the present invention.
  • the electrode 43 has a moving mechanism, and the conductive member 12 crimped to the wire 8 is moved from the pressure welding mechanism 13 to the electrode 43 by moving the electrode 43.
  • FIG. 29 shows still another embodiment of the present invention.
  • the present invention is applied to a winding machine provided with a fixed mold 62 and a nozzle 61 rotating via a flyer 60.
  • the flyer 60 is rotatably supported at the base end of a fixed male mold 62 a and rotates around the male mold 62 a in response to the operation of a motor (not shown).
  • the flyer 40 is also provided with an axial moving mechanism, and the nozzle 61 is supported at the tip of the flyer 60.
  • the male mold 62a is fixed to the base 64, while the female mold 62b has a mechanism that moves only in the axial direction relative to the male mold 62a.
  • the pressure welding mechanism 13 and the reel 20 are provided near the female mold 62b. In this embodiment, the winding The line is created by the rotation of the flyer 60.
  • the movement of the wire 8 to the pressure welding mechanism 13 and the movement of the conductive member 12 to the chuck 27 are performed by the rotation and axial movement of the flyer 60.
  • the step of forming the coil after winding is basically the same as in the first embodiment.
  • the present invention is also applicable to a winding machine that rotates a nozzle while fixing a mold.
  • FIG. 30 shows still another embodiment of the present invention.
  • FIG. 31 shows still another embodiment of the present invention.
  • the flyer 60 is provided with an axial moving mechanism as in the embodiment of FIG. 29, and the electrodes 43 and 44 are provided as in the embodiment of FIG. Then, the movement of the conductive member 12 crimped to the wire 8 from the pressure welding mechanism 13 to the electrode 43 and the movement from the pressure welding mechanism 13 to the electrode 44 are performed by moving the flyer 60.
  • FIGS. 32 (a) and (b) show still another embodiment of the present invention.
  • the crimping welding mechanism 13 is provided with a moving mechanism, and the movement between the crimping welding mechanism 13 of the conductive member wire 8 crimped to the wire 8 and the electrodes 43, 44 is performed by a crimping welding mechanism. This is done by moving 13
  • the present invention allows various design changes.
  • the nozzle 1 is used as the wire supply mechanism.
  • the wire supply mechanism may be configured using a reel or the like. Industrial applicability
  • the deflection coil winding machine welds electrodes made of a conductive member to the lead wires at both ends of the deflection coil and applies a voltage between these electrodes to form the deflection coil.
  • the welding of the electrode and the molding of the deflection coil are performed by a single device to simplify the device, and the voltage, current, It can be used to control power widely and precisely.

Abstract

A deflecting coil winder provided with a heating device for soldering electrodes to leads sections at both ends of a deflecting coil and for shaping and fixing the deflecting coil by a single device and which can control the voltage, current, and power to be applied to the heating device in a wide range and precise level. AC current from outside to the heating device is rectified to DC current by a rectifier (102) and then is converted by pulse wave current by an inverter (104). The pulse wave current is boosted by a high-frequency insulation transformer (109) and then is supplied to a heating device (113) by switching elements (125, 126) in a switching circuit (127). When the switching element (125) is closed, the pulse wave current is boosted by the high-frequency insulation transformer (110) and is supplied to a heating circuit (113). When the switching element (126) is closed, the pulse wave is stepped down for supplying the power to the welding circuit (114).

Description

偏向コイルの巻線機 技術分野  Deflection coil winding machine
この発明は、 偏向コイル両端のリード線に導電性部材からなる電極を溶着し、 これらの電極間に電圧を印加して、 偏向コィルの成型を行う偏向コィルの巻線機 の改良に関する。 技術背景  The present invention relates to an improvement in a deflecting coil winding machine in which electrodes made of a conductive member are welded to lead wires at both ends of a deflecting coil, and a voltage is applied between these electrodes to form a deflecting coil. Technology background
ブラゥン管などに使用される偏向コィルは、 要求される特性から一般に鞍型な どの特殊形状に巻線され、 さらに巻芯のないコイルのみの状態でその形状を保持 できるように成型固着される。  A deflection coil used for a brown tube or the like is generally wound into a special shape such as a saddle shape due to required characteristics, and is molded and fixed so that the shape can be maintained in a state of a coil without a core.
具体的には、 巻線用の線材には、 誘導損失を低減するために例えば細い導線の 周囲を絶縁被覆した複数の被覆線をより合わせたものが使用される。 そして、 巻 線は専用の金型を用いて行われ、 巻線を終えたコイルに所定電圧で通電すること で、 導線の抵抗に基づく発熱により被覆線の被覆材を加熱溶融し、 被覆線同士を 相互に溶着させる。 この結果、 線材は被覆線の一体ィヒにより剛性を増加させ、 偏 向コィルは金型から取り外しても型くずれを起こすことなく、 鞍型形状を保持す る。  More specifically, for the wire material for winding, for example, in order to reduce induction loss, a wire in which a plurality of covered wires insulated around a thin conductive wire are used. Winding is performed using a special mold, and the coil that has been wound is energized at a predetermined voltage to generate heat based on the resistance of the conductor, thereby heating and melting the covering material of the covered wire. Are welded to each other. As a result, the wire material increases the rigidity due to the integral wire of the covered wire, and the deflection coil retains the saddle shape without being deformed even when it is removed from the mold.
このコイル巻線後の通電は、 巻線された偏向コイル両端のリード線に金属片か らなる電極を接続して行うカ、 このリード線への金属片の接続のために、 巻線機 には、 例えば第 3 3図に示すような溶着装置が備えられる。 この溶着装置では、 リード線 2 0 1を挟み込むようにした板状の金属片 2 0 2の両側に電極を圧接し、 この電極へと、 トランス 2 0 3とスイッチング回路 2 0 4で調整された低電圧、 大電流を短時間流すことにより、 リード線 2 0 1の絶縁被膜を破壊するとともに、 金属片とリード部とを導通させ、 これらを熱溶着させる。 The energization after this coil winding is performed by connecting electrodes made of metal pieces to the lead wires at both ends of the wound deflection coil, and for connecting the metal pieces to these lead wires, a winding machine is used. Is provided with a welding device as shown in FIG. 33, for example. In this welding device, electrodes were pressed against both sides of a plate-shaped metal piece 202 sandwiching the lead wire 201, and the electrodes were adjusted to this electrode by a transformer 203 and a switching circuit 204. By flowing a low voltage and a large current for a short time, the insulation film of the lead wire 201 is destroyed, The metal pieces and the leads are electrically connected, and these are thermally welded.
一方、 偏向コイルの成型、 固着のための通電加熱は、 偏向コイルの両端に、 溶 着の場合よりも高電圧、 小電流を供給して行われる。 このため、 偏向コイルのリ ード線の溶着と、 偏向コイルへの通電加熱のためには、 別仕様のトランスが必要 となり、 巻線機には、 溶着装置とは別に、 例えば第 3 4図から第 3 6図に示すよ うな通電加熱装置が備えられる。  On the other hand, energization heating for forming and fixing the deflection coil is performed by supplying a higher voltage and a smaller current to both ends of the deflection coil than in the case of welding. For this reason, a separate transformer is required for welding the lead wire of the deflection coil and for energizing and heating the deflection coil. For the winding machine, besides the welding device, for example, see Fig. 34 A heating device as shown in Fig. 36 to Fig. 36 is provided.
このうち、 まず第 3 4図に示す通電加熱装置は、 入力端子 2 1 1に入力される 入力電流 (例えば商用の A C 2 0 0 V ) を、 ソリッドステ一トリレ一 (S S R ) 2 1 3を介して、 絶縁トランス 2 1 2の 1次側で受け、 これをトランス 2 1 2の 2次側に設けた整流器 2 1 4で整流して、 偏向コイル 2 0 0へと供給するもので ある。 この場合、 偏向コイル 2 0 0への印加電力の調整はソリッドステートリレ —2 1 3をタイマー回路 2 1 5でオンオフ制御することによりなされる。 また、 偏向コイル 2 0 0のサイズや種類 (T V用、 モニタ用) によりその抵抗値が異な るため、 偏向コイル 2 0 0へと印加する電圧を変える必要があるが、 この調整は 絶縁トランス 2 1 2の 2次側のタップ 2 1 6の切り換えで行っていた。  Among them, the current-carrying heating device shown in Fig. 34 first converts the input current (for example, commercial AC 200 V) input to the input terminal 211 into a solid state relay (SSR) 213. Then, the signal is received by the primary side of the insulating transformer 211, rectified by the rectifier 214 provided on the secondary side of the transformer 212, and supplied to the deflection coil 200. In this case, the power applied to the deflection coil 200 is adjusted by turning on and off the solid state relay 2 13 by the timer circuit 2 15. In addition, since the resistance value differs depending on the size and type (for TV and monitor) of the deflection coil 200, the voltage applied to the deflection coil 200 needs to be changed. This was done by switching the secondary tap 2 1 6 of 1 2.
また、 第 3 5図に示す通電加熱装置では、 絶縁トランス 2 1 2の 2次側の整流 器 2 1 4の手前にトライアツク 2 2 1が介装される。 この 2次側の電圧および電 流は、 電圧計 2 2 3および電流計 2 2 4で検出されるとともに、 コントローラ 2 2 2に入力される。 そして、 このコントローラ 2 2 2が、 トライアツク 2 2 1の 点弧角をフィードバック制御して、 偏向コイル 2 0 0へと印加する電力を調整し て、 偏向コイルの抵抗値のばらつきを吸収している。  In the electric heating device shown in FIG. 35, a triac 22 1 is interposed in front of the rectifier 2 14 on the secondary side of the insulating transformer 21. The voltage and current on the secondary side are detected by a voltmeter 222 and an ammeter 222 and input to the controller 222. Then, the controller 222 controls the firing angle of the triac 221 in a feedback manner, adjusts the power applied to the deflection coil 200, and absorbs the variation in the resistance value of the deflection coil. .
また、 第 3 6図に示す通電加熱装置は、 絶縁トランス 2 1 2の 2次側の整流器 2 1 4で整流された電流のデューティ比を、 トランジスタ 2 3 1の高速スィッチ ング (最高で 2 0 k H z程度まで可能) により制御することができるようにした もので、 電圧計 2 2 3で検出される電圧値および電流計 2 2 4で検出される電流 値に基づいて、 コントローラ 2 1 2がトランジスタ 2 3 1のスィツチングをフィ —ドバック制御することにより、 偏向コイル 2 0 0への印加電圧を調整して、 偏 向コイル 2 0 0の抵抗値を吸収するものである。 In addition, the current-carrying heating device shown in FIG. 36 uses the duty ratio of the current rectified by the rectifier 2 14 on the secondary side of the insulating transformer 211 to the high-speed switching of the transistor 231 (up to 200 The control can be performed by the controller 2 1 2 based on the voltage value detected by the voltmeter 2 23 and the current value detected by the ammeter 2 24. Filter the switching of transistor 2 3 1 —By performing the feedback control, the voltage applied to the deflection coil 200 is adjusted to absorb the resistance value of the deflection coil 200.
しかしながら、 これら第 3 4図から第 3 6図に示すような通電加熱装置には、 以下のような問題点ある。  However, the current-carrying heaters shown in FIGS. 34 to 36 have the following problems.
すなわち、 第 3 4図に示す通電加熱装置のように、 商用 ill波数 (例えば A C 2 0 0 V) の入力電圧のオンオフ制御や、 偏向コイル 2 0 0への印加電圧の調整を 絶縁トランス 2 1 2のタップ 2 1 6の切り換えにより行うのでは、 細かな電力制 御を行うことが難しく、 また、 電源の電圧変動の影響を吸収することが難しい。 また、 第 3 5図に示す通電加熱装置では、 トライアツク 2 2 1は最高で 1 k H z程度の周波数で点弧する制御が可能であり、 またフィ一ドバック制御が行われ るため、 偏向コイル 2 0 0への印加電力等の制御性がある程度向上するが、 依然 として周波数の可変範囲は狭く、 幅広い電力制御は難しい。 また、 絶縁トランス 2 1 2の 2次側の電圧以上には、 偏向コイル 2 0 0への印加電圧を上げることが できない。  That is, as in the energization heating device shown in FIG. 34, the on / off control of the input voltage of the commercial ill wave number (for example, 200 V AC) and the adjustment of the voltage applied to the deflection coil 200 are performed by the insulating transformer 21. It is difficult to perform fine power control by switching the two taps 2 16, and it is also difficult to absorb the effects of power supply voltage fluctuations. In addition, in the electric heating device shown in FIG. 35, the triac 221 can be controlled to fire at a frequency of about 1 kHz at the maximum, and the feedback coil is controlled. Although the controllability of the power applied to 200 and the like is improved to some extent, the variable range of the frequency is still narrow, and it is difficult to control power over a wide range. Further, the voltage applied to the deflection coil 200 cannot be increased beyond the voltage on the secondary side of the insulating transformer 211.
また、 第 3 6図に示す通電加熱装置では、 トランジスタ 2 3 1は最高で 2 0 k H z程度の周波数での高速スィツチングによる制御が可能であり、 制御性は向上 する力、 偏向コイル 2 0 0のインダクタンスが小さな場合や、 偏向コイル 2 0 0 にショート不良がある場合には、 トランジスタ 2 3 1への突入電流により、 トラ ンジス夕 2 3 1が破壊されてしまう恐れがあり、 複雑な保護回路が必要となる。 また、 第 3 4図の装置と同様に、 絶縁トランス 2 1 2の 2次側の電圧以上には、 偏向コイル 2 0 0への印加電圧を上げることができない。  In addition, in the current-carrying heating device shown in FIG. 36, the transistor 231 can be controlled by high-speed switching at a frequency of about 20 kHz at the maximum, so that the controllability is improved and the deflection coil 20 is controlled. If the inductance of 0 is small or if there is a short circuit in the deflection coil 200, the inrush current to the transistor 2 31 may destroy the transistor 2 3 1 Circuit is required. Further, similarly to the apparatus shown in FIG. 34, the voltage applied to the deflection coil 200 cannot be increased beyond the voltage on the secondary side of the insulating transformer 212.
本発明は、 このような問題点に着目してなされたもので、 偏向コイル両端のリ ード線への電極の溶着と、 偏向コイルの成型、 固着のための通電加熱を一つの装 置で選択的に行うことができ、 また、 このとき偏向コイルへの印加電圧、 印加電 流、 印加電力の制御が幅広くかつ細かな精度で行い得る通電加熱および溶着装置 を備えた偏向コィルの巻線機を提供することを目的とする。 発明の開示 The present invention has been made in view of such a problem, and the welding of the electrodes to the lead wires at both ends of the deflection coil and the electric heating for molding and fixing the deflection coil are performed by one apparatus. In addition, a winding machine of a deflection coil equipped with an electric heating and welding device capable of controlling the applied voltage, applied current, and applied power to the deflection coil at a wide and fine precision at this time. The purpose is to provide. Disclosure of the invention
本発明 、被覆導線からなる線材を供給する線材供給機構と、 この線材供給機 構から供給される線材を巻き回して偏向コイルを形成する金型とを備えた偏向コ ィルの巻線機において、 線材供給機構から供給された線材^周の両側に配置され た導電性部材と、 この導電性部材を線材に圧着する圧着手段と、 線材の導電性部 材圧着部を挟み込む第 1の電極と、 この第 1の電極間に所定の電圧を印加して線 材に導電性部材を溶着する溶着手段と、 前記導電性部材圧着部を移動させる移動 手段と、 この移動手段により移動して来た導電性部材圧着部を係止する係止手段 と、 この係止手段により係止された導電性部材圧着部とこの導電性部材圧着部を 巻初め側として巻き回された偏向コイルの巻き終わり側に圧着された導電性部材 圧着部とのそれぞれに接続された第 2の電極と、 この第 2の電極間に所定の電圧 を印加して偏向コイルの成型固着を行う通電加熱手段と、 外部からの交流電流を 直流電流に整流する整流手段と、 この直流電流を所定のデユーティ比のパルス波 電流へと変換するィンバー夕回路と、 このパルス波の電圧または電流値を検出し て前記デューティ比をフィードバック制御するフィードバック制御手段と、 この パルス波を 1次側に受けて 2次側電圧を所定の比率で昇圧および降圧する変圧手 段とを備え、 前記変圧手段の昇圧側に前記通電加熱手段を接続し、 前記変圧手段 の降圧側に前記溶着手段を接続し、 前記ィンバータ回路の前記通電加熱手段また は前記溶着手段への前記変圧手段を介しての接続を選択的に切り換える切換手段 とを備えている。  The present invention relates to a deflecting coil winding machine comprising: a wire supply mechanism for supplying a wire made of a coated conductor; and a mold for winding a wire supplied from the wire supply mechanism to form a deflection coil. A conductive member provided on both sides of the circumference of the wire supplied from the wire supply mechanism, crimping means for crimping the conductive member to the wire, and a first electrode for sandwiching the conductive material crimping portion of the wire. Welding means for applying a predetermined voltage between the first electrodes to weld the conductive member to the wire; moving means for moving the conductive member crimping portion; and the moving means. Locking means for locking the conductive member crimping portion, a conductive member crimping portion locked by the locking means, and a winding end side of the deflecting coil wound with the conductive member crimping portion as a winding start side Conductive member crimped to the crimping part Second electrodes connected to each other, energizing heating means for applying a predetermined voltage between the second electrodes to mold and fix the deflection coil, and rectification for rectifying an external alternating current to a direct current. Means, an inverter circuit for converting the DC current into a pulse wave current having a predetermined duty ratio, feedback control means for detecting the voltage or current value of the pulse wave and performing feedback control of the duty ratio, A step of receiving a wave on the primary side and stepping up and stepping down the secondary voltage at a predetermined ratio, wherein the step-up side of the step-up means is connected to the energization heating means, and the step-down side of the step-down means Switching means for connecting the welding means, and selectively switching connection of the inverter circuit to the energizing heating means or the welding means via the transformer means.
このような構成によって、 まず、 溶着手段が第 1の電極が線材の導電性部材圧 着部に電圧を印加することにより、 線材の被覆が溶融して、 圧着する導電性部材 の側方へと除去され、 導電性部材と被覆の下の導線との広範囲に渡る接触が確保 される結果、 導電性部材と導線との溶着工程が実行される。 その後、 導電性部材 の移動手段が線材に圧着した導電性部材を移動して、 係止手段がこれを係止した 状態で巻線を行う。 そして、 巻終わりの線材に新たな導電性部材を圧着した後、 通電加熱手段がこれらの導電性部材に第 2の電極を介して電圧を印加することで、 コイルの成型工程 (通電加熱工程) が行われる。 With such a configuration, first, the welding means applies a voltage to the conductive member press-fit portion of the wire by the first electrode, so that the coating of the wire is melted, and the welding member moves to the side of the conductive member to be pressed. As a result, extensive contact between the conductive member and the conductor under the coating is ensured, so that a welding process of the conductive member and the conductor is performed. Then, the moving means of the conductive member moves the conductive member crimped to the wire, and the locking means locks the conductive member. Winding is performed in the state. Then, after a new conductive member is press-bonded to the wire at the end of the winding, the energizing heating means applies a voltage to these conductive members via the second electrode, thereby forming a coil (the energizing heating step). Is performed.
このような溶着工程および通電加熱工程においては、 外部からの交流電流は整 流手段で直流電流に整流された後、 ィンバ一タ回路により ルス波電流へと変換 され、 これが変圧手段の 1次側に入力されて、 変圧手段の 2次側に高電圧または 低電圧を発生させる。 このィンバ一夕回路の変圧手段を介しての通電加熱手段ま たは溶着手段にへの接続は、 切換手段による切り換えで選択的になされる。 した がって、 高電圧を用いる偏向コイルへの通電加熱と、 低電圧を用いる偏向コイル 両端の導線への導電性部材の溶着との両方を、 一つの装置で行うことができ、 巻 線機の構成が単純化できる。 また、 インバータ回路からのパルス波電流のデュー ティ比をフィードバック制御することにより、 変圧手段の 2次側に発生する電圧 または電流を目標値へ精度よく収束制御することができる。  In such a welding step and an energizing heating step, an alternating current from the outside is rectified into a direct current by a rectifying means, and then converted into a loose wave current by an inverter circuit. To generate a high or low voltage on the secondary side of the transformer. The connection to the electric heating means or the welding means via the transformer means of the inverter circuit is made selectively by switching means. Therefore, both heating of the deflection coil using a high voltage and welding of conductive members to the conductors at both ends of the deflection coil using a low voltage can be performed by a single device. Can be simplified. Also, by performing feedback control of the duty ratio of the pulse wave current from the inverter circuit, it is possible to precisely converge the voltage or current generated on the secondary side of the transformer to the target value.
また、 本発明では、 前記昇圧側の変圧手段として第 1の変圧手段と、 前記降圧 側の変圧手段として第 2の変圧手段とを備え、 前記切換手段は、 前記インバ一夕 回路の前記第 1または第 2の変圧手段への接続を切り換える。  Further, according to the present invention, there is provided a first transformer as the step-up side transformer, and a second transformer as the step-down transformer, wherein the switching means comprises a first transformer of the inverter circuit. Or, switch the connection to the second transformer.
これによつて、 インバ一タ回路の第 1または第 2の変圧手段への接続カ^ 切換 手段により選択的に切り換えられるので、 偏向コイルへの通電加熱と、 偏向コィ ル両端のリ一ド部への金属部材の溶着との両方を、 一つの装置で行うことができ るとともに、 インバー夕回路からのパルス波電流のデューティ比をフィードバッ ク制御することにより、 変圧手段の 2次側に発生する電圧または電流を目標値へ 精度よく収束制御することができる。  As a result, the connection can be selectively switched by the connection switching means of the inverter circuit to the first or second transforming means, so that the heating of the deflecting coil and the leading ends at both ends of the deflecting coil can be performed. A single device can be used for both welding and welding of metal members to the transformer, and by controlling the duty ratio of the pulse wave current from the inverter circuit to the secondary side of the transformer, The convergence control of the voltage or current to be performed to the target value can be performed accurately.
また、 本発明では、 前記切換手段は、 前記変圧手段の昇圧側と前記通電加熱手 段との接続と、 前記変圧手段の降圧側と前記溶着手段との接続とを、 選択的に切 り換える。  Further, in the present invention, the switching means selectively switches between a connection between a pressure increasing side of the transformer and the energization heating means and a connection between a pressure decreasing side of the transformer and the welding means. .
これによつて、 偏向コイルへの通電加熱と、 偏向コイル両端のリード部への金 属部材の溶着との両方を、 一つの装置で行うことができるとともに、 インバ一タ 回路からのノ、。ルス波電流のデュ一ティ比をフィードパ'ック制御することにより、 変圧手段の 2次側に発生する電圧または電流を目標値へ精度よく収束制御するこ とができる。 As a result, the heating and heating of the deflection coil and the gold on the leads at both ends of the deflection coil are performed. Both welding and welding of metal members can be performed by a single device, as well as inverter circuits. By performing feed-back control of the duty ratio of the loose wave current, it is possible to accurately converge the voltage or current generated on the secondary side of the transformer to the target value.
また、 本発明では、 前記インバータ回路を、 トランジス 等のスイッチング素 子を高速スィツチングするチヨッパ式のィンバ一タ回路としている。  Further, in the present invention, the inverter circuit is a chopper type inverter circuit for performing high-speed switching of a switching element such as a transistor.
これによつて、 ィンバ一タ回路はトランジスタ等のスィツチング素子により高 速スイッチングされるので、ノ、。ルス波電流のデュ一ティ比は細かくかつ幅広 I、制 御が可能となり、 偏向コイルへと印加する電圧、 電流、 電力についての制御性が 向上し、 各種の偏向コイルに対応して印加される電力を制御でき、 偏向コイルの 抵抗値のばらつきに対しても容易に対処することができる。  As a result, the inverter circuit is switched at a high speed by a switching element such as a transistor. The duty ratio of the Loose wave current is fine and wide, and it is possible to control it.Improvement of the controllability of the voltage, current, and power applied to the deflection coil, and it is applied corresponding to various deflection coils Power can be controlled, and variations in resistance of the deflection coil can be easily dealt with.
また、 本発明では、 前記変圧手段を、 高周波絶縁トランスとしている。  In the present invention, the transformer is a high-frequency insulating transformer.
これによつて、 通電加熱手段および溶着手段側とインバー夕回路側は、 高周波 絶縁トランスにより隔てられているので、 偏向コイルのィンダクタンスが低かつ たり、 偏向コイルに短絡不良等があつたとしても、 インバータ回路のトランジス 夕に大電流が流れてしまうことはなく、 トランジス夕が破壊されてしまう危険性 が少ない。 また、 高周波絶縁トランスは小型であることから、 装置全体の小型化 が図れる。  As a result, since the high-frequency insulating transformer separates the power supply heating means and the welding means from the inverter circuit side, even if the inductance of the deflecting coil is low or the deflecting coil has a short circuit failure, etc. However, a large current does not flow in the transistor area of the inverter circuit, and there is little danger that the transistor area will be destroyed. Also, since the high-frequency insulating transformer is small, the size of the entire device can be reduced.
また、 本発明では、 前記導電性部材を導電性の帯状連続部材で構成し、 この帯 状連続部材を前記圧着手段へ供給する手段と、 帯状連続部材を所定の位置で切断 する手段とを備えた。 これによつて、 圧着手段への導電性部材の供給を容易に行 い得る。  Further, according to the present invention, the conductive member is constituted by a conductive strip-shaped continuous member, a means for supplying the strip-shaped continuous member to the crimping means, and a means for cutting the strip-shaped continuous member at a predetermined position. Was. This makes it possible to easily supply the conductive member to the crimping means.
また、 本発明では、 前記導電性部材を導電性の帯状連続部材の一部を所定間隔 で切り起こして折り曲げたフープ材で形成し、 このフープ材を前記圧着手段へ供 給する手段と、 フープ材を所定の位置で切断する手段とを備えた。 これによつて、 導電性部材の線材への圧着が容易になる。 また、 本発明では、 前記フ一プ材として、 線材に圧着される圧着部と、 前記フ 一プ材の一部を切り起こすことで所定間隔に形成され圧着時に線材が圧着部の外 側へはみ出すのを阻止する爪とを備えたフープ材を用いる。 これによつて、 電極 形成のために圧着部を線材に圧着する際に、 線材は圧着部の外側にはみ出さず、 圧着部に確実に圧着され、 電極の形成をより確実に行うこ ができる。 Further, in the present invention, the conductive member is formed of a hoop material obtained by cutting and raising a part of a conductive strip-shaped continuous member at a predetermined interval and bending the hoop material, and supplying the hoop material to the crimping means; Means for cutting the material at a predetermined position. This facilitates pressure bonding of the conductive member to the wire. Further, in the present invention, as the wrapping material, a crimping portion to be crimped to a wire is formed at a predetermined interval by cutting and raising a part of the wrapping material. Use hoops with claws to prevent them from sticking out. With this, when the crimping portion is crimped to the wire for forming the electrode, the wire does not protrude outside the crimping portion, but is securely crimped to the crimping portion, and the electrode can be formed more reliably. .
また、 本発明では、 前記導電性部材の移動手段が、 移動機構を備えた線材供給 機構である。 これによつて、 線材に圧着した導電性部材を専用の移動手段を用い ずに移動させることができ、 巻線機の構成を単純化できる。  In the present invention, the means for moving the conductive member is a wire rod supply mechanism including a movement mechanism. Thus, the conductive member crimped on the wire can be moved without using a dedicated moving means, and the configuration of the winding machine can be simplified.
また、 本発明では、 前記導電性部材の移動手段が、 移動機構と導電性部材の把 持機構を備えた第 1の電極である。 これによつて、 線材に圧着した導電性部材を 特別な移動手段を用いずに移動させることができ、 巻線機の構成を単純化できる また、 本発明では、 前記新たに線材に圧着した導電性部材と金型との間で線材 を切断する手段を備えた。 これによつて、 コイルへの通電による成型後に、 線材 を導電性部材と金型との間で切断することで、 導電性部材を線材供給機構側の線 材に圧着した状態で残す。 この導電性部材を係止手段に係止して次のコィルの卷 線を行うことで、 実質的に 1個の導電性部材を使用するのみで 1個のコイルの成 型が可能になる。 したがって、 導電性歩合の使用量と圧着作業の手間を低減する ことができる。  In the present invention, the means for moving the conductive member is a first electrode provided with a moving mechanism and a mechanism for holding the conductive member. Thus, the conductive member crimped to the wire can be moved without using any special moving means, and the configuration of the winding machine can be simplified. Means for cutting the wire between the conductive member and the mold were provided. Thus, after molding by energizing the coil, the wire is cut between the conductive member and the mold, so that the conductive member is left pressed against the wire on the wire feed mechanism side. By locking the conductive member to the locking means and winding the next coil, one coil can be formed by using substantially only one conductive member. Therefore, it is possible to reduce the amount of the conductive rate used and the labor of the crimping operation.
また、 本発明では、 前記圧着手段と前記第 1の電極とを、 軸方向の相対移動機 構を備えた相対する一対の部材で構成した。 これによつて、 装置の構造を簡易に することができる。 図面の簡単な説明  Further, in the present invention, the crimping means and the first electrode are constituted by a pair of opposing members provided with an axial relative movement mechanism. Thus, the structure of the device can be simplified. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の偏向コイル巻線機を示す斜視図である。  FIG. 1 is a perspective view showing a deflection coil winding machine of the present invention.
第 2図は、 圧着溶着機構の斜視図である。  FIG. 2 is a perspective view of a pressure welding mechanism.
第 3図は、 フープ材の送り機構の斜視図である。 第 4図は、 本発明の通電加熱および溶着装置を示す構成図である。 FIG. 3 is a perspective view of a hoop material feeding mechanism. FIG. 4 is a configuration diagram showing an electric heating and welding device of the present invention.
第 5図は、 ィンバータ回路による電流制御の様子を示す特性図である。  FIG. 5 is a characteristic diagram showing a state of current control by the inverter circuit.
第 6図は、 イン <—タ回路による電流制御の様子を示す特性図である。  FIG. 6 is a characteristic diagram showing a state of current control by an inverter circuit.
第 7図は、 コイルの巻線と成型工程を示す組み図である。  FIG. 7 is an assembly diagram showing a coil winding and a molding process.
第 8図は、 コィルの卷線と成型工程を示す組み図である。 '  FIG. 8 is an assembling diagram showing a coil winding and a molding process. '
第 9図は、 導電性部材としての長尺材を示す斜視図である。  FIG. 9 is a perspective view showing a long material as a conductive member.
第 1 0図は、 通電溶着機構の電極の一例を示す縦断面図である。  FIG. 10 is a longitudinal sectional view showing an example of an electrode of the current welding mechanism.
第 1 1図は、 第 1 0図に示す実施の形態によって線材に圧着された導電性部材 の斜視図である。  FIG. 11 is a perspective view of a conductive member crimped to a wire according to the embodiment shown in FIG.
第 1 2図は、 本発明の他の実施の形態の通電加熱および溶着装置を示す構成図 である。  FIG. 12 is a configuration diagram showing an electric heating and welding apparatus according to another embodiment of the present invention.
第 1 3図は、 圧着溶着機構とロボットハンドの要部斜視図である。  FIG. 13 is a perspective view of a main part of the pressure welding mechanism and the robot hand.
第 1 4図は、 圧着溶着機構とロボッ 卜ハンドと送り機構の要部斜視図である。 第 1 5図は、 本発明のさらに他の実施の形態を示す卷線機の一部の斜視図であ る。  FIG. 14 is a perspective view of an essential part of the pressure welding mechanism, the robot hand, and the feed mechanism. FIG. 15 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
第 1 6図は、 本発明のさらに他の実施の形態を示すノズルと圧着溶着機構と送 り機構の一部斜視図である。  FIG. 16 is a partial perspective view of a nozzle, a pressure welding mechanism, and a feeding mechanism showing still another embodiment of the present invention.
第 1 7図は、 本発明のさらに他の実施の形態を示す巻線機の一部の斜視図であ る。  FIG. 17 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
第 1 8図は、 本発明のさらに他の実施の形態を示す巻線機の斜視図である。 第 1 9図は、 本発明のさらに他の実施の形態を示す巻線機の斜視図である。 第 2 0図は、 圧着部と通電部と送り機構の要部斜視図である。  FIG. 18 is a perspective view of a winding machine showing still another embodiment of the present invention. FIG. 19 is a perspective view of a winding machine showing still another embodiment of the present invention. FIG. 20 is a perspective view of a main part of a crimping part, a power supply part, and a feed mechanism.
第 2 1図は、 本発明のさらに他の実施の形態を示す圧着部と通電部と送り機構 の要部斜視図である。  FIG. 21 is a perspective view of a main part of a crimping section, a current-carrying section, and a feed mechanism showing still another embodiment of the present invention.
第 2 2図は、 本発明のさらに他の実施の形態を示す圧着部と通電部とパーツフ ィ一ダとロボッ卜ハンドの要部斜視図である。 第 2 3図は、 本発明のさらに他の実施の形態を示す巻線機の一部の斜視図であ る。 FIG. 22 is a perspective view of a main part of a crimping part, a current-carrying part, a parts feeder and a robot hand showing still another embodiment of the present invention. FIG. 23 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
第 2 4図は、 第 2 3図に示した巻線機の一部の異なる状況における斜視図であ 。  FIG. 24 is a perspective view of a part of the winding machine shown in FIG. 23 in different situations.
第 2 5図は、 本発明のさらに他の実施の形態を示す巻線機の一部の斜視図であ 第 2 6図は、 第 2 5図に示した巻線機の一部の異なる状況における斜視図であ 第 2 7図は、 本発明のさらに他の実施の形態を示す巻線機の一部の斜視図であ 。  FIG. 25 is a perspective view of a part of a winding machine showing still another embodiment of the present invention. FIG. 26 is a perspective view of a part of the winding machine shown in FIG. FIG. 27 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
第 2 8図は、 本発明のさらに他の実施の形態を示す巻線機の一部の斜視図であ る。  FIG. 28 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
第 2 9図は、 本発明のさらに他の実施の形態を示す巻線機の斜視図である。 第 3 0図は、 本発明のさらに他の実施の形態を示す巻線機の斜視図である。 第 3 1図は、 本発明のさらに他の実施の形態を示す巻線機の一部の斜視図であ る。  FIG. 29 is a perspective view of a winding machine showing still another embodiment of the present invention. FIG. 30 is a perspective view of a winding machine showing still another embodiment of the present invention. FIG. 31 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
第 3 2図は、 本発明のさらに他の実施の形態を示す巻線機の一部の斜視図であ る。  FIG. 32 is a perspective view of a part of a winding machine showing still another embodiment of the present invention.
第 3 3図は、 従来の溶着装置を示す構成図である。  FIG. 33 is a configuration diagram showing a conventional welding apparatus.
第 3 4図は、 従来の通電加熱装置を示す構成図である。  FIG. 34 is a configuration diagram showing a conventional electric heating device.
第 3 5図は、 従来の他の通電加熱装置を示す構成図である。  FIG. 35 is a configuration diagram showing another conventional energization heating device.
第 3 6図は、 従来のさらに他の通電加熱装置を示す構成図である。 発明を実施するための最良の形態  FIG. 36 is a configuration diagram showing another conventional energization heating device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面に基づいて、 本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
第 1図に示すように、 巻線機は、 コイル巻線用の線材を供給する線材供給機構 としてのノズル 1と、 線材 8を巻き付ける金型 2を備える。 As shown in Fig. 1, the winding machine is a wire rod supply mechanism that supplies wire rod for coil winding. And a die 2 around which the wire 8 is wound.
ノズル 1は、 前後モータ 4、 左右モータ 5及び上下モータ 6により三軸方向に 移動する移動台 3に支持機構 7を介して支持され、 三軸方向の移動を任意に行え るように構成される。  The nozzle 1 is supported via a support mechanism 7 on a movable base 3 that moves in three axial directions by a front-rear motor 4, a left-right motor 5, and a vertical motor 6, and is configured to be able to move arbitrarily in three-axial directions. .
ノズル 1には、 図示されない線材供給機構から、 細い被 ¾線をより合わせた線 材 8が導かれ、 ノズル 1の先端からこの線材 8が所定の張力のもとで供給される c 金型 2は、 同軸上に設けられた雄金型 2 aと雌金型 2 bからなる。 このうち、 上側の雄金型 2 aは金型上下モータ 1 0により上下動可能となっており、 雄金型 2 aと雌金型 2 bは相互に接近した状態から上下に分離可能となっている。  To the nozzle 1, a wire 8 to which a thin wire is twisted is guided from a wire feeding mechanism (not shown), and the wire 8 is supplied from the tip of the nozzle 1 under a predetermined tension. C Die 2 Consists of a male mold 2a and a female mold 2b provided on the same axis. Of these, the upper male mold 2a can be moved up and down by the mold vertical motor 10, and the male mold 2a and the female mold 2b can be separated vertically from each other. ing.
これらの雄金型 2 aと雌金型 2 bは、 それぞれ金型モータ 9 a、 9 bが設けら れ、 雄金型 2 aと雌金型 2 bを相互に接近した状態で、 金型モータ 9 a、 9 bを 同期的に回転させることにより、 雄金型 2 aと雌金型 2 bは一体に回転する。 こ れにより、 ノズル 1から供給される線材 8が、 雄金型 2 aと雌金型 2 bの間に形 成された空隙に巻き込まれ、 巻線が鞍型形状に形成される。  The male mold 2a and the female mold 2b are provided with mold motors 9a and 9b, respectively, and the male mold 2a and the female mold 2b are brought close to each other. By rotating the motors 9a and 9b synchronously, the male mold 2a and the female mold 2b rotate integrally. As a result, the wire 8 supplied from the nozzle 1 is wound into the gap formed between the male mold 2a and the female mold 2b, and the winding is formed in a saddle shape.
また、 コイルの巻始めと巻終わり端の線材 8に導電性部材 1 2 (第 1 0図、 第 1 1図参照) を圧着するために、 第 2図にも示すような圧着溶着機構 1 3が、 金 型 2の側方に設けられる。  In order to crimp the conductive member 12 (see FIGS. 10 and 11) to the wire 8 at the beginning and end of winding of the coil, a crimp welding mechanism 13 as shown in FIG. 2 is used. Is provided on the side of the mold 2.
圧着溶着機構 1 3は、 相対する上下の電極 1 4と 1 5と、 電極 1 4を電極 1 5 に向けて駆動する伸縮シリンダ 1 6と、 電極 1 4と一体に支持されたカツタ 1 7 を備える。  The pressure welding mechanism 13 includes upper and lower electrodes 14 and 15 facing each other, a telescopic cylinder 16 for driving the electrode 14 toward the electrode 15, and a cutter 17 integrally supported with the electrode 14. Prepare.
これらの電極 1 4と 1 5は、 それぞれ配線 9 1、 9 2を介して、 後述する通電 加熱および溶着装置 1 0 0 (第 4図参照) の溶着回路 1 1 4と接続される。 これ らの電極 1 4と 1 5カ^ 第 1の電極を構成する。 なお、 電極 1 4からの配線 9 1 は、 通電加熱および溶着装置 1 0 0の通電加熱回路 1 1 3にも接続されている。 導電性部材 1 2は、 第 3図に示すように、 帯状に連続したフープ材 1 8の一部 を一定間隔で切り起こし、 後方へ略コの字形断面となるように折り曲げたもので あり、 カツ夕 1 7で切断されて使用される。 These electrodes 14 and 15 are connected to a welding circuit 114 of an energizing heating and welding device 100 (see FIG. 4) described later via wirings 91 and 92, respectively. These electrodes 14 and 15 constitute a first electrode. The wiring 91 from the electrode 14 is also connected to the energization heating circuit 113 of the energization heating and welding device 100. As shown in FIG. 3, the conductive member 12 is obtained by cutting and raising a part of a hoop material 18 that is continuous in a belt shape at a predetermined interval, and bending the hoop material 18 rearward so as to have a substantially U-shaped cross section. Yes, cut and used at 17
また、 圧着溶着機構 1 3には、 線材 8を切断するために、 第 8図 (b ) に示す ようなカツ夕 3 2が設けられる。 このカツ夕 3 2は電極 1 4から独立した図示さ れない駆動機構を備え、 線材 8に圧着した導電性部材 1 2の近傍でかつ金型 2側 の位置で線材 8を切断する。  In addition, the press-welding mechanism 13 is provided with a cut 32 as shown in FIG. 8 (b) for cutting the wire 8. The cutout 32 has a drive mechanism (not shown) independent of the electrode 14, and cuts the wire 8 near the conductive member 12 crimped to the wire 8 and at a position on the mold 2 side.
フープ材 1 8は、 第 1図に示すリール 2 0力、ら、 第 3図に示す送り機構 1 9を 介して、 圧着溶着機構 1 3に供給される。  The hoop material 18 is supplied to the pressure welding mechanism 13 via a reel 20 shown in FIG. 1 and a feed mechanism 19 shown in FIG.
この送り機構 1 9は、 リール 2 0の直下から圧着溶着機構 1 3に至る溝型のガ ィド 2 1と、 ガイド 2 1の途中に設けられたスライダ 2 3とを備える。 このスラ イダ 2 3は、 ガイド 2 1との間に介装された伸縮シリンダ 2 4の伸縮に応じてガ イド 2 1に沿ってスライドする。  The feed mechanism 19 includes a groove-shaped guide 21 extending from immediately below the reel 20 to a pressure welding mechanism 13, and a slider 23 provided in the middle of the guide 21. The slider 23 slides along the guide 21 according to the expansion and contraction of the telescopic cylinder 24 interposed between the slider 23 and the guide 21.
フープ材 1 8の両側部には、 所定の間隔で矩形の切欠 2 5が形成される一方、 スライダ 2 3の内側には、 この切欠 2 5に係合してフープ材 1 8をスライダ 2 3 と一体に圧着溶着機構 1 3に向けて移動する爪 2 2が収装される。 この爪 2 2は、 スプリング 2 6によりスライダ 2 3の内側に向けて付勢され、 上方から眺めた状 態で楔状の先端をスライダ 2 3の内側に向けて突出する。 また、 爪 2 2の前面は スライダ 1 8の移動方向と直角をなし、 背面は前面と鋭角をなすように傾斜する。 これにより、 スライダ 2 3を前進、 すなわち圧着溶着機構 1 3に向けてスライド させると、 フープ材 1 8の切欠 2 5に先端を係合した爪 2 2によりフープ材 1 8 が前方へ送り出される。 一方、 スライダ 2 3を後退、 すなわち圧着溶着機構 1 3 から遠ざける方向ヘスライドさせると、 爪 2 2はスプリング 2 6に杭して後退し ながら傾斜面を切欠 2 5に沿って滑らせることで、 切欠 2 5の外側へと移動する ため、 フープ材 1 8はそのままの位置に留まり、 スライダ 2 3のみが後退する。 雄金型 2 aには、 導電性部材 1 2の係止手段としてチャック 2 7が取り付けら れる。 チャック 2 7は内蔵されたシリンダの伸縮に応じて開閉し、 ノズル 1の移 動により圧着溶着機構 1 3から運ばれて来た導電性部材 1 2を雄金型 2 aに係止 する。 このチャック 2 7は導電性の材料で構成され、 配線 9 3を介して、 後述す る通電加熱および溶着装置 1 0 0 (第 4図参照) の通電加熱回路 1 1 3に接続さ れる。 このチャック 2 7と電極 1 5とが第 2の電極を構成する。 Rectangular notches 25 are formed at predetermined intervals on both sides of the hoop material 18, and inside the slider 23, the hoop material 18 is engaged with the notch 25 to move the hoop material 18 to the slider 23. The claws 22 that move toward the pressure welding mechanism 13 are integrally housed. The claw 22 is urged toward the inside of the slider 23 by the spring 26, and projects a wedge-shaped tip toward the inside of the slider 23 when viewed from above. The front surface of the claw 22 is perpendicular to the moving direction of the slider 18, and the rear surface is inclined so as to form an acute angle with the front surface. Thus, when the slider 23 is advanced, that is, slid toward the pressure welding mechanism 13, the hoop 18 is sent forward by the claw 22 whose tip is engaged with the notch 25 of the hoop 18. On the other hand, when the slider 23 is retracted, that is, is slid in a direction away from the pressure welding mechanism 13, the claw 22 is piled on the spring 26 and slides the inclined surface along the notch 25 while retracting, whereby the notch is formed. Since it moves to the outside of 25, the hoop material 18 remains at the same position, and only the slider 23 retreats. A chuck 27 is attached to the male mold 2 a as locking means for the conductive member 12. The chuck 27 opens and closes according to the expansion and contraction of the built-in cylinder, and the nozzle 1 moves to lock the conductive member 12 carried from the pressure welding mechanism 13 to the male mold 2a. I do. The chuck 27 is made of a conductive material, and is connected via a wiring 93 to an energization heating and welding circuit 110 of an energization heating and welding device 100 (see FIG. 4) described later. The chuck 27 and the electrode 15 constitute a second electrode.
なお、 チャック 2 7は雄金型 2 aと一体に回転するため、 チャック 2 7と配線 9 3の接続は、 第 8図 ( a ) に示すように雄金型 2 aの基嫵の非回転部 2 cに設 けたブラシ 3 0を介して行われる。  Since the chuck 27 rotates integrally with the male mold 2a, the connection between the chuck 27 and the wiring 93 is made by the non-rotation of the base of the male mold 2a as shown in Fig. 8 (a). This is performed via a brush 30 provided in the section 2c.
第 4図には、 通電加熱および溶着装置 1 0 0を示す。 この通電加熱および溶着 装置が、 巻線機における通電加熱および溶着手段となる。  FIG. 4 shows an electric heating and welding apparatus 100. This electric heating and welding device serves as electric heating and welding means in the winding machine.
この通電加熱および溶着装置 1 0 0では、 外部入力端子 1 0 1から入力された 交流電流が、 整流器 1 0 2により直流電流に整流された後、 スイッチング素子と してのトランジスタ 1 0 3 (例えば I G B T等) を備えたチヨッパ式のインバ一 タ回路 1 0 4へと導かれる。  In the current-carrying heating and welding apparatus 100, after the alternating current input from the external input terminal 101 is rectified into a direct current by the rectifier 102, the transistor 103 as a switching element (for example, IGBT, etc.) and a chopper-type inverter circuit 104.
ィンバ一夕回路 1 0 4は、 コントローラ 1 0 5で高速スィツチング制御される トランジスタ 1 0 3により、 第 5図または第 6図に示すように、 直流電流を所定 のデューティ比の高周波のパルス波へと変換し、 後述する高周波絶縁トランス 1 0 9 , 1 1 0への供給電力を可変制御する。 具体的には、 例えばデューティ比 5 0 %の場合には、 第 5図に示すように (ここでは縦軸に電流が、 横軸に時間が表 される) 、 トランジスタ 3のオンオフのタイミングを 1 / 2づっとすることによ り、 また、 デューティ比 2 5 %の場合には、 第 6図に示すように、 トランジスタ 3のオンオフのタイミングを 1 Z 4と 3ノ4とすることにより、 所望のパルス波 を発生させるようになつている。  As shown in FIG. 5 or FIG. 6, the transistor overnight circuit 104 converts a direct current into a high-frequency pulse wave having a predetermined duty ratio by a transistor 103 which is controlled by high-speed switching by a controller 105. And variably controls the power supplied to the high-frequency insulating transformers 109 and 110 to be described later. Specifically, for example, in the case of a duty ratio of 50%, as shown in FIG. 5 (current is represented on the vertical axis and time is represented on the horizontal axis), the on / off timing of the transistor 3 is set to 1 / 2, and in the case of a duty ratio of 25%, as shown in FIG. A pulse wave is generated.
このインバ一タ回路 4通過後のパルス波は、 スィッチ 1 2 5を介して昇圧側の 高周波絶縁トランス 1 0 9の 1次側へ、 またはスィッチ 1 2 6を介して降圧側の 高周波絶縁トランス 1 1 0の 1次側へ導かれる。 この場合、 スィッチ 1 2 5とス イッチ 1 2 6は切換回路 1 2 7により選択的にオンされるようになっているので、 インバータ回路 1 0 4は通電加熱回路 1 1 3または溶着回路 1 1 4のいずれか一 方に接続されることになる。 The pulse wave after passing through the inverter circuit 4 is sent to the primary side of the high-frequency insulating transformer 109 on the boosting side via the switch 125 or to the high-frequency insulating transformer 1 on the buck side via the switch 126. Guided to the primary side of 10. In this case, the switches 1 2 5 and 1 2 6 are selectively turned on by the switching circuit 1 2 7, so that the inverter circuit 1 4 is connected to the heating circuit 1 1 3 or the welding circuit 1 1 Any one of 4 Will be connected to
高周波絶縁トランス 1 0 9または 1 1 0の 1次側に導かれたパルス波は、 高周 波絶縁トランス 1 0 9、 1 1 0の 2次側において、 ほぼ所定の電圧へと変換され る。 すなわち、 この高周波絶縁トランス 1 0 9、 1 1 0の 2次側においては、 そ の電圧が電圧センサ 1 0 6によって、 また、 その電流が電 センサ 1 0 7によつ て検出され、 これらの検出値がコントローラ 1 0 5に入力されることにより、 コ ントローラ 1 0 5はトランジスタ 1 0 3のスィツチング動作をフィ一ドバック制 御することでパルス波のデューティ比の調整を調整して、 高周波絶縁トランス 1 0 9、 1 1 0の 2次側に一定の電圧または電流を得るようになつている。  The pulse wave guided to the primary side of the high-frequency insulating transformer 1109 or 110 is converted to a substantially predetermined voltage on the secondary side of the high-frequency insulating transformer 1109 or 110. That is, on the secondary side of the high-frequency insulating transformers 109 and 110, the voltage is detected by the voltage sensor 106, and the current is detected by the electric sensor 107. When the detected value is input to the controller 105, the controller 105 controls the switching operation of the transistor 103 by feedback, thereby adjusting the adjustment of the duty ratio of the pulse wave to provide high-frequency insulation. A constant voltage or current is obtained on the secondary side of the transformers 109 and 110.
これにより、 高周波絶縁トランス 1 0 9の 2次側では、 電圧が例えば 2 4 0 V の高圧に昇圧されるが、 これは通電加熱回路 1 1 3へと接続される。 すなわち、 この通電加熱回路 1 1 3は、 巻線後の偏向コイル両端に接続された電極 1 4とチ ャック 2 7との間に通電加熱を行い、 巻線の被覆を溶融し巻線間を相互に密着さ せて、 その成型、 固着を行うものであり、 溶着の場合に比べて高電圧かつ低電流 を要するものであるので、 高周波絶縁トランス 1 0 9の 2次側を経た高電圧、 低 電流が供給される。 なお、 高周波絶縁トランス 1 0 9の 2次側には整流回路 2 9 が介装され、 コイル 2 0に供給される電流を整流するようになっている。  As a result, on the secondary side of the high-frequency insulating transformer 109, the voltage is raised to a high voltage of, for example, 240 V, which is connected to the energization heating circuit 113. In other words, the energization heating circuit 113 applies energization heating between the electrode 14 and the chuck 27 connected to both ends of the deflecting coil after the winding, melts the coating of the winding, and creates a gap between the windings. They are made to adhere to each other to form and fix them, and require a higher voltage and lower current than in the case of welding, so that high voltage passing through the secondary side of the high-frequency insulating transformer 109 is used. Low current is supplied. A rectifier circuit 29 is interposed on the secondary side of the high-frequency insulating transformer 109 so as to rectify the current supplied to the coil 20.
また、 高周波絶縁トランス 1 1 0の 2次側では、 電圧が例えば 5 Vの低圧に降 圧されるが、 これは溶着回路 1 1 4へと接続される。 すなわち、 この溶着回路 1 1 4は、 偏向コイルの端部のリード線に導電性部材 1 2を溶着するものであり、 通電加熱に比べて低電圧、 大電流を要するものであるので、 高周波絶縁トランス 1 0を経た低電圧、 大電流が供給されるようになっている。  On the secondary side of the high-frequency insulating transformer 110, the voltage is reduced to a low voltage of, for example, 5 V, which is connected to the welding circuit 114. That is, this welding circuit 114 welds the conductive member 12 to the lead wire at the end of the deflection coil, and requires a low voltage and a large current as compared with electric heating. A low voltage and a large current are supplied through the transformer 10.
つぎに作用を説明する。  Next, the operation will be described.
最初に、 導電性部材 1 2の線材 8への圧着工程について説明し、 続いてコイル の巻線と成型工程 (通電加熱工程) について説明する。  First, the step of crimping the conductive member 12 to the wire 8 will be described, and then the winding of the coil and the forming step (electric heating step) will be described.
送り機構 1 9の伸縮シリンダ 2 4を伸縮させてスライダ 2 3を前方へ駆動する と、 爪 2 2によりフープ材 1 8が前方へ送り出され、 その最先端部が圧着溶着機 構 1 3の電極 1 4と 1 5の間に送り込まれる。 Extend the telescopic cylinder 24 of the feed mechanism 19 to drive the slider 23 forward Then, the hoop material 18 is sent forward by the claws 22, and the leading end thereof is sent between the electrodes 14 and 15 of the pressure welding mechanism 13.
続いて、 モータ 4 , 5及び 6の運転によりノズル 1を移動し、 ノズル 1から出 でいる線材 8を電極 1 4と 1 5の間に導き、 フープ材 1 8の最先端部に位置する 後方への折り曲げ部とその下側の非折り曲げ部との間に挟み込む。  Next, the nozzle 1 is moved by operating the motors 4, 5, and 6, and the wire 8 coming out of the nozzle 1 is guided between the electrodes 14 and 15, and the rearward position located at the forefront of the hoop material 18 Between the bent portion and the unfolded portion below the bent portion.
ここで、 伸縮シリンダ 1 6の駆動により、 電極 1 4とカツタ 1 7を降下させる と、 カツタ 1 7がフープ材 1 8の最先端部を 1スパン分切断する。 この切断され た部分が導電性部材 1 2として線材 8に圧着される。  Here, when the electrode 14 and the cutter 17 are lowered by driving the telescopic cylinder 16, the cutter 17 cuts the top end of the hoop material 18 by one span. The cut portion is crimped to the wire 8 as the conductive member 12.
一方、 切断された導電性部材 1 2を、 電極 1 4が相対する電極 1 5との間で圧 しつぶすようにして、 間に挟み込まれた線材 8に圧着する。 同時に、 溶着回路 1 1 4から電極 1 4と 1 5に電圧が印加される。 すなわち、 通電加熱および溶着回 路 1 0 0は、 切換回路 1 2 7により、 スィッチ 1 2 5をオフ、 スィッチ 1 2 6を オンとして、 高周波絶縁トランス 1 1 0を介して、 溶着回路 1 1 4側へと低電圧、 大電流を供給する。  On the other hand, the cut conductive member 12 is pressed against the wire rod 8 sandwiched between the electrode member 14 so that the electrode member 14 crushes the electrode member 15 against the electrode member 15 facing the electrode member 14. At the same time, a voltage is applied to the electrodes 14 and 15 from the welding circuit 114. That is, the energizing heating and welding circuit 100 is turned on by the switching circuit 127 so that the switch 125 is turned off and the switch 126 is turned on, and the welding circuit 111 is turned on via the high-frequency insulating transformer 110. Supply low voltage and large current to the side.
この通電に伴う発熱で線材 8を構成する被覆線の被覆を溶融し、 溶融した被覆 材は導電性部材 1 2に加えられる圧力により、 側方へと押しのけられ、 導電性部 材 1 2は被覆線の内側の導線に直接圧着し、 線材 8に導電性部材 1 2が溶着する c つぎに、 コイルの巻線と成型工程 (通電加熱工程) について説明する。 The heat generated by this energization melts the coating of the coated wire that composes the wire 8, and the melted coating is pushed to the side by the pressure applied to the conductive member 12, and the conductive member 12 is coated. crimp directly inner conductor of the line, the conductive member 1 2 to the wire 8 is then c welded, described winding and molding step of the coil (current heating process).
第 7図 (a ) には、 ノズル 1から出ている線材の先端に導電性部材 1 2が圧着 した状態を示す。 ここ力、ら、 ノズル 1を移動して導電性部材 1 2を雄金型 2 aへ と移動し、 第 7図 (b ) に示すように、 チャック 2 7で導電性部材 1 2を把持す る。  FIG. 7 (a) shows a state in which the conductive member 12 is crimped to the tip of the wire coming out of the nozzle 1. Here, the nozzle 1 is moved to move the conductive member 12 to the male mold 2a, and as shown in FIG. 7 (b), the conductive member 12 is gripped by the chuck 27. You.
そして、 金型上下モ一夕 1 0により雌金型 2 bを下降させて雄金型 2 aと雌金 型 2 bを一体に密着させ、 金型モータ 9 a、 9 bの同期した運転により雄金型 2 aと雌金型 2 bを一体に回転させる。 これにより、 ノズル 1から所定の張力のも とで送り出される線材 8を雄金型 2 aと雌金型 2 bの間に形成された空隙に巻き 込まれる。 同時に、 上下モータ 6の駆動により、 第 7図 (c ) に示すようにノズ ル 1の先端を上下に揺動させて巻線の形状を整える。 このようにして、 金型 2の 外周に鞍型のコィルが形成される。 Then, the female mold 2b is moved down by the mold up / down mode 10 to bring the male mold 2a and the female mold 2b into close contact with each other, and the synchronized operation of the mold motors 9a and 9b is performed. The male mold 2a and the female mold 2b are rotated integrally. As a result, the wire 8 sent out from the nozzle 1 under a predetermined tension is wound around the gap formed between the male mold 2a and the female mold 2b. Be included. At the same time, by driving the vertical motor 6, the tip of the nozzle 1 is swung up and down as shown in Fig. 7 (c) to adjust the shape of the winding. Thus, a saddle-shaped coil is formed on the outer periphery of the mold 2.
卷線が終了したら、 ノズル 1を第 7図 (d ) に示すように電極 1 4と 1 5を越 えて金型 2の反対側へと移動することで、 金型 2から導かれた線材 8を導電性部 材 1 2の間に挟み込む。 そして、 前述の工程により第 7図 (e ) に示すように線 材 8に新たな導電性部材 1 2を圧着する。  When the winding is completed, the nozzle 1 is moved from the mold 2 to the opposite side of the mold 2 over the electrodes 14 and 15 as shown in Fig. 7 (d), so that the wire 8 guided from the mold 2 is moved. Is sandwiched between the conductive members 12. Then, a new conductive member 12 is pressure-bonded to the wire 8 as shown in FIG.
続いて、 第 8図 (a ) に示すように、 電極 1 4と 1 5で導電性部材 1 2を挟ん だままの状態で、 電極 1 5とチャック 2 7の間に通電加熱回路 1 1 3から所定圧 の電圧を印加する。 すなわち、 通電加熱および溶着装置 1 0 0は、 切換回路 1 2 7によりスィッチ 1 2 5をオン、 スィッチ 1 2 6をオフとして、 高周波絶縁トラ ンス 1 1 0を介して、 電極 1 5とチャック 2 7の間へと高電圧、 低電流を供給す る。  Subsequently, as shown in FIG. 8 (a), while the conductive member 12 is sandwiched between the electrodes 14 and 15, the heating circuit 1 1 3 between the electrode 15 and the chuck 27 is maintained. A predetermined voltage is applied from. That is, the electric heating and welding apparatus 100 turns on the switch 125 and turns off the switch 126 by the switching circuit 127, and the electrode 15 and the chuck 2 via the high-frequency insulating transformer 110. Supply high voltage and low current between 7
これにより、 両端の導電性部材 1 2を介して金型 2上のコイル 2 0 0に通電が なされ、 通電に伴う発熱でコイル 2 0 0を構成する線材 8の被覆線の被覆が溶融 し、 より合わされた被覆線同士が相互に溶着する。 この溶着の結果、 コイル 2 0 0の巻線の剛性が高まり、 コイル 2 0 0は金型 2から外した状態でも鞍型形状を 保持するように成型される。  As a result, the coil 200 on the mold 2 is energized through the conductive members 12 at both ends, and the coating of the coated wire of the wire 8 constituting the coil 200 is melted by the heat generated by the energization, The twisted covered wires are welded to each other. As a result of this welding, the rigidity of the winding of the coil 200 is increased, and the coil 200 is molded so as to maintain the saddle shape even when it is detached from the mold 2.
このように、 本発明によれば、 切換回路 1 2 7による切り換えで、 高電圧を用 いる偏向コイル 2 0 0への通電加熱による成型と、 低電圧を用いる偏向コイル 2 0 0端部のリード線への導電性部材 1 2の溶着とを、 一つの装置で選択的に行う ことができる。  As described above, according to the present invention, by switching by the switching circuit 127, molding by energizing and heating the deflection coil 200 using a high voltage, and leading of the deflection coil 200 end using a low voltage are performed. The welding of the conductive member 12 to the wire can be selectively performed by one device.
また、 インバータ回路 1 0 4は、 トランジスタ 1 0 3により高速スイッチング (例えば 2 0 k H z程度まで可能) を行うものであるので、 そのデューティ比を 調整することにより、 偏向コイル 2 0 0へと印加する電圧、 電流、 電力について 細かくかつ幅広い制御が可能であり、 各種の偏向コイル 2 0 0に対応して印加さ れる電力を所定の状態に制御でき、 また偏向コイル 2 0 0の抵抗値のばらつきに 対しても電圧または電流のフィード ック制御により容易に対処することができ る。 In addition, since the inverter circuit 104 performs high-speed switching (for example, up to about 20 kHz) by using the transistor 103, the duty ratio of the inverter circuit 104 can be changed to the deflection coil 200 by adjusting the duty ratio. It is possible to finely and broadly control the applied voltage, current, and power. Power can be controlled to a predetermined state, and variation in the resistance value of the deflection coil 200 can be easily dealt with by voltage or current feedback control.
また、 通電加熱回路 1 1 3および溶着回路 1 1 4側と、 インバータ回路 1 0 4 側は、 高周波絶縁トランス 1 0 9、 1 1 0により隔てられているので、 偏向コィ ル 2 0 0に短絡不良等があつたとしても、 ィンバ一タ回路 1 0 4のトランジスタ 1 0 3が破壊されてしまう危険性は少ない。  Also, since the heating circuit 113 and the welding circuit 114 are separated from the inverter circuit 104 by high-frequency insulating transformers 109 and 110, they are short-circuited to the deflection coil 200. Even if a defect or the like occurs, there is little danger that the transistor 103 of the inverter circuit 104 will be destroyed.
また、 トランスとして高周波絶縁トランス 1 0 9、 1 1 0を使用するので、 卜 ランスは小型化でき、 装置全体も小型化が図れる。  Further, since the high-frequency insulating transformers 109 and 110 are used as the transformer, the size of the transformer can be reduced, and the size of the entire device can be reduced.
さて、 偏向コイル 2 0 0の成型後は、 第 8図 (b ) に示すように、 線材 8を力 ッタ 3 2で切断する。 この切断は金型 2側において行われるため、 結果としてコ ィル 2 0 0は巻始めのリード線にのみ導電性部材 1 2が圧着し、 巻終わりのリー ド線は単純に切断されたままの状態となる。 この状態でコイル 2 0 0を金型から 取り外し、 導電性部材 1 2を切り落とす。 導電性部材はコイル 2 0 0の成型工程 における通電にのみ使用され、 コイルの完成後は不要となるため、 金型から外し たコイル 2 0 0のリード線の一方には既に導電性部材 1 2が圧着されていないこ とで、 導電性部材 1 2を切り落とす手間も少なくて済む。  Now, after the deflection coil 200 is formed, the wire 8 is cut by the force cutter 32 as shown in FIG. 8 (b). Since this cutting is performed on the mold 2 side, as a result, the coil 200 has the conductive member 12 crimped only to the lead wire at the beginning of winding, and the lead wire at the end of winding remains simply cut. State. In this state, the coil 200 is removed from the mold, and the conductive member 12 is cut off. The conductive member is used only for energizing in the molding process of the coil 200 and becomes unnecessary after the completion of the coil. Therefore, one of the lead wires of the coil 200 removed from the mold already has the conductive member 12 Since they are not crimped, the labor for cutting off the conductive member 12 can be reduced.
一方、 ノズル 1側においては、 第 8図 (c ) に示すようにノズル 1から出てい る線材 8の先端に導電性部材 1 2が圧着状態でぶら下がつている。 これは図 5 ( a ) と同じ状態であり、 ノズル 1を移動して導電性部材 1 2を再びチャック 2 7 で把持することにより、 次のコイルについて同じ工程が繰り返される。  On the other hand, on the nozzle 1 side, as shown in FIG. 8 (c), a conductive member 12 is hung in a crimped state at the tip of a wire 8 protruding from the nozzle 1. This is the same state as in FIG. 5 (a). By moving the nozzle 1 and holding the conductive member 12 again with the chuck 27, the same process is repeated for the next coil.
したがって、 1個のコイルに対して導電性部材 1 2を 1個のみ圧着すれば良く、 コイルの両端に導電性部材 1 2を圧着する場合と比較して、 通電加熱回路 1 1 3 による通電処理には何ら不具合を生じな 、ままで、 圧着作業の手間や材料を大幅 に節約できる。  Therefore, only one conductive member 12 needs to be crimped to one coil, and the energization processing by the energization heating circuit 1 13 is compared to the case where the conductive member 12 is crimped to both ends of the coil. Can save a lot of time and material for crimping work without any trouble.
また、 移動機構を備えたノズル 1が導電性部材 1 2の移動手段を兼用するので、 別に移動手段を備える必要もない。 このノズル 1は圧着溶着機構 1 3に線材 8を 導き、 導電性部材 1 2の間に挟み込む機能を果たすため、 線材 8の外周に導電性 部材 1 2を配置するための特別な機構も不用となる。 さらに、 ノズル 1が移動す るので金型 2の寸法が変更されても特別の変更を行わずに同じ機器で成型作業を 行うことができる。 Further, since the nozzle 1 having the moving mechanism also serves as a moving means of the conductive member 12, There is no need to provide a separate moving means. Since the nozzle 1 guides the wire 8 to the pressure welding mechanism 13 and holds it between the conductive members 12, a special mechanism for disposing the conductive member 12 on the outer periphery of the wire 8 is not necessary. Become. Furthermore, since the nozzle 1 moves, even if the dimensions of the mold 2 are changed, the molding operation can be performed with the same equipment without any special change.
なお、 導電性部材 1 2は、 第 2図における一部を切り起こしたフープ材 1 8に 代えて、 第 9図に示すような各種の断面形状の長尺部材 5 0〜5 4を使用するこ とができる。  As the conductive member 12, long members 50 to 54 having various cross-sectional shapes as shown in FIG. 9 are used instead of the hoop member 18 which is partially cut and raised in FIG. be able to.
また、 圧着手段 (この実施の形態では電極 1 4と 1 5 ) の形状を、 導電性部材 1 2の形状に応じて変化させる。 例えば、 電極 1 4と 1 5の各先端部の形状を第 1 0図に示すような凹面に形成すれば、 電極 1 4と 1 5の間でプレスされた導電 性部材 1 2は、 線材 8を両側から包み込むように変形する。 そして、 電極 1 4と 1 5の間に電圧を印加しながら、 さらにプレスを続行することにより、 線材 8を 構成する被覆線の被覆が溶融し、 プレスにより側方へと押しやられ、 導電性部材 1 2は被覆線の内側の導線に圧着する。 第 1 1図には、 第 1 0図に示した形状の 電極 1 4、 1 5による圧着後の導電性部材 1 2の形状を示す。 このように、 導電 性部材 1 2は様々な形状に形成することが可能である。 なお、 導電性部材 1 2を このような複雑な形状に成型する場合には、 電極 1 4 , 1 5とは別に後述の加圧 ロッドのような機構を別に設け、 通電に先立って導電性部材 1 2の成型と圧着を 行うようにしても良い。  Further, the shape of the crimping means (the electrodes 14 and 15 in this embodiment) is changed according to the shape of the conductive member 12. For example, if the tip of each of the electrodes 14 and 15 is formed into a concave surface as shown in FIG. 10, the conductive member 12 pressed between the electrodes 14 and 15 becomes a wire 8 To wrap around from both sides. By continuing the pressing while applying a voltage between the electrodes 14 and 15, the coating of the coated wire constituting the wire 8 is melted and pushed to the side by the press, and the conductive member is pressed. 1 2 is crimped to the conductor inside the covered wire. FIG. 11 shows the shape of the conductive member 12 after compression by the electrodes 14 and 15 having the shape shown in FIG. Thus, the conductive member 12 can be formed in various shapes. When the conductive member 12 is molded into such a complicated shape, a mechanism such as a pressure rod to be described later is provided separately from the electrodes 14 and 15 so that the conductive member can be formed before energization. Molding and crimping of 1 and 2 may be performed.
第 1 2図には、 本発明の他の実施の形態を示す。  FIG. 12 shows another embodiment of the present invention.
この実施の形態においては、 インバ一夕回路 1 0 4通過後のパルス波電流が、 高周波絶縁トランス 1 0 8の 1次側へと導かれ、 この高周波絶縁トランス 1 0 8 の 2次側の昇圧回路 1 1 1において電圧が例えば 2 4 0 Vの高圧に昇圧され、 ま た、 高周波絶縁トランス 1 0 8の 2次側の降圧回路 1 1 2において電圧が例えば 5 Vの低圧に降圧される。 昇圧回路 1 1 1はスィッチ 1 1 5を介して通電加熱回路 1 1 3へと、 降圧回路 1 1 2はスィッチ 1 1 6を介して溶着回路 1 1 4へと、 それぞれ接続されている が、 これらのスィッチ 1 1 5およびスィッチ 1 1 6は、 その接続が切換回路 1 1 7によって選択的に切り換えられるようになつている。 これにより、 高周波絶縁 トランス 1 0 8の 2次側は、 通電加熱回路 1 1 3または溶着囱路 1 1 4のいずれ か一方に選択的に接続されることとなる。 In this embodiment, the pulse wave current after passing through the inverter circuit 104 is led to the primary side of the high-frequency insulating transformer 108, and the voltage of the secondary side of the high-frequency insulating transformer 108 is boosted. The voltage is increased to a high voltage of, for example, 240 V in the circuit 111, and the voltage is reduced to a low voltage of, for example, 5 V in the step-down circuit 112 on the secondary side of the high-frequency insulating transformer 108. The booster circuit 1 1 1 is connected to the heating circuit 1 1 3 via the switch 1 1 5 and the step-down circuit 1 1 2 is connected to the welding circuit 1 1 4 via the switch 1 16, respectively. These switches 1 15 and 1 16 have their connections selectively switched by a switching circuit 1 17. As a result, the secondary side of the high-frequency insulating transformer 108 is selectively connected to either the energization heating circuit 113 or the welding circuit 114.
このような構成によっても、 第 4図に示した実施の形態と同様に、 通電加熱回 路 1 1 3と溶着回路 1 1 4とを一つの装置に備え、 選択的に使用することが可能 となる。 また、 電圧センサ 1 0 6または電流センサ 1 0 7で検出される高周波絶 縁トランス 1 0 8の 2次側の電圧または電流に基づいて、 インバー夕回路 1 0 4 からのパルス波電流のデューティ比をフィ一ドバック制御することにより、 高周 波絶縁トランス 1 0 8の 2次側に発生する電圧または電流を精度よく目標値に収 束制御することができる。 また、 インバータ回路 1 0 4は、 通電加熱回路 1 1 3 および溶着回路 1 1 4と、 高周波絶縁トランス 1 0 8により隔てられているので、 偏向コイル 2 0 0に短絡不良等があつたとしても、 インバータ回路 1 0 4のトラ ンジスタ等に大電流が流れてしまうことはなく、 トランジスタ等が破壊されてし まう危険性を少なくできる。  With such a configuration, similarly to the embodiment shown in FIG. 4, the energization heating circuit 113 and the welding circuit 114 can be provided in one device and selectively used. Become. Also, based on the voltage or current on the secondary side of the high frequency insulation transformer 108 detected by the voltage sensor 106 or the current sensor 107, the duty ratio of the pulse wave current from the inverter circuit 104 is determined. By performing the feedback control on the voltage, the voltage or current generated on the secondary side of the high-frequency insulating transformer 108 can be precisely controlled to the target value. In addition, since the inverter circuit 104 is separated from the energization heating circuit 113 and the welding circuit 111 by the high-frequency insulating transformer 108, even if the deflection coil 200 has a short-circuit failure, etc. In addition, a large current does not flow through the transistors and the like of the inverter circuit 104, and the risk of damaging the transistors and the like can be reduced.
第 1 3図 (a ) と (b ) には、 本発明のさらに他の実施の形態を示す。  FIGS. 13 (a) and (b) show still another embodiment of the present invention.
この実施の形態では、 金型 2から導かれた線材 8をノズル 1の移動により導電 性部材 1 2に挟み込む代わりに、 移動機構を備えたロボットハンド 3 4力線材 8 を把持して導電性部材 1 2に挟み込むようにしている。 ロボットハンド 3 4は線 材 8を把持する開閉機構を備えた一対のハンド部材を備える。  In this embodiment, instead of sandwiching the wire 8 guided from the mold 2 by the movement of the nozzle 1 between the conductive members 12, a robot hand 3 having a moving mechanism 3 4 It is sandwiched between 1 and 2. The robot hand 34 includes a pair of hand members having an opening / closing mechanism for holding the wire 8.
第 1 4図には、 本発明のさらに他の実施の形態を示す。  FIG. 14 shows still another embodiment of the present invention.
この実施の形態では、 第 1 3図に示した実施の形態のロボットハンド 3 4を導 電性部材 1 2の供給に用いており、 圧着溶着機構 1 3と送り機構 1 9とを離れた 位置に配置し、 ロボットハンド 3 4が導電性部材 1 2を圧着溶着機構 1 3へと搬 送するようになっている。 そして、 第 9図に示すフープ材 5 2で構成された導電 性部材 1 2を、 送り機構 1 9に設けたカツタ 1 7で切断した後、 ロボットハンド 3 4で送り機構 1 9から圧着溶着機構 1 3へと移動する。 In this embodiment, the robot hand 34 of the embodiment shown in FIG. 13 is used for supplying the conductive member 12, and a position where the pressure welding mechanism 13 and the feed mechanism 19 are separated from each other. Robot hand 34 transports conductive member 12 to crimping and welding mechanism 13 It is designed to be sent. Then, the conductive member 12 composed of the hoop material 52 shown in FIG. 9 is cut by the cutter 17 provided in the feed mechanism 19, and then the crimp welding mechanism is fed from the feed mechanism 19 by the robot hand 34. Go to 1 3
第 1 5図 (a ) , ( b ) には、 本発明のさらに他の実施の形態を示す。  FIGS. 15 (a) and (b) show still another embodiment of the present invention.
この実施の形態では、 ロボッ トハンド 3 4を、 線材 8に圧着した導電性部材 1 2をチャック 2 7へ移動する手段として用いており、 第 1 5図 (a ) に示すよう に、 ロボットハンド 3 4がまず圧着溶着機構 1 3に移動して線材 8に圧着した導 電性部材 1 2を把持し、 それから第 1 5図 (b ) に示すようにチャック 2 7へと 移動して、 チャック 2 7が線材 8を把持したところで線材 8を解放する。 このよ うに、 ロボットハンド 3 4を備えることにより、 ノズル 1の移動機構を省略する ことができる。  In this embodiment, the robot hand 34 is used as a means for moving the conductive member 12 crimped to the wire 8 to the chuck 27, as shown in FIG. 15 (a). 4 first moves to the crimping and welding mechanism 13 to grip the conductive member 12 crimped to the wire 8, and then moves to the chuck 27 as shown in FIG. When the wire 7 is gripped by the wire 7, the wire 8 is released. By providing the robot hand 34 as described above, the mechanism for moving the nozzle 1 can be omitted.
第 1 6図 (a ) , ( b ) には、 本発明のさらに他の実施の形態を示す。  FIGS. 16 (a) and (b) show still another embodiment of the present invention.
この実施の形態では、 圧着溶着機構 1 3と送り機構 1 9とを一体に移動する移 動機構を備え、 線材 8への導電性部材 1 2の装着をこれらの移動により行う。 具体的には、 第 1 6図 (a ) においてノズル 1から繰り出された端部は図示さ れない金型に巻き付けられている。 この状態から線材圧着機構 1 3と送り機構 1 9とを移動し、 第 1 6図 (b ) に示すように線材 8を送り機構 1 9の先端の導電 性部材 1 2に挟み込む。 圧着溶着機構 1 3により前記第 1の実施の形態と同様に 導電性部材 1 2のカツタ 1 7による切断と線材 8への圧着及び電極 1 4と 1 5を 介した通電とを行った後、 線材圧着機構 1 3と送り機構 1 9とを元の位置へと移 動する。 ノズル 1は移動しないので、 線材 8に圧着した導電性部材 1 2はそのま まの位置に止まる。  In this embodiment, a moving mechanism for integrally moving the pressure welding mechanism 13 and the feeding mechanism 19 is provided, and the mounting of the conductive member 12 to the wire 8 is performed by these movements. Specifically, in FIG. 16 (a), the end fed out from the nozzle 1 is wound around a mold (not shown). From this state, the wire crimping mechanism 13 and the feed mechanism 19 are moved, and the wire 8 is sandwiched between the conductive members 12 at the tip of the feed mechanism 19 as shown in FIG. 16 (b). After performing cutting of the conductive member 12 with the cutter 17 and crimping to the wire 8 and energization through the electrodes 14 and 15 by the press-welding mechanism 13 in the same manner as in the first embodiment, The wire crimping mechanism 13 and the feed mechanism 19 are moved to their original positions. Since the nozzle 1 does not move, the conductive member 12 crimped to the wire 8 stops at the same position.
このように、 圧着溶着機構 1 3に移動機構を備えることにより、 第 1 6図 (a ) 〜 (b ) に示す本発明のさらに他の実施の形態のように、 線材 8に圧着した導 電性部材 1 2を圧着溶着機構 1 3によりチャック 2 7へと移動することが可能に なる。 この場合には、 第 1 7図 (a ) , ( b ) に示すように、 線材 8に圧着した 導電性部材 1 2を把持した圧着溶着機構 1 3を金型 2 a上のチャック 2 7の近傍 に移動し、 第 1 7図 (c ) に示すように電極 1 4と 1 5を離間方向に動かしなが ら、 送り機構 1 9により導電性部材 1 2を前方へ押し出してチャック 2 7で把持 すれば良い。 As described above, by providing the crimping welding mechanism 13 with the moving mechanism, as shown in still another embodiment of the present invention shown in FIGS. 16 (a) and (b), the electric conductor crimped to the wire 8 is provided. The elastic member 12 can be moved to the chuck 27 by the pressure welding mechanism 13. In this case, as shown in Fig. 17 (a) and (b), The pressure welding mechanism 13 holding the conductive member 12 is moved to the vicinity of the chuck 27 on the mold 2a, and the electrodes 14 and 15 are moved away from each other as shown in FIG. 17 (c). While moving, the conductive member 12 may be pushed forward by the feed mechanism 19 and held by the chuck 27.
第 1 8図には、 本発明のさらに他の実施の形態を示す。  FIG. 18 shows still another embodiment of the present invention.
この実施の形態においては、 圧着溶着機構 1 3は圧着部 1 3 aと通電部 1 3 b を個別に備える。 圧着部 1 3 aは上下方向から導電性部材を挟んで線材 8に圧着 するための加圧口ッド 3 9 aと 3 9 bとを備え、 通電部 1 3 bは電極 4 0 aと 4 0 bを備える。 加圧ロッド 3 9 a, 3 9 bと電極 4 0 a , 4 O bとは金型 2の中 心軸と平行に配置され、 ノズル 1は金型 2の中心軸方向並びにこれに直交する方 向への移動機構 4 1に支持される。 導電性部材 1 2は、 前記第 3図の実施の形態 と同様の送り機構 1 9とリール 2 0により、 圧着部 1 3 aに供給される。 圧着部 1 3 aにおいて、 導電性部材を線材 8に圧着した後、 ノズル 1を金型 2の中心軸 と平行に移動することにより、 線材 8に圧着した導電性部材を通電部 1 3 bへと 移動し、 通電を行う。 線材 8に圧着した導電性部材はノズル 1を金型 2の中心軸 と直交方向へと移動することにより、 チャック 2 7へと搬送される。  In this embodiment, the press-welding mechanism 13 includes a press-contact portion 13a and a current-carrying portion 13b individually. The crimping part 13a is provided with pressure ports 39a and 39b for crimping the wire 8 with a conductive member from above and below in the vertical direction, and the conducting part 13b is provided with electrodes 40a and 4b. 0 b. The pressure rods 39a, 39b and the electrodes 40a, 4Ob are arranged parallel to the center axis of the mold 2, and the nozzle 1 is located in the direction of the center axis of the mold 2 and the direction perpendicular to the center axis. It is supported by the moving mechanism 41 in the direction. The conductive member 12 is supplied to the crimping portion 13a by the same feed mechanism 19 and reel 20 as in the embodiment of FIG. After crimping the conductive member to the wire 8 at the crimping part 13a, the nozzle 1 is moved in parallel with the center axis of the mold 2 to move the conductive member crimped to the wire 8 to the conducting part 13b. And move to energize. The conductive member crimped to the wire 8 is conveyed to the chuck 27 by moving the nozzle 1 in a direction orthogonal to the center axis of the mold 2.
第 1 9図には、 本発明のさらに他の実施の形態を示す。  FIG. 19 shows still another embodiment of the present invention.
ここでは、 圧着溶着機構 1 3とチャック 2 7とをノズル 1と同一線上に配置し、 ノズル 1にこの線上に沿って移動する移動機構 4 2を備えている。 この場合には、 ノズル 1から金型 2に至る線材は圧着溶着機構 1 3の電極 1 4と 1 5の間を通り、 特別に線材 8を移動することなく、 線材 8に導電性部材 1 2を圧着することがで きる。 線材 8に圧着した導電性部材は前記第 9の実施の形態と同様にノズル 1を 金型 2の中心軸と直交する方向へ移動することによりチャック 2 7へと搬送され る。 このように、 ノズル 1に移動機構を備える場合でも、 その移動方向を限定す ることが可能であり、 これにより移動機構を簡略化することができる。  Here, the pressure welding mechanism 13 and the chuck 27 are arranged on the same line as the nozzle 1, and the nozzle 1 is provided with a moving mechanism 42 for moving along the line. In this case, the wire from the nozzle 1 to the mold 2 passes between the electrodes 14 and 15 of the crimping and welding mechanism 13, and does not move the wire 8 in particular. Can be crimped. The conductive member pressed onto the wire 8 is conveyed to the chuck 27 by moving the nozzle 1 in a direction orthogonal to the center axis of the mold 2 as in the ninth embodiment. As described above, even when the nozzle 1 is provided with the moving mechanism, the moving direction can be limited, whereby the moving mechanism can be simplified.
第 2 0図には、 本発明のさらに他の実施の形態を示す。 ここでは、 圧着溶着機構 1 3を前記第 1 8図の実施の形態と同様に圧着部 1 3 aと通電部 1 3 bとに分離し、 これらの間の導電性部材の送りを、 図示するよう に送り機構 1 9により行う。 FIG. 20 shows still another embodiment of the present invention. Here, the crimping welding mechanism 13 is separated into a crimping portion 13a and a current-carrying portion 13b similarly to the embodiment of FIG. 18 and the feeding of the conductive member therebetween is illustrated. This is performed by the feed mechanism 19 as described above.
図 2 1図に示す本発明のさらに他の実施の形態では、 圧着溶着機構 1 3を圧着 部 1 3 aと通電部 1 3 bとに分離し、 圧着溶着機構 1 3に移 ¾機構を備えている。 そして、 圧着部 1 3 aにより線材 8に圧着した導電性部材 1 2に対して圧着溶着 機構 1 3が移動することにより、 導電性部材 1 2の圧着部 1 3 aから通電部 1 3 bへの移動を行う。 なお、 圧着部 1 3 a及び通電部 1 3 bはいずれも導電性部材 1 2を挟持する機能を備えているので、 これらの一方に移動機構を設けて導電部 材 1 2を圧着部 1 3 aから通電部 1 3 bへ移動させることも可能である。 導電部 材 1 2の圧着部 1 3 aから通電部 1 3 bへの移動は、 第 2 2図に示すように、 前 記第 1 3図、 第 1 4図に示した実施の形態のロボットハンド 3 4により行っても 良い。  In still another embodiment of the present invention shown in FIG. 21, the crimping welding mechanism 13 is separated into a crimping part 13 a and a current-carrying part 13 b, and the crimping welding mechanism 13 is provided with a transfer mechanism. ing. Then, the crimping and welding mechanism 13 moves to the conductive member 12 crimped to the wire 8 by the crimping portion 13a, so that the crimping portion 13a of the conductive member 12 moves from the crimping portion 13a to the conducting portion 13b. Make a move. Since both the crimping section 13a and the current-carrying section 13b have a function of holding the conductive member 12, a moving mechanism is provided on one of them to move the conductive member 12 to the crimping section 13. It is also possible to move from a to the conducting part 13 b. As shown in FIG. 22, the movement of the conductive member 12 from the crimping portion 13 a to the energizing portion 13 b is performed as shown in FIG. 22 by using the robot of the embodiment shown in FIGS. It may be done with hands 34.
第 2 3図には、 本発明のさらに他の実施の形態を示す。  FIG. 23 shows still another embodiment of the present invention.
この実施の形態は、 金型 2上の偏向コイル 2 0 0への通電加熱および溶着装置 1 0 0の接続に関するものであり、 圧着溶着機構 1 3とは別に通電用の電極 4 3 を設け、 巻線完了後に線材 8に圧着した導電性導電性部材 1 2を電極 4 3に移動 し、 電極 4 3に係止する。 電極 4 3は搬送された導電性部材 1 2を挟持する機能 を備え、 通電加熱および溶着装置 1 0 0の通電加熱回路 1 1 3力、'、 この電極 4 3 と金型 2上のチャック 2 7とに接続される。 圧着溶着機構 1 3から電極への導電 性部材 1 2の移動は、 例えば、 前記第 1 3図、 第 1 4図に示した実施の形態と同 様のロボットハンド 3 4により行われる。  This embodiment relates to the connection of the heating coil and the welding device 100 to the deflection coil 200 on the mold 2, and an electrode 43 for current supply is provided separately from the pressure welding mechanism 13. After the completion of the winding, the conductive conductive member 12 crimped to the wire 8 is moved to the electrode 43 and locked on the electrode 43. The electrode 43 has a function of clamping the conveyed conductive member 12, and a current-carrying circuit for the current-heating and welding device 100. 7 and connected to. The movement of the conductive member 12 from the pressure welding mechanism 13 to the electrode is performed by, for example, a robot hand 34 similar to the embodiment shown in FIGS. 13 and 14.
なお、 この実施の形態では、 第 2 4図に示すように、 巻線完了後に導電性導電 性部材 1 2を圧着した後、 線材 8を切断しても良い。 この場合は 1個のコイルに つき導電性部材 2個が使用される。  In this embodiment, as shown in FIG. 24, the wire rod 8 may be cut after the conductive member 12 is crimped after the completion of the winding. In this case, two conductive members are used for one coil.
図 2 5図 (a ) , ( b ) には、 本発明のさらに他の実施の形態を示す。 この実施の形態では、 金型 2上のチャック 2 7とは別に電極 4 3と同様に構成 された電極 4 4を設け、 コイル成型工程において前記第 1 5の実施の形態と同様 にロボッ 卜ハンド 3 4が圧着溶着機構 1 3から電極 4 3へ導電性部材 1 2を移動 するとともに、 ロボットハンド 3 4がチャック 2 7に保持された導電性部材 1 2 を電極 4 4へ移動し、 電極 4 3と 4 4がコイルの線材 8の両嬙に圧着した導電性 部材 1 2をそれぞれ把持することにより、 コイルを通電加熱回路 1 1 3に接続す る。 FIGS. 25 (a) and (b) show still another embodiment of the present invention. In this embodiment, an electrode 44 configured in the same manner as the electrode 43 is provided separately from the chuck 27 on the mold 2, and a robot hand is formed in the coil forming step in the same manner as in the first embodiment. 3 4 moves the conductive member 1 2 from the pressure welding mechanism 1 3 to the electrode 4 3, and the robot hand 34 moves the conductive member 1 2 held on the chuck 27 to the electrode 44, and The coils are connected to the current-carrying heating circuit 113 by holding the conductive members 12 crimped on both sides of the wire 8 of the coil 3 and 4, respectively.
この実施の形態においても、 第 2 6図 (a ) , ( b ) に示すように巻線完了後 に導電性部材 1 2を圧着した後、 線材 8を切断するように構成することが可能で ある。 この場合には 1個のコイルにつき導電性部材 2個が使用される。  Also in this embodiment, as shown in FIGS. 26 (a) and (b), it is possible to crimp the conductive member 12 after winding is completed and then cut the wire 8. is there. In this case, two conductive members are used for one coil.
第 2 7図 (a ) , ( b ) には、 本発明のさらに他の実施の形態を示す。  FIGS. 27 (a) and (b) show still another embodiment of the present invention.
この実施の形態では、 圧着溶着機構 1 3に移動機構を備え、 線材 8に圧着した 導電部材 1 2の圧着溶着機構 1 3から電極 4 3への移動を圧着溶着機構 1 3の移 動により行う。  In this embodiment, the crimping welding mechanism 13 is provided with a moving mechanism, and the conductive member 12 crimped to the wire 8 is moved from the crimping welding mechanism 13 to the electrode 43 by moving the crimping welding mechanism 13. .
第 2 8図 (a ) 〜 (c ) には、 本発明のさらに他の実施の形態を示す。  FIGS. 28 (a) to (c) show still another embodiment of the present invention.
この実施の形態では、 電極 4 3に移動機構を備え、 線材 8に圧着した導電部材 1 2の圧着溶着機構 1 3から電極 4 3への移動を電極 4 3の移動により行う。 第 2 9図には、 本発明のさらに他の実施の形態を示す。  In this embodiment, the electrode 43 has a moving mechanism, and the conductive member 12 crimped to the wire 8 is moved from the pressure welding mechanism 13 to the electrode 43 by moving the electrode 43. FIG. 29 shows still another embodiment of the present invention.
ここでは、 固定式の金型 6 2と、 フライヤ 6 0を介して回転するノズル 6 1を 備えた巻線機に本発明を適用する。  Here, the present invention is applied to a winding machine provided with a fixed mold 62 and a nozzle 61 rotating via a flyer 60.
この巻線機では、 フライヤ 6 0は固定式の雄金型 6 2 aの基端に回転自由に支 持され、 図示されないモータの運転に応じて雄金型 6 2 aの周囲を回転する。 フ ライヤ 4 0はまた軸方向の移動機構を備え、 ノズル 6 1がこのフライヤ 6 0の先 端に支持される。 雄金型 6 2 aはべ一ス 6 4に固定され、 一方、 雌金型 6 2 bは 雄金型 6 2 aに相対して軸方向にのみ移動する機構を備える。 圧着溶着機構 1 3 とリール 2 0は雌金型 6 2 bの近傍に設けられる。 この実施の形態においては巻 線はフライヤ 6 0の回転により行われる。 線材 8の圧着溶着機構 1 3への移動や 導電性部材 1 2のチャック 2 7への移動は、 フライヤ 6 0の回転及び軸方向の移 動により行われる。 巻線後のコィルの成型工程は基本的に前記第 1の実施の形態 と同様である。 このように本発明は、 金型を固定してノズルを回転させる巻線機 にも適用可能である。 In this winding machine, the flyer 60 is rotatably supported at the base end of a fixed male mold 62 a and rotates around the male mold 62 a in response to the operation of a motor (not shown). The flyer 40 is also provided with an axial moving mechanism, and the nozzle 61 is supported at the tip of the flyer 60. The male mold 62a is fixed to the base 64, while the female mold 62b has a mechanism that moves only in the axial direction relative to the male mold 62a. The pressure welding mechanism 13 and the reel 20 are provided near the female mold 62b. In this embodiment, the winding The line is created by the rotation of the flyer 60. The movement of the wire 8 to the pressure welding mechanism 13 and the movement of the conductive member 12 to the chuck 27 are performed by the rotation and axial movement of the flyer 60. The step of forming the coil after winding is basically the same as in the first embodiment. Thus, the present invention is also applicable to a winding machine that rotates a nozzle while fixing a mold.
第 3 0図は本発明のさらに他の実施の形態である。  FIG. 30 shows still another embodiment of the present invention.
この実施の形態では前記第 2 9図に示した実施の形態と同様のフライヤ 6 0を 使用した巻線機において、 前記第 1 3図、 第 1 4図の実施の形態のロボットハン ド 3 4と、 前記第 2 5図、 第 2 6図の実施の形態の電極 4 3 , 4 4を使用し、 線 材 8に圧着した導電性部材 1 2の移動をロボットハンド 3 4により行う。 このよ うにロボットハンド 3 4を備えることで、 フライヤ 6 0の軸方向の移動機構が不 要になる。 なお、 この実施の形態の場合、 卷線工程において線材 8の一端は導電 性部材 1 2を介して電極 4 4に保持されるため、 チャック 2 7は不要となる。 第 3 1図は本発明のさらに他の実施の形態である。  In this embodiment, in a winding machine using the same flyer 60 as the embodiment shown in FIG. 29, the robot hand 34 of the embodiment shown in FIGS. 13 and 14 is used. Using the electrodes 43 and 44 of the embodiment shown in FIGS. 25 and 26, the conductive member 12 crimped to the wire 8 is moved by the robot hand 34. By providing the robot hand 34 in this way, the axial moving mechanism of the flyer 60 becomes unnecessary. In this embodiment, since one end of the wire 8 is held by the electrode 44 via the conductive member 12 in the winding step, the chuck 27 is unnecessary. FIG. 31 shows still another embodiment of the present invention.
この実施の形態では前記第 2 9図の実施の形態と同様にフライヤ 6 0に軸方向 の移動機構を備え、 前記第 3 0図の実施の形態と同様に電極 4 3と 4 4を備える。 そして、 線材 8に圧着した導電性部材 1 2の圧着溶着機構 1 3から電極 4 3への 移動及び圧着溶着機構 1 3から電極 4 4への移動を、 フライヤ 6 0の移動により 行う。  In this embodiment, the flyer 60 is provided with an axial moving mechanism as in the embodiment of FIG. 29, and the electrodes 43 and 44 are provided as in the embodiment of FIG. Then, the movement of the conductive member 12 crimped to the wire 8 from the pressure welding mechanism 13 to the electrode 43 and the movement from the pressure welding mechanism 13 to the electrode 44 are performed by moving the flyer 60.
第 3 2図 (a ), ( b ) は本発明のさらに他の実施の形態である。  FIGS. 32 (a) and (b) show still another embodiment of the present invention.
この実施の形態では圧着溶着機構 1 3に移動機構を備え、 線材 8に圧着した導 電性部材線材 8の圧着溶着機構 1 3と電極 4 3 , 4 4との間の移動を圧着溶着機 構 1 3の移動により行う。  In this embodiment, the crimping welding mechanism 13 is provided with a moving mechanism, and the movement between the crimping welding mechanism 13 of the conductive member wire 8 crimped to the wire 8 and the electrodes 43, 44 is performed by a crimping welding mechanism. This is done by moving 13
以上の各実施の形態に示されるように、 本発明は様々な設計変更が可能である。 なお、 上記各実施の形態では線材供給機構としてノズル 1を使用しているが、 線 材供給機構をリ一ルなどを用し、て構成することも可能である。 産業上の利用可能性 As shown in the above embodiments, the present invention allows various design changes. In each of the above embodiments, the nozzle 1 is used as the wire supply mechanism. However, the wire supply mechanism may be configured using a reel or the like. Industrial applicability
以上のように、 本発明にかかる偏向コイルの巻線機は、 偏向コイル両端のリー ド線に導電性部材からなる電極を溶着し、 これらの電極間に電圧を印加して、 偏 向コィルの成型を行う偏向コィルの巻線機にお 、て、 この電極の溶着および偏向 コイルの成型を一つの装置で行うことにより装置を簡単化し、 また、 このとき偏 向コイルへ印加する電圧、 電流、 電力の制御を幅広くかつ細かな精度で行うため に ¾用でめる。  As described above, the deflection coil winding machine according to the present invention welds electrodes made of a conductive member to the lead wires at both ends of the deflection coil and applies a voltage between these electrodes to form the deflection coil. In a winding machine of a deflection coil for molding, the welding of the electrode and the molding of the deflection coil are performed by a single device to simplify the device, and the voltage, current, It can be used to control power widely and precisely.

Claims

請求の範囲 The scope of the claims
1 . 被覆導線からなる線材を供給する線材供給機構と、 1. A wire supply mechanism for supplying a wire made of a coated wire;
この線材供給機構から供給される線材を卷き回して偏向コイルを形成する金型 と、  A mold for forming a deflection coil by winding a wire supplied from the wire supply mechanism;
を備えた偏向コィルの巻線機にお 、て、  In the winding machine of the deflection coil equipped with
線材供給機構から供給された線材外周の両側に配置された導電性部材と、 この導電性部材を線材に圧着する圧着手段と、  A conductive member disposed on both sides of the outer periphery of the wire supplied from the wire supply mechanism, and a crimping unit for crimping the conductive member to the wire;
線材の導電性部材圧着部を挟み込む第 1の電極と、  A first electrode sandwiching the conductive member crimping portion of the wire;
この第 1の電極間に所定の電圧を印加して線材に導電性部材を溶着する溶着手 段と、  Welding means for applying a predetermined voltage between the first electrodes to weld the conductive member to the wire;
前記導電性部材圧着部を移動させる移動手段と、  Moving means for moving the conductive member crimping section,
この移動手段により移動して来た導電性部材圧着部を係止する係止手段と、 この係止手段により係止された導電性部材圧着部とこの導電性部材圧着部を巻 初め側として巻き回された偏向コイルの巻き終わり側に圧着された導電性部材圧 着部とのそれぞれに接続された第 2の電極と、  Locking means for locking the conductive member crimping portion moved by the moving means, a conductive member crimping portion locked by the locking means, and winding with the conductive member crimping portion as a winding start side. A second electrode connected to each of the conductive member press-fitted portions crimped on the winding end side of the turned deflection coil;
この第 2の電極間に所定の電圧を印加して偏向コイルの成型固着を行う通電加 熱手段と、  Energizing heating means for applying a predetermined voltage between the second electrodes to mold and fix the deflection coil;
外部からの交流電流を直流電流に整流する整流手段と、  Rectifying means for rectifying an external alternating current into a direct current,
この直流電流を所定のデューティ比のパルス波電流へと変換するィンバ一タ回 路と、  An inverter circuit for converting the DC current into a pulse wave current having a predetermined duty ratio;
このパルス波の電圧または電流値を検出して前記デューティ比をフィードバッ ク制御するフィードバック制御手段と、  Feedback control means for detecting the voltage or current value of the pulse wave and performing feedback control of the duty ratio;
このパルス波を 1次側に受けて 2次側電圧を所定の比率で昇圧および降圧する 変圧手段とを備え、  Transformer means for receiving the pulse wave on the primary side and increasing and decreasing the secondary voltage at a predetermined ratio,
前記変圧手段の昇圧側に前記通電加熱手段を接続し、 前記変圧手段の降圧側に前記溶着手段を接続し、 The energization heating means is connected to the boost side of the transformation means, Connecting the welding means to the step-down side of the transforming means,
前記ィンノ <一タ回路の前記通電加熱手段または前記溶着手段への前記変圧手段 を介しての接続を選択的に切り換える切換手段と、  Switching means for selectively switching the connection of the INNO <1 circuit to the energizing heating means or the welding means via the transformer means;
を備えたことを特徴とする偏向コイルの巻線機。  A winding machine for a deflection coil, comprising:
2 . 前記昇圧側の変圧手段として第 1の変圧手段と、 前記降 ffi側の変圧手段とし て第 2の変圧手段とを備え、 前記切換手段は、 前記インバ一タ回路の前記第 1ま たは第 2の変圧手段への接続を切り換えることを特徴とする請求の範囲第 1項に 記載の偏向コイルの巻線機。  2. There is provided a first transformer as the step-up side transformer and a second transformer as the step-down transformer, wherein the switching means comprises the first transformer of the inverter circuit. 2. The winding machine for a deflection coil according to claim 1, wherein the connection to the second transformer is switched.
3 . 前記切換手段は、 前記変圧手段の昇圧側と前記通電加熱手段との接続と、 前 記変圧手段の降圧側と前記溶着手段との接続とを、 選択的に切り換えることを特 徴とする請求の範囲第 1項に記載の卷線機。  3. The switching means is characterized in that it selectively switches between a connection between the pressure increasing side of the transformer and the energizing heating means and a connection between the pressure reducing side of the transformer and the welding means. The winding machine according to claim 1.
4 . 前記インバ一タ回路を、 トランジスタ等のスイッチング素子を高速スィッチ ングするチヨッパ式のインバ一タ回路としたことを特徴とする請求の範囲第 1項 に記載の偏向コィルの卷線機。  4. The deflecting coil winding machine according to claim 1, wherein the inverter circuit is a chopper-type inverter circuit that switches a switching element such as a transistor at a high speed.
5 . 前記変圧手段を、 高周波絶縁トランスとしたことを特徴とする請求の範囲第 1項に記載の偏向コィルの巻線機。  5. The deflecting coil winding machine according to claim 1, wherein the transformer is a high-frequency insulating transformer.
6 . 前記導電性部材を導電性の帯状連続部材で構成し、 この帯状連続部材を前記 圧着手段へ供給する手段と、 帯状連続部材を所定の位置で切断する手段とを備え たことを特徴とする請求の範囲第 1項に記載の偏向コィルの卷線機。  6. The conductive member is constituted by a conductive band-shaped continuous member, a means for supplying the band-shaped continuous member to the crimping means, and a means for cutting the band-shaped continuous member at a predetermined position. The deflection coil winding machine according to claim 1.
7 . 前記導電性部材を導電性の帯状連続部材の一部を所定間隔で切り起こして折 り曲げたフープ材で形成し、 このフープ材を前記圧着手段へ供給する手段と、 フ 一プ材を所定の位置で切断する手段とを備えたことを特徴とする請求の範囲第 1 項に記載の偏向コィルの巻線機。  7. The conductive member is formed of a hoop material obtained by cutting and bending a part of a conductive strip-shaped continuous member at a predetermined interval and bending the hoop material, and a means for supplying the hoop material to the crimping means; 2. A winding machine for a deflecting coil according to claim 1, further comprising: means for cutting the coil at a predetermined position.
8 . 前記フープ材として、 線材に圧着される圧着部と、 前記フープ材の一部を切 り起こすことで所定間隔に形成され圧着時に線材カ圧着部の外側へはみ出すのを 阻止する爪とを備えたフープ材を用いることを特徴とする請求の範囲第 7項記載 の偏向コイルの巻線機。 8. As the hoop material, a crimping portion to be crimped to a wire and a claw formed at a predetermined interval by cutting and raising a part of the hoop material to prevent the wire from creeping out of the crimping portion during crimping. Claim 7 characterized by using a hoop material provided Deflection coil winding machine.
9 . 前記導電性部材の移動手段が、 移動機構を備えた線材供給機構であることを 特徴とする請求の範囲第 1項に記載の偏向コィルの卷線機。  9. The deflecting coil winding machine according to claim 1, wherein the means for moving the conductive member is a wire supply mechanism having a moving mechanism.
1 0 . 前記導電性部材の移動手段が、 移動機構と導電性部材の把持機構を備えた 前記第 1の電極であることを特徴とする請求の範囲第 1項に ¾載の偏向コイルの 巻線機。  10. The deflecting coil winding according to claim 1, wherein the means for moving the conductive member is the first electrode provided with a moving mechanism and a gripping mechanism for the conductive member. Wire machine.
1 1 . 前記新たに線材に圧着した導電性部材と金型との間で線材を切断する手段 を備えたことを特徴とする請求の範囲第 1項に記載の偏向コイルの巻線機。 11. The deflection coil winding machine according to claim 1, further comprising: means for cutting the wire between the conductive member and the metal mold that has been newly pressed to the wire.
1 2 . 前記圧着手段と前記第 1の電極とを、 軸方向の相対移動機構を備えた相対 する一対の部材で構成したことを特徴とする請求の範囲第 1項に記載の偏向コィ ルの卷線機。 12. The deflection coil according to claim 1, wherein the crimping means and the first electrode are constituted by a pair of opposing members provided with an axial relative movement mechanism. Winding machine.
PCT/JP1997/004630 1997-12-16 1997-12-16 Deflecting coil winder WO1999031703A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/004630 WO1999031703A1 (en) 1997-12-16 1997-12-16 Deflecting coil winder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/004630 WO1999031703A1 (en) 1997-12-16 1997-12-16 Deflecting coil winder

Publications (1)

Publication Number Publication Date
WO1999031703A1 true WO1999031703A1 (en) 1999-06-24

Family

ID=14181667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004630 WO1999031703A1 (en) 1997-12-16 1997-12-16 Deflecting coil winder

Country Status (1)

Country Link
WO (1) WO1999031703A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821323B2 (en) * 1984-05-17 1996-03-04 松下電子工業株式会社 Deflection coil manufacturing equipment
JPH08171856A (en) * 1994-10-17 1996-07-02 Nittoku Eng Co Ltd Winding machine for deflection coil and conductive member for pressure bonding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821323B2 (en) * 1984-05-17 1996-03-04 松下電子工業株式会社 Deflection coil manufacturing equipment
JPH08171856A (en) * 1994-10-17 1996-07-02 Nittoku Eng Co Ltd Winding machine for deflection coil and conductive member for pressure bonding

Similar Documents

Publication Publication Date Title
US20060208033A1 (en) Apparatus and method for connecting coated wires
US6066832A (en) Welding arc voltage sense lead
CN106463257A (en) Multiple-wire winding method, multiple-wire winding device, and wound coil component
US9579743B2 (en) Coaxial welding cable assembly
JP3606751B2 (en) Coil manufacturing apparatus and coil terminal member
WO1999031703A1 (en) Deflecting coil winder
US6486456B1 (en) Fusing processing method
EP0819494A1 (en) Welding power supply
JP6447847B2 (en) Resistance welding equipment
EP0585786A2 (en) Flyback transformer device and process for preparing same
JPS62192279A (en) Method and device for pressure welding laminated metallic foil
JPS6064772A (en) Arc wedling, particularly, submerged arc welder
JP3550880B2 (en) Motor and stator coil terminal wire connection method for motor
US3553417A (en) Wire bonding and servering apparatus
KR100227714B1 (en) Electrical heating and welding apparatus for deflection coil
JPS6043739B2 (en) electrical wiring machine
US4687900A (en) Fusing methods and apparatus therefor
KR101194221B1 (en) Induction Heating Coil Fusing Process System And Fusing Device
JPH0829418B2 (en) Covered wire joining device
JPH04274885A (en) Spot welding device
JP3665296B2 (en) Terminal processing method for coil winding
JP2693401B2 (en) Winding machine for deflection coil and conductive member for crimping
JPH0821323B2 (en) Deflection coil manufacturing equipment
JP2001113376A (en) Joining apparatus
JP2594001Y2 (en) Stripping equipment for coil terminals

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97182449.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase