WO1999028351A1 - Persulfated chondroitin sulfates, process for producing the same, and anticoagulants containing the same as the active ingredient - Google Patents

Persulfated chondroitin sulfates, process for producing the same, and anticoagulants containing the same as the active ingredient Download PDF

Info

Publication number
WO1999028351A1
WO1999028351A1 PCT/JP1998/000023 JP9800023W WO9928351A1 WO 1999028351 A1 WO1999028351 A1 WO 1999028351A1 JP 9800023 W JP9800023 W JP 9800023W WO 9928351 A1 WO9928351 A1 WO 9928351A1
Authority
WO
WIPO (PCT)
Prior art keywords
chondroitin sulfate
persulfated
sulfate
sulfur trioxide
same
Prior art date
Application number
PCT/JP1998/000023
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Imanari
Toshihiko Toida
Robert J. Linhardt
Original Assignee
Shin Nippon Yakugyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Yakugyo Co., Ltd. filed Critical Shin Nippon Yakugyo Co., Ltd.
Publication of WO1999028351A1 publication Critical patent/WO1999028351A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0069Chondroitin-4-sulfate, i.e. chondroitin sulfate A; Dermatan sulfate, i.e. chondroitin sulfate B or beta-heparin; Chondroitin-6-sulfate, i.e. chondroitin sulfate C; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors

Definitions

  • the present invention relates to persulfated chondroitin sulfate, a method for producing the same, and an anticoagulant containing the same as an active ingredient.
  • Heparin is a drug widely used in clinical settings as a preoperative and postoperative thrombosis preventive agent.
  • serious side effects such as bleeding tendency and thrombocytopenia have been observed in long-term use of heparin, and it is urgently necessary to develop alternative medicines.
  • the anticoagulant activity of various natural polysaccharides and their chemical derivatives has been investigated, and their potential as pharmaceuticals has been explored.
  • chondroitin sulfate is a kind of complex carbohydrate called glycosaminoglycan, and N-acetylgalactosamine and glucuronic acid are linear chains that form a repeating unit of 3GalNAc; 81 ⁇ 4GlcA ⁇ 1 ⁇ It is an acidic polysaccharide. On average, there is one sulfate per disaccharide, and usually the 4- or 6-position hydroxyl group of ⁇ -acetylgalactosamine is sulfated.
  • This polysaccharide is usually found as a proteoglycan as a proteoglycan linked to a serine or threonine residue in a protein via a bridging structure (GlcA-Gato Gato Xy SerVThr). It is assumed to be one of the molecules existing on the extracellular matrix or on the cell surface and responsible for intercellular communication. It is thought that chondroitin sulfate plays a part in the hemostasis mechanism in vivo, but its anticoagulant activity is weaker than that of heparin or the like, so there are few opportunities to use it as a drug.
  • an object of the present invention is to provide a novel compound having high anticoagulant activity, which is different from heparin, and a method for producing the same.
  • the present inventor has developed a new method for producing chondroitin sulfate in which the number of sulfate groups per repeating unit is greater than that of conventional persulfated chondroitin sulfate.
  • the present invention has been completed by providing chondroitin sulfate for the first time, and finding that the persulfated chondroitin sulfate has a high anticoagulant activity, which is comparable to that of heparin / phosphorus.
  • the present invention provides persulfated chondroitin sulfate or pharmacologically acceptable salts thereof having an average of 3.5 or more O-sulfate groups in the disaccharide repeating unit. Further, the present invention relates to a method for forming a salt between chondroitin sulfate and sulfur trioxide in a non-protic solvent at a temperature of 30 ° C. to 50 ° C. Provided is a method for producing persulfated chondroitin sulfate, wherein the reaction is carried out at a molar ratio of 1:10 to 1:20.
  • the present invention provides an anticoagulant comprising the above-mentioned persulfated chondroitin sulfate of the present invention as an active ingredient. Further, the present invention provides a method for preventing blood coagulation, which comprises adding the above-mentioned persulfated chondroitin sulfate of the present invention to blood. Furthermore, the present invention provides the use of the above-mentioned persulfated chondroitin sulfate of the present invention as an anticoagulant.
  • a novel persulfated chondroitin sulfate having a higher sulfation rate of free hydroxyl groups than before.
  • the persulfated chondroitin sulfate of the present invention has excellent anticoagulant activity, particularly excellent Ila factor inhibitory activity, and is useful as a substitute for heparin having strong side effects.
  • Figure 1 shows the raw material chondroitin sulfate (a), persulfate reacted with sulfur trioxide at 0 ° C.
  • FIG. 4 shows the results of gradient PAGE of persulfated chondroitin sulfate (b) and persulfated chondroitin sulfate (c) of the present invention reacted with sulfur trioxide at 40 ° C.
  • FIG. 2 shows IR spectra of the raw material chondroitin sulfate (A) and the completely O-sulfated chondroitin sulfate (B) of the present invention prepared in Example 1.
  • Figure 3 shows raw chondroitin sulfate (A), persulfated chondroitin sulfate (B) reacted with sulfur trioxide at 0 ° C, and persulfated chondroitin of the present invention reacted with sulfur trioxide at 40 ° C.
  • 1 shows the results of one-dimensional 1 HNMR of sulfuric acid (C).
  • FIG. 4 shows the results of two-dimensional DOF-GOSY (A) and NOESY (B) spectra of fully O-sulfated chondroitin sulfate.
  • FIG. 5 shows the equilibrium state of the three-dimensional structures of the conventional persulfated chondroitin sulfate (A) and the completely O-persulfated oxidized chondroitin sulfate (B) of the present invention.
  • FIG. 6 shows the relationship between the number of sulfate groups in the disaccharide unit of chondroitin sulfate and anticoagulant activity.
  • chondroitin sulfate is a linear acidic polysaccharide in which N-acetylgalactosamine and glucuronic acid constitute a repeating unit of —3Ga I NAc ⁇ l- ⁇ 4G I cA 1—.
  • an average of one of these four hydroxyl groups is a sulfate ester.
  • the chondroitin sulfate of the present invention has an average of 3.5 or more, preferably ⁇ 3.8 or more, and most preferably 4 of the four hydroxyl groups in the disaccharide repeating unit. Has become an ester.
  • the average number of sulfate groups in the disaccharide repeating unit is 3.5 or more, preferably 3.8 or more, and most preferably 4, the number of sulfate groups is significantly higher than that of conventional persulfated chondroitin sulfate. Increases anticoagulant activity.
  • the number of repetitions of the disaccharide repeating unit is not particularly limited, but is preferably about 10 to 50, and more preferably 20 to 30.
  • the persulfated chondroitin sulfate of the present invention may be in the form of a pharmacologically acceptable salt.
  • a pharmacologically acceptable salt examples include, but are not limited to, alkali metal salts such as sodium salts and potassium salts, calcium salts, aluminum salts and the like.
  • the persulfated chondroitin sulfate of the present invention is obtained by reacting a salt of chondroitin sulfate and sulfur trioxide in an aprotic solvent at a temperature of 30 ° C. to 50 ° C. with free hydroxyl groups in chondroitin sulfate. It can be produced by reacting with sulfur oxide at a molar ratio of 1:10 to 1:20.
  • the chondroitin sulfate used as a starting material is preferably an organic amine salt, particularly preferably a trialkyl (particularly lower alkyl having 1 to 6 carbon atoms) amine salt, and particularly preferably a triptylamine salt.
  • Organic amine salts of chondroitin sulfate include, for example, chondroitin sulfate sodium salt (a commercially available product) prepared from cartilage of sea urchin is applied to a cation exchange resin, and then the organic amine is added and concentrated by freeze-drying. Thus, it can be easily prepared.
  • the cation exchange resin that can be used here is not limited at all.
  • the amount of the organic amine added to chondroitin sulfate after cation exchange is preferably about 1 to 1.2 mol per 1 mol of acidic group (carboxyl group or sulfate group) contained in chondroitin sulfate.
  • the obtained salt of chondroitin sulfate and sulfur trioxide are mixed in an aprotic solvent. Then, at a temperature of 30 ° C. to 50 ° C., the reaction is carried out at a molar ratio of free hydroxyl groups in chondroitin sulfate to sulfur trioxide of 1:10 to 1:20.
  • preferred aprotic solvents include, but are not limited to, N, N-dimethylformamide, dimethylsulfoxide and the like.
  • the reaction temperature is from 30 to 50 ° C, preferably from 37 to 43 ° C, most preferably about 40 ° C.
  • the molar ratio of free hydroxyl groups to sulfur trioxide in chondroitin sulfate is from 1:10 to 1:20, preferably from 1:13 to 1:17, and most preferably about 1: One is five.
  • the reaction time is about 30 minutes or more, preferably 30 minutes to 2 hours, and more preferably 45 to 90 minutes.
  • Sulfur trioxide may be reacted alone with chondroitin sulfate.
  • a cyclic amine such as pyridine is reacted with sulfur trioxide in advance to form a complex, which is then reacted with chondroitin sulfate. May be.
  • the reaction conditions between the cyclic amine and sulfur trioxide are, for example, as follows. In other words, the fuming sulfuric acid is distilled and the outflow so 3 gas is cooled. To so 3 that exhibited asbestos-like, under cooling, was added dropwise a cyclic amine, after becoming liquid, returning to room temperature, continue dropping until the such no longer observed smoke.
  • the above method produces the persulfated chondroitin sulfate of the present invention.
  • the reaction can be stopped by adding distilled water.
  • the obtained crude product can be precipitated with cold ethanol saturated with sodium acetate and recovered by centrifugation.
  • the product can be purified by dissolving the recovered product in distilled water, dialyzing against water, and freeze-drying.
  • the persulfated chondroitin sulfate of the present invention can be used as an anticoagulant similarly to heparin.
  • the dose is appropriately selected according to the symptoms and the mode of use.
  • 100 to 300 units of heparin international unit may be used. It can be administered intermittently at 500 to 1500 units per hour after administration.
  • physiological saline or distilled water for injection can be added and dissolved at the time of use so as to be 10000 units per 1 ml.
  • the persulfated chondroitin sulfate of the present invention is derived from chondroitin sulfate, which is a constituent of living organisms, and has no toxicity because the sulfate group is also non-toxic.
  • chondroitin sulfate triptylamine 100 100 mg of sodium chondroitin sulfate derived from tracheal cartilage was applied to cation exchange resin (Dowex 50W X8). At this time, a column with a column size of 1 cm (inner diameter) x 15 cm (length) was eluted with water at a flow rate of 1. OmIZ. Then, Tribylamine 100 I was added, and the mixture was concentrated by freeze-drying to obtain chondroitin sulfate triptylamine. 1 Omg of the obtained chondroitin sulfate triptylamine salt was dissolved in 0.8 ml of N, N-dimethylformamide (DMF).
  • DMF N, N-dimethylformamide
  • the fuming sulfuric acid was distilled, the outgoing so 3 gas was cooled, and cyclic amine was dropped into the asbestos-like so 3 under cooling, and after cooling to a liquid state, the temperature was returned to room temperature, and the fuming no longer occurred.
  • the pyridine 'sulfur trioxide complex obtained by continuing dropping until no longer observed was added to the chondroitin sulfate triptylamine salt DMF solution in an amount such that sulfur trioxide became 15 times the moles of free hydroxyl groups of chondroitin sulfate. . After reacting at 40 ° C for 1 hour, 1.6 ml of distilled water was added to stop the reaction.
  • the crude product was precipitated with cold ethanol (3 volumes) saturated with sodium acetate and collected by centrifugation.
  • the obtained complete O-sulfated chondroitin sulfate was dissolved in double-distilled water, and the salts were removed by dialysis, and then recovered by freeze-drying.
  • lane a shows the results for chondroitin sulfate used as a raw material (no sulfation treatment)
  • lane b shows the results for partially sulfated chondroitin sulfate reacted with sulfur trioxide at 0 ° C.
  • Lane c shows the results for the persulfated chondroitin sulfate of the present invention reacted with sulfur trioxide at 40 ° C.
  • Lane d shows the oligosaccharide molecular weight marker (4 g). Sulfation of chondroitin sulfate hardly changed the molecular weight, but a slight increase in molecular weight was observed.
  • Chondroitin sulfate for quantification of sulfate groups was thoroughly dialyzed against distilled water in a dialysis tube having a molecular weight cutoff of 12,000, freeze-dried, and dried in a desiccator in the presence of diphosphorus pentoxide for 2 days. After oxidization, the sulfate group was measured by HPLC using a CM-8 conductivity detector manufactured by Tosouichi Co., Ltd.
  • the number of sulfate groups in the disaccharide repeating unit was such that the raw material chondroitin sulfate was sulfated at 1,0 ° C, and that the persulfated chondroitin sulfate was 2.5-3.3, and the sulfated at 40 ° C.
  • the persulfated chondroitin sulfate of the present invention was 4, and it was confirmed that all of the free hydroxyl groups in chondroitin sulfate were sulfated by the method of the present invention described above. Was.
  • the infrared absorption spectrum of the solid sample was measured using FT / 1R-230 manufactured by JASCO Corporation. 100 g of glycosaminoglycan was mixed with 500 g of dried potassium bromide to prepare a tablet having a diameter of 3 mm, which was set in a spectrometer.
  • FIG. 2 shows the obtained IR spectrum.
  • A shows the IR spectrum of the raw material chondroitin sulfate
  • B shows the IR spectrum of the complete O-sulfated chondroitin sulfate of the present invention prepared in Example 1.
  • Figure 2 shows that the hydroxyl groups in all chondroitin sulfates have been converted to axial sulfates.
  • the signals assigned to the C-0-H bending vibrations at 2900, 1440, 1380, and 1100 Kaiser are reduced in the spectrum of completely 0-sulfated chondroitin sulfate.
  • a portion of the dried sample was weighed and dissolved in distilled water to a concentration of 5 mg / ml, and the optical rotation was measured. The measurement was performed with sodium D line using DIP-140 manufactured by JASCO Corporation.
  • the optical rotation was 130 degrees for the raw material chondroitin sulfate, while it was 18 degrees for the completely O-sulfated chondroitin sulfate. This indicates that the three-dimensional structure of completely O-sulfated chondroitin sulfate has changed compared to that of the raw material chondroitin sulfate.
  • One-dimensional and two-dimensional NMR measurements were performed using a JSX GSX50 OA spectrum meter equipped with a tunable 5 mm field gradient probe and standard JE0L software. At 303K, other measurements were taken at 333K. The HOD signal was eliminated by pre-saturation for 3 s in the one-dimensional spectrum and 1.5 s in the two-dimensional spectrum. In the two-dimensional spectrum, with an observation width of 2,000 Hz, 512 integrations were performed to obtain 1024 sampling data points, and the time domain data was shifted after zero filling (data matrix size, 1K x 1K). Using sine-bell window function, we amplified for two-dimensional double quantum fi Itered (DQF) -COSY, N0ESY and T0CSY. In the measurement of two-dimensional TOC SY and N0ESY, the mixing time was set to 150, 250, and 500 ms, and as a result, the MLEV-17 mixing sequence of 100 ms was used.
  • DQF double quantum fi
  • Figure 3 shows the results of the HN MR spectrum.
  • A is the result for the raw material chondroitin sulfate
  • B is the persulfated chondroitin sulfate prepared by reacting with sulfur trioxide at 0 ° C (average number of sulfate groups in the disaccharide repeating unit: 3.2)
  • C shows the results for the fully O-sulfated chondroitin sulfate of the present invention.
  • the raw material chondroitin sulfate spectrum shows a slight heterogeneity in the degree of sulfation. In other words, it is clear that this is a mixture of partial structures in which either the 4-position or the 6-position of N-acetylgalactosamine is sulfated.
  • the persulfated chondroitin sulfate prepared at 0 ° C. was as expected (see aarouf i, RM et a, Thromb. Res., 59, 174-758 (1995); Bartolucci, C. et a I., Carbohydr. Res., 276, 401-408 (1995))
  • the structural heterogeneity was increased compared to the raw material chondroitin sulfate. This increase in structural heterogeneity suggests not only sulfation at positions 4 and 6 of N-acetylgalactosamine but also incomplete sulfonation of glucuronic acid residues at positions 2 and 3.
  • FIG. 4 shows the two-dimensional 1 H NMR spectrum, DQF-COSY and N0ESY spectrum of completely 0-sulfated chondroitin sulfate. Each cross peak in the upper panel in FIG. 4 indicates the following.
  • Normal human plasma was collected from healthy volunteers. Anti-factor Xa activity was measured using Coatest and hepar in / hepar in kit (Chromogen ix, olndal, Sweden; Chondroitin sulfate, persulfated chondroitin sulfate derivative and low molecular weight heparin standard were diluted) Dissolved in normal human plasma 2.9 mM Chromogen ic Xa substrate S-2732 (50 mM Tr is, containing Sue-1 IeG Iu ( ⁇ iPeridyI) -GI y-Ar -pNA) ⁇ .5 ⁇ EDTA buffer (pH 8.4) 200 ⁇ l of Bacillus factor Xa (1.25 / ml) was added, incubated at 37 ° C for 8 minutes, and then 200 ⁇ l of 20% acetic acid was added. Factor Xa activity was measured by absorbance at 405 nm.
  • the anti-Ila factor activity was determined by mixing 50 ⁇ l of an aqueous solution of chondroitin sulfate or a persulfated derivative, 850 ⁇ l of Tris buffer ( ⁇ 8.3), 30 ⁇ l of normal human plasma, and human thrombin (1.2 NIH units / ml). 1.9mM after incubating at 37 ° C for 30 seconds
  • Chromogenic TH ⁇ ethyImaIonyI-Pro-Arg-p-nitroaniide hydrochloride was caloried, and Ila factor activity was measured by absorbance at 405 nm.
  • AGL 300 plus purchased from instrument at ion (Lexington, MA) was used for measurement, and USP Heparin reference Standard of U.S. Ph armacopeial Convention (ROCK I Ile, MD) was used as a control.
  • Fig. 6 shows the results.
  • squares indicate anti-Ila factor activity
  • circles indicate anti-factor Xa activity.
  • complete 0-sulfation dramatically increased the Ila factor inhibitory activity.
  • the anti-factor Xa activity increased slightly with sulfation, but was not as high as that of the Ila factor. This result suggests that the increase in the inhibitory activity against factor Xa is simply due to the nonspecific increase in the negative charge due to the introduction of the sulfate group.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Novel compounds different from heparin and having a high anticoagulant activity. These compounds are persulfated chondroitin sulfates having at least 3.5, on average, O-sulfate groups per disaccharide repeating unit or pharmacologically acceptable salts thereof. These compounds can be produced by reacting a chondroitin sulfate salt with sulfur trioxide in an aprotic solvent at 30 to 50 °C by regulating the molar ratio of the free hydroxyl groups in the chondroitin sulfate salt to the sulfur trioxide of 1:10 to 1:20.

Description

明細書  Specification
過硫酸化コンドロイチン硫酸、 その製造方法及びそれを有効成分として含有する 抗血液凝固剤 Persulfated chondroitin sulfate, method for producing the same, and anticoagulant containing the same as an active ingredient
技術分野  Technical field
本発明は、 過硫酸化コンドロイチン硫酸、 その製造方法及びそれを有効成分と して含有する抗血液凝固剤に関する。  The present invention relates to persulfated chondroitin sulfate, a method for producing the same, and an anticoagulant containing the same as an active ingredient.
背景技術  Background art
へパリンは、 臨床の現場で術前、 術後の血栓症予防薬として広く用いられてい る医薬品である。 しかしながら、 出血傾向や血小板減少など重篤な副作用がへパ リンの長期使用にみられ、 現在これに代わる医薬品の開発が急務である。 最近種 々の天然多糖およびその化学的誘導体の抗血液凝固活性が調べられ、 医薬品とし ての可能性が探索されている。  Heparin is a drug widely used in clinical settings as a preoperative and postoperative thrombosis preventive agent. However, serious side effects such as bleeding tendency and thrombocytopenia have been observed in long-term use of heparin, and it is urgently necessary to develop alternative medicines. Recently, the anticoagulant activity of various natural polysaccharides and their chemical derivatives has been investigated, and their potential as pharmaceuticals has been explored.
一方、 コンドロイチン硫酸はグリコサミノグリカンといわれる複合糖質の一種 で、 N-ァセチルガラクトサミンとグルクロン酸が— 3Ga l NAc;8 1→4G l cA β 1→の 繰り返し単位を構成する直鎖の酸性多糖である。 平均的に二糖当たり 1個の硫酸 エステルを有し、 普通 Ν-ァセチルガラクトサミンの 4位、 あるいは 6位の水酸 基が硫酸化されている。 この多糖は通常プロテオグリカンとしてタンパク質中の セリンあるいはトレオニン残基に橋渡し構造 (G l cA- Ga卜 Ga卜 Xy卜 SerVThr)を介 して結合したプロテオグリカンとして見出される。 細胞外マトリックス、 あるい は細胞表面に存在し、 細胞間情報伝達を担う分子の一つと想定されている。 生体 内でコンドロイチン硫酸は止血機構の一部を担っているものと考えられているが、 へパリンなどに比べて抗凝固活性が弱いために医薬品として用いられる機会は少 ない。  On the other hand, chondroitin sulfate is a kind of complex carbohydrate called glycosaminoglycan, and N-acetylgalactosamine and glucuronic acid are linear chains that form a repeating unit of 3GalNAc; 81 → 4GlcAβ1 → It is an acidic polysaccharide. On average, there is one sulfate per disaccharide, and usually the 4- or 6-position hydroxyl group of Ν-acetylgalactosamine is sulfated. This polysaccharide is usually found as a proteoglycan as a proteoglycan linked to a serine or threonine residue in a protein via a bridging structure (GlcA-Gato Gato Xy SerVThr). It is assumed to be one of the molecules existing on the extracellular matrix or on the cell surface and responsible for intercellular communication. It is thought that chondroitin sulfate plays a part in the hemostasis mechanism in vivo, but its anticoagulant activity is weaker than that of heparin or the like, so there are few opportunities to use it as a drug.
二糖単位当たり 2ないし 3個の硫酸エステルをもつコンドロイチン硫酸が、 抗 血液凝固活性を示すことは既に報告されている (Bour i n, . et a l ,, J. B i o l . Chem. , 265, 15424-5431 (1990) ) 。 化学的に硫酸化されたこれらの過硫酸化コ ンドロイチン硫酸は、 へパリンに含まれるィズロン酸とは構造的にも、 コンホメ ーシヨンも異なるグルクロン酸残基を有していることも事実である (Q i u, G. , e t a l . , B i o l . Pharm. Bu l l , , 102, 721 -726 (1997); Casu, B. Sem i n. Thromb. Haemost. , 17S, 9 - 14 (1991 ) 0 It has been previously reported that chondroitin sulphate with two to three sulphates per disaccharide unit exhibits anticoagulant activity (Bour in,. Et al, J. Biol. Chem., 265, 15424). -5431 (1990)). It is also true that these chemically sulfated persulfated chondroitin sulfates have structurally different glucuronic acid residues from the iduronic acid contained in heparin and conformations ( Q iu, G., e Pharm. Bull,, 102, 721-726 (1997); Casu, B. Sem inn. Thromb. Haemost., 17S, 9-14 (1991) 0
しかしながら、 従来の過硫酸化コンドロイチン硫酸でも、 抗血液凝固活性がへ パリンに比べて不十分である。  However, even conventional persulfated chondroitin sulfate has insufficient anticoagulant activity compared to heparin.
発明の開示  Disclosure of the invention
従って、 本発明の目的は、 高い抗血液凝固活性を有する、 へパリンとは異なる 新規な化合物及びその製造方法を提供することである。  Therefore, an object of the present invention is to provide a novel compound having high anticoagulant activity, which is different from heparin, and a method for producing the same.
本願発明者は、 鋭意研究の結果、 従来の過硫酸化コンドロイチン硫酸よりも繰 返し単位当リの硫酸基の数が多いコンドロイチン硫酸の製造方法を新に開発する ことにより、 このような過硫酸化コンドロイチン硫酸を初めて提供し、 かつ、 該 過硫酸化コンドロイチン硫酸がへ/ リンと比較しても遜色のない、 高い抗血液凝 固活性を有していることを見出し、 本発明を完成した。  As a result of intensive studies, the present inventor has developed a new method for producing chondroitin sulfate in which the number of sulfate groups per repeating unit is greater than that of conventional persulfated chondroitin sulfate. The present invention has been completed by providing chondroitin sulfate for the first time, and finding that the persulfated chondroitin sulfate has a high anticoagulant activity, which is comparable to that of heparin / phosphorus.
すなわち、 本発明は、 二糖繰返し単位中に O—硫酸基を平均 3 . 5個以上有す る過硫酸化コンドロイチン硫酸又は薬理学的に許容できるその塩を提供する。 ま た、 本発明は、 コンドロイチン硫酸の塩と三酸化硫黄を非プロトン性溶媒中で、 3 0 °C〜5 0 °Cの温度下で、 コンドロイチン硫酸塩中の遊離水酸基と三酸化硫黄 とのモル比を 1 : 1 0ないし 1 : 2 0として反応させる、 過硫酸化コンドロイチ ン硫酸の製造方法を提供する。 さらに、 本発明は、 上記本発明の過硫酸化コンド ロイチン硫酸を有効成分として含有する抗血液凝固剤を提供する。 さらに、 本発 明は、 上記本発明の過硫酸化コンドロイチン硫酸を血液に添加することを含む、 血液の凝固を防止する方法を提供する。 さらに、 本発明は、 上記本発明の過硫酸 化コンドロイチン硫酸の抗血液凝固剤としての用途を提供する。  That is, the present invention provides persulfated chondroitin sulfate or pharmacologically acceptable salts thereof having an average of 3.5 or more O-sulfate groups in the disaccharide repeating unit. Further, the present invention relates to a method for forming a salt between chondroitin sulfate and sulfur trioxide in a non-protic solvent at a temperature of 30 ° C. to 50 ° C. Provided is a method for producing persulfated chondroitin sulfate, wherein the reaction is carried out at a molar ratio of 1:10 to 1:20. Furthermore, the present invention provides an anticoagulant comprising the above-mentioned persulfated chondroitin sulfate of the present invention as an active ingredient. Further, the present invention provides a method for preventing blood coagulation, which comprises adding the above-mentioned persulfated chondroitin sulfate of the present invention to blood. Furthermore, the present invention provides the use of the above-mentioned persulfated chondroitin sulfate of the present invention as an anticoagulant.
本発明により、 遊離水酸基の硫酸化率が従来よリも高められた新規な過硫酸化 コンドロイチン硫酸が提供された。 本発明の過硫酸化コンドロイチン硫酸は優れ た抗血液凝固活性、 特に優れた I l a因子阻害活性を有し、 副作用の強いへパリン の代替品として有用である。  According to the present invention, there is provided a novel persulfated chondroitin sulfate having a higher sulfation rate of free hydroxyl groups than before. The persulfated chondroitin sulfate of the present invention has excellent anticoagulant activity, particularly excellent Ila factor inhibitory activity, and is useful as a substitute for heparin having strong side effects.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 原料コンドロイチン硫酸 (a)、 0 °Cで三酸化硫黄と反応させた過硫酸 化コンドロイチン硫酸 (b)及び 4 0 °Cで三酸化硫黄と反応させた本発明の過硫酸 化コンドロイチン硫酸 (c)についてのグラジェント P A G Eの結果を示す図であ る。 Figure 1 shows the raw material chondroitin sulfate (a), persulfate reacted with sulfur trioxide at 0 ° C. FIG. 4 shows the results of gradient PAGE of persulfated chondroitin sulfate (b) and persulfated chondroitin sulfate (c) of the present invention reacted with sulfur trioxide at 40 ° C.
図 2は、 原料コンドロイチン硫酸 (A ) 及び実施例 1で調製した本発明の完全 O—硫酸化コンドロイチン硫酸 (B ) の I Rスペクトルを示す。  FIG. 2 shows IR spectra of the raw material chondroitin sulfate (A) and the completely O-sulfated chondroitin sulfate (B) of the present invention prepared in Example 1.
図 3は、 原料コンドロイチン硫酸 (A)、 0 °Cで三酸化硫黄と反応させた過硫酸 化コンドロイチン硫酸 (B)及び 4 0 °Cで三酸化硫黄と反応させた本発明の過硫酸 化コンドロイチン硫酸 (C)についての一次元1 H N M Rの結果を示す。 Figure 3 shows raw chondroitin sulfate (A), persulfated chondroitin sulfate (B) reacted with sulfur trioxide at 0 ° C, and persulfated chondroitin of the present invention reacted with sulfur trioxide at 40 ° C. 1 shows the results of one-dimensional 1 HNMR of sulfuric acid (C).
図 4は、 完全 O—硫酸化コンドロイチン硫酸の二次元 DOF- GOSY (A)及び NOESY (B )スペクトルの結果を示す。  FIG. 4 shows the results of two-dimensional DOF-GOSY (A) and NOESY (B) spectra of fully O-sulfated chondroitin sulfate.
図 5は、 従来の過硫酸化コンドロイチン硫酸 (A ) 及び本発明の完全 O—過硫 酸化コンドロイチン硫酸 (B ) の立体構造の平衡状態を示す。  FIG. 5 shows the equilibrium state of the three-dimensional structures of the conventional persulfated chondroitin sulfate (A) and the completely O-persulfated oxidized chondroitin sulfate (B) of the present invention.
図 6は、 コンドロイチン硫酸の二糖単位中の硫酸基の数と、 抗凝固活性との関 係を示す。  FIG. 6 shows the relationship between the number of sulfate groups in the disaccharide unit of chondroitin sulfate and anticoagulant activity.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
上述のように、 コンドロイチン硫酸は N-ァセチルガラクトサミンとグルクロン 酸が— 3Ga I NAc ^ l -→4G I cA 1—の繰リ返し単位を構成する直鎖の酸性多糖であリ、 この二糖繰返し単位中に硫酸化可能な水酸基が 4個存在する。 生体中に見出され るコンドロイチン硫酸では、 これら 4個の水酸基のうちの平均 1個の水酸基が硫 酸エス亍ルとなっている。 本発明のコンドロイチン硫酸は、 二糖繰返し単位中の 4個の水酸基のうち、 平均して 3 . 5個以上、 好まし〈は 3 . 8個以上、 最も好 ましくは 4個の水酸基が硫酸エステルとなっている。 二糖繰返し単位中の硫酸基 の数が平均して 3 . 5個以上、 好ましくは 3 . 8個以上、 最も好ましくは 4個で あることにより、 従来の過硫酸化コンドロイチン硫酸よリも顕著に抗血液凝固活 性が高くなる。  As described above, chondroitin sulfate is a linear acidic polysaccharide in which N-acetylgalactosamine and glucuronic acid constitute a repeating unit of —3Ga I NAc ^ l-→ 4G I cA 1—. There are four sulfateable hydroxyl groups in the repeating unit. In chondroitin sulfate found in living organisms, an average of one of these four hydroxyl groups is a sulfate ester. The chondroitin sulfate of the present invention has an average of 3.5 or more, preferably <3.8 or more, and most preferably 4 of the four hydroxyl groups in the disaccharide repeating unit. Has become an ester. When the average number of sulfate groups in the disaccharide repeating unit is 3.5 or more, preferably 3.8 or more, and most preferably 4, the number of sulfate groups is significantly higher than that of conventional persulfated chondroitin sulfate. Increases anticoagulant activity.
二糖繰返し単位中の 4個の水酸基が全て硫酸エステルとなっている、 最も好ま しい本発明の過硫酸化コンドロイチン硫酸は下記式 [ I ]で示される。
Figure imgf000006_0001
The most preferred persulfated chondroitin sulfate of the present invention in which all four hydroxyl groups in the disaccharide repeating unit are sulfate esters is represented by the following formula [I].
Figure imgf000006_0001
二糖繰返し単位の繰返し数 (式 [I]中の π ) は、 特に限定されないが、 1 0〜 5 0程度が好ましく、 さらに好ましくは 2 0〜 3 0である。  The number of repetitions of the disaccharide repeating unit (π in the formula [I]) is not particularly limited, but is preferably about 10 to 50, and more preferably 20 to 30.
本発明の過硫酸化コンドロイチン硫酸は、 薬理学的に許容できる塩の形態にあ つてもよい。 このような塩として、 ナトリウム塩やカリウム塩のようなアルカリ 金属塩、 カルシウム塩、 アルミニウム塩等を挙げることができるがこれらに限定 されるものではない。  The persulfated chondroitin sulfate of the present invention may be in the form of a pharmacologically acceptable salt. Examples of such salts include, but are not limited to, alkali metal salts such as sodium salts and potassium salts, calcium salts, aluminum salts and the like.
本発明の過硫酸化コンドロイチン硫酸は、 コンドロイチン硫酸の塩と三酸化硫 黄を非プロトン性溶媒中で、 3 0 °C〜5 0 °Cの温度下で、 コンドロイチン硫酸塩 中の遊離水酸基と三酸化硫黄とのモル比を 1 : 1 0ないし 1 : 2 0として反応さ せることにより製造することができる。  The persulfated chondroitin sulfate of the present invention is obtained by reacting a salt of chondroitin sulfate and sulfur trioxide in an aprotic solvent at a temperature of 30 ° C. to 50 ° C. with free hydroxyl groups in chondroitin sulfate. It can be produced by reacting with sulfur oxide at a molar ratio of 1:10 to 1:20.
出発原料となるコンドロイチン硫酸塩としては、 有機アミン塩が好ましく、 特 にトリアルキル (特に炭素数 1 〜 6の低級アルキル) アミン塩、 とりわけ、 トリ プチルァミン塩が好ましい。 コンドロイチン硫酸の有機アミン塩は、 例えば、 ゥ シの軟骨等から調製されたコンドロイチン硫酸ナトリウム塩 (市販品を使用可) を、 陽イオン交換樹脂にかけた後、 有機アミンを加え、 凍結乾燥により濃縮する ことにより容易に調製することができる。 ここで用いることができる陽イオン交 換樹脂は何ら限定されるものではなく、 例えば市販品である Dowex 50W X8 (ダウ •ケミカル社製) や SP Sepharose HP (フアルマシア社製) 等を用いることがで きる。 また、 陽イオン交換後のコンドロイチン硫酸に加えられる有機ァミンの量 は、 コンドロイチン硫酸に含まれる酸性基 (カルボキシル基又は硫酸基) 1モル に対して 1 〜1 . 2モル程度が好ましい。  The chondroitin sulfate used as a starting material is preferably an organic amine salt, particularly preferably a trialkyl (particularly lower alkyl having 1 to 6 carbon atoms) amine salt, and particularly preferably a triptylamine salt. Organic amine salts of chondroitin sulfate include, for example, chondroitin sulfate sodium salt (a commercially available product) prepared from cartilage of sea urchin is applied to a cation exchange resin, and then the organic amine is added and concentrated by freeze-drying. Thus, it can be easily prepared. The cation exchange resin that can be used here is not limited at all. For example, commercially available products such as Dowex 50W X8 (manufactured by Dow Chemical) and SP Sepharose HP (manufactured by Pharmacia) can be used. Wear. The amount of the organic amine added to chondroitin sulfate after cation exchange is preferably about 1 to 1.2 mol per 1 mol of acidic group (carboxyl group or sulfate group) contained in chondroitin sulfate.
次いで、 得られたコンドロイチン硫酸の塩と三酸化硫黄を非プロトン性溶媒中 で、 3 0 °C〜5 0 °Cの温度下で、 コンドロイチン硫酸塩中の遊離水酸基と三酸化 硫黄とのモル比を 1 : 1 0ないし 1 : 2 0として反応させる。 ここで、 好ましい 非プロトン性溶媒として N, N—ジメチルホルムアミド、 ジメチルスルホキシド 等を挙げることができるがこれらに限定されるものではない。 反応温度は、 3 0 〜 5 0 °Cであリ、 好ましくは、 3 7〜 4 3 °Cであり、 最も好ましくは約 4 0 °Cで ある。 コンドロイチン硫酸塩中の遊離水酸基と三酸化硫黄とのモル比は 1 : 1 0 ないし 1 : 2 0であり、 好ましくは 1 : 1 3ないし 1 : 1 7であり、 最も好まし くは約 1 : 1 5である。 反応時間は約 3 0分以上、 好ましくは 3 0分〜 2時間、 さらに好ましくは 4 5〜9 0分間である。 Next, the obtained salt of chondroitin sulfate and sulfur trioxide are mixed in an aprotic solvent. Then, at a temperature of 30 ° C. to 50 ° C., the reaction is carried out at a molar ratio of free hydroxyl groups in chondroitin sulfate to sulfur trioxide of 1:10 to 1:20. Here, preferred aprotic solvents include, but are not limited to, N, N-dimethylformamide, dimethylsulfoxide and the like. The reaction temperature is from 30 to 50 ° C, preferably from 37 to 43 ° C, most preferably about 40 ° C. The molar ratio of free hydroxyl groups to sulfur trioxide in chondroitin sulfate is from 1:10 to 1:20, preferably from 1:13 to 1:17, and most preferably about 1: One is five. The reaction time is about 30 minutes or more, preferably 30 minutes to 2 hours, and more preferably 45 to 90 minutes.
なお、 三酸化硫黄は、 これ単独でコンドロイチン硫酸塩と反応させてもよいが、 予めピリジンのような環状ァミンと三酸化硫黄とを反応させて複合体を形成し、 これをコンドロイチン硫酸塩と反応させてもよい。 この場合の環状ァミンと三酸 化硫黄との反応条件は、 例えば次の通りである。 すなわち、 発煙硫酸を蒸留し、 流出する s o 3ガスを冷却する。 アスベスト状を呈した s o 3に対し、 冷却下、 環状アミンを滴下し、 液状になった後、 常温に戻し、 もはや発煙を観察しなくな るまで滴下を続ける。 Sulfur trioxide may be reacted alone with chondroitin sulfate.However, a cyclic amine such as pyridine is reacted with sulfur trioxide in advance to form a complex, which is then reacted with chondroitin sulfate. May be. In this case, the reaction conditions between the cyclic amine and sulfur trioxide are, for example, as follows. In other words, the fuming sulfuric acid is distilled and the outflow so 3 gas is cooled. To so 3 that exhibited asbestos-like, under cooling, was added dropwise a cyclic amine, after becoming liquid, returning to room temperature, continue dropping until the such no longer observed smoke.
上記方法により、 本発明の過硫酸化コンドロイチン硫酸が生成する。 反応は蒸 留水を加えることにより停止させることができる。 また、 得られた粗生成物は、 酢酸ナトリゥムで飽和した冷ェタノールで沈殿させ、 遠心分離によリ回収するこ とができる。 さらに、 回収された生成物を蒸留水に溶かし、 水に対して透析後、 凍結乾燥することにより精製することができる。  The above method produces the persulfated chondroitin sulfate of the present invention. The reaction can be stopped by adding distilled water. The obtained crude product can be precipitated with cold ethanol saturated with sodium acetate and recovered by centrifugation. Furthermore, the product can be purified by dissolving the recovered product in distilled water, dialyzing against water, and freeze-drying.
本発明の過硫酸化コンドロイチン硫酸は、 抗血液凝固剤としてへパリンと同様 に用いることができる。 用量は、 症状や使用態様に応じて適宜選択されるが、 例 えば、 血液体外循環時における灌流血液の凝固防止に用いる場合、 へパリン国際 単位として 1 0 0 0〜3 0 0 0単位を前投与し、 開始後 1時間あたり 5 0 0〜 1 5 0 0単位を間欠的に投与することができる。 適用の際の組成としては例えば、 生理食塩液又は注射用蒸留水を加えて 1 m I当り 1 0 0 0単位となるように用時 溶解して用いることができる。 本発明の過硫酸化コンドロイチン硫酸は、 生体の構成成分であるコンドロイチ ン硫酸由来であり、 また、 硫酸基も毒性を有さないから、 その毒性は低く、 へパ リンよりも毒性が低いと考えられる。 The persulfated chondroitin sulfate of the present invention can be used as an anticoagulant similarly to heparin. The dose is appropriately selected according to the symptoms and the mode of use.For example, when used for the prevention of coagulation of perfused blood during extracorporeal blood circulation, 100 to 300 units of heparin international unit may be used. It can be administered intermittently at 500 to 1500 units per hour after administration. As a composition at the time of application, for example, physiological saline or distilled water for injection can be added and dissolved at the time of use so as to be 10000 units per 1 ml. The persulfated chondroitin sulfate of the present invention is derived from chondroitin sulfate, which is a constituent of living organisms, and has no toxicity because the sulfate group is also non-toxic. Can be
実施例 Example
以下、 本発明を実施例に基づきより具体的に説明する。 もっとも、 本発明は下 記実施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
実施例 1 過硫酸化コンドロイチン硫酸の製造 Example 1 Production of persulfated chondroitin sulfate
ゥシ気管軟骨由来のコンドロイチン硫酸ナトリウム塩 100 mgを陽ィォン交換 樹脂 (Dowex 50W X8) にかけた。 この際、 カラムサイズ 1 cm (内径) x 1 5 c m (長さ) のカラムを用い、 流速 1. Om l Z分、 水で溶離した。 次いで卜リブ チルァミン 1 00 I を加え、 凍結乾燥により濃縮してコンドロイチン硫酸トリ プチルァミン塩を得た。 得られたコンドロイチン硫酸トリプチルァミン塩 1 Om gを 0. 8m lの N, N—ジメチルホルムアミ ド (DMF) に溶解した。 一方、 発煙硫酸を蒸留し、 流出する so3ガスを冷却し、 アスベスト状を呈した so3 に対し、 冷却下、 環状アミンを滴下し、 液状になった後、 常温に戻し、 もはや発 煙を観察しなくなるまで滴下を続けることにより得られたピリジン '三酸化硫黄 複合体を、 上記コンドロイチン硫酸トリプチルァミン塩 DMF溶液に、 三酸化硫 黄がコンドロイチン硫酸の遊離水酸基の 1 5倍モルとなる量加えた。 40°Cで 1時 間反応させた後、 蒸留水 1.6 ml を加え反応を止めた。 また、 粗生成物は酢酸ナ トリウムで飽和した冷エタノール (3倍量) で沈殿させ、 遠心分離により回収し た。 得られた完全 O—硫酸化コンドロイチン硫酸は再蒸留水に溶かし、 透析で塩 を除いた後、 凍結乾燥にて回収した。 100 100 mg of sodium chondroitin sulfate derived from tracheal cartilage was applied to cation exchange resin (Dowex 50W X8). At this time, a column with a column size of 1 cm (inner diameter) x 15 cm (length) was eluted with water at a flow rate of 1. OmIZ. Then, Tribylamine 100 I was added, and the mixture was concentrated by freeze-drying to obtain chondroitin sulfate triptylamine. 1 Omg of the obtained chondroitin sulfate triptylamine salt was dissolved in 0.8 ml of N, N-dimethylformamide (DMF). On the other hand, the fuming sulfuric acid was distilled, the outgoing so 3 gas was cooled, and cyclic amine was dropped into the asbestos-like so 3 under cooling, and after cooling to a liquid state, the temperature was returned to room temperature, and the fuming no longer occurred. The pyridine 'sulfur trioxide complex obtained by continuing dropping until no longer observed was added to the chondroitin sulfate triptylamine salt DMF solution in an amount such that sulfur trioxide became 15 times the moles of free hydroxyl groups of chondroitin sulfate. . After reacting at 40 ° C for 1 hour, 1.6 ml of distilled water was added to stop the reaction. The crude product was precipitated with cold ethanol (3 volumes) saturated with sodium acetate and collected by centrifugation. The obtained complete O-sulfated chondroitin sulfate was dissolved in double-distilled water, and the salts were removed by dialysis, and then recovered by freeze-drying.
—方、 比較のため、 コンドロイチン硫酸トリプチルァミン塩と三酸化硫黄との 反応温度が 0°Cであることを除いて上記と同じ操作を行い、 水酸基の硫酸化が不 完全な部分硫酸化コンドロイチン硫酸を得た。 また、 以下の実施例においては、 原料として用いたコンドロイチン硫酸 (硫酸化処理なし) についても調べた。 実施例 2 過硫酸化コンドロイチン硫酸の性質  On the other hand, for comparison, the same operation as above was carried out except that the reaction temperature of chondroitin sulfate triptylamine salt and sulfur trioxide was 0 ° C to obtain partially sulfated chondroitin sulfate in which the sulfation of hydroxyl groups was incomplete. Obtained. In the following examples, chondroitin sulfate (no sulfation treatment) used as a raw material was also examined. Example 2 Properties of persulfated chondroitin sulfate
(1) 分子量の測定 それぞれのコンドロイチン硫酸の平均分子量はグラジェント (濃度勾配) PAGE により算出した。 測定は Edens等の方法 (Edens, R. E. et aに, J. Pharm. Sci. , 81, 823-827 (1992)) により、 12- 22%のグラジェントミニゲルを用い、 アルシ アンブル一で染色を行った。 各レーンには 20〃 gのコンドロイチン硫酸をアブ ライした。 それぞれのコンドロイチン硫酸の相対的な分子量は GPC-HPLCにおけ る溶出位置によって確認した。 溶離液には 50 mM酢酸ナトリウム(PH 7.4, 流速 1 ml/min)を用い、 検出は 206 nmにおける吸光度で行った。 (1) Measurement of molecular weight The average molecular weight of each chondroitin sulfate was calculated by gradient (concentration gradient) PAGE. The measurement was carried out according to the method of Edens et al. (Edens, RE et al., J. Pharm. Sci., 81, 823-827 (1992)), using 12-22% gradient minigel, and staining with Alcian Blue. Was. Each lane was ablated with 20 μg of chondroitin sulfate. The relative molecular weight of each chondroitin sulfate was confirmed by elution position in GPC-HPLC. 50 mM sodium acetate eluent (P H 7.4, a flow rate of 1 ml / min) using a detection was conducted at absorbance at 206 nm.
結果を図 1に示す。 図 1中、 レーン aは原料として用いたコンドロイチン硫酸 (硫酸化処理なし) についての結果を示し、 レーン bは 0°Cで三酸化硫黄と反応 させた部分硫酸化コンドロイチン硫酸についての結果を示し、 レーン cは 40°C で三酸化硫黄と反応させた本発明の過硫酸化コンドロイチン硫酸についての結果 を示す。 レーン dはオリゴサッカライド分子量マーカー (4 g) を示す。 コン ドロイチン硫酸の硫酸化によつて分子量はほとんど変化しないが、 若干の分子量 増加が観察された。 また、 ゲル浸透クロマトグラフィー (G PC) (Toida, T. , Biochem. J. , 322, 499-506 (1997)) によっても硫酸化による若干の分子量増 加が観察された。 これらの結果は、 原料のコンドロイチン硫酸に新たな硫酸基の 導入を示唆するばかりでなく、 本硫酸化反応に対して原料のコンドロイチン硫酸 中のグリコシド結合が安定であることも示している。 上記の方法により測定され た分子量の範囲は 10, 000〜20, 000であった。  The results are shown in Figure 1. In Fig. 1, lane a shows the results for chondroitin sulfate used as a raw material (no sulfation treatment), and lane b shows the results for partially sulfated chondroitin sulfate reacted with sulfur trioxide at 0 ° C. Lane c shows the results for the persulfated chondroitin sulfate of the present invention reacted with sulfur trioxide at 40 ° C. Lane d shows the oligosaccharide molecular weight marker (4 g). Sulfation of chondroitin sulfate hardly changed the molecular weight, but a slight increase in molecular weight was observed. Gel permeation chromatography (GPC) (Toida, T., Biochem. J., 322, 499-506 (1997)) also showed a slight increase in molecular weight due to sulfation. These results not only suggest the introduction of a new sulfate group into the raw material chondroitin sulfate, but also indicate that the glycosidic bonds in the raw material chondroitin sulfate are stable against this sulfation reaction. The range of molecular weight measured by the above method was 10,000 to 20,000.
(2) 硫酸基含量の分析 (2) Analysis of sulfate group content
硫酸基の定量を行うコンドロイチン硫酸は分画分子量 12, 000の透析チューブ で蒸留水に対する徹底的な透析、 凍結乾燥を行った後、 五酸化二リン存在下、 デ シケーターで 2日間乾燥させた。 硫酸基の定量は酸化した後、 東ソ一 (株)製の C M-8 伝導度検出器を使って HPLCで測定した。  Chondroitin sulfate for quantification of sulfate groups was thoroughly dialyzed against distilled water in a dialysis tube having a molecular weight cutoff of 12,000, freeze-dried, and dried in a desiccator in the presence of diphosphorus pentoxide for 2 days. After oxidization, the sulfate group was measured by HPLC using a CM-8 conductivity detector manufactured by Tosouichi Co., Ltd.
その結果、 二糖繰返し単位中の硫酸基の数は、 原料のコンドロイチン硫酸が 1、 0°Cで硫酸化した過硫酸化コンドロイチン硫酸が 2. 5〜3. 3、 40°Cで硫酸 化した本発明の過硫酸化コンドロイチン硫酸が 4であり、 上記した本発明の方法 により、 コンドロイチン硫酸中の遊離水酸基が全て硫酸化されたことが確認され た。 As a result, the number of sulfate groups in the disaccharide repeating unit was such that the raw material chondroitin sulfate was sulfated at 1,0 ° C, and that the persulfated chondroitin sulfate was 2.5-3.3, and the sulfated at 40 ° C. The persulfated chondroitin sulfate of the present invention was 4, and it was confirmed that all of the free hydroxyl groups in chondroitin sulfate were sulfated by the method of the present invention described above. Was.
(3) I Rスぺクトル  (3) IR spectrum
固体サンプルの赤外線吸収スぺクトルを日本分光 (株)製の FT/ 1 R-230を用いて 測定した。 乾燥した臭化カリウム 500 gにグリコサミノグリカン 100 gを混 合し、 直径 3mmの錠剤を作製し、 スぺクトロメーターにセットした。 The infrared absorption spectrum of the solid sample was measured using FT / 1R-230 manufactured by JASCO Corporation. 100 g of glycosaminoglycan was mixed with 500 g of dried potassium bromide to prepare a tablet having a diameter of 3 mm, which was set in a spectrometer.
得られた I Rスペク トルを図 2に示す。 図 2中、 Aは、 原料コンドロイチン硫 酸の I Rスぺク トル、 Bは実施例 1で調製した本発明の完全 O—硫酸化コンドロ ィチン硫酸の I Rスペク トルを示す。 図 2は、 全てのコンドロイチン硫酸に含ま れる水酸基がアキシャル硫酸エステルに変化していることを示している。 1240, 820- 850カイザーの強い吸収はそれぞれ S=0, C=0=Sの伸縮振動に帰属される。 同様に 2900, 1440, 1380, 1100カイザーにおける C - 0-H変角振動に帰属される 信号は完全 0 -硫酸化コンドロイチン硫酸のスぺクトル中で減少していることが 明らかである。 図 2 B中のピーク 1は、 O— H伸縮振動、 ピーク 2は O— H変角 振動、 ピーク 3は S = 0伸縮振動、 ピーク 4は C一 O— S変角振動及びアキシャ ル C一 O— S〇3の伸縮振動を示す。 なお、 IRスペクトルの帰属については Gas u, B. et al. , Carbohydr. Res. , 63, 13 - 27 (1978); Orr, S. F. D. , Biochim. Biophys. Acta, 14, 173-181 (1954); Bychkov, S. M. , Biol. Med. , 92, 680-68 3 (1981); 及び Sanderson, P. N. et a I, , Biochem. J. , 243, 175-181 (1987) を参考にした。 Fig. 2 shows the obtained IR spectrum. In FIG. 2, A shows the IR spectrum of the raw material chondroitin sulfate, and B shows the IR spectrum of the complete O-sulfated chondroitin sulfate of the present invention prepared in Example 1. Figure 2 shows that the hydroxyl groups in all chondroitin sulfates have been converted to axial sulfates. The strong absorptions of 1240 and 820-850 Kaiser are attributed to S = 0, C = 0 = S stretching vibration, respectively. Similarly, it is clear that the signals assigned to the C-0-H bending vibrations at 2900, 1440, 1380, and 1100 Kaiser are reduced in the spectrum of completely 0-sulfated chondroitin sulfate. In Fig. 2B, peak 1 is O-H stretching vibration, peak 2 is O-H bending vibration, peak 3 is S = 0 stretching vibration, peak 4 is C-OS bending deformation and axial C-1. shows the stretching vibration of O- S_〇 3. For the assignment of IR spectra, see Gasu, B. et al., Carbohydr. Res., 63, 13-27 (1978); Orr, SFD, Biochim. Biophys. Acta, 14, 173-181 (1954); Bychkov, SM, Biol. Med., 92, 680-683 (1981); and Sanderson, PN et al, Biochem. J., 243, 175-181 (1987).
(4) 旋光度 (4) Optical rotation
乾燥したサンプルの一部を秤量し、 濃度が 5 mg/mlになるように蒸留水に溶か して旋光度を測定した。 測定は日本分光 (株)製の DIP-140 を用いて、 ナトリウ ム D線で測定した。  A portion of the dried sample was weighed and dissolved in distilled water to a concentration of 5 mg / ml, and the optical rotation was measured. The measurement was performed with sodium D line using DIP-140 manufactured by JASCO Corporation.
その結果、 旋光度は原料コンドロイチン硫酸が一 30度であったのに対し、 完 全 O—硫酸化コンドロイチン硫酸では一 8度であった。 このことは、 完全 O—硫 酸化コンドロイチン硫酸の立体構造が、 原料のコンドロイチン硫酸と比べて変化 していることを示している。  As a result, the optical rotation was 130 degrees for the raw material chondroitin sulfate, while it was 18 degrees for the completely O-sulfated chondroitin sulfate. This indicates that the three-dimensional structure of completely O-sulfated chondroitin sulfate has changed compared to that of the raw material chondroitin sulfate.
(5) 1 H NMRスぺクトル 過硫酸化コンドロイチン硫酸 (2 mg)を重水(99.9%) 0.5 ml に溶かし、 凍結乾燥 を繰り返し、 交換可能なプロトンを除いた。 サンプルは陰圧で五酸化二リン存在 下のデシケーターに入れ、 室温で一晚放置した。 完全に乾燥したサンプルは重水 (99.96%) 0.5 ml に溶かし、 0.45 画のシリンジフィルタ一を通して NMRチューブ (外径 5.0 mmx長さ 25 cm, pp-528; Wi Imad Glass Co. , Buena, NJ) に入れた。 一次元及び二次元 NMRの測定は チューニング可能な 5 mmのフィールドグラジェ ントプローブ と標準の JE0L ソフトウェアを装備した 日本電子 (株)製の GSX50 OAスぺク卜口メーターを用いて、 N0Eスペクトルは 303Kで、 その他の測定は 33 3Kで行った。 HODのシグナルは一次元スぺクトルでは 3 s、 二次元スぺクトルで は 1.5 sの間に前飽和させることで削除した。 二次元スぺクトルでは、 観測幅 2 000 Hzで、 サンプリングデータポイントが 1024 得られるように 512回の積算を 行い、 タイムドメインデータはゼロフィリング (データマトリックスサイズ、 1K X 1K) した後、 シフトしたサイン-ベルウィンドウ関数を使って、 二次元 doubl e quantum f i Itered (DQF)-COSY, N0ESY及び T0CSYの為に増幅した。 二次元 TOC SY及び N0ESYの測定では 150, 250, 及び 500 msをミキシングタイムとして行つ た結果、 100 msの MLEV- 17 mixing sequenceを用いることとした。 (5) 1 H NMR spectrum Persulfated chondroitin sulfate (2 mg) was dissolved in 0.5 ml of heavy water (99.9%), and freeze-drying was repeated to remove exchangeable protons. The sample was placed in a desiccator in the presence of diphosphorus pentoxide under negative pressure, and left at room temperature for 10 minutes. The completely dried sample was dissolved in 0.5 ml of heavy water (99.96%) and passed through a 0.45 fraction syringe filter into an NMR tube (outside diameter 5.0 mm x length 25 cm, pp-528; Wi Imad Glass Co., Buena, NJ). I put it. One-dimensional and two-dimensional NMR measurements were performed using a JSX GSX50 OA spectrum meter equipped with a tunable 5 mm field gradient probe and standard JE0L software. At 303K, other measurements were taken at 333K. The HOD signal was eliminated by pre-saturation for 3 s in the one-dimensional spectrum and 1.5 s in the two-dimensional spectrum. In the two-dimensional spectrum, with an observation width of 2,000 Hz, 512 integrations were performed to obtain 1024 sampling data points, and the time domain data was shifted after zero filling (data matrix size, 1K x 1K). Using sine-bell window function, we amplified for two-dimensional double quantum fi Itered (DQF) -COSY, N0ESY and T0CSY. In the measurement of two-dimensional TOC SY and N0ESY, the mixing time was set to 150, 250, and 500 ms, and as a result, the MLEV-17 mixing sequence of 100 ms was used.
H N MRスペク トルの結果を図 3に示す。 図 3中、 Aは原料コンドロイチ ン硫酸についての結果、 Bは 0°Cで三酸化硫黄と反応させて調製した過硫酸化コ ンドロイチン硫酸 (二糖繰返し単位中の平均硫酸基数: 3. 2) についての結果、 Cは本発明の完全 O—硫酸化コンドロイチン硫酸についての結果を示す。 原料の コンドロイチン硫酸のスぺクトルが硫酸化度に若干の不均一性を示している。 す なわち、 N-ァセチルガラクトサミン 4位あるいは 6位のどちらかが硫酸化されて た部分構造の、 混合物であることが明らかである。 0°Cで調製した過硫酸化コン ドロイチン硫酸は、 予期されたとおり ( aarouf i, R. M. et aに, Thromb. Res. , 59, 174-758 (1995); Bartolucci, C. et a I . , Carbohydr. Res. , 276, 401-408 (1995))構造不均一性は原料のコンドロイチン硫酸に比べて増していた。 この構 造不均一性の増加は N-ァセチルガラクトサミン 4位、 6位の硫酸化だけではな く、 不完全なグルクロン酸残基の 2位、 3位の硫酸化を示唆している。 驚くこと に、 40°Cで調製したコンドロイチン硫酸の1 H NMRスペクトルが、 他の化学的に 硫酸化した試料、 あるいは原料に比べて非常に単純なものであった。 これは明ら かに硫酸化における不均一性の減少、 すなわち糖鎖水酸基の完全 0-硫酸化を意 味している。 図 4には、 完全 0-硫酸化コンドロイチン硫酸の二次元1 H NMRスぺ クトル、 DQF- COSYおよび N0ESYスぺク トルを示す。 図 4中の上側のパネル中の 各クロスピークはそれぞれ次のものを示す。 a, Gal pAc H- 3/H-4; b, GlcAp H-1 /H-2; c, GlcAp H-2/H-3; d, GlcAp H-3/H-4; e, Gal pAc H - 1/H - 2; f, GlcAp H -4/H-5; g, Gal pAc H- 5/H-6。 また、 下側のパネル中の各クロスピークはそれぞ れ次のものを示す。 a, GalNpAc H - 1/H - 3; b, Gal pAc H-1 /GlcAp H— 4; c, Gal A c H-4/H-5; d, Gal pAc Η-4/GlcAp H-5; e, Gal pAc H-4/H-6; f, GlcAp H— 3/H— 5。 これらのスぺクトルから、 硫酸化による糖リングプロトンの低磁場シフ卜が 明らかである。 スカラー結合および核オーバ一ハウザー効果から、 4.87 ppmの ピークは N-ァセチルガラク トサミンの H-1、 4.57 ppmのシグナルが GlcAの H-4 であると帰属され、 この結果は全ての水酸基が完全に硫酸化されていることを示 している。 化学シフト及び結合定数を表 1に示す。 カープラスの式によれば、 グ ルクロン酸の隣接するプロトン間の二面角は 180度ではなく 60-70度となり、 グ ルク口ン酸のコンホメーションが4 C から1 C 4に変化していることを示してい る (図 5) 。 なお、 図 5中、 X 2 = S03—、 X 3 = H、 又は X 2 = H、 X 3 = S 03—を示し、 S u gは糖 (N—ァセチルガラク卜サミン) を示す。 Figure 3 shows the results of the HN MR spectrum. In Figure 3, A is the result for the raw material chondroitin sulfate, B is the persulfated chondroitin sulfate prepared by reacting with sulfur trioxide at 0 ° C (average number of sulfate groups in the disaccharide repeating unit: 3.2) C shows the results for the fully O-sulfated chondroitin sulfate of the present invention. The raw material chondroitin sulfate spectrum shows a slight heterogeneity in the degree of sulfation. In other words, it is clear that this is a mixture of partial structures in which either the 4-position or the 6-position of N-acetylgalactosamine is sulfated. The persulfated chondroitin sulfate prepared at 0 ° C. was as expected (see aarouf i, RM et a, Thromb. Res., 59, 174-758 (1995); Bartolucci, C. et a I., Carbohydr. Res., 276, 401-408 (1995)) The structural heterogeneity was increased compared to the raw material chondroitin sulfate. This increase in structural heterogeneity suggests not only sulfation at positions 4 and 6 of N-acetylgalactosamine but also incomplete sulfonation of glucuronic acid residues at positions 2 and 3. Surprise In addition, the 1 H NMR spectrum of chondroitin sulfate prepared at 40 ° C was very simple compared to other chemically sulfated samples or raw materials. This clearly implies a reduction in heterogeneity in the sulfation, ie complete 0-sulfation of the sugar chain hydroxyl groups. FIG. 4 shows the two-dimensional 1 H NMR spectrum, DQF-COSY and N0ESY spectrum of completely 0-sulfated chondroitin sulfate. Each cross peak in the upper panel in FIG. 4 indicates the following. a, Gal pAc H-3 / H-4; b, GlcAp H-1 / H-2; c, GlcAp H-2 / H-3; d, GlcAp H-3 / H-4; e, Gal pAc H -1 / H-2; f, GlcAp H-4 / H-5; g, Gal pAc H-5 / H-6. Each cross peak in the lower panel indicates the next one. a, GalNpAc H-1 / H-3; b, Gal pAc H-1 / GlcAp H—4; c, Gal Ac H-4 / H-5; d, Gal pAc Η-4 / GlcAp H-5; e, Gal pAc H-4 / H-6; f, GlcAp H-3 / H-5. From these spectra, low-field shifts of sugar ring protons due to sulfation are apparent. From the scalar binding and nuclear Overhauser effect, the peak at 4.87 ppm was assigned to H-1 of N-acetylgalactosamine, and the signal at 4.57 ppm was assigned to H-4 of GlcA, indicating that all hydroxyl groups were completely sulfated. It shows that it has been Table 1 shows the chemical shifts and binding constants. According to the Carplus equation, the dihedral angle between adjacent protons of glucuronic acid is 60-70 degrees instead of 180 degrees, and the conformation of glucuronic acid changes from 4 C to 1 C 4. (Figure 5). In FIG. 5, X 2 = S0 3 - , X 3 = H, or X 2 = H, X 3 = S 0 3 - indicates, S ug denotes a sugar (N- Asechirugaraku Bok the summing).
»0 Λ »0 Λ
寸'  Dimensions'
ε6寸寸 o寸.ε6 dimension o dimension.
2g < < < 2g <<<
w一fk Jki i  wichi fk Jki i
Figure imgf000013_0001
Figure imgf000013_0001
実施例 3 抗血液凝固効果 Example 3 Anticoagulant effect
正常ヒト血漿 (NHP)は健常なボランティアから採取した。 抗 Xa因子活性は Co atest し画 hepar in/hepar in kit (Chromogen i x, olndal , Sweden; を使って測 定した。 コンドロイチン硫酸、 過硫酸化コンドロイチン硫酸誘導体及び低分子化 へパリン標準品は希釈した正常ヒ卜血漿に溶かした。 2.9 mM Chromogen ic Xa su bstrate S-2732 (Sue- 1 I e-G I u ( ~ i Per i dy I ) -G I y-Ar -pNA) を含んだ 50 mM Tr i s, Ί.5 μΜ EDTA緩衝液(pH 8.4) 200 μ I にサンプルを含んだ血漿 25 I 及 びゥシ Xa因子 (1.25/ml)200 μ I を加えて 37°C で 8分間インキュベーション した後、 20% 酢酸 200 μ I を加えた。 Xa因子活性を 405 nmの吸光度により測 定した。 Normal human plasma (NHP) was collected from healthy volunteers. Anti-factor Xa activity was measured using Coatest and hepar in / hepar in kit (Chromogen ix, olndal, Sweden; Chondroitin sulfate, persulfated chondroitin sulfate derivative and low molecular weight heparin standard were diluted) Dissolved in normal human plasma 2.9 mM Chromogen ic Xa substrate S-2732 (50 mM Tr is, containing Sue-1 IeG Iu (~ iPeridyI) -GI y-Ar -pNA) Ί.5 μΜ EDTA buffer (pH 8.4) 200 μl of Bacillus factor Xa (1.25 / ml) was added, incubated at 37 ° C for 8 minutes, and then 200 μl of 20% acetic acid was added. Factor Xa activity was measured by absorbance at 405 nm.
抗 I la因子活性はコンドロイチン硫酸あるいは過硫酸化誘導体の水溶液 50 μ し トリス緩衝液 (ρΗ 8.3) 850 μ し 正常ヒト血漿 30 μ し 及びヒ卜卜ロンビ ン (1.2 NIH units/ml) を混合し、 37°Cで 30秒間インキュベートした後、 1.9mM The anti-Ila factor activity was determined by mixing 50 μl of an aqueous solution of chondroitin sulfate or a persulfated derivative, 850 μl of Tris buffer (ρΗ8.3), 30 μl of normal human plasma, and human thrombin (1.2 NIH units / ml). 1.9mM after incubating at 37 ° C for 30 seconds
Chromogenic TH ^ethy I ma I ony I -Pro-Arg-p -nitroani I ide hydrochlor ide) をカロ え、 I la因子活性を 405 nm における吸光度により測定した。 測定は instrument at ion (Lexington, MA) から購入した AGL 300 plus を用い、 対照には U.S. Ph armacopeial Convention (ROCK I I le, MD) の USP Heparin reference StandardChromogenic TH ^ ethyImaIonyI-Pro-Arg-p-nitroaniide hydrochloride) was caloried, and Ila factor activity was measured by absorbance at 405 nm. AGL 300 plus purchased from instrument at ion (Lexington, MA) was used for measurement, and USP Heparin reference Standard of U.S. Ph armacopeial Convention (ROCK I Ile, MD) was used as a control.
(K-3) を用いた。 (K-3) was used.
結果を図 6に示す。 図 6中、 四角は抗 I la因子活性を示し、 丸は抗 Xa因子活 性を示す。 図 6に示すように、 完全 0-硫酸化によって I la因子阻害活性は劇的 に上昇した。 一方、 抗 Xa因子活性は硫酸化に伴い若干上昇はしているものの、 I la因子対する程のものではなかった。 この結果は Xa因子に対する阻害活性上昇 が単に硫酸基導入による非特異的な陰電荷上昇に起因するものと考えられる。  Fig. 6 shows the results. In FIG. 6, squares indicate anti-Ila factor activity, and circles indicate anti-factor Xa activity. As shown in Figure 6, complete 0-sulfation dramatically increased the Ila factor inhibitory activity. On the other hand, the anti-factor Xa activity increased slightly with sulfation, but was not as high as that of the Ila factor. This result suggests that the increase in the inhibitory activity against factor Xa is simply due to the nonspecific increase in the negative charge due to the introduction of the sulfate group.

Claims

請求の範囲 The scope of the claims
1 . 二糖繰返し単位中に O—硫酸基を平均 3 . 5個以上有する過硫酸化コンド 口イチン硫酸又は薬理学的に許容できるその塩。  1. A persulfated chond having an average of 3.5 or more O-sulfate groups in a disaccharide repeating unit. Itine sulfate or a pharmacologically acceptable salt thereof.
2 . 二糖繰返し単位中に 0—硫酸基を平均 3 · 8個以上有する請求項 1記載の 過硫酸化コンドロイチン硫酸又は薬理学的に許容できるその塩。  2. The persulfated chondroitin sulfate or a pharmacologically acceptable salt thereof according to claim 1, which has an average of 3.8 or more 0-sulfate groups in the disaccharide repeating unit.
3 . 二糖繰返し単位中に O—硫酸基を平均 4個有する請求項 2記載の過硫酸化 コンドロイチン硫酸又は薬理学的に許容できるその塩。  3. The persulfated chondroitin sulfate or pharmacologically acceptable salt thereof according to claim 2, wherein the disaccharide repeating unit has an average of four O-sulfate groups.
4 . コンドロイチン硫酸の塩と三酸化硫黄を非プロトン性溶媒中で、 3 0 °C〜 4. Salt of chondroitin sulfate and sulfur trioxide in an aprotic solvent at 30 ° C
5 0 °Cの温度下で、 コンドロイチン硫酸塩中の遊離水酸基と三酸化硫黄とのモル 比を 1 : 1 0ないし 1 : 2 0として反応させる、 過硫酸化コンドロイチン硫酸の 製造方法。 A method for producing persulfated chondroitin sulfate, wherein the reaction is carried out at a temperature of 50 ° C with a molar ratio of free hydroxyl groups in chondroitin sulfate to sulfur trioxide of 1:10 to 1:20.
5 . 前記反応温度が 3 7〜4 3 °Cであり、 前記モル比が 1 : 1 3ないし 1 : 1 7である請求項 4記載の方法。  5. The method according to claim 4, wherein the reaction temperature is 37 to 43 ° C, and the molar ratio is 1:13 to 1:17.
6 . 前記反応温度が 4 0。Cであり、 前記モル比が 1 : 1 5である請求項 5記載 の方法。 6. The reaction temperature is 40. It is C, wherein the molar ratio of 1: 1 5 The method of claim 5, wherein.
7 . 前記塩は有機アミン塩である請求項 4ないし 6のいずれか 1項に記載の方 法。  7. The method according to any one of claims 4 to 6, wherein the salt is an organic amine salt.
8 . 請求項 1ないし 3のいずれか 1項に記載の過硫酸化コンドロィチン硫酸を 有効成分として含有する抗血液凝固剤。  8. An anticoagulant comprising the persulfated chondroitin sulfate according to any one of claims 1 to 3 as an active ingredient.
PCT/JP1998/000023 1997-12-02 1998-01-08 Persulfated chondroitin sulfates, process for producing the same, and anticoagulants containing the same as the active ingredient WO1999028351A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/347071 1997-12-02
JP9347071A JPH11166001A (en) 1997-12-02 1997-12-02 Persulfated chondroitin sulfuric acid, production thereof, and anti-blood coagulating agent containing the same as active ingredient

Publications (1)

Publication Number Publication Date
WO1999028351A1 true WO1999028351A1 (en) 1999-06-10

Family

ID=18387726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000023 WO1999028351A1 (en) 1997-12-02 1998-01-08 Persulfated chondroitin sulfates, process for producing the same, and anticoagulants containing the same as the active ingredient

Country Status (2)

Country Link
JP (1) JPH11166001A (en)
WO (1) WO1999028351A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198635A (en) * 2014-08-13 2014-12-10 南京健友生化制药股份有限公司 Method for detecting oversulfated chondroitin sulfate in heparin sodium by virtue of quick separation protein purification instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636818B2 (en) * 2004-06-07 2011-02-23 マルホ株式会社 Method for producing polysulfated chondroitin sulfate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147701A (en) * 1984-08-14 1986-03-08 Seikagaku Kogyo Co Ltd Synthetic chondroitin polysulfate and its preparation
JPH08301771A (en) * 1995-03-08 1996-11-19 Shiseido Co Ltd Pharmaceutical preparation for preventing or treating nephropathy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147701A (en) * 1984-08-14 1986-03-08 Seikagaku Kogyo Co Ltd Synthetic chondroitin polysulfate and its preparation
JPH08301771A (en) * 1995-03-08 1996-11-19 Shiseido Co Ltd Pharmaceutical preparation for preventing or treating nephropathy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198635A (en) * 2014-08-13 2014-12-10 南京健友生化制药股份有限公司 Method for detecting oversulfated chondroitin sulfate in heparin sodium by virtue of quick separation protein purification instrument

Also Published As

Publication number Publication date
JPH11166001A (en) 1999-06-22

Similar Documents

Publication Publication Date Title
Maruyama et al. Conformational changes and anticoagulant activity of chondroitin sulfate following its O-sulfonation
Pervin et al. Preparation and structural characterization of large heparin-derived oligosaccharides
Jouault et al. Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus
US5795875A (en) Therapeutic methods of using O-desulfated heparin derivatives
US4933326A (en) Oligosaccharides obtained by heparin depolymerization having antiatherosclerotic activity
Griffin et al. Isolation and characterization of heparan sulfate from crude porcine intestinal mucosal peptidoglycan heparin
Tiruchinapally et al. Divergent heparin oligosaccharide synthesis with preinstalled sulfate esters
EP0347588A1 (en) Heparin derivatives and process for their preparation
BRPI0509068B1 (en) method for quantifying the amount of components in a sample of material selected from unfractionated heparins and fractionated heparins
Franz et al. Structure-activity relationship of antithrombotic polysaccharide derivatives
Petitou et al. Synthesis and pharmacological properties of a close analogue of an antithrombotic pentasaccharide (SR 90107A/ORG 31540)
US20100081629A1 (en) Low molecular weight heparins including at least one covalent bond with biotin or a biotin derivative, method for making same and use thereof
HUT64087A (en) Process for producing n,o-sulfated heparosanes of high molecular weigh and pharmaceutical compositions comprising such compounds
EP2985298B1 (en) Low-molecular-weight fucosylated glycosaminoglycan derivative containing terminal 2,5-anhydrated talose or derivative thereof
US5519010A (en) Sulfated polysaccharide, pharmaceutically acceptable salt thereof, process for preparing same and medicament containing same as effective component
BRPI9804699B1 (en) carbohydrate derivative, pharmaceutical composition and use of the carbohydrate derivative
DK174284B1 (en) Biologically active tetrasaccharides
JP2012526174A (en) Novel acylated decasaccharides and their use as antithrombotic agents
Alban et al. Gas-liquid chromatography-mass spectrometry analysis of anticoagulant active curdlan sulfates
de Paz et al. Synthesis and biological evaluation of a heparin‐like hexasaccharide with the structural motifs for binding to FGF and FGFR
US20100075922A1 (en) Heparins including at least one covalent bond with biotin or a biotin derivative, method for preparing same and use thereof
CA2026992C (en) Sulfated polysaccharide, pharmaceutically acceptable salt thereof, process for preparing same and medicament containing same as effective component
WO1999028351A1 (en) Persulfated chondroitin sulfates, process for producing the same, and anticoagulants containing the same as the active ingredient
US9896517B2 (en) Low molecular weight glycosaminoglycan derivative, pharmaceutical composition thereof, preparation method therefor and use thereof
LINDAHL et al. The antithrombin-binding sequence of heparin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA NZ US