WO1999027622A1 - Multibeam laser resonator - Google Patents

Multibeam laser resonator Download PDF

Info

Publication number
WO1999027622A1
WO1999027622A1 PCT/FR1998/002493 FR9802493W WO9927622A1 WO 1999027622 A1 WO1999027622 A1 WO 1999027622A1 FR 9802493 W FR9802493 W FR 9802493W WO 9927622 A1 WO9927622 A1 WO 9927622A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirrors
small mirrors
optical
mirror
convex
Prior art date
Application number
PCT/FR1998/002493
Other languages
French (fr)
Inventor
Bruno Godard
Michel Vampouille
Claude Froehly
Robert Stehle
Pierre Jean Devilder
Vincent Kermene
Original Assignee
Universite De Limoges
Societe De Production Et De Recherches Appliquees Sopra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Limoges, Societe De Production Et De Recherches Appliquees Sopra filed Critical Universite De Limoges
Publication of WO1999027622A1 publication Critical patent/WO1999027622A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08081Unstable resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0818Unstable resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Definitions

  • the present invention relates to a multibeam optical resonator device. It also relates to a laser machining system including this device.
  • the present invention is part of the improvement of power laser systems.
  • Such systems are already known including optical resonator devices implementing a so-called unstable optical cavity consisting of a concave mirror and a convex mirror.
  • an optical resonator device of the prior art D comprises, with reference to FIG. 1, a discharge chamber 11 containing an amplifying medium 13 within an optical cavity constituted by a concave mirror 10 and a mirror convex 12 arranged so that its focus is located in the focal plane PF of the concave mirror 10. If a converging lens 14 is added thereto, a machining system 2 is then obtained delivering a convergent beam 20 according to an energy distribution 21 of which the diameter in the focal plane FL of the lens 14 approaches more or less the theoretical minimum diameter imposed by the laws of diffraction.
  • the amplifying medium 13 is contained, for example, in a metal enclosure provided with two transparent portholes at the wavelength considered and made of a suitable material.
  • the other path aims to improve the directivity of the emitted radiation, by seeking to obtain a spatially quasi-uniphase beam by the use of particular resonator configurations. This improvement is particularly desirable in the field of precision machining for which the beam can be focused in a spot of minimum dimension limited by diffraction or adapted. It is for this type of application that the invention was developed. It aims to meet the needs for increased efficiency and higher rates expressed in the industrial sectors of this field.
  • this resonator device designed to emit a set of N elementary beams spatially almost uniphases.
  • this resonator device comprises:
  • the large mirror is of the concave type while the N small mirrors are of the convex type.
  • the N small mirrors are of the convex type.
  • the small mirrors are identical and can be arranged either substantially against each other, or substantially at the vertices of a polygon.
  • the set of N small mirrors comprises mirrors having different focal lengths and spatially arranged so that their respective focal points are located substantially in the focal plane of the large mirror.
  • the small mirrors are for example held by support means in a predetermined geometric configuration such that their focal points are substantially in the focal plane of the large mirror. They can be formed by any spherical or sphero-cylindrical reflecting surface, in particular by a matrix of micro-mirrors or of micro-lenses associated with mirrors, with reference to document FR 2737786. Convex mirrors can be provided, instead of mirrors with two different radii of curvature in orthogonal planes. These mirrors can also be convex in one axis and planes in the other. One can also provide mirrors whose reflection coefficient is predetermined to obtain the best efficiency in the targeted technical application, for example maximum or semi-reflecting. In addition, you can add treatments to the mirrors.
  • the output beam (s) are extracted from said resonator, either by the periphery of the convex mirrors, or by a pierced or semi-reflecting reflective plate, placed inside the resonant cavity.
  • the optical resonator device uses for example an excimer laser operating in the wavelength range [0, 1-0, 35] ⁇ m.
  • a laser machining system including at least one optical resonator device according to the invention for generating a beam or a multiplicity of spatially quasi-uniphase beams of high luminance.
  • This laser machining system further comprises a focusing system, for example, a converging lens disposed downstream of the common focal plane containing the set of convex mirrors.
  • the machining system according to the invention is intended to obtain, at the focal point of the lens placed outside the resonator, N beams of substantially equal intensities, of minimum diameters (limited by the laws of diffraction), arranged in a geometry and controllable deviations.
  • FIG. 1 is a block diagram of an example of an optical resonator device with a convex mirror, representative of the prior art
  • FIGS. 4A to 4D represent several possible arrangements of spherical or sphero-cylindrical convex mirrors in the exit plane of a resonator device according to the invention.
  • FIG. 5 shows a support equipment for convex mirrors implemented in an optical resonator device according to the invention.
  • the optical resonator device 1 comprises in the output plane PS several (N) identical convex mirrors (for example, three) 121, 122, 123.
  • All 121-123 mirrors have a maximum or predetermined reflection coefficient, or are apodized.
  • the N convex mirrors can be placed either at the top of a polygon (triangle, square, hexagon, octagon, ...), or against each other, but always in the same plane, as illustrated in Figure 4.
  • the proposed configuration can be compared to the juxtaposition N Cassegrain type telescopes formed by the association of the concave mirror 10 and a convex mirror 12 (cf. FIG. 1).
  • the concave mirror .10 is common to each of the telescopes.
  • Each telescope selects, in the spontaneous emission noise from the amplifying medium, an average direction corresponding to that of the solid angle under which the concave mirror 10 is seen by one of the convex mirrors 121-123, with reference to the figures 2 and 3.
  • This noise is amplified at each passage through the amplifying medium 13.
  • the laser radiation is composed of N non-collinear collimated beams.
  • the angle between each beam is 2d / (Rcv-Rcx) radians.
  • the near field has a transverse dimension equal to. the section of the amplifying medium 13, or different in the case of apodization.
  • a converging lens 14 When a converging lens 14 is placed downstream from the common focal plane, there is then a laser machining system 4 delivering a set of directional beams 41, 42, 43, with reference to FIG. 3.
  • the optical resonator device shown in this figure includes small convex mirrors next to each other 121 ', 122', 123 '. In the focal plane of the converging lens 14, the beams are convergent and not collinear. The number of beams is identical to the number of convex mirrors.
  • the far field observed at the focal point of the converging lens 14 with focal length F, consists of N spots of diffraction of minimum dimensions substantially equal to ⁇ F / ⁇ . These N spots are separated by a distance
  • D 2dF / (Rcv-Rcx) and have the same arrangement as the convex mirrors.
  • convex mirrors having different focal distances but whose respective focal points are all located substantially in the focal plane of the concave mirror 10.
  • One can envisage different possible geometries for the convex mirrors with reference to FIG. 4.
  • the number of mirrors and the geometries are not limited.
  • a set 62 of four convex mirrors 620 can for example be fixed, by known techniques of bonding, on a transparent blade 63 held in a support frame 6. But other techniques for fixing lenses or mirrors can be implemented , especially with the use of radial arms common in the field of Cassegrain telescopes.
  • the N convex mirrors can consist of any spherical reflecting surface such as, for example, a matrix of spherical micro-mirrors.
  • the optical resonator device according to the invention makes it possible to obtain N beams at the ultimate divergence fixed by diffraction in one or more back-and-forth movements inside the discharge chamber. For this, it is necessary that the magnification G is as high as possible. For these reasons, this type of resonator is particularly well suited to lasers with high gains per pass and short duration pulses.
  • the exit beam (s) can be extracted from the resonator, either by the periphery of the N convex mirrors, or by a pierced and inclined reflecting plate, placed inside the discharge chamber, or by a semi-circular plate. transparent.
  • a machining system according to the invention may have, by way of nonlimiting example, the following dimensions:
  • an optical resonator device according to the invention can be advantageously used to perform optical pumping of non-linear materials (BBO, KDP, ...) or light amplifiers.
  • the present invention is not limited to the excimer laser, but can just as easily relate to other types of laser usable for power applications.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)

Abstract

The invention concerns an optical resonator (1) designed to transmit a set of spatially quasi uniphase N elementary beams of strong luminance (41, 42, 43), comprising: a large mirror (10), for example concave, and a set of N identical small mirrors (121-123), for example convex, arranged such that their respective focal points are located substantially in the large mirror (10) focal plane (PF). The large mirror (10) and the small mirrors (121-123) define a discharge chamber containing the optical amplifying medium (13). The invention is particularly useful for high precision laser machining systems.

Description

RESONATEUR LASER MULTIFAISCEAUX MULTI-BEAM LASER RESONATOR
La présente invention concerne un dispositif résonateur optique multifaisceaux. Elle vise également un système d'usinage laser incluant ce dispositif.The present invention relates to a multibeam optical resonator device. It also relates to a laser machining system including this device.
La présente invention s'inscrit dans le cadre de l'amélioration des systèmes lasers de puissance.The present invention is part of the improvement of power laser systems.
On connaît déjà de tels systèmes incluant des dispositifs résonateurs optiques mettant en œuvre une cavité optique dite, instable constituée d'un miroir concave et d'un miroir convexe.Such systems are already known including optical resonator devices implementing a so-called unstable optical cavity consisting of a concave mirror and a convex mirror.
Ainsi, un dispositif résonateur optique de l'art antérieur D comporte, en référence à la figure 1, une chambre de décharge 11 contenant un milieu amplificateur 13 au sein d'une cavité optique constituée d'un miroir concave 10 et d'un miroir convexe 12 disposé de telle sorte que son foyer est situé dans le plan focal PF du miroir concave 10. Si on y adjoint une lentille convergente 14, on obtient alors un système d'usinage 2 délivrant un faisceau convergent 20 selon une distribution énergétique 21 dont le diamètre dans le plan focal FL de la lentille 14 s'approche plus ou moins du diamètre minimal théorique imposé par les lois de la diffraction. Le milieu amplificateur 13 est contenu par exemple dans une enceinte métallique pourvue de deux hublots transparents à la longueur d'onde considérée et réalisée dans un matériau adapté.Thus, an optical resonator device of the prior art D comprises, with reference to FIG. 1, a discharge chamber 11 containing an amplifying medium 13 within an optical cavity constituted by a concave mirror 10 and a mirror convex 12 arranged so that its focus is located in the focal plane PF of the concave mirror 10. If a converging lens 14 is added thereto, a machining system 2 is then obtained delivering a convergent beam 20 according to an energy distribution 21 of which the diameter in the focal plane FL of the lens 14 approaches more or less the theoretical minimum diameter imposed by the laws of diffraction. The amplifying medium 13 is contained, for example, in a metal enclosure provided with two transparent portholes at the wavelength considered and made of a suitable material.
Or, les systèmes lasers de puissance actuels ne permettent pas toujours de répondre au mieux aux besoins variés tels que les traitements de surfaces qui nécessitent une répartition uniforme de la puissance sur une grande surface ou l'usinage de haute précision qui demande un faisceau directif puissant aussi étroit que possible. Selon l'application désirée, deux voies ont été explorées. L'une consiste à accroître l'énergie totale délivrée par les lasers en augmentant le volume du milieu amplificateur au détriment de la directivité du faisceau.However, current power laser systems do not always make it possible to best meet various needs such as surface treatments which require a uniform distribution of power over a large area or high precision machining which requires a powerful directive beam. as narrow as possible. Depending on the desired application, two avenues have been explored. One is to increase the total energy delivered by the lasers by increasing the volume of the amplifying medium at the expense of the directivity of the beam.
Celui-ci présente alors une répartition transversale d'intensité instantanée très inhomogène, mais très acceptable lorsqu'elle est intégrée dans le temps. Elle peut alors être utilisée pour certains types de traitement de surfaces.This then presents a transverse distribution of instantaneous intensity which is very inhomogeneous, but very acceptable when it is integrated over time. It can then be used for certain types of surface treatment.
L'autre voie vise à améliorer la directivité du rayonnement émis, en cherchant à obtenir un faisceau spatialement quasi uniphase par l'utilisation de configurations de résonateurs particulières. Cette amélioration est particulièrement souhaitable dans le domaine de l'usinage de précision pour lequel le faisceau pourra être focalisé en une tache de dimension minimale limitée par la diffraction ou adaptée. C'est pour ce type d'applications que l'invention a été développée. Elle vise à répondre aux besoins d'efficacité accrue et de cadences plus élevées exprimés dans les secteurs industriels de ce domaine.The other path aims to improve the directivity of the emitted radiation, by seeking to obtain a spatially quasi-uniphase beam by the use of particular resonator configurations. This improvement is particularly desirable in the field of precision machining for which the beam can be focused in a spot of minimum dimension limited by diffraction or adapted. It is for this type of application that the invention was developed. It aims to meet the needs for increased efficiency and higher rates expressed in the industrial sectors of this field.
Les objectifs précités sont atteints avec un dispositif résonateur optique conçu pour émettre un ensemble de N faisceaux élémentaires spatialement quasi uniphases . Suivant l'invention, ce dispositif résonateur comprend:The aforementioned objectives are achieved with an optical resonator device designed to emit a set of N elementary beams spatially almost uniphases. According to the invention, this resonator device comprises:
- un grand miroir, et- a large mirror, and
- un ensemble de N petits miroirs disposés de sorte que leurs foyers respectifs sont situés sensiblement dans le plan focal dudit grand miroir, ce grand miroir et ces petits miroirs délimitant chacun une cavité optique contenant un milieu amplificateur optique, cette cavité optique étant instable dans un au moins des plans de section. On réalise ainsi un résonateur optique capable de produire directement un ensemble de faisceaux spatialement quasi uniphases de forte luminance, ce qui conduit à une amélioration significative du rendement énergétique par rapport aux dispositifs résonateurs de puissance de l'art antérieur.- A set of N small mirrors arranged so that their respective focal points are located substantially in the focal plane of said large mirror, this large mirror and these small mirrors each delimiting an optical cavity containing an optical amplifying medium, this optical cavity being unstable in a at least section plans. This produces an optical resonator capable of directly producing a set of spatially quasi-uniphase beams of high luminance, which leads to a significant improvement in energy efficiency compared to the power resonator devices of the prior art.
Dans une version préférée de l'invention, le grand miroir est de type concave tandis que les N petits miroirs sont de types convexe. Mais on peut envisager bien d'autres combinaisons de types de miroirs pourvu que ces combinaisons procurent une instabilité de la cavité optique dans un au moins des plans de section.In a preferred version of the invention, the large mirror is of the concave type while the N small mirrors are of the convex type. However, many other combinations of types of mirrors can be envisaged, provided that these combinations provide instability of the optical cavity in at least one of the section planes.
Dans un premier mode de réalisation, les petits miroirs sont identiques et peuvent être disposés soit sensiblement les uns contre les autres, soit sensiblement aux sommets d'un polygone.In a first embodiment, the small mirrors are identical and can be arranged either substantially against each other, or substantially at the vertices of a polygon.
Dans un second mode de réalisation, l'ensemble de N petits miroirs comprend des miroirs ayant des distances focales différentes et disposés spatialement de sorte que leurs foyers respectifs sont situés sensiblement dans le plan focal du grand miroir.In a second embodiment, the set of N small mirrors comprises mirrors having different focal lengths and spatially arranged so that their respective focal points are located substantially in the focal plane of the large mirror.
Les petits miroirs sont par exemple maintenus par des moyens de support dans une configuration géométrique prédéterminée telle que leurs foyers sont sensiblement dans le plan focal du grand miroir. Ils peuvent être constitués par toute surface sphérique ou sphéro- cylindrique réfléchissante, notamment par une matrice de micro-miroirs ou de microlentilles associées à des miroirs, en référence au document FR 2737786. On peut prévoir, en lieu et place des miroirs convexes, des miroirs présentant deux rayons de courbure différents dans des plans orthogonaux. Ces miroirs peuvent d'ailleurs être convexes dans un axe et plans dans l'autre. On peut aussi prévoir des miroirs dont le coefficient de réflexion est prédéterminé pour obtenir la meilleure efficacité dans l'application technique visée, soit par exemple maximum ou semi-réfléchissant. Par ailleurs, on peut apodiser les traitements des miroirs.The small mirrors are for example held by support means in a predetermined geometric configuration such that their focal points are substantially in the focal plane of the large mirror. They can be formed by any spherical or sphero-cylindrical reflecting surface, in particular by a matrix of micro-mirrors or of micro-lenses associated with mirrors, with reference to document FR 2737786. Convex mirrors can be provided, instead of mirrors with two different radii of curvature in orthogonal planes. These mirrors can also be convex in one axis and planes in the other. One can also provide mirrors whose reflection coefficient is predetermined to obtain the best efficiency in the targeted technical application, for example maximum or semi-reflecting. In addition, you can add treatments to the mirrors.
Le ou les faisceau (x) de sortie sont extraits dudit résonateur, soit par la périphérie des miroirs convexes, soit par une lame réfléchissante percée ou semi- réfléchissante, placée à l'intérieur de la cavité résonante.The output beam (s) are extracted from said resonator, either by the periphery of the convex mirrors, or by a pierced or semi-reflecting reflective plate, placed inside the resonant cavity.
Le dispositif résonateur optique selon l'invention met en œuvre par exemple un laser à excimère fonctionnant dans la gamme de longueur d'onde [0, 1-0, 35] μm.The optical resonator device according to the invention uses for example an excimer laser operating in the wavelength range [0, 1-0, 35] μm.
Suivant un autre aspect de l'invention, il est proposé un système d'usinage laser incluant au moins un dispositif résonateur optique selon l'invention pour générer un faisceau ou une multiplicité de faisceaux spatialement quasi uniphases de forte luminance. Ce système d'usinage laser comprend en outre un système focalisant, par exemple, une lentille convergente disposée en aval du plan focal commun contenant l'ensemble de miroirs convexes.According to another aspect of the invention, a laser machining system is proposed including at least one optical resonator device according to the invention for generating a beam or a multiplicity of spatially quasi-uniphase beams of high luminance. This laser machining system further comprises a focusing system, for example, a converging lens disposed downstream of the common focal plane containing the set of convex mirrors.
Le système d'usinage selon l'invention est destiné à obtenir, au foyer de la lentille placée en dehors du résonateur, N faisceaux d'intensités sensiblement égales, de diamètres minimums (limités par les lois de la diffraction) , disposés suivant une géométrie et des écarts contrôlables.The machining system according to the invention is intended to obtain, at the focal point of the lens placed outside the resonator, N beams of substantially equal intensities, of minimum diameters (limited by the laws of diffraction), arranged in a geometry and controllable deviations.
En utilisant un grand miroir concave carré ou rectangulaire et un ensemble de petits miroirs carrés ou rectangulaires répartis selon une ligne ou une matrice carrée ou rectangulaire, il est possible de réaliser des focalisations sous forme de traits lumineux et d'effectuer des découpes linéaires de faible largeur. D'autres particularités et avantages de l'invention apparaîtront encore dans la description ci-après. Aux dessins annexés donnés à titre d'exemples non limitatifs:By using a large concave square or rectangular mirror and a set of small square or rectangular mirrors distributed along a line or a square or rectangular matrix, it is possible to achieve focusing in the form of light lines and to perform linear cuts of low width. Other features and advantages of the invention will appear in the description below. In the appended drawings given by way of nonlimiting examples:
- la figure 1 est un schéma synoptique d'un exemple d'un dispositif résonateur optique à un miroir convexe, représentatif de l'art antérieur;- Figure 1 is a block diagram of an example of an optical resonator device with a convex mirror, representative of the prior art;
- la figure 2 est un schéma synoptique d'un exemple d'un dispositif résonateur optique selon 1 ' invention; - la figure 3 est un schéma synoptique d'un système d'usinage selon l'invention; les figures 4A à 4D représentent plusieurs agencements possibles de miroirs convexes sphériques ou sphéro-cylindriques dans le plan de sortie d'un dispositif résonateur selon l'invention; et- Figure 2 is a block diagram of an example of an optical resonator device 1 according to the invention; - Figure 3 is a block diagram of a machining system according to the invention; FIGS. 4A to 4D represent several possible arrangements of spherical or sphero-cylindrical convex mirrors in the exit plane of a resonator device according to the invention; and
- la figure 5 représente un équipement de support de miroirs convexes mis en œuvre dans un dispositif résonateur optique selon l'invention.- Figure 5 shows a support equipment for convex mirrors implemented in an optical resonator device according to the invention.
On va maintenant décrire plusieurs exemples de réalisation d'un dispositif résonateur optique selon 1 ' invention .We will now describe several exemplary embodiments of an optical resonator device according to the invention.
Dans l'exemple de réalisation représenté en figure 2, le dispositif résonateur optique 1 comprend dans le plan de sortie PS plusieurs (N) miroirs convexes identiques (par exemple, trois) 121, 122, 123.In the embodiment shown in FIG. 2, the optical resonator device 1 comprises in the output plane PS several (N) identical convex mirrors (for example, three) 121, 122, 123.
Tous les miroirs 121-123 sont à coefficient de réflexion maximum ou prédéterminé, ou apodisés . Les N miroirs convexes peuvent être placés soit au sommet d'un polygone (triangle, carré, hexagone, octogone,...), soit les uns contre les autres, mais toujours dans un même plan, comme l'illustre la figure 4.All 121-123 mirrors have a maximum or predetermined reflection coefficient, or are apodized. The N convex mirrors can be placed either at the top of a polygon (triangle, square, hexagon, octagon, ...), or against each other, but always in the same plane, as illustrated in Figure 4.
Une cavité, de type instable, est caractérisée par un grandissement transversal G égal au rapport du rayon de courbure Rcv du miroir concave 10 au rayon de courbure Rcx du miroir convexe 121-123: G= Rcv/RcxA cavity, of unstable type, is characterized by a transverse magnification G equal to the ratio of the radius of curvature Rcv of the concave mirror 10 to the radius of curvature Rcx of the convex mirror 121-123: G = Rcv / Rcx
Ce grandissement détermine le diamètre d des miroirs convexes selon la relation d=Φ/G, où Φ représente la section transversale du milieu amplificateur 13, celle-ci étant inférieure au diamètre du miroir concave 10. La configuration proposée peut être assimilée à la juxtaposition de N télescopes de type Cassegrain formés par l'association du miroir concave 10 et d'un miroir convexe 12 (cf. figure 1) . Le miroir concave .10 est commun à chacun des télescopes.This magnification determines the diameter d of the convex mirrors according to the relation d = Φ / G, where Φ represents the cross section of the amplifying medium 13, this being less than the diameter of the concave mirror 10. The proposed configuration can be compared to the juxtaposition N Cassegrain type telescopes formed by the association of the concave mirror 10 and a convex mirror 12 (cf. FIG. 1). The concave mirror .10 is common to each of the telescopes.
Chaque télescope sélectionne, dans le bruit d'émission spontanée issu du milieu amplificateur, une direction moyenne correspondant à celle de l'angle solide sous lequel le miroir concave 10 est vu par l'un des miroirs convexes 121-123, en référence aux figures 2 et 3. Ce bruit est amplifié à chaque passage dans le milieu amplificateur 13. En sortie de la chambre de décharge, dans le plan PS des miroirs convexes 121-123, le rayonnement laser est composé de N faisceaux collimatés non-colinéaires. L'angle entre chaque faisceau est égal à 2d/ (Rcv-Rcx) radians. Le champ proche présente une dimension transversale égale à . la section du milieu amplificateur 13, ou différente en cas d' apodisation.Each telescope selects, in the spontaneous emission noise from the amplifying medium, an average direction corresponding to that of the solid angle under which the concave mirror 10 is seen by one of the convex mirrors 121-123, with reference to the figures 2 and 3. This noise is amplified at each passage through the amplifying medium 13. At the outlet of the discharge chamber, in the plane PS of the convex mirrors 121-123, the laser radiation is composed of N non-collinear collimated beams. The angle between each beam is 2d / (Rcv-Rcx) radians. The near field has a transverse dimension equal to. the section of the amplifying medium 13, or different in the case of apodization.
Lorsqu'on place une lentille convergente 14 en aval du plan focal commun, on dispose alors d'un système d'usinage laser 4 délivrant un ensemble de faisceaux directionnels 41, 42, 43, en référence à la figure 3. Le dispositif résonateur optique l' représenté sur cette figure comprend des petits miroirs convexes voisins les uns des autres 121', 122', 123'. Dans le plan focal de la lentille convergente 14, les faisceaux sont convergents et non colinéaires. Le nombre des faisceaux est identique au nombre de miroirs convexes.When a converging lens 14 is placed downstream from the common focal plane, there is then a laser machining system 4 delivering a set of directional beams 41, 42, 43, with reference to FIG. 3. The optical resonator device shown in this figure includes small convex mirrors next to each other 121 ', 122', 123 '. In the focal plane of the converging lens 14, the beams are convergent and not collinear. The number of beams is identical to the number of convex mirrors.
Le champ lointain, observé au foyer de la lentille convergente 14 de focale F, est constitué de N taches de diffraction de dimensions minimales sensiblement égales à λF/Φ. Ces N taches sont séparées d'une distanceThe far field, observed at the focal point of the converging lens 14 with focal length F, consists of N spots of diffraction of minimum dimensions substantially equal to λF / Φ. These N spots are separated by a distance
D=2dF/ (Rcv-Rcx) et présentent la même disposition que les miroirs convexes. On peut également prévoir, toujours dans le cadre de la présente invention, des miroirs convexes ayant des distances focales différentes mais dont les foyers respectifs sont tous situés sensiblement dans le plan focal du miroir concave 10. On peut envisager différentes géométries possibles pour les miroirs convexes, en référence à la figure 4. Ainsi, le nombre de miroirs et les géométries ne sont pas limitées. On peut ainsi prévoir, à titre d'exemples non limitatifs, un agencement de quatre miroirs sphériques en carré (figure 4A) , un agencement de six miroirs sphériques aux sommets d'un hexagone (figure 4B) , des miroirs sphéro-cylindriques disposés sur une ligneD = 2dF / (Rcv-Rcx) and have the same arrangement as the convex mirrors. One can also provide, still within the framework of the present invention, convex mirrors having different focal distances but whose respective focal points are all located substantially in the focal plane of the concave mirror 10. One can envisage different possible geometries for the convex mirrors , with reference to FIG. 4. Thus, the number of mirrors and the geometries are not limited. One can thus provide, by way of nonlimiting examples, an arrangement of four spherical square mirrors (FIG. 4A), an arrangement of six spherical mirrors at the tops of a hexagon (FIG. 4B), sphero-cylindrical mirrors arranged on a line
(figure 4C) , ou encore plusieurs rangées de miroirs sphéro-cylindriques (figure 4D) pour permettre la réalisation de traits. Il est à noter que, même si dans les configurations représentées les miroirs sont séparés les uns des autres, on peut aussi envisager des configurations dans lesquelles les miroirs sont accolés les uns aux autres ou contigus. On peut également prévoir que les miroirs soient apodisés.(Figure 4C), or several rows of sphero-cylindrical mirrors (Figure 4D) to allow the production of lines. It should be noted that, even if in the configurations shown the mirrors are separated from each other, it is also possible to envisage configurations in which the mirrors are attached to each other or contiguous. It is also possible to provide for the mirrors to be apodized.
Un ensemble 62 de quatre miroirs convexes 620 peut par exemple être fixé, par des techniques connues de collage, sur une lame transparente 63 maintenue dans un cadre support 6. Mais d'autres techniques de fixation de lentilles ou de miroirs peuvent être mises en œuvre, notamment avec l'utilisation de bras radiaux courante dans le domaine des télescopes Cassegrain.A set 62 of four convex mirrors 620 can for example be fixed, by known techniques of bonding, on a transparent blade 63 held in a support frame 6. But other techniques for fixing lenses or mirrors can be implemented , especially with the use of radial arms common in the field of Cassegrain telescopes.
Dans tous les cas présentés, le faisceau sort par la périphérie de chacun des miroirs. Les N miroirs convexes peuvent être constitués de n'importe quelle surface sphérique réfléchissante telle que, par exemple, une matrice de micro-miroirs sphériques . Le dispositif résonateur optique selon l'invention permet d'obtenir N faisceaux à la divergence ultime fixée par la diffraction en un ou plusieurs allers-retours à l'intérieur de la chambre de décharge. Pour cela, il est nécessaire que le grandissement G soit le plus élevé possible. Pour ces raisons, ce type de résonateur est particulièrement bien adapté aux lasers présentant de forts gains par passage et des impulsions de courte durée. Le ou les faisceau (x) de sortie peuvent être extraits du résonateur, soit par la périphérie des N miroirs convexes, soit par une lame réfléchissante percée et inclinée, placée à l'intérieur de la chambre de décharge, ou par une lame semi-transparente.In all the cases presented, the beam exits through the periphery of each of the mirrors. The N convex mirrors can consist of any spherical reflecting surface such as, for example, a matrix of spherical micro-mirrors. The optical resonator device according to the invention makes it possible to obtain N beams at the ultimate divergence fixed by diffraction in one or more back-and-forth movements inside the discharge chamber. For this, it is necessary that the magnification G is as high as possible. For these reasons, this type of resonator is particularly well suited to lasers with high gains per pass and short duration pulses. The exit beam (s) can be extracted from the resonator, either by the periphery of the N convex mirrors, or by a pierced and inclined reflecting plate, placed inside the discharge chamber, or by a semi-circular plate. transparent.
Un système d'usinage selon l'invention peut présenter, à titre d'exemple non limitatif, les dimensions suivantes:A machining system according to the invention may have, by way of nonlimiting example, the following dimensions:
- longueur de la cavité: environ 1,25 m;- length of the cavity: about 1.25 m;
- diamètre Φ du miroir concave: 2,5.10~2 m;- diameter Φ of the concave mirror: 2.5.10 ~ 2 m;
- diamètre d d'un des miroirs convexes: 2,5.10~3 nu- distance focale de la lentille en sortie du résonateur: 3.10"1 m;- diameter d of one of the convex mirrors: 2.5.10 ~ 3 nu- focal length of the lens at the exit of the resonator: 3.10 "1 m;
- rayon de courbure du miroir concave: 2,5 m; rayon de courbure d'un des miroirs convexes: 2,5.10_1 m.- radius of curvature of the concave mirror: 2.5 m; radius of curvature of one of the convex mirrors: 2.5.10 _1 m.
Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention. On peut en particulier faire varier le nombre de miroirs convexes, leurs distances focales, leur configuration géométrique, leur coefficient de réflexion et l'ensemble des dimensions du dispositif résonateur selon l'invention, en fonction des objectifs techniques recherchés. De plus, un dispositif résonateur optique selon l'invention peut être avantageusement utilisé pour effectuer un pompage optique de matériaux non linéaires (BBO, KDP,...) ou amplificateurs de lumière. Par ailleurs, la présente invention n'est pas limitée au laser à excimere, mais peut tout aussi bien concerner d'autres types de laser utilisables pour des applications de puissance. Of course, the invention is not limited to the examples which have just been described and numerous modifications can be made to these examples without departing from the scope of the invention. We can in particular vary the number of convex mirrors, their focal distances, their geometric configuration, their reflection coefficient and all the dimensions of the resonator device. according to the invention, depending on the technical objectives sought. In addition, an optical resonator device according to the invention can be advantageously used to perform optical pumping of non-linear materials (BBO, KDP, ...) or light amplifiers. Furthermore, the present invention is not limited to the excimer laser, but can just as easily relate to other types of laser usable for power applications.

Claims

REVENDICATIONS
1. Dispositif résonateur optique (1, l') prévu pour émettre un ensemble de un ou plusieurs faisceaux élémentaires (41-43) spatialement quasi-uniphases, caractérisé en ce qu'il comprend:1. Optical resonator device (1, l ') provided for emitting a set of one or more elementary beams (41-43) spatially quasi-uniphases, characterized in that it comprises:
- un grand miroir (10), et- a large mirror (10), and
- un ensemble de N petits miroirs (121-123, 121--123*) disposés de telle sorte que leurs foyers respectifs sont sensiblement dans le plan focal (PF) dudit grand miroir (10) , ledit grand miroir (10) et lesdits petits miroirs (121-123) délimitant chacun une cavité optique contenant un milieu amplificateur optique, cette cavité optique étant instable dans au moins un plan de section.- a set of N small mirrors (121-123, 121--123 * ) arranged so that their respective focal points are substantially in the focal plane (PF) of said large mirror (10), said large mirror (10) and said small mirrors (121-123) each delimiting an optical cavity containing an optical amplifying medium, this optical cavity being unstable in at least one section plane.
2. Dispositif résonateur optique (1, l') selon la revendication 1, caractérisé en ce que le grand miroir est un miroir concave et les petits miroirs sont des miroirs convexes dans un au moins des plans de section.2. Optical resonator device (1, l ') according to claim 1, characterized in that the large mirror is a concave mirror and the small mirrors are convex mirrors in at least one of the section planes.
3. Dispositif (1') selon l'une des revendications 1 ou 2, caractérisé en ce que les petits miroirs (121', 122', 123') sont disposés sensiblement les uns contre les autres .3. Device (1 ') according to one of claims 1 or 2, characterized in that the small mirrors (121', 122 ', 123') are arranged substantially one against the other.
4. Dispositif selon l'une des revendications 1 ou 2 , caractérisé en ce que les petits miroirs sont disposés sensiblement aux sommets d'un polygone.4. Device according to one of claims 1 or 2, characterized in that the small mirrors are arranged substantially at the vertices of a polygon.
5. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que les petits miroirs sont disposés en une ou plusieurs rangées sensiblement parallèles.5. Device according to one of claims 1 or 2, characterized in that the small mirrors are arranged in one or more substantially parallel rows.
6. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que l'ensemble des N petits miroirs comprend des miroirs convexes ayant des distances focales différentes et disposés spatialement de sorte que leurs foyers respectifs sont situés sensiblement dans le plan focal du miroir concave.6. Device according to one of claims 1 or 2, characterized in that the set of N small mirrors comprises convex mirrors having focal distances different and spatially arranged so that their respective foci are located substantially in the focal plane of the concave mirror.
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les petits miroirs sont constitués par toute surface sphérique ou sphéro- cylindrique totalement ou partiellement réfléchissante, notamment par une matrice de micro-miroirs ou de micro- catadioptres.7. Device according to any one of the preceding claims, characterized in that the small mirrors are constituted by any spherical or sphero-cylindrical surface totally or partially reflecting, in particular by a matrix of micro-mirrors or micro-reflectors.
8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le ou les faisceau (x) de sortie sont extraits dudit résonateur par la périphérie des petits miroirs.8. Device according to any one of the preceding claims, characterized in that the output beam (s) (x) are extracted from said resonator by the periphery of the small mirrors.
9. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le ou les faisceau (x) de sortie sont extraits dudit résonateur par une lame réfléchissante percée ou semi-transparente et inclinée placée à l'intérieur de la cavité résonante.9. Device according to any one of claims 1 to 7, characterized in that the output beam (s) are extracted from said resonator by a reflecting or pierced or semi-transparent and inclined reflective plate placed inside the cavity resonant.
10. Système d'usinage laser (4) incluant un dispositif résonateur optique (l1) selon l'une quelconque des revendications précédentes, pour générer une multiplicité de faisceaux de forte luminance (41, 43) , caractérisé en ce qu'il comprend en outre un système focalisant, par exemple une lentille convergente (14) disposée en aval des petits miroirs (121' -123'). 10. laser machining system (4) including an optical resonator device (l 1 ) according to any one of the preceding claims, for generating a multiplicity of beams of high luminance (41, 43), characterized in that it comprises further a focusing system, for example a converging lens (14) disposed downstream of the small mirrors (121 '-123').
PCT/FR1998/002493 1997-11-21 1998-11-20 Multibeam laser resonator WO1999027622A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/14613 1997-11-21
FR9714613A FR2771557B1 (en) 1997-11-21 1997-11-21 MULTI-BEAM OPTICAL RESONATOR DEVICE AND LASER MACHINING SYSTEM INCLUDING THIS DEVICE

Publications (1)

Publication Number Publication Date
WO1999027622A1 true WO1999027622A1 (en) 1999-06-03

Family

ID=9513629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/002493 WO1999027622A1 (en) 1997-11-21 1998-11-20 Multibeam laser resonator

Country Status (2)

Country Link
FR (1) FR2771557B1 (en)
WO (1) WO1999027622A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682339A (en) * 1986-07-30 1987-07-21 United Technologies Corporation Laser array having mutually coupled resonators
US4942588A (en) * 1985-11-20 1990-07-17 Mitsubishi Denki Kabushiki Kaisha Laser device
US5289492A (en) * 1992-10-02 1994-02-22 United Technologies Corporation Scalable laser system using a coupled multiple output resonator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942588A (en) * 1985-11-20 1990-07-17 Mitsubishi Denki Kabushiki Kaisha Laser device
US4682339A (en) * 1986-07-30 1987-07-21 United Technologies Corporation Laser array having mutually coupled resonators
US5289492A (en) * 1992-10-02 1994-02-22 United Technologies Corporation Scalable laser system using a coupled multiple output resonator

Also Published As

Publication number Publication date
FR2771557A1 (en) 1999-05-28
FR2771557B1 (en) 2000-01-28

Similar Documents

Publication Publication Date Title
EP0209449B1 (en) Deformable mirror
EP3124854B1 (en) Lighting system for motor vehicle headlight
EP0377207B1 (en) Rod laser optically pumped by a source with a narrow emitting surface
WO2007088263A1 (en) Device for longitudinal pumping of a laser medium
FR2648962A1 (en) ILLUMINATION STRUCTURE OF A LASER BAR WITH DEFOCUSED OPTICAL SOURCES
FR2647973A1 (en) POWER LASERS PUMPS BY LASER DIODES
CA2047086C (en) Diffusion reflector
EP2615486B1 (en) Laser beam shaping apparatus
FR2977513A1 (en) Cutting a workpiece e.g. stainless steel by laser beam, comprises generating laser beam having Gaussian-type intensity distribution using laser source, and modifying laser beam so as to obtain ring type intensity distribution laser beam
FR3081737A1 (en) METHODS AND SYSTEMS FOR GENERATING HIGH CREE LASER PULSES
EP3804050A1 (en) Methods and systems for generating high peak power laser pulses
EP2567431B1 (en) Laser cavity with central extraction by polarisation for coherent coupling of intense intra-cavity beams
WO1999027622A1 (en) Multibeam laser resonator
EP1220386B1 (en) Laser source
EP1166402B1 (en) Optical pumping module of a laser comprising a cylindrical reflector with polygonal base
FR2781613A1 (en) FREE SPACE LASER WITH SELF-ALIGNED FIBER OUTPUT
FR2908933A1 (en) LASER AMPLIFIER WITH SEVERAL SUBASSEMBLIES OF PUMPING DEVICES
EP1317033B1 (en) Laser beam amplification through pumping of a non-linear medium and laser device comprising such an amplifier
FR2785098A1 (en) Laser doubler modular laser architecture comprises folded construction active laser regions single pump beam fed using progressive reflections
FR2858476A1 (en) LARGE OPTICAL CAVITY LASER SOURCE IN LARGE FINESSE SPECTRAL RING
EP1212814A1 (en) Pumped laser and optimised lasing medium
FR2756110A1 (en) Optical oscillator with spatially modulated cavity laser for telemetry esp. in automobile
EP1413018B1 (en) Laser source with intra-cavity beam steering and frequency conversion
CA1105120A (en) Multiple wavelength laser
CA1105597A (en) Laser amplifier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase