WO1999025123A1 - Color signal processing circuit - Google Patents

Color signal processing circuit Download PDF

Info

Publication number
WO1999025123A1
WO1999025123A1 PCT/JP1998/005018 JP9805018W WO9925123A1 WO 1999025123 A1 WO1999025123 A1 WO 1999025123A1 JP 9805018 W JP9805018 W JP 9805018W WO 9925123 A1 WO9925123 A1 WO 9925123A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
color
color components
pixel
data
Prior art date
Application number
PCT/JP1998/005018
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Ukita
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Publication of WO1999025123A1 publication Critical patent/WO1999025123A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
    • H04N25/136Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements using complementary colours
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/042Picture signal generators using solid-state devices having a single pick-up sensor
    • H04N2209/045Picture signal generators using solid-state devices having a single pick-up sensor using mosaic colour filter
    • H04N2209/046Colour interpolation to calculate the missing colour values

Definitions

  • the present invention relates to a color signal processing circuit, and more particularly to a color signal processing circuit which is applied to, for example, a digital camera and generates a plurality of second color signals based on a plurality of first color signals.
  • a complementary color filter having Ye (yellow), Cy (cyan), Mg (magenta) and Gr (green) filter elements of complementary colors is mounted on a CCD imager, Based on the four pixel data output from the imager, ie, Ye data, Cy data, Mg data and Gr data, primary color r (red) data and g (green) by the color signal processing circuit. Some of them generate data overnight and b (bullet) data.
  • the complementary color filter had the spectral sensitivity characteristics as shown in Fig. 11, and the color signal processing circuit generated the primary color data with the spectral sensitivity characteristics as shown in Fig. 12.
  • a main object of the present invention is to provide a novel color signal processing circuit.
  • Another object of the present invention is to provide a color signal processing circuit capable of improving color reproducibility.
  • a color signal processing circuit comprises: a first pixel signal input means for inputting a first pixel signal in which each pixel has a plurality of first color components; and a first pixel signal based on: Output means for outputting a second pixel signal in which a pixel has a plurality of second color components and at least one predetermined band level of the plurality of second color components is increased or decreased.
  • the first pixel signal input means inputs a first pixel signal in which each pixel has a plurality of first color components. Then, the output means outputs, based on the first pixel signal, a second pixel signal in which each pixel has a plurality of second color components and at least one predetermined band level of the plurality of second color components has been increased or decreased. .
  • the adjusting means adjusts one of the plurality of first color components.
  • the generation unit performs a matrix operation on the first color component and the remaining first color component output from the adjustment unit, and generates a plurality of second color components.
  • the adjusting means multiplies any one of the first color components by a predetermined coefficient, and subtracts the multiplication result from the other one of the first color components.
  • the third pixel signal input means inputs a third pixel signal in which each pixel has one of a plurality of first color components. Further, the interpolation means performs an interpolation process on the third pixel signal to generate a first pixel signal. The above-described level adjustment is performed by interpolation means.
  • the generation unit performs a matrix operation on the plurality of first color components to generate a plurality of second color components with the predetermined band level increased or decreased.
  • the plurality of first color components include a Ye component, a Cy component, a Mg component, and a Gr component
  • the plurality of second color components include an r component, a g component, and a b component.
  • the predetermined band includes a green band.
  • the plurality of first color components are Ye component, Cy component
  • the second color component includes an Mg component and a Gr component
  • the plurality of second color components include an r component, a g component, and a b component.
  • the plurality of first color components include a Y component, a Cy component, a Mg component, and a G r component
  • the plurality of second color components include an r component, a g component, and a b component.
  • the amplification means included in the output means amplifies the green band level of the g component.
  • At least one predetermined band component of a plurality of second color components is increased or decreased, so that color reproducibility is improved. Can be.
  • FIG. 1 is a block diagram showing one embodiment of the present invention
  • FIG. 2 is an illustrative view showing a complementary color filter
  • FIG. 3 is a flowchart showing a part of the operation of the embodiment of FIG. 1;
  • Figure 4 is a block diagram showing part of the embodiment of Figure 1;
  • FIG. 5 is a block diagram showing a part of another embodiment
  • FIG. 6 is a block diagram showing a part of another embodiment
  • FIG. 7 is a block diagram showing another embodiment of the present invention.
  • Figure 8 is a flowchart showing a part of the operation of the embodiment of Figure 7;
  • Figure 9 is a flowchart showing another part of the operation of the embodiment of Figure 7;
  • FIG. 10 is a graph showing the spectral sensitivity characteristics of r data, g data, and b data generated by the embodiment of FIGS. 1 to 9;
  • FIG. 11 is a graph showing the spectral sensitivity characteristics of the complementary color filter used in the embodiment of FIGS. 1 to 9;
  • FIG. 12 is a graph showing the spectral sensitivity characteristics of r data, g data, and b data obtained in the prior art
  • FIG. 13 is a graph showing the spectral sensitivity characteristics of the primary color filters.
  • a digital camera 10 of this embodiment includes a lens 12, and a light image incident from the lens 12 is irradiated on a CCD imager 16 via a complementary color filter 14.
  • the complementary color filter 14 has a filter element of Ye, Cy, Gr or Mg corresponding to each pixel. Specifically, filter elements of Ye and Cy are alternately arranged for each pixel on odd lines, and filter elements of Gr and Mg are alternately arranged for each pixel on even lines. Note that a Gr filter element is placed above and below the Y filter element, and a Mg filter element is placed above and below the Cy filter element.
  • the CCD imager 16 performs so-called all-pixel reading in response to a timing signal from the timing generator 20. That is, the pixel signals are output in order line by line.
  • the A / D converter 18 converts the pixel signal output from the CCD imager 16 into digital data, that is, pixel data, and inputs the digital data to the RAM 26 included in the color signal processing circuit 22.
  • the input pixel data is written to the memory area 26a by the memory control circuit 28 that operates according to the timing signal from the timing generator 20.
  • the memory control circuit 28 Since each pixel has only one color component of Ye, Cy, Gr, and Mg, the memory control circuit 28 processes the flow chart shown in Fig. 3 when reading from the memory area 26a. Then, the three color components for which each pixel is missing are interpolated. That is, first, in step S1, the memory control circuit 28 calculates the count value X of the counter 28a indicating the address in the row direction (horizontal direction) and the count value y of the counter 28b indicating the address in the column direction (vertical direction). Is set to "1", then (X, y), (x + 1, y), (x, y + 1) and (x + 1, y + 1) in steps S3 to S9, respectively. Are sequentially read out.
  • step S11 it is determined whether or not the count value X is a predetermined value, that is, the number of horizontal pixels is 11. If “N ⁇ ” here, the count value X is incremented in step S13 to process the next four pixels in the row direction, and then the process returns to step S3. on the other hand, If “YE S” is determined in step S11, it is determined in step S15 whether the count value y is a predetermined value, that is, the number of vertical pixels is one. If “NO”, in step S17, the count value X is returned to 1 and the count value y is incremented in order to process the four pixels located at the left end of the next line, and the process returns to step S3. If "YES” in the step S15, the process ends.
  • the interpolation process is performed in this manner, and four color components at positions indicated by black circles in FIG. 2 are obtained.
  • the serial Z-parallel conversion circuit 30 converts the input serial data into serial Z-parallel data for every four components. Is applied. Therefore, the Ye component, the Cy component, the Mg component, and the Gr component of the same pixel are simultaneously output from the serial / parallel conversion circuit 30.
  • the arithmetic circuit 32 is configured as shown in FIG.
  • the Ye component, the Cy component, and the Gr component output from the serial / parallel conversion circuit 30 are directly input to the matrix circuit 32c.
  • the Gr component is multiplied by a coefficient H (for example, 0.75) by the multiplier 32a, and the output of the multiplier 32a is input to the subtractor 32b.
  • the matrix circuit 32c also receives the M g 'component, and performs a matrix operation on the four color components according to Equation 1.
  • Equation 2 As shown in FIG. 5, a matrix circuit 32e is provided in which the matrix circuits 32c and 32d are integrated into one, and the matrix operation shown in Equation 3 is performed by the matrix circuit 32e. Is also good.
  • the r component, g component, and b component generated in this way are subjected to white balance correction in the signal processing circuit 34, and their peak levels are normalized to approximately one. Specifically, the r component, the g component, and the b component are multiplied by “1.74”, “1.12”, and “1.73”, respectively. As a result of such normalization, each color component has characteristics as shown in FIG. In other words, as can be seen from comparison with Fig. 12, the green band (495 nm to 570 nm) level of the r component and the b component is attenuated. For example, the normalized output of the r component at a wavelength of 545 nm is 11%, which is an improvement over the conventional 44%. Note that the negative output of each color component is underflow clipped by the same signal processing circuit 34 and can be ignored. The output from the signal processing circuit 34 is then recorded on the recording medium 36.
  • the green band levels of the finally obtained r component and b component are attenuated, so that the color reproducibility can be improved.
  • an arithmetic circuit 32 is configured as shown in FIG. 6, and a matrix circuit 32 f is composed of a Ye component, a Cy component, a Mg component, and a Gr component according to Equation 4.
  • Figure 1 except that the r, g, and b components are generated from It is the same as the example, and a redundant description is omitted c
  • Equation 4 the matrix coefficient multiplied by Gr is “ ⁇ 1 ⁇ 2”, “3 + ⁇ ”, or “ ⁇ 1_2”.
  • the multiplier 32 a and the subtractor 32 b are omitted and the matrix is omitted.
  • Some of the coefficients have been changed. Specifically, a value obtained by multiplying the matrix coefficient of Mg by ⁇ is added to the matrix coefficient of Gr.
  • the r, g, and b components output from the matrix circuit 32 f have the same values as the r, g, and b components output from the matrix circuit 32 d or 32 e. Having. That is, in this embodiment, the green band levels of the r component and the b component are attenuated by changing the matrix coefficient, and the color reproducibility is improved.
  • digital camera 10 of another embodiment has a memory area 26 b in RAM 26, and memory control circuit 28 performs interpolation processing according to the flow charts shown in FIGS. 8 and 9. Since the arithmetic circuit 32 includes the matrix circuit 32g shown in FIG. 6 and the matrix circuit 32g performs the arithmetic operation according to Equation 5, the operation circuit 32 is the same as the embodiment in FIG. The explanation given above is omitted.
  • the memory control circuit 28 first sets the count value m of the counter 28 a 'and the count value n of the counter 28 b' to "1" in step S21.
  • step S23 the address (x, Set y) to (m, n).
  • step S25 it is determined whether both x and y are even numbers. If “NO”, the pixel data D (x, y) of (X, y) is determined in step S27. Is held in the work area 26 b and the process proceeds to step S 31. If “YE S”, the calculation of the formula 6 is performed in step S 29, and the pixel data D ′ obtained thereby is obtained. (x, y) is stored in work area 26 b. Then, the flow shifts to step S31.
  • step S31 the address (x, y) is changed to (m + l, n)
  • step S39 the address (x, y) is changed to (m, n + 1)
  • step S47 the address (x, y) is changed to (m + 1, n + 1) in step S47.
  • the Mg component is always written at even-numbered positions in both the column address and the row address.
  • step S55 the memory control circuit 28 outputs the four color components held in the work area 26b, that is, the Ye component, the Cy component, the Gr component, and the Mg 'component in a serial manner. Then, in step S57, it is determined whether or not the count value m is equal to the number of horizontal pixels—1. If “NO” here, the count value m is incremented in step S59 to specify the next address in the horizontal direction, and the process returns to step S23. On the other hand, if “YE S” in step S57, it is determined in step S61 whether or not the count value n is a predetermined value, that is, the number of vertical pixels is one.
  • step S63 If “NO”, specify the leftmost address of the next line in step S63, the count value m is returned to "1" and the count value n is incremented, and the process returns to step S23. On the other hand, if “YES” in the step S61, the process is ended.
  • the generated r component, g component, and b component have characteristics as shown in FIG. Can be improved.
  • the digital cameras of this embodiment include a so-called digital still camera that records only a still image and a video movie that records a moving image (a digital camera that records both a still image and a moving image is also considered).
  • the green band levels of the r component and the b component are attenuated, but for example, the matrix coefficient of the matrix circuit 32 f is changed to amplify the green band level of the g component. You may do so.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Processing Of Color Television Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

A digital camera includes a CCD imager having complementary color filters. Ye data, Cy data, Mg data and Gr data are outputted from the CCD imager. Since one pixel has only one color component, the interpolation of three color components which the pixel concerned does not have is performed by a RAM, and thus four color components of the pixel are produced. In an operation circuit, the Gr component is multiplied by a predetermined coefficient α and then the product is subtracted from the Mg component, in other words, the remainder Mg' is Mg-αGr. The Ye data, the Cy data, the Gr data and the Mg' data are subjected to a matrix operation by a matrix circuit and, r data and b data whose green band components are attenuated are generated.

Description

明糸田書 色信号処理回路 技術分野  Akira Itoda Color signal processing circuit Technical field
この発明は色信号処理回路に関し、特にたとえばディジ夕ルカメラに適用され、 複数の第 1色信号に基づいて複数の第 2色信号を生成する、 色信号処理回路に関 する。  The present invention relates to a color signal processing circuit, and more particularly to a color signal processing circuit which is applied to, for example, a digital camera and generates a plurality of second color signals based on a plurality of first color signals.
従来技術  Conventional technology
従来のディジタルカメラとしては、 補色系の Y e (イエロ一), C y (シアン), M g (マゼンダ) および G r (グリーン) のフィルタ要素を持つ補色フィル夕を C C Dイメージャに装着し、 C C Dイメージャから出力された 4つの画素データ つまり Y eデータ, C yデ一夕, M gデータおよび G rデータに基づいて、 色信 号処理回路によって原色系の r (レッド) データ, g (グリーン) デ一夕および b (ブル一) データを生成するものがあった。 補色フィル夕は図 1 1に示すよう な分光感度特性を持ち、 色信号処理回路は図 1 2に示すような分光感度特性を持 つ原色デ一夕を生成していた。  As a conventional digital camera, a complementary color filter having Ye (yellow), Cy (cyan), Mg (magenta) and Gr (green) filter elements of complementary colors is mounted on a CCD imager, Based on the four pixel data output from the imager, ie, Ye data, Cy data, Mg data and Gr data, primary color r (red) data and g (green) by the color signal processing circuit. Some of them generate data overnight and b (bullet) data. The complementary color filter had the spectral sensitivity characteristics as shown in Fig. 11, and the color signal processing circuit generated the primary color data with the spectral sensitivity characteristics as shown in Fig. 12.
しかし、 図 1 2からわかるように、 グリーンの帯域に含まれる rデ一夕成分お よび bデータ成分が大きく、 そのために色再現性が悪いという問題があった。 一 方、 原色フィルタを C C Dイメージャに装着し、 C C Dイメージャから直接 rデ —タ, gデータおよび bデ一夕を得る他のディジタルカメラでは、 原色フィル夕 は図 1 3に示すような分光感度特性を持ち、 グリーンの帯域における rデータ成 分および bデ一夕成分は図 1 2よりもかなり小さい。  However, as can be seen from FIG. 12, there was a problem that the r-de-night component and the b-data component contained in the green band were large, and the color reproducibility was poor. On the other hand, in other digital cameras in which a primary color filter is attached to a CCD imager and r data, g data and b data are obtained directly from the CCD imager, the primary color filter has a spectral sensitivity characteristic as shown in Figure 13 In the green band, the r data component and the b data overnight component are much smaller than those in Fig. 12.
つまり、 図 1 2および図 1 3のいずれも、 それぞれのピーク出力がほぼ " 1 " に正規化されるように rデータ, gデ一夕および bデ一夕にホワイトバランス補 正をかけているが、 たとえば 5 4 5 n mの波長での rデータのレスポンスは、 図 1 2において 4 4 %であり、 図 1 3の 2 %と比較して非常に大きい。 発明の概要 それゆえに、 この発明の主たる目的は、 新規な色信号処理回路を提供すること である。 In other words, in both Fig. 12 and Fig. 13, white balance correction is applied to r data, g data and b data so that each peak output is almost normalized to "1". However, for example, the response of r data at a wavelength of 545 nm is 44% in FIG. 12, which is much larger than 2% in FIG. Summary of the Invention Therefore, a main object of the present invention is to provide a novel color signal processing circuit.
この発明の他の目的は、 色再現性を向上させることができる、 色信号処理回路 を提供することである。  Another object of the present invention is to provide a color signal processing circuit capable of improving color reproducibility.
この発明に従う色信号処理回路は、 次のものを備える ;各画素が複数の第 1色 成分を持つ第 1画素信号を入力する第 1画素信号入力手段;および第 1画素信号 に基づいて、 各画素が複数の第 2色成分を持ちかつ複数の第 2色成分の少なくと も 1つの所定帯域レベルが増減された第 2画素信号を出力する出力手段。  A color signal processing circuit according to the present invention comprises: a first pixel signal input means for inputting a first pixel signal in which each pixel has a plurality of first color components; and a first pixel signal based on: Output means for outputting a second pixel signal in which a pixel has a plurality of second color components and at least one predetermined band level of the plurality of second color components is increased or decreased.
第 1画素信号入力手段は、 各画素が複数の第 1色成分を持つ第 1画素信号を入 力する。 そして、 出力手段が、 第 1画素信号に基づいて、 各画素が複数の第 2色 成分を持ちかつ複数の第 2色成分の少なくとも 1つの所定帯域レベルが増減され た第 2画素信号を出力する。  The first pixel signal input means inputs a first pixel signal in which each pixel has a plurality of first color components. Then, the output means outputs, based on the first pixel signal, a second pixel signal in which each pixel has a plurality of second color components and at least one predetermined band level of the plurality of second color components has been increased or decreased. .
この発明のある局面では、 調整手段が、 複数の第 1色成分のいずれか 1つのレ ベルを調整する。 出力手段では、 生成手段が、 調整手段から出力された第 1色成 分および残りの第 1色成分にマ卜リクス演算を施し、 複数の第 2色成分を生成す る。  In one aspect of the present invention, the adjusting means adjusts one of the plurality of first color components. In the output unit, the generation unit performs a matrix operation on the first color component and the remaining first color component output from the adjustment unit, and generates a plurality of second color components.
この発明のある実施例では、 調整手段は、 いずれか 1つの第 1色成分に所定の 係数を掛け算し、 他の 1つの第 1色成分から掛け算結果を引き算する。  In one embodiment of the present invention, the adjusting means multiplies any one of the first color components by a predetermined coefficient, and subtracts the multiplication result from the other one of the first color components.
この発明の他の実施例では、 第 3画素信号入力手段が、 各画素が複数の第 1色 成分のいずれか 1つを持つ第 3画素信号を入力する。 また、 補間手段が、 第 3画 素信号に補間処理を施し、 第 1画素信号を生成する。 上述のレベル調整は、 補間 手段で実行される。  In another embodiment of the present invention, the third pixel signal input means inputs a third pixel signal in which each pixel has one of a plurality of first color components. Further, the interpolation means performs an interpolation process on the third pixel signal to generate a first pixel signal. The above-described level adjustment is performed by interpolation means.
この発明の他の局面では、 出力手段において、 生成手段が複数の第 1色成分に マトリクス演算を施して、 所定帯域レベルが増減された複数の第 2色成分を生成 する。  In another aspect of the present invention, in the output unit, the generation unit performs a matrix operation on the plurality of first color components to generate a plurality of second color components with the predetermined band level increased or decreased.
この発明のその他の局面では、 複数の第 1色成分は Y e成分, C y成分, M g 成分および G r成分を含み、 複数の第 2色成分は r成分, g成分および b成分を 含み、 そして、 所定帯域はグリーン帯域を含む。  In another aspect of the present invention, the plurality of first color components include a Ye component, a Cy component, a Mg component, and a Gr component, and the plurality of second color components include an r component, a g component, and a b component. The predetermined band includes a green band.
この発明のさらにその他の局面では、複数の第 1色成分は Y e成分, C y成分, M g成分および G r成分を含み、 複数の第 2色成分は r成分, g成分および b成 分を含み、 出力手段では減衰手段が、 r成分および b成分のグリーン帯域レベル を減衰させる。 In still another aspect of the present invention, the plurality of first color components are Ye component, Cy component, The second color component includes an Mg component and a Gr component, and the plurality of second color components include an r component, a g component, and a b component.
この発明の他の局面では、 複数の第 1色成分は Y e成分, C y成分, M g成分 および G r成分を含み、複数の第 2色成分は r成分, g成分および b成分を含み、 そして、 出力手段に含まれる増幅手段が、 g成分のグリーン帯域レベルを増幅さ せる。  In another aspect of the present invention, the plurality of first color components include a Y component, a Cy component, a Mg component, and a G r component, and the plurality of second color components include an r component, a g component, and a b component. The amplification means included in the output means amplifies the green band level of the g component.
この発明によれば、 第 1画素信号に基づいて第 2画素信号を出力するとき、 複 数の第 2色成分の少なくとも 1つの所定帯域成分を増減させるようにしたため、 色再現性を向上させることができる。  According to the present invention, when outputting a second pixel signal based on a first pixel signal, at least one predetermined band component of a plurality of second color components is increased or decreased, so that color reproducibility is improved. Can be.
この発明の上述の目的, その他の目的, 特徴および利点は、 図面を参照して行 う以下の実施例の詳細な説明から一層明らかとなろう。 図面の簡単な説明  The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1はこの発明の一実施例を示すブロック図であり ;  FIG. 1 is a block diagram showing one embodiment of the present invention;
図 2は補色フィル夕を示す図解図であり ;  FIG. 2 is an illustrative view showing a complementary color filter;
図 3は図 1実施例の動作の一部を示すフロー図であり ;  FIG. 3 is a flowchart showing a part of the operation of the embodiment of FIG. 1;
図 4は図 1実施例の一部を示すブロック図であり ;  Figure 4 is a block diagram showing part of the embodiment of Figure 1;
図 5は他の実施例の一部を示すブロック図であり ;  FIG. 5 is a block diagram showing a part of another embodiment;
図 6はその他の実施例の一部を示すブロック図であり ;  FIG. 6 is a block diagram showing a part of another embodiment;
図 7はこの発明のその他の実施例を示すブロック図であり ;  FIG. 7 is a block diagram showing another embodiment of the present invention;
図 8は図 7実施例の動作の一部を示すフロー図であり ;  Figure 8 is a flowchart showing a part of the operation of the embodiment of Figure 7;
図 9は図 7実施例の動作の他の一部を示すフロー図であり ;  Figure 9 is a flowchart showing another part of the operation of the embodiment of Figure 7;
図 1 0は図 1ないし図 9実施例によって生成される rデ一夕, gデータおよび bデータの分光感度特性を示すグラフであり ;  FIG. 10 is a graph showing the spectral sensitivity characteristics of r data, g data, and b data generated by the embodiment of FIGS. 1 to 9;
図 1 1は図 1ないし図 9実施例で用いられる補色フィル夕の分光感度特性を示 すグラフであり ;  FIG. 11 is a graph showing the spectral sensitivity characteristics of the complementary color filter used in the embodiment of FIGS. 1 to 9;
図 1 2は従来技術において得られる rデータ, gデータおよび bデ一夕の分光 感度特性を示すグラフであり ; 図 1 3は原色フィルタの分光感度特性を示すグラフである。 発明を実施するための最良の形態 Fig. 12 is a graph showing the spectral sensitivity characteristics of r data, g data, and b data obtained in the prior art; FIG. 13 is a graph showing the spectral sensitivity characteristics of the primary color filters. BEST MODE FOR CARRYING OUT THE INVENTION
図 1を参照して、 この実施例のディジタルカメラ 1 0はレンズ 1 2を含み、 こ のレンズ 12から入射された光像が、 補色フィル夕 14を介して CCDイメージ ャ 1 6に照射される。 補色フィルタ 14は、 図 2に示すように、 それぞれの画素 に対応して Ye, C y, G rまたは Mgのフィルタ要素を持つ。 具体的には、 Y eおよび Cyのフィル夕要素が奇数ラインに 1画素毎に交互に配置され、 G rお よび Mgのフィルタ要素が偶数ラインに 1画素毎に交互に配置される。 なお、 Y eのフィル夕要素の上下に G rのフィル夕要素が配置され、 Cyのフィルタ要素 の上下に Mgのフィル夕要素が配置される。  Referring to FIG. 1, a digital camera 10 of this embodiment includes a lens 12, and a light image incident from the lens 12 is irradiated on a CCD imager 16 via a complementary color filter 14. . As shown in FIG. 2, the complementary color filter 14 has a filter element of Ye, Cy, Gr or Mg corresponding to each pixel. Specifically, filter elements of Ye and Cy are alternately arranged for each pixel on odd lines, and filter elements of Gr and Mg are alternately arranged for each pixel on even lines. Note that a Gr filter element is placed above and below the Y filter element, and a Mg filter element is placed above and below the Cy filter element.
CCDイメージャ 1 6は、 タイミングジェネレータ 20からのタイミング信号 に応答していわゆる全画素読み出しを行う。 つまり、 1ラインずつ順に画素信号 を出力する。 A/D変換器 18は CCDイメージャ 1 6から出力された画素信号 をディジタルデータつまり画素データに変換し、 色信号処理回路 22に含まれる RAM 26に入力する。 入力された画素データは、 タイミングジェネレータ 20 からのタイミング信号に応じて動作するメモリコントロール回路 28によって、 メモリエリア 26 aに書き込まれる。  The CCD imager 16 performs so-called all-pixel reading in response to a timing signal from the timing generator 20. That is, the pixel signals are output in order line by line. The A / D converter 18 converts the pixel signal output from the CCD imager 16 into digital data, that is, pixel data, and inputs the digital data to the RAM 26 included in the color signal processing circuit 22. The input pixel data is written to the memory area 26a by the memory control circuit 28 that operates according to the timing signal from the timing generator 20.
それぞれの画素は Y e, Cy, G rおよび Mgのいずれか 1つの色成分しか持 たないため、 メモリコントロール回路 28は、 メモリエリア 26 aからの読み出 し時に図 3に示すフロー図を処理し、 それぞれの画素が不足する 3つの色成分を 補間する。 つまり、 メモリコントロール回路 28は、 まずステップ S 1でロウ方 向 (水平方向) のアドレスを示すカウンタ 28 aのカウント値 Xおよびカラム方 向 (垂直方向) のアドレスを示すカウンタ 28 bのカウント値 yを "1" にセッ トし、 次にステップ S 3〜S 9のそれぞれで (X, y), (x + 1 , y), (x, y + 1 ) および (x+ 1 , y + 1 ) の画素デ一夕を順次読み出す。 そして、 ステツ プ S 1 1で、 カウント値 Xが所定値つまり水平画素数一 1であるかどうか判断す る。 ここで "N〇" であれば、 ロウ方向における次の 4画素を処理すべくステツ プ S 1 3でカウント値 Xをインクリメントし、その後ステップ S 3に戻る。一方、 ステップ S 1 1で " YE S" と判断されると、 ステップ S 1 5でカウント値 yが 所定値つまり垂直画素数一 1であるかどうか判断する。 そして "NO"であれば、 次のラインの左端に位置する 4画素を処理すべく、 ステップ S 1 7でカウント値 Xを 1に戻すとともにカウント値 yをィンクリメントし、 そしてステップ S 3に 戻る。 ステップ S 1 5で "YES" であれば処理を終了する。 Since each pixel has only one color component of Ye, Cy, Gr, and Mg, the memory control circuit 28 processes the flow chart shown in Fig. 3 when reading from the memory area 26a. Then, the three color components for which each pixel is missing are interpolated. That is, first, in step S1, the memory control circuit 28 calculates the count value X of the counter 28a indicating the address in the row direction (horizontal direction) and the count value y of the counter 28b indicating the address in the column direction (vertical direction). Is set to "1", then (X, y), (x + 1, y), (x, y + 1) and (x + 1, y + 1) in steps S3 to S9, respectively. Are sequentially read out. Then, in step S11, it is determined whether or not the count value X is a predetermined value, that is, the number of horizontal pixels is 11. If "N〇" here, the count value X is incremented in step S13 to process the next four pixels in the row direction, and then the process returns to step S3. on the other hand, If "YE S" is determined in step S11, it is determined in step S15 whether the count value y is a predetermined value, that is, the number of vertical pixels is one. If "NO", in step S17, the count value X is returned to 1 and the count value y is incremented in order to process the four pixels located at the left end of the next line, and the process returns to step S3. If "YES" in the step S15, the process ends.
このようにして補間処理 実行され、 図 2において黒丸で示す位置の 4つの色 成分が得られる。  The interpolation process is performed in this manner, and four color components at positions indicated by black circles in FIG. 2 are obtained.
RAM 26からは Y e成分, Cy成分, M g成分および G r成分がシリアル方 式で出力されるため、 シリアル Zパラレル変換回路 30は、 入力されるシリアル データに 4成分毎のシリアル Zパラレル変換を施す。 このため、 シリアル/パラ レル変換回路 30から同じ画素の Y e成分, Cy成分, Mg成分および G r成分 が同時に出力される。  Since the RAM 26 outputs the Y component, the Cy component, the Mg component, and the Gr component in a serial format, the serial Z-parallel conversion circuit 30 converts the input serial data into serial Z-parallel data for every four components. Is applied. Therefore, the Ye component, the Cy component, the Mg component, and the Gr component of the same pixel are simultaneously output from the serial / parallel conversion circuit 30.
演算回路 32は、 図 4に示すように構成される。 シリアル/パラレル変換回路 30から出力された Ye成分, C y成分および G r成分は、 そのままマトリクス 回路 32 cに入力される。 また、 G r成分が掛け算器 32 aによって係数ひ (た とえば 0. 7 5) と掛け算され、 掛け算器 32 aの出力が減算器 32 bに入力さ れる。 シリアル Zパラレル変換回路 30からの Mg成分は、 この引き算器 32 b で掛け算器 32 aの出力つまり aG rと引き算され、 引き算器 32 bから Mg ' 成分 ( = Mg— aG r) が出力される。 マトリクス回路 32 cは M g ' 成分も受 け、 数 1 に従って 4つの色成分にマトリクス演算を施す。  The arithmetic circuit 32 is configured as shown in FIG. The Ye component, the Cy component, and the Gr component output from the serial / parallel conversion circuit 30 are directly input to the matrix circuit 32c. Further, the Gr component is multiplied by a coefficient H (for example, 0.75) by the multiplier 32a, and the output of the multiplier 32a is input to the subtractor 32b. The Mg component from the serial Z-parallel conversion circuit 30 is subtracted by the subtracter 32 b from the output of the multiplier 32 a, that is, aG r, and the Mg ′ component (= Mg—aG r) is output from the subtracter 32 b . The matrix circuit 32c also receives the M g 'component, and performs a matrix operation on the four color components according to Equation 1.
【数 1】  [Equation 1]
Figure imgf000007_0001
これによつてマトリクス回路 32 cから輝度成分 Yならびに色差成分 C rおよ び Cbが出力され、 マトリクス回路 32 dに入力される。 そして再び数 2に従つ てマ卜リクス演算が行われ、 輝度成分 Yならびに色差成分 C rおよび C bに基づ いて原色系の r成分, g成分および b成分が得られる。 【数 2】
Figure imgf000008_0001
なお、 図 5に示すようにマトリクス回路 3 2 cおよび 3 2 dを 1つにまとめた マトリクス回路 3 2 eを設け、 このマトリクス回路 3 2 eによって数 3に示すマ トリクス演算を行うようにしてもよい。
Figure imgf000007_0001
As a result, the luminance component Y and the color difference components Cr and Cb are output from the matrix circuit 32c and input to the matrix circuit 32d. The matrix operation is performed again according to Equation 2, and the r, g, and b components of the primary color system are obtained based on the luminance component Y and the chrominance components Cr and Cb. [Equation 2]
Figure imgf000008_0001
As shown in FIG. 5, a matrix circuit 32e is provided in which the matrix circuits 32c and 32d are integrated into one, and the matrix operation shown in Equation 3 is performed by the matrix circuit 32e. Is also good.
【数 3】  [Equation 3]
Figure imgf000008_0002
このようにして生成された r成分, g成分および b成分は、 信号処理回路 3 4 でホワイ卜バランス補正を施され、 それぞれのピークレベルがほぼ 1に正規化さ れる。 具体的には、 r成分, g成分および b成分のそれぞれに " 1 . 7 4 ", " 1 . 1 2 " および " 1 . 7 3 " が掛け算される。 このような正規化が行われる結果、 それぞれの色成分は図 1 0に示すような特性を持つ。 つまり、 図 1 2と比較して わかるように、 r成分および b成分のグリーン帯域 (4 9 5 n m〜 5 7 0 n m) レベルが減衰される。 たとえば、 波長 5 4 5 n mにおける r成分の正規化出力は 1 1 %となり、 従来の 4 4 %よりも改善される。 なお、 それぞれの色成分のマイ ナス出力は、同じ信号処理回路 3 4によってアンダーフロークリップされるため、 無視してよい。信号処理回路 3 4からの出力はその後記録媒体 3 6に記録される。
Figure imgf000008_0002
The r component, g component, and b component generated in this way are subjected to white balance correction in the signal processing circuit 34, and their peak levels are normalized to approximately one. Specifically, the r component, the g component, and the b component are multiplied by “1.74”, “1.12”, and “1.73”, respectively. As a result of such normalization, each color component has characteristics as shown in FIG. In other words, as can be seen from comparison with Fig. 12, the green band (495 nm to 570 nm) level of the r component and the b component is attenuated. For example, the normalized output of the r component at a wavelength of 545 nm is 11%, which is an improvement over the conventional 44%. Note that the negative output of each color component is underflow clipped by the same signal processing circuit 34 and can be ignored. The output from the signal processing circuit 34 is then recorded on the recording medium 36.
このように、 M g成分レベルを調整することによって、 最終的に得られる r成 分および b成分のグリーン帯域レベルが減衰されるため、 色再現性を向上させる ことができる。  As described above, by adjusting the Mg component level, the green band levels of the finally obtained r component and b component are attenuated, so that the color reproducibility can be improved.
他の実施例のディジタルカメラ 1 0は、 演算回路 3 2が図 6に示すように構成 され、 かつマトリクス回路 3 2 f が数 4に従って Y e成分, C y成分, M g成分 および G r成分から r成分, g成分および b成分を生成する点を除き、 図 1実施 例と同様であるため、 重複した説明を省略する c In a digital camera 10 of another embodiment, an arithmetic circuit 32 is configured as shown in FIG. 6, and a matrix circuit 32 f is composed of a Ye component, a Cy component, a Mg component, and a Gr component according to Equation 4. Figure 1 except that the r, g, and b components are generated from It is the same as the example, and a redundant description is omitted c
【数 4】  [Equation 4]
Figure imgf000009_0001
数 4において、 G rに掛けられるマトリクス係数は、 "― 1— 2 ひ", " 3 + α " または "― 1 _ 2 "である。つまり、 図 1実施例はマトリクス演算の前に M g ' == M g—ひ G rを生成していたが、 この実施例では掛け算器 3 2 aおよび引き算 器 3 2 bを省略するとともにマトリクス係数の一部を変更している。具体的には、 M gのマトリクス係数に— αを掛けた数値を、 G rのマトリクス係数に加算して いる。 これによつて、 マトリクス回路 3 2 f から出力される r成分, g成分およ び b成分は、 マトリクス回路 3 2 dまたは 3 2 eから出力される r成分, g成分 および b成分と同じ値を有する。 つまり、 この実施例では、 マトリクス係数を変 更することによって r成分および b成分のグリーン帯域レベルが減衰され、 色再 現性が向上する。
Figure imgf000009_0001
In Equation 4, the matrix coefficient multiplied by Gr is “−1−2”, “3 + α”, or “−1_2”. In other words, the embodiment of FIG. 1 generates M g ′ == M g—G r before the matrix operation. In this embodiment, the multiplier 32 a and the subtractor 32 b are omitted and the matrix is omitted. Some of the coefficients have been changed. Specifically, a value obtained by multiplying the matrix coefficient of Mg by −α is added to the matrix coefficient of Gr. As a result, the r, g, and b components output from the matrix circuit 32 f have the same values as the r, g, and b components output from the matrix circuit 32 d or 32 e. Having. That is, in this embodiment, the green band levels of the r component and the b component are attenuated by changing the matrix coefficient, and the color reproducibility is improved.
図 7を参照して、 その他の実施例のディジタルカメラ 1 0は、 R A M 2 6にヮ —クエリア 2 6 bが設けられ、 メモリコントロール回路 2 8が図 8および図 9に 示すフロー図によって補間処理を実行し、 演算回路 3 2が図 6に示すマトリクス 回路 3 2 gを含み、 そしてこのマトリクス回路 3 2 gが数 5に従って演算を行う 点を除き、 図 1実施例と同様であるため、 重複した説明を省略する。  Referring to FIG. 7, digital camera 10 of another embodiment has a memory area 26 b in RAM 26, and memory control circuit 28 performs interpolation processing according to the flow charts shown in FIGS. 8 and 9. Since the arithmetic circuit 32 includes the matrix circuit 32g shown in FIG. 6 and the matrix circuit 32g performs the arithmetic operation according to Equation 5, the operation circuit 32 is the same as the embodiment in FIG. The explanation given above is omitted.
【数 5】  [Equation 5]
Figure imgf000009_0002
図 8および図 9を参照して、 メモリコントロール回路 2 8はまずステップ S 2 1でカウン夕 2 8 a ' のカウント値 mおよびカウン夕 2 8 b ' のカウント値 nを それぞれ " 1 " にセットし、 ステップ S 2 3でメモリ領域 2 6 aのアドレス (x, y) を (m, n) にセットする。 次に、 ステップ S 2 5で xおよび yはいずれも 偶数であるかどうか判断し、 "NO" であれば、 ステップ S 2 7で (X , y) の 画素デ一夕 D (x, y) をワークエリア 2 6 bに保持しステップ S 3 1に移行す るが、 "YE S" であれば、 ステップ S 2 9で数 6の演算を行い、 これによつて 得られた画素データ D ' (x, y) をワークエリア 2 6 bに保持する。 そしてス テツプ S 3 1に移行する。
Figure imgf000009_0002
Referring to FIGS. 8 and 9, the memory control circuit 28 first sets the count value m of the counter 28 a 'and the count value n of the counter 28 b' to "1" in step S21. In step S23, the address (x, Set y) to (m, n). Next, in step S25, it is determined whether both x and y are even numbers. If "NO", the pixel data D (x, y) of (X, y) is determined in step S27. Is held in the work area 26 b and the process proceeds to step S 31. If “YE S”, the calculation of the formula 6 is performed in step S 29, and the pixel data D ′ obtained thereby is obtained. (x, y) is stored in work area 26 b. Then, the flow shifts to step S31.
【数 6】  [Equation 6]
D ' (x, y) =D (x, y) - Ό (x - 1 , y)  D '(x, y) = D (x, y)-Ό (x-1, y)
D (x, y) : (x, y) における画素データ  D (x, y): Pixel data at (x, y)
D (x— 1, y) : (x - 1 , y) における画素デ一夕  D (x—1, y): pixel data at (x-1, y)
D ' (X, y) : (x, y) における補正後の画素デ一夕 ステップ3 3 1〜3 3 7, ステップ S 3 9〜S 4 5ならびにステップ S 4 7〜 S 5 3のそれぞれでは、 メモリコントロール回路 2 8はステップ S 2 3〜S 2 9 とほぼ同様の補間処理を行う。 異なるのは、 ステップ S 3 1でアドレス (x, y) を (m+ l, n) に変更し、 ステップ S 3 9でアドレス (x, y) を (m, n + 1) に変更し、 そしてステップ S 4 7でアドレス (x, y) を (m+ l, n + 1 ) に変更する点だけである。  D '(X, y): Pixel data after correction at (x, y) Steps 3 31 to 3 37, Steps S 39 to S 45, and Steps S 47 to S 53 3 The memory control circuit 28 performs almost the same interpolation processing as in steps S23 to S29. The difference is that in step S31 the address (x, y) is changed to (m + l, n), in step S39 the address (x, y) is changed to (m, n + 1), and The only difference is that the address (x, y) is changed to (m + 1, n + 1) in step S47.
図 2からわかるように、 カラムァドレスおよびロウァドレスがいずれも偶数の 位置には常に Mg成分が書き込まれている。 メモリコントロール回路 2 8は、 こ の Mg成分のレベルを数 6に従って調整し、 Mg ' ( = Mg - G r ) を生成す る。  As can be seen from Fig. 2, the Mg component is always written at even-numbered positions in both the column address and the row address. The memory control circuit 28 adjusts the level of the Mg component according to Equation 6 to generate Mg ′ (= Mg−Gr).
ステップ S 5 5では、 メモリコントロール回路 2 8はワークエリア 2 6 bに保 持されている 4つの色成分、 つまり Y e成分, C y成分, G r成分および Mg ' 成分をシリアル方式で出力し、 次にステップ S 5 7でカウント値 mが水平画素数 — 1となったかどうか判断する。 ここで "NO" であれば、 水平方向における次 のアドレスを指定するために、 ステップ S 5 9でカウント値 mをインクリメント し、 そしてステップ S 2 3に戻る。 一方、 ステップ S 5 7で " YE S"であれば、 ステップ S 6 1でカウント値 nが所定値つまり垂直画素数一 1であるかどうか判 断する。 そして "NO" であれば、 次のラインの 1番左のアドレスを指定するた めに、 ステップ S 6 3でカウント値 mを " 1 " に戻すとともにカウント値 nをィ ンクリメントし、 ステップ S 2 3に戻る。 一方ステップ S 6 1で " Y E S " であ れば、 処理を終了する。 In step S55, the memory control circuit 28 outputs the four color components held in the work area 26b, that is, the Ye component, the Cy component, the Gr component, and the Mg 'component in a serial manner. Then, in step S57, it is determined whether or not the count value m is equal to the number of horizontal pixels—1. If "NO" here, the count value m is incremented in step S59 to specify the next address in the horizontal direction, and the process returns to step S23. On the other hand, if “YE S” in step S57, it is determined in step S61 whether or not the count value n is a predetermined value, that is, the number of vertical pixels is one. If "NO", specify the leftmost address of the next line In step S63, the count value m is returned to "1" and the count value n is incremented, and the process returns to step S23. On the other hand, if “YES” in the step S61, the process is ended.
この実施例においても、 上述の実施例と同様に M g成分のレベルが調整される ため、 生成される r成分, g成分および b成分は図 1 0に示すような特性を持ち、 色再現性を向上させることができる。  Also in this embodiment, since the level of the Mg component is adjusted similarly to the above-described embodiment, the generated r component, g component, and b component have characteristics as shown in FIG. Can be improved.
なお、 この実施例のディジタルカメラとしては、 静止画像のみを記録するいわ ゆるディジタルスチルカメラならびに動画像を記録するビデオムービが含まれる ( また、 静止画像および動画像の両者を記録するディジタルカメラも考えられる。 また、 この実施例では、 r成分および b成分のグリーン帯域レベルを減衰させ るようにしたが、 たとえばマトリクス回路 3 2 f のマトリクス係数を変更して、 g成分のグリーン帯域レベルを増幅させるようにしてもよい。 The digital cameras of this embodiment include a so-called digital still camera that records only a still image and a video movie that records a moving image ( a digital camera that records both a still image and a moving image is also considered). In this embodiment, the green band levels of the r component and the b component are attenuated, but for example, the matrix coefficient of the matrix circuit 32 f is changed to amplify the green band level of the g component. You may do so.
この発明が詳細に説明され図示されたが、 それは単なる図解および一例として 用いたものであり、 限定であると解されるべきではないことは明らかであり、 こ の発明の精神および範囲は添付されたクレームの文言によってのみ限定される。  While this invention has been described and illustrated in detail, it is obvious that it is used by way of illustration and example only and should not be construed as limiting, the spirit and scope of the invention being set forth in the appended claims. Limited only by the language of the claim made.

Claims

言青求の範囲 Scope of word blue
1 . 色信号処理回路であって、 次のものを備える ;  1. A color signal processing circuit comprising:
各画素が複数の第 1色成分を持つ第 1画素信号を入力する第 1画素信号入力手 段;および  A first pixel signal input means in which each pixel inputs a first pixel signal having a plurality of first color components; and
前記第 1画素信号に基づいて、 各画素が複数の第 2色成分を持ちかつ前記複数 の第 2色成分の少なくとも 1つの所定帯域レベルが増減された第 2画素信号を出 力する出力手段。  Output means for outputting a second pixel signal in which each pixel has a plurality of second color components and at least one predetermined band level of the plurality of second color components is increased or decreased based on the first pixel signal.
2 . クレーム 1に従属する色信号処理回路であって、  2. A color signal processing circuit dependent on claim 1,
前記複数の第 1色成分のいずれか 1つのレベルを調整する調整手段をさらに備 え、  Adjusting means for adjusting the level of any one of the plurality of first color components;
前記出力手段は、 前記調整手段から出力された第 1色成分および残りの第 1色 成分にマトリクス演算を施して前記複数の第 2色成分を生成する生成手段を含む。  The output unit includes a generation unit that performs a matrix operation on the first color component and the remaining first color component output from the adjustment unit to generate the plurality of second color components.
3 . クレーム 2に従属する色信号処理回路であって、  3. A color signal processing circuit dependent on claim 2,
前記調整手段は、 いずれか 1つの第 1色成分に所定の係数を掛け算する掛け算 手段、 および他の 1つの第 1色成分から前記掛け算手段の出力を引き算する引き 算手段を含む。  The adjusting means includes a multiplying means for multiplying any one of the first color components by a predetermined coefficient, and a subtracting means for subtracting an output of the multiplying means from another one of the first color components.
4 . クレーム 2に従属する色信号処理回路であって、  4. A color signal processing circuit dependent on claim 2,
各画素が前記複数の第 1色成分のいずれか 1つを持つ第 3画素信号を入力する 第 3画素信号入力手段、 および  Third pixel signal input means for inputting a third pixel signal in which each pixel has one of the plurality of first color components; and
前記第 3画素信号に補間処理を施して前記第 1画素信号を生成する補間手段を さらに備え、  Interpolating means for performing an interpolation process on the third pixel signal to generate the first pixel signal,
前記補間手段が前記調整手段を含む。  The interpolation means includes the adjustment means.
5 . クレーム 1に従属する色信号処理回路であって、  5. A color signal processing circuit dependent on claim 1,
前記出力手段は、 前記複数の第 1色成分にマトリクス演算を施して前記所定帯 域レベルが増減された前記複数の第 2色成分を生成する生成手段を含む。  The output unit includes a generation unit that performs a matrix operation on the plurality of first color components to generate the plurality of second color components with the predetermined band level increased or decreased.
6 . クレーム 1一 5に従属する色信号処理回路であって、  6. A color signal processing circuit dependent on claims 1-5,
前記複数の第 1色成分は Y e成分, C y成分, M g成分および G r成分を含み、 前記複数の第 2色成分は r成分, g成分および b成分を含み、  The plurality of first color components include a Ye component, a Cy component, a Mg component, and a Gr component; the plurality of second color components include an r component, a g component, and a b component;
前記所定帯域はグリーン帯域を含む。 The predetermined band includes a green band.
7. クレーム 1に従属する色信号処理回路であって、 7. A color signal processing circuit dependent on claim 1,
前記複数の第 1色成分は Y e成分, Cy成分, Mg成分および G r成分を含み、 前記複数の第 2色成分は r成分, g成分および b成分を含み、  The plurality of first color components include a Y e component, a Cy component, an Mg component, and a G r component; the plurality of second color components include an r component, a g component, and a b component;
前記出力手段は前記 r成分および前記 b成分のグリーン帯域レベルを減衰させ る減衰手段を含む。  The output means includes attenuating means for attenuating the green band levels of the r component and the b component.
8. クレーム 1に従属する色信号処理回路であって、  8. A color signal processing circuit dependent on claim 1,
前記複数の第 1色成分は Ye成分, Cy成分, Mg成分および G r成分を含み、 前記複数の第 2色成分は r成分, g成分および b成分を含み、  The plurality of first color components include a Ye component, a Cy component, an Mg component, and a G r component; the plurality of second color components include an r component, a g component, and a b component;
前記出力手段は前記 g成分のグリーン帯域レベルを増幅させる増幅手段を含む The output means includes amplifying means for amplifying the green band level of the g component.
9. クレーム 1ないし 8のいずれかに記載の色信号処理回路を備える、 デイジ 夕ルカメラ。 9. A digital camera equipped with the color signal processing circuit according to any one of claims 1 to 8.
PCT/JP1998/005018 1997-11-11 1998-11-06 Color signal processing circuit WO1999025123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/308236 1997-11-11
JP30823697 1997-11-11

Publications (1)

Publication Number Publication Date
WO1999025123A1 true WO1999025123A1 (en) 1999-05-20

Family

ID=17978582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005018 WO1999025123A1 (en) 1997-11-11 1998-11-06 Color signal processing circuit

Country Status (1)

Country Link
WO (1) WO1999025123A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002060185A1 (en) * 2001-01-23 2002-08-01 Seiko Epson Corporation Image input device and image input method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486688A (en) * 1987-09-28 1989-03-31 Sony Corp Veneer type color image pickup device
JPH02142292A (en) * 1988-11-22 1990-05-31 Canon Inc Chrominance signal processor
JPH0614333A (en) * 1992-06-24 1994-01-21 Ricoh Co Ltd Digital video camera signal processor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486688A (en) * 1987-09-28 1989-03-31 Sony Corp Veneer type color image pickup device
JPH02142292A (en) * 1988-11-22 1990-05-31 Canon Inc Chrominance signal processor
JPH0614333A (en) * 1992-06-24 1994-01-21 Ricoh Co Ltd Digital video camera signal processor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002060185A1 (en) * 2001-01-23 2002-08-01 Seiko Epson Corporation Image input device and image input method
US7042465B2 (en) 2001-01-23 2006-05-09 Seiko Epson Corporation Image input unit and image input method
US7230631B2 (en) 2001-01-23 2007-06-12 Seiko Epson Corporation Image input unit and image input method
US7830398B2 (en) 2001-01-23 2010-11-09 Seiko Epson Corporation Image input unit and image input method
US8159502B2 (en) 2001-01-23 2012-04-17 Seiko Epson Corporation Image input unit and image input method
US8624917B2 (en) 2001-01-23 2014-01-07 Seiko Epson Corporation Image input unit and image input method

Similar Documents

Publication Publication Date Title
US8417031B2 (en) Image processing apparatus and method
JP5049155B2 (en) Progressive interlace conversion method, image processing apparatus, and image capturing apparatus
JP3965402B2 (en) Noise reduction apparatus and method, and noise reduction program
EP1187455A2 (en) Image data processing apparatus and electronic camera
US8144221B2 (en) Image sensor apparatus and methods employing unit pixel groups with overlapping green spectral content
JP2007259344A (en) Imaging apparatus and image processing method
JP2008289090A (en) Imaging signal processor
EP0921691B1 (en) Video signal processing method and device
JP2003032695A (en) Image signal processor
US7728881B2 (en) Color signal correcting method, apparatus, and program
US20060098255A1 (en) Image-processing method, image-processing device, and imaging device
US6747698B2 (en) Image interpolating device
JP4077161B2 (en) Imaging apparatus, luminance correction method, and program for executing the method on a computer
JP3490888B2 (en) Color suppression circuit
JP2003101815A (en) Signal processor and method for processing signal
WO1999025123A1 (en) Color signal processing circuit
JP4028395B2 (en) Digital camera
JP4240257B2 (en) Electronic camera
JP4028396B2 (en) Image composition method and digital camera
JP4887582B2 (en) Image processing device
JP4278893B2 (en) Solid-state imaging device
JP2004350319A (en) Image signal processing method, image signal processing apparatus using the method, and recording medium with program code representing procedures of the method recorded thereon
JP2006115147A (en) Imaging apparatus
JP3591257B2 (en) Video signal processing method and video signal processing device
JP2004222161A (en) Digital camera

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09530981

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase