WO1999025052A1 - Service life controller for power unit - Google Patents

Service life controller for power unit Download PDF

Info

Publication number
WO1999025052A1
WO1999025052A1 PCT/JP1997/004072 JP9704072W WO9925052A1 WO 1999025052 A1 WO1999025052 A1 WO 1999025052A1 JP 9704072 W JP9704072 W JP 9704072W WO 9925052 A1 WO9925052 A1 WO 9925052A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
output current
deterioration
power
unit
Prior art date
Application number
PCT/JP1997/004072
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Tsujihara
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP1997/004072 priority Critical patent/WO1999025052A1/en
Publication of WO1999025052A1 publication Critical patent/WO1999025052A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources

Definitions

  • the present invention relates to a life control device for a power supply device such as a parallel redundant system.
  • a device for preventing the life of the power supply device from being shortened there is, for example, a device described in JP-A-2-208708.
  • the technology described in this prior art relates to a current balance circuit for balancing the current supplied from a redundant power supply, and attempts to increase the length of the power supply by controlling the current balance at all times. Is what you do. However, when a local thermal load was applied to the power supply unit, no consideration was given to making the thermal load uniform, etc., so the part where the local thermal load was applied was not considered. There is a problem that the power supply unit has a short life.
  • FIGS. 12 and 13 show a conventional parallel redundant power supply failure monitoring device disclosed in Japanese Patent Application Laid-Open No. 5-300650, for example.
  • 1 & to 111 are ⁇ power supplies
  • 2 is a load connected to the power supply
  • 5 is an output current (load current) detection
  • 6 is a detection unit
  • 16 is a power supply.
  • This section shows a fault monitoring device that monitors load current and ambient temperature.
  • S1 is a step of reading the ambient temperature ⁇ 0 of the power supply installation location
  • S2 is a step of reading the load current Ia to I ⁇ of each power supply
  • S3 is a step of determining the number of failed power supply units
  • S4 is a step for predicting the ambient temperature ⁇ 0 and the load currents a to In of each power supply 1a to 1n.
  • S5 is an increase due to power supply failure when only one power supply has failed.
  • Step S7 predicts the temperatures T1 to Tn of the respective power supply units 1a to 1n after a predetermined time.S7 is the same as step S5.
  • a step of predicting Lnmax, S8 is a step of calculating the temperature Ta to Tn of the healthy power supply after a predetermined time from the predicted current of step S7. It is.
  • S9 is a step for comparing the numerical values predicted in steps S4, S6, and S8 with a reference value
  • S1 ⁇ is a step for issuing an alarm based on the comparison result in step S9.
  • the failure monitoring device 16 reads 3 ⁇ 4ST 0 around the power supply devices 1 a to: L n at a constant cycle (step S 1), and reads the load currents I a to In of the power supply devices 1 a to 1 n ( S 2).
  • the number of failed power supplies is determined from the value of the load current of the power supply device (eg, zero output current) (S3). From this judgment, the surroundings and load current when there is no faulty power supply are predicted (S4).
  • the 1 ⁇ parallel redundant power supply failure monitoring device predicts the ambient temperature after a predetermined time when a power supply failure occurs and issues an alarm, so the life of a power supply that has not yet failed depends on the ambient temperature rise. There is a problem in that it is necessary to manage the power-on time, ambient temperature, etc. to determine whether the power supply has become short. Also, if the power supply fails and the load balance force 5 'is not uniform, the load will concentrate on other power supplies, and only that power supply will be overloaded and its life will be shortened due to thermal stress There was a problem.
  • the present invention has been made in order to solve the above problems, and it is not necessary to record the life of a power supply, and a power supply having a shortened life is reduced in load to extend the life. It is an object of the present invention to provide a life control device of a power supply device which enables the power supply device.
  • a life control device for a power supply device is a power supply device for supplying power from a plurality of power supply devices (la) to (lc) to a common load (2), and detects an internal temperature of each power supply device.
  • the life of the power supply device can be extended. This is particularly true if the configuration of the power supply units (la) to (1c) is a parallel redundant system whose life is likely to be short.
  • the life monitoring means (3) uses the information on the deterioration state of the plurality of power supply units which have been changed to deterioration display means, and the deterioration display means displays the deterioration state and the replacement time information which have been ⁇ . Can be replaced before failure.
  • FIG. 1 is a professional diagram illustrating a life control device for a parallel redundant power supply device according to the present invention.
  • FIG. 2 is an explanatory view showing a state in which the life control device for a parallel redundant power supply shown in FIG. 1 is incorporated in an electronic device.
  • FIG. 3 is a flowchart showing a process flow of the life monitoring unit.
  • FIG. 10 is an explanatory diagram showing another example of a state in which the control device of the fourth redundant power supply unit is incorporated in an electronic device.
  • FIG. 5 is a block diagram showing a life control device of the parallel redundant power supply device of the present invention. Yes, an example is shown in which an output current control unit is provided commonly to three power supply devices.
  • FIGS. 6, 7, and 8 are block diagrams showing a life control device of the parallel redundant power supply device of the present invention.
  • FIG. 6 shows an example in which an energization time storage unit and a temperature storage unit are provided.
  • FIG. 7 shows an example in which an energization time storage, a section, a storage section, and an output current storage section are provided, and
  • FIG. 8 shows an example in which an energization time storage section and an output current storage section are provided.
  • FIG. 9 is a block diagram showing the life control device of the parallel redundant power supply device of the present invention, which is an example in which a deterioration display section for displaying the deterioration state of the power supply device is provided.
  • FIG. 10 is a block diagram showing a life control device for a parallel redundant power supply device according to the present invention, in which a variable cooling device for controlling the number of rotations of a cooling fan according to the deterioration state of the power supply device is provided.
  • FIG. 11 is a block diagram showing the IJ control device of the parallel redundant power supply device of the present invention, in which a notifying device for notifying the outside that the power supply device is about to be replaced is provided.
  • FIG. 12 is a block diagram showing a conventional fault monitoring system for a redundant power supply system.
  • FIG. 13 is a flowchart showing a conventional fault monitoring device for a parallel redundant power supply device.
  • FIG. 1 is a block diagram showing a life control device for a parallel redundant power supply according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory view showing a state in which the life control device for a parallel redundant power supply shown in FIG. 1 is incorporated in an electronic device.
  • FIG. 3 is a flowchart illustrating a processing flow of the life monitoring unit.
  • the power supply life control device can be effectively applied to various electronic devices such as servers and non-stop computers.
  • la, lb, and lc are parallel redundant power supplies, and 2 is this power supply.
  • the life of the power supply is controlled by controlling the output current (load current).
  • the power supply units lb and lc have a power control unit 4, an output current detection unit 5, a temperature detection unit 6, and an output current control unit 7, similarly to the power supply unit la. I have.
  • Fig. 2 8 is an electronic device such as a computer
  • 9 is a ventilation unit for cooling the power supply units la, lb, and 1c
  • arrows A and B represent a flow of cooling air from the ventilation unit and the soot 9.
  • the power supply units 1a, lb, and 1c are provided on the leeward side of the cooling air.
  • the life monitoring unit 3 first reads the load current detected by the output current detection unit 5 and the internal temperature detected by the detection unit 6 of each power supply device 1a, lb, 1c (step S31). Next, the life monitoring unit 3 determines whether or not variations have occurred from the internal temperatures of the power supply devices la, lb, and 1 c (step S32).
  • the monitoring unit 3 controls the output current control unit 7 to reduce the load current of the power supply device whose internal temperature is rising (step S33).
  • the output current control unit 7 is controlled so as to increase the load current of the power supply device having a low inside (step S34).
  • the power supply units la, lb, and lc are sequentially arranged on the leeward side of the wind by the blower unit 9; the inside of the power supply unit 1c is the highest; The inside of the power supply is higher in the order of 1a.
  • the internal temperature of the power supply unit 1b in the middle becomes higher than the power supplies la and lc on both sides.
  • the life monitoring unit 3 calculates an average value from the maximum value and the minimum value of the inside detected by the detection unit 6, sets the average value as a reference: and determines whether the inside is lower or lower than the reference distance.
  • the load current of the power supply may be reduced or increased.
  • the element that determines the life is the electrolytic capacitor (not shown) that has the shortest life among the components that make up the power supply unit.
  • the life of the power supply device is determined by the length of the life of the electrolytic capacitor. Therefore, although the 3 ⁇ 4Jg detector 6 measures the temperature inside the power supply, it is preferable to install the 3 ⁇ 4Jg detector 6 so as to detect ⁇ ⁇ S around the electrolytic capacitor. As a result, the accuracy of measuring the life (temperature) of the power supply devices la, lb, and lc can be improved.
  • FIG. 2 it is assumed that the power supply units la, lb, and 1 c are cooled by the air blow unit 9, and that the blowing air of the air blow unit 9 flows from the arrow A direction to the arrow B direction. Since the power supply 1c is located on the leeward side of the power supplies la and 1b, the power supply 1c receives heat corresponding to a temperature rise due to heat generated from the inside of the power supplies 1a and 1b. Similarly, since the power supply 1b is located on the leeward side of the power supply 1a, the power supply 1b receives the heat of the temperature rise due to the heat generated from the inside of the power supply 1a.
  • the life monitoring unit 3 reduces the load current of the power supply 1c by the output current control unit 7 of the power supply 1c, because the internal SJg (particularly around the electrolytic capacitor) power is increasing in the power supply lc. Then, lower the internal temperature of the power supply 1c itself. Similarly, the life monitoring unit 3 increases the internal temperature of the power supply 1b (particularly the ambient temperature of the electrolytic condenser). As the temperature rises, the load current of the power supply 1b is slightly reduced by the output current control unit 7 of the power supply 1b, and the internal temperature of the power supply lb itself is slightly reduced.
  • the life monitoring unit 3 uses the output current control unit of the power supply 1a because the internal temperature of the power supply la (particularly the ambient temperature of the electrolytic capacitor) is lower than those of the other power supplies 1b and 1c. 7, the load current of the power supply 1a is increased, and the load current to the load 2 is kept constant.
  • the preferred embodiment in which the power supply device is configured in a parallel redundant system in which the life is easily shortened has been described.
  • two power supply devices may be configured in parallel, or four or more power supply devices may be used.
  • a parallel configuration may be used.
  • the power supply devices la, lb, and 1c are arranged on the downwind side of the blower unit 9 and three of them are incorporated in the electronic device 8, for example, as shown in FIG.
  • the power supply units 1 a to 1 c are arranged on the windward side of the air blow unit 9 and between each component of the electronic device 8 and each air blow unit 9, and a partition plate 1 ⁇ separates between the air passages. It may be partitioned.
  • the ⁇ in which the output current control unit 7 is disposed in each of the power supply devices la, lb, and 1c has been exemplified.
  • the output current of the power supply device la, lb, 1c may be controlled.
  • the device configuration can be simplified, and the device cost can be reduced.
  • FIG. 6 is a block diagram showing a life control device for a parallel redundant power supply according to Embodiment 2 of the present invention.
  • la, lb, and lc are power supply units
  • 2 is a load unit connected to the power supply unit
  • 3 is a load current of the power supply unit, monitoring the inside of the power supply unit 3 ⁇ 4S, and controlling the output voltage of the power supply unit.
  • a life monitoring unit that calculates the life of the power supply 4 is a power control unit of the power supply, 5 is an output current detecting section for detecting the load current of the power supply, 6 is a temperature detecting section for detecting the temperature inside the power supply3 ⁇ 4S detecting section, 7 is an output current control section for controlling the output current of the power supply, and 10 is a power control section 4 An energization time storage unit that is connected to the power supply unit and stores the time during which power is supplied to the power supply unit.
  • the power supply units lb and lc are not shown in the figure, but as in the case of the power supply unit la, the power supply control unit 4, the output current detection unit 5, the detection unit 6, the output current control unit 7, and the conduction time storage Part 10 and 10 Words and Memories, Part 11.
  • the temperature storage unit 11 stores how many hours the internal temperature (the ambient temperature of the electrolytic capacitor) of the power supply devices la, lb, and 1c detected by the temperature detector 6 has elapsed.
  • the monitoring unit 3 reads the values stored in the temperature storage unit 11 and the energization time storage unit 10 from each power supply device la, lb, 1c.
  • the life monitoring unit 3 determines the power of each power supply la, lb, lc based on the read values of the internal power supply 1a, lb, lc and the power-on time of the power supply la, lb, 1c. Estimate the state of deterioration.
  • the life monitoring unit 3 determines that the longer the power supply time of each power supply device 1a, lb, 1c and the higher the internal temperature, the greater the deterioration.
  • the output current control unit 3 When the life monitoring unit 3 determines that a variation has occurred from the estimated deterioration state of each of the power supply units 1 a, lb, and 1 c, the output current control unit 3 reduces the load current of the power supply unit with the greatest deterioration. 7, the output current control unit 7 is controlled so as to increase the load current of the power supply device with little deterioration.
  • the life monitoring unit 3 uses the deterioration information file stored in advance in the deterioration condition storage unit to calculate the electronic temperature corresponding to a ° C and b hours.
  • a configuration may be adopted in which deterioration information (for example, 10 ° / 0 deterioration) of parts is taken out and the deterioration state of each power supply device la, lb, 1c is estimated.
  • the life monitoring unit 3 calculates the maximum value of the obtained deterioration state of each power supply device la, lb, 1 c (for example, 2 ⁇ ).
  • the average value (for example, 15% deterioration) of the minimum value (for example, 10% deterioration) and the minimum value (for example, 15% deterioration) are obtained, and this is set as the deterioration reference value. From this deterioration reference value, it is determined whether the deterioration is large or small.
  • the life monitoring unit 3 uses the load current (output current) of each power supply la, lb, lc based on the output current file registered in advance to make the deterioration state of each power supply la, lb, 1c the same.
  • the output current a which has been degraded by 10%, is increased until the output current b, which is equal to the degradation reference (15%), is increased. Decrease the output current until the output current reaches b.
  • the life between the power supply devices la, lb, and 1c can be made substantially the same, The overall length of the electronic device 8 can be increased.
  • the output current control unit 7 is configured by the conduction time storage unit 10 and the storage unit 11 in order to estimate the deterioration of each power supply from the conduction time of each power supply and the inside. As shown in FIG. 7, an output current control unit 7 is added to a conduction time storage unit 10 and a storage unit 11, and the output current of the power supply is detected.
  • the current storage unit 12 may be provided.
  • the monitoring unit 3 determines that the longer the energizing time, the larger the internal 3 ⁇ 4g, and the lower the output current value, the greater the deterioration. Since the deterioration of each power supply can be estimated from ag and the output current value, the same effect as in the above embodiment can be obtained.
  • the output current control unit 7 may be configured by a conduction time storage unit 10 and an output current storage unit 12.
  • the life monitoring unit 3 determines that the longer the energizing time and the lower the output current value, the greater the deterioration, and determines the deterioration of each power source from the energizing time and output current value of each power source. Can be estimated, and the same effect as in the above embodiment can be obtained.
  • FIG. 9 is a block diagram showing a parallel redundancy power supply life control device according to Embodiment 3 of the present invention.
  • FIG. 9 the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and 13 denotes a deterioration monitor that displays the deterioration state of each of the power supply units la, lb, and 1c by the life monitoring unit 3. It is.
  • the life monitoring unit 3 transfers to the deterioration display unit 13 deterioration information in which the deterioration state of each of the power supply units l a, l b, and 1 c is estimated.
  • the deterioration display section 13 digitally displays the transmitted deterioration information.
  • the deterioration information may be, for example, numerical information indicating the deterioration frequency JS, or may be information based on a message indicating the deterioration state.
  • the display on the deterioration display unit 13 allows the worker (user) to know the deterioration state of each power supply, it is possible to easily judge when to replace the power supplies la, lb, and 1c. Therefore, it is possible to reliably replace the power supply device before it breaks down.
  • the deterioration display is displayed digitally here, a similar effect can be obtained even with a display device that can be judged by humans by turning on a color-coded lamp or a semiconductor display device such as an LED.
  • the deterioration display section 13 may be provided for each power supply unit, or one deterioration display section 13 may collectively display deterioration information of a plurality of power supply units or switch and display the deterioration information. Is also good.
  • the state of deterioration is displayed irrespective of the replacement time, but when the replacement time is reached, information indicating the replacement time (for example, a message saying that it is time to replace) is displayed. You may comprise so that it may display.
  • the life monitoring unit 3 estimates the deterioration state of each power supply, and the deterioration state exceeds a predetermined deterioration reference value of the power supply.
  • the display unit 13 displays the transferred exchange time information. 1
  • FIG. 10 is a block diagram showing a life controlling device for a parallel redundant power supply according to Embodiment 4 of the present invention.
  • the same reference numerals as those in FIG. 7 denote the same or corresponding parts, and 14 is connected to the life monitoring unit 3, and the cooling capacity is made variable by a control signal to cool each of the power supply units 1a, lb, lc. It is a variable rejection device that performs cooling and can increase or decrease the frequency of cooling fan rotation.
  • the service life monitoring unit 3 judges the deterioration MS of the power supply la, lb, 1c from the estimated value of the deterioration state of each power supply device la, lb, and 1 c, and the cooling fan of the variable cooling device 14 of the power supply device whose deterioration progresses at a high rate. By increasing the number of rotations of the power supply, the deterioration progress speed of the power supply is slowed.
  • the variable cooling device 14 has been described as being capable of increasing or decreasing the number of cooling fan rotations, any device that can control the cooling effect of the power supply device may be used. For example, a semiconductor cooling device using the Peltier effect is used. Alternatively, the cooling effect may be controlled to increase or decrease.
  • FIG. 11 is a professional / request diagram showing a life control device for a parallel redundant power supply according to Embodiment 5 of the present invention.
  • reference numeral 15 denotes a life monitoring unit 3, which is a notification device for reporting the deterioration state of each of the power supply devices 1a, lb, and 1c.
  • the life monitoring unit 3 transfers the deterioration information, which estimates the deterioration state of each power supply device la, lb, 1c, to the notifying device 15 0
  • the notifying device 15 sends the sent deterioration information to the outside as voice or document message .
  • the notification device 15 is connected to, for example, a remote life monitoring unit 3 by wire or wirelessly. ⁇

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

A service life controller for power unit which can prolong the service life of a plurality of power units as a whole by making the deteriorating states of the power units nearly uniform. The controller is provided with power units (1a-1c), a common load (2) which is supplied with electric power from each power unit, a temperature detecting means (6) which detects the internal temperature of each power unit, an output current control means (5) which controls the output current of each power unit, and a service life monitoring means (3) which makes the internal temperatures of the power units nearly uniform by decreasing the output currents of power units having higher internal temperatures and increasing the output currents of power units having lower internal temperatures when a difference occurs among the internal temperatures of the power units.

Description

明 細 書  Specification
技術分野 Technical field
この発明は、 並列冗長方式などの電源装置の寿命制御装置に関するものである。 背景技術  The present invention relates to a life control device for a power supply device such as a parallel redundant system. Background art
ヽ 電源装置の寿命が短くなるのを防止するためのものとして、 例えば特開 平 2— 208708号公報に記載のものがある。 この従来技術に記載のものは、 二重化された電源から供給する電流のバランスを取るための電流バランス回路に 関し、 電流バランスが常に取れるように制御することにより、 電源装置の長 # 化を図ろうとするものである。 しかし、 電源装置に対して局部的な熱的負荷が加 わった場合、 その熱的負荷を均一にしたりする等の考慮まで払われたものではな かったため、 局部的熱負荷の加わつた部分の電源装置が短寿命になってしまうと いう問題があった。  と し て As a device for preventing the life of the power supply device from being shortened, there is, for example, a device described in JP-A-2-208708. The technology described in this prior art relates to a current balance circuit for balancing the current supplied from a redundant power supply, and attempts to increase the length of the power supply by controlling the current balance at all times. Is what you do. However, when a local thermal load was applied to the power supply unit, no consideration was given to making the thermal load uniform, etc., so the part where the local thermal load was applied was not considered. There is a problem that the power supply unit has a short life.
また、 第 12図及び第 13図は例えば特開平 5— 300650号公報に示され た従来の並列冗長方式電源の故障監視装置を示す図である。第 12図において、 1 &〜111は^^台の電源装置、 2は電源装置に接続された負荷装置、 5は出力電 流(負荷電流) 検∞、 6は 検知部、 16は電源装置の負荷電流と周囲温度 を監視する故障監視装置を示す。第 13図において、 S1は電源の設置場所の周 囲温度 Τ 0の読込みステップ、 S 2は各電源装置の負荷電流 I a〜 I ηの読込み ステップ、 S3は電源装置の故障台数の判断ステツプ、 S 4は周囲温度 Τ 0と各 電源装置 1 a〜 1 nの負荷電流ェ a〜 I nを予測するステップ、 S 5は電源装置 の故障台数が 1台のとき、 電源装置の故障発生で増加する他の健全な電源装置の 負荷電流 I amax〜I nmaxを予測するステップ、 S6はステップ S4と同 様に各電源装置 1 a〜 1 nの所定時間後の温度 T 1〜 T nを予測するステツプ、 S 7はステップ S 5と同様に衝原装置の故障台数が 2台のとき、 電源装置の故障 発生で増加する他の健全な電源装置の負荷電流 Iamax〜: Lnma xを予測す るステップ、 S 8はステップ S 7の予測電流から所定時間後の健全電源装置の温 度 Ta〜Tnを求めるステップである。 FIGS. 12 and 13 show a conventional parallel redundant power supply failure monitoring device disclosed in Japanese Patent Application Laid-Open No. 5-300650, for example. In FIG. 12, 1 & to 111 are ^^ power supplies, 2 is a load connected to the power supply, 5 is an output current (load current) detection, 6 is a detection unit, and 16 is a power supply. This section shows a fault monitoring device that monitors load current and ambient temperature. In FIG. 13, S1 is a step of reading the ambient temperature Τ 0 of the power supply installation location, S2 is a step of reading the load current Ia to Iη of each power supply, S3 is a step of determining the number of failed power supply units, S4 is a step for predicting the ambient temperature Τ0 and the load currents a to In of each power supply 1a to 1n.S5 is an increase due to power supply failure when only one power supply has failed. To predict the load currents I amax to Inmax of other healthy power supply units, and S6 is the same as step S4. Step S7 predicts the temperatures T1 to Tn of the respective power supply units 1a to 1n after a predetermined time.S7 is the same as step S5. The load current Iamax of another healthy power supply that increases due to the occurrence: A step of predicting Lnmax, S8 is a step of calculating the temperature Ta to Tn of the healthy power supply after a predetermined time from the predicted current of step S7. It is.
S 9はステ、ソプ S 4, S6, S 8で予測した数値と基準値とを比較するステツ プ、 S 1◦はステップ S 9の比較された結果をもとに警報を発するステップであ る。  S9 is a step for comparing the numerical values predicted in steps S4, S6, and S8 with a reference value, and S1◦ is a step for issuing an alarm based on the comparison result in step S9. .
上記した の並列冗長方式電源の故障監視装置の動作について、 第 12図及 び第 13図を参照して説明する。 まず、 故障監視装置 16は電源装置 1 a〜: L n の周囲 ¾ST 0を一定周期で読み込む (ステップ S 1 ) 、 また各電源装置 1 a〜 1 nの負荷電流 I a〜 I nを読み込む ( S 2 ) 。 次に電源装置の負荷電流の値 ( 出力電流零等) から故障電源の台数を判定する (S3) 。 この判定から故障電源 装置がないときの周囲 と負荷電流を予測する (S4) 。  The operation of the fault monitoring device for a parallel redundant power supply described above will be described with reference to FIGS. 12 and 13. First, the failure monitoring device 16 reads ¾ST 0 around the power supply devices 1 a to: L n at a constant cycle (step S 1), and reads the load currents I a to In of the power supply devices 1 a to 1 n ( S 2). Next, the number of failed power supplies is determined from the value of the load current of the power supply device (eg, zero output current) (S3). From this judgment, the surroundings and load current when there is no faulty power supply are predicted (S4).
次に故障台数が 1台のとき、 1台の電源装置故障による他の電源装置の負荷電 流の増加分を予測する (S5) 。 この予測値から所定時間後の周囲温度を予測す る (S6) 。  Next, when the number of failures is one, an increase in the load current of another power supply due to the failure of one power supply is predicted (S5). The ambient temperature after a predetermined time is predicted from the predicted value (S6).
次に故障台数が 2台のとき、 2台の電源装置故障による他の電源装置の負荷電 流の増加分を予測する (S7) 。 この予測値から所定時間後の周囲: asを予測す る (S8) 。  Next, when the number of failed units is two, an increase in the load current of another power supply unit due to the failure of the two power supply units is predicted (S7). Predict around: as after a predetermined time from this predicted value (S8).
次にステップ S4, S6, S8で予測した周囲 と規定: &gを比較して、 規 定値を超える場合は警報を発生する (S9) 。  Next, the surroundings predicted in steps S4, S6, and S8 are compared with the specified value: & g. If the specified value is exceeded, an alarm is generated (S9).
1 ^の並列冗長方式電源の故障監視装置では、 電源装置が故障したときに所定 時間後の周囲温度を予測して警報を発するため、 まだ故障していない電源装置の 寿命が周囲温度上昇によりどの程度短くなつたかを判断するためには、 通電時間、 周囲温度等を管理しておく必要があるという問題がある。 また、 電源装置が故障した ^に負荷のバランス力5'均一になっていないと、 負 荷が他の電源装置に集中し、 その電源装置のみが過負荷ゃ熱ストレスにより、 寿 命が短くなるという問題点があつた。 The 1 ^ parallel redundant power supply failure monitoring device predicts the ambient temperature after a predetermined time when a power supply failure occurs and issues an alarm, so the life of a power supply that has not yet failed depends on the ambient temperature rise. There is a problem in that it is necessary to manage the power-on time, ambient temperature, etc. to determine whether the power supply has become short. Also, if the power supply fails and the load balance force 5 'is not uniform, the load will concentrate on other power supplies, and only that power supply will be overloaded and its life will be shortened due to thermal stress There was a problem.
また、 従来の装置では、 電源装置が故障した時点で警報を発するので、 故障し てから電源装置を交換する必要があり、 ^力短くなつている電源装置を故障す る前に先に交換することは、 困難であった。  In addition, in the case of conventional equipment, an alarm is issued when the power supply unit fails, so it is necessary to replace the power supply unit after the failure, and replace the power supply unit that has become shorter before the failure. That was difficult.
また、 周囲温度と負荷電流から所定時間後の状態を予測しているため、 冷却条 件、 負荷電流条件が変わった^^、 システムを停止させて、 変更した冷却条件、 負荷電流条件に合わせて予測の既定値を変更する必要があるという問題点があつ た。  Also, since the condition after a predetermined time is predicted from the ambient temperature and the load current, the cooling condition and load current condition have changed ^^, the system is stopped, and the cooling condition and load current condition are changed. There was a problem that the default value of the forecast had to be changed.
この発明は、 上記のような問題点を敝肖するためになされたもので、 電源装置 の寿命を記録する必要がなく、 寿命が短くなつている電源装置には負荷を軽減し て寿命を延ばすことを可能にした電源装置の寿命制御装置を提供することを目的 とする。  SUMMARY OF THE INVENTION The present invention has been made in order to solve the above problems, and it is not necessary to record the life of a power supply, and a power supply having a shortened life is reduced in load to extend the life. It is an object of the present invention to provide a life control device of a power supply device which enables the power supply device.
また、 電源装置の寿命状態を表示できるようにした電源装置の寿命制御装置を 提供することを目的とする。  It is another object of the present invention to provide a power supply life control device capable of displaying the life state of the power supply.
更に、 熱的ストレスを受けている電源装置の負荷を軽減又は冷却を強化するこ とができる冗長並列方式電源装置の寿^ iJ御装置を提供することを目的とする。 発明の開示  It is still another object of the present invention to provide a redundant parallel type power supply device that can reduce the load of the power supply device subjected to thermal stress or enhance cooling. Disclosure of the invention
この発明に係る電源装置の寿命制御装置は、 複数の電源装置 ( l a ) 〜 (l c ) から共通の負荷 (2 ) に電力を供給する電源装置において、 各電源装置の内部温 度を検知する ¾S検知手段 (6 ) と、 各電源、装置の出力電流を制御する出力電流 制御手段 (7 ) と、 各電源装置間で内部 にばらつきが生じた時、 内部温度が 高くなつている電源装置の出力電流を減少させ、 一方内部温度が低くなつている 電源装置の出力電流を増加させて、 複数の電源装置の内部温度をほぼ均一にする 監視手段 (3) とを備えたので、 電源装置の寿命を延ばすことができる。 また、 電源装置 (la) 〜 ( 1 c ) の構成が寿命が短くなり易い並列冗長方式で あれば特に である。 A life control device for a power supply device according to the present invention is a power supply device for supplying power from a plurality of power supply devices (la) to (lc) to a common load (2), and detects an internal temperature of each power supply device. The detection means (6), the output current control means (7) for controlling the output current of each power supply and the device, and the output of the power supply whose internal temperature is high when there is an internal variation among the power supplies. Reduces current while decreasing internal temperature Increases the output current of the power supply to make the internal temperature of multiple power supplies nearly uniform With the provision of the monitoring means (3), the life of the power supply device can be extended. This is particularly true if the configuration of the power supply units (la) to (1c) is a parallel redundant system whose life is likely to be short.
また、 各電源装置の内部 を記憶する 記憶手段 (11) と、 各電源装置 の通電時間を記' る通電時間記憶手段 (10) と、 各電源装置の出力電流を記 憶する出力電流記憶手段 (12) と、 各電源装置の出力電流を制御する出力電流 制御手段(7) と、 上記 ¾S記憶手段から読み出した電源装置の内部 、 上記 通電時間言 at手段から読み出した電源装置の通電時間及び電源装置の電子部品の 負荷温度と負荷時間に対する劣化情報ファイルに基づいて、 複数の電源装置の劣 化状態を推定し、 各電源装置間で劣化状態にばらつきが生じた時、 劣化の大きい 電源装置の出力電流を減少させ、 一方劣化の小さい電源装置の出力電流を増加さ せて、 複数の電源装置の劣化状態をほぼ均一にする寿命監視手段 (3) とを備え たので、 電源装置の寿命を延ばすことができる。  Also, a storage means (11) for storing the inside of each power supply, a power-on time storage means (10) for storing the power-on time of each power supply, and an output current storage means for storing the output current of each power supply. (12), output current control means (7) for controlling the output current of each power supply, and the inside of the power supply read from the ¾S storage means; Estimate the degradation status of multiple power supplies based on the degradation information file for the load temperature and load time of the electronic components of the power supply, and when the degradation status varies among the power supplies, Life monitoring means (3) for reducing the output current of the power supply and increasing the output current of the power supply with little deterioration to make the deterioration state of the plurality of power supplies almost uniform. Can be extended Kill.
また、 寿命監視手段 (3)は、 if¾した複数の電源装置の劣化状態の情報を劣 化表示手段に し、 劣化表示手段は βされた劣化状態や交換時期情報を表示 するので、 電源装置が故障する前に確実に交換できる。 図面の簡単な説明  In addition, the life monitoring means (3) uses the information on the deterioration state of the plurality of power supply units which have been changed to deterioration display means, and the deterioration display means displays the deterioration state and the replacement time information which have been β. Can be replaced before failure. BRIEF DESCRIPTION OF THE FIGURES
第 1図はこの発明の並列冗長方式電源装置の寿命制御装置を示すプロ、、)ク図で ある。  FIG. 1 is a professional diagram illustrating a life control device for a parallel redundant power supply device according to the present invention.
第 2図は第 1図に示す並列冗長方式電源の寿命制御装置を電子機器に組み込ん だ状態の説明図である。  FIG. 2 is an explanatory view showing a state in which the life control device for a parallel redundant power supply shown in FIG. 1 is incorporated in an electronic device.
第 3図は寿命監視部の処理フ口一を示すフローチャートである。  FIG. 3 is a flowchart showing a process flow of the life monitoring unit.
第 4酣ま並列冗長方式電源装置の 制御装置を電子機器に組み込んだ状態の 他の例を示す説明図である。  FIG. 10 is an explanatory diagram showing another example of a state in which the control device of the fourth redundant power supply unit is incorporated in an electronic device.
第 5図はこの発明の並列冗長方式電源装置の寿命制御装置を示すプロック図で あり、 出力電流制御部を 3つの電源装置に共通に設けた例を示している。 FIG. 5 is a block diagram showing a life control device of the parallel redundant power supply device of the present invention. Yes, an example is shown in which an output current control unit is provided commonly to three power supply devices.
第 6図、 第 7図および第 8図はこの発明の並列冗長方式電源装置の寿命制御装 置を示すプロック図であり、 第 6図は通電時間記憶部と温度記憶部とを設けた例、 第 7図は通電時間記憶、部と 記憶部と出力電流言己 '»部とを設けた例、 第 8図は 通電時間記憶部と出力電流記憶部とを設けた例をそれぞれ示している。  FIGS. 6, 7, and 8 are block diagrams showing a life control device of the parallel redundant power supply device of the present invention. FIG. 6 shows an example in which an energization time storage unit and a temperature storage unit are provided. FIG. 7 shows an example in which an energization time storage, a section, a storage section, and an output current storage section are provided, and FIG. 8 shows an example in which an energization time storage section and an output current storage section are provided.
第 9図はこの発明の並列冗長方式電源装置の寿命制御装置を示すプロ ク図で あり、 電源装置の劣化状態を表示する劣化表示部を設けた例である。  FIG. 9 is a block diagram showing the life control device of the parallel redundant power supply device of the present invention, which is an example in which a deterioration display section for displaying the deterioration state of the power supply device is provided.
第 1 0図はこの発明の並列冗長方式電源装置の寿命制御装置を示すプロック図 であり、 電源装置の劣化状態により冷却ファンの回転数を制御する可変冷却装置 を設けた例である。  FIG. 10 is a block diagram showing a life control device for a parallel redundant power supply device according to the present invention, in which a variable cooling device for controlling the number of rotations of a cooling fan according to the deterioration state of the power supply device is provided.
第 1 1図はこの発明の並列冗長方式電源装置の寿^ IJ御装置を示すプロヅク図 であり、 電源装置が交換時期であることを外部に通報する通報装置を設けた例で ある。  FIG. 11 is a block diagram showing the IJ control device of the parallel redundant power supply device of the present invention, in which a notifying device for notifying the outside that the power supply device is about to be replaced is provided.
第 1 2図は従来の並列冗長方式電源装置の故障監視装置を示すプロック図であ る。  FIG. 12 is a block diagram showing a conventional fault monitoring system for a redundant power supply system.
第 1 3図は従来の並列冗長方式電源装置の故障監視装置を示すフローチヤ一ト である。 発明を実施するための最良の形態  FIG. 13 is a flowchart showing a conventional fault monitoring device for a parallel redundant power supply device. BEST MODE FOR CARRYING OUT THE INVENTION
この発明の並列冗長方式電源の寿命制御装置の実施の形態 1について説明する。 第 1図はこの発明の実施の形態 1による並列冗長方式電源の寿命制御装置を示 すプロック図である。 第 2図は第 1図に示す並列冗長方式電源の寿命制御装置を 電子機器に組み込んだ状態の説明図である。 第 3図は寿命監視部の処理フローを 説明するフローチャートである。 この電源の寿命制御装置は、 サーバ、 ノンスト ップコンピュータ等の各種電子機器に有効に適用させることができる。  First Embodiment A life control device for a parallel redundant power supply according to a first embodiment of the present invention will be described. FIG. 1 is a block diagram showing a life control device for a parallel redundant power supply according to Embodiment 1 of the present invention. FIG. 2 is an explanatory view showing a state in which the life control device for a parallel redundant power supply shown in FIG. 1 is incorporated in an electronic device. FIG. 3 is a flowchart illustrating a processing flow of the life monitoring unit. The power supply life control device can be effectively applied to various electronic devices such as servers and non-stop computers.
第 1図において、 l a , l b , l cは並列冗長方式電源装置、 2はこの電源装 置 1 a〜; L cに接続された負荷装置、 3は電源装置の負荷電流、 電源装置の内部 : の監視と電源装置の出力電圧を制御する寿命監視部、 4は電源装置の電源制 御部、 5は電源装置の負荷電琉を検知する出力電流検知部、 6は電源装置内部の を検知する 検知部、 7は電源装置の出力電流を制御する出力電流制御部 である。 ここで、 出力電流 (負荷電流) を制御することにより電源装置の寿命を 制御するものである。 In FIG. 1, la, lb, and lc are parallel redundant power supplies, and 2 is this power supply. 1 a ~; load device connected to Lc, 3 is the load current of the power device, 3 is the life monitoring unit that monitors the inside of the power device and controls the output voltage of the power device, 4 is the power control of the power device , 5 is an output current detection unit that detects the load voltage of the power supply, 6 is a detection unit that detects the inside of the power supply, and 7 is an output current control unit that controls the output current of the power supply. Here, the life of the power supply is controlled by controlling the output current (load current).
なお、 電源装置 lb, lcは、 図示を省略しているが、 電源装置 laと同じよ うに、 電源制御部 4、 出力電流検知部 5、 温度検知部 6及び出力電流制御部 7を 有している。  Although not shown, the power supply units lb and lc have a power control unit 4, an output current detection unit 5, a temperature detection unit 6, and an output current control unit 7, similarly to the power supply unit la. I have.
第 2図において、 8はコンピュータなどの電子機器、 9は電源装置 la, lb, 1 cを冷却するための送風ュニッ卜、 矢印 A, Bは送風ュニ、ソト 9による冷却風 の流れを示す。 ここで、 電源装置 1 a, lb, 1 cは冷却風の風下側に設けられ ている。  In Fig. 2, 8 is an electronic device such as a computer, 9 is a ventilation unit for cooling the power supply units la, lb, and 1c, and arrows A and B represent a flow of cooling air from the ventilation unit and the soot 9. . Here, the power supply units 1a, lb, and 1c are provided on the leeward side of the cooling air.
次に動作について説明する。  Next, the operation will be described.
第 3図において、 寿命監視部 3はまず各電源装置 1 a, lb, 1 cの出力電流 検知部 5で検知した負荷電流と 検知部 6で検知した内部温度を読み込む (ス テツプ S31) 。次に、 寿命監視部 3は電源装置 la, lb, 1 cの内部温度か ら、 ばらつきが発生していないかどうかを判断する (ステップ S 32) 。  In FIG. 3, the life monitoring unit 3 first reads the load current detected by the output current detection unit 5 and the internal temperature detected by the detection unit 6 of each power supply device 1a, lb, 1c (step S31). Next, the life monitoring unit 3 determines whether or not variations have occurred from the internal temperatures of the power supply devices la, lb, and 1 c (step S32).
そして、 監視部 3は電源装置 la, lb, lcの内部 にばらつきが発 生すると、 内部温度が上昇している電源装置の負荷電流を減少させるように出力 電流制御部 7を制御し (ステップ S33) 、 また、 反対に内部 が低い電源装 置の負荷電流を増加させるように出力電流制御部 7を制御する (ステップ S 34 ) 。 これにより、 電源装置 la, lb, lcの内部離がほぼ均一に «されるこ とになるので、 電源装置 la, lb, 1 cの寿命を延ばすことができる。  Then, when a variation occurs inside the power supply devices la, lb, and lc, the monitoring unit 3 controls the output current control unit 7 to reduce the load current of the power supply device whose internal temperature is rising (step S33). On the contrary, the output current control unit 7 is controlled so as to increase the load current of the power supply device having a low inside (step S34). As a result, the internal separation of the power supply devices la, lb, and lc is substantially uniform, and the life of the power supply devices la, lb, and 1c can be extended.
通常、 電子機器 8内に電源装置 la, lb, 1 cを組み込んだ状態では、 各々 の電源装置 la, lb, 1 cの間で内部^にバラツキが生じることになる。例 えば、 第 2図に示すように、 電源装置 la, lb, lcを送風ユニット 9による 却風の風下側に順番に配置した は、 電源装置 1 cの内部 が最も高く、 以下電源装置 1 b、 電源装置 1 aの順に内部 が高い。 Normally, in a state where the power supply devices la, lb, and 1 c are incorporated in the electronic device 8, variations occur inside the power supply devices la, lb, and 1 c. An example For example, as shown in FIG. 2, the power supply units la, lb, and lc are sequentially arranged on the leeward side of the wind by the blower unit 9; the inside of the power supply unit 1c is the highest; The inside of the power supply is higher in the order of 1a.
なお、 送風ユニット 9が無く、 自然対流冷却方式の齢は、 真中の電源装置 1 bの内部温度が、 両側の電源装置 la, lcよりも高くなる。  In addition, in the age of the natural convection cooling system without the blower unit 9, the internal temperature of the power supply unit 1b in the middle becomes higher than the power supplies la and lc on both sides.
また、 寿命監視部 3は、 検知部 6で検知した内部 の最大値と最小値か ら平均値を求め、 これを基準: とし、 この基準離から内部 か いか、 あ るいは低いかを判断して、 電源装置の負荷電流を減少させたり、 増加させたりし ても良い。  In addition, the life monitoring unit 3 calculates an average value from the maximum value and the minimum value of the inside detected by the detection unit 6, sets the average value as a reference: and determines whether the inside is lower or lower than the reference distance. Thus, the load current of the power supply may be reduced or increased.
なお、 電源装置 la, lb, 1 cにおいて、 その寿命を決める要素となるのは、 電源装置を構成する各構成部品のうち、 最も寿命の短い電解コンデンサ (図示せ ず) である。 この電解コンデンサの寿命の長短によって、 電源装置の寿命が決定 されてしまう訳である。 したがって、 ¾Jg検知部 6は、 電源装置内部の温度を測 定しているが、 特に電解コンデンサ周囲の ¾Sを検知するように設置するのが望 ましい。 これにより、 電源装置 la, lb, lcの寿命 (温度) の測定精度を向 上させることができる。  In the power supply units la, lb, and 1c, the element that determines the life is the electrolytic capacitor (not shown) that has the shortest life among the components that make up the power supply unit. The life of the power supply device is determined by the length of the life of the electrolytic capacitor. Therefore, although the ¾Jg detector 6 measures the temperature inside the power supply, it is preferable to install the ¾Jg detector 6 so as to detect 検 知 S around the electrolytic capacitor. As a result, the accuracy of measuring the life (temperature) of the power supply devices la, lb, and lc can be improved.
第 2図において、 電源装置 la, lb, 1 cが送風ュニット 9で冷却されてお り、 送風ユニット 9の令却風は矢印 A方向から矢印 B方向に流れているものとす る。電源装置 1 cは電源装置 la, 1 bよりも風下にあるため電源装置 1 a , 1 bの内部から発生された熱による温度上昇分の熱を受ける。 同様に電源装置 1 b は電源装置 1 aよりも風下にあるため電源装置 1 aの内部から発生された熱によ る温度上昇分の熱を受ける。  In FIG. 2, it is assumed that the power supply units la, lb, and 1 c are cooled by the air blow unit 9, and that the blowing air of the air blow unit 9 flows from the arrow A direction to the arrow B direction. Since the power supply 1c is located on the leeward side of the power supplies la and 1b, the power supply 1c receives heat corresponding to a temperature rise due to heat generated from the inside of the power supplies 1a and 1b. Similarly, since the power supply 1b is located on the leeward side of the power supply 1a, the power supply 1b receives the heat of the temperature rise due to the heat generated from the inside of the power supply 1a.
この状態で寿命監視部 3は、 電源装置 lcに内部 SJg (特に電解コンデンサの 周囲 ) 力上昇しているので、 電源装置 1 cの出力電流制御部 7により電源装 置 1 cの負荷電流を減少させて、 電源装置 1 c自身の内部温度を下げる。 同様に 寿命監視部 3は電源装置 1 bの内部温度 (特に電解コンデンザの周囲温度 ) が上 昇しているので、 電源装置 1 bの出力電流制御部 7により電源装置 1 bの負荷電 流を若干減少させて、 電源装置 lb自身の内部温度を若干下げる。 また、 逆に寿 命監視部 3は電源装置 laの内部温度 (特に電解コンデンサの周囲温度) が他の 電源装置 1 b, 1 cのそれと比べて低いので、 電源装置 1 aの出力電流制御部 7 により電源装置 1 aの負荷電流を増加させて、 負荷装置 2への負荷電流を一定に 保つようにする。 In this state, the life monitoring unit 3 reduces the load current of the power supply 1c by the output current control unit 7 of the power supply 1c, because the internal SJg (particularly around the electrolytic capacitor) power is increasing in the power supply lc. Then, lower the internal temperature of the power supply 1c itself. Similarly, the life monitoring unit 3 increases the internal temperature of the power supply 1b (particularly the ambient temperature of the electrolytic condenser). As the temperature rises, the load current of the power supply 1b is slightly reduced by the output current control unit 7 of the power supply 1b, and the internal temperature of the power supply lb itself is slightly reduced. Conversely, the life monitoring unit 3 uses the output current control unit of the power supply 1a because the internal temperature of the power supply la (particularly the ambient temperature of the electrolytic capacitor) is lower than those of the other power supplies 1b and 1c. 7, the load current of the power supply 1a is increased, and the load current to the load 2 is kept constant.
なお、 上記実施の形態では、 電源装置の構成を寿命が短くなり易い並列冗長方 式で行う好ましい態様の場合について説明したが、 電源装置を 2個並列構成にし てもよいし、 4個以上の並列構成にしてもよい。  In the above-described embodiment, the preferred embodiment in which the power supply device is configured in a parallel redundant system in which the life is easily shortened has been described. However, two power supply devices may be configured in parallel, or four or more power supply devices may be used. A parallel configuration may be used.
また、 上記実施の形態では、 電源装置 la, lb, 1 cを送風ュニット 9の風 下側に 3台並べて電子機器 8に組み込んだ態様を例示したが、 例えば第 4図に示 すように、 送風ュニット 9の風上側であって、 かつ電子機器 8の各構成部品と各 送風ュニット 9との間に各電源装置 1 a〜 1 cを配置し、 各通風路間を仕切板 1 ◦により、 仕切ったものであってもよい。  Further, in the above-described embodiment, the power supply devices la, lb, and 1c are arranged on the downwind side of the blower unit 9 and three of them are incorporated in the electronic device 8, for example, as shown in FIG. The power supply units 1 a to 1 c are arranged on the windward side of the air blow unit 9 and between each component of the electronic device 8 and each air blow unit 9, and a partition plate 1 ◦ separates between the air passages. It may be partitioned.
また、 上記実施の形態では、 出力電流制御部 7を電源装置 la, lb, 1 c内 に各々配置した ^^を例示したが、 例えば第 5図に示すように、 出力電流制御部 7を各電源装置 la, lb, 1 c内には配置しないで、 寿命監視部 3と電源装置 la, lb, 1 c間に 1個配置し、 1個の出力電流制御部 7で複数 ( 3個) の電 源装置 la, lb, 1 cの出力電流を制御するようにしてもよい。 この場合、 装 置構成を簡略化でき、 装置コストを ί 咸することができる。  Further, in the above-described embodiment, the ^^ in which the output current control unit 7 is disposed in each of the power supply devices la, lb, and 1c has been exemplified. For example, as shown in FIG. Do not place them inside the power supply units la, lb, 1c, but place one between the life monitoring unit 3 and the power supply units la, lb, 1c. The output current of the power supply device la, lb, 1c may be controlled. In this case, the device configuration can be simplified, and the device cost can be reduced.
次に、 この発明の並列冗長方式電源の寿命制御装置の実施の形態 2について説 明する。 第 6図はこの発明の実施の形態 2による並列冗長方式電源の寿命制御装 置を示すブロック図である。  Next, a description will be given of a second embodiment of the life control device for a parallel redundant power supply according to the present invention. FIG. 6 is a block diagram showing a life control device for a parallel redundant power supply according to Embodiment 2 of the present invention.
第 6図において、 la, lb, lcは電源装置、 2は電源装置に接続された負 荷装置、 3は電源装置の負荷電流、 電源装置の内部 ¾Sの監視と電源装置の出力 電圧を制御、 電源装置の寿命を計算する寿命監視部、 4は電源装置の電源制御部、 5は電源装置の負荷電流を検知する出力電流検知部、 6は電源装置内部の温度を 検知する ¾S検知部、 7は電源装置の出力電流を制御する出力電流制御部、 10 は電源制御部 4に接続されて電源装置に通電されていた時間を記憶する通電時間 記憶部、 11は 検知部 6で計測した値と時間を記憶する S ^記憶部である。 なお、 電源装置 lb, lcは、 図示を省略しているが、 電源装置 laと同じよ うに、 電源制御部 4、 出力電流検知部 5、 検知部 6、 出力電流制御部 7、 通 電時間記憶部 10、 及び ¾¾言己憶、部 11を有している。 In FIG. 6, la, lb, and lc are power supply units, 2 is a load unit connected to the power supply unit, 3 is a load current of the power supply unit, monitoring the inside of the power supply unit ¾S, and controlling the output voltage of the power supply unit. A life monitoring unit that calculates the life of the power supply, 4 is a power control unit of the power supply, 5 is an output current detecting section for detecting the load current of the power supply, 6 is a temperature detecting section for detecting the temperature inside the power supply¾S detecting section, 7 is an output current control section for controlling the output current of the power supply, and 10 is a power control section 4 An energization time storage unit that is connected to the power supply unit and stores the time during which power is supplied to the power supply unit. The power supply units lb and lc are not shown in the figure, but as in the case of the power supply unit la, the power supply control unit 4, the output current detection unit 5, the detection unit 6, the output current control unit 7, and the conduction time storage Part 10 and 10 Words and Memories, Part 11.
次に動作について説明する。  Next, the operation will be described.
図 6において、 温度記憶部 11は温度検∞ 6で検知した電源装置 la, lb, 1 cの内部温度 (電解コンデンサの周囲温度) が何時間^ iしたかを記憶する。  In FIG. 6, the temperature storage unit 11 stores how many hours the internal temperature (the ambient temperature of the electrolytic capacitor) of the power supply devices la, lb, and 1c detected by the temperature detector 6 has elapsed.
監視部 3は温度記憶部 11および通電時間記憶部 10で記憶された値を各電 源装置 la, lb, 1 cから読み込む。寿命監視部 3は読み込んだ値である電源 装置 1 a, lb, lcの内部¾¾と、 電源装置 la, lb, 1 cの通電時間の情 報に基づいて、 各電源装置 la, lb, lcの劣化状態を推測する。 ここで、 寿 命監視部 3は、 各電源装置 1 a, lb, 1 cの通電時間が長いもの程、 内部温度 が高いもの程劣化が大きいと判断する。寿命監視部 3は、 推測した各電源装置 1 a, lb, 1 cの劣化状態からばらつきが発生していると判断すると、 劣化の大 きい電源装置の負荷電流を減少させるように出力電流制御部 7を制御し、 —方、 劣化の小さい電源装置の負荷電流を増加させるように出力電流制御部 7を制御す る。  The monitoring unit 3 reads the values stored in the temperature storage unit 11 and the energization time storage unit 10 from each power supply device la, lb, 1c. The life monitoring unit 3 determines the power of each power supply la, lb, lc based on the read values of the internal power supply 1a, lb, lc and the power-on time of the power supply la, lb, 1c. Estimate the state of deterioration. Here, the life monitoring unit 3 determines that the longer the power supply time of each power supply device 1a, lb, 1c and the higher the internal temperature, the greater the deterioration. When the life monitoring unit 3 determines that a variation has occurred from the estimated deterioration state of each of the power supply units 1 a, lb, and 1 c, the output current control unit 3 reduces the load current of the power supply unit with the greatest deterioration. 7, the output current control unit 7 is controlled so as to increase the load current of the power supply device with little deterioration.
なお、 寿命監視部 3は、 内部 が a°Cで、 通電時間が b時間の時、 予め劣化 条件記憶部に記憶しておいた劣化情報ファィルから、 a°Cと b時間に対応する電 子部品の劣化情報 (例えば 10 °/0劣化) を取り出して、 各電源装置 la, lb, 1 cの劣化状態を推定するように構成してもよい。 When the inside of the life monitoring unit 3 is a ° C and the energization time is b hours, the life monitoring unit 3 uses the deterioration information file stored in advance in the deterioration condition storage unit to calculate the electronic temperature corresponding to a ° C and b hours. A configuration may be adopted in which deterioration information (for example, 10 ° / 0 deterioration) of parts is taken out and the deterioration state of each power supply device la, lb, 1c is estimated.
寿命監視部 3は、 各電源装置 la, lb, 1 cの間で劣化状態にばらつきが生 じた 、 求めた各電源装置 la, lb, 1 cの劣化状態の最大値(例えば 2〇 %劣化) と最小値(例えば 10%劣化) の平均値 (例えば 15%劣化) を求め、 これを劣化基準値とし、 この劣化基準値から劣化が大きいか、 小さいかを判断す る。 The life monitoring unit 3 calculates the maximum value of the obtained deterioration state of each power supply device la, lb, 1 c (for example, 2〇 The average value (for example, 15% deterioration) of the minimum value (for example, 10% deterioration) and the minimum value (for example, 15% deterioration) are obtained, and this is set as the deterioration reference value. From this deterioration reference value, it is determined whether the deterioration is large or small.
寿命監視部 3は、 各電源装置 la, lb, 1 cの劣化状態を同じにするために、 予め登録された出力電流ファイルを基に各電源装置 la, lb, lcの負荷電流 (出力電流) を求める。例えば、 求めた 10%劣化した出力電流 aを、 劣化基準 (15%)の出力電流 bになるまで出力電流を増加させるとともに、 20 %劣 化した出力電流 cを劣化基準値(15%)の出力電流 bになるまで出力電流を減 少させる。 この実施の形態によれば、 電源装置 1 a, lb, lc間の劣化状態を 同じようにすることができるので、 電源装置 la, lb, 1 c間の寿命を略同じ にすることができ、 全体的な すなわち電子機器 8の を長くすることがで きる。  The life monitoring unit 3 uses the load current (output current) of each power supply la, lb, lc based on the output current file registered in advance to make the deterioration state of each power supply la, lb, 1c the same. Ask for. For example, the output current a, which has been degraded by 10%, is increased until the output current b, which is equal to the degradation reference (15%), is increased. Decrease the output current until the output current reaches b. According to this embodiment, since the deterioration state between the power supply devices 1a, lb, and lc can be made the same, the life between the power supply devices la, lb, and 1c can be made substantially the same, The overall length of the electronic device 8 can be increased.
なお、 上記実施の形態では、 各電源の通電時間と内部 から各電源の劣化を 推定するために、 出力電流制御部 7を通電時間記憶部 10と 記憶部 11とで 構成した について説明したが、 第 7図に示すように、 出力電流制御部 7を、 通電時間記憶部 10と 記憶部 11に加えて、 電源装置の出力電流を検知する 出力電流検知部 5で検知した出力電流を記憶する出力電流記憶部 12を設けたも のであってもよい。 この構成によれば、 ^監視部 3は、 通電時間が長いもの程、 内部 ¾gか いもの程、 出力電流値が低下するもの程、 劣化が大きいと判断し、 各電源の通電時間、 内部: ag、 出力電流値から、 各電源の劣化を推定することが できるので、 上記実施の形態と同様の効果を得ることができる。  In the above-described embodiment, the output current control unit 7 is configured by the conduction time storage unit 10 and the storage unit 11 in order to estimate the deterioration of each power supply from the conduction time of each power supply and the inside. As shown in FIG. 7, an output current control unit 7 is added to a conduction time storage unit 10 and a storage unit 11, and the output current of the power supply is detected. The current storage unit 12 may be provided. According to this configuration, the monitoring unit 3 determines that the longer the energizing time, the larger the internal ¾g, and the lower the output current value, the greater the deterioration. Since the deterioration of each power supply can be estimated from ag and the output current value, the same effect as in the above embodiment can be obtained.
また、 第 8図に示すように、 出力電流制御部 7を、 通電時間記憶部 10と出力 電流記憶部 12とで構成したものであってもよい。 この構成によれば、 寿命監視 部 3は、 通電時間が長いもの程、 出力電流値が低下するもの程、 劣化が大きいと 判断し、 各電源の通電時間、 出力電流値から、 各電源の劣化を推定することがで きるので、 上記実施の形態と同様の効果を得ることができる。 この発明の並列冗長方式電源の寿命制御装置の実施の形態 3について説明する。 第 9図はこの発明の実施の形態 3による並列冗長方式電源の寿命制御装置を示す ブロック図である。 In addition, as shown in FIG. 8, the output current control unit 7 may be configured by a conduction time storage unit 10 and an output current storage unit 12. According to this configuration, the life monitoring unit 3 determines that the longer the energizing time and the lower the output current value, the greater the deterioration, and determines the deterioration of each power source from the energizing time and output current value of each power source. Can be estimated, and the same effect as in the above embodiment can be obtained. A third embodiment of the life control device for a parallel redundant power supply according to the present invention will be described. FIG. 9 is a block diagram showing a parallel redundancy power supply life control device according to Embodiment 3 of the present invention.
第 9図において、 第 1図と同一符号は同一または相当部分を示し、 1 3は寿命 監視部 3に^!され、 各電源装置 l a , l b , 1 cの劣化状態を表示する劣化表 示部である。  In FIG. 9, the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and 13 denotes a deterioration monitor that displays the deterioration state of each of the power supply units la, lb, and 1c by the life monitoring unit 3. It is.
次に動作について説明する。第 9図において、 第 1図と同一または相当部分は 同一の動作を行う。 寿命監視部 3は各電源装置 l a , l b , 1 cの劣化状態を推 測した劣化情報を劣化表示部 1 3に転送する。 劣化表示部 1 3は送られてきた劣 化情報をデジタル表示する。 ここで劣化情報は、 例えば劣化頻 JSを示す数値化し た情報であってもよいし、 劣化状態を示すメッセージによる情報であってもよい。 劣化表示部 1 3での表示により作業者 (ユーザ) は各電源装置の劣化状態を知る ことができるので、 電源装置 l a, l b , 1 cの交換時期を容易に判断すること ができる。従って、 電源装置が故障する前に確実に交換することができる。  Next, the operation will be described. In FIG. 9, the same or corresponding parts as in FIG. 1 perform the same operations. The life monitoring unit 3 transfers to the deterioration display unit 13 deterioration information in which the deterioration state of each of the power supply units l a, l b, and 1 c is estimated. The deterioration display section 13 digitally displays the transmitted deterioration information. Here, the deterioration information may be, for example, numerical information indicating the deterioration frequency JS, or may be information based on a message indicating the deterioration state. Since the display on the deterioration display unit 13 allows the worker (user) to know the deterioration state of each power supply, it is possible to easily judge when to replace the power supplies la, lb, and 1c. Therefore, it is possible to reliably replace the power supply device before it breaks down.
ここでは劣化表示をデジタル表示で表示しているが、 色分けしたランプや L E D等の半導体表示装置などを点灯させ、 人が見て判断できる表示装置であつても 同様の効果がある。  Although the deterioration display is displayed digitally here, a similar effect can be obtained even with a display device that can be judged by humans by turning on a color-coded lamp or a semiconductor display device such as an LED.
また、 劣化表示部 1 3は、 電源装置ごとに 1個宛設けてもよいし、 1個の劣化 表示部 1 3で複数の電源装置の劣化情報を一括表示したりあるいは切換え表示し たりしてもよい。  Further, the deterioration display section 13 may be provided for each power supply unit, or one deterioration display section 13 may collectively display deterioration information of a plurality of power supply units or switch and display the deterioration information. Is also good.
なお、 上記実施の形態では、 劣化の状態を交換時期に関係なく表示したが、 交 換時期に達した時に、 その交換時期を示す情報 (例えば「交換時期ですよ」 とい うメッセ一ジ) を表示するように構成してもよい。具体的には寿命監視部 3は、 各電源の劣化状態を推定し、 その劣化状態が予め定めた電源の劣化基準値を越え す i ^ 交換時期情報を劣化表示部 1 3に転送し、 劣化表示部 1 3は、 転送され た交換時期情報を表示する。 1 この発明の並列冗長方式電源の寿命制御装置の実施の形態 4について説明する。 第 10図はこの発明の実施の形態 4による並列冗長方式電源の寿命制御装置を示 すブロック図である。 In the above embodiment, the state of deterioration is displayed irrespective of the replacement time, but when the replacement time is reached, information indicating the replacement time (for example, a message saying that it is time to replace) is displayed. You may comprise so that it may display. Specifically, the life monitoring unit 3 estimates the deterioration state of each power supply, and the deterioration state exceeds a predetermined deterioration reference value of the power supply. The display unit 13 displays the transferred exchange time information. 1 A description will be given of a fourth embodiment of the life control device for a parallel redundant power supply of the present invention. FIG. 10 is a block diagram showing a life controlling device for a parallel redundant power supply according to Embodiment 4 of the present invention.
第 10図において、 第 7図と同一符号は同一または相当部分を示し、 14は寿 命監視部 3に接続され、 制御信号により冷却能力を可変にして各電源装置 1 a, lb, lcの冷却を行う可変令却装置であり、 冷却ファンの回 «を増減可能と している。  In FIG. 10, the same reference numerals as those in FIG. 7 denote the same or corresponding parts, and 14 is connected to the life monitoring unit 3, and the cooling capacity is made variable by a control signal to cool each of the power supply units 1a, lb, lc. It is a variable rejection device that performs cooling and can increase or decrease the frequency of cooling fan rotation.
次に動作について説明する。第 10図において、 第 7図と同一または相当部分 は同一の動作を行う。 寿命監視部 3は各電源装置 la, lb, 1 cの劣化状態を 推測した値から劣化の進行の禾 MSを判断し、 劣化進行の禾 asの高い電源装置の可 変冷却装置 14の冷却ファンの回転数を増加させて、 電源装置の劣化進行速度を 遅らせている。 なお、 可変冷却装置 14として、 却ファンの回 を増減可 能にしたものについて説明したが、 電源装置の冷却効果を制御できるものであれ ばよく、 例えばペルチェ効果を利用した半導体冷却装置を用いて、 冷却効果を増 減制御するようにしてもよい。  Next, the operation will be described. In FIG. 10, the same or corresponding parts as in FIG. 7 perform the same operations. The service life monitoring unit 3 judges the deterioration MS of the power supply la, lb, 1c from the estimated value of the deterioration state of each power supply device la, lb, and 1 c, and the cooling fan of the variable cooling device 14 of the power supply device whose deterioration progresses at a high rate. By increasing the number of rotations of the power supply, the deterioration progress speed of the power supply is slowed. Although the variable cooling device 14 has been described as being capable of increasing or decreasing the number of cooling fan rotations, any device that can control the cooling effect of the power supply device may be used. For example, a semiconductor cooling device using the Peltier effect is used. Alternatively, the cooling effect may be controlled to increase or decrease.
この発明の並列冗長方式電源の寿命制御装置の実施の形態 5について説明する。 第 11図はこの発明の実施の形態 5による並列冗長方式電源の寿命制御装置を示 すプロ、リク図である。  Fifth Embodiment A life control device for a parallel redundant power supply according to a fifth embodiment of the present invention will be described. FIG. 11 is a professional / request diagram showing a life control device for a parallel redundant power supply according to Embodiment 5 of the present invention.
第 11図において、 第 7図と同一符号は同一または相当部分を示し、 15は寿 命監視部 3に され、 各電源装置 1 a, lb, 1 cの劣化状態を通報する通報 装置である。  In FIG. 11, the same reference numerals as those in FIG. 7 denote the same or corresponding parts, and reference numeral 15 denotes a life monitoring unit 3, which is a notification device for reporting the deterioration state of each of the power supply devices 1a, lb, and 1c.
次に動作について説明する。第 11図において、 第 7図と同一または相当部分 は同一の動作を行う。 寿命監視部 3は各電源装置 la, lb, 1 cの劣化状態を 推測した劣化情報を通報装置 15に転送する 0通報装置 15は送られてきた劣化 情報を音声又は文書メヅセージとして外部に通報する。 Next, the operation will be described. In FIG. 11, the same or corresponding parts as in FIG. 7 perform the same operations. The life monitoring unit 3 transfers the deterioration information, which estimates the deterioration state of each power supply device la, lb, 1c, to the notifying device 15 0 The notifying device 15 sends the sent deterioration information to the outside as voice or document message .
なお、 通報装置 15は、 有線又は無線により例えば遠隔の寿命監視部 3に接続 丄 The notification device 15 is connected to, for example, a remote life monitoring unit 3 by wire or wirelessly. 丄
してもよいし、 また複数台設けてもよい。 Or a plurality of units may be provided.

Claims

請 求 の 範 囲 The scope of the claims
1. 複数の電源装置 ( 1 a ) 〜 (; L c ) から共通の負荷 ( 2 ) に電力を供給する 電源装置において、 各電源装置の内部温度を検知する ¾®検知手段 (6) と 、 各電源装置の出力電流を制御する出力電流制御手段 (5) と、 各電源装置 間で内部温度にばらつきが生じた時、 内部温度が高くなつている電源装置の 出力電流を減少させ、 一方内部温度が低くなつている電源装置の出力電流を 増加させて、 複数の電源装置の内部温度をほぼ均一にする寿命監視手段 (3 ) とを備えたことを とする電源装置の寿^^御装置。 1. In a power supply unit for supplying power from a plurality of power supply units (1a) to (; Lc) to a common load (2), ¾® detection means (6) for detecting an internal temperature of each power supply unit; Output current control means (5) for controlling the output current of each power supply; and when the internal temperature varies between the power supplies, the output current of the power supply having a higher internal temperature is reduced, while A power supply lifespan control means, comprising: lifespan monitoring means (3) for increasing the output current of the power supply having a low temperature and making the internal temperatures of the plurality of power supplies substantially uniform. .
2. 電源装置の構成が並列冗長方式であることを ¾(とする請求項 1記載の電源 装置の寿^ OT装置。 2. The OT device of claim 1, wherein the configuration of the power supply device is a parallel redundant system.
3. 複数の電源装置から共通の負荷に電力を供給する電源装置において、 各電源 装置の内部温度を記憶する 記憶手段 (11) と、 各電源装置の通電時間 を記' ( る通電時間記憶手段 (10) と、 各電源装置の出力電流を制御する 出力電流制御手段 ( 7 ) と、 上記 ¾S記憶手段 ( 11 )から読み出した各電 源装置の内部 と、 上 E¾電時間記憶手段 (10)から読み出した各電源 装置の通電時間に基づいて、 複数の電源装置の劣化状態を推定し、 各電源装 置間で劣化状態にばらつきが生じた時、 劣化の大きい電源装置の出力電流を 減少させ、 一方劣化の小さい電源装置の出力電流を増加させて、 複数の電源 装置の劣化状態をほぼ均一にする 監視手段( 3 ) とを備えたことを觀 とする電源装置の寿命制御装置。  3. In a power supply unit that supplies power from a plurality of power supply units to a common load, a storage unit (11) for storing an internal temperature of each power supply unit, and an energization time storage unit for storing an energization time of each power supply unit. (10), output current control means (7) for controlling the output current of each power supply device, the inside of each power supply device read from the ¾S storage means (11), and the upper E power supply time storage means (10) Estimate the deterioration status of multiple power supply units based on the power-on time of each power supply unit read from the power supply unit, and when the deterioration state of each power supply unit varies, reduce the output current of the power supply unit with the most deterioration. On the other hand, a life control device for a power supply device, comprising monitoring means (3) for increasing the output current of the power supply device with little deterioration and making the deterioration states of the plurality of power supply devices substantially uniform.
4. 複数の電源装置から共通の負荷に電力を供給する電源、装置において、 各電源 装置の内部: asを記憶する as記憶手段 (I D と、 各電源装置の通電時間 を記憶する通電時間記憶手段 (10) と、 各電源装置の出力電流値を記憶す る出力電流記憶、手段 (12) と、 各電源装置の出力電流を制御する出力電流 制御手段(7) と、 上記温度記'億手段 (11)から読み出した各電源装置の 内部温度、 上言 ffi通電時間記憶手段 (10)から読み出した各電源装置の通電 時間及び上記出力電流記憶手段 (12) から読み出した各電源装置の出力電 流値に基づいて、 複数の電源装置の劣化状態を推定し、 各電源装置間で劣化 状態にばらつきが生じた時、 劣化の大き tヽ電源装置の出力電流を減少させ、 —方劣化の小さい電源装置の出力電流を増加させて、 複数の電源装置の劣化 状態をほほ'均一にする寿命監視手段 (3) とを備えたことを ^とする電源 装置の寿 卿装置。 4. In a power supply that supplies power from multiple power supplies to a common load, inside each power supply: as storage means (for storing the ID and energization time for each power supply) (10), output current storage and means for storing the output current value of each power supply unit (12); output current control means (7) for controlling the output current of each power supply unit; Of each power supply read from (11) Based on the internal temperature, the power supply time read from the power supply time storage means (10) and the output current value of each power supply read from the output current storage means (12), a plurality of power supply apparatuses are provided. Estimate the state of deterioration of the power supply, and when the state of deterioration among the power supply units varies, decrease the output current of the power supply unit, and increase the output current of the power supply unit with less deterioration. A power supply life device comprising: a life monitoring means (3) for making the deterioration state of a plurality of power supply devices substantially uniform.
5. 複数の電源装置から共通の負荷に電力を供給する電源装置において、 各電源 装置の出力電流値を記憶する出力電流記憶手段 (12) と、 各電源装置の通 電時間を言己憶する通電時間記憶手段 (10) と、 各電源装置の出力電流を制 御する出力電流制御手段 (7) と、 上記出力電流記憶手段 (12)から読み 出した各電源装置の出力電流値と、 上言 E®電時間記憶手段 (10) から読み 出した各電源装置の通電時間に基づいて、 複数の電源装置の劣化状態を推定 し、 各電源装置間で劣化状態にばらつきが生じた時、 劣化の大きい電源装置 の出力電流を減少させ、 一方劣化の小さい電源装置の出力電流を増加させて、 複数の電源装置の劣化状態をほほ'均一にする寿命監視手段 (3) とを備えた ことを ¾とする電源装置の ^制御装置。  5. In a power supply unit that supplies power to a common load from a plurality of power supply units, an output current storage unit (12) that stores an output current value of each power supply unit, and a conduction time of each power supply unit is remembered. A power supply time storage means (10), an output current control means (7) for controlling an output current of each power supply, an output current value of each power supply read from the output current storage means (12), E Estimate the state of deterioration of multiple power supplies based on the power-on time of each power supply read from the E® power time storage means (10). Life monitoring means (3) for reducing the output current of a power supply having a large power supply and increasing the output current of a power supply having a small deterioration so as to make the deterioration state of a plurality of power supplies almost uniform.電源 Control device of power supply.
6. 寿命監視手段 (3)は、 推定した複数の電源装置の劣化状態の情報を劣化表 示手段 (13) に転送し、 劣化表示手段は転送された劣化状態を表示するこ とを ¾とする請求項 3〜請求項 5のいずれかに記載の電源装置の寿命制御  6. The life monitoring means (3) transfers information on the estimated deterioration state of the plurality of power supply units to the deterioration display means (13), and the deterioration display means displays the transferred deterioration state. Life control of the power supply device according to any one of claims 3 to 5
7. 寿命監視手段 (3) は、 複数の電源装置の劣化状態を推定し、 その劣化状態 が予め定めた電源装置の劣化基準値を越えた場合、 電源装置の交換時期を示 す情報を劣化表示手段 (13) に し、 劣化表示手段は転送された交換時 期情報を表示することを ¾ とする請求項 3〜請求項 5のいずれかに記載の 電源装置の寿命制御装置。 7. The service life monitoring means (3) estimates the deterioration status of multiple power supply units, and if the deterioration status exceeds a predetermined power supply deterioration reference value, degrades the information indicating the time to replace the power supply unit. The life control device for a power supply device according to any one of claims 3 to 5, wherein the deterioration display means displays the transferred replacement time information in the display means (13).
PCT/JP1997/004072 1997-11-10 1997-11-10 Service life controller for power unit WO1999025052A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/004072 WO1999025052A1 (en) 1997-11-10 1997-11-10 Service life controller for power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/004072 WO1999025052A1 (en) 1997-11-10 1997-11-10 Service life controller for power unit

Publications (1)

Publication Number Publication Date
WO1999025052A1 true WO1999025052A1 (en) 1999-05-20

Family

ID=14181441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004072 WO1999025052A1 (en) 1997-11-10 1997-11-10 Service life controller for power unit

Country Status (1)

Country Link
WO (1) WO1999025052A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309949A (en) * 2007-06-13 2008-12-25 Sharp Corp Electronic device
JP2012175885A (en) * 2011-02-24 2012-09-10 Nec Computertechno Ltd Electric power unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241623A (en) * 1988-07-29 1990-02-09 Fujitsu Ltd Parallel operation system of stabilized power supply
JPH02230321A (en) * 1989-03-02 1990-09-12 Oki Electric Ind Co Ltd Multi-bit coincidence circuit
JPH0522862A (en) * 1991-07-08 1993-01-29 Nec Corp Power supply apparatus for parallel operation
JPH05281001A (en) * 1992-04-03 1993-10-29 Fuji Electric Co Ltd Life time estimating device for part
JPH05300650A (en) * 1992-04-21 1993-11-12 Meidensha Corp Device for monitoring fault of parallel redundancy power source
JPH06233553A (en) * 1993-01-28 1994-08-19 Mitsubishi Electric Corp Inverter device
JPH07322493A (en) * 1994-05-30 1995-12-08 Matsushita Seiko Co Ltd Power supply device of air-conditioning equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241623A (en) * 1988-07-29 1990-02-09 Fujitsu Ltd Parallel operation system of stabilized power supply
JPH02230321A (en) * 1989-03-02 1990-09-12 Oki Electric Ind Co Ltd Multi-bit coincidence circuit
JPH0522862A (en) * 1991-07-08 1993-01-29 Nec Corp Power supply apparatus for parallel operation
JPH05281001A (en) * 1992-04-03 1993-10-29 Fuji Electric Co Ltd Life time estimating device for part
JPH05300650A (en) * 1992-04-21 1993-11-12 Meidensha Corp Device for monitoring fault of parallel redundancy power source
JPH06233553A (en) * 1993-01-28 1994-08-19 Mitsubishi Electric Corp Inverter device
JPH07322493A (en) * 1994-05-30 1995-12-08 Matsushita Seiko Co Ltd Power supply device of air-conditioning equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309949A (en) * 2007-06-13 2008-12-25 Sharp Corp Electronic device
JP2012175885A (en) * 2011-02-24 2012-09-10 Nec Computertechno Ltd Electric power unit

Similar Documents

Publication Publication Date Title
JP4421423B2 (en) Air conditioner monitoring system and air conditioner monitoring method
JP5290044B2 (en) Air conditioner monitoring system and air conditioner monitoring method
US7330046B2 (en) Circuits and methods for failure prediction of parallel MOSFETs
JP4591246B2 (en) Power converter
JP2007199052A (en) Lifetime prediction monitoring device, lifetime prediction monitoring method, and lifetime prediction monitoring program
US8378599B2 (en) Power transducer
US9439323B2 (en) Electronic device and method for controlling temperature of electronic device
US10277004B2 (en) Laser device
EP2986097B1 (en) Liquid cooling system and control method therefor
JP5032061B2 (en) Inverter device
BR102014006156A2 (en) method for the automatic implementation of diagnostics and prognostics for drives
US8054609B2 (en) System to control, protect and monitor the status of forced cooling motors for power transformers and similar
JP5869297B2 (en) Air conditioning system, air conditioning system control program, and air conditioning system control method
JP5628013B2 (en) Housing equipment support system
WO1999025052A1 (en) Service life controller for power unit
WO2020208726A1 (en) Power conversion device
JP2008249170A (en) Cooling device for heating element storing box
JP2007060787A (en) Power supply transformer protection system
JP2009014428A (en) Power supply device and electric equipment
JP2013108681A (en) Air conditioning system
EP1990876A2 (en) Dynamic thermal management of laser devices laser devices
JP2006246630A (en) Terminal board unit
JP2830252B2 (en) Power supply cooling fan life detector
JP2007173885A (en) Lifetime management system for network relaying apparatus
CN116018246A (en) Robot system and method for predicting life of regenerative resistor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642