WO1999024416A1 - Aminothiazole inhibitors of cyclin dependent kinases - Google Patents

Aminothiazole inhibitors of cyclin dependent kinases Download PDF

Info

Publication number
WO1999024416A1
WO1999024416A1 PCT/US1998/023197 US9823197W WO9924416A1 WO 1999024416 A1 WO1999024416 A1 WO 1999024416A1 US 9823197 W US9823197 W US 9823197W WO 9924416 A1 WO9924416 A1 WO 9924416A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
aryl
cycloalkyl
heteroaryl
heterocycloalkyl
Prior art date
Application number
PCT/US1998/023197
Other languages
French (fr)
Inventor
Kyoung S. Kim
S. David Kimball
Michael A. Poss
Raj N. Misra
Zhen-Wei Cai
David B. Rawlins
Kevin Webster
John T. Hunt
Wen-Ching Han
Original Assignee
Bristol-Myers Squibb Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to IL13558998A priority Critical patent/IL135589A/en
Priority to KR10-2003-7004561A priority patent/KR20030036862A/en
Priority to EP98956431A priority patent/EP1042307B1/en
Priority to DE69838515T priority patent/DE69838515T2/en
Application filed by Bristol-Myers Squibb Company filed Critical Bristol-Myers Squibb Company
Priority to AU12955/99A priority patent/AU730607B2/en
Priority to NZ503828A priority patent/NZ503828A/en
Priority to PL340540A priority patent/PL204642B1/en
Priority to JP2000520430A priority patent/JP4344084B2/en
Priority to CA002309551A priority patent/CA2309551C/en
Priority to HU0004559A priority patent/HUP0004559A3/en
Priority to BR9814124-4A priority patent/BR9814124A/en
Priority to DK98956431T priority patent/DK1042307T3/en
Publication of WO1999024416A1 publication Critical patent/WO1999024416A1/en
Priority to NO20002153A priority patent/NO316773B1/en
Priority to HK00107675A priority patent/HK1029109A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/54Nitrogen and either oxygen or sulfur atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • R 4 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylalkyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl, heterocycloalkylalkyl; or CO-alkyl, CO-cycloalkyl, CO-aryl, CO-alkyl-cyclo alkyl, CO-alkyl-aryl, CO-heteroaryl, CO-alkyl-heteroaryl, CO-heterocycloalkyl, CO-alkyl-heterocycloalkyl; or CONH-alkyl, CONH-cycloalkyl, CONH-aryl, CONH-alkyl-cycloalkyl, CONH-alkyl-aryl, CONH-heteroaryl, CONH-alkyl-heteroaryl, CONH-heterocycloalkyl, CONH-heterocycloalkyl, CONH-heterocycloalky
  • the intermediate (IV) is then reduced to a thiol (V) using reducing agents such as dithiothreitol (DTT), sodium borohydride, zinc or other known reducing agents.
  • DTT dithiothreitol
  • Compound (V) is then reacted with alkyl, aryl or heteroaryl halides, such as R 3 (CR-R 2 ) n -L, where L is a leaving group such as a halogen, in the presence of a base such as potassium carbonate to obtain compounds of formula I.
  • the steps of reducing the thiocyanothiazole intermediate (IV) to the thiol (V), and the reaction of the reduced thiol (V) to provide compounds of formula I where X is S may be carried out sequentially without purification.
  • the reaction was incubated at 30°C for 1 hour and then stopped by the addition of cold trichloroacetic acid (TCA) to a final concentration of 15% and incubated on ice for 20 minutes.
  • TCA cold trichloroacetic acid
  • the reaction was harvested onto GF/C unifilter plates (Packard) using a Packard Filtermate Universal harvester, and the filters were counted on a Packard

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Cardiology (AREA)
  • Virology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Dermatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Rheumatology (AREA)
  • Urology & Nephrology (AREA)
  • Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Transplantation (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Thiazole And Isothizaole Compounds (AREA)

Abstract

Compounds of formula (I) and pharmaceutically acceptable salts thereof. As used in formula (I), and throughout the specification, the symbols have the following meanings: R1 and R2 are independently hydrogen, fluorine or alkyl; R3 is aryl or heteroaryl. The compounds of formula (I) are protein kinase inhibitors and are useful in the treatment and prevention of proliferative diseases, for example cancer, inflammation and arthritis.

Description

AMINOTHIAZO- E INHIBITORS OF CYCLIN DEPENDENT KINASES
Brief Description of the Invention The present invention is directed to compounds of the formula
Figure imgf000003_0001
and pharmaceutically acceptable salts thereof. As used in formula I, and throughout the specification, the symbols have the following meanings: Rx and R2 are independently hydrogen, fluorine or alkyl;
R3 is aryl or heteroaryl
R4 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylalkyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl, heterocycloalkylalkyl; or CO-alkyl, CO-cycloalkyl, CO-aryl, CO-alkyl-cyclo alkyl, CO-alkyl-aryl, CO-heteroaryl, CO-alkyl-heteroaryl, CO-heterocycloalkyl, CO-alkyl-heterocycloalkyl; or CONH-alkyl, CONH-cycloalkyl, CONH-aryl, CONH-alkyl-cycloalkyl, CONH-alkyl-aryl, CONH-heteroaryl, CONH-alkyl-heteroaryl, CONH-heterocycloalkyl,
CONH-alkyl-heterocycloalkyl; or COO-alkyl, COO-cycloalkyl, COO-aryl, COO-alkyl-cycloalkyl, COO-alkyl-aryl, COO-heteroaryl, COO-alkyl-heteroaryl, COO-heterocycloalkyl, COO-alkyl-heterocycloalkyl; or SO2-alkyl, SO2-cycloalkyl, SO2-aryl, SO2-alkyl-cycloalkyl, SO2-alkyl-aryl, SO2-heteroaryl, SO2-alkyl-heteroaryl, SO2-heterocycloalkyl, SO2-alkyl-heterocycloalkyl; or C(NCN)NH-alkyl, C(NCN)NH-cycloalkyl, C(NCN)NH-aryl, C(NCNNH)-alkyl-cycloalkyl, C(NCN)NH-alkyl-aryl, C(NCN)NH-heteroaryl, C(NCN)NH-alkyl-heteroaryl, C(NCN)NH-heterocycloalkyl, C(NCN)NH-alkyl-heterocylcoalkyl; or
C(NNO2)NH-alkyl, C(NNO2)NH-cycloalkyl, C(NNO2)NH-aryl, C(NNO2)NH-alkyl-cycloalkyl, C(NNO2)NH-alkyl-aryl, C(NNO2)NH-heteroaryl, C(NNO2)NH-alkyl-heteroaryl,
C(NNO2)NH-heterocyloalkyl, C(NNO2)NH-alkyl-heterocycloalkyl; or
C(NH)NH-alkyl, C(NH)NH-cycloalkyl, C(NH)NH-aryl, C(NH)NH-alkyl-cycloalkyl, C(NH)NH-alkyl-aryl, C(NH)NH-heteroaryl, C(NH)NH-alkyl-heteroaryl,
C(NH)NH-heterocycloalkyl, C(NH)NH-alkyl-heterocycloalkyl; or C(NH)NHCO-alkyl, C(NH)NHCO-cycloalkyl, C(NH)NHCO-aryl, C(NH)NHCO-alkyl-cycloalkyl, C(NH)NHCO-alkyl-aryl, C(NH)NHCO-heteroaryl, C(NH)NHCO-alkyl-heteroaryl, C(NH)NHCO-heterocylcloalkyl,
C(NH)NHCO-alkyl-heterocycloalkyl; or C(NOR6)NH-alkyl, C(NOR6)NH-cycloalkyl, C(NOR6)NH-aryl, C(NOR6)NH-alkyl-cycloalkyl, C(NOR6)NH-alkyl-aryl, C(NOR6)NH-heteroaryl, C(NOR6)NH-alkyl-heteroaryl, C(NOR6)NH-heterocylcoalkyl, C(NOR6)NH-alkyl-heterocycloalkyl;
R5 is hydrogen or alkyl;
R6 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylakyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl or heterocycloalkylalkyl; m is an integer of 0 to 2; and n is an integer of 1 to 3. The compounds of formula I are protein kinase inhibitors and are useful in the treatment and prevention of proliferative diseases, for example, cancer, inflammation and arthritis. They may also be useful in the treatment of neurodegenerative diseases such as Alzheimer's disease, cardiovascular diseases, viral diseases and fungal diseases. Description of the Invention
The present invention provides for compounds of formula I, pharmaceutical compositions employing such compounds and for methods of using such compounds. Listed below are definitions of various terms used to describe the compounds of the instant invention. These definitions apply to the terms as they are used throughout the specification (unless they are otherwise limited in specific instances) either individually or as part of a larger group. It should be noted that any heteroatom with unsatisfied valances is assumed to have the hydrogen atom to satisfy the valances.
Carboxylate anion refers to a negatively charged group -COO . The term "alkyl" or "alk" refers to a monovalent alkane (hydrocarbon) derived radical containing from 1 to 12 carbon atoms unless otherwise defined. An alkyl group is an optionally substituted straight, branched or cyclic saturated hydrocarbon group. When substituted, alkyl groups may be substituted with up to four substituent groups, R as defined, at any available point of attachment. When the alkyl group is said to be substituted with an alkyl group, this is used interchangeably with "branched alkyl group". Exemplary unsubstituted such groups include methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4- trimethylpentyl, nonyl, decyl, undecyl, dodecyl, and the like. Exemplary substituents may include but are not limited to one or more of the following groups: halo (such as F, Cl, Br, I), haloalkyi (such as CCI3 or CF3), alkoxy, alkylthio, hydroxy, carboxy (-COOH), alkyloxycarbonyl (-C(O)R), alkylcarbonyloxy (-OCOR), amino (-NH2), carbamoyl (-NHCOOR- or -OCONHR-), urea (-NHCONHR-) or thiol (-SH). Alkyl groups as defined may also comprise one or more carbon to carbon double bonds or one or more carbon to carbon triple bonds.
The term "alkenyl" refers to a hydrocarbon radical straight, branched or cyclic containing from 2 to 12 carbon atoms and at least one carbon to carbon double bond. The term "alkynyl" refers to a hydrocarbon radical straight, branched or cyclic containing from 2 to 12 carbon atoms and at least one carbon to carbon triple bond.
Cycloalkyl is a specie of alkyl containing from 3 to 15 carbon atoms, without alternating or resonating double bonds between carbon atoms. It may contain from 1 to 4 rings. Exemplary unsubstituted such groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, adamantyl, etc. Exemplary substituents include one or more of the following groups: halogen, alkyl, alkoxy, alkyl hydroxy, amino, nitro, cyano, thiol and/or alkylthio.
The terms "alkoxy" or "alkylthio", as used herein, denote an alkyl group as described above bonded through an oxygen linkage (-O-) or a sulfur linkage (-S-), respectively.
The term "alkyloxycarbonyl", as used herein, denotes an alkoxy group bonded through a carbonyl group. An alkoxycarbonyl radical is represented by the formula: -C(O)OR, where the R group is a straight or branched C^ alkyl group.
The term "alkylcarbonyl" refers to an alkyl group bonded through a carbonyl group . The term "alkylcarbonyloxy", as used herein, denotes an alkylcarbonyl group which is bonded through an oxygen linkage.
The term "arylalkyl", as used herein, denotes an aromatic ring bonded to an alkyl group as described above.
The term "aryl" refers to monocyclic or bicyclic aromatic rings, e.g. phenyl, substituted phenyl and the like, as well as groups which are fused, e.g., napthyl, phenanthrenyl and the like. An aryl group thus contains at least one ring having at least 6 atoms, with up to five such rings being present, containing up to 22 atoms therein, with alternating (resonating) double bonds between adjacent carbon atoms or suitable heteroatoms. Aryl groups may optionally be substituted with one or more groups including, but not limited to halogen, alkyl, alkoxy, hydroxy, carboxy, carbamoyl, alkyloxycarbonyl, nitro, trifluoromethyl, amino, cycloalkyl, cyano, alkyl S(O)m (m=O, 1, 2), or thiol. The term "heteroaryl" refers to a monocyclic aromatic hydrocarbon group having 5 or 6 ring atoms, or a bicyclic aromatic group having 8 to 10 atoms, containing at least one heteroatom, O, S, or N, in which a carbon or nitrogen atom is the point of attachment, and in which one or two additional carbon atoms is optionally replaced by a heteroatom selected from O or S, and in which from 1 to 3 additional carbon atoms are optionally replaced by nitrogen heteroatoms, said heteroaryl group being optionally substituted as described herein. Exemplary heteroaryl groups include the following: thienyl, furyl, pyrrolyl, pyridinyl, imidazolyl, pyrrolidinyl, piperidinyl, thiazolyl, oxazolyl, triazolyl, pyrazolyl, isoxazolyl, isothiazolyl, pyrazinyl, pyridazinyl, pyrimidinal, triazinylazepinyl, indol l, isoindolyl, quinolinyl, isoquinolinyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, benzoxadiazolyl, benzofurazanyl and tetrahydropyranyl. Exemplary substituents include one or more of the following: halogen, alkyl, alkoxy, hydroxy, carboxy, carbamoyl, alkyloxycarbonyl, trifluoromethyl, cycloalkyl, nitro, cyano, amino, alkylS(O)m (m=0, 1, 2), or thiol.
The term "heteroarylium" refers to heteroaryl groups bearing a quaternary nitrogen atom and thus a positive charge. The term "heterocycloalkyl" refers to a cycloalkyl group
(nonaromatic) in which one of the carbon atoms in the ring is replaced by a heteroatom selected from O, S or N, and in which up to three additional carbon atoms may be replaced by said heteroatoms.
The term "quaternary nitrogen" refers to a tetravalent positively charged nitrogen atom including, e.g. the positively charged nitrogen in a tetraalkylammonium group (e.g. tetramethylammonium, N-methylpyridinium), the positively charged nitrogen in protonated ammonium species (e.g. trimethylhydroammonium, N-hydropyridinium), the positively charged nitrogen in amine N-oxides (e.g. N-methyl-morpholine-N-oxide, pyridine -N-oxide), and the positively charged nitrogen in an N-amino-ammonium group (e.g. N-aminopyridinium) .
The term "heteroatom" means O, S or N, selected on an independent basis. The term "halogen" or "halo" refers to chlorine, bromine, fluorine or iodine.
When a functional group is termed "protected", this means that the group is in modified form to preclude undesired side reactions at the protected site. Suitable protecting groups for the compounds of the present invention will be recognized from the present application taking into account the level of skill in the art, and with reference to standard textbooks, such as Greene, T. W. et al., Protective Groups in Organic Synthesis, Wiley, N.Y. (1991). Suitable examples of salts of the compounds according to the invention with inorganic or organic acids are hydrochloride, hydrobromide, sulfate, phosphate. Salts which are unsuitable for pharmaceutical uses but which can be employed, for example, for the isolation or purification of free compounds I or their pharmaceutically acceptable salts, are also included.
All stereoisomers of the compounds of the instant invention are contemplated, either in admixture or in pure or substantially pure form. The definition of the compounds according to the invention embraces all possible stereoisomers and their mixtures. It very particularly embraces the racemic forms and the isolated optical isomers having the specified activity. The racemic forms can be resolved by physical methods, such as, for example, fractional crystallization, separation or crystallization of diastereomeric derivatives or separation by chiral column chromatography. The individual optical isomers can be obtained from the racemates by conventional methods, such as, for example, salt formation with an optically active acid followed by crystallization.
It should be understood that solvates (e.g., hydrates) of the compounds of formula I are also within the scope of the present invention. Methods of solvation are generally known in the art.
Accordingly, the compounds of the instant invention may be in the free or hydrate form, and may be obtained by methods exemplified by the following schemes. Scheme 1
J-Λ NaSCN J-Λ ^ B ^
(ID (HI) (IV)
Figure imgf000009_0001
(V) 00
As illustrated in Scheme 1, compounds of formula I where X is S are prepared by reacting 2-aminothiazole (II) with bromine in the presence of sodium or potassium thiocyanate to obtain a thiocyanated aminothiazole, specifically 5-thiocyanatoaminothiazole (III). Compound III is then reacted with R4-L, where L is a leaving group such as a halogen, in the presence of a base such as triethylamine to provide a 5-thiocyanatothiazole intermediate (IV), where R4 is as defined in the specification. The intermediate (IV) is then reduced to a thiol (V) using reducing agents such as dithiothreitol (DTT), sodium borohydride, zinc or other known reducing agents. Compound (V) is then reacted with alkyl, aryl or heteroaryl halides, such as R3 (CR-R2)n-L, where L is a leaving group such as a halogen, in the presence of a base such as potassium carbonate to obtain compounds of formula I. The steps of reducing the thiocyanothiazole intermediate (IV) to the thiol (V), and the reaction of the reduced thiol (V) to provide compounds of formula I where X is S, may be carried out sequentially without purification. Scheme 2
Figure imgf000010_0001
Figure imgf000010_0002
(IX) (D (X=s)
In Scheme 2, 5-thioacetyl-2-acetylaminothiazole of structure VI is reacted with an alkoxide such as potassium t-butoxide in alcohol or THF solvent and the resulting thiol is reacted in situ with a group of formula R3(CR1R2)n-L (where L is a leaving group, such as a halogen) such as 2- halomethyloxazole (VII) to provide a compound such as formula VIII, wherein Rx and R2 are hydrogen, and R6 is acetyl. The 2- halomethyloxazole compounds of formula VII may be prepared using several synthetic routes known in the art. Chem. Pharm. Bull. 30, 1865 (1982); Bull. Chem. Soc. Japan (52, 3597 (1979); JCS Chem. Comm. 322 (1981); Comprehensive Heterocyclic Chemistry, vol. 6, 177, edited by A. Katritzky and C.W. Rees, Pergamon Press (1984).
Compounds of formula VIII (a compound of formula I where R4 is acetyl and X is sulfur) can be hydrolyzed in the presence of a base such as sodium hydroxide to provide a compound of formula IX. A compound of formula IX may then be reacted with R4-L, in the presence of a base such as triethylamine, where L is a leaving group such as a halogen, to give compounds of formula I where X is sulfur. In this manner, compounds of formula IX, which is a compound of formula I where R4 is hydrogen, can be treated with agents such as isothiocyanates, halides, acyl halides, chloroformates, isocyanates or sulfonyl chlorides to provide thioureas, amines, amides, carbamates, ureas or sulfonamides. The procedures in Scheme 2 specifically illustrate a methyloxazole group, but are general for all R3(CR1R2)n- groups specified by formula I.
Alternatively, compounds of formula VII, where L is bromine, may be prepared by halogenation of 2-methyloxazole using N-bromosuccinimide in the presence of dibenzoylperoxide.
Scheme 3
Figure imgf000011_0001
(X) (XI) (XII)
Figure imgf000011_0002
(XIII) (VII)
Scheme 3 illustrates an alternative method of preparing compound VII, which is a compound of formula R3(CR1R2)n-L where L is chlorine and n is the integer 1. In this scheme, compound VII is prepared by the reaction of a compound of formula X and formula XI in the presence of a base such as triethylamine to provide compounds of formula XII. Compound XII may be oxidized by an oxidant such as oxalylchloride/DMSO in the presence of a base such as triethylamine to provide a compound of formula XIII which may be cyclized by an agent such as phosphorous oxychloride to provide compounds of formula VII, wherein L is chlorine. Alternatively, compounds of formula XIII may be prepared by reaction of the amino ketone correponding to X with an acid chloride such as XI. Scheme 4
Figure imgf000012_0001
(XIV) (XV) (VII)
Compounds of formula VII, where L is chlorine, may also be prepared from the reaction of diazoketones as illustrated by formula XIV in Scheme 4 with chloronitriles, such as indicated by formula XV, in the presence of BF3 etherate to provide compounds of formula VII, wherein L is chlorine. Scheme 5
Figure imgf000012_0002
(XVI) (XVII)
Step 1 Step 2
Figure imgf000012_0003
(XIX) (XX)
Step 3 Step 4
Figure imgf000013_0001
In Scheme 5, starting compound XVI denotes a resin-bound benzyl alcohol support used for solid phase synthesis which is prepared from a Merrifield resin denoted as "" , and 2-methoxy-4- hydroxybenzaldehyde, followed by reduction with reducing agents such as NaBH4. In step 1, starting compound XVI is treated with triphosgene and triphenylphosphine (PPh3) in dichloromethane to give the chlorobenzyl resin of formula XVII. In step 2, a thiocyanato trifluoroacetamide (XVIII) is alkylated with the resin-bound benzyl chloride (XVII) in the presence of diisopropylethylamine (DIPEA) to form a resin-bound thiocyanate (XIX). The thiocyanato trifluoroacetamide compound of formula XVII is prepared by reacting 5- thiocyanatoaminothiazole of formula III (Scheme I) with trifluoro acetic anhydride using a base such as 2,6-lutidine.
The resin-bound thiocyanate (XIX) is then reduced to a resin- bound thiol (XX) in step 3 with reducing agent such as dithiothreitol (DTT) in tetrahydrofuran (THF) and methanol. The resulting resin- bound thiol (XX) is reacted with R3(CR1R2)n-L, where L is a leaving group, in the presence of a base such as l,8-diazabicyclo[5,4,0]undec-7- ene (DBU) at 80 °C in dimethylformamide (DMF) to form compounds of formula XXI (step 4). Deprotection of the trifluoroacetyl group of compound XXI is performed in step 5 using sodium borohydride to provide a compound of formula XXII. In step 6, the deprotected compound XXII is reacted with R6X, where X is a leaving group, in the presence of a base such as diisopropylethylamine to provide compounds of formula XXIII. The product is then cleaved from the solid phase resin in step 7 with trifluoroacetic acid (TFA) to give compounds of formula I where X is sulfur. Compounds of formula I where X is S(O)m and m is 1 or 2 may be prepared from compounds of formula I where m is 0 by oxidation with an oxidant such as sodium periodate, meta- chloroperbenzoic acid, or oxone.
The starting compounds of Schemes 1-5 are commercially available or may be prepared by methods known to one of ordinary skill in the art.
All compounds of formula I may be prepared by modification of the procedures described herein.
The preferred compounds of formula I are those where:
Rt and R2 are independently hydrogen, fluorine or alkyl;
Figure imgf000014_0001
wherein Y is oxygen, sulfure or NR9; R4 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylalkyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl, heterocycloalkylalkyl; or CO-alkyl, CO-cycloalkyl, CO-aryl, CO-alkyl-cycloalkyl, CO-alkyl-aryl, CO-heteroaryl, CO-alkyl-heteroaryl, CO-heterocycloalkyl, CO-alkyl-heterocycloalkyl; or CONH-alkyl, CONH-cycloalkyl, CONH-aryl, CONH-alkyl-cycloalkyl, CONH-alkyl-aryl, CONH-heteroaryl, CONH-alkyl-heteroaryl, CONH-heterocycloalkyl,
CONH-alkyl-heterocycloalkyl; or COO-alkyl, COO-cycloalkyl, COO-aryl, COO-alkyl-cycloalkyl, COO-alkyl-aryl, COO-heteroaryl, COO-alkyl-heteroaryl, COO-heterocycloalkyl, COO-alkyl-heterocycloalkyl; or SO2-alkyl, SO2-cycloalkyl, SO2-aryl, SO2-alkyl-cycloalkyl, SO2-alkyl-aryl, SO2-heteroaryl, SO2-alkyl-heteroaryl, SO2-heterocycloalkyl,
SO2-alkyl-heterocycloalkyl; or C(NCN)NH-alkyl, C(NCN)NH-cycloalkyl, C(NCN)NH-aryl, C(NCNNH)-alkyl-cycloalkyl, C(NCN)NH-alkyl-aryl, C(NCN)NH-heteroaryl, C(NCN)NH-alkyl-heteroaryl, C(NCN)NH-heterocycloalkyl, C(NCN)NH-alkyl-heterocylcoalkyl; or
C(NNO2)NH-alkyl, C(NNO2)NH-cycloalkyl, C(NNO2)NH-aryl, C(NNO2)NH-alkyl-cycloalkyl, C(NNO2)NH-alkyl-aryl, C(NNO2)NH-heteroaryl, C(NNO2)NH-alkyl-heteroaryl, C(NNO2)NH-heterocyloalkyl, C(NNO2)NH-alkyl-heterocycloalkyl; or
C(NH)NH-alkyl, C(NH)NH-cycloalkyl, C(NH)NH-aryl, C(NH)NH-alkyl-cycloalkyl, C(NH)NH-alkyl-aryl, C(NH)NH-heteroaryl, C(NH)NH-alkyl-heteroaryl, C(NH)NH-heterocycloalkyl, C(NH)NH-alkyl-heterocycloalkyl; or
C(NH)NHCO-alkyl, C(NH)NHCO-cycloalkyl, C(NH)NHCO-aryl, C(NH)NHCO-alkyl-cycloalkyl, C(NH)NHCO-alkyl-aryl, C(NH)NHCO-heteroaryl, C(NH)NHCO-alkyl-heteroaryl, C(NH)NHCO-heterocylcloalkyl, C(NH)NHCO-alkyl-heterocycloalkyl; or
C(NOR6)NH-alkyl, C(NOR6)NH-cycloalkyl, C(NOR6)NH-aryl, C(NOR6)NH-alkyl-cycloalkyl, C(NOR6)NH-alkyl-aryl, C(NOR6)NH-heteroaryl, C(NOR6)NH-alkyl-heteroaryl, C(NOR6)NH-heterocylcoalkyl, C(NOR6)NH-alkyl-heterocycloalkyl; R5 is hydrogen; and
R6 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylakyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl or heterocycloalkylalkyl ; R7 and R8 are independently hydrogen, alkyl, cycloalkyl, aryl, alkylcycloalkyl, alkylaryl, heteroaryl, alkylheteroaryl, heterocycloalkyl, alkylheterocycloalkyl or halogen; R9 is H or alkyl; m is the integer 0; and n is the integer 1. The most preferred compounds of formula I are those where: Rx is hydrogen;
R2 is hydrogen, fluorine or alkyl; R3 is a substituted oxazole having the configuration:
Figure imgf000016_0001
R4 is CO-alkyl, CO-alkyl-aryl, CO-cycloalkyl, CO-alkyl-heteroaryl, CO-alkyl-heteroalkyl, CO-alkyl-heterocycloalkyl, CONH-alkyl, CONH-alkyl-aryl, CONH-cycloalkyl, or
CONH-alkyl-heterocycloalkyl; R5 is hydrogen; R7 is hydrogen; R8 is an alkyl group, such as tert-butyl; m is the integer 0; and n is the integer 1. The compounds according to the invention have pharmacological properties; in particular, the compounds of formula I are inhibitors of protein kinases such as the cyclin dependent kinases (cdks), for example, cdc2 (cdkl), cdk2, and cdk4. The novel compounds of formula I are expected to be useful in the therapy of proliferative diseases such as cancer, autoimmune diseases, viral diseases, fungal diseases, neurodegenerative disorders and cardiovascular disease. More specifically, the compounds of formula I are useful in the treatment of a variety of cancers, including (but not limited to) the following: -carcinoma, including that of the bladder, breast, colon, kidney, liver, lung, including small cell lung cancer, esophagus, gall bladder, ovary, pancreas, stomach, cervix, thyroid, prostate, and skin, including squamous cell carcinoma;
-hematopoietic tumors of lymphoid lineage, including leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T-cell lymphoma, Hodgkins lymphoma, non-Hodgkins lymphoma, hairy cell lymphoma and Burke tt's lymphoma;
-hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias, myelodysplastic syndrome and promyelocytic leukemia;
-tumors of mesenchymal origin, including fibrosarcoma and rhabdomyosarcoma;
- tumors of the central and peripheral nervous system, including astrocytoma, neuroblastoma, glioma and schwannomas; and
-other tumors, including melanoma, seminoma, teratocarcinoma, osteosarcoma, xenoderoma pigmentosum, keratoctanthoma, thyroid follicular cancer and Kaposi's sarcoma. Due to the key role of cdks in the regulation of cellular proliferation in general, inhibitors could act as reversible cytostatic agents which may be useful in the treatment of any disease process which features abnormal cellular proliferation, e.g., benign prostate hyperplasia, familial adenomatosis polyposis, neuro-fibromatosis, atherosclerosis, pulmonary fibrosis, arthritis, psoriasis, glomerulonephritis, restenosis following angioplasty or vascular surgery, hypertrophic scar formation, inflammatory bowel disease, transplantation rejection, endotoxic shock, and fungal infections.
Compounds of formula I may also be useful in the treatment of Alzheimer's disease, as suggested by the recent finding that cdkδ is involved in the phosphorylation of tau protein (J. Biochem, 117, 741-749 (1995)).
Compounds of formula I may induce or inhibit apoptosis. The apoptotic response is aberrant in a variety of human diseases. Compounds of formula I, as modulators of apoptosis, will be useful in the treatment of cancer (including but not limited to those types mentioned hereinabove), viral infections (including but not limited to herpevirus, poxvirus, Epstein-Barr virus, Sindbis virus and adenovirus), prevention of AIDS development in HIV-infected individuals, autoimmune diseases (including but not limited to systemic lupus, erythematosus, autoimmune mediated glomerulonephritis, rheumatoid arthritis, psoriasis, inflammatory bowel disease, and autoimmune diabetes mellitus), neurodegenerative disorders (including but not limited to Alzheimer's disease, AIDS-related dementia, Parkinson's disease, amyotrophic lateral sclerosis, retinitis pigmentosa, spinal muscular atrophy and cerebellar degeneration), myelodysplastic syndromes, aplastic anemia, ischemic injury associated with myocardial infarctions, stroke and reperfusion injury, arrhythmia, atherosclerosis, toxin-induced or alcohol related liver diseases, hematological diseases (including but not limited to chronic anemia and aplastic anemia), degenerative diseases of the musculoskeletal system (including but not limited to osteoporosis and arthritis) aspirin-sensitive rhino sinusitis, cystic fibrosis, multiple sclerosis, kidney diseases and cancer pain. Compounds of formula I, as inhibitors of the cdks, can modulate the level of cellular RNA and DNA synthesis. These agents would therefore be useful in the treatment of viral infections (including but not limited to HIV, human papilloma virus, herpesvirus, poxvirus, Epstein- Barr virus, Sindbis virus and adenovirus). Compounds of formula I may also be useful in the chemoprevention of cancer. Chemoprevention is defined as inhibiting the development of invasive cancer by either blocking the initiating mutagenic event or by blocking the progression of pre-malignant cells that have already suffered an insult or inhibiting tumor relapse. Compounds of formula I may also be useful in inhibiting tumor angiogenesis and metastasis.
Compounds of formula I may also act as inhibitors of other protein kinases, e.g., protein kinase C, her2, raf 1, MEK1, MAP kinase, EGF receptor, PDGF receptor, IGF receptor, PI3 kinase, weel kinase, Src, Abl and thus be effective in the treatment of diseases associated with other protein kinases.
The compounds of this invention may also be useful in combination (administered together or sequentially) with known anti- cancer treatments such as radiation therapy or with cytostatic or cytotoxic agents, such as for example, but not limited to, DNA interactive agents, such as cisplatin or doxorubicin; topoisomerase II inhibitors, such as etoposide; topoisomerase I inhibitors such as CPT-11 or topotecan; tubulin interacting agents, such as paclitaxel, docetaxel or the epothilones; hormonal agents, such as tamoxifen; thymidilate synthase inhibitors, such as 5-fluorouracil; and anti-metabolites, such as methoxtrexate.
If formulated as a fixed dose, such combination products employ the compounds of this invention within the dosage range described below and the other pharmaceutically active agent or treatment within its approved dosage range. For example, the cdc2 inhibitor olomucine has been found to act synergistically with known cytotoxic agents in inducing apoptosis (J. Cell Sci., 108, 2897 (1995)). Compounds of formula I may also be administered sequentially with known anticancer or cytotoxic agents when a combination formulation is inappropriate. The invention is not limited in the sequence of administration; compounds of formula I may be administered either prior to or after administration of the known anticancer or cytotoxic agent. For example, the cytotoxic activity of the cyclin-dependent kinase inhibitor flavopiridol is affected by the sequence of administration with anticancer agents. Cancer Research, 57, 3375 (1997).
The pharmacological properties of the compounds of this invention may be confirmed by a number of pharmacological assays. The exemplified pharmacological assays which follow have been carried out with the compounds according to the invention and their salts. The compounds of examples 1 to 8 exhibited cdc2/cyclin Bl kinase activity with IC50 values less than 50 μM. The compounds of examples 1 to 8 exhibited cdk2/cyclin E kinase activity with IC50 values less than 50 μM. The compounds of examples 1 to 8 exhibited cdk4/cyclin Dl kinase activity with IC50 values less than 50 μM. cdc2/cvclin Bl Kinase Assay cdc2/cyclin Bl kinase activity was determined by monitoring the incorporation of 32p into histone HI. The reaction consisted of 50 ng baculovirus expressed GST-cdc2, 75 ng baculovirus expressed GST- cyclin Bl, 1 μg histone HI (Boehringer Mannheim), 0.2 mCi of 32p g. ATP and 25 mM ATP in kinase buffer (50 mM Tris, pH 8.0, 10 mM MgCl2, 1 mM EGTA, 0.5 M DTT). The reaction was incubated at 30°C for 30 minutes and then stopped by the addition of cold trichloroacetic acid (TCA) to a final concentration of 15% and incubated on ice for 20 minutes. The reaction was harvested onto GF/C unifilter plates (Packard) using a Packard Filtermate Universal harvester, and the filters were counted on a Packard TopCount 96-well liquid scintillation counter (Marshak, D.R., Vanderberg, M.T., Bae, Y.S., Yu, I.J., J. of Cellular Biochemistry, 45, 391-400 (1991), incorporated by reference herein). cd 2/cvclin E Kinase Assay cdk2/cyclin E kinase activity was determined by monitoring the incorporation of 32p nto the retinoblastoma protein. The reaction consisted of 2.5 ng baculovirus expressed GST-cdk2/cyclin E, 500 ng bacterially produced GST-retinoblastoma protein (aa 776-928), 0.2 mCi 32p g.ATP and 25 mM ATP in kinase buffer (50 mM Hepes, pH 8.0, 10 mM MgCl2, 5 mM EGTA, 2 mM DTT). The reaction was incubated at 30°C for 30 minutes and then stopped by the addition of cold trichloroacetic acid (TCA) to a final concentration of 15% and incubated on ice for 20 minutes. The reaction was harvested onto GF/C unifilter plates (Packard) using a Packard Filtermate Universal harvester, and the filters were counted on a Packard TopCount 96-well liquid scintillation counter. cdk 4/cvclin Dl Kinase Activity cdk4/cyclin Dl kinase activity was determined by monitoring the incorporation of 32P in to the retinoblastoma protein. The reaction consisted of 165 ng baculovirus expressed as GST-cdk4, 282 ήg bacterially expressed as S-tag cyclin Dl, 500 ng bacterially produced GST- retinoblastoma protein (aa 776-928), 0.2μCi 32P γ-ATP and 25 μM ATP in kinase buffer (50 mM Hepes, pH 8.0, 10 mM MgCl2, 5 mM EGTA, 2 mM
DTT). The reaction was incubated at 30°C for 1 hour and then stopped by the addition of cold trichloroacetic acid (TCA) to a final concentration of 15% and incubated on ice for 20 minutes. The reaction was harvested onto GF/C unifilter plates (Packard) using a Packard Filtermate Universal harvester, and the filters were counted on a Packard
TopCount 96-well liquid scintillation counter (Coleman, K.G., Wautlet, B.S., Morissey, D, Mulheron, J.G., Sedman, S., Brinkley, P., Price, S., Wedster, K.R. (1997). Identification of CDK4 Sequences involved in cyclin D, and pl6 binding. J. Biol. Chem. 272,30:18869-18874, incorporated by reference herein).
Further subject matter of the invention also includes pharmaceuticals for use as described above including controlling cancer, inflammation and arthritis, which contain at least one compound of the formula I as defined above or at least one of its pharmacologically acceptable acid addition salts, and the use of a compound of the formula I as defined above for the preparation of a pharmaceutical having activity against proliferative diseases as described previously including against cancer, inflammation and/or arthritis. The following examples and preparations describe the manner and process of making and using the invention and are illustrative rather than limiting. It should be understood that there may be other embodiments which fall within the spirit and scope of the invention as defined by the claims appended hereto. Example 1 N-[5-[[(5^thyl-2 »xazolyl)methyl]tMo]-2-thiazolyl]acetamide
Figure imgf000022_0001
A . Preparation of l-benzyloxycarbony..am-ino-2-butanol
A mixture of l-amino-2-butanol (5.5 g, 61.8 mmol), benzyl chloroformate (11.5 g, 67.6 mmol) and sodium carbonate (7.16 g, 67.7 mmol) in water (50 mL) was stirred at 0 °C for 3 h. Water (50 mL) was added to the reaction mixture and the product was extracted with methylene chloride (3x20 mL). The methylene chloride extract was dried over Na2SO and concentrated. The residue was passed through a short column (Siθ2, hexanes : ethyl acetate /10 : 1; then ethyl acetate) to afford 1- benzyloxycarbonylamino-2-butanol (13.9 g, 100%) as a liquid. H NMR (CDC13) δ 7.30 (m, 5 H), 5.45 (s, 1 H), 5.06 (s, 2 H), 3.57 (s, 1 H), 3.31 (m, 1 H), 3.04 ( , 1 H), 2.91 (m, 1 H), 1.43 (m, 2 H), 0.91 (t, J = 7.6 Hz, 3 H).
B. Preparation of l-benzyloxycarbony-^πιino-2-butanone To methylene chloride (60 mL) at -78 °C under argon was added oxalyl chloride (37 L of 2 M solution in methylene chloride, 74 mmol), followed by DMSO (7.8 g, 100 mmol). The mixture was stirred at -78 °C for 20 min. and to this mixture was added a solution of 1- benzyloxycarbonylamino-2-butanol (13.9 g, 61.8 mmol) in methylene chloride (40 L). The mixture was stirred at -78 °C for 1 h and triethylamine (21 mL) was added to the mixture. It was warmed to room temperature (rt) and washed successively with 1 N hydrochloric acid and aqueous sodium bicarbonate solution. The methylene chloride solution was dried over MgSO and concentrated to afford l-benzyloxycarbonylamino-2- butanone (11.2 g, 82%) as a solid, which was enough pure for the next reaction. XH NMR (CDCI3) δ 7.32 (m, 5 H), 5.50 (s, 1 H), 5.06 (s, 2 H), 4.07 (s, 2 H), 2.43 (q, J = 7.6 Hz, 2 H), 1.06 (t, J = 7.6 Hz, 3 H).
C . Preparation of l-amino-2-butanone A solution of l-benzyloxycarbonylamino-2-butanone (9.30 mg, 42 mmol) in ethanol (50 mL) and 1 N hydrochloric acid (46 mL) was stirred under hydrogen atmosphere in the presence of Pd/C (1.5 g, 10%) at rt for 4 h. The mixture was filtered through a celite bed and the filtrate solution was concentrated. The residue was triturated with ethyl ether to afford 1- amino-2-butanone (5.3 g, 102%) as a hydrochloride salt.
XH NMR (CD3OD) δ 3.97 (s, 2 H), 2.60 (q, J = 7.6 Hz, 2 H), 1.08 (t, J = 7.6 Hz, 3 H).
D. Preparation of 2-amino-5-ttoocyanatothiazole 2-Aminothiazole (41g, 410 mM) and sodium thiocyanate (60 g, 740 mM, dried in a vacuum oven at 130 °C overnight) was dissolved in 450 mL of anhydrous methanol and the solution was cooled in a cold water bath. Here was added bromine (23 mL, 445 mM) dropwise with good stirring. After the addition it was stirred for 4 h at rt. To the mixture 500 mL of water was added and it was stirred for 5 minutes, filtered through a celite bed and washed the bed with water. The pH of the filtrate solution was about 1. Most of the methanol was removed under the reduced pressure and pH of the solution was adjusted to about 7 by adding aq. sodium carbonate slowly with stirring. The precipitated solid was filtered and washed with water to obtain 37 g (57%) of the dark brown colored desired product after drying, mp 140-143 °C. H NMR (CD3OD) δ 7.33 (s, 1H); MS (CI/NH3) m/e 179 (M+Na)+,
158(M+H)+.
E. Preparation of of 2-acetylanι-Lno-o^thiocyanatothiazole
To a mixture of 2-amino-5-thiocyanatothiazole (15.7 g, 0.1 mol) and pyridine (12 g, 0.15 mol) in methylene chloride (100 mL) was added acetic anhydride (1.2 g, 0.12 mol) at rt. The mixture was stirred at rt for 6 h. The mixture was concentrated to dryness and to the residue MeOH (50 L) was added. The precipitates were collected and washed with water. The solid was dried and recrystallized from MeOH to afford 2- acetylamino-5-thiocyanatothiazole (15.2 g, 76%) as a solid, mp 212 °C.
*H NMR (CD3OD) δ 7.79 (s, 1H), 2.23 (s, 3 H).
F. Preparation of [[2-(acetylamino)^thiazolyl]thio]acetic acid 1,1-dimethylethyl ester To a mixture of 2-acetamino-5-thiocyanatothiazole (5.97 g, 30 mmol) in MeOH (360 mL) under argon was added dithiothreitol (9.26 g, 60 mmol) at rt. The mixture was stirred at rt for 2 h and it was concentrated to afford a reduced solid product. This solid product was dissolved in DMF (30 mL) and to this solution were added tert-butyl bromoacetate (5.85 g, 30 mmol) and potassium carbonate (5.0 g, 36 mmol). The mixture was stirred at rt for 2 h and water (200 mL) was added to the mixture. The precipitates were collected, washed with water and dried. The solid was dissolved in methylene chloride (100 mL) and MeOH (10 mL) and filtered through a silica gel pad. The filtrate solution was concentrated to afford the desired product (7.5 g, 87%) as a solid, mp 162-163 °C.
1-H NMR (CDCI3) δ 12.2 (s, 1 H), 7.48 (s, 1 H), 3.37 (s, 2 H), 2.32 (s, 3 H), 1.45 (s, 9 H); MS m/e 289 (M+H)+, 287 (M-H)\ HPLC (Column: YMC S3 ODS 4.6x150mm; flow rate: 2.5 mlVmin; solvent system: 0-100% B in 8 min. Solvent A: 10% MeOH-90% water- 0.2% H3PO4; Solvent B: 90% MeOH-10% Water-0.2% H3PO4; UV: 220 nm): retention time 6.44 min.
G. Preparation of [[2-(acetylan-dno)^thiazolyl]thio]acetic acid
A solution of [[2-(acetylamino)-5-thiazolyl]thio] acetic acid 1,1- dimethylethyl ester (4.32 g, 15 mmol) in methylene chloride (30 mL) and trifluoroacetic acid (20 mL) was stirred at rt overnight and concentrated in vacuo. To the residue was added ethyl ether (50 mL). The precipitated solid was collected, washed with ethyl ether and dried to afford the desired product (3.38 g, 97%) as a solid, mp 210 °C.
*H NMR (CD3OD) δ 7.48 (s, 1 H), 3.47 (s, 2 H), 2.20 (s, 3 H) ppm; MS m/e
23KM-H)-; HPLC (Column: Zorbax Rapid resolution C-18; flow rate: 2.5 mlJmin; solvent system: 0-100% B in 8 min. Solvent A: 10% MeOH-90% water-0.2%H3PO ; Solvent B: 90% MeOH-10% Water-0.2% H3PO4; UV: 254 nm): retention time 4.32 min.
H. Preparation of [[2-(acetylaπι-ino)^thiazolyl]thio]-N-(2- oxobutyDacetamide
A mixture of [[2-(acetylamino)-5-thiazolyl]thio] acetic acid (9.0 g, 38.8 mmol), HOBT (5.94 g, 38.8 mmol) and ethyldimethylaminopropylcarbodiimide hydrochloride salt (11.16 g, 58.2 mmol) in DMF (50 mL) was stirred at 0 °C for 0.5 h. To this mixture was added l-amino-2-butanone hydrochloride (5.27 g, 42.7 mmol) followed by triethylamine (15 mL, 107.5 mmol). The mixture was stirred at 0 °C for 0.5 h and at rt for 1 h. Water (200 mL) was added to the mixture and the product was extracted with methylene chloride containing 10% MeOH (5x100 mL). The methylene chloride extract was dried over Na2SO4 and concentrated. The residue was triturated with water and the precipitated solid product was collected by filtration. It was dried to obtain the desired product (10.5 g, 90%), mp 195-196 °C.
XH NMR (CDCI3) δ 7.53 (s, 1 H), 4.14 (s, 2 H), 3.46 (s, 2 H), 2.50 (q, J = 7.6 Hz,
2 H), 2.25 (s, 3 H), 1.12 (t, J = 7.6 Hz, 3 H); MS m/e 302 (M+H)+.
HPLC (Column: Zorbax Rapid resolution C-18; flow rate: 2.5 mL/min; solvent system: 0-100% B in 8 min. Solvent A: 10%MeOH-90%water- 0.2%H3PO ; Solvent B: 90%MeOH-10%Water-0.2%H3PO4; UV: 254 nm): retention time 4.36 min. I. Preparation of N-[5-[[(5-ethyl-2-oxazolyl)methyl]thio]-2- thiazolyl]acetamide
To a solution of [[2-(acetylamino)-5-thiazolyl]thio]-N-(2- oxobutyDacetamide (10.5 g, 34.8 mmol) in acetic anhydride (100 mL) was added cone, sulfuric acid (10 mL). The mixture was stirred at 55-60 °C for 2 h and sodium acetate (15 g, 0.18 mol) was added to the mixture. The mixture was concentrated in vacuo. To the residue was added cold water (100 mL). The precipitated solid was collected, washed with water and dried. It was purified by a flash column chromatography (Siθ2; methylene chloride : MeOH / 100 : 5) to afford N-[5-[[(5-ethyl-2-oxazolyl)methyl]thio]-2- thiazolyllacetamide (4.2 g, 43%) as a solid, mp 147-148 °C.
XH NMR (CDC13) δ 12.47 (s, 1 H), 7.29 (s, 1 H), 6.61 (s, 1 H), 3.91 (s, 2 H), 2.64 (q, J = 7.6 Hz, 2 H), 2.25 (s, 3 H), 1.21 (t, J = 7.6 Hz, 3 H) ppm; MS m/e 284 (M+H)+;
HPLC (Column: Zorbax Rapid resolution C-18; flow rate: 2.5 mL/min; solvent system: 0-100% B in 8 min. Solvent A: 10%MeOH-90%water- 0.2%H3PO4; Solvent B: 90%MeOH-10%Water-0.2%H3PO4; UV: 254 nm): retention time 6.50 min.
Example 2 N-[5-[[(5^thyl-2 >xa2olyl)methyl]t- o]-2-thiazolyl]benzamide
Figure imgf000026_0001
A . Preparation of 2-amino^-[[(5^thyl-2-oxazolyl)methyl]thio]- thiazole
A solution of N-[5-[[(5-ethyl-2-oxazolyl)methyl]thio]-2- thiazolyljacetamide (1.3 g, 4.6 mmol) in 1 N hydrochloric acid (15 mL) was stirred at 80-90 °C for 3 h. It was cooled to rt and the pH of the solution was adjusted to 7 with sodium carbonate. The product was extracted with methylene chloride (3x10 mL). The combined extract was dried over Na2SO4 and concentrated. The residue was triturated with ethyl ether and the precipitated solid was collected to afford 2-amino-5-[[(5-ethyl-2- oxazolyl)methyl]thio]-thiazole (610 mg, 55%) as a solid, mp 119-120 °C. XH NMR (CDC13) δ 6.93 (s, 1 H), 6.61 (s, 1 H), 5.41 (s, 2 H), 3.82 (s, 3 H), 2.62
(q, J =7.6 Hz, 2 H), 1.18 (t, J = 7.6 Hz, 3 H); MS m e 242 (M+H)+; HPLC (Column: Zorbax Rapid resolution C-18; flow rate: 2.5 mL/min; solvent system: 0-100% B in 8 min. Solvent A: 10%MeOH-90%water- 0.2%H3PO ; Solvent B: 90%MeOH-10%Water-0.2%H3PO4; UV: 254 nm): retention time 3.96 min.
B. Preparation of N-[5-[[(5-ethyl-2-oxazolyl)methyl]thio]-2- thiazolyl]benzamide
A mixture of 2-amino-5-[[(5-ethyl-2-oxazolyl)methyl]thio]-thiazole (48.2 mg, 0.2 mmol), benzoyl chloride (24.4 mg, 0.21 mmol) and triethylamine (35 mg, 0.35 mmol) in methylene chloride (0.5 mL) was stirred at rt for 10 min. The organic solution was washed with water and concentrated. The residue was purified by a flash column (Siθ2J hexanes : ethyl acetate / 2 : 1) to afford N-[5-[[(5-ethyl-2-oxazolyl)methyl]thio]-2- thiazolyljbenzamide (41 mg, 59%) as a solid, mp 122-123 °C.
!H NMR (CDCI3) δ 12.65 (s, 1 H), 7.96 ( , 2 H), 7.61 (m„ 1 H), 7.49 (m, 2 H), 6.88 (s, 1 H), 6.56 (s, 1 H), 3.93 (s, 2 H), 2.61 (q, J = 7.6 Hz, 2 H), 1.20 (t, J = 7.6
Hz, 3 H); MS m/e 346 (M+H)+;
HPLC (Column: Zorbax Rapid resolution C-18; flow rate: 2.5 mL/min; solvent system: 0-100% B in 8 min. Solvent A: 10%MeOH-90%water-
0.2%H3PO4; Solvent B: 90%MeOH-10%Water-0.2%H3PO4; UV: 254 nm): retention time 7.94 min. Example 3 N-[5-[[(5^thyl-2κ)xazolyl)πιetb^yl]tMo]-2-t-hiazolyl]benzsulfoneaπύ
Figure imgf000028_0001
A mixture of 2-amino-5-[[(5-ethyl-2-oxazolyl)methyl]thio]-thiazole (24.1 mg, 0.1 mmol), benzenesulfonyl chloride (19.4 mg, 0.11 mmol) and triethylamine (22 mg, 0.21 mmol) in methylene chloride (0.3 mL) was stirred at rt for 10 h. The product of the reaction mixture was purified by preparative HPLC (column: YMC pack ODSA S3 20x100 mm; method: gradient from 0 % B to 100% B in 20 min and flow rate 20 mlJmin; UV: 254 nm; solvent A: 10%MeOH-90%water-0.1%TFA; solvent B: 90%MeOH- 10%water-0.1%TFA) to obtain N-[5-[[(5-ethyl-2-oxazolyl)methyl]thio]-2- thiazolyl]benzsulfoneamide (2.5 mg) as a solid after drying via lyophilization. iH NMR (CDC13) δ 7.88 (d, J = 8.0 Hz, 1 H), (s, 2 H), 7.49 (m, 3 H), 6.89 (s, 1 H), 6.64 (s, 1 H), 4.01 (s, 2 H), 2.68 (q, J = 7.4 Hz, 2 H), 1.27
(t, J = 7.4 Hz, 3 H); MS m/e 382 (M+H)+; HPLC (column: Zorbax Rapid resolution C-18; flow rate: 2.5 mL/min; solvent system: 0-100% B in 8 min. Solvent A: 10%MeOH-90%water-0.2% H3PO4; Solvent B: 90%MeOH-10%Water-0.2% H3PO4; UV: 254 nm): retention time 6.84 min.
Example 4 N-[5-[[(4,5-d-Lπιethyl-2κ)xazolyl)methyl]thio]-2-thia2olyl]acetamide
Figure imgf000029_0001
A. Preparation of 2-(bromomethyl)-4,5-dimethyloxazole
A mixture of 2,4,5-trimethyloxazole (0.50 mL, 4.3 mmol), N- bromosuccinimide (0.77 g, 4.3 mmol) and benzoyl peroxide (0.21 g, 0.86 mmol) in carbon tetrachloride (4 mL) was heated at 76 "C under nitrogen atm.for 3 hrs. After cooling to rt, the solid was removed by filtration. The filtrate solution was washed with saturated aqueous NaHCO3 (20 mL) and concentrated. The residue was purified by flash column chromatography (Siθ2; hexanes:ethyl acetate / 4:1) to afford 2-(bromomethyl)-4,5- dimethyloxazole (64 mg) as an yellow oil. !H NMR (CDC13) δ 4.4 (s, 2 H), 2.25 (s, 3 H), 2.05 (s, 3 H).
B. Preparation of N-[5-[[(4,5-dimethyl-2-oxazolyl)methyl]thio]-2- thiazolyl]acetamide
N-[5-(Acetylthio)-2-thiazolyl]acetamide (0.050 g, 0.23 mmol) was dissolved in dry THF (10 ml) and here potassiumiert-butoxide (1.0 M solution in THF, 0.25 ml, 0.25 mmol) was added to the mixture. The reaction mixture was stirred at rt for 15 min., and 2-(bromomethyl)-4,5- dimethyloxazole (0.064 g, 0.34 mmol) was added to this mixture. The reaction mixture was stirred at rt for 3 h and saturated aqueous NaHCO3 solution (20 mL) was added to the mixture. The organic layer was separated and the aqueous layer was extracted with dichloromethane (3 x 20 mL). The combined organic layers was concentrated. The residue was purified by flash column chromatography (Siθ2; methano dichloromethane /1:20) to afford N-[5-[[(4,5-dimethyl-2- oxazolyl)methyl]thio]-2-thiazolyl]acetamide (15 mg, 23%) as a yellow solid. *H NMR (CDCI3) δ 11.78 (s, 1 H), 7.38 (s, 1 H), 3.90 (s, 2 H), 2.30 (s, 3H), 2.22
(s 3H), 2.05 (s, 3H); MS m/e 284 (M+H)+;
HPLC (Column: Zorbax Rapid resolution C-18; flow rate: 2.5 ml/min; solvent system: 0-100% B in 8 min. Solvent A: 10% CH3OH/90% H2O/0.2% H3PO4; Solvent B: 90% CH3OH/10% H2O/0.2% H3PO4; UV: 254 nm): retention time 5.87 min.
Example 5 N [(5-t-butyl-2H>xazolyl)πιethyl]tMo]-2-tlxlazolyl]acetanιide
Figure imgf000030_0001
A. Preparation of diazomethane To a mixture of 15 ml of 40% aqueous KOH solution and 50 mL of diethyl ether at 0 °C was added 5 g (68 mmol) of N-methyl-N'-nitro-N- nitrosoguanidine in portions with stirring . The resulting mixture was stirred at 0 C for 0.5 h. The organic phase was decanted into a dry flask and dried over solid KOH pellets to give 50 L of diazomethane solution (ca 0.5 M, by titrating with acetic acid).
B. Preparation of l-diazo^,3-dimethyl-2-butanone
To the diazomethane solution at 0 °C was added a solution of 1.23 L (1.21 g, 10 mmol, Aldrich) of trimethylacetyl chloride in 1 mL of diethyl ether dropwise with stirring. The resulting mixture was kept at 0
°C for 16 h. The solution was sparged with argon to remove the excess diazomethane and diethyl ether was removed under reduced pressure to give 1.33 g (10 mmol, 100%) of crude l-diazo-3,3-dimethyl-2-butanone as a yellow liquid. C. Preparation of 2-chloromethyl-5-t-butyloxazole
To a solution of 2 mL (2.3 g, 16 mmol) of boron trifluoride etherate in 20 mL of chloroacetonitrile at 0 °C was added a solution of 1.33 g (10 mmol) of l-diazo-3,3-dimethyl-2-butanone in 5 mL of chloroacetonitrile dropwise. The resulting solution was stirred at 0 °C for 0.5 h. The reaction mixture was added to saturated aqueous sodium bicarbonate solution to neutralize the acid and the product was extracted three times with dichloromethane. The combined extracts was dried (sodium sulfate), concentrated and purified by flash column chromatography (Merck silica, 25 x 200 mm, dichloromethane) to give 1.1 g of 2- (chloromethyl)-5-t-butyloxazole as a yellow liquid (6.4 mmol, 64% overall from the acid chloride).
XH NMR δ (CDC13): 1.30 (s, 9H), 4.58 (s, 2H), 6.68 (s, 1H); MS 174
(M+H)+; TLC: Rf (silica gel, dichloromethane)=0.33;
HPLC: tR (YMC S-3 ODS 4.6x50mm rapid resolution; 2.5 ml/min, gradient 0-100% B over 8 min, Solvent A: 10% CH3OH/90% H2O/0.2%
H3PO4; Solvent B: 90% CH3OH/10% H2O/0.2% H3PO4; UV: 254 nm)= 6.5 min.
D. Preparation of N-[5-[[(5-t-butyl-2-oxazolyl)methyl]thio]-2- thiazolyl]acetamide
To a solution of 50 mg (0.23 mmol, Applied Chemical Laboratory) of N-[5-(acetylthio)-2-thiazolyl]acetamide in 10 mL of THF was added 0.25 mL of potassium tert-butoxide solution (1 M solution, 0.25 mmol) at rt under argon. The resulting suspension was stirred for 15 min at rt, then a solution of 59 mg of 2-(chhloromethyl)-5-t-butyloxazole (0.34 mmol) in 1 mL of THF was added. The resulting mixture was stirred at rt for 16 h , concentrated under reduced pressure and purified by flash column chromatography (silica gel, 25 x 200 mm, 1:1 EtOAc/hexanes followed by 100% EtOAc) to give 44 mg (0.14 mmol, 61%) of N-[5-[[(5-t-butyl-2- oxazolyl)methyl]thio]-2-thiazolyl]acetamide as a white solid. XH NMR δ (CDCI3) 1.27 (s, 9H), 2.27 (s, 3H), 3.95 (s, 2H), 6.59 (s, IH), 7.31 (s, IH), 11.03 (broad s, IH); MS 312 (M+H)+;
TLC: Rf (silica gel, ethyl acetate)=0.53, UV; HPLC: retention tim (YMC S-3 ODS 4.6x50mm rapid resolution; 2.5 ml/min, gradient 0-100%B over 8 min, Solvent A: 10% CH3OH/90%
H2O/0.2% H3PO4; Solvent B: 90% CH3OH/10% H2O/0.2% H3PO4; UV: 254 nm)= 6.8 min.
Example 6
N-[5-[[(5-*-butyl-2-oxazolyl)methyl]thio]-2-thiazolyl] tr-Lmethylacetamide
Figure imgf000032_0001
A. Pι^paι^tionofN-[(5-thiocyanato)-2-thiazolyl] trifluoroacetamide QTVIII)
To a mixture of 5-thiocyanato-2-aminothiazole (30 mmol) and 2,6- lutidine (35 mmol) in tetrahydrofuran (25 mL) and dichloromethane (50 mL) at -78 °C under argon was slowly added trifluoroaceticanhydride (33 mmol). After addition, the mixture was allowed to warm up to rt and stirred overnight. The mixture was diluted with dichloromethane (100 mL), and the organic solution was washed with 5% aqueous citric acid followed by brine, dried over magnesium sulfate and passed through a pad of silica gel. The product containing eluent was concentrated to afford 5.3 g of light brown solid.
*H -NMR (CDCI3) δ 12.4 (br, IH), 7.83 (s, IH). B. Preparation of 4-hydroxymethyl-3-methoxyphenyloxy Merrifield resin (XVI)
To the suspension of sodium hydride (11.7 g, 60% in mineral oil, 293 mmol) in dimethylformamide (30 mL) at 0 °C under argon was slowly added a solution of 4-hydroxy-3-methoxybenzyldehyde (44.5 g, 292.5 mmol) in dimethylformamide (100 mL). To the resulting mixture Merrifield resin (1% DVB, from Advanced Chemtech, loading 1.24 mmol/g, 50 g, 62 mmol) and catalytic amount of tetra-n-butylammonium idodide were added, and it was heated at 65 °C for a day. The resin was filtered, washed with water (2x), 50% dimethylformamide in water (3x), dimethylformamide (2x), and methanol (5x), and dried in vacuo. The dried resin (15 g) was treated with sodium borohydride (3.4 g, 90 mmol) in tetrahydrofuran (50 L) and ehthanol (50 mL) overnight. The resin was filtered, washed with 50% dimethylformamide in water (3x), dimethylformamide (2x), methanol (2x), and dichloromethane (5x), and dried in vacuo.
C. Preparation of 4-cUoromethyL3-methoxyphenyloxy Merrifield resin (XVII) To a solution of triphenylphosphine (17 g, 65 mmol) in dichloromethane (200 mL) at 0 °C was slowly added triphosgene (9.2 g, 31 mmol) portionwise over a period of 30 minutes. After addition, the reaction mixture was stirred at 0 °C for 10 minutes. The solvent was removed in vacuo and the residue was redissolved in dichloromethane (200 mL). To this mixture was added 4-hydroxymethyl-3- methoxyphenyloxy Merrifield resin (12 g). The resulting mixture was agitated for 4 h. The resin was washed with dry dichloromethane (6x) and dried in vacuo.
D. Preparation of 4-[N-[(5-thiocyanato)-2- thiazolylta^uoιx acetemήdo]πιethyl]-3-nιethoxyphenyloxy Merrifield resin (XIX)
A mixture of 4-chloromethyl-3-methoxyphenyloxy Merrifield resin (15g), N-[(5-thiocyanato)-2-thiazolyl] trifluoroacetamide (14 g, 55.3 mmol) and diisopropylethylamine (7.8 mL, 45 mmol) in dimethylformamide (50 mL) and dichloromethane (100 mL) was agitated overnight. The resin was washed with dimethylformamide (2x), methanol (2x), dichloromethane (4x), and dried in vacuo.
E. Pι«paration of4-[[N-[(5-mercapto)-2-thiazolyl] trifluoroacetanύdo]raethyl]^ιnethoxyphenyloxyMerri-field resin (XX)
A mixture of 4-[N-[(5-thiocyanato)-2-thiazolyltrifluoroacetamido] methyl] -3-methoxyphenyloxy Merrifield resin (XIX, 18.5 g) and dithiothreitol (12 g, 78 mmol) in tetrahydrofuran (100 mL) and methanol (100 mL) was agitated overnight. The resin was washed with dimethylformamide (2x), methanol (2x), dichloromethane (4x), and dried in vacuo and stored under argon at -20 °C.
F. Preparation of 4-N-[5-[[[(5-*-butyl-2-oxazolyl)methyl]thio]-2- tMazolyl]trifluoroaceteιnido]nιethyl-3-πιethox3 henyloxy Merrifield resin (XXI)
A stream of argon was bubbled through a mixture 4-[[N-[(5- Mercapto)-2-thiazolyl]trifluoroacetamido]methyl]-3-methoxyphenyloxy Merrifield resin (XX, 500 mg), halide (2.0 mmol) and 1,8- diazabicyclo[5,4,0]undec-7-ene (DBU, 1.5 mmol) in dimethylformamide (3 mL) for 5 min., and the mixture was heated at 80 °C for 2 h. The resin was washed with dimethylformamide (2x), methanol (2x), dichloromethane (4x), and dried in vacuo.
G. Preparation of 4-N-[5-[[(5-^-butyl-2-oxazolyl)methyl]thio]-2- thiazolyl]methyl^methoxyphenyloxy Merrifield resin (XXEI)
A mixture of 4-N-[5-[[[(5-t-butyl-2-oxazolyl)methyl]thio]-2- thiazolyl]trifluoroacetamido]methyl-3-methoxyphenyloxy Merrifield resin (XXI, 500 mg) and sodium borohydride (4 mmol) in tetrahydrofuran (2 mL) and ethanol (2 mL) was agitated overnight. The resin was washed with 50% dimethylformamide in water (2x), dimethylformamide (2x), methanol (2x), dichloromethane (4x), and dried in vacuo.
H. Preparation of 4-N-[5-[[[(5-»f-butyl-2-oxazolyl)methyl]thio]-2- tl-ύ^olyl]trimethylacetamido]nιethyW-nιethoxyphenylθ3^
Merrifield resin (XXm)
A mixture of 4-N-[5-[[(5-t-butyl-2-oxazolyl)methyl]thio]-2- thiazolyl]methyl-3-methoxyphenyloxy Merrifield resin (XXII, 100 mg), diisopropylethylamine (1.2 mmol) and trimethylacetyl chloride (1 mmol) in dichloromethane (2 mL) in a polypropylene tube fitted with a polyethylene frit and a luer stopcock was agitated overnight. The resin was washed with dimethylformamide (2x), methanol (2x), dichloromethane (4x), and used in the next step without drying.
I. Preparation of N-[5-[[(5-f-butyl-2-oxazolyl)methyl]thio]-2- thiazolylltrimethylacetamide
4-N-[5-[[[(5-t-butyl-2-oxazolyl)methyl]thio]-2- thiazolyl]trimethylacetamido]methyl-3-methoxyphenyloxy Merrifield resin (XXIII) was treated with 60% trifluoroacetic acid in dichloromethane (2 mL) in a polypropylene tube fitted with a polyethylene frit and a luer stopcock for 4 hours. The solution was decanted to a tube and the resin was washed with dichloromethane. The combined organic solution was concentrated in Speed Vac. The residue was purified by preparative-HPLC to afford 11.3 mg of the desired product.
MS m/e 354 (M+H)+.
Example 7 N-[5 [(4-Etbyl-2-oxazolyl)methyl]tMo]-2-tbiazolyl]acetamide
Figure imgf000036_0001
A. Preparation of 2-(2-chloroacetamido)-l-butanol
To a mixture of 2-amino-l-butanol (5.0 mL, 53 mmol) and triethyl amine (15.0 mL, 111 mmol) in dichloromethane (20 mL) at -70 °C was added chloroacetyl chloride (4.6 mL, 58 mmol) dropwise. The reaction mixture was stirred at -70 °C for 15 min. and then was allowed to warm to rt. It was diluted with EtOAc (50 mL) and the reaction was quenched by adding water (50 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 30 mL). The combined organic layers was concentrated to afford 2-(2-chloroacetamido)-l-butanol (8.6 g, 98%) as a brown solid. lH NMR (CDClg) δ 6.75 (bs, 1 H), 4.10 (s, 2 H), 4.08(dd, IH), 3.90 (m, 1 H), 3.68 (m, 2H), 2.98(bs, IH), 1.60(m, 2H), 0.97 (t, 3H).
B. Preparation of 2-(2 ;Mo-røacetamido)-l-butyraldehyde To a solution of oxalyl chloride (14.5 mL, 29.0 mmol) in dichrolomethane (30 L) at -78 °C DMSO (2.75 mL, 38.8 mmol) was added dropwise over 5 min.. After stirring for 10 min. at -78 °C, here was added a solution of 2-(2-chloroacetamido)-l-butanol (4.0 g, 24 mmol) in 20 mL of dichrolomethane dropwise over 15 min. The reaction mixture was stirred for 40 min. at -78 °C and here was added triethyl amine (9.4 mL, 68 mmol) dropwise over 5 min. and the reaction mixture was allowed to warm to room temperature and stirred for 2 hrs. The solid was removed by filtration and washed with EtOAc. The organic phase was washed with IN HCI (2 x 100 mL), saturated aqueous NaHCO3 (1 x 10 mL) and concentrated to afford 2-(2-chloroacetamido)-l-butyraldehyde (3.7 g, 95%) as a brown oil. !H NMR (CDCI3) δ 9.60 (s, 1 H), 4.52 (q, 1 H), 4.12(s, 2H), 2.05 (m, 1 H), 1.80 (m, IH), 0.97 (t, 3H).
C. Preparation of 2-chloromethy-4-ethyloxazole
To a solution of 2-(2-chloroacetamido)-l-butyraldehyde (3.7 g, 23 mmol) in toluene (10 mL) was added POCI3 (6.3 mL, 68 mmol). The reaction mixture was heated at 90 °C for 1 h under nitrogen. After cooling the reaction mixture to room temperature it was poured into ice water (10 mL) and the pH of the solution was adjusted to 7 with 5N NaOH. The toluene layer was separated and the aqueous layer was washed with dichloromethane (3 x 20 L). The combined organic solution was concentrated and distilled to afford 2-chloromethy-4-ethyloxazole (l.lg, 31%) as a colorless liquid. iH NMR (CDCI3) δ 7.30 (s, IH), 4.22 (s, 2 H), 2.50 (q, 2 H), 1.22 (t, 3H).
D. Preparation of N-[5-[[(4^thyl-2κ>xazolyl)ιnethyl]thio]-2- thiazolyl]acetamide
To a solution of 2-acetylamino-5-thiazolylthiol (0.010 g, 0.050 mmol) in dry THF (5 mL) was added potassium tert butoxide (1.0 M solution in THF, 0.060 L, 0.060 mmol). The reaction mixture was stirred at room temperature for 15 min. and here was added 2-chloromethyl-4- ethyloxazole (0.015 g, 0.10 mmol). After 3 h, saturated aqueous NaHCO3 solution (5 mL) was added to the mixture. The organic layer was separated and the aqueous layer was washed with dichloromethane (3 x 10 mL). The combined organic layers was concentrated. The residue was purified by flash chromatography (SiO2; methano dichloromethane
/1:20) to afford N-[5-[[(4-ethyl-2-oxazolyl)methyl]thio]-2- thiazolyl]acetamide (5 mg, 36%) as a white solid. iH NMR (CDCI3) δ 11.25 (s, 1 H), 7.34 (s, 1 H), 7.31(s, IH), 3.95 (s, 2 H),
2.50 (q, 2H), 2.27(s, 3H), 1.19 (t, 3H); MS m/e 284 (M+H)+; HPLC (Column: Zorbax Rapid resolution C-18; flow rate: 2.5 ml/min; solvent system: 0-100% B in 8 min. Solvent A: 10% CH3OH/90% H2O/0.2% H3PO4; Solvent B: 90% CH3OH/10% H2O/0.2% H3PO4; UV: 254 nm): retention time 6.14 min.
Using the procedures described herein or by modification of the procedures described herein as known to one or ordinary skill in the art, the following additional compounds have been prepared and disclosed in Table 1:
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001
Figure imgf000068_0001
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000071_0001
Figure imgf000072_0001
Figure imgf000073_0001
Figure imgf000075_0001
Figure imgf000076_0001
Figure imgf000077_0001
Figure imgf000078_0001
Figure imgf000079_0001
Figure imgf000080_0001
Figure imgf000081_0001
Figure imgf000082_0001
Figure imgf000083_0001
Figure imgf000084_0001
-82-
Figure imgf000085_0001
Figure imgf000086_0001
Figure imgf000087_0001
Figure imgf000088_0001
Figure imgf000089_0001
Figure imgf000090_0001
Figure imgf000091_0001
Figure imgf000092_0001
Figure imgf000093_0001
Figure imgf000094_0001
Figure imgf000095_0001
Figure imgf000096_0001
Figure imgf000097_0001
Figure imgf000098_0001
Figure imgf000099_0001
Figure imgf000100_0001
Figure imgf000101_0001
Figure imgf000102_0001
Figure imgf000103_0001
Figure imgf000104_0001
Figure imgf000105_0001
Figure imgf000106_0001
Figure imgf000107_0001
Figure imgf000108_0001
Figure imgf000109_0001
Figure imgf000110_0001
Figure imgf000111_0001
Figure imgf000112_0001
Example 636
Preparation of N-[5-[[(5^-Butyl-2-oxazolyl)methyl]thio]-2-thiazolyl]-N'- cyano-Nw-(2,6κiifluoι )phenyl)guaιιidine.
Figure imgf000113_0001
A solution of 100 mg of N-[5-[[(5-t-Butyl-2-oxazolyl)methyl]thio]-2- aminothiazole and 68 mg of 2,6-difluorophenyl isothiocyanate was heated at 65°C for 16 hours under argon. The solution was evaporated to dryness and the residue purified by flash chromatography to give 91 mg of the intermediate thiourea.
To a solution of 30 mg of N-[5-[[(5-t-Butyl-2-oxazolyl)methyl]thio]-2- thiazolyl]-N"-(2,6-difluorophenyl)thiourea, 52 mg of ethyl-3(3- dimethylamino)propyl carbodiimide hydrochloride and 48 μL of diisopropylethylamine in 0.5 mL methylene chloride was added a solution of 29 mg of cyanamide in 0.1 mL tetrahydrofuran. After stirring for 1 hr, the solvent was removed and the crude material purified by HPLC to give 8 mg of Example 636 compound. MS: (M+H)+ 449+
Η NMR (400 MHz, CDC13): d 1.27 (9H, s), 4.19 (2H, s), 6.69 (IH, s), 7.03 (2H, m), 7.35 (IH, m), 8.74 (IH, s).
Example 637
Pι«parationofN-[5-[[(5--isopropyl-2 >xazolyl)fluoι >ιnethyl]thio]-2- thiazolyl acetamide.
Figure imgf000113_0002
To a stirred mixture of 2-acetamido-5-thiazole thiol acetate (141 mg) in 3 mL of dry THF under argon was added IN t-BuOK in THF (0.72 mL). This mixture was stirred at room temperature for 25 min, and a solution of 5-isopropyl-(2-(chlorofluoromethyl))oxazole (116 mg) in 2 mL of dry THF was added. The reaction mixture was stirred at 60°C for 18 hr, diluted with 150 mL of EtOAc and washed with saturated NH4C1 solution (2x25 mL), saturated NaHCO3 solution (1x25 mL) and brine (1x25 mL). The organic layer was dried (MgSO4), filtered and concentrated in vacuo to give Example 637 compound. MS: (M+H)+ 316 HPLC retention time 3.52 min. (Column: YMC ODS S05 4.6 X 50 mm column, 0% to 100% B gradient in 4 min. Solvent A: 10% CH3OH/90% H2O/0.2% H3PO4; Solvent B: 90% CH3OH/10% H2O/0.2% H3PO4; UV: 220 nM).

Claims

What is Claimed is:
1. A compound of the formula
Figure imgf000115_0001
and pharmaceutically acceptable salts thereof wherein:
Rx and R2 are independently hydrogen, fluorine or alkyl;
R3 is aryl or heteroaryl;
R4 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylalkyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl, heterocycloalkylalkyl; or CO-alkyl, CO-cycloalkyl, CO-aryl, CO-alkyl-cycloalkyl, CO-alkyl-aryl,
CO-heteroaryl, CO-alkyl-heteroaryl, CO-heterocycloalkyl,
CO-alkyl-heterocycloalkyl; or CONH-alkyl, CONH-cycloalkyl, CONH-aryl, CONH-alkyl-cycloalkyl,
CONH-alkyl-aryl, CONH-heteroaryl,
CONH-alkyl-heteroaryl, CONH-heterocycloalkyl,
CONH-alkyl-heterocycloalkyl; or COO-alkyl, COO-cycloalkyl, COO-aryl, COO-alkyl-cycloalkyl, COO-alkyl-aryl, COO-heteroaryl, COO-alkyl-heteroaryl,
COO-heterocycloalkyl, COO-alkyl-heterocycloalkyl; or SO2-alkyl, SO2-cycloalkyl, SO2-aryl, SO2-alkyl-cycloalkyl, SO2-alkyl-aryl,
SO2-heteroaryl, SO2-alkyl-heteroaryl, SO2-heterocycloalkyl,
SO2-alkyl-heterocycloalkyl; or C(NCN)NH-alkyl, C(NCN)NH-cycloalkyl, C(NCN)NH-aryl,
C(NCNNH)-alkyl-cycloalkyl, C(NCN)NH-alkyl-aryl,
C(NCN)NH-heteroaryl, C(NCN)NH-alkyl-heteroaryl,
C(NCN)NH-heterocycloalkyl, C(NCN)NH-alkyl-heterocylcoalkyl; or C(NNO2)NH-alkyl, C(NNO2)NH-cycloalkyl, C(NNO2)NH-aryl, C(NNO2)NH-alkyl-cycloalkyl, C(NNO2)NH-alkyl-aryl, C(NNO2)NH-heteroaryl, C(NNO2)NH-alkyl-heteroaryl, C(NNO2)NH-heterocyloalkyl, C(NNO2)NH-alkyl-heterocycloalkyl; or C(NH)NH-alkyl, C(NH)NH-cycloalkyl, C(NH)NH-aryl, C(NH)NH-alkyl-cycloalkyl, C(NH)NH-alkyl-aryl, C(NH)NH-heteroaryl, C(NH)NH-alkyl-heteroaryl, C(NH)NH-heterocycloalkyl, C(NH)NH-alkyl-heterocycloalkyl; or C(NH)NHCO-alkyl, C(NH)NHCO-cycloalkyl, C(NH)NHCO-aryl, C(NH)NHCO-alkyl-cycloalkyl, C(NH)NHCO-alkyl-aryl,
C(NH)NHCO-heteroaryl, C(NH)NHCO-alkyl-heteroaryl, C(NH)NHCO-heterocylcloalkyl, C(NH)NHCO-alkyl-heterocycloalkyl; or C(NOR6)NH-alkyl, C(NOR6)NH-cycloalkyl, C(NOR6)NH-aryl, C(NOR6)NH-alkyl-cycloalkyl, C(NOR6)NH-alkyl-aryl,
C(NOR6)NH-heteroaryl, C(NOR6)NH-alkyl-heteroaryl, C(NOR6)NH-heterocylcoalkyl, C(NOR6)NH-alkyl-heterocycloalkyl; R5 is hydrogen or alkyl;
R6 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylakyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl or heterocycloalkylalkyl; m is an integer of 0 to 2; and n is an integer of 1 to 3.
2. The compounds as recited in Claim 1, wherein Rx and R2 are independently hydrogen, fluorine or alkyl;
Figure imgf000116_0001
wherein Y is oxygen, sulfur or NR9
R4 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylalkyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl, heterocycloalkylalkyl; or
CO-alkyl, CO-cycloalkyl, CO-aryl, CO-alkyl-cycloalkyl, CO-alkyl-aryl, CO-heteroaryl, CO-alkyl-heteroaryl, CO -heterocycloalkyl,
CO-alkyl-heterocycloalkyl; or CONH-alkyl, CONH-cycloalkyl, CONH-aryl, CONH-alkyl-cycloalkyl,
CONH-alkyl-aryl, CONH-heteroaryl, CONH-alkyl-heteroaryl, CONH-heterocycloalkyl,
CONH-alkyl-heterocycloalkyl; or COO-alkyl, COO-cycloalkyl, COO-aryl, COO-alkyl-cycloalkyl,
COO-alkyl-aryl, COO-heteroaryl, COO-alkyl-heteroaryl,
COO-heterocycloalkyl, COO-alkyl-heterocycloalkyl; or SO2-alkyl, SO2-cycloalkyl, SO2-aryl, SO2-alkyl-cycloalkyl, SO2-alkyl-aryl,
SO2-heteroaryl, SO2-alkyl-heteroaryl, SO2-heterocycloalkyl,
SO2-alkyl-heterocycloalkyl; or C(NCN)NH-alkyl, C(NCN)NH-cycloalkyl, C(NCN)NH-aryl,
C(NCNNH)-alkyl-cycloalkyl, C(NCN)NH-alkyl-aryl, C(NCN)NH-heteroaryl, C(NCN)NH-alkyl-heteroaryl,
C(NCN)NH-heterocycloalkyl, C(NCN)NH-alkyl-heterocylcoalkyl; or C(NNO2)NH-alkyl, C(NNO2)NH-cycloalkyl, C(NNO2)NH-aryl,
C(NNO2)NH-alkyl-cycloalkyl, C(NNO2)NH-alkyl-aryl, C(NNO2)NH-heteroaryl, C(NNO2)NH-alkyl-heteroaryl,
C(NNO2)NH-heterocyloalkyl, C(NNO2)NH-alkyl-heterocycloalkyl; or C(NH)NH-alkyl, C(NH)NH-cycloalkyl, C(NH)NH-aryl,
C(NH)NH-alkyl-cycloalkyl, C(NH)NH-alkyl-aryl, C(NH)NH-heteroaryl, C(NH)NH-alkyl-heteroaryl,
C(NH)NH-heterocycloalkyl, C(NH)NH-alkyl-heterocycloalkyl; or C(NH)NHCO-alkyl, C(NH)NHCO-cycloalkyl, C(NH)NHCO-aryl,
C(NH)NHCO-alkyl-cycloalkyl, C(NH)NHCO-alkyl-aryl,
C(NH)NHCO-heteroaryl, C(NH)NHCO-alkyl-heteroaryl, C(NH)NHCO-heterocylcloalkyl,
C(NH)NHCO-alkyl-heterocycloalkyl; or C(NOR6)NH-alkyl, C(NOR6)NH-cyclo alkyl, C(NOR6)NH-aryl,
C(NOR6)NH-alkyl-cycloalkyl, C(NOR6)NH-alkyl-aryl, C(NOR6)NH-heteroaryl, C(NOR6)NH-alkyl-heteroaryl,
C(NOR6)NH-heterocylcoalkyl, C(NOR6)NH-alkyl-heterocycloalkyl;
R5 is hydrogen or alkyl;
R6 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylakyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl or heterocycloalkylalkyl;
R7 and R8 are independently hydrogen, alkyl, substituted alkyl, cycloalkyl, aryl, subsituted aryl, cycloalkylalkyl, arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, heterocycloalkyl, heterocycloalkylalkyl; R9 is hydrogen, alkyl, cycloalkyl, aryl, akylcycloalkyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl or heterocycloalkylalkyl; m is an integer of 0 to 2; and n is an integer of 1 to 3.
3. The compounds as recited in Claim 1, wherein
R╬▒ and R2 are independently hydrogen, fluorine or alkyl;
Figure imgf000118_0001
wherein Y is oxygen; R4 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylalkyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl, heterocycloalkylalkyl; or CO-alkyl, CO-cycloalkyl, CO-aryl, CO-alkyl-cycloalkyl, CO-alkyl-aryl, CO-heteroaryl, CO-alkyl-heteroaryl, CO-heterocycloalkyl, CO-alkyl-heterocycloalkyl; or CONH-alkyl, CONH-cycloalkyl, CONH-aryl, CONH-alkyl-cycloalkyl, CONH-alkyl-aryl, CONH-heteroaryl, CONH-alkyl-heteroaryl, CONH-heterocycloalkyl, CONH-alkyl-heterocycloalkyl; or COO-alkyl, COO-cycloalkyl, COO-aryl, COO-alkyl-cycloalkyl, COO-alkyl-aryl, COO-heteroaryl, COO-alkyl-heteroaryl,
COO-heterocycloalkyl, COO-alkyl-heterocycloalkyl; or SO2-alkyl, SO2-cycloalkyl, SO2-aryl, SO2-alkyl-cycloalkyl, SO2-alkyl-aryl, SO2-heteroaryl, SO2-alkyl-heteroaryl, SO2-heterocycloalkyl, SO2-alkyl-heterocycloalkyl; or C(NCN)NH-alkyl, C(NCN)NH-cycloalkyl, C(NCN)NH-aryl, C(NCNNH)-alkyl-cycloalkyl, C(NCN)NH-alkyl-aryl,
C(NCN)NH-heteroaryl, C(NCN)NH-alkyl-heteroaryl, C(NCN)NH-heterocycloalkyl, C(NCN)NH-alkyl-heterocylcoalkyl; or
C(NNO2)NH-alkyl, C(NNO2)NH-cycloalkyl, C(NNO2)NH-aryl, C(NNO2)NH-alkyl-cycloalkyl, C(NNO2)NH-alkyl-aryl,
C(NNO2)NH-heteroaryl, C(NNO2)NH-alkyl-heteroaryl, C(NNO2)NH-heterocyloalkyl, C(NNO2)NH-alkyl-heterocycloalkyl; or
C(NH)NH-alkyl, C(NH)NH-cycloalkyl, C(NH)NH-aryl, C(NH)NH-alkyl-cycloalkyl, C(NH)NH-alkyl-aryl,
C(NH)NH-heteroaryl, C(NH)NH-alkyl-heteroaryl, C(NH)NH-heterocycloalkyl, C(NH)NH-alkyl-heterocycloalkyl; or C(NH)NHCO-alkyl, C(NH)NHCO-cycloalkyl, C(NH)NHCO-aryl, C(NH)NHCO-alkyl-cycloalkyl, C(NH)NHCO-alkyl-aryl, C(NH)NHCO-heteroaryl, C(NH)NHCO-alkyl-heteroaryl,
C(NH)NHCO-heterocylcloalkyl, C(NH)NHCO-alkyl-heterocycloalkyl; or C(NOR6)NH-alkyl, C(NOR6)NH-cycloalkyl, C(NOR6)NH-aryl, C(NOR6)NH-alkyl-cycloalkyl, C(NOR6)NH-alkyl-aryl, C(NOR6)NH-heteroaryl, C(NOR6)NH-alkyl-heteroaryl,
C(NOR6)NH-heterocylcoalkyl, C(NOR6)NH-alkyl-heterocycloalkyl; R5 is hydrogen;
R6 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylakyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl or heterocycloalkylalkyl; R7 and R8 are independently hydrogen, alkyl, substituted alkyl, cycloalkyl, aryl, subsituted aryl, cycloalkylalkyl, arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, heterocycloalkyl, heterocycloalkylalkyl; m is an integer of 0 to 2; and n is an integer of 1 to 3.
4. The compounds as recited in Claim 1, wherein Ri and R2 are independently hydrogen, fluorine or alkyl;
Figure imgf000120_0001
wherein Y is sulfur; R4 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylalkyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl, heterocycloalkylalkyl; or
CO-alkyl, CO-cycloalkyl, CO-aryl, CO-alkyl-cycloalkyl, CO-alkyl-aryl, CO-heteroaryl, CO-alkyl-heteroaryl, CO-heterocycloalkyl, CO-alkyl-heterocycloalkyl; or CONH-alkyl, CONH-cycloalkyl, CONH-aryl, CONH-alkyl-cycloalkyl, CONH-alkyl-aryl, CONH-heteroaryl,
CONH-alkyl-heteroaryl, CONH-heterocycloalkyl, CONH-alkyl-heterocycloalkyl; or COO-alkyl, COO-cycloalkyl, COO-aryl, COO-alkyl-cycloalkyl, COO-alkyl-aryl, COO-heteroaryl, COO-alkyl-heteroaryl, COO-heterocycloalkyl, COO-alkyl-heterocycloalkyl; or
SO2-alkyl, SO2-cycloalkyl, SO2-aryl, SO2-alkyl-cycloalkyl, SO2-alkyl-aryl, SO2-heteroaryl, SO2-alkyl-heteroaryl, SO2-heterocycloalkyl, SO2-alkyl-heterocycloalkyl; or C(NCN)NH-alkyl, C(NCN)NH-cycloalkyl, C(NCN)NH-aryl, C(NCNNH)-alkyl-cycloalkyl, C(NCN)NH-alkyl-aryl,
C(NCN)NH-heteroaryl, C(NCN)NH-alkyl-heteroaryl, C(NCN)NH-heterocycloalkyl, C(NCN)NH-alkyl-heterocylcoalkyl; or
C(NNO2)NH-alkyl, C(NNO2)NH-cycloalkyl, C(NNO2)NH-aryl, C(NNO2)NH-alkyl-cycloalkyl, C(NNO2)NH-alkyl-aryl,
C(NNO2)NH-heteroaryl, C(NNO2)NH-alkyl-heteroaryl, C(NNO2)NH-heterocyloalkyl, C(NNO2)NH-alkyl-heterocycloalkyl; or C(NH)NH-alkyl, C(NH)NH-cycloalkyl, C(NH)NH-aryl,
C(NH)NH-alkyl-cycloalkyl, C(NH)NH-alkyl-aryl, C(NH)NH-heteroaryl, C(NH)NH-alkyl-heteroaryl,
C(NH)NH-heterocycloalkyl, C(NH)NH-alkyl-heterocycloalkyl; or C(NH)NHCO-alkyl, C(NH)NHCO-cycloalkyl, C(NH)NHCO-aryl,
C(NH)NHCO-alkyl-cycloalkyl, C(NH)NHCO-alkyl-aryl,
C(NH)NHCO-heteroaryl, C(NH)NHCO-alkyl-heteroaryl, C(NH)NHCO-heterocylcloalkyl,
C(NH)NHCO-alkyl-heterocycloalkyl; or C(NOR6)NH-alkyl, C(NOR6)NH-cycloalkyl, C(NOR6)NH-aryl,
C(NOR6)NH-alkyl-cycloalkyl, C(NOR6)NH-alkyl-aryl,
C(NOR6)NH-heteroaryl, C(NOR6)NH-alkyl-heteroaryl, C(NOR6)NH-heterocylcoalkyl, C(NOR6)NH-alkyl-heterocycloalkyl;
R5 is hydrogen;
R6 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylakyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl or heterocycloalkylalkyl;
R7 and R8 are independently hydrogen, alkyl, substituted alkyl, cycloalkyl, aryl, subsituted aryl, cycloalkylalkyl, arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, heterocycloalkyl, heterocycloalkylalkyl; m is an integer of 0 to 2; and n is an integer of 1 to 3.
5. The compounds as recited in Claim 1, wherein
Rx and R2 are independently hydrogen, fluorine or alkyl;
Figure imgf000121_0001
wherein Y is NR9 ; R4 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylalkyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl, heterocycloalkylalkyl; or CO-alkyl, CO-cycloalkyl, CO-aryl, CO-alkyl-cycloalkyl, CO-alkyl-aryl, CO-heteroaryl, CO-alkyl-heteroaryl, CO-heterocycloalkyl, CO-alkyl-heterocycloalkyl; or CONH-alkyl, CONH-cycloalkyl, CONH-aryl, CONH-alkyl-cycloalkyl, CONH-alkyl-aryl, CONH-heteroaryl, CONH-alkyl-heteroaryl, CONH-heterocycloalkyl, CONH-alkyl-heterocycloalkyl; or COO-alkyl, COO-cycloalkyl, COO-aryl, COO-alkyl-cycloalkyl, COO-alkyl-aryl, COO-heteroaryl, COO-alkyl-heteroaryl,
COO-heterocycloalkyl, COO-alkyl-heterocycloalkyl; or SO2-alkyl, SO2-cycloalkyl, SO2-aryl, SO2-alkyl-cycloalkyl, SO2-alkyl-aryl, SO2-heteroaryl, SO2-alkyl-heteroaryl, SO2-heterocycloalkyl, SO2-alkyl-heterocycloalkyl; or C(NCN)NH-alkyl, C(NCN)NH-cycloalkyl, C(NCN)NH-aryl, C(NCNNH)-alkyl-cycloalkyl, C(NCN)NH-alkyl-aryl, C(NCN)NH-heteroaryl, C(NCN)NH-alkyl-heteroaryl, C(NCN)NH-heterocycloalkyl, C(NCN)NH-alkyl-heterocylcoalkyl; or C(NNO2)NH-alkyl, C(NNO2)NH-cycloalkyl, C(NNO2)NH-aryl, C(NNO2)NH-alkyl-cycloalkyl, C(NNO2)NH-alkyl-aryl, C(NNO2)NH-heteroaryl, C(NNO2)NH-alkyl-heteroaryl, C(NNO2)NH-heterocyloalkyl, C(NNO2)NH-alkyl-heterocycloalkyl; or C(NH)NH-alkyl, C(NH)NH-cycloalkyl, C(NH)NH-aryl, C(NH)NH-alkyl-cycloalkyl, C(NH)NH-alkyl-aryl, C(NH)NH-heteroaryl, C(NH)NH-alkyl-heteroaryl, C(NH)NH-heterocycloalkyl, C(NH)NH-alkyl-heterocycloalkyl; or C(NH)NHCO-alkyl, C(NH)NHCO-cycloalkyl, C(NH)NHCO-aryl, C(NH)NHCO-alkyl-cycloalkyl, C(NH)NHCO-alkyl-aryl,
C(NH)NHCO-heteroaryl, C(NH)NHCO-alkyl-heteroaryl, C(NH)NHCO-heterocylcloalkyl, C(NH)NHCO-alkyl-heterocycloalkyl; or C(NOR6)NH-alkyl, C(NOR6)NH-cyclo alkyl, C(NOR6)NH-aryl, C(NOR6)NH-alkyl-cycloalkyl, C(NOR6)NH-alkyl-aryl, C(NOR6)NH-heteroaryl, C(NOR6)NH-alkyl-heteroaryl, C(NOR6)NH-heterocylcoalkyl, C(NOR6)NH-alkyl-heterocycloalkyl; R5 is hydrogen;
R6 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylakyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl or heterocycloalkylalkyl; R7 and R8 are independently hydrogen, alkyl, substituted alkyl, cycloalkyl, aryl, subsituted aryl, cycloalkylalkyl, arylalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, heterocycloalkyl, heterocycloalkylalkyl;
R9 is hydrogen, alkyl, cycloalkyl, aryl, cycloalkylakyl, arylalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl or heterocycloalkylalkyl; m is an integer of 0 to 2; and n is an integer of 1 to 3.
6. The compounds as recited in Claim 1, wherein
Rx and R2 are independently hydrogen, fluorine or alkyl;
Figure imgf000123_0001
wherein Y is oxygen;
R4 is CO-alkyl, CO-alkyl-aryl, CO-cycloalkyl, CO-alkyl-heteroaryl,
CO-alkyl-heteroalkyl, CO-alkyl-heterocycloalkyl, CONH-alkyl,
CONH-alkyl-aryl, CONH-cycloalkyl, or CONH-alkyl-heterocycloalkyl;
R5 is hydrogen; and R7 and R8 are hydrogen; m is the integer 0; and n is the integer 1.
7. The compounds as recited in Claim 1, wherein R: and R2 are independently hydrogen, fluorine or alkyl; YΓÇö -A8 R3 is X R7
N wherein Y is oxygen;
R4 is CO-alkyl, CO-alkyl-aryl, CO-alkyl-heteroalkyl, CO-cycloalkyl,
CO-alkyl-heterocycloalkyl, CO-alkyl-heteroaryl, CONH-alkyl, CONH-alkyl-aryl, CONH-cycloalkyl, or CONH-alkyl-heterocycloalkyl;
R5 is hydrogen;
R7 and R8 are alkyl; m is the integer 0; and n is the integer 1.
8. The compounds as recited in Claim 1, wherein
R: and R2 are independently hydrogen, fluorine or alkyl;
Figure imgf000124_0001
w erein is R4 is CO-alkyl, CO-alkyl-aryl, CO-alkyl-heteroalkyl, CO-cycloalkyl,
CO-alkyl-heterocycloalkyl, CO-alkyl-heteroaryl, CONH-alkyl, CONH-alkyl-aryl, CONH-cycloalkyl, or CONH-alkyl-heterocycloalkyl; R5 is hydrogen; R7 is hydrogen; R8 is alkyl; m is the integer 0; and n is the integer 1.
9. The compounds as recited in Claim 1, wherein Rx and R2 are independently hydrogen, fluorine or alkyl;
Figure imgf000124_0002
wherein Y is oxygen; R4 is CO-alkyl, CO-alkyl-aryl, CO-alkyl-heteroalkyl, CO-cycloalkyl, CO-alkyl-heterocycloalkyl, CO-alkyl-heteroaryl, CONH-alkyl, CONH-alkyl-aryl, CONH-cycloalkyl, or CONH-alkyl-heterocycloalkyl;
R5 is hydrogen; R7 is alkyl;
R8 is hydrogen; m is the integer 0; and n is the integer 1.
10. The compounds as recited in Claim 1, wherein
R: and R2 are independently hydrogen, fluorine or alkyl;
Figure imgf000125_0001
wherein Y is sulfur; R4 is CO-alkyl, CO-alkyl-aryl, CO-alkyl-heteroalkyl, CO-cycloalkyl, CO-alkyl-heterocycloalkyl, CO-alkyl-heteroaryl, CONH-alkyl,
CONH-alkyl-aryl, CONH-cycloalkyl, or CONH-alkyl-heterocycloalkyl; R5 is hydrogen; R7 is hydrogen; R8 is alkyl; m is the integer 0; and n is the integer 1
11. The compounds as recited in Claim 1, wherein
Rx and R2 are independently hydrogen, fluorine or alkyl;
Figure imgf000125_0002
wherein Y is sulfur; R4 is CO-alkyl, CO-alkyl-aryl, CO-alkyl-heteroalkyl, CO-cycloalkyl, CO-alkyl-heterocycloalkyl, CO-alkyl-heteroaryl, CONH-alkyl, CONH-alkyl-aryl, CONH-cycloalkyl, or CONH-alkyl-heterocycloalkyl; R5 is hydrogen; R7 is alkyl; R8 is hydrogen; m is the integer 0; and n is the integer 1.
12. The compounds as recited in Claim 1, wherein
Rx and R2 are independently hydrogen, fluorine or alkyl;
Figure imgf000126_0001
wherein Y is NR9; R4 is CO-alkyl, CO-alkyl-aryl, CO-alkyl-heteroalkyl, CO-cycloalkyl,
CO-alkyl-heterocycloalkyl, CO-alkyl-heteroaryl, CONH-alkyl,
CONH-alkyl-aryl, CONH-cycloalkyl, or CONH-alkyl-heterocycloalkyl;
R5 is hydrogen;
R7 is hydrogen; R8 is alkyl;
R9 is hydrogen, alkyl, cycloalkyl, aryl, alkyl-cycloalkyl, alkyl-aryl, heteroaryl, alkyl-heteroaryl, heterocycloalkyl, or alkyl-heterocycloalkyl; m is the integer 0; and n is the integer 1.
13. The compounds as recited in Claim 1, wherein
Rx and R2 are independently hydrogen, fluorine or alkyl;
Figure imgf000126_0002
wherein Y is NR9; R4 is CO-alkyl, CO-alkyl-aryl, CO-alkyl-heteroalkyl, CO-cycloalkyl,
CO-alkyl-heterocycloalkyl, CO-alkyl-heteroaryl, CONH-alkyl,
CONH-alkyl-aryl, CONH-cycloalkyl, or CONH-alkyl-heterocycloalkyl;
R5 is hydrogen;
R7 is alkyl; R8 is hydrogen; R9 is alkyl; m is the integer 0; and n is the integer 1.
14. The compounds as recited in Claim 1, wherein
Rx and R2 are independently hydrogen, fluorine or alkyl;
Figure imgf000127_0001
wherein X is NR9;
R4 is CO-alkyl, CO-alkyl-aryl, CO-cycloalkyl, CO-alkyl-heteroaryl, CO-alkyl-heteroalkyl, CO-alkyl-heterocycloalkyl, CONH-alkyl,
CONH-alkyl-aryl, CONH-cycloalkyl, or CONH-alkyl-heterocycloalkyl;
R5 is hydrogen;
R7 is alkyl;
R8 is hydrogen; R9 is hydrogen; m is the integer 0 n is the integer 1.
15. The compound as recited in Claim 1, which is N-[5-[[5-Ethyl-2-oxazolyl)methyl]thio]-2-thiazolyl]acetamide;
N-[5-[[5-Ethyl-2-oxazolyl)methyl]thio]-2-thiazolyl]benzamide; N-[5-[[5-Ethyl-2-oxazolyl)methyl]thio]-2-thiazolyl] benzenesulfonamide;
N-[5-[[(4,5-Dimethyl-2-oxazolyl)methyl]thio]-2-thiazolyl]acetamide; N-[5-[[(5-t-Butyl-2-oxazolyl)methyl]thio]-2-thiazolyl]acetamide;
N-[5-[[5-t-Butyl-2-oxazolyl)methyl]thio]-2- thiazolyl] trimethylacetamide ;
N-[5-[[(4-Ethyl-2-oxazolyl)methyl]thio]-2-thiazolyl]acetamide; or a pharmaceutically acceptable salt thereof.
16. A pharmaceutical composition comprising a compound of Claim 1 and a pharmaceutically acceptable carrier.
17. A pharmaceutical composition comprising a compound of Claim 1, in combination with a pharmaceutically acceptable carrier, and an anticancer agent formulated as a fixed dose.
18. A pharmaceutical composition according to claim 16, comprising a compound of Claim 1 in combination with a pharmaceutically acceptable carrier, with an anticancer treatment or anticancer agent administered in sequence.
19. The pharmaceutical composition according to Claim 18, wherein said combination comprising said compound of Claim 1 and said pharmaceutically acceptable carrier, is administered prior to administration of said anticancer treatment or anticancer agent.
20. The pharmaceutical composition according to claim 18, wherein said combination comprising said compound of Claim 1 and said pharmaceutically acceptable carrier, is administered after administration of said anticancer treatment or anticancer agent.
21. A method of inhibiting protein kinases which comprises administering to a mammalian specie in need thereof an effective protein kinase inhibiting amount of a compound of Claim 1.
22. A method of inhibiting cyclin dependent kinases which comprises administering to a mammalian specie in need thereof an effective cyclin dependent kinase inhibiting amount of a compound of Claim 1.
23. A method of inhibiting cdc2 (cdkl) which comprises administering to a mammalian specie in need thereof an effective cdc2 inhibiting amount of a compound of Claim 1.
24. A method of inhibiting cdk2 which comprises administering to a mammalian specie in need thereof an effective cdk2 inhibiting amount of a compound of Claim 1.
25. A method of inhibiting cdk3 which comprises administering to a mammalian specie in need thereof an effective cdk3 inhibiting amount of a compound of Claim 1.
26. A method of inhibiting cdk4 which comprises administering to a mammalian specie in need thereof an effective cdk4 inhibiting amount of a compound of Claim 1.
27. A method of inhibiting cdk╬┤ which comprises administering to a mammalian specie in need thereof an effective cdk╬┤ inhibiting amount of a compound of Claim 1.
28. A method of inhibiting cdk6 which comprises administering to a mammalian specie in need thereof an effective cdk6 inhibiting amount of a compound of Claim 1.
29. A method of inhibiting cdk7 which comprises administering to a mammalian specie in need thereof an effective cdk7 inhibiting amount of a compound of Claim 1.
30. A method of inhibiting cdk8 which comprises administering to a mammalian specie in need thereof an effective cdk8 inhibiting amount of a compound of Claim 1.
31. A method for treating proliferative diseases comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 16.
32. A method for treating cancer comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 16.
33. A method for treating inflammation, inflamatory bowel disease, or transplantation rejection, comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 16.
34. A method for treating arthritis comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 16.
35. A method for treating infection by HIV, or for treating and preventing the development of AIDS, comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 16.
36. A method for treating viral infections, comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 16.
37. A method for treating fungal infections, comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 16.
38. A method for preventing the development of cancer or tumor relapse, comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 16.
39. A method for treating neurodegenerative disease, comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 16.
40. A method for treating proliferative diseases comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 17.
41. A method for treating cancer comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 17.
42.. A method for preventing the development of cancer or tumor relapse, comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 17.
43. A method for treating proliferative diseases comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 18.
44. A method for treating cancer comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 18.
45. A method for preventing the development of cancer or tumor relapse, comprising administering to a mammalian specie in need thereof a therapeutically effective amount of a composition of Claim 18.
PCT/US1998/023197 1995-11-12 1998-11-02 Aminothiazole inhibitors of cyclin dependent kinases WO1999024416A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
NZ503828A NZ503828A (en) 1997-11-12 1998-11-02 Aminothiazole inhibitors of cyclin dependent kinases
EP98956431A EP1042307B1 (en) 1997-11-12 1998-11-02 Aminothiazole inhibitors of cyclin dependent kinases
DE69838515T DE69838515T2 (en) 1997-11-12 1998-11-02 AMINOTHIAZOLE FOR INHIBITING CYCLINE-DEPENDENT KINASES
JP2000520430A JP4344084B2 (en) 1997-11-12 1998-11-02 Aminothiazole inhibitors of cyclin-dependent kinases
AU12955/99A AU730607B2 (en) 1997-11-12 1998-11-02 Aminothiazole inhibitors of cyclin dependent kinases
KR10-2003-7004561A KR20030036862A (en) 1997-11-12 1998-11-02 Composition for inhibiting cyclin dependent kinases
PL340540A PL204642B1 (en) 1997-11-12 1998-11-02 Aminothiazolic inhibitors of cyclin-dependent kinases
IL13558998A IL135589A (en) 1997-11-12 1998-11-02 Aminothiazole derivatives and pharmaceutical compositions containing the same
CA002309551A CA2309551C (en) 1997-11-12 1998-11-02 Aminothiazole inhibitors of cyclin dependent kinases
HU0004559A HUP0004559A3 (en) 1997-11-12 1998-11-02 Aminothiazole inhibitors of cyclin dependent kinases, pharmaceutical compositions containing them and their use
BR9814124-4A BR9814124A (en) 1997-11-12 1998-11-02 Aminothiazole inhibitors of cyclin-dependent kinases
DK98956431T DK1042307T3 (en) 1997-11-12 1998-11-02 Aminothiazoline inhibitors of cyclin-dependent kinases
NO20002153A NO316773B1 (en) 1997-11-12 2000-04-27 Aminothiazole inhibitors for cyclin-dependent kinases, pharmaceutical composition and use thereof
HK00107675A HK1029109A1 (en) 1995-11-12 2000-11-30 Aminothiazole inhibitors of cyclin dependent kinases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6519597P 1997-11-12 1997-11-12
US60/065,195 1997-11-12

Publications (1)

Publication Number Publication Date
WO1999024416A1 true WO1999024416A1 (en) 1999-05-20

Family

ID=22060972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/023197 WO1999024416A1 (en) 1995-11-12 1998-11-02 Aminothiazole inhibitors of cyclin dependent kinases

Country Status (32)

Country Link
US (1) US6040321A (en)
EP (1) EP1042307B1 (en)
JP (1) JP4344084B2 (en)
KR (2) KR20030036862A (en)
CN (1) CN1160343C (en)
AR (1) AR017182A1 (en)
AT (1) ATE374771T1 (en)
AU (1) AU730607B2 (en)
BR (1) BR9814124A (en)
CA (1) CA2309551C (en)
CO (1) CO4990957A1 (en)
CY (1) CY1107509T1 (en)
CZ (1) CZ297907B6 (en)
DE (1) DE69838515T2 (en)
DK (1) DK1042307T3 (en)
EG (1) EG24028A (en)
ES (1) ES2296347T3 (en)
HU (1) HUP0004559A3 (en)
ID (1) ID23983A (en)
IL (1) IL135589A (en)
MY (1) MY120779A (en)
NO (1) NO316773B1 (en)
NZ (1) NZ503828A (en)
PE (1) PE131699A1 (en)
PL (1) PL204642B1 (en)
PT (1) PT1042307E (en)
RU (1) RU2211839C2 (en)
TR (1) TR200001344T2 (en)
TW (1) TW593292B (en)
UY (1) UY25239A1 (en)
WO (1) WO1999024416A1 (en)
ZA (1) ZA9810332B (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035455A1 (en) * 1998-12-15 2000-06-22 Telik, Inc. Heteroaryl-aryl ureas as igf-1 receptor antagonists
WO2000075120A1 (en) * 1999-06-04 2000-12-14 Agouron Pharmaceuticals, Inc. Diaminothiazoles and their use for inhibiting protein kinases
WO2001007411A1 (en) * 1999-07-26 2001-02-01 Banyu Pharmaceutical Co., Ltd. Biarylurea derivatives
WO2001014353A1 (en) * 1999-08-12 2001-03-01 Pharmacia Italia, S.P.A. Arylmethyl-carbonylamino-thiazole derivatives and their use as antitumor agents
US6214852B1 (en) 1998-10-21 2001-04-10 Bristol-Myers Squibb Company N-[5-[[[5-alkyl-2-oxazolyl]methyl]thio]-2-thiazolyl]-carboxamide inhibitors of cyclin dependent kinases
WO2001044217A1 (en) * 1999-12-15 2001-06-21 Bristol-Myers Squibb Co. Aminothiazole inhibitors of cyclin dependent kinases
WO2001044242A1 (en) * 1999-12-15 2001-06-21 Bristol-Myers Squibb Co. N-[5-[[[5-alkyl-2-oxazolyl]methyl]thio]-2-thiazolyl]carboxamide inhibitors of cyclin dependent kinases
WO2001056567A1 (en) * 2000-02-04 2001-08-09 Novo Nordisk A/S 2,4-diaminothiazole derivatives and their use as glycogen synthase kinase-3 (gsk-3) inhibitors
WO2001058852A2 (en) * 2000-02-11 2001-08-16 Dompé S.p.A. (r)-2-aryl-propionamides, useful in the inhibition of il-8-induced chemiotaxis of neutrophils
WO2001080813A2 (en) * 2000-04-27 2001-11-01 Bristol-Myers Squibb Company Methods for preventing and treating alopecia induced by chemotherapy or radiotherapy
WO2001095856A2 (en) * 2000-06-15 2001-12-20 Chaconne Nsi Co., Ltd. Urea derivative useful as an anti-cancer agent and process for preparing same
EP1172359A1 (en) * 1999-04-07 2002-01-16 Santen Pharmaceutical Co., Ltd. N-SUBSTITUTED-N'-SUBSTITUTED UREA DERIVATIVE AND USE THEREOF AS TNF-$g(a) PRODUCTION INHIBITOR
WO2002010161A1 (en) * 2000-07-26 2002-02-07 Bristol-Myers Squibb Company Process for preparing arylacetylaminothiazoles
WO2002010163A1 (en) * 2000-07-26 2002-02-07 Bristol-Myers Squibb Company Process for preparing azacycloalkanoylaminothiazoles
WO2002010162A1 (en) * 2000-07-26 2002-02-07 Bristol-Myers Squibb Company N-[5-[[[5-alkyl-2-oxazolyl]methyl]thio]-2-thiazolyl] carboxamide inhibitors of cyclin dependent kinases
WO2002012250A2 (en) * 2000-08-09 2002-02-14 Agouron Pharmaceuticals, Inc. Pyrazole-thiazole compounds, pharmaceutical compositions containing them, and methods of their use for inhibiting cyclin-dependent kinases
WO2002014311A2 (en) * 2000-08-15 2002-02-21 Amgen Inc. Urea compounds and methods of uses
US6462069B2 (en) 2000-04-18 2002-10-08 Agouron Pharmaceuticals, Inc. Compounds, pharmaceutical compositions, and methods for inhibiting protein kinases
US6515004B1 (en) 1999-12-15 2003-02-04 Bristol-Myers Squibb Company N-[5-[[[5-alkyl-2-oxazolyl]methyl]thio]-2-thiazolyl]-carboxamide inhibitors of cyclin dependent kinases
US6555539B2 (en) 2000-01-18 2003-04-29 Agouron Pharmaceuticals Indazole compounds, pharmaceutical compositions, and methods for mediating or inhibiting cell proliferation
US6635641B2 (en) 2000-01-21 2003-10-21 Agouron Pharmaceuticals, Inc. Amide compounds and pharmaceutical compositions for inhibiting protein kinases, and methods for their use
US6645990B2 (en) 2000-08-15 2003-11-11 Amgen Inc. Thiazolyl urea compounds and methods of uses
US6720346B2 (en) 2001-07-06 2004-04-13 Agouron Pharmaceuticals, Inc. Thiazole benzamide derivatives and pharmaceutical compositions for inhibiting cell proliferation
US6720427B2 (en) 2001-05-11 2004-04-13 Pfizer Inc. Thiazole derivatives
US6756374B2 (en) 2001-01-22 2004-06-29 Hoffmann-La Roche Inc. Diaminothiazoles having antiproliferative activity
WO2004085388A2 (en) 2003-03-24 2004-10-07 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
JP2004534857A (en) * 2001-07-19 2004-11-18 フアルマシア・イタリア・エツセ・ピー・アー Phenylacetamide-thiazole derivatives, processes for their preparation and their use as anticancer agents
US6881844B2 (en) 2002-10-03 2005-04-19 Hoffman-La Roche Inc. Indole-3-carboxamides as glucokinase activators
US6906053B2 (en) 2001-05-25 2005-06-14 Bristol-Myers Squibb Pharma Company Hydantoins and related heterocycles as inhibitors of matrix metalloproteinases and/or TNF-α converting enzyme (TACE)
WO2005058341A2 (en) * 2003-12-11 2005-06-30 Theravance, Inc. Compositions for use in the treatment of mutant receptor tyrosine kinase driven cellular proliferative diseases
WO2005072731A1 (en) * 2004-01-29 2005-08-11 X-Ceptor Therapeutics, Inc. 3-phenyl-n- ((1, 3, 4) thiadiazol-2-yl) -acrylamide derivatives and related compounds as modulators of estrogen-related receptors for the treatment of e.g. cancer, rheumatoid arthritis or neurological disorders
WO2005075435A1 (en) * 2004-01-30 2005-08-18 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
EP1568368A1 (en) * 2004-02-26 2005-08-31 Schering Aktiengesellschaft Pharmaceutical combination comprising a CDK inhibitor and a VEGF receptor inhibitor
WO2005084295A2 (en) 2004-03-01 2005-09-15 Bristol-Myers Squibb Company Fused heterotricyclic compounds as inhibitors of 17b-hydroxysteroid dehydrogenase 3
WO2005087232A1 (en) 2004-03-04 2005-09-22 Bristol-Myers Squibb Company Bicyclic modulators of androgen receptor function
US7211576B2 (en) 2004-04-20 2007-05-01 Hoffmann-La Roche Inc. Diaminothiazoles
WO2007073503A3 (en) * 2005-12-21 2007-11-08 Bristol Myers Squibb Co Indane modulators of glucocorticoid receptor, ap-1, and/or nf-kb activity and use thereof
WO2008005914A2 (en) * 2006-07-06 2008-01-10 Bristol-Myers Squibb Company Novel glucokinase activators and methods of using same
WO2008049856A2 (en) * 2006-10-25 2008-05-02 Ingenium Pharmaceuticals Gmbh Methods of treating pain using cdk inhibitors
EP1938821A2 (en) 2001-01-25 2008-07-02 Bristol-Myers Squibb Company Methods of administering epothilone analogs for the treatment of cancer
US7405234B2 (en) 2002-05-17 2008-07-29 Bristol-Myers Squibb Company Bicyclic modulators of androgen receptor function
EP1958625A1 (en) 2004-11-18 2008-08-20 Brystol-Myers Squibb Company Enteric coate bead comprising ixabepilone and preparation thereof
US7632858B2 (en) 2002-11-15 2009-12-15 Bristol-Myers Squibb Company Open chain prolyl urea-related modulators of androgen receptor function
US7696241B2 (en) 2004-03-04 2010-04-13 Bristol-Myers Squibb Company Bicyclic compounds as modulators of androgen receptor function and method
US7820702B2 (en) 2004-02-04 2010-10-26 Bristol-Myers Squibb Company Sulfonylpyrrolidine modulators of androgen receptor function and method
US7851636B2 (en) 2004-01-06 2010-12-14 Novo Nordisk A/S Heteroaryl-ureas and their use as glucokinase activators
US7884210B2 (en) * 2005-07-14 2011-02-08 Novo Nordisk A/S Ureido-thiazole glucokinase activators
EP2308833A2 (en) 1999-04-15 2011-04-13 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
US7977322B2 (en) 2004-08-20 2011-07-12 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
US7999114B2 (en) 2005-07-08 2011-08-16 Novo Nordisk A/S Dicycloalkylcarbamoyl ureas as glucokinase activators
US8017749B2 (en) 2006-12-04 2011-09-13 The Board Of Trustees Of The University Of Illinois Compositions and methods to treat cancer with cupredoxins and CpG rich DNA
US8063081B2 (en) 2002-06-27 2011-11-22 Novo Nordisk A/S Aryl carbonyl derivatives as therapeutic agents
WO2012100206A2 (en) 2011-01-20 2012-07-26 Board Of Regents, The University Of Texas System Mri markers, delivery and extraction systems, and methods of manufacture and use thereof
WO2013007172A1 (en) 2011-07-09 2013-01-17 北京市丰硕维康技术开发有限责任公司 Platinum compounds for treating cell proliferative disease, preparation methods and uses thereof
WO2013041014A1 (en) 2011-09-19 2013-03-28 北京市丰硕维康技术开发有限责任公司 Platinum compound having amino- or alkylamino-containing succinic acid derivatives as leaving group, preparation method therefor, and use thereof
WO2014075391A1 (en) 2012-11-17 2014-05-22 北京市丰硕维康技术开发有限责任公司 Platinum compound of malonic acid derivative having leaving group containing amino or alkylamino
EP2968330A4 (en) * 2013-03-15 2017-01-25 The California Institute for Biomedical Research Compounds and methods for inducing chondrogenesis
US9751888B2 (en) 2013-10-04 2017-09-05 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9775844B2 (en) 2014-03-19 2017-10-03 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9828377B2 (en) 2013-10-04 2017-11-28 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US10160761B2 (en) 2015-09-14 2018-12-25 Infinity Pharmaceuticals, Inc. Solid forms of isoquinolinones, and process of making, composition comprising, and methods of using the same
US10253047B2 (en) 2014-10-03 2019-04-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2019068817A1 (en) * 2017-10-05 2019-04-11 Innovative Molecules Gmbh Enantiomers of substituted thiazoles as antiviral compounds
US10759806B2 (en) 2016-03-17 2020-09-01 Infinity Pharmaceuticals, Inc. Isotopologues of isoquinolinone and quinazolinone compounds and uses thereof as PI3K kinase inhibitors
US10919914B2 (en) 2016-06-08 2021-02-16 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2022079290A3 (en) * 2020-10-16 2022-06-16 Cemm - Forschungszentrum Für Molekulare Medizin Gmbh Heterocyclic cullin ring ubiquitin ligase compounds and uses thereof
US11833136B2 (en) 2018-06-12 2023-12-05 Vtv Therapeutics Llc Therapeutic uses of glucokinase activators in combination with insulin or insulin analogs

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040171632A1 (en) * 1998-12-22 2004-09-02 Gowan Richard Carleton Combination chemotherapy
ID30250A (en) * 1998-12-22 2001-11-15 Warner Lambert Co COMBINATION CHEMOTHERAPY
WO2002050071A1 (en) * 2000-12-21 2002-06-27 Bristol-Myers Squibb Company Thiazolyl inhibitors of tec family tyrosine kinases
DE60229922D1 (en) * 2001-03-19 2009-01-02 Novartis Ag COMBINATIONS, AN ANTI-DIARRHOIC AND EPOTHILONE OR AN EPOTHILON DERIVATIVE CONTAINING
DE60212836T2 (en) * 2001-05-16 2007-01-25 Gpc Biotech Ag PYRIDYLPYRIMIDINE DERIVATIVES AS EFFECTIVE COMPOUNDS AGAINST PRION DISEASES
SK1102004A3 (en) * 2001-08-31 2005-05-05 Bristol-Myers Squibb Company Medicament for the treatment of proliferative diseases and pharmaceutical composition for the treatment of the cancer
TW200401638A (en) * 2002-06-20 2004-02-01 Bristol Myers Squibb Co Heterocyclic inhibitors of kinases
EP1534712B1 (en) * 2002-09-04 2007-05-16 Schering Corporation Pyrazolo[1,5-a]pyrimidine compounds as cyclin dependent kinase inhibitors
TW200412966A (en) * 2002-09-04 2004-08-01 Schering Corp Novel pyrazolopyrimidines as cyclin dependent kinase inhibitors
US7161003B1 (en) * 2002-09-04 2007-01-09 Schering Corporation Pyrazolopyrimidines as cyclin dependent kinase inhibitors
US7119200B2 (en) * 2002-09-04 2006-10-10 Schering Corporation Pyrazolopyrimidines as cyclin dependent kinase inhibitors
US7205308B2 (en) * 2002-09-04 2007-04-17 Schering Corporation Trisubstituted 7-aminopyrazolopyrimidines as cyclin dependent kinase inhibitors
US7196078B2 (en) * 2002-09-04 2007-03-27 Schering Corpoartion Trisubstituted and tetrasubstituted pyrazolopyrimidines as cyclin dependent kinase inhibitors
WO2004022560A1 (en) * 2002-09-04 2004-03-18 Schering Corporation Pyrazolopyrimidines as cyclin dependent kinase inhibitors
ES2285164T3 (en) * 2002-09-04 2007-11-16 Schering Corporation PIRAZOLOPIRIMIDINAS AS INHIBITORS OF CYCLINE-DEPENDENT KINASES.
KR20050074959A (en) * 2002-10-03 2005-07-19 노파르티스 아게 Substituted (thiazol-2-yl)-amide or sulfonamide as glycokinase activators useful in the treatment of type 2 diabetes
US7589112B2 (en) * 2002-10-24 2009-09-15 Merck Patent Gmbh Methylene urea derivatives
AU2004262369A1 (en) * 2003-07-29 2005-02-10 Bristol-Myers Squibb Company Biomarkers of cyclin-dependent kinase modulation
US6949895B2 (en) * 2003-09-03 2005-09-27 Axcelis Technologies, Inc. Unipolar electrostatic quadrupole lens and switching methods for charged beam transport
US7256208B2 (en) * 2003-11-13 2007-08-14 Bristol-Myers Squibb Company Monocyclic N-Aryl hydantoin modulators of androgen receptor function
US20050182105A1 (en) * 2004-02-04 2005-08-18 Nirschl Alexandra A. Method of using 3-cyano-4-arylpyridine derivatives as modulators of androgen receptor function
US7388027B2 (en) * 2004-03-04 2008-06-17 Bristol-Myers Squibb Company Bicyclic compounds as modulators of androgen receptor function and method
JPWO2006073202A1 (en) * 2005-01-04 2008-08-07 国立大学法人金沢大学 Cancer suppression based on GSK3β inhibitory effect and method for evaluating anticancer agent
US20100105745A1 (en) * 2005-01-04 2010-04-29 Toshinari Minamoto Suppression of cancer and method for evaluating anticancer agent based on the effect of inhibiting gsk3 beta
EP2514751A1 (en) * 2005-11-15 2012-10-24 Vertex Pharmaceuticals, Inc. Azaindazoles useful as inhibitor of kinases
US9180127B2 (en) 2009-12-29 2015-11-10 Dana-Farber Cancer Institute, Inc. Type II Raf kinase inhibitors
RU2012154447A (en) 2010-05-12 2014-06-20 Вандербилт Юниверсити HETEROCYCLIC SULPHON ALLOSTERIC POTENTIATORS MGLUR4, COMPOSITIONS AND METHODS FOR TREATING NEUROLOGICAL DYSFUNCTIONS
EP2580320B1 (en) 2010-06-14 2018-08-01 The Scripps Research Institute Reprogramming of cells to a new fate
WO2012061190A1 (en) * 2010-11-01 2012-05-10 Romark Laboratories L.C. Alkylsulfinyl-substituted thiazolide compounds
US8940742B2 (en) * 2012-04-10 2015-01-27 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
GB201409471D0 (en) 2014-05-28 2014-07-09 Euro Celtique Sa Pharmaceutical composition
EP3273966B1 (en) 2015-03-27 2023-05-03 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
WO2017044858A2 (en) * 2015-09-09 2017-03-16 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
MY198018A (en) * 2016-04-06 2023-07-26 Lnnovative Molecules Gmbh Aminothiazole derivatives useful as antiviral agents
AU2016426574B2 (en) 2016-10-11 2023-07-13 Euro-Celtique S.A. Hodgkin lymphoma therapy
GB201709405D0 (en) 2017-06-13 2017-07-26 Euro Celtique Sa Compounds for treating ovarian cancer
GB201709406D0 (en) 2017-06-13 2017-07-26 Euro-Cletique S A Compounds for treating TNBC
GB201709402D0 (en) 2017-06-13 2017-07-26 Euro Celtique Sa Compounds for treating t-pll

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4254260A (en) * 1975-03-06 1981-03-03 Fujisawa Pharmaceutical Co., Ltd. 3-Substituted-7-substituted alkanamido-3-cephem-4-carboxylic acid compounds

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO831160L (en) * 1982-04-08 1983-10-10 Erba Farmitalia PREPARATION OF SUBSTITUTED PENEM DERIVATIVES
JPS6339868A (en) * 1986-08-04 1988-02-20 Otsuka Pharmaceut Factory Inc Di (lower alkyl) phenol derivative
DE4119756A1 (en) * 1991-06-15 1992-12-17 Basf Ag AMINOALKYL-SUBSTITUTED 5-MERCAPTOTHIAZOLE, THEIR PRODUCTION AND USE
JPH0859669A (en) * 1994-06-13 1996-03-05 Takeda Chem Ind Ltd Cephem compound, its production and antimicrobial agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4254260A (en) * 1975-03-06 1981-03-03 Fujisawa Pharmaceutical Co., Ltd. 3-Substituted-7-substituted alkanamido-3-cephem-4-carboxylic acid compounds

Cited By (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262096B1 (en) 1997-11-12 2001-07-17 Bristol-Myers Squibb Company Aminothiazole inhibitors of cyclin dependent kinases
US6414156B2 (en) 1998-10-21 2002-07-02 Bristol-Myers Squibb Company Process for preparing azacycloalkanoylaminothiazoles
US6214852B1 (en) 1998-10-21 2001-04-10 Bristol-Myers Squibb Company N-[5-[[[5-alkyl-2-oxazolyl]methyl]thio]-2-thiazolyl]-carboxamide inhibitors of cyclin dependent kinases
WO2000035455A1 (en) * 1998-12-15 2000-06-22 Telik, Inc. Heteroaryl-aryl ureas as igf-1 receptor antagonists
US6337338B1 (en) 1998-12-15 2002-01-08 Telik, Inc. Heteroaryl-aryl ureas as IGF-1 receptor antagonists
EP1172359A4 (en) * 1999-04-07 2002-09-11 Santen Pharmaceutical Co Ltd N-SUBSTITUTED-N'-SUBSTITUTED UREA DERIVATIVE AND USE THEREOF AS TNF-$g(a) PRODUCTION INHIBITOR
EP1172359A1 (en) * 1999-04-07 2002-01-16 Santen Pharmaceutical Co., Ltd. N-SUBSTITUTED-N'-SUBSTITUTED UREA DERIVATIVE AND USE THEREOF AS TNF-$g(a) PRODUCTION INHIBITOR
EP3222619A1 (en) 1999-04-15 2017-09-27 Bristol-Myers Squibb Holdings Ireland Cyclic protein tyrosine kinase inhibitors
EP2308833A2 (en) 1999-04-15 2011-04-13 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
WO2000075120A1 (en) * 1999-06-04 2000-12-14 Agouron Pharmaceuticals, Inc. Diaminothiazoles and their use for inhibiting protein kinases
US6620828B2 (en) 1999-06-04 2003-09-16 Agouron Pharmaceuticals, Inc. Thiazole compounds and pharmaceutical compositions for inhibiting protein kinases and methods for their use
US7354946B2 (en) 1999-07-26 2008-04-08 Banyu Pharmaceutical Co., Ltd. Biarylurea derivatives
US6958333B1 (en) 1999-07-26 2005-10-25 Banyu Pharmaceutical Co., Ltd. Biarylurea derivatives
WO2001007411A1 (en) * 1999-07-26 2001-02-01 Banyu Pharmaceutical Co., Ltd. Biarylurea derivatives
EP1557168A3 (en) * 1999-07-26 2007-05-23 Banyu Pharmaceutical Co., Ltd. Biarylurea Derivatives
US6784198B1 (en) 1999-08-12 2004-08-31 Pharmacia Italia S.P.A. Arylmethyl-carbonylamino-thiazole derivatives and their use as antitumor agents
JP2003507461A (en) * 1999-08-12 2003-02-25 フアルマシア・イタリア・エツセ・ピー・アー Arylmethyl-carbonylamino-thiazole derivatives and their use as antitumor agents
KR100773709B1 (en) * 1999-08-12 2007-11-09 파마시아 이탈리아 에스.피.에이. Arylmethyl-carbonylamino-thiazole derivatives and a method for producing them
EA005375B1 (en) * 1999-08-12 2005-02-24 Фармация Италия, С.П.А. Alkylmethyl-carbonylamino-thiazole derivatives and their use as antitumor agents
KR100827563B1 (en) * 1999-08-12 2008-05-07 파마시아 이탈리아 에스.피.에이. A pharmaceutical composition useful as antitumor agents, comprising arylmethyl-carbonylamino-thiazole derivatives
AP1853A (en) * 1999-08-12 2008-05-29 Pharmacia Italia Spa Arylmethyl-carbonylamino-thiazole derivatives and their use as antitumor agents.
CZ303138B6 (en) * 1999-08-12 2012-04-25 Nerviano Medical Sciences S.R.L. Arylmethylcarbonyl aminothiazole derivatives and pharmaceutical preparation containing them
HRP20020127B1 (en) * 1999-08-12 2010-08-31 Pharmacia Italia S.P.A. Arylmethyl-carbonylamino-thiazole and their use as antitumor agents
CN100410245C (en) * 1999-08-12 2008-08-13 法玛西雅意大利公司 Arylmethyl-carbonylamino-thiazole derivatives and their use as antitumor agents
WO2001014353A1 (en) * 1999-08-12 2001-03-01 Pharmacia Italia, S.P.A. Arylmethyl-carbonylamino-thiazole derivatives and their use as antitumor agents
JP4864260B2 (en) * 1999-08-12 2012-02-01 ネルビアーノ・メデイカル・サイエンシーズ・エツセ・エルレ・エルレ Arylmethyl-carbonylamino-thiazole derivatives and their use as antitumor agents
US6392053B2 (en) 1999-12-15 2002-05-21 Bristol-Myers Squibb Company Process for preparing arylacetylaminothiazoles
US6639074B2 (en) 1999-12-15 2003-10-28 Bristol Myers Squibb Company Process for preparing azacycloalkanoylaminothiazoles
WO2001044217A1 (en) * 1999-12-15 2001-06-21 Bristol-Myers Squibb Co. Aminothiazole inhibitors of cyclin dependent kinases
US6515004B1 (en) 1999-12-15 2003-02-04 Bristol-Myers Squibb Company N-[5-[[[5-alkyl-2-oxazolyl]methyl]thio]-2-thiazolyl]-carboxamide inhibitors of cyclin dependent kinases
AU783719B2 (en) * 1999-12-15 2005-12-01 Bristol-Myers Squibb Company N-(5-(((5-alkyl-2-oxazolyl)methyl)thio)-2-thiazolyl)- carboxamide inhibitors of cyclin dependent kinases
WO2001044242A1 (en) * 1999-12-15 2001-06-21 Bristol-Myers Squibb Co. N-[5-[[[5-alkyl-2-oxazolyl]methyl]thio]-2-thiazolyl]carboxamide inhibitors of cyclin dependent kinases
US6897321B2 (en) 1999-12-15 2005-05-24 Briston Myers Squibb Company Process for preparing azacycloalkanoylaminothiazoles (LD 137e)
US6613911B2 (en) 1999-12-15 2003-09-02 Bristol-Myers Squibb Company Process for preparing arylacetylaminothiazoles
JP2003525872A (en) * 1999-12-15 2003-09-02 ブリストル−マイヤーズ スクイブ カンパニー N- [5-[[[5-alkyl-2-oxazolyl] methyl] thio-2-thiazolyl] carboxamide inhibitors of cyclin dependent kinases
WO2001044241A1 (en) * 1999-12-15 2001-06-21 Bristol-Myers Squibb Co. N-[5-[[[5-alkyl-2-oxazolyl]methyl]thio]-2-thiazolyl]-carboxamide inhibitors of cyclin dependent kinases
US6555539B2 (en) 2000-01-18 2003-04-29 Agouron Pharmaceuticals Indazole compounds, pharmaceutical compositions, and methods for mediating or inhibiting cell proliferation
US6635641B2 (en) 2000-01-21 2003-10-21 Agouron Pharmaceuticals, Inc. Amide compounds and pharmaceutical compositions for inhibiting protein kinases, and methods for their use
WO2001056567A1 (en) * 2000-02-04 2001-08-09 Novo Nordisk A/S 2,4-diaminothiazole derivatives and their use as glycogen synthase kinase-3 (gsk-3) inhibitors
WO2001058852A3 (en) * 2000-02-11 2002-03-14 Dompe Spa (r)-2-aryl-propionamides, useful in the inhibition of il-8-induced chemiotaxis of neutrophils
CZ302945B6 (en) * 2000-02-11 2012-01-25 Dompé Pha.R.Ma S.P.A. (R)-enantiomers of 2-arylpropionic acid amides and pharmaceutical mixtures in which they are comprised
WO2001058852A2 (en) * 2000-02-11 2001-08-16 Dompé S.p.A. (r)-2-aryl-propionamides, useful in the inhibition of il-8-induced chemiotaxis of neutrophils
AU2001244125B2 (en) * 2000-02-11 2006-11-09 Dompe' Farmaceutici S.P.A. Amides, useful in the inhibition of IL-8-induced chemotaxis of neutrophils
US7705050B2 (en) 2000-02-11 2010-04-27 Janete Peloia Barroso Gandolfi, legal representative Amides, useful in the inhibition of IL-8-induced chemotaxis of neutrophils
US6462069B2 (en) 2000-04-18 2002-10-08 Agouron Pharmaceuticals, Inc. Compounds, pharmaceutical compositions, and methods for inhibiting protein kinases
US6534531B2 (en) 2000-04-27 2003-03-18 Bristol-Myers Squibb Company Methods for preventing and treating alopecia induced by chemotherapy or radiotherapy
AU2001255766B2 (en) * 2000-04-27 2004-05-06 Bristol-Myers Squibb Company Methods for preventing and treating alopecia induced by chemotherapy or radiotherapy
WO2001080813A2 (en) * 2000-04-27 2001-11-01 Bristol-Myers Squibb Company Methods for preventing and treating alopecia induced by chemotherapy or radiotherapy
WO2001080813A3 (en) * 2000-04-27 2002-02-07 Bristol Myers Squibb Co Methods for preventing and treating alopecia induced by chemotherapy or radiotherapy
WO2001095856A2 (en) * 2000-06-15 2001-12-20 Chaconne Nsi Co., Ltd. Urea derivative useful as an anti-cancer agent and process for preparing same
WO2001095856A3 (en) * 2000-06-15 2002-06-27 Chaconne Nsi Co Ltd Urea derivative useful as an anti-cancer agent and process for preparing same
WO2002010162A1 (en) * 2000-07-26 2002-02-07 Bristol-Myers Squibb Company N-[5-[[[5-alkyl-2-oxazolyl]methyl]thio]-2-thiazolyl] carboxamide inhibitors of cyclin dependent kinases
BG65132B1 (en) * 2000-07-26 2007-03-30 Bristol-Myers Squibb Company N-[5-[[[5-alkyl-2-oxazolyl]methyl]thio]-2-thiazolyl]carboxamide derivatives, pharmaceutical composition and use thereof as inhibitors of cyclin dependent kinases
WO2002010161A1 (en) * 2000-07-26 2002-02-07 Bristol-Myers Squibb Company Process for preparing arylacetylaminothiazoles
CN100457753C (en) * 2000-07-26 2009-02-04 布里斯托尔-迈尔斯斯奎布公司 N-[5-[[[5-alkyl-2-oxazolyl]methyl]thio]-2-thiazolyl] carboxamide inhibitors of cyclin dependent kinases
WO2002010163A1 (en) * 2000-07-26 2002-02-07 Bristol-Myers Squibb Company Process for preparing azacycloalkanoylaminothiazoles
WO2002012250A3 (en) * 2000-08-09 2002-09-06 Agouron Pharma Pyrazole-thiazole compounds, pharmaceutical compositions containing them, and methods of their use for inhibiting cyclin-dependent kinases
WO2002012250A2 (en) * 2000-08-09 2002-02-14 Agouron Pharmaceuticals, Inc. Pyrazole-thiazole compounds, pharmaceutical compositions containing them, and methods of their use for inhibiting cyclin-dependent kinases
US6566363B2 (en) 2000-08-09 2003-05-20 Agouron Pharmaceuticals, Inc. Pyrazole-thiazole compounds, pharmaceutical compositions containing them
WO2002014311A2 (en) * 2000-08-15 2002-02-21 Amgen Inc. Urea compounds and methods of uses
WO2002014311A3 (en) * 2000-08-15 2002-09-19 Amgen Inc Urea compounds and methods of uses
US7196104B2 (en) 2000-08-15 2007-03-27 Amgen, Inc. Thiazolyl urea compounds and methods of uses
US6645990B2 (en) 2000-08-15 2003-11-11 Amgen Inc. Thiazolyl urea compounds and methods of uses
US6756374B2 (en) 2001-01-22 2004-06-29 Hoffmann-La Roche Inc. Diaminothiazoles having antiproliferative activity
US7094896B2 (en) 2001-01-22 2006-08-22 Hoffmann-La Roche Inc. Diaminothiazoles having antiproliferative activity
US7105670B2 (en) 2001-01-22 2006-09-12 Hoffmann-La Roche Inc. Intermediates useful in the preparation of diaminothiazoles
EP1938821A2 (en) 2001-01-25 2008-07-02 Bristol-Myers Squibb Company Methods of administering epothilone analogs for the treatment of cancer
US6720427B2 (en) 2001-05-11 2004-04-13 Pfizer Inc. Thiazole derivatives
US7482372B2 (en) 2001-05-25 2009-01-27 Bristol-Myers Squibb Company Hydantoins and related heterocycles as inhibitors of matrix metalloproteinases and/or TNF-α converting enzyme (TACE)
US6906053B2 (en) 2001-05-25 2005-06-14 Bristol-Myers Squibb Pharma Company Hydantoins and related heterocycles as inhibitors of matrix metalloproteinases and/or TNF-α converting enzyme (TACE)
US6720346B2 (en) 2001-07-06 2004-04-13 Agouron Pharmaceuticals, Inc. Thiazole benzamide derivatives and pharmaceutical compositions for inhibiting cell proliferation
JP2004534857A (en) * 2001-07-19 2004-11-18 フアルマシア・イタリア・エツセ・ピー・アー Phenylacetamide-thiazole derivatives, processes for their preparation and their use as anticancer agents
US7772267B2 (en) 2002-05-17 2010-08-10 Bristol-Myers Squibb Company Bicyclic modulators of androgen receptor function
US7405234B2 (en) 2002-05-17 2008-07-29 Bristol-Myers Squibb Company Bicyclic modulators of androgen receptor function
US8063081B2 (en) 2002-06-27 2011-11-22 Novo Nordisk A/S Aryl carbonyl derivatives as therapeutic agents
US6881844B2 (en) 2002-10-03 2005-04-19 Hoffman-La Roche Inc. Indole-3-carboxamides as glucokinase activators
US7632858B2 (en) 2002-11-15 2009-12-15 Bristol-Myers Squibb Company Open chain prolyl urea-related modulators of androgen receptor function
WO2004085388A2 (en) 2003-03-24 2004-10-07 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
WO2005058341A2 (en) * 2003-12-11 2005-06-30 Theravance, Inc. Compositions for use in the treatment of mutant receptor tyrosine kinase driven cellular proliferative diseases
WO2005058341A3 (en) * 2003-12-11 2005-12-08 Theravance Inc Compositions for use in the treatment of mutant receptor tyrosine kinase driven cellular proliferative diseases
US7851636B2 (en) 2004-01-06 2010-12-14 Novo Nordisk A/S Heteroaryl-ureas and their use as glucokinase activators
USRE45183E1 (en) 2004-01-06 2014-10-07 Novo Nordisk A/S Heteroaryl-ureas and their use as glucokinase activators
US7872139B2 (en) 2004-01-06 2011-01-18 Novo Nordisk A/S Heteroaryl-ureas and their use as glucokinase activators
WO2005072731A1 (en) * 2004-01-29 2005-08-11 X-Ceptor Therapeutics, Inc. 3-phenyl-n- ((1, 3, 4) thiadiazol-2-yl) -acrylamide derivatives and related compounds as modulators of estrogen-related receptors for the treatment of e.g. cancer, rheumatoid arthritis or neurological disorders
US8759335B2 (en) 2004-01-30 2014-06-24 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
CN1938279B (en) * 2004-01-30 2011-09-14 沃泰克斯药物股份有限公司 Modulators of atp-binding cassette transporters
AU2005210474B2 (en) * 2004-01-30 2011-07-07 Vertex Pharmaceuticals Incorporated Modulators of ATP-Binding cassette transporters
WO2005075435A1 (en) * 2004-01-30 2005-08-18 Vertex Pharmaceuticals Incorporated Modulators of atp-binding cassette transporters
US7820702B2 (en) 2004-02-04 2010-10-26 Bristol-Myers Squibb Company Sulfonylpyrrolidine modulators of androgen receptor function and method
US7989640B2 (en) 2004-02-04 2011-08-02 Bristol-Myers Squibb Company Sulfonylpyrrolidine modulators of androgen receptor function and method
EP1568368A1 (en) * 2004-02-26 2005-08-31 Schering Aktiengesellschaft Pharmaceutical combination comprising a CDK inhibitor and a VEGF receptor inhibitor
WO2005084295A2 (en) 2004-03-01 2005-09-15 Bristol-Myers Squibb Company Fused heterotricyclic compounds as inhibitors of 17b-hydroxysteroid dehydrogenase 3
US7732480B2 (en) 2004-03-04 2010-06-08 Bristol-Myers Squibb Company Bicyclic compounds as modulators of androgen receptor function and method
US7696241B2 (en) 2004-03-04 2010-04-13 Bristol-Myers Squibb Company Bicyclic compounds as modulators of androgen receptor function and method
WO2005087232A1 (en) 2004-03-04 2005-09-22 Bristol-Myers Squibb Company Bicyclic modulators of androgen receptor function
US7625923B2 (en) 2004-03-04 2009-12-01 Bristol-Myers Squibb Company Bicyclic modulators of androgen receptor function
US7211576B2 (en) 2004-04-20 2007-05-01 Hoffmann-La Roche Inc. Diaminothiazoles
US7977322B2 (en) 2004-08-20 2011-07-12 Vertex Pharmaceuticals Incorporated Modulators of ATP-binding cassette transporters
EP1958625A1 (en) 2004-11-18 2008-08-20 Brystol-Myers Squibb Company Enteric coate bead comprising ixabepilone and preparation thereof
US7999114B2 (en) 2005-07-08 2011-08-16 Novo Nordisk A/S Dicycloalkylcarbamoyl ureas as glucokinase activators
US7884210B2 (en) * 2005-07-14 2011-02-08 Novo Nordisk A/S Ureido-thiazole glucokinase activators
US8324401B2 (en) 2005-12-21 2012-12-04 Bristol-Myers Squibb Company Indane modulators of glucocorticoid receptor, AP-1, and/or NF-κB activity and use thereof
US7592461B2 (en) 2005-12-21 2009-09-22 Bristol-Myers Squibb Company Indane modulators of glucocorticoid receptor, AP-1, and/or NF-κB activity and use thereof
WO2007073503A3 (en) * 2005-12-21 2007-11-08 Bristol Myers Squibb Co Indane modulators of glucocorticoid receptor, ap-1, and/or nf-kb activity and use thereof
WO2008005914A3 (en) * 2006-07-06 2009-04-02 Bristol Myers Squibb Co Novel glucokinase activators and methods of using same
WO2008005914A2 (en) * 2006-07-06 2008-01-10 Bristol-Myers Squibb Company Novel glucokinase activators and methods of using same
WO2008049856A3 (en) * 2006-10-25 2009-05-07 Ingenium Pharmaceuticals Gmbh Methods of treating pain using cdk inhibitors
WO2008049856A2 (en) * 2006-10-25 2008-05-02 Ingenium Pharmaceuticals Gmbh Methods of treating pain using cdk inhibitors
US8017749B2 (en) 2006-12-04 2011-09-13 The Board Of Trustees Of The University Of Illinois Compositions and methods to treat cancer with cupredoxins and CpG rich DNA
US11046733B2 (en) 2006-12-04 2021-06-29 The Board Of Trustees Of The University Of Illinois Compositions and methods to treat cancer with CpG rich DNA and cupredoxins
US9969781B2 (en) 2006-12-04 2018-05-15 Tapas Das Gupta Compositions and methods to treat cancer with CpG rich DNA and cupredoxins
WO2012100206A2 (en) 2011-01-20 2012-07-26 Board Of Regents, The University Of Texas System Mri markers, delivery and extraction systems, and methods of manufacture and use thereof
US9138421B2 (en) 2011-07-09 2015-09-22 Beijing Fswelcome Technology Development Co., Ltd. Platinum compounds for treating cell proliferative diseases, preparation method and use thereof
WO2013007172A1 (en) 2011-07-09 2013-01-17 北京市丰硕维康技术开发有限责任公司 Platinum compounds for treating cell proliferative disease, preparation methods and uses thereof
WO2013041014A1 (en) 2011-09-19 2013-03-28 北京市丰硕维康技术开发有限责任公司 Platinum compound having amino- or alkylamino-containing succinic acid derivatives as leaving group, preparation method therefor, and use thereof
US9175024B2 (en) 2011-09-19 2015-11-03 Beijing Fswelcome Technology Development Co., Ltd. Platinum compound having amino or alkylamino-containing succinic acid derivatives as leaving group, preparation method thereof, and use thereof
US9725477B2 (en) 2012-11-17 2017-08-08 Beijing Fswelcome Technology Development Co., Ltd Platinum compounds of malonic acid derivative having leaving group containing amino or alkylamino
WO2014075391A1 (en) 2012-11-17 2014-05-22 北京市丰硕维康技术开发有限责任公司 Platinum compound of malonic acid derivative having leaving group containing amino or alkylamino
US10500210B2 (en) 2013-03-15 2019-12-10 The Scripps Research Institute Compounds and methods for inducing chondrogenesis
US11045476B2 (en) 2013-03-15 2021-06-29 The Scripps Research Institute Compounds and methods for inducing chondrogenesis
EP2968330A4 (en) * 2013-03-15 2017-01-25 The California Institute for Biomedical Research Compounds and methods for inducing chondrogenesis
US9828377B2 (en) 2013-10-04 2017-11-28 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9751888B2 (en) 2013-10-04 2017-09-05 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US10329299B2 (en) 2013-10-04 2019-06-25 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9775844B2 (en) 2014-03-19 2017-10-03 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US11541059B2 (en) 2014-03-19 2023-01-03 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US10675286B2 (en) 2014-03-19 2020-06-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US10253047B2 (en) 2014-10-03 2019-04-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US10941162B2 (en) 2014-10-03 2021-03-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US11247995B2 (en) 2015-09-14 2022-02-15 Infinity Pharmaceuticals, Inc. Solid forms of isoquinolinones, and process of making, composition comprising, and methods of using the same
US11939333B2 (en) 2015-09-14 2024-03-26 Infinity Pharmaceuticals, Inc. Solid forms of isoquinolinones, and process of making, composition comprising, and methods of using the same
US10160761B2 (en) 2015-09-14 2018-12-25 Infinity Pharmaceuticals, Inc. Solid forms of isoquinolinones, and process of making, composition comprising, and methods of using the same
US10759806B2 (en) 2016-03-17 2020-09-01 Infinity Pharmaceuticals, Inc. Isotopologues of isoquinolinone and quinazolinone compounds and uses thereof as PI3K kinase inhibitors
US10919914B2 (en) 2016-06-08 2021-02-16 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
CN111433203B (en) * 2017-10-05 2024-02-13 创新分子股份有限公司 Enantiomer of substituted thiazoles as antiviral compounds
TWI706941B (en) * 2017-10-05 2020-10-11 德商創新分子有限責任公司 Novel enantiomers of a series of antiviral compounds
CN111433203A (en) * 2017-10-05 2020-07-17 创新分子股份有限公司 Enantiomers of substituted thiazoles as antiviral compounds
WO2019068817A1 (en) * 2017-10-05 2019-04-11 Innovative Molecules Gmbh Enantiomers of substituted thiazoles as antiviral compounds
US11278534B2 (en) 2017-10-05 2022-03-22 Innovative Molecules GmbG Enantiomers of substituted thiazoles as antiviral compounds
EP4209491A1 (en) * 2017-10-05 2023-07-12 Innovative Molecules GmbH Enantiomers of substituted thiazoles as antiviral compounds
US11833136B2 (en) 2018-06-12 2023-12-05 Vtv Therapeutics Llc Therapeutic uses of glucokinase activators in combination with insulin or insulin analogs
US11974989B2 (en) 2018-06-12 2024-05-07 Vtv Therapeutics Llc Therapeutic uses of glucokinase activators in combination with insulin or insulin analogs
WO2022079290A3 (en) * 2020-10-16 2022-06-16 Cemm - Forschungszentrum Für Molekulare Medizin Gmbh Heterocyclic cullin ring ubiquitin ligase compounds and uses thereof

Also Published As

Publication number Publication date
NO20002153D0 (en) 2000-04-27
DE69838515D1 (en) 2007-11-15
MY120779A (en) 2005-11-30
CN1160343C (en) 2004-08-04
PE131699A1 (en) 2000-03-08
NO316773B1 (en) 2004-05-03
ZA9810332B (en) 2000-05-11
PT1042307E (en) 2007-11-15
KR100454426B1 (en) 2004-10-26
DE69838515T2 (en) 2008-07-03
CZ297907B6 (en) 2007-04-25
PL204642B1 (en) 2010-01-29
CN1278806A (en) 2001-01-03
CA2309551A1 (en) 1999-05-20
NO20002153L (en) 2000-05-11
TR200001344T2 (en) 2000-09-21
KR20030036862A (en) 2003-05-09
IL135589A0 (en) 2001-05-20
IL135589A (en) 2004-06-20
CO4990957A1 (en) 2000-12-26
KR20010031896A (en) 2001-04-16
PL340540A1 (en) 2001-02-12
HUP0004559A1 (en) 2002-04-29
JP2001522842A (en) 2001-11-20
AU730607B2 (en) 2001-03-08
JP4344084B2 (en) 2009-10-14
NZ503828A (en) 2003-03-28
ES2296347T3 (en) 2008-04-16
AU1295599A (en) 1999-05-31
TW593292B (en) 2004-06-21
EP1042307B1 (en) 2007-10-03
ATE374771T1 (en) 2007-10-15
CA2309551C (en) 2006-03-28
BR9814124A (en) 2000-10-03
US6040321A (en) 2000-03-21
UY25239A1 (en) 2000-12-29
EP1042307A1 (en) 2000-10-11
EG24028A (en) 2008-03-26
CZ20001744A3 (en) 2001-05-16
EP1042307A4 (en) 2003-01-29
RU2211839C2 (en) 2003-09-10
CY1107509T1 (en) 2013-03-13
AR017182A1 (en) 2001-08-22
ID23983A (en) 2000-06-14
HUP0004559A3 (en) 2002-05-28
DK1042307T3 (en) 2008-01-28

Similar Documents

Publication Publication Date Title
EP1042307B1 (en) Aminothiazole inhibitors of cyclin dependent kinases
US6521759B2 (en) Aminothiazole inhibitors of cyclin dependent kinases
EP1043998B1 (en) USE OF PYRAZOLO [3,4-b] PYRIDINE AS CYCLIN DEPENDANT KINASE INHIBITORS
EP1087951B9 (en) Carbon substituted aminothiazole inhibitors of cyclin dependent kinases
US20020165259A1 (en) Carbon substituted aminothiazole inhibitors of cyclin dependent kinases
US6610724B2 (en) 3-Aminopyrazole inhibitors of cyclin dependent kinases
MXPA00004488A (en) Aminothiazole inhibitors of cyclin dependent kinases

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 135589

Country of ref document: IL

Ref document number: 98811091.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 503828

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2309551

Country of ref document: CA

Ref document number: 2309551

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020007004995

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/004488

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2000 520430

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2000-1744

Country of ref document: CZ

Ref document number: 12955/99

Country of ref document: AU

Ref document number: 2000/01344

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 1998956431

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1998956431

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007004995

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: PV2000-1744

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 12955/99

Country of ref document: AU

WWR Wipo information: refused in national office

Ref document number: 1020007004995

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: PV2000-1744

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1998956431

Country of ref document: EP