WO1999019661A1 - Conduite sous-marine de transfert de produits petroliers - Google Patents

Conduite sous-marine de transfert de produits petroliers Download PDF

Info

Publication number
WO1999019661A1
WO1999019661A1 PCT/FR1998/002154 FR9802154W WO9919661A1 WO 1999019661 A1 WO1999019661 A1 WO 1999019661A1 FR 9802154 W FR9802154 W FR 9802154W WO 9919661 A1 WO9919661 A1 WO 9919661A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
pipe according
filling
envelope
petroleum products
Prior art date
Application number
PCT/FR1998/002154
Other languages
English (en)
Inventor
François Eugène Paul THIEBAUD
Christophe André Marcel THIBAUDEAU
Original Assignee
Doris Engineering
Stolt Comex Seaway
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doris Engineering, Stolt Comex Seaway filed Critical Doris Engineering
Priority to AU94477/98A priority Critical patent/AU738206B2/en
Priority to GB0006833A priority patent/GB2345111B/en
Priority to EA200000340A priority patent/EA001512B1/ru
Priority to BR9812897-3A priority patent/BR9812897A/pt
Publication of WO1999019661A1 publication Critical patent/WO1999019661A1/fr
Priority to US09/546,530 priority patent/US6213157B1/en
Priority to NO20001849A priority patent/NO331576B1/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems

Definitions

  • the present invention relates to an underwater pipe for transferring petroleum products and, more particularly, to such a pipe of the type comprising at least one pipe for such products and a tubular protective casing through which said pipe passes. More particularly still, the present invention relates to such a pipe designed to be laid on or in the vicinity of very deep bottoms, of several hundred meters or more.
  • the high mechanical resistance of the coating required at great depths is accompanied by an increase important in the density of the material used, this increase in density having an adverse effect on its thermal insulation properties. It is then necessary to further increase the thickness of the coating in order to obtain the required thermal insulation, which makes this solution excessively expensive at great depths.
  • the abrasion resistance of such a coating is insufficient for one to consider laying by towing pipes sheathed on the seabed.
  • the technique is also known according to which they pass through a conventional protective tubular casing capable of withstanding hydrostatic pressure.
  • This envelope allows the deposit of pipes thus protected by towing.
  • the tubular envelope can contain several pipes, each one being coated with a thin and not very dense thermal insulation coating (polyurethane foam, polyethylene, glass wool, rock wool, etc.).
  • a thin and not very dense thermal insulation coating polyurethane foam, polyethylene, glass wool, rock wool, etc.
  • the internal space of the envelope is pressurized, lying between the coated pipe (s) and the envelope itself, with an inert gas such as nitrogen for example. It is then necessary to maintain the nitrogen pressure in the envelope during the entire operating life of the pipes, which can last 20 years or more.
  • This constraint proves to be costly, since the initial pressurization is expensive and maintenance difficult since the nitrogen diffuses slowly through the welds of the tubular casing.
  • this pressure must be established during the construction of the shore line, on a beach for example. The high pressure to establish then can cause a dangerous explosion of the envelope. It is therefore necessary to increase the thickness of the envelope, but to the detriment of the buoyancy of the assembly, essential for its installation by towing, as we have seen above.
  • the object of the present invention is therefore to produce an underwater pipe for transferring petroleum products, designed in particular to be installed on or near a very deep seabed, and having the required properties of mechanical strength, insulation thermal, and buoyancy necessary for its installation by towing, without this pipe being burdened with the cost and installation safety problems mentioned above in connection with the prior art in the matter.
  • an underwater pipe for transferring petroleum products comprising at least one pipe for such products and an envelope. tubular protection through which said pipe passes, this pipe being remarkable in that it comprises a filling in a thermal insulation material mechanically resistant to the hydrostatic pressure of the underwater site where the pipe is installed, said filling bathing, the interior of the envelope, in water under pressure with the external hydrostatic pressure.
  • the filling is made of a material lighter than water to adjust the weight of the pipe and provide it with the required buoyancy.
  • the filling material is characterized by three fundamental properties: it performs a function thermal insulation of the pipe (s) passing through the envelope, it resists external hydrostatic pressure, and it provides the entire pipe with the buoyancy required for laying.
  • the entire pipe being arranged so as to allow the water to penetrate inside, the casing no longer has to withstand either the hydrostatic pressure, at its installation site, or another internal gas pressure at earth, and can be of relatively small wall thickness, which is favorable to the buoyancy of the pipe.
  • the absence of this high internal gas pressure in the pipe is favorable to the safety of construction sites and the laying of such pipes.
  • FIG. 1 is a cross-sectional view of an embodiment of the pipe according to the invention.
  • FIG. 2 is a diagram illustrating a method of assembling and laying said pipe.
  • the pipe shown comprises a tubular casing 1, for example made of steel, enclosing a plurality of pipes 2 ⁇ , 2 2 , 3 ⁇ , 3 2 .
  • the pipes 2 ⁇ , 2 2 may contain a multiphasic mixture of products from an oil production as described above, and the pipes 3 _., 3 2 a fluid for reheating the pipes 2_. , 2 2 , capable of preventing clogging of the pipes by the cooling of said mixture, to great depths.
  • the envelope further contains a filling 4 ⁇ , 4 2 in a material having, at the same time, good thermal insulation properties and a very high mechanical resistance capable of maintaining its geometric integrity when it is subjected to the very high pressures prevailing on or in the vicinity of a large seabed, as will be seen below.
  • the thermal insulation properties of the material must be such that it contributes effectively, in conjunction with the heating established by the lines 3 _., 3 2 , to maintain the pipes 2_, 2 2 at a temperature suitable for preventing clogging of these pipes.
  • the internal space of the tubular casing 1 is not entirely occupied by the filling material or by the pipes 2 _., 2 2 , 3 ⁇ , 3 2 for reasons of construction, such as we will see it later.
  • This space is subjected to the hydrostatic pressure which prevails outside this envelope.
  • this space is essentially constituted by the annular space 5 which separates the filling 4 X , 4 2 from the envelope 1 and by the space which remains free in elongated longitudinal passages 6 ⁇ , 6 2 , hollowed out in the filling material to accommodate the pipes 2 ⁇ , 3 ⁇ , and 2 2 , 3 2 respectively.
  • the passages 6_, 6 2 are in fluid communication with the annular space 5 and are therefore also under pressure with the pressure from the seabed.
  • the annular space 5 can be maintained by wedges (not shown) projecting, for example, from the periphery of the filling material.
  • the inner and outer faces of the envelope 1 can be pierced with holes 7 ⁇ , 7 2 , 7 3 establishing a fluid communication between these two faces, these holes being distributed throughout the conduct.
  • a composite product from the family of so-called "syntactic" products is chosen to constitute this filling.
  • Such a product differs from the materials mentioned in the preamble to this description by its composition, its price and its low density. It consists of microspheres, and possibly macrospheres, embedded in a matrix consisting of an epoxy resin, polyurethane, or polypropylene for example.
  • BMTI France
  • Syntactic products allow these constraints to be satisfied. They are also moldable which makes it possible to constitute the filling by placing on line pairs of half-shells 4_, 4 2 enveloping the pipes 2 X , 2 2 , 3 _., 3 2 , as shown in FIG. molding the half-shells, cleaning therein gutters capable of delimiting, after assembly of the half-shells, the passages 6 ⁇ , 6 2 . These passages are in fluid communication with the annular space 5 through mounting gaps 8 between half-shells. The passages 6 ⁇ , 6 2 are therefore at the high hydrostatic pressure of the seabed.
  • FIG. 2 illustrates the various phases of the assembly and laying of the pipe according to the invention.
  • This assembly can be practiced on a shore, or on a beach for example. We proceed first to the progressive assembly, by butt welding, of sections of the pipes 2 _., 2 2 and 3 _., 3 2 , of 12 meters in length for example, then to the finishing of the ends such as the covering of these pipes with an anti-corrosion protection material.
  • a bundle is made up of the pipes 2 ⁇ , 2 2 , 3 lr 3 2 . Pairs of half-shells 4 X , 4 2 are then butted one after the other, around the bundle of newly assembled pipes. We slide on the last pair of half-shells placed a section 1_ of the envelope 1 to weld it to the previous section. The pipe thus formed is then and optionally provided with anodes 9 for protection against corrosion. The operation is repeated as many times as necessary to form the length of pipe ready for towing to its final installation site.
  • the invention is not limited to the embodiment described and shown which has been given only by way of example. This is how water could be introduced into the envelope through one end of it rather than through holes distributed over its entire length.
  • the annular space 5 is filled during the collapse of the envelope.
  • the deformation which may result from this for the envelope is without disadvantage, this playing only a role of protection against abrasion, and of ease of assembly, as we have seen above.
  • the filling is shown as consisting of pairs of half-shells. It is clear that the successive sections of this filling could be constituted by groups of complementary shells, in different numbers.
  • the invention is not limited to the protection of pipelines such as those referenced 2 ⁇ , 2 2 and 3 ⁇ , 3 2 in the drawing. On the contrary, it extends to pipes containing any number of pipes and service lines, which can also include power supply lines and wellhead control lines installed on the seabed.
  • the envelope could be made of other conventional materials, PVC or plastic reinforced with glass fibers, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pipeline Systems (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Earth Drilling (AREA)

Abstract

La conduite comprend des canalisations (21, 22) dans lesquelles circulent des produits pétroliers et une enveloppe tubulaire (1) de protection dans laquelle passe ces canalisations (21, 22). Elle comprend en outre un remplissage (41, 42) en un matériau d'isolation thermique mécaniquement résistant à la pression hydrostatique du site sous-marin où est installée la conduite, ledit remplissage assurant la flottabilité requise à la pose de la conduite, et ceci de manière économique. Application à une conduite de transfert de produits pétroliers, installée à grande profondeur.

Description

CONDUITE SOUS-MARINE DE TRANSFERT DE PRODUITS PETROLIERS
La présente invention est relative à une conduite sous-marine de transfert de produits pétroliers et, plus particulièrement, à une telle conduite du type comprenant au moins une canalisation pour de tels produits et une enveloppe tubulaire de protection dans laquelle passe ladite canalisation. Plus particulièrement encore, la présente invention est relative à une telle conduite conçue pour être posée sur ou au voisinage de fonds de grande profondeur, de plusieurs centaines de mètres ou plus.
A ces profondeurs, les puits sous-marins produisent, le plus souvent, simultanément des hydrocarbures liquides et gazeux ainsi que de l'eau. Dans le froid qui règne aux grandes profondeurs, ce mélange multiphasique provoque la formation de paraffines et d'hydrates de gaz susceptibles de boucher les canalisations dans lesquelles il circule.
Pour empêcher le bouchage de ces canalisations, on connaît une solution suivant laquelle on les recouvre d'un revêtement extérieur adhérent aux canalisations, en un matériau d'isolation thermique présentant en outre la résistance mécanique nécessaire pour supporter la forte pression hydrostatique régnant aux grandes profondeurs. Pour constituer ce revêtement, on utilise en particulier des produits composites à base d'une résine époxy, de polyuréthane, ou de polypropylène, par exemple. De tels produits sont fabriqués et commercialisés par des sociétés telles que isotub (France), Balmoral Webco Pipeline Systems (Grande-Bretagne) et Bredero Price (USA) par exemple. Par un ajustement de leur composition, on peut en régler la densité (et donc la flottabilité) , la résistance mécanique, le coefficient de transfert thermique, la constante diélectrique, par exemple. La résistance mécanique élevée du revêtement nécessaire aux grandes profondeurs, s'accompagne d'un accroissement important de la densité du matériau utilisé, cet accroissement de densité ayant un effet adverse sur ses propriétés d'isolation thermique. Il faut alors accroître encore l'épaisseur du revêtement pour obtenir l'isolation thermique requise, ce qui rend cette solution excessivement coûteuse aux grandes profondeurs. En outre, la résistance à l'abrasion d'un tel revêtement est insuffisante pour que l'on puisse envisager la pose par remorquage de canalisations ainsi gainées sur les fonds marins.
Pour assurer la protection de canalisations sous- marines aux grandes profondeurs, on connaît aussi la technique suivant laquelle celles-ci passent dans une enveloppe tubulaire de protection classique capable de résister à la pression hydrostatique. Cette enveloppe permet le dépôt de canalisations ainsi protégées par remorquage. L'enveloppe tubulaire peut contenir plusieurs canalisations, chacune étant revêtue d'un revêtement d'isolation thermique peu épais et peu dense (mousse de polyuréthane, de polyethylene, laine de verre, laine de roche, etc....). Aux très grandes profondeurs, l'enveloppe en acier ne peut résister à la pression hydrostatique, sauf à en augmenter exagérément l'épaisseur, ce qui en accroît le poids au mètre linéaire au détriment de sa flottabilité, celle-ci étant nécessaire à sa mise en place par remorquage. Aussi dans ce dernier cas, suivant une solution connue, on pressurise l'espace interne de l'enveloppe, compris entre la ou les canalisations revêtues et l'enveloppe elle-même, avec un gaz inerte tel que de l'azote par exemple. Il faut ensuite maintenir la pression d'azote dans l'enveloppe pendant toute la durée d'exploitation des canalisations, qui peut durer 20 ans ou plus. Cette contrainte se révèle coûteuse, du fait que la mise en pression initiale est chère et la maintenance difficile puisque l'azote diffuse lentement à travers les soudures de l'enveloppe tubulaire. En outre, cette pression doit être établie lors de la construction de la conduite à terre, sur une plage par exemple. La haute pression à établir alors peut provoquer une explosion dangereuse de l'enveloppe. Il est donc nécessaire d'accroître l'épaisseur de l'enveloppe, mais ceci au détriment de la flottabilité de l'ensemble, indispensable à sa pose par remorquage, comme on l'a vu plus haut.
La présente invention a donc pour but de réaliser une conduite sous-marine de transfert de produits pétroliers, conçue notamment pour être installée sur ou au voisinage d'un fond marin de grande profondeur, et présentant les propriétés requises de résistance mécanique, d'isolation thermique, et de flottabilité nécessaire à son installation par remorquage, sans que cette conduite ne soit grevée des problèmes de coûts et de sécurité d'installation évoqués ci-dessus à propos de la technique antérieure en la matière.
On atteint ce but de l'invention, ainsi que d'autres qui apparaîtront à la lecture de la description qui va suivre, avec une conduite sous-marine de transfert de produits pétroliers, comprenant au moins une canalisation pour de tels produits et une enveloppe tubulaire de protection dans laquelle passe ladite canalisation, cette conduite étant remarquable en ce qu'elle comprend un remplissage en un matériau d'isolation thermique mécaniquement résistant à la pression hydrostatique du site sous-marin où est installée la conduite, ledit remplissage baignant, à l'intérieur de l'enveloppe, dans de l'eau en équipression avec la pression hydrostatique extérieure. En outre, le remplissage est réalisé en un matériau plus léger que l'eau pour ajuster le poids de la conduite et lui procurer la flottabilité requise.
Le matériau de remplissage est caractérisé par trois propriétés fondamentales : il assure une fonction d'isolation thermique de la, ou des, canalisation (s) passant dans l'enveloppe, il résiste à la pression hydrostatique extérieure, et il procure à l'ensemble de la conduite la flottabilité requise à la pose. L'ensemble de la conduite étant disposé de manière à laisser pénétrer l'eau à l'intérieur, l'enveloppe n'a plus à supporter ni la pression hydrostatique, sur son site d'installation, ni une autre pression interne de gaz à terre, et peut être d'épaisseur de paroi relativement faible, ce qui est favorable à la flottabilité de la conduite. L'absence de cette haute pression interne de gaz dans la conduite est favorable à la sécurité des chantiers de réalisation et de pose de telles conduites.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui va suivre et à l'examen du dessin annexé dans lequel :
- la figure 1 est une vue en coupe transversale d'un mode de réalisation de la conduite suivant l'invention, et
- la figure 2 est un schéma illustrant un procédé d'assemblage et de pose de ladite conduite.
A la figure 1, il apparaît que la conduite représentée comprend une enveloppe tubulaire 1, par exemple en acier, enfermant une pluralité de canalisations 2ι,22,3ι, 32. A titre d'exemple illustratif et non limitatif, les canalisations 2ι,22 peuvent contenir un mélange multiphasique de produits d'une production pétrolière telle que décrite plus haut, et les canalisations 3_.,32 un fluide de réchauffage des canalisations 2_.,22, propre à empêcher le bouchage des canalisations par le refroidissement dudit mélange, aux grandes profondeurs.
Suivant la présente invention, l'enveloppe contient en outre un remplissage 4ι,42 en un matériau présentant, à la fois, de bonnes propriétés d'isolation thermique et une très forte résistance mécanique propre à maintenir son intégrité géométrique lorsqu'il est soumis aux très hautes pressions régnant sur ou au voisinage d'un grand fond marin, comme on le verra plus loin. Les propriétés d'isolation thermique du matériau doivent être telles que celui-ci contribue efficacement, en liaison avec le chauffage établi par les lignes 3_.,32, à maintenir les canalisations 2_,22 à une température propre à empêcher tout bouchage de ces canalisations. Par ailleurs, suivant la présente invention, l'espace interne à l'enveloppe tubulaire 1 n'est pas entièrement occupé par le matériau de remplissage ou par les canalisations 2_.,22,3ι,32 pour des raisons de construction, comme on le verra plus loin. Cet espace est soumis à la pression hydrostatique qui règne à l'extérieur de cette enveloppe. Dans le mode de réalisation représenté, cet espace est essentiellement constitué par l'espace annulaire 5 qui sépare le remplissage 4X,42 de l'enveloppe 1 et par l'espace qui reste libre dans des passages allongés longitudinaux 6ι, 62, creusés dans le matériau de remplissage pour accueillir les canalisations 2χ,3ι,et 22,32 respectivement. Comme on le verra plus loin, les passages 6_, 62 sont en communication de fluide avec l'espace annulaire 5 et sont donc aussi en equipression avec la pression du fond marin. L'espace annulaire 5 peut être maintenu par des cales (non représentées) débordant par exemple, de la périphérie du matériau de remplissage.
Pour que les faces interne et externe de l'enveloppe 1 soient en equipression, celle-ci peut être percée de trous 7ι,72,73 établissant une communication de fluide entre ces deux faces, ces trous étant répartis tout au long de la conduite.
Grâce à la mise en equipression de ces faces de l'enveloppe, celle-ci n'a plus besoin de présenter la forte épaisseur nécessaire pour résister aux hautes pressions régnant aux grandes profondeurs. Son rôle est seulement celui d'une protection contre l'abrasion du matériau de remplissage 4_.,42. En utilisant suivant l'invention une enveloppe 1 d'épaisseur relativement faible, on peut donner à la conduite une flottabilité convenant à son installation par remorquage, en combinaison avec le choix d'un matériau de remplissage de flottabilité approprié, comme on le verra plus loin. Suivant un mode de réalisation préféré de la présente invention, on choisit, pour constituer ce remplissage, un produit composite de la famille des produits dits "syntactiques" . Un tel produit se distingue des matériaux évoqués en préambule de la présente description par sa composition, son prix et sa faible densité. Il est constitué de microsphères, et éventuellement de macrosphères, noyées dans une matrice constituée par une résine époxy, du polyuréthane, ou du polypropylène par exemple. De tels produits sont fabriqués et commercialisés par des sociétés telles que BMTI (France) ,
Balmoral Marine (Grande-Bretagne) et Emerson & Cuming
(USA), par exemple. Un choix convenable de la composition d'un tel matériau permet d'ajuster sa résistance mécanique, son coefficient de transfert thermique et sa flottabilité, de manière à l'adapter aux performances recherchées pour constituer le remplissage 4_,,42. Par ailleurs, il est reconnu que, à caractéristiques thermiques équivalentes, ce matériau est bien moins cher que ceux cités en préambule de la présente description. En ce qui concerne sa résistance mécanique, le matériau doit pouvoir résister à la pression rencontrée sur le site marin d'installation. Cette pression peut correspondre à de grandes profondeurs d'eau et atteindre 250 bars par exemple. En ce qui concerne le coefficient de transfert thermique U, exprimé en /m2. °C, l'isolation d'une conduite aux grandes profondeurs demande que l'on puisse atteindre des valeurs de U de l'ordre de 2 et en dessous, pour que l'on puisse assurer une régulation économique de la température des canalisations.
En ce qui concerne la flottabilité de la conduite, pour en rendre possible la pose par remorquage, il faut atteindre des poids apparents dans l'eau de l'ordre de 5 à 30 kg par mètre linéaire lorsque la conduite est posée sur un fond, et de l'ordre de -5 à -20 kg par mètre linéaire si la conduite flotte au-dessus du fond. Avec ces valeurs, des sections de conduite de plusieurs kilomètres de longueur peuvent être tirées par des remorqueurs actuels de puissance moyenne (environ 80 tonnes de force de traction) . Il convient alors évidemment que le matériau de remplissage utilisé soit plus léger que l'eau.
Les produits syntactiques permettent de satisfaire ces contraintes. Ils sont en outre moulables ce qui permet de constituer le remplissage par mise en ligne de paires de demi-coquilles 4_, 42 enveloppant les canalisations 2X, 22,3_.,32, comme représenté à la figure 1. Lors du moulage des demi-coquilles, on ménage dans celles-ci des gouttières propres à délimiter, après assemblage des demi-coquilles, les passages 6ι,62. Ces passages sont en communication de fluide avec l'espace annulaire 5 à travers des interstices de montage 8 entre demi-coquilles. Les passages 6χ, 62 sont donc à la pression hydrostatique élevée du fond marin. Ils sont par contre très bien isolés thermiquement du fond marin par les demi-coquilles 4_.,42, ce qui confine avantageusement la chaleur dégagée par les canalisations de chauffage 3ι, 32 qui chauffent par conduction les canalisations 2_.,22. On se réfère maintenant au schéma de la figure 2, qui illustre les diverses phases de l'assemblage et de la pose de la conduite suivant l'invention. Cet assemblage peut être pratiqué sur un rivage, ou sur une plage par exemple. On procède d'abord à l'assemblage progressif, par soudure bout à bout, de sections des canalisations 2_.,22 et 3_.,32, de 12 mètres de longueur par exemple, puis aux finitions des extrémités telles que le recouvrement de ces canalisations par un matériau de protection anticorrosion. On constitue un faisceau rassemblant les canalisations 2ι, 22, 3lr 32. Des paires de demi-coquilles 4X, 42 sont ensuite aboutées les unes à la suite des autres, autour du faisceau des canalisations nouvellement assemblées. On glisse sur la dernière paire de demi- coquilles posée une section 1_ de l'enveloppe 1 pour la souder à la section précédente. La conduite ainsi constituée est ensuite et éventuellement munie d'anodes 9 de protection contre la corrosion. On répète l'opération autant de fois que nécessaire pour former la longueur de conduite prête au remorquage jusqu'à son site final d'installation.
Il apparaît maintenant que l'invention permet bien d'atteindre le but fixé, à savoir réaliser et installer en grandes profondeurs une conduite sous-marine de transfert de produits pétroliers présentant les caractéristiques d'isolation thermique, de résistance mécanique et de flottabilité requises, et ceci de manière économique.
Bien entendu, l'invention n'est pas limitée au mode de réalisation décrit et représenté qui n'a été donné qu'à titre d'exemple. C'est ainsi que l'eau pourrait être introduite dans l'enveloppe par une extrémité de celle-ci plutôt que par des trous répartis sur toute sa longueur. On pourrait de même réaliser l'enveloppe dans un matériau propre à s'effondrer sur le remplissage, sous la pression hydrostatique extérieure. Aucun trou n'est alors percé dans l'enveloppe. L'espace annulaire 5 est comblé lors de l'effondrement de l'enveloppe. La déformation qui peut en résulter pour l'enveloppe est sans inconvénient, celle-ci ne jouant qu'un rôle de protection contre l'abrasion, et de facilité de montage, comme on l'a vu plus haut. A la figure 1, on a représenté le remplissage comme constitué de paires de demi-coquilles. Il est clair que les sections successives de ce remplissage pourraient être constituées par des groupes de coquilles complémentaires, en nombre différent. De même, l'invention n'est pas limitée à la protection de canalisations telles que celles référencées 2ι,22 et 3ι,32 au dessin. Elle s'étend au contraire à des conduites contenant un nombre quelconque de canalisations et de lignes de service, celles-ci pouvant comprendre en outre des lignes d'alimentation en énergie et des lignes de commande de têtes de puits installées sur le fond marin.
Des matériaux autres que ces matériaux syntactiques pourraient être utilisés pour constituer les de i- coquilles, dans la mesure où ils présentent les propriétés d'isolation thermique, de résistance mécanique et de flottabilité requises. C'est ainsi qu'on pourrait utiliser à cet effet d'autres matériaux composites, du caoutchouc, du néoprène, un matériau à structure en nid d'abeille, par exemple.
De même, l'enveloppe pourrait être réalisée en d'autres matériaux classiques, en PVC ou en matière plastique renforcée de fibres de verre, par exemple.

Claims

REVENDICATIONS
1. Conduite sous-marine de transfert de produits pétroliers, comprenant au moins une canalisation (2_.,22) pour de tels produits et une enveloppe tubulaire (1) de protection dans laquelle passe ladite canalisation (2ι,22), caractérisée en ce qu'elle comprend un remplissage (4_.,42) en un matériau d'isolation thermique mécaniquement résistant à la pression hydrostatique du site sous-marin où est installée la conduite, ledit remplissage baignant, à l'intérieur de l'enveloppe (1), dans de l'eau en equipression avec la pression hydrostatique extérieure.
2. Conduite conforme à la revendication 1, caractérisée en ce que ledit remplissage (4ι,42) est réalisé en un matériau plus léger que l'eau.
3. Conduite conforme à la revendication 1 ou 2, caractérisée en ce que l'enveloppe (1) est percée de trous (7_.,72,73) pour établir une communication d'eau entre ses faces externe et interne.
4. Conduite conforme à l'une quelconque des revendications 1 à 3, caractérisée en ce que le remplissage est creusé d'au moins un passage allongé (6_,62) dans lequel passe ladite canalisation, ledit passage (6_.,62) étant en equipression avec la pression hydrostatique extérieure.
5. Conduite conforme à la revendication 4, caractérisée en ce que ledit passage allongé (6ι,62) est conformé pour accueillir en outre une ligne de service (3_,,32).
6. Conduite conforme à la revendication 5, caractérisée en ce que ladite ligne de service (3_.,32) est une ligne de chauffage par conduction de ladite canalisation.
7. Conduite conforme à la revendication 5, caractérisée en ce que ladite ligne de service est une ligne d'alimentation en énergie d'une tête de puits sous-marin.
8. Conduite conforme à la revendication 5, caractérisée en ce que ladite ligne de service est une ligne de commande d'un puits sous-marin de produits pétroliers.
9. Conduite conforme à l'une quelconque des revendications 1 à 8, caractérisée en ce que le remplissage est constitué de groupes de coquilles (4_.,42) complémentaires, aboutés les uns à la suite des autres.
10. Conduite conforme à la revendication 9, prise en combinaison avec l'une quelconque des revendications 4 à 8, caractérisée en ce que les coquilles d'un même groupe sont creusées de gouttières délimitant ensemble une section dudit passage allongé (6_.,62).
11. Conduite conforme à l'une quelconque des revendications 1 à 10, caractérisée en ce que ledit remplissage est constitué en un matériau du groupe constitué par : un matériau syntactique, un matériau composite, un caoutchouc, un néoprène, un matériau à structure en nid d'abeilles.
12. Conduite conforme à l'une quelconque des revendications 1 à 11, caractérisée en ce que ladite enveloppe est réalisée en un matériau du groupe constitué par : le PVC, un matériau plastique renforcé de fibres de verre.
PCT/FR1998/002154 1997-10-10 1998-10-08 Conduite sous-marine de transfert de produits petroliers WO1999019661A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU94477/98A AU738206B2 (en) 1997-10-10 1998-10-08 Submarine pipeline for transporting petroleum products
GB0006833A GB2345111B (en) 1997-10-10 1998-10-08 Submarine pipeline for transporting petroleum products
EA200000340A EA001512B1 (ru) 1997-10-10 1998-10-08 Подводный трубопровод для транспортировки нефтепродуктов
BR9812897-3A BR9812897A (pt) 1997-10-10 1998-10-08 Tubulação submarina de transferência de produtos petrolìferos
US09/546,530 US6213157B1 (en) 1997-10-10 2000-04-10 Submarine pipeline for transporting petroleum products
NO20001849A NO331576B1 (no) 1997-10-10 2000-04-10 Undersjoisk rorledning for transport av petroleumsprodukter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9712685A FR2769682B1 (fr) 1997-10-10 1997-10-10 Conduite sous-marine de transfert de produits petroliers
FR97/12685 1997-10-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/546,530 Continuation US6213157B1 (en) 1997-10-10 2000-04-10 Submarine pipeline for transporting petroleum products

Publications (1)

Publication Number Publication Date
WO1999019661A1 true WO1999019661A1 (fr) 1999-04-22

Family

ID=9512085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/002154 WO1999019661A1 (fr) 1997-10-10 1998-10-08 Conduite sous-marine de transfert de produits petroliers

Country Status (9)

Country Link
US (1) US6213157B1 (fr)
AU (1) AU738206B2 (fr)
BR (1) BR9812897A (fr)
EA (1) EA001512B1 (fr)
FR (1) FR2769682B1 (fr)
GB (1) GB2345111B (fr)
NO (1) NO331576B1 (fr)
OA (1) OA11402A (fr)
WO (1) WO1999019661A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2346424A (en) * 1999-01-13 2000-08-09 Kvaerner Oil & Gas Ltd Subsea pipeline
DE20020563U1 (de) * 2000-12-05 2002-04-11 Baumann, Roland, Dipl.-Ing. (FH), 89081 Ulm Vorrichtung zur Isolation von Mehrfachrohrleitungen
WO2020115079A1 (fr) 2018-12-04 2020-06-11 Subsea 7 Norway As Chauffage de pipelines sous-marins

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19618370C1 (de) * 1996-05-09 1997-08-21 Gesundheitstechnik Anton Kastn Verfahren zur Herstellung eines wärmegedämmten Rohrabschnittes für eine Rohrleitung sowie Rohrabschnitt
EP0974784A1 (fr) * 1998-07-21 2000-01-26 SPF Solartechnik Prüfung Forschung Ingenieurschule Rapperswil ITR Tuyau pour fluides avec isolation thermique
GB9912451D0 (en) * 1999-05-27 1999-07-28 Saipem Spa Insulated pipe structure and methods of making such structures
US6397895B1 (en) 1999-07-02 2002-06-04 F. Glenn Lively Insulated pipe
US8044119B2 (en) * 1999-10-07 2011-10-25 James E. Landry Insulating material of epoxy compound, acrylic resin, ceramic particles and curing agent
FR2804441B1 (fr) * 2000-01-27 2006-09-29 Bouygues Offshore Materiau complexe et flotteur en comprenant
FR2816030B1 (fr) * 2000-10-27 2003-05-16 Atofina Utilisation d'une composition d'isolation thermique pour l'isolation de canalisations contenues dans une conduite de transfert de produits petroliers
FR2821917B1 (fr) * 2001-03-09 2004-04-02 Bouygues Offshore Dispositif d'isolation thermique d'au moins une conduite sous-marine comprenant des cloisons etanches
US7214114B2 (en) * 2001-09-15 2007-05-08 Trelleborg Crp Ltd. Buoyancy element and module
GB2379681A (en) 2001-09-17 2003-03-19 Balmoral Group Marine buoyancy unit
CA2408428C (fr) * 2001-10-17 2010-09-21 Lorne R. Heise Conduit fluidique
FR2841632B1 (fr) * 2002-07-01 2004-09-17 Bouygues Offshore "dispositif d'isolation thermique d'au moins une conduite sous-marine comprenant un materiau isolant a changement de phase confine dans des poches"
US7622683B2 (en) * 2004-07-26 2009-11-24 Terry Jeffrey Corbishley Marine and submarine pipelines
NO323381B2 (no) * 2005-01-31 2007-04-16 Statoil Asa Beskyttelseshylse for omgivelse av en langstrakt gjenstand
NO325540B1 (no) * 2005-02-11 2008-06-16 Nexans Umbilical og fremgangsmate for dens fremstilling
US8925543B2 (en) * 2009-01-13 2015-01-06 Aerojet Rocketdyne Of De, Inc. Catalyzed hot gas heating system for pipes
FI123553B (fi) * 2011-06-17 2013-07-15 Sampo Humalainen Putkikokoonpano kaukolämpöverkkoa varten
US8721222B2 (en) 2011-11-04 2014-05-13 Chevron U.S.A. Inc. Lateral buckling mitigation apparatus, methods and systems for use with subsea conduits
US8555929B2 (en) * 2011-11-28 2013-10-15 Aeroflex Usa Multi-hole insulation tube
DE202011052294U1 (de) * 2011-12-14 2012-06-22 herotec GmbH Flächenheizung Rohrleitung
FI127880B (en) * 2015-09-08 2019-04-30 Uponor Innovation Ab Long-distance pre-insulated pipe unit and local heat distribution system
US10371288B1 (en) 2018-10-22 2019-08-06 Chevron U.S.A. Inc. Apparatus and method for reducing impact of stresses on a subsea pipeline
NO344929B1 (en) * 2018-12-04 2020-07-06 Subsea 7 Norway As Method and system for heating of subsea pipelines
US11846370B2 (en) * 2019-03-26 2023-12-19 Titeflex Corporation Multilayer composite pipe and pipe assemblies including reflective insulation
US11946583B1 (en) * 2020-03-18 2024-04-02 Durex International Corp. Flexible conforming silicone rubber heater for complex geometry fluid lines and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547161A (en) * 1968-02-20 1970-12-15 Shell Oil Co Insulated pipeline for transporting liquid natural gas
FR2174271A1 (fr) * 1972-03-02 1973-10-12 Rockwool Ab
EP0400689A1 (fr) * 1984-04-25 1990-12-05 Coflexip Conduite calorifugée pour le transport de fluides
EP0779467A1 (fr) * 1995-12-12 1997-06-18 Halliburton Company Méthode d'isolation de faiseaux de tubes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317074A (en) * 1963-06-17 1967-05-02 Douglas Aircraft Co Inc Cryogenic containers
GB1579125A (en) * 1976-06-14 1980-11-12 Sigmund F Heat-insulated pipe-lines
US4194536A (en) * 1976-12-09 1980-03-25 Eaton Corporation Composite tubing product
US4231436A (en) * 1978-02-21 1980-11-04 Standard Oil Company (Indiana) Marine riser insert sleeves
US4393901A (en) * 1980-09-25 1983-07-19 Minnesota Mining And Manufacturing Company Low-permeability hollow spheres and pipe filled with the spheres for temporary weight reduction
EP0112706B1 (fr) * 1982-12-23 1987-04-01 Webco Industrial Rubber Limited Tuyau isolé
FR2557671B1 (fr) * 1983-12-28 1986-08-01 Hutchinson Sa Perfectionnements apportes aux moyens d'isolation thermique de tuyauteries soumises a des contraintes thermiques, hydrostatiques et mecaniques et a leur mise en place, et procedes de realisation desdits moyens d'isolation
SE453939B (sv) * 1985-09-04 1988-03-14 Skega Ab Isolerat ror for undervattensbruk
FR2598713B1 (fr) * 1986-05-16 1988-11-10 Inst Francais Du Petrole Nouveau materiau de remplissage et de flottabilite. procede de fabrication et ensembles tubulaires incorporant ce materiau
US5795102A (en) * 1992-08-12 1998-08-18 Corbishley; Terrence Jeffrey Marine and submarine apparatus
US6155305A (en) * 1994-08-29 2000-12-05 Sumner; Glen R. Offshore pipeline with waterproof thermal insulation
NO303917B1 (no) * 1996-09-05 1998-09-21 Alcatel Kabel Norge As Undersjöisk ledning omfattende et antall fluid/gass-förende stålrör
US6058979A (en) * 1997-07-23 2000-05-09 Cuming Corporation Subsea pipeline insulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547161A (en) * 1968-02-20 1970-12-15 Shell Oil Co Insulated pipeline for transporting liquid natural gas
FR2174271A1 (fr) * 1972-03-02 1973-10-12 Rockwool Ab
EP0400689A1 (fr) * 1984-04-25 1990-12-05 Coflexip Conduite calorifugée pour le transport de fluides
EP0779467A1 (fr) * 1995-12-12 1997-06-18 Halliburton Company Méthode d'isolation de faiseaux de tubes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2346424A (en) * 1999-01-13 2000-08-09 Kvaerner Oil & Gas Ltd Subsea pipeline
GB2346424B (en) * 1999-01-13 2003-02-12 Kvaerner Oil & Gas Ltd Subsea pipeline
DE20020563U1 (de) * 2000-12-05 2002-04-11 Baumann, Roland, Dipl.-Ing. (FH), 89081 Ulm Vorrichtung zur Isolation von Mehrfachrohrleitungen
WO2020115079A1 (fr) 2018-12-04 2020-06-11 Subsea 7 Norway As Chauffage de pipelines sous-marins
GB2579576A (en) * 2018-12-04 2020-07-01 Subsea 7 Norway As Heating of subsea pipelines
GB2579576B (en) * 2018-12-04 2021-01-27 Subsea 7 Norway As Heating of subsea pipelines
US12066135B2 (en) 2018-12-04 2024-08-20 Subsea 7 Norway As Heating of subsea pipelines

Also Published As

Publication number Publication date
GB2345111A (en) 2000-06-28
EA001512B1 (ru) 2001-04-23
NO20001849D0 (no) 2000-04-10
BR9812897A (pt) 2000-08-08
GB2345111B (en) 2002-07-31
US6213157B1 (en) 2001-04-10
AU738206B2 (en) 2001-09-13
NO331576B1 (no) 2012-01-30
EA200000340A1 (ru) 2000-10-30
NO20001849L (no) 2000-05-16
AU9447798A (en) 1999-05-03
FR2769682B1 (fr) 1999-12-03
GB0006833D0 (en) 2000-05-10
FR2769682A1 (fr) 1999-04-16
OA11402A (fr) 2004-04-12

Similar Documents

Publication Publication Date Title
WO1999019661A1 (fr) Conduite sous-marine de transfert de produits petroliers
EP3455536B1 (fr) Dispositif chauffant pour le transport d'un mélange multiphasique d'hydrocarbures et procédé associé
EP0148652B1 (fr) Perfectionnements apportés aux moyens d'isolation thermique de tuyauteries soumises à des contraintes thermiques, hydrostatiques et mécaniques et à leur mise en place, et procédé de réalisation desdits moyens d'isolation
EP2707641B1 (fr) Dispositif et procede d'isolation thermique d'une zone de raccordement d'embouts de connexion de deux conduites sous-marines calorifugees.
EP1518071B1 (fr) Dispositif d isolation thermique d au moins une conduite sous-marine comprenant un materiau a changement de phase confine dans des poches
CA2491675C (fr) Conduite thermiquement isolee
EP0400689B1 (fr) Conduite calorifugée pour le transport de fluides
WO2000040886A1 (fr) Dispositif et procede thermique d'isolation d'au moins une conduite sous-marine a grande profondeur
EP2340388B1 (fr) Ensemble de conduites coaxiales comprenant un manchon d'isolation thermique
EP1395731A1 (fr) Installation de liaison d'une conduite sous-marine reliee a un riser
EP1366320B1 (fr) Dispositif d'isolation thermique d'au moins une conduite sous-marine comprenant des cloisons etanches
CA2104869A1 (fr) Conduite pour le transport de fluides, en particulier d'hydrocarbures
FR2906003A1 (fr) Tuyau souple pour applications aux hydrocarbures.
FR2721681A1 (fr) Procédé de construction de conduites telles que des canalisations de produits pétroliers en mer, tuyaux et dispositifs de raccordement de tuyaux pour la mise en Óoeuvre de ce procédé.
EP2352946A1 (fr) Conduite sous-marine de jonction coudee comprenant une isolation thermique
WO2011144828A1 (fr) Faisceau de conduites pétrolières à performance thermique améliorée
FR2788831A1 (fr) Dispositif d'isolation thermique d'au moins une conduite sous marine a grande profondeur
WO2013093294A1 (fr) Installation de transfert de fluides entre une tete de puits au fond de l'eau et une structure de surface
FR2788100A1 (fr) Dispositif et procede d'isolation thermique d'au moins une conduite sous marine a grande profondeur
FR2929678A1 (fr) Module de flottabilite destine a etre monte autour d'une conduite immergee, ensemble de flottabilite et dispositif immerge associe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR GB NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 94477/98

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 200006833

Country of ref document: GB

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09546530

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200000340

Country of ref document: EA

WWG Wipo information: grant in national office

Ref document number: 94477/98

Country of ref document: AU