WO1999017333A1 - Device and method for treating the inside surface of a plastic container with a narrow opening in a plasma enhanced process - Google Patents
Device and method for treating the inside surface of a plastic container with a narrow opening in a plasma enhanced process Download PDFInfo
- Publication number
- WO1999017333A1 WO1999017333A1 PCT/IB1998/001505 IB9801505W WO9917333A1 WO 1999017333 A1 WO1999017333 A1 WO 1999017333A1 IB 9801505 W IB9801505 W IB 9801505W WO 9917333 A1 WO9917333 A1 WO 9917333A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- container
- magnets
- plasma enhanced
- bottle
- feed tube
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32623—Mechanical discharge control means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/045—Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
- C23C16/402—Silicon dioxide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/511—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3266—Magnetic control means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/923—Physical dimension
- Y10S428/924—Composite
- Y10S428/926—Thickness of individual layer specified
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
Definitions
- the invention lies in the field of the packaging industry and relates to a device according to the generic part of the first independent claim.
- the device serves for carrying out a plasma enhanced process in a plastic container with a narrow opening in order to treat the inside surface of the container.
- the invention relates to a method of a plasma enhanced treatment using the inventive device and to containers produced according to the process.
- Plasma enhanced processes used for treating the inside surface of plastic containers are e.g. plasma enhanced chemical vapour deposition processes for producing an inside coating of e.g. silicon oxide which coating reduces gas permeability of the plastic material.
- Plasma enhanced processes can further be used e.g. for activating the inside surface, for changing its wetability or for sterilizing the inside of the container.
- the constraints put on such processes and on the devices for carrying out such processes when applied to the inside of plastic containers used for packaging purposes and having a narrow opening such as e.g. bottles for beverages, are caused mainly by the temperature sensitivity of the plastic material, by the narrowness of the opening, i.e. the difficult accessibility of the surface to be treated and by the necessary small economic value of such containers.
- Such conditions are fulfilled for a microwave frequency of 2.45 GHz and a pressure of less than 10 Pa in a static magnetic field of a magnetic flux density of 87.5 mT. Under such conditions it is possible to sustain a plasma with a much smaller power input than needed for e.g. a high frequency plasma.
- an apparatus for coating the inside surface of bottles is proposed in which apparatus the microwave field is produced by a helical Wanderfeld antenna and the bottle is placed within the helix.
- the magnetic field is produced by permanent magnets arranged on the inside of the bottle along a gas feed tube which extends along the bottle axis.
- silicon oxide coatings produced with a microwave plasma at electron-cyclotron-resonance conditions in the apparatus as described do not show permanent good barrier properties due probably to great hardness and brittleness.
- a plasma enhanced process e.g. coat this inside surface with silicon oxide using a plasma enhanced chemical vapour deposition process.
- Using the inventive device is to make it possible to ignite and sustain on the inside of the container a plasma possibly under electron-cyclotron-resonance conditions such that the plasma enhanced treatment compared to known such treatments is improved regarding quality of the treatment (e.g. quality of the resulting coating) and at the same time regarding energy and time consumption.
- the inventive device has the form of a finger and is introduced into the container to be treated through its opening.
- it has a diameter which is less than the diameter of the container opening.
- In the container it extends substantially along the container axis, its connecting end passing through the container opening and being connected to appliances outside of the container and its distal end facing the container bottom opposite the container opening.
- the device comprises means for feeding the process gas as uniformly as possible to the inside of the container and means for establishing a static magnetic field with closed field lines within the container such that the loaded particles, in particular the electrons created in a plasma are induced to rotate between the area of the container opening and the area opposite the container opening.
- the device may further comprise cooling means for cooling the means for feeding the process gas and if applicable the means for establishing the magnetic field.
- the device is to be connected to a source of a process gas for supplying the process gas to the gas feed means. If applicable, the device is further to be connected for supply and removal of a cooling medium.
- the connecting end of the device passing through the container opening is designed such that it occupies as little of the container opening as possible. This makes it possible to evacuate and vent the container very efficiently.
- the inventive device is preferably used in connection with a plasma sustained by microwave or radio frequency electromagnetic waves, i.e. by electromagnetic waves of frequencies in the range of ca. 30KHz to several GHz, whereby the electromagnetic waves are coupled into a confinement in which the container to be treated is positioned by suitable coupling methods and means (hollow conductor, capacitive coupling or inductive coupling).
- a plasma sustained by microwave or radio frequency electromagnetic waves i.e. by electromagnetic waves of frequencies in the range of ca. 30KHz to several GHz, whereby the electromagnetic waves are coupled into a confinement in which the container to be treated is positioned by suitable coupling methods and means (hollow conductor, capacitive coupling or inductive coupling).
- a container is treated on its inside in a plasma enhanced process by e.g. introducing the container into a microwave confinement, which confinement is equipped such that an advantageously stationary microwave can be established within the confinement.
- the device as described above is introduced into the container, the connecting end passing through the container opening substantially axially. Then the inside and outside of the container is evacuated, whereby on the inside of the container a pressure is created which is low enough for igniting a plasma.
- Microwaves are coupled into the microwave confinement and the process gas is flown through the gas feed means into the inside of the container and is pumped from the container such that a low operation pressure is maintained. After the reaction time the microwave is stopped, the system vented, the inventive device removed from the container and the container removed from the microwave confinement.
- the process gas is changed after each step.
- Figure 1 shows an inventive device, introduced into a bottle to be treated in a plasma enhanced process in section along the bottle axis;
- Figure 2 shows in more detail an exemplified embodiment of the inventive device in section parallel to the axis;
- Figure 3 shows in section perpendicular to the axis the device according to Figure 2;
- Figure 4 shows a further exemplified embodiment of the inventive device in section perpendicular to the axis
- Figure 5 shows the bottle coated with silicon oxide according to the given example of a plasma enhanced process for treating the inside surface of plastic containers.
- Figure 1 shows as an example of a plastic container having a narrow opening and to be treated in a plasma enhanced process, a plastic bottle 1 having a substantially cylindrical body 11, having a neck portion 12 with an opening and e.g. with a thread and a neck ring and having a bottom portion 13 opposite the neck portion.
- the inventive device 2 extends from the opening of the container (connecting end 21) towards its bottom whereby the distal end 22 of the device does not touch the container bottom 13.
- the device 2 extends along the container axis X.
- the inventive device may serve as one of the electrodes for capacitive coupling of the electromagnetic waves and in such a case comprises a metalhc gas feed tube connected to a corresponding electrical power source or possibly to ground.
- FIG. 2 shows an exemplified embodiment of the inventive device 2 in section parallel to the axis X and in more detail.
- the device 2 comprises as gas feed means a gas feed tube 23 which is closed at the distal end of the device and is made of a porous material such as e.g. of a sintered metal or of a solid material which is perforated by a great number of openings.
- the gas feed tube 23 has a narrowed end portion 23.1 facing towards the connecting end 21 of the device which narrowed end portion 23.1 is preferably not porous or does not have any perforations.
- the process gas G is supplied to the gas feed tube 23 through the open end of its narrowed end portion 23.1.
- the device comprises on the inside of the wider part of the gas feed tube 23 a plurality of superimposed permanent magnets 24. These magnets 24 are such designed that their north and south poles are situated on opposite sides of the axis X.
- a double helix cooling tube 25 is arranged around the gas feed tube 23 and serves as a cooling means. The ends of the helix tube 25 together with the narrow end section 23.1 of the gas feed tube 23 form the connecting end of the device passing through the container opening.
- a cooling means W e.g. water serves for keeping the temperature of the device and in particular of the magnets 24 constant within very narrow limits, whereby the induction (magnitude of the magnetic field) being a very temperature dependent value is kept constant within very narrow limits also.
- the optimum temperature is slightly higher than ambient temperature such that condensation of any of the components of the process gas is prevented.
- Figure 3 shows in cross section perpendicular to the axis X the device according to Figure 2 with the gas feed tube 23, the magnets 24 and the cooling means 25.
- the poles of the magnets 24 positioned on opposite sides of the axis X are designated with N and S.
- Two exemplified closed field lines of the magnetic field created by the magnet 24 are shown and designated with M.1 and M.2, whereby M.l and M.2 are directed from north to south pole.
- the field lines created by the superimposed magnets ( Figure 2) are superimposed in the same way.
- the body 11 of the container to be treated is indicated by a broken line.
- the magnets applicable for the inventive device are e.g. fe ⁇ ite or cobalt- samarium magnets (e.g. by UGIMAG FR).
- the column of superimposed magnets shown in Figure 3 has a square cross section. This cross section may be rectangular ( Figure 4) or round ( Figure 2) also.
- Figure 4 For microwaves with a frequency of 2.45 GHz and for a pressure of less than 10 Pa, electron- cyclotron-resonance occurs in areas of the magnetic field where the magnetic flux density is 87.5 mT.
- the magnets need to be designed such that the magnetic field outside of the tubes 23 or 25 has the corresponding flux density (87.5 mT).
- FIG. 4 shows in section perpendicular to the axis a further embodiment of the inventive device.
- This device comprises again means for feeding a process gas to the inside of the container (gas feed tube 23), means for establishing a stationary magnetic field (permanent magnet 24 with north and south pole on opposite sides of the axis) and coohng means (25.1 and 25.2).
- a cooling tube 25.1 within the gas feed tube 23 is provided and the magnets are positioned within the cooling tube and are immersed in the cooling medium.
- the cooling medium W is fed to the cooling tube through e.g. two feed tubes 25.2 extending from the connecting end of the device and having open ends in the area of the closed distal end of the cooling tube.
- the cooling medium is removed from the cooling tube in the area of the connecting end of the device.
- the cooling tube 25.1 with the magnets arranged within is arranged inside the gas feed tube 23.
- the inside coating of a bottle made by stretch blow moulding of polyethyleneterephthalate with silicon oxide is described in the following.
- the specific bottle has a volume of ca. 500ml and an opening of 38mm diameter. It weighs 18 to 32gr (bottle of specific example below: 32g).
- the device introduced into the bottle has a diameter of ca. 20mm (applicable for bottles with a standard opening of 28mm also).
- the length of the device is chosen such that the distance between the distal end of the device and the bottom of the bottle is kept at ca. 30mm.
- the magnets of the device are made of cobalt-samarium and have a cylindrical form with a diameter of 12mm and a height of 40mm.
- the bottle is introduced in a substantially cylindrical microwave containment which may serve at the same time as vacuum chamber.
- the microwaves used have a frequency of 2.45 GHz. They are produced by a microwave generator and are coupled to the microwave confinement via a hollow wave guide which opens into the cylindrical confinement axially or radially.
- the confinement, the generator and the wave guide are advantageously such designed and tuned that there is a stationary microwave inside the confinement.
- the average microwave power ranges from 100 to 600 Watts (advantageously: 300W).
- the bottle to be coated is positioned inside the microwave confinement and the inventive device connected to gas supply and cooling medium supply and removal is positioned in the bottle.
- the bottle opening is connected to a vacuum pump.
- the vacuum chamber and the inside of the bottle are evacuated simultaneously to a base pressure of approximately 0.5 Pa which base pressure is preferably somewhat lower than the operating pressure.
- base pressure is preferably somewhat lower than the operating pressure.
- a plasma is ignited inside the container by activating the microwave generator and the process gas consisting of oxygen and an organosilicon compound (e.g.
- hexa- methyldisiloxane in a volume ratio of between 5:1 to 30:1 (preferably 10:1) is flown through the container with a flow rate of 10 to 100 seem (preferably 22 seem) whereby the operating pressure is kept in a range between 10 Pa to 0.1 Pa (preferably at 5 Pa).
- the process gas may further comprise an inert gas.
- the silicon oxide coating achieved in a coating process as described above has a rninimum thickness of 5nm and may be as thick as approximately 50nm. Preferably it is 30nm.
- the PET-bottle illustrated in Figure 5 was subjected to the treatment as described above with the parameters indicated in parentheses as preferable parameters.
- the coating had a thickness of approximately 30nm.
- the un- coated bottle had a measured oxygen permeability of 0.060 ccm/bottle/day/0.2atm (23°C, 50% relative humidity).
- the coated bottle had a measured oxygen permeability of 0.012 ccm/bottle/day/0.2atm (23°C, 50% relative humidity). This shows that coating the bottle using the inventive device and the parameters as given above gives an improvement in gas permeability for oxygen of a factor 5.
- a comparison between the coated bottle and a similar but uncoated bottle when filled with a carbonated drink showed a pressure loss which was smaller by a factor between 2 and 3 for the coated bottle.
- the silicon oxide layer consisted of 67.5% O, 29.0% Si and 3.5% C.
- the composition of the coating can be varied by varying the composition of the process gas.
- the inventive device and the inventive method are applicable as described above for containers of different sizes and shapes, whereby the device to be positioned inside the bottle is to be adapted to the axial length (distance between opening and bottom) of the container and the gas flow is to be adapted to the size of the container.
- the container body does not necessarily have to be cylindrical. Small deviations from a cylindrical shape as well as cross sections e.g. representing a regular square or hexagon can be treated with the same good results. For containers showing greatly varying distances between the inside surface and the inventive device might have to be treated slightly longer.
- the bottle and its treatment as described above are one example. As indicated in the beginning, other plasma enhanced processes than coating processes are possible and the treated container may be made from a different plastic material, e.g. from polypropylene or from polyethylene (PP), in particular from high density polyethylene (HDPE).
- PP polypropylene
- HDPE high density polyethylene
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000514302A JP2001518565A (en) | 1997-09-30 | 1998-09-28 | Apparatus and method for treating inner surface of plastic container with small opening in plasma enhanced process |
AU90922/98A AU9092298A (en) | 1997-09-30 | 1998-09-28 | Device and method for treating the inside surface of a plastic container with a narrow opening in a plasma enhanced process |
US09/509,471 US6376028B1 (en) | 1997-09-30 | 1998-09-28 | Device and method for treating the inside surface of a plastic container with a narrow opening in a plasma enhanced process |
EP98942971A EP1019943A1 (en) | 1997-09-30 | 1998-09-28 | Device and method for treating the inside surface of a plastic container with a narrow opening in a plasma enhanced process |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2290/97 | 1997-09-30 | ||
CH229097 | 1997-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999017333A1 true WO1999017333A1 (en) | 1999-04-08 |
Family
ID=4230322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB1998/001505 WO1999017333A1 (en) | 1997-09-30 | 1998-09-28 | Device and method for treating the inside surface of a plastic container with a narrow opening in a plasma enhanced process |
Country Status (5)
Country | Link |
---|---|
US (1) | US6376028B1 (en) |
EP (1) | EP1019943A1 (en) |
JP (1) | JP2001518565A (en) |
AU (1) | AU9092298A (en) |
WO (1) | WO1999017333A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1126504A1 (en) * | 2000-02-18 | 2001-08-22 | European Community | Method and apparatus for inductively coupled plasma treatment |
WO2001094448A2 (en) * | 2000-06-06 | 2001-12-13 | The Dow Chemical Company | Barrier layer for polymers and containers |
EP1619266A1 (en) * | 2003-03-12 | 2006-01-25 | Toyo Seikan Kaisya, Ltd. | Method and apparatus for chemical plasma processing of plastic container |
EP2503023A3 (en) * | 2003-03-12 | 2013-11-06 | Toyo Seikan Kaisha, Ltd. | Processing gas supply member for a microwave plasma processing device |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19963122A1 (en) * | 1999-12-24 | 2001-06-28 | Tetra Laval Holdings & Finance | Plasma chemical vapor deposition assembly has a cylindrical structure with a waveguide system to couple the microwave energy with a gas feed to coat the interior of plastics containers of all shapes and sizes without modification |
EP1229068B1 (en) * | 2001-02-06 | 2005-09-14 | Shibuya Kogyo Co., Ltd. | Method and apparatus for modifying the inner surface of containers made of polymeric compound |
US20060029955A1 (en) * | 2001-03-24 | 2006-02-09 | Antonio Guia | High-density ion transport measurement biochip devices and methods |
US20020170495A1 (en) * | 2001-05-17 | 2002-11-21 | Ngk Insulators, Ltd. | Method for fabricating a thin film and apparatus for fabricating a thin film |
CN100467665C (en) * | 2002-12-24 | 2009-03-11 | 西北工业大学 | Container internal surface chemical vapor depositon coating method |
EP1614770B1 (en) * | 2003-04-16 | 2010-10-13 | Toyo Seikan Kaisha, Ltd. | Microwave plasma processing method |
DE10354625A1 (en) * | 2003-11-22 | 2005-06-30 | Sig Technology Ltd. | Method for determining the gas permeability of container walls, containers with surface coating and coating device with measuring device |
US7493869B1 (en) | 2005-12-16 | 2009-02-24 | The United States Of America As Represented By The Administration Of Nasa | Very large area/volume microwave ECR plasma and ion source |
US7967945B2 (en) * | 2008-05-30 | 2011-06-28 | Yuri Glukhoy | RF antenna assembly for treatment of inner surfaces of tubes with inductively coupled plasma |
DE102008037159A1 (en) * | 2008-08-08 | 2010-02-11 | Krones Ag | Apparatus and method for the plasma treatment of hollow bodies |
EP2251453B1 (en) | 2009-05-13 | 2013-12-11 | SiO2 Medical Products, Inc. | Vessel holder |
US7985188B2 (en) | 2009-05-13 | 2011-07-26 | Cv Holdings Llc | Vessel, coating, inspection and processing apparatus |
US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
WO2012122559A2 (en) | 2011-03-10 | 2012-09-13 | KaiaTech, Inc. | Method and apparatus for treating containers |
US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
US20120312233A1 (en) * | 2011-06-10 | 2012-12-13 | Ge Yi | Magnetically Enhanced Thin Film Coating Method and Apparatus |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
CN103930595A (en) | 2011-11-11 | 2014-07-16 | Sio2医药产品公司 | Passivation, ph protective or lubricity coating for pharmaceutical package, coating process and apparatus |
DE102012201955A1 (en) * | 2012-02-09 | 2013-08-14 | Krones Ag | Power lance and plasma-enhanced coating with high-frequency coupling |
DE102012201956A1 (en) * | 2012-02-09 | 2013-08-14 | Krones Ag | Hollow cathode gas lance for the internal coating of containers |
EP2846755A1 (en) | 2012-05-09 | 2015-03-18 | SiO2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
WO2014071061A1 (en) | 2012-11-01 | 2014-05-08 | Sio2 Medical Products, Inc. | Coating inspection method |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
AU2013352436B2 (en) | 2012-11-30 | 2018-10-25 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
EP2961858B1 (en) | 2013-03-01 | 2022-09-07 | Si02 Medical Products, Inc. | Coated syringe. |
US20160015600A1 (en) | 2013-03-11 | 2016-01-21 | Sio2 Medical Products, Inc. | Coated packaging |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
WO2014144926A1 (en) | 2013-03-15 | 2014-09-18 | Sio2 Medical Products, Inc. | Coating method |
EP3693493A1 (en) | 2014-03-28 | 2020-08-12 | SiO2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4318086A1 (en) * | 1993-06-01 | 1994-12-08 | Kautex Werke Gmbh | Process and device for producing a polymeric outer layer in plastic blow mouldings |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA884511B (en) | 1987-07-15 | 1989-03-29 | Boc Group Inc | Method of plasma enhanced silicon oxide deposition |
MX9303141A (en) | 1992-05-28 | 1994-04-29 | Polar Materials Inc | METHODS AND DEVICES FOR DEPOSITING BARRIER COATINGS. |
JP3369261B2 (en) | 1993-08-02 | 2003-01-20 | 東洋紡績株式会社 | Gas barrier container |
CH687613A5 (en) | 1994-02-04 | 1997-01-15 | Tetra Pak Suisse Sa | A method of providing a packaging with excellent barrier properties. |
CH687614A5 (en) | 1994-02-04 | 1997-01-15 | Tetra Pak Suisse Sa | A method of providing a packaging with excellent barrier properties with respect to gases. |
US6112695A (en) * | 1996-10-08 | 2000-09-05 | Nano Scale Surface Systems, Inc. | Apparatus for plasma deposition of a thin film onto the interior surface of a container |
-
1998
- 1998-09-28 AU AU90922/98A patent/AU9092298A/en not_active Abandoned
- 1998-09-28 WO PCT/IB1998/001505 patent/WO1999017333A1/en not_active Application Discontinuation
- 1998-09-28 EP EP98942971A patent/EP1019943A1/en not_active Withdrawn
- 1998-09-28 US US09/509,471 patent/US6376028B1/en not_active Expired - Fee Related
- 1998-09-28 JP JP2000514302A patent/JP2001518565A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4318086A1 (en) * | 1993-06-01 | 1994-12-08 | Kautex Werke Gmbh | Process and device for producing a polymeric outer layer in plastic blow mouldings |
Non-Patent Citations (1)
Title |
---|
WEICHART J ET AL: "Beschichtung von dreidimensionalen Substraten mit einem magnetfeldunterstützten Mikrowellen-Plasma bei Raumtemperatur", VAKUUM IN DER PRAXIS, vol. 3, no. 1, February 1991 (1991-02-01), WEINHEIM DE, pages 22 - 26, XP002067698 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1126504A1 (en) * | 2000-02-18 | 2001-08-22 | European Community | Method and apparatus for inductively coupled plasma treatment |
WO2001061726A1 (en) * | 2000-02-18 | 2001-08-23 | European Community (Ec) | Method and apparatus for inductively coupled plasma treatment |
JP2003523483A (en) * | 2000-02-18 | 2003-08-05 | ユーロピアン コミュニティ(イーシー) | Inductively coupled plasma processing method and apparatus |
WO2001094448A2 (en) * | 2000-06-06 | 2001-12-13 | The Dow Chemical Company | Barrier layer for polymers and containers |
WO2001094448A3 (en) * | 2000-06-06 | 2002-06-13 | Dow Chemical Co | Barrier layer for polymers and containers |
EP1619266A1 (en) * | 2003-03-12 | 2006-01-25 | Toyo Seikan Kaisya, Ltd. | Method and apparatus for chemical plasma processing of plastic container |
EP1619266A4 (en) * | 2003-03-12 | 2008-07-23 | Toyo Seikan Kaisha Ltd | Method and apparatus for chemical plasma processing of plastic container |
EP2503023A3 (en) * | 2003-03-12 | 2013-11-06 | Toyo Seikan Kaisha, Ltd. | Processing gas supply member for a microwave plasma processing device |
Also Published As
Publication number | Publication date |
---|---|
EP1019943A1 (en) | 2000-07-19 |
AU9092298A (en) | 1999-04-23 |
JP2001518565A (en) | 2001-10-16 |
US6376028B1 (en) | 2002-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6376028B1 (en) | Device and method for treating the inside surface of a plastic container with a narrow opening in a plasma enhanced process | |
US8062470B2 (en) | Method and apparatus for application of thin coatings from plasma onto inner surfaces of hollow containers | |
US4667620A (en) | Method and apparatus for making plastic containers having decreased gas permeability | |
US7967945B2 (en) | RF antenna assembly for treatment of inner surfaces of tubes with inductively coupled plasma | |
JP3698887B2 (en) | Diamond-like carbon film production equipment | |
JP5453089B2 (en) | Cold plasma treatment of plastic bottles and apparatus for performing the same | |
US6242053B1 (en) | Process for coating plastic containers or glass containers by means of a PCVD coating process | |
US5451259A (en) | ECR plasma source for remote processing | |
JP3224529B2 (en) | Plasma processing system | |
JP4122011B2 (en) | Method for forming diamond-like carbon film | |
US20030157345A1 (en) | Plasma deposited barrier coating comprising an interface layer, method of obtaining same and container coated therewith | |
CN101645386A (en) | Device and method for plasma treating hollow bodies | |
KR100467160B1 (en) | Device for treating a container with microwave plasma | |
US20090284421A1 (en) | RF antenna assembly having an antenna with transversal magnetic field for generation of inductively coupled plasma | |
AU1842200A (en) | Hollow cathode array for plasma generation | |
US11898241B2 (en) | Method for a treatment to deposit a barrier coating | |
EP1143481B1 (en) | High density plasma forming device | |
US4673586A (en) | Method for making plastic containers having decreased gas permeability | |
JP2001310960A (en) | Plasma treatment device and manufacturing method of plastic container having carbon coating inside | |
US7550927B2 (en) | System and method for generating ions and radicals | |
EP0506484A1 (en) | Ion beam generating apparatus, filmforming apparatus, and method for formation of film | |
JP2005105294A (en) | Cvd film-forming apparatus, and method for manufacturing plastic container coated with cvd film | |
WO2004081253A1 (en) | Method and apparatus for chemical plasma processing of plastic container | |
JPWO2005054127A1 (en) | Induction fullerene manufacturing apparatus and manufacturing method | |
JP3716262B2 (en) | Plasma processing apparatus and method for producing carbon coating-formed plastic container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1998942971 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1998942971 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09509471 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998942971 Country of ref document: EP |