WO1999017110A1 - Detecteur de gaz combustible a generateur d'hydrogene integre - Google Patents
Detecteur de gaz combustible a generateur d'hydrogene integre Download PDFInfo
- Publication number
- WO1999017110A1 WO1999017110A1 PCT/US1998/019844 US9819844W WO9917110A1 WO 1999017110 A1 WO1999017110 A1 WO 1999017110A1 US 9819844 W US9819844 W US 9819844W WO 9917110 A1 WO9917110 A1 WO 9917110A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- combustible gas
- sensor
- hydrogen generator
- gas sensor
- combustible
- Prior art date
Links
- 239000007789 gas Substances 0.000 title claims abstract description 95
- 239000001257 hydrogen Substances 0.000 title claims abstract description 40
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 40
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 230000003197 catalytic effect Effects 0.000 claims abstract description 20
- 238000004880 explosion Methods 0.000 claims abstract description 9
- 230000004044 response Effects 0.000 claims abstract description 8
- 238000009792 diffusion process Methods 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 239000012080 ambient air Substances 0.000 claims description 7
- 239000003792 electrolyte Substances 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 6
- 239000002360 explosive Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- 239000011593 sulfur Substances 0.000 claims 1
- 239000003570 air Substances 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0006—Calibrating gas analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
- G01N33/0047—Organic compounds
Definitions
- This invention relates to a method and apparatus for automatically testing the response of combustible gas sensors and more particularly to a combustible gas sensor with integral hydrogen generator.
- Combustible gas sensors have been used for over fifty years to detect the presence of potentially hazardous concentrations of flammable gases or vapors. They are widely used in industry for safety purposes, providing a warning of potentially hazardous conditions before gas levels reach explosive levels.
- Commercial combustible gas sensors detect gases through the use of a heated catalytic element. When a combustible gas or vapor comes in contact with this element, the gas or vapor is burned, causing an increase in heat on that element. The resistance of the catalytic element changes in proportion to the combustion heat, and the resistance change is compared to a similar but inert reference element.
- the catalytic element and the reference element form two legs of a simple Wheatstone bridge circuit which measures the resistance change caused by the presence of combustible gases and vapors.
- Combustible gas detectors are well known in the art and are described by Warren J. Reilly in an article entitled “Combustible Gas Detectors” based on a paper delivered at the Arrowspace/Test Measurement Conference, Philadelphia, 1975.
- the combustible gas sensing system of the present invention provides the automatic checking of the combustible sensor every twenty four hours and greatly reduces the manual labor needed to verify that the gas detection system is operable and will respond in the event of gas leakage.
- the present invention is intended to obviate the above- described problems and has for its object to provide a system for verifying the response of a combustible gas sensor by combining the combustible gas sensor with an integral hydrogen generator in one explosion-proof assembly.
- the present invention provides an electrochemical hydrogen generator capable of delivering relative high H 2 concentrations (needed to properly test this type of sensor) to the combustible sensor, and integrating the generator into the sensor itself.
- the result is a device that includes both the sensor and a mechanism for automatically testing that sensor to detect loss of sensitivity.
- an assembly for verifying the response of a combustible gas sensor including an explosion proof housing including a catalytic combustible gas sensor having active and passive sensing elements disposed within the housing.
- a hydrogen generator is disposed within the housing and separated from the catalytic combustible gas sensor by a gas diffusion chamber.
- the gas diffusion chamber has an opening in the wall of the explosion proof housing to allow combustible gases in the ambient air to diffuse to the sensing elements of the catalytic combustible sensor.
- a sintered metal flame arrestor separates the combustible gas sensing elements from the combustible gas chamber and a sintered metal flame arrestor separates the hydrogen generator from the combustible gas chamber.
- the hydrogen generator includes an electrochemical cell containing two embedded electrodes and a water based electrolyte, the electrolyte being a hygroscopic acid retained within a porous plastic medium within the hydrogen generator so that when water is electrolyzed to produce hydrogen, the water that is lost is replenished by the humidity in the ambient air to insure sufficient water for the hydrogen generation process over an extended period of time.
- a method including the steps of energizing the hydrogen generator of the aforesaid type to deliver a hydrogen test sample to produce a concentration above a predetermined lower explosive limit (LEL) within the gas diffusion chamber, causing the test gas to pass through the sintered metal flame arrestor to a sensor cavity adjacent the catalytic combustible gas sensor, and monitoring the output of the combustible sensor during the gas generation cycle.
- LEL lower explosive limit
- Fig. 1 is an elevational view partly in section of a combustible gas sensor with integral hydrogen generator embodying the present invention.
- Fig. 2 is a schematic diagram of the electrical circuit in the combustible gas sensor with integral hydrogen generator illustrated in Fig. 1.
- the assembly includes a catalytic combustible gas sensor 12 and a hydrogen generator 14 both disposed within an explosion proof housing 16.
- the catalytic combustible gas sensor has an active element 18 and a passive element 20.
- the passive element 20 is sometimes referred to as a reference element and the reference element 20 and active element 18 are arranged in a Wheatstone bridge. As shown in Fig. 2 the active and passive elements 18 and 20 form two legs of the
- the circuit also includes an adjustable resistor 26.
- combustible gas molecules react, via a catalyst, to form oxidation products on the active (open to air) element 18 increasing its temperature and resistance.
- the sensing elements may be either coated with a catalyst and coiled, or encased in a catalytic bead element, as well known in the art.
- a thermal barrier 28 preferably made from Teflon, and positioned to keep the heat generated at the active element 18, when exposed to combustible gases, from transferring to the passive element 20, which does not heat up on contact with combustible gases.
- a sintered metal flame arrestor 30 of stainless steel is positioned within the housing 16 to keep the sensing elements 18 and 20 isolated within the housing while allowing combustible gases to diffuse to a sensor cavity 32 adjacent to the sensing elements 18 and 20.
- the hydrogen generator 14 is mounted within the lower portion of the explosion proof housing 16 and is separated from the combustible gas sensor by a gas diffusion chamber 34.
- the gas diffusion chamber 34 has an opening 34a to the exterior of the housing 16.
- the gas diffusion chamber 34 is bounded by the sintered metal flame arrestor 30 which isolates the sensing elements 18 and 20 of the combustible gas sensor 12 and a second sintered metal flame arrestor 36 which isolates the hydrogen generator 14 from the gas diffusion chamber.
- the gas diffusion opening 34a allows ambient air and any combustible gases to diffuse into the chamber 34 of the housing 16 so that they are sensed by the active element 18 of the sensor.
- the hydrogen generator 14 is an electrochemical cell containing two embedded electrodes 38 and 40, Fig. 2, and a water based electrolyte 42, Fig. 1. In operation, a 2.5 volts DC potential is placed across the electrodes 38 and 40 when the switch 44 is closed with the current being limited by resistor 46 to about 60mA.
- water will be split into hydrogen and oxygen.
- the hydrogen is evolved from the surface of the electrode 38 nearest the diffusion opening and is allowed to move by natural diffusion through the sintered metal flame arrestor 36, across the gas diffusion chamber 34 and through the sintered metal flame arrestor 30 into the sensor cavity 32 adjacent the sensing elements 18 and 20.
- the hydrogen generator 14 relies on water inside the generator cell for hydrogen production. Since the generator cell must be relatively small from a packaging standpoint, the amount of water could potentially limit a number of tests that could be run prior to the generator failing. Requiring generators to be refilled with water adds a maintenance requirement that particularly negates the value of the self-check. Formulating the electrolyte so that it pulls water out of the air allows the generator to run for well over a year without any type of service. Basically, the electrolyte is a hygroscopic acid, such for example as concentrated sulfuric acid, which is retained inside a porous plastic medium similar to filter paper. When water is electrolyzed to produce hydrogen, the water that is lost is replenished by the humidity in the ambient air.
- the hydrogen generator 14 is activated on a periodic basis under software control for a fixed period of time. As may be seen in Fig. 2, hydrogen generator is activated when the switch 44 is closed. The switch 44 is microprocessor controlled. The current to the generator 14 is controlled to deliver a hydrogen concentration above 5 % LEL (0.2% hydrogen by volume).
- Lower explosive limit (LEL) data for common combustible gases and vapors are published by the National Fire Protection Association. The LEL is the lowest concentration of the gas, mixed with air, which will propagate a flame. In normal air, the LEL can vary from 0.6% to 12.5 % , by volume. Concentrations of gas above the LEL will propagate flame until the upper explosive limit (UEL) is reached.
- UEL upper explosive limit
- the output of the combustible gas sensor 12 is monitored during the gas generation cycle. If the sensor output reaches a predetermined LEL value, normally 5 % , the sensor is deemed to have passed the test and the hydrogen generator 14 is shut off. If the sensor does not reach the predetermined LEL value within a fixed time, the sensor 12 is deemed to have failed and an alarm signal is generated.
- a predetermined LEL value normally 5 %
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
L'invention concerne un ensemble (10) permettant de vérifier la réaction d'un détecteur de gaz combustible, lequel ensemble combine un détecteur (12) de gaz combustible catalytique et un générateur d'hydrogène (14) disposés à l'intérieur d'un carter antidéflagrant (16).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94208397A | 1997-10-01 | 1997-10-01 | |
US08/942,083 | 1997-10-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999017110A1 true WO1999017110A1 (fr) | 1999-04-08 |
Family
ID=25477550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/019844 WO1999017110A1 (fr) | 1997-10-01 | 1998-09-24 | Detecteur de gaz combustible a generateur d'hydrogene integre |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1999017110A1 (fr) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2356708A (en) * | 1999-11-27 | 2001-05-30 | Central Research Lab Ltd | Sensor system with self-test facility |
WO2005119248A1 (fr) * | 2004-05-28 | 2005-12-15 | Honeywell International Inc. | Dispositif d'etalonnage pour systemes de controle de gaz |
WO2006060320A2 (fr) * | 2004-11-30 | 2006-06-08 | Honeywell International Inc. | Hydrures metalliques nano-crystallins et/ou metastables utilises comme source d'hydrogene a des fins d'etalonnage de capteurs et d'autodiagnostic |
WO2006063183A2 (fr) * | 2004-12-08 | 2006-06-15 | Honeywell International Inc. | Systeme de detection electrochimique |
US7111493B2 (en) | 2002-11-26 | 2006-09-26 | Proton Energy Systems, Inc. | Combustible gas detection system |
US7159444B2 (en) | 2002-11-26 | 2007-01-09 | Proton Energy Systems, Inc. | Combustible gas detection systems and method thereof |
US7174766B2 (en) | 2005-05-24 | 2007-02-13 | Honeywell International Inc. | Calibration device for carbon dioxide sensor |
US8826724B2 (en) | 2010-12-24 | 2014-09-09 | Honeywell International Inc. | Carbon dioxide sensor |
DE102015015152A1 (de) | 2015-11-25 | 2017-06-01 | Dräger Safety AG & Co. KGaA | Verfahren zur Überprüfung eines Gassensors in einem Gasmesssystem |
EP3220142A1 (fr) | 2016-03-18 | 2017-09-20 | Dräger Safety AG & Co. KGaA | Procédé de vérification d'un capteur de gaz et dispositif de mesure de gaz, détecteur de gaz comprenant un dispositif de vérification d'un capteur de gaz |
EP3220141A1 (fr) | 2016-03-18 | 2017-09-20 | Dräger Safety AG & Co. KGaA | Procédé de vérification d'un capteur de gaz et dispositif de mesure de gaz, détecteur de gaz comprenant un dispositif de vérification d'un capteur de gaz |
DE102016013959A1 (de) | 2016-11-23 | 2018-05-24 | Drägerwerk AG & Co. KGaA | Prüfvorrichtung zu einer Überprüfung eines Gasführungselementes |
DE102016013958A1 (de) | 2016-11-23 | 2018-05-24 | Drägerwerk AG & Co. KGaA | Vorrichtung mit einer Pumpeinrichtung zu einer Überprüfung einer Funktionsbereitschaft eines Gasführungselementes eines Gasmesssystems |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4155712A (en) * | 1976-04-12 | 1979-05-22 | Taschek Walter G | Miniature hydrogen generator |
US4332664A (en) * | 1980-09-09 | 1982-06-01 | Csepel Muvek Hiradastechnikai Gepgyara | Gas producing electrolytic cell for portable devices |
US4391682A (en) * | 1980-02-11 | 1983-07-05 | Kernforschungsanlage Julich Gmbh | Method for electrolytic production of hydrogen |
US4489590A (en) * | 1982-01-25 | 1984-12-25 | Delphian Corporation | Method and apparatus for gas detector calibration |
-
1998
- 1998-09-24 WO PCT/US1998/019844 patent/WO1999017110A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4155712A (en) * | 1976-04-12 | 1979-05-22 | Taschek Walter G | Miniature hydrogen generator |
US4391682A (en) * | 1980-02-11 | 1983-07-05 | Kernforschungsanlage Julich Gmbh | Method for electrolytic production of hydrogen |
US4332664A (en) * | 1980-09-09 | 1982-06-01 | Csepel Muvek Hiradastechnikai Gepgyara | Gas producing electrolytic cell for portable devices |
US4489590A (en) * | 1982-01-25 | 1984-12-25 | Delphian Corporation | Method and apparatus for gas detector calibration |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2356708A (en) * | 1999-11-27 | 2001-05-30 | Central Research Lab Ltd | Sensor system with self-test facility |
US7159444B2 (en) | 2002-11-26 | 2007-01-09 | Proton Energy Systems, Inc. | Combustible gas detection systems and method thereof |
US7111493B2 (en) | 2002-11-26 | 2006-09-26 | Proton Energy Systems, Inc. | Combustible gas detection system |
US7073368B2 (en) | 2004-05-28 | 2006-07-11 | Honeywell International Inc. | Calibration device for gas sensors |
WO2005119248A1 (fr) * | 2004-05-28 | 2005-12-15 | Honeywell International Inc. | Dispositif d'etalonnage pour systemes de controle de gaz |
WO2006060320A2 (fr) * | 2004-11-30 | 2006-06-08 | Honeywell International Inc. | Hydrures metalliques nano-crystallins et/ou metastables utilises comme source d'hydrogene a des fins d'etalonnage de capteurs et d'autodiagnostic |
WO2006060320A3 (fr) * | 2004-11-30 | 2006-08-17 | Honeywell Int Inc | Hydrures metalliques nano-crystallins et/ou metastables utilises comme source d'hydrogene a des fins d'etalonnage de capteurs et d'autodiagnostic |
US7152458B2 (en) | 2004-11-30 | 2006-12-26 | Honeywell International Inc. | Nano-crystalline and/or metastable metal hydrides as hydrogen source for sensor calibration and self-testing |
WO2006063183A2 (fr) * | 2004-12-08 | 2006-06-15 | Honeywell International Inc. | Systeme de detection electrochimique |
WO2006063183A3 (fr) * | 2004-12-08 | 2006-12-28 | Honeywell Int Inc | Systeme de detection electrochimique |
US7174766B2 (en) | 2005-05-24 | 2007-02-13 | Honeywell International Inc. | Calibration device for carbon dioxide sensor |
US8826724B2 (en) | 2010-12-24 | 2014-09-09 | Honeywell International Inc. | Carbon dioxide sensor |
DE102015015152A1 (de) | 2015-11-25 | 2017-06-01 | Dräger Safety AG & Co. KGaA | Verfahren zur Überprüfung eines Gassensors in einem Gasmesssystem |
US9945827B2 (en) | 2015-11-25 | 2018-04-17 | Dräger Safety AG & Co. KGaA | Method for testing a gas sensor in a gas-measuring system |
EP3220141A1 (fr) | 2016-03-18 | 2017-09-20 | Dräger Safety AG & Co. KGaA | Procédé de vérification d'un capteur de gaz et dispositif de mesure de gaz, détecteur de gaz comprenant un dispositif de vérification d'un capteur de gaz |
US11209385B2 (en) | 2016-03-18 | 2021-12-28 | Dräger Safety AG & Co. KGaA | Method for testing a gas sensor and gas-measuring device with a testing device for testing a gas sensor |
DE102016003283A1 (de) | 2016-03-18 | 2017-09-21 | Dräger Safety AG & Co. KGaA | Verfahren zur Überprüfung eines Gassensors und Gasmessvorrichtung mit einer Prüfvorrichtung zur Überprüfung eines Gassensors |
US20170269026A1 (en) * | 2016-03-18 | 2017-09-21 | Dräger Safety AG & Co. KGaA | Method for testing a gas sensor and gas-measuring device with a testing device for testing a gas sensor |
EP3220142A1 (fr) | 2016-03-18 | 2017-09-20 | Dräger Safety AG & Co. KGaA | Procédé de vérification d'un capteur de gaz et dispositif de mesure de gaz, détecteur de gaz comprenant un dispositif de vérification d'un capteur de gaz |
DE102016003283B4 (de) | 2016-03-18 | 2022-05-19 | Dräger Safety AG & Co. KGaA | Gasmessvorrichtung mit einer Prüfvorrichtung zur Überprüfung eines Gassensors |
DE102016003284B4 (de) | 2016-03-18 | 2022-05-19 | Dräger Safety AG & Co. KGaA | Gasmessvorrichtung mit einer Prüfvorrichtung zur Überprüfung eines Gassensors |
DE102016003284A1 (de) | 2016-03-18 | 2017-09-21 | Dräger Safety AG & Co. KGaA | Verfahren zur Überprüfung eines Gassensors und Gasmessvorrichtung mit einer Prüfvorrichtung zur Überprüfung eines Gassensors |
US10132786B2 (en) | 2016-03-18 | 2018-11-20 | Dräger Safety AG & Co. KGaA | Method for testing a gas sensor and gas-measuring device with a testing device for testing a gas sensor |
DE102016013959A8 (de) | 2016-11-23 | 2018-08-02 | Drägerwerk AG & Co. KGaA | Prüfvorrichtung zu einer Überprüfung eines Gasführungselementes |
DE102016013959B4 (de) | 2016-11-23 | 2019-08-08 | Drägerwerk AG & Co. KGaA | Prüfvorrichtung zu einer Überprüfung eines Gasführungselementes |
US10648963B2 (en) | 2016-11-23 | 2020-05-12 | Drägerwerk AG & Co. KGaA | Testing device for testing a gas guide element |
US10712324B2 (en) | 2016-11-23 | 2020-07-14 | Drägerwerk AG & Co. KGaA | Device with a pumping device for testing the operational capability of a gas guide element of a gas-measuring system |
DE102016013958B4 (de) | 2016-11-23 | 2019-08-08 | Drägerwerk AG & Co. KGaA | Vorrichtung mit einer Pumpeinrichtung zu einer Überprüfung einer Funktionsbereitschaft eines Gasführungselementes eines Gasmesssystems |
DE102016013958A1 (de) | 2016-11-23 | 2018-05-24 | Drägerwerk AG & Co. KGaA | Vorrichtung mit einer Pumpeinrichtung zu einer Überprüfung einer Funktionsbereitschaft eines Gasführungselementes eines Gasmesssystems |
DE102016013959A1 (de) | 2016-11-23 | 2018-05-24 | Drägerwerk AG & Co. KGaA | Prüfvorrichtung zu einer Überprüfung eines Gasführungselementes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11740251B2 (en) | Sensor interrogation | |
EP2972277B1 (fr) | Interrogation de capteur de gaz | |
US11740201B2 (en) | Sensor interrogation | |
WO1999017110A1 (fr) | Detecteur de gaz combustible a generateur d'hydrogene integre | |
US6370940B2 (en) | Apparatus for determining concentration of a gas | |
US9528957B2 (en) | Sensor interrogation | |
US10451581B2 (en) | Sensor interrogation | |
US20070158210A1 (en) | Gas-monitoring assembly comprising one or more gas sensors and one or more getters, and method of using same | |
CN101449160A (zh) | 用于传感器校准的硫化氢生成器 | |
US20230258617A1 (en) | Determination of sensor operational status via sensor interrogation | |
US7062952B2 (en) | Combustible gas detector having flow-through sensor container and method for measuring such gases | |
US6623976B1 (en) | Combustibility monitor and monitoring method | |
KR101705542B1 (ko) | 가스센서를 이용한 가스 누출 폭발 화재 방지 장치 및 그 제어 방법 | |
CA2345801C (fr) | Instrument de detection de gaz combustibles | |
EP0073153A2 (fr) | Appareil amélioré à électrolyte solide pour la détection de gaz | |
US6635160B1 (en) | Gas sensor | |
JP3142304B2 (ja) | シール部破損検知機構付制御器 | |
Kocache | Gas sensors | |
Pfister | Detection of smoke gases by solid state sensors—A focus on research activities | |
US20030177815A1 (en) | Pellet resistor sensor | |
Marcinkowska et al. | A new carbon monoxide sensor based on a hydrophobic CO oxidation catalyst | |
Gentry | Catalytic devices | |
JP4094795B2 (ja) | ガス検出器の感度劣化を診断する方法、及び感度劣化診断機能を備えたガス検出器 | |
Lv et al. | A catalytic sensor using MEMS process for methane detection in mines | |
Pike | Design of chemoresistive silicon sensors for application in gas monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |