WO1999014801A1 - Method of washing semiconductor substrate and method of producing semiconductor devices using the same method - Google Patents

Method of washing semiconductor substrate and method of producing semiconductor devices using the same method Download PDF

Info

Publication number
WO1999014801A1
WO1999014801A1 PCT/JP1998/004134 JP9804134W WO9914801A1 WO 1999014801 A1 WO1999014801 A1 WO 1999014801A1 JP 9804134 W JP9804134 W JP 9804134W WO 9914801 A1 WO9914801 A1 WO 9914801A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
liquid
semiconductor substrate
temperature
semiconductor
Prior art date
Application number
PCT/JP1998/004134
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiro Oota
Koji Hara
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1999014801A1 publication Critical patent/WO1999014801A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only

Definitions

  • the present invention relates to a cleaning method applied to many electronic component manufacturing processes such as electronic materials, magnetic materials, optical materials, and ceramics (hereinafter, a general cleaning method, a surface treatment method, and the like are collectively referred to as a cleaning method). More particularly, the present invention relates to a method for cleaning a semiconductor substrate suitable for a semiconductor device manufacturing process and a method for manufacturing a semiconductor device using the same.
  • a cleaning method applied to many electronic component manufacturing processes such as electronic materials, magnetic materials, optical materials, and ceramics
  • Conventional general cleaning and drying of a semiconductor wafer is performed by immersing the wafer in a cleaning solution such as a diluted hydrofluoric acid or a mixed solution of ammonia and hydrogen peroxide for a predetermined time and then cleaning the wafer with pure water. , followeded by spin drying
  • a cleaning means that simply immerses a semiconductor wafer on which a high-density semiconductor integrated circuit having a highly irregular surface and a complex surface shape is formed in a chemical solution and pure water, the chemical solution and pure water are replaced in a deep groove-shaped portion on the surface. Difficult, cleaning effect is significantly reduced.
  • JP-A-63-144434 discloses, for example, Japanese Patent Application Laid-Open No. 63-144434 as an effective one for cleaning a semiconductor wafer having been subjected to groove processing.
  • a plurality of ultrasonic generators are arranged so as to surround a semiconductor wafer immersed in a cleaning liquid, and an ultrasonic energy beam is applied to the main surface of the wafer, and each surface of the groove ⁇ is illuminated. Ultrasonic energy is applied.
  • a complex-shaped portion such as a deep groove-shaped portion such as a crown shape or a fin-shaped stacked structure such as a fin shape is subjected to the spin drying or IPA described above. It is difficult to remove them sufficiently by drying methods such as drying. Insufficient cleaning and drying causes various inconveniences such as deterioration of film quality in subsequent processes such as thin film formation, and has a serious adverse effect on the reliability of integrated circuits.
  • the present invention has been made in view of such conventional problems, and a method for cleaning a semiconductor substrate capable of effectively cleaning and drying a semiconductor wafer having a complicated surface shape with sharp irregularities. And a method for manufacturing a semiconductor device using the same. Disclosure of the invention
  • the method for cleaning a semiconductor substrate according to the present invention is characterized in that a cleaning liquid is vaporized in advance and a vapor thereof is condensed on the semiconductor substrate as a pretreatment step of cleaning the semiconductor substrate with a cleaning liquid.
  • the vapor of the cleaning liquid is supplied onto the semiconductor substrate, and the vapor is condensed (liquefied) on the semiconductor substrate, and then the substrate is cleaned with a predetermined cleaning liquid.
  • This coagulation makes it possible to easily supply the cleaning liquid into the fine grooves of the semiconductor substrate.
  • the wettability to the cleaning liquid in the subsequent cleaning process can be increased, and the cleaning with the cleaning liquid can be performed. The effect can be significantly improved.
  • the pressure of the atmosphere filled with the vapor on the semiconductor substrate is raised to a value higher than the saturated vapor pressure of the liquid at the temperature of the atmosphere, or the temperature of the atmosphere becomes the saturated vapor pressure of the liquid. It can be easily carried out by lowering the temperature below the current temperature, or by raising the atmospheric pressure and lowering the temperature.
  • the above-mentioned temperature control can be performed in any of the coagulation process and the drying process by (1) the temperature of the atmosphere itself, (2) the temperature of the semiconductor substrate itself placed in the atmosphere, or (3) both of the atmosphere and the semiconductor. That is, one of the temperatures of the substrate is appropriately controlled.
  • water or a chemical solution is used.
  • Typical examples thereof include an acidic solution containing at least one kind of organic acid including hydrofluoric acid, hydrochloric acid, sulfuric acid, nitric acid, and acetic acid; acidic solution containing at least one of said acidic solution 1 and hydrogen peroxide and fluoride Anmoniumu, 3 en Monia water and Amin least 1: Al force Li solution containing seeds, over and 4 the alkaline solution 3 An alkaline solution containing at least one of hydrogen oxide water and ammonium fluoride, a mixed solution containing an acidic solution of (1) or (2) and an alkaline solution of (3) or (2), or containing water Neutral solutions and the like.
  • the solvent may be an organic solvent. Liquids can be used.
  • a commercially available surfactant such as a cationic surfactant, an anionic surfactant, or an amphoteric surfactant, an organic solvent, or an additive such as a mixture of such a surfactant and an organic solvent is used in combination. You can also.
  • the cleaning liquid used when the cleaning liquid is vaporized in advance and the vapor is condensed on the semiconductor substrate is the same as the cleaning liquid used in the subsequent cleaning step using the liquid. May be different from each other.
  • a typical liquid used to condense the former vapor on a semiconductor substrate is ultrapure water.
  • these two cleaning solutions may be appropriately selected according to the purpose of cleaning the substrate.
  • FIG. 1 is a block diagram of a cleaning method illustrating the basic concept of the present invention
  • FIG. 2 is a block diagram of another cleaning method illustrating an example of the basic concept of the present invention
  • FIG. FIG. 4 is a schematic view schematically showing the infiltration and drying of a cleaning solution into the inside of the fine processing groove
  • FIG. 4 is a schematic view of a cleaning evaluation sample
  • FIG. 5 is a schematic view of a semiconductor device manufacturing process.
  • FIG. 6 is a cross-sectional process diagram of the semiconductor device when the present invention is implemented in the wiring process using A1, and FIG. 6 shows the present invention in the wiring process using Cu in the manufacturing process of the semiconductor device.
  • FIG. 6 is a sectional process view of the semiconductor device when the process is performed.
  • FIG. 1 (a) a semiconductor tank 3 accommodated in a wafer carrier 2 is set in a cleaning tank 1. Then, the steam generator 4 supplies the ultrapure water vapor 6 to the cleaning chamber 5, and then the cleaning chamber 5 is adjusted to an atmospheric pressure equal to or higher than the saturated water vapor pressure of the temperature by the atmospheric pressure adjusting device 7. .
  • the cleaning liquid 8 is supplied to the cleaning tank 1 via the cleaning liquid supply device 9 for cleaning.
  • the semiconductor wafer 3 is transferred to the drying chamber 11 by the wafer transfer apparatus 10 and, as shown in FIG. 1 (c), the vapor pressure of the atmosphere is set by the atmosphere pressure adjusting device 7 in the drying chamber. Is reduced to the saturated water vapor pressure or less.
  • the semiconductor wafer 3 housed in the wafer carrier is installed outside the cleaning tank 1 and steam is supplied. After the cleaning liquid is supplied to the cleaning tank 1, the semiconductor wafer 3 is cleaned. Needless to say, it is also possible to perform the washing by immersing in the tank 1.
  • FIG. 1 shows an embodiment of the present invention.
  • FIG. 6 As another cleaning method of the present invention, as shown in FIG. 6 and supply the cleaning chamber 5 with the atmospheric pressure adjusting device 7 so that the atmospheric pressure is equal to or higher than the saturated steam pressure at that temperature, as in the case of FIG. 1 (a).
  • the cleaning liquid ⁇ is supplied to the cleaning chamber 5 through the cleaning liquid supply device 9 for cleaning.
  • the atmospheric pressure in the cleaning chamber 5 is reduced to a saturated water vapor pressure or lower, as shown in FIG. 2 (c), and drying is performed.
  • FIGS. 1 and 2 are merely examples of the present invention, and it goes without saying that the present invention can be applied to a single-wafer cleaning apparatus for cleaning a single wafer, not shown.
  • Fig. 3 (e) after removing the cleaning liquid from the semiconductor wafer, for example, by pulling up the semiconductor wafer from the cleaning liquid or discharging the cleaning liquid from the cleaning tank, the processing proceeds to Fig. 3 (f).
  • the inside of the drying chamber is evacuated to about 1 Om Torr and dried.
  • heating from the back surface of the wafer simultaneously with the pressure reduction drying can be performed more efficiently.
  • contaminants adhering to the inside of the microfabricated groove can be more reliably removed, and the oxide film can be easily removed at the time of forming the capacitor as described in the section of “Background Art”.
  • a method of cleaning a semiconductor wafer and a method of manufacturing a semiconductor device using the same, which can improve quality and yield, can be realized.
  • Fig. 4 (a) shows a schematic diagram of the cleaning evaluation sample
  • Fig. 4 (b) shows a schematic diagram of its cross section.
  • a poly-Si 15 is formed on the Si substrate 14
  • a micro-machined groove 12 having an opening diameter of 0.5 im and a depth of 2 ⁇ m is formed in the poly-Si. Things.
  • Fe ions were added dropwise to a mixed solution of ammonia, hydrogen peroxide and ultrapure water (however, the mixing ratio was adjusted so that the solution had a pH of 11), and the mixture was heated to 50 ° C.
  • the cleaning evaluation wafer was immersed in the mixed solution for 24 hours and washed with water for 20 minutes. Thereafter, the sample was dried for 20 minutes using an IPA vapor drier to prepare a washing evaluation sample 13 to which Fe ions were adsorbed. Then, in order to measure the Fe ions adsorbed on the cleaning evaluation sample, the cleaning evaluation sample was immersed in hot water at 100 ° C for 30 minutes, and the hot water was collected and evaluated with an atomic absorption spectrometer. The residual amount of Fe adsorption in the sample for use was measured.
  • a cleaning method according to the present invention shown in FIG. 1 (a cleaning step including a pretreatment of a cleaning step of condensing ultrapure water vapor on the wafer) and a conventional method disclosed in, for example, JP-A-63-14434. Washing was carried out by the washing method described above, and both were compared.
  • As the cleaning solution a mixed cleaning solution of hydrofluoric acid, hydrogen peroxide solution and ultrapure water (however, the mixing ratio was adjusted so that the solution had a pH of 3) was prepared.
  • Table 3 shows the measurement results of the residual amount of Fe adsorption in each of the 25 cleaning evaluation samples cleaned by the present invention and the conventional cleaning method.
  • the value was less than or equal to the lower limit of detection of Fe ion of the measuring device (less than 0.4 ppb) in all samples.
  • Fe ions were not detected, indicating the superiority of the cleaning effect of the present invention.
  • FIG. 5 shows a schematic diagram of a cross section of the semiconductor substrate.
  • reference numeral 14 denotes an Si substrate
  • 16 denotes an oxide film formed on the surface of the Si substrate
  • 17 denotes an A1 electrode
  • 18 to 20 denote interlayer insulating layers.
  • SiO 2 film 18 (thickness 200 OA), 3 ⁇ 0 film 19 (thickness 600 ⁇ : I 20 OA) formed by CVD (chemical vapor deposition) method, formed by CVD method It had a three-layer structure of the obtained SiO 2 film 20 (film thickness 200 OA).
  • the Si substrate 14 used was a substrate that had been subjected to a cleaning process in advance by the same cleaning method as in Example 1 (a cleaning process including a pre-process of a cleaning process of condensing water vapor of ultrapure water on a wafer). .
  • through holes 21 with a hole diameter of 1.2 ⁇ m are formed in the interlayer insulating film layer by dry etching using fluorocarbon CF 3 , C 2 F 6, etc. Then, the Al electrode 17 on the semiconductor substrate is exposed.
  • the semiconductor substrate is supplied with steam at 23 ° C. and 20 T 0 rr, and then washed with a treatment solution composed of an organic alkali solution at 80 ° C. for 15 minutes.
  • By-products shown in Figure (b) 22 was removed. Next, it was washed with water for 20 minutes.
  • an A 1 wiring layer 17 ′ is formed on the substrate surface including on the A 1 electrode 17 for multilayering, and is patterned to form a wiring connected to the A 1 electrode 17.
  • the same procedure as described above may be followed.
  • connection status of each wiring layer was investigated. As a result, it was confirmed that there was almost no contact failure between the wiring layers, and that the contact resistance was extremely small compared to the conventional connection. Therefore, according to the present invention, the defect rate was reduced by 5%, and semiconductors could be manufactured with high quality and high yield.
  • the present invention was implemented in a general interconnect formation process using CII (for example, described in JP-A-6-326101) in a semiconductor device manufacturing process.
  • CII for example, described in JP-A-6-326101
  • description will be made with reference to the manufacturing process diagram (cross-sectional view) of the semiconductor device shown in FIG.
  • an insulating film for example, BPSG film 24 (boron phosphorus phosphorus silicate glass)
  • BPSG film 24 boron phosphorus phosphorus silicate glass
  • a film 25 is formed thereon by sputtering
  • a TiN film 26 is formed thereon
  • a Cu film 27 is further deposited thereon.
  • the pre-cleaning process for condensing water vapor on the substrate in advance Used in the cleaning method of the present invention.
  • a resist 28 is applied on the above structure, and patterned by a well-known photolithography and etching technique.
  • the Cu film, the TiN film, and the Ti film are patterned using the resist 28 as a mask. Etch and remove the part other than the part that becomes the wiring.
  • the W film 29 covers the wiring portion having the three-layer structure of the Ti film, the TiN film, and the Cu film remaining in the above-described process according to the CVD method shown in FIG.
  • a passivation film 30 (for example, a TiN film) was entirely formed by a CVD method to complete a structure mainly including a wiring portion.
  • the method of manufacturing a semiconductor device to which the cleaning method of the present invention is applied reduces the rejection rate by 5%, and makes it possible to manufacture the semiconductor device with high quality and high yield.
  • the intended object has been achieved by the present invention.
  • the cleaning liquid easily penetrates into the semiconductor wafer having a complicated surface shape with severe irregularities, thereby performing cleaning and drying. It can be performed effectively and can be used for cleaning semiconductor wafers.
  • the present invention It goes without saying that it can be used not only for cleaning semiconductor wafers, but also for cleaning substrates such as thin film devices and disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

A method of effectively washing and drying semiconductor substrates having conspicuously rugged and complex surface shapes, and method of producing semiconductor devices with high quality and high yield by using the above method. In washing the substrate having fine grooves of a high aspect ratio such as trench holes formed in the surface, the vapor of a washing solution is fed into the washing chamber, and a saturation vapor pressure or the temperature of the atmoshpere is controlled so that the vapor is condensed on the substrate as a pre-step of washing by the washing solution enabling the washing solution to easily infiltrate into the grooves. Due to the condensation, the washing solution is easily supplied into fine grooves in the semiconductor substrate.

Description

明 細 書 半導体基板の洗浄方法及びそれを用いた半導体装置の製造方法 技術分野  Technical Field Cleaning method of semiconductor substrate and method of manufacturing semiconductor device using the same
この発明は、 電子材料、 磁性材料、 光学材料、 セラミックスなど多く の電子部品の製造プロセスに適用される洗浄方法 (以下、 通常の洗浄方 法、 表面処理方法等を総称して洗浄方法と称す) に係リ、 特に、 半導体 装置の製造工程に好適な半導体基板の洗浄方法及びそれを用いた半導体 装置の製造方法に関する。 背景技術  The present invention relates to a cleaning method applied to many electronic component manufacturing processes such as electronic materials, magnetic materials, optical materials, and ceramics (hereinafter, a general cleaning method, a surface treatment method, and the like are collectively referred to as a cleaning method). More particularly, the present invention relates to a method for cleaning a semiconductor substrate suitable for a semiconductor device manufacturing process and a method for manufacturing a semiconductor device using the same. Background art
半導体ウェハの従来の一般的な洗浄及び乾燥は、 ウェハを希釈フッ酸 やアンモニアと過酸化水素水との混合液等の洗浄液に所定時間浸漬させ て洗浄した後に、 純水により前記ウェハを水洗し、 続いてスピン乾燥や Conventional general cleaning and drying of a semiconductor wafer is performed by immersing the wafer in a cleaning solution such as a diluted hydrofluoric acid or a mixed solution of ammonia and hydrogen peroxide for a predetermined time and then cleaning the wafer with pure water. , Followed by spin drying
1 P A (イソプロピルアルコール) ベーパ乾燥等によりウェハを乾燥す る方法で行われている。 1 P A (isopropyl alcohol) This method is used to dry the wafer by vapor drying.
なお、 アンモニアと過酸化水素水^超純水の混合液については、 例え ば、 「シリコーンウェハー表面のクリーン化技術」 P . 2 4 2 服部毅 著 (リアライズ社発行) に、 また、 スピン乾燥や I P Aベーパ乾燥等に ついては、 例えば、 「シリコーンウェハー表面のクリーン化技術」 P . For a mixed solution of ammonia and hydrogen peroxide solution ^ ultrapure water, see, for example, “Silicon Wafer Surface Clean Technology” P. 242 by Takeshi Hattori (published by Realize). For IPA vapor drying, see `` Silicon Wafer Surface Clean Technology ''
2 8 5〜2 8 6 服部毅著 (リアライズ社発行) に記載されている。 その他の洗浄方法として、 洗浄槽内の洗浄液に半導体ウェハを浸漬し, その洗浄液を超音波発生装置にょリ振動させる方法が従来よリ知られて いる (例えば、 特開昭 6 3— 1 4 4 3 4号公報に記載されている) 。 こ の従来技術は、 洗浄液中に浸漬された半導体ウェハを囲むように複数の 超音波発生装置を配置して、 超音波エネルギービームをウェハ主要面に 対して照射し、 溝内の各表面に超音波エネルギを及ぶようにしたもので ある。 285-28 6 Takeshi Hattori, published by Realize, Inc. As another cleaning method, a method in which a semiconductor wafer is immersed in a cleaning liquid in a cleaning tank and the cleaning liquid is vibrated by an ultrasonic generator has been conventionally known (for example, see Japanese Patent Application Laid-Open No. 63-14444). 34 No. 4). This prior art employs a plurality of semiconductor wafers that are immersed in a cleaning solution. An ultrasonic generator is arranged to irradiate the ultrasonic energy beam to the main surface of the wafer so that the ultrasonic energy reaches each surface in the groove.
近年、 集積回路の高密度化を図るために、 半導体ウェハの主要面に対 してほぼ垂直状に微細な深い溝 (幅 l m以下、 深さ 5 m以上) をド ライエッチングなどにょリ加工し、 この溝を利用して素子分離を形成し たり、 キャパシタを大容量化することが試みられている。  In recent years, in order to increase the density of integrated circuits, fine deep grooves (width less than lm, depth greater than 5 m) almost perpendicular to the main surface of the semiconductor wafer are processed by dry etching. Attempts have been made to form an element isolation using this groove and to increase the capacity of the capacitor.
凹凸の激しい複雑な表面形状を有する高密度半導体集積回路が形成さ れている半導体ウェハを、 薬液及び純水に単に浸漬させる洗浄手段では、 その表面の深い溝状部分において薬液や純水が入れ替わり難く、 洗浄効 果が著しく低下する。  In a cleaning means that simply immerses a semiconductor wafer on which a high-density semiconductor integrated circuit having a highly irregular surface and a complex surface shape is formed in a chemical solution and pure water, the chemical solution and pure water are replaced in a deep groove-shaped portion on the surface. Difficult, cleaning effect is significantly reduced.
一方、 半導体ウェハを洗浄するのに、 洗浄槽內の洗浄液に半導体ゥェ ハを浸漬し、 その洗浄液を超音波発生装置によリ振動させる方法が従来 ょリ知られてぉリ、 特に上述した溝加工の施された半導体ウェハの洗浄 に有効なものとして、 例えば、 特開昭 6 3— 1 4 4 3 4号公報に記載さ れている。 この従来技術は、 洗浄液中に浸漬された半導体ウェハを囲む ように複数の超音波発生装置を配置して、 超音波エネルギービームをゥ ェハ主要面に対して照射し、 溝內の各表面に超音波エネルギを及ぶよう にしたものである。  On the other hand, in order to clean a semiconductor wafer, a method of immersing a semiconductor wafer in a cleaning solution in a cleaning tank and vibrating the cleaning solution with an ultrasonic generator has been conventionally known. JP-A-63-144434 discloses, for example, Japanese Patent Application Laid-Open No. 63-144434 as an effective one for cleaning a semiconductor wafer having been subjected to groove processing. According to this conventional technique, a plurality of ultrasonic generators are arranged so as to surround a semiconductor wafer immersed in a cleaning liquid, and an ultrasonic energy beam is applied to the main surface of the wafer, and each surface of the groove に is illuminated. Ultrasonic energy is applied.
しかしながら、 このような洗浄処理技術では、 上述した半導体ウェハ の溝を十分に洗浄するため、 多数の超音波発生装置が必要になるばかり 力 \ 超音波照射によリ半導体素子にクラック等のダメージを生じさせる 恐れがある。  However, with such a cleaning technique, a large number of ultrasonic generators are required to sufficiently clean the grooves of the semiconductor wafer described above. May cause it.
また、 従来、 ドライエッチングで形成した加工溝の内部表面に犠牲酸 化膜を形成した半導体ウェハをゥエツトエッチングして除去することに よリ、 犠牲酸化膜とともに加工溝内部表面に付着していた汚染物を除去 することが行われている。 ところが、 この加工溝は、 上記したように溝 の開口部が微細で深さも深いため、 エツチング液ゃェツチング後の洗浄 液が溝内部に十分浸入せず、 満足できる溝内表面洗浄処理を行うことが できなかった。 Conventionally, a semiconductor wafer having a sacrificial oxide film formed on the inner surface of a processed groove formed by dry etching was removed by wet etching, so that the semiconductor wafer adhered to the inner surface of the processed groove together with the sacrificial oxide film. Remove contaminants That is being done. However, as described above, since the opening of the groove is fine and deep as described above, the cleaning liquid after the etching liquid is not sufficiently penetrated into the inside of the groove, and a satisfactory inside surface cleaning treatment of the groove must be performed. Could not do.
また、 乾燥時においても、 クラウン形状等の深い溝状部やフィン形状 等の羽状に代表されるスタック構造等の複雑な形状になっている部分に 存在する水分は、 前述のスピン乾燥や I P A乾燥等の乾燥方法では十分 に除去され難い。 そして、 洗浄及び乾燥が不十分であると、 その後の薄 膜形成等のプロセスにおいて膜質の劣化等の種々の不都合が生じ、 集積 回路の信頼性に重大な悪影響を及ぼす。  In addition, even during drying, the moisture present in a complex-shaped portion such as a deep groove-shaped portion such as a crown shape or a fin-shaped stacked structure such as a fin shape is subjected to the spin drying or IPA described above. It is difficult to remove them sufficiently by drying methods such as drying. Insufficient cleaning and drying causes various inconveniences such as deterioration of film quality in subsequent processes such as thin film formation, and has a serious adverse effect on the reliability of integrated circuits.
本発明は、 このような従来の問題点に鑑みてなされたものでぁリ、 凹 凸の激しい複雑な表面形状を有する半導体ウェハの洗浄及び乾燥を効果 的に行うことのできる半導体基板の洗浄方法及びそれを用いた半導体装 置の製造方法を提供することにある。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and a method for cleaning a semiconductor substrate capable of effectively cleaning and drying a semiconductor wafer having a complicated surface shape with sharp irregularities. And a method for manufacturing a semiconductor device using the same. Disclosure of the invention
本発明の半導体基板の洗浄方法は、 半導体基板を洗浄するに際し、 洗 浄液で洗浄する前処理工程として、 予め洗浄液を気化しその蒸気を前記 半導体基板上で凝結させることを特徴とする。  The method for cleaning a semiconductor substrate according to the present invention is characterized in that a cleaning liquid is vaporized in advance and a vapor thereof is condensed on the semiconductor substrate as a pretreatment step of cleaning the semiconductor substrate with a cleaning liquid.
つまり、 半導体基板上に洗浄液の蒸気を送給し、 この蒸気を半導体基 板上で凝結 (液化) させてから、 所定の洗浄液で洗浄する。 この凝結に よって半導体基板の微細な加ェ溝中に洗浄液を容易に供給することがで きる。 最初から洗浄液で洗浄する場合には、 液体であるためこの微細な 加工溝中に浸入し難いが、 蒸気の状態で接触させれば容易に浸入させる ことができ、 これを溝中で凝結 (液化) させることによって、 後の洗浄 工程での洗浄液に対する濡れ性を高めることができ、 洗浄液による洗浄 効果を著しく改善することができる。 That is, the vapor of the cleaning liquid is supplied onto the semiconductor substrate, and the vapor is condensed (liquefied) on the semiconductor substrate, and then the substrate is cleaned with a predetermined cleaning liquid. This coagulation makes it possible to easily supply the cleaning liquid into the fine grooves of the semiconductor substrate. When cleaning with a cleaning liquid from the beginning, it is difficult to penetrate into these fine grooves because it is a liquid, but it can easily penetrate if it is brought into contact in the state of steam, and it is condensed in the grooves (liquefaction). ), The wettability to the cleaning liquid in the subsequent cleaning process can be increased, and the cleaning with the cleaning liquid can be performed. The effect can be significantly improved.
洗浄液を凝結させるには、 例えば半導体基板上の蒸気で満された雰囲 気圧をその雰囲気の温度での液体の飽和蒸気圧以上に上げるか、 その雰 囲気の温度を液体の飽和蒸気圧になるときの温度以下に下げるか、 もし くは雰囲気圧を上げると共に温度を下げる方法によって容易に実施でき る。  In order to condense the cleaning liquid, for example, the pressure of the atmosphere filled with the vapor on the semiconductor substrate is raised to a value higher than the saturated vapor pressure of the liquid at the temperature of the atmosphere, or the temperature of the atmosphere becomes the saturated vapor pressure of the liquid. It can be easily carried out by lowering the temperature below the current temperature, or by raising the atmospheric pressure and lowering the temperature.
洗浄処理後の乾燥工程においては、 雰囲気圧をその温度での液体の飽 和蒸気圧以下に下げるか、 雰囲気の温度を液体の飽和蒸気圧になるとき の温度以上に上げるか、 もしくは雰囲気圧を下げると共に、 温度を上げ ることによリ半導体基板上の液体を容易に蒸発させて乾燥させることが できる。  In the drying process after the cleaning process, reduce the atmospheric pressure to below the saturated vapor pressure of the liquid at that temperature, raise the ambient temperature to a temperature above the saturated vapor pressure of the liquid, or increase the atmospheric pressure. By lowering the temperature and increasing the temperature, the liquid on the semiconductor substrate can be easily evaporated and dried.
上記温度の制御は、 凝結工程、 乾燥工程のいずれにおいても、 (1 ) 雰囲気自体の温度、 (2 ) 雰囲気中に置かれる半導体基板自体の温度、 もしくは (3 ) これら両者、 つまリ雰囲気と半導体基板の温度のいずれ かを適宜制御することである。  The above-mentioned temperature control can be performed in any of the coagulation process and the drying process by (1) the temperature of the atmosphere itself, (2) the temperature of the semiconductor substrate itself placed in the atmosphere, or (3) both of the atmosphere and the semiconductor. That is, one of the temperatures of the substrate is appropriately controlled.
本発明においては、 洗浄時に液体に超音波を照射することも可能であ る。  In the present invention, it is also possible to irradiate the liquid with ultrasonic waves during cleaning.
洗浄液としては、 水もしくは薬液が用いられ、 その代表的なものとし て、 例えば①フッ化水素酸、 塩酸、 硫酸、 硝酸、 及び酢酸を含む有機酸 の少なくとも 1種の酸を含む酸性溶液、 ②前記酸性溶液①と過酸化水素 水及びフッ化アンモニゥムの少なくとも 1種とを含む酸性溶液、 ③アン モニァ水及びァミン少なくとも 1:種を含むアル力リ性溶液、 ④前記アル カリ性溶液③と過酸化水素水及びフッ化アンモニゥムの少なく とも 1種 とを含むアル力リ性溶液、 ⑤前記①もしくは②の酸性溶液と前記③もし くは④のアルカリ性溶液とを含む混合液、 もしくは⑥水を含む中性溶液 等が挙げられる。 さらには有機溶剤であってもよく、 市販の周知の洗浄 液を用いることができる。 As the cleaning solution, water or a chemical solution is used. Typical examples thereof include an acidic solution containing at least one kind of organic acid including hydrofluoric acid, hydrochloric acid, sulfuric acid, nitric acid, and acetic acid; acidic solution containing at least one of said acidic solution ① and hydrogen peroxide and fluoride Anmoniumu, ③ en Monia water and Amin least 1: Al force Li solution containing seeds, over and ④ the alkaline solution ③ An alkaline solution containing at least one of hydrogen oxide water and ammonium fluoride, a mixed solution containing an acidic solution of (1) or (2) and an alkaline solution of (3) or (2), or containing water Neutral solutions and the like. Further, the solvent may be an organic solvent. Liquids can be used.
さらに、 上記洗浄液には、 陽イオン界面活性剤、 陰イオン界面活性剤、 両性界面活性剤など市販の界面活性剤、 有機溶剤、 もしくはこれら界面 活性剤と有機溶剤の混合物等の添加剤を併用することもできる。  Further, in the above-mentioned washing liquid, a commercially available surfactant such as a cationic surfactant, an anionic surfactant, or an amphoteric surfactant, an organic solvent, or an additive such as a mixture of such a surfactant and an organic solvent is used in combination. You can also.
洗浄液についてさらに詳述すると、 予め洗浄液を気化しその蒸気を前 記半導体基板上で凝結させる場合に使用する洗浄液と、 その後の液体に よる洗浄工程で使用する洗浄液とは、 同一のものであっても、 それぞれ を異なるものとしても良い。 例えば前者の蒸気を半導体基板上で凝結す るのに使用する代表的な液体としては、 超純水を挙げることができる。 いずれにしても基板の洗浄目的に応じてこれら両者の洗浄液を適宜選択 すればよレ、。 図面の簡単な説明  More specifically, the cleaning liquid used when the cleaning liquid is vaporized in advance and the vapor is condensed on the semiconductor substrate is the same as the cleaning liquid used in the subsequent cleaning step using the liquid. May be different from each other. For example, a typical liquid used to condense the former vapor on a semiconductor substrate is ultrapure water. In any case, these two cleaning solutions may be appropriately selected according to the purpose of cleaning the substrate. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の基本概念を説明する洗浄方法のプロック図でぁ理、 第 2図は、 本発明の基本概念の一例を示す他の洗浄方法のブロック図で あり、 第 3図は、 微細加工溝内部への洗浄液の浸入及び乾燥を模式的に 示す概略図であり、 第 4図は、 洗浄評価用サンプルの概略図でぁリ、 第 5図は、 半導体装置の製造工程の內 A 1を使用した配線工程に本発明 を実施したときの半導体装置の断面工程図でぁリ、 第 6図は、 半導体装 置の製造工程の内、 C uを使用した配線工程に本発明を実施したときの 半導体装置の断面工程図である。 発明を実施するための最良の形態  FIG. 1 is a block diagram of a cleaning method illustrating the basic concept of the present invention, FIG. 2 is a block diagram of another cleaning method illustrating an example of the basic concept of the present invention, and FIG. FIG. 4 is a schematic view schematically showing the infiltration and drying of a cleaning solution into the inside of the fine processing groove, FIG. 4 is a schematic view of a cleaning evaluation sample, and FIG. 5 is a schematic view of a semiconductor device manufacturing process. FIG. 6 is a cross-sectional process diagram of the semiconductor device when the present invention is implemented in the wiring process using A1, and FIG. 6 shows the present invention in the wiring process using Cu in the manufacturing process of the semiconductor device. FIG. 6 is a sectional process view of the semiconductor device when the process is performed. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をよリ詳細に説述するために、 添付の図面に従ってこれを説明 する。  The present invention will be described in more detail with reference to the accompanying drawings.
第 1図に示した基本概念図に従って本発明の概要を説明する。 先ず、 第 1図 (a ) に示すように、 洗浄槽 1内にはウェハキャリア 2 に収納された半導体ウェハ 3が設置されている。 そして、 蒸気発生装置 4にて洗浄室 5に超純水の蒸気 6を供給し、 次に洗浄室 5を雰囲気圧調 整装置 7にて雰囲気圧をそのときの温度の飽和水蒸気圧以上にする。 次に第 1図 (b ) に示すように、 洗浄液 8を洗浄液供給装置 9を介し て洗浄槽 1に供給して洗浄を行う。 次に、 ウェハ搬送装置 1 0にて半導 体ウェハ 3を乾燥室 1 1に搬送し、 第 1図 (c ) に示すように、 乾燥室 で雰囲気圧調整装置 7にて、 雰囲気の蒸気圧を飽和水蒸気圧以下に下げ て乾燥を行う。 The outline of the present invention will be described with reference to the basic conceptual diagram shown in FIG. First, as shown in FIG. 1 (a), a semiconductor tank 3 accommodated in a wafer carrier 2 is set in a cleaning tank 1. Then, the steam generator 4 supplies the ultrapure water vapor 6 to the cleaning chamber 5, and then the cleaning chamber 5 is adjusted to an atmospheric pressure equal to or higher than the saturated water vapor pressure of the temperature by the atmospheric pressure adjusting device 7. . Next, as shown in FIG. 1 (b), the cleaning liquid 8 is supplied to the cleaning tank 1 via the cleaning liquid supply device 9 for cleaning. Next, the semiconductor wafer 3 is transferred to the drying chamber 11 by the wafer transfer apparatus 10 and, as shown in FIG. 1 (c), the vapor pressure of the atmosphere is set by the atmosphere pressure adjusting device 7 in the drying chamber. Is reduced to the saturated water vapor pressure or less.
なお、 第 1図 (a ) で洗浄槽 1の外にウェハキャリアに収納された半 導体ウェハ 3を設置し、 蒸気を供給し、 洗浄槽 1に洗浄液を供給した後 に、 半導体ウェハ 3を洗浄槽 1に浸漬して洗浄を行うことも可能である ことは言うまでもない。  In FIG. 1 (a), the semiconductor wafer 3 housed in the wafer carrier is installed outside the cleaning tank 1 and steam is supplied. After the cleaning liquid is supplied to the cleaning tank 1, the semiconductor wafer 3 is cleaned. Needless to say, it is also possible to perform the washing by immersing in the tank 1.
第 1図は本発明の一実施例であって、 本発明の他の洗浄方法として、 第 2図 (a ) に示すように、 蒸気発生装置 4にて洗浄室 5に超純水の蒸 気 6を供給し、 第 1図 (a ) の場合と同様に、 洗浄室 5を雰囲気圧調整 装置 7にて雰囲気圧をそのときの温度の飽和水蒸気圧以上にする。 次に 第 2図 (b ) に示すように、 洗浄液《を洗浄液供給装置 9を介して洗浄 室 5に供給して洗浄する。 洗浄液を排液した後、 第 2図 (c ) に示すよ うに、 洗浄室 5の雰囲気圧を飽和水蒸気圧以下にして乾燥を行う方法も ある。  FIG. 1 shows an embodiment of the present invention. As another cleaning method of the present invention, as shown in FIG. 6 and supply the cleaning chamber 5 with the atmospheric pressure adjusting device 7 so that the atmospheric pressure is equal to or higher than the saturated steam pressure at that temperature, as in the case of FIG. 1 (a). Next, as shown in FIG. 2 (b), the cleaning liquid << is supplied to the cleaning chamber 5 through the cleaning liquid supply device 9 for cleaning. After draining the cleaning liquid, there is also a method in which the atmospheric pressure in the cleaning chamber 5 is reduced to a saturated water vapor pressure or lower, as shown in FIG. 2 (c), and drying is performed.
なお、 本発明で述べた洗浄時に供給する蒸気と洗浄液の順番、 あるい は水洗時に供給する水蒸気と超純水の順番については、 一例に過ぎない 洗浄時に供給する蒸気と洗浄液の順番を表 1に、 水洗時に供給する水蒸 気と超純水の順番を表 2に示す。 項目 洗浄時に供給される物質 It should be noted that the order of the steam and the cleaning liquid supplied at the time of cleaning or the order of the steam and the ultrapure water supplied at the time of rinsing as described in the present invention is merely an example. Table 2 shows the order of water vapor and ultrapure water supplied during washing. Item Substance supplied during cleaning
蒸気として供給さ 液体として  Supplied as vapor as liquid
番号 、\ れる物暂 供給される物質  Number, material supplied Material supplied
1 超純水 洗诤液  1 Ultrapure water washing solution
2 洗賺 2 wash
3 洗'净液 洗诤液 3 Washing solution Washing solution
Figure imgf000009_0001
また、第 1図及び第 2図は、 本発明の一例にすぎず、 図示していない 力 1枚 1枚ウェハの洗浄を行う枚葉式洗浄装置にも適応できることは 言うまでもない。
Figure imgf000009_0001
Further, FIGS. 1 and 2 are merely examples of the present invention, and it goes without saying that the present invention can be applied to a single-wafer cleaning apparatus for cleaning a single wafer, not shown.
本発明は、 第 3図 (a ) に示す半導体ウェハ 3の表面に微細加工溝 1 2のような高ァスぺク ト比構造が形成されていても、 例えば、 洗浄室 5 の温度が 2 3 °Cの場合、 洗浄室内の雰囲気圧を 2 1 T 0 r r以上に上昇 させることによリ、 基板表面の微細加工溝内に蒸気 6から超純水が凝結 して濡れ性が向上し、 この後、 第 3図 (b ) に示すように、 洗浄液 8に 浸漬すると、 第 3図 (c ) に示すように、 上記微細溝内への洗浄液の浸 入が促進されて、 第 3図 (d ) に示すように、 微細加工溝内の底部まで 洗浄液 8が十分浸入するようになる。 According to the present invention, even if a high-aspect ratio structure such as a microfabricated groove 12 is formed on the surface of the semiconductor wafer 3 shown in FIG. At 3 ° C, by raising the atmospheric pressure in the cleaning chamber to 21 T0 rr or more, ultrapure water condenses from steam 6 in the fine processing grooves on the substrate surface, improving wettability. Then, as shown in Fig. 3 (b), When immersed, as shown in FIG. 3 (c), the penetration of the cleaning liquid into the fine grooves is promoted, and as shown in FIG. 3 (d), the cleaning liquid 8 reaches the bottom of the fine processing grooves. You will get enough penetration.
また、 洗浄室 5内の雰囲気圧を 2 1 T 0 r rの場合、 圧力を変えずに 洗浄室温度を 2 3 °C以下に下降させれば、 基板表面の微細加工溝内に超 純水が凝結し、 濡れ性が向上する。  In addition, when the atmospheric pressure in the cleaning chamber 5 is 21 T 0 rr, if the cleaning chamber temperature is lowered to 23 ° C or less without changing the pressure, ultrapure water will be in the fine processing grooves on the substrate surface. Aggregates and improves wettability.
第 3図 (b ) に示すように洗浄液に浸漬すると、 第 3図 (c ) に示す ように、 上記微細溝内への洗浄液の浸入が促進されて、 第 3図 (d ) に 示すように、 微細加工溝内の底部まで洗浄液が十分に浸入するようにな る。  When immersed in the cleaning liquid as shown in FIG. 3 (b), penetration of the cleaning liquid into the fine grooves is promoted as shown in FIG. 3 (c), and as shown in FIG. 3 (d). However, the cleaning liquid sufficiently penetrates to the bottom in the micro-machining groove.
そして、 第 3図 (e ) に示すように、 洗浄液からの半導体ウェハの引 き上げ、 あるいは洗浄槽からの洗浄液の排出等、 半導体ウェハから洗浄 液を除いた後、 第 3図 ( f ) に示すように、 乾燥室内を 1 O m T o r r 程度に減圧にし、 乾燥を行う。 なお、 減圧と同時にウェハ裏面から加熱 を行うことによリ、 さらに効率よく乾燥を行うことができる。  Then, as shown in Fig. 3 (e), after removing the cleaning liquid from the semiconductor wafer, for example, by pulling up the semiconductor wafer from the cleaning liquid or discharging the cleaning liquid from the cleaning tank, the processing proceeds to Fig. 3 (f). As shown in the figure, the inside of the drying chamber is evacuated to about 1 Om Torr and dried. In addition, by performing heating from the back surface of the wafer simultaneously with the pressure reduction, drying can be performed more efficiently.
なお上記説明では、 飽和水蒸気圧と温度とを別々に制御した場合につ いて述べたが、 両方を同時に制御して洗浄及び乾燥を行うことも可能で ある。  In the above description, the case where the saturated steam pressure and the temperature are separately controlled has been described. However, it is also possible to perform the cleaning and drying by controlling both of them simultaneously.
本発明により、 微細加工溝内部に付着した汚染物をよリ確実に除去が でき、 さらに、 「背景技術」 の項で述べたキャパシタ形成時の酸化膜除 去が容易となるため、 半導体ウェハにおける品質や歩留まリ向上を図る ことが可能な、 半導体ウェハの洗浄方法及びそれを用いた半導体装置の 製造方法を実現することができる。  According to the present invention, contaminants adhering to the inside of the microfabricated groove can be more reliably removed, and the oxide film can be easily removed at the time of forming the capacitor as described in the section of “Background Art”. A method of cleaning a semiconductor wafer and a method of manufacturing a semiconductor device using the same, which can improve quality and yield, can be realized.
〈実施例 1〉  <Example 1>
ウェハに設けた微細加工溝内部に吸着した F eに対する本発明の洗浄 効果を以下の手順によリ確認した。 第 4図 (a) に洗浄評価用サンプルの概略図を、 また、 第 4図 (b) にその断面の概略図を示す。 洗浄評価用サンプル 13は、 S i基板 14 上にポリ S i 15を成膜し、 ポリ S iに孔の開口径 0. 5 im、 深さ 2 μ mの微細加工溝 12が形成されているものである。 The cleaning effect of the present invention on Fe adsorbed inside the microfabricated groove provided on the wafer was confirmed by the following procedure. Fig. 4 (a) shows a schematic diagram of the cleaning evaluation sample, and Fig. 4 (b) shows a schematic diagram of its cross section. In the cleaning evaluation sample 13, a poly-Si 15 is formed on the Si substrate 14, and a micro-machined groove 12 having an opening diameter of 0.5 im and a depth of 2 μm is formed in the poly-Si. Things.
上記洗浄評価用ウェハ 13に F eイオンを吸着させるために、 以下の ことを行った。  The following was performed in order to cause the cleaning evaluation wafer 13 to adsorb Fe ions.
アンモニアと過酸化水素水と超純水の混合溶液 (ただし、 溶液が pH =1 1となるように混合比を調製) に F eイオンを滴下し、 50°Cにカロ 熱した。 次に、 洗浄評価用ウェハをその混合溶液に 24時間浸漬及び 2 0分間水洗を行った。 その後 I P Aベーパ乾燥装置で 20分間乾燥して、 F eイオンが吸着した洗浄評価用サンプル 13を作成した。 そして、 洗 浄評価用サンプルに吸着した F eイオンを測定するために、 洗浄評価用 サンプルを 100°Cのお湯の中に 30分間浸漬し、 そのお湯を採取し原 子吸光分析装置にて評価用サンプル内の F e吸着残留量を測定した。  Fe ions were added dropwise to a mixed solution of ammonia, hydrogen peroxide and ultrapure water (however, the mixing ratio was adjusted so that the solution had a pH of 11), and the mixture was heated to 50 ° C. Next, the cleaning evaluation wafer was immersed in the mixed solution for 24 hours and washed with water for 20 minutes. Thereafter, the sample was dried for 20 minutes using an IPA vapor drier to prepare a washing evaluation sample 13 to which Fe ions were adsorbed. Then, in order to measure the Fe ions adsorbed on the cleaning evaluation sample, the cleaning evaluation sample was immersed in hot water at 100 ° C for 30 minutes, and the hot water was collected and evaluated with an atomic absorption spectrometer. The residual amount of Fe adsorption in the sample for use was measured.
このウェハを第 1図に示す本発明による洗浄方法 (超純水の水蒸気を ウェハ上で凝結する洗浄工程の前処理を含む洗浄工程) と、 例えば特開 昭 63— 14434号公報に示される従来の洗浄方法で洗浄を行い、 両 者を比較した。 洗浄液は、 フッ酸と過酸化水素水と超純水の混合洗浄溶 液 (ただし、 溶液が pH= 3となるように混合比を調製) を用意した。 本発明及び従来の洗浄方法で洗浄した各 25枚の洗浄評価用サンプル 内の F e吸着残留量の測定結果を表 3に示す。 本発明では、 どのサンプ ルにも測定装置の F eイオンの検出下限値以下 (0. 4p p b以下) と なった。 しかし、 従来の洗浄方法では、 F eイオンが検出ざれ、 本発明 の洗浄効果の優位さが示された。 0 A cleaning method according to the present invention shown in FIG. 1 (a cleaning step including a pretreatment of a cleaning step of condensing ultrapure water vapor on the wafer) and a conventional method disclosed in, for example, JP-A-63-14434. Washing was carried out by the washing method described above, and both were compared. As the cleaning solution, a mixed cleaning solution of hydrofluoric acid, hydrogen peroxide solution and ultrapure water (however, the mixing ratio was adjusted so that the solution had a pH of 3) was prepared. Table 3 shows the measurement results of the residual amount of Fe adsorption in each of the 25 cleaning evaluation samples cleaned by the present invention and the conventional cleaning method. In the present invention, the value was less than or equal to the lower limit of detection of Fe ion of the measuring device (less than 0.4 ppb) in all samples. However, in the conventional cleaning method, Fe ions were not detected, indicating the superiority of the cleaning effect of the present invention. 0
Figure imgf000012_0001
Figure imgf000012_0001
〈実施例 2〉 <Example 2>
半導体装置の製造工程のうち、 A 1を使用した一般的な配線の形成ェ 程 (例えば特開平 5— 3255号公報に記載) に本発明を実施した。 第 5図に、 半導体基板の断面の概略図を示す。 第 5図 (a) における 符号 14は S i基板、 16は S i基板 14の表面に形成された酸化膜、 17は A 1電極、 18〜20は層間絶縁層であって、 本実施例では、 C VD (化学的気相蒸着) 法にょリ形成された S i 02膜 18 (膜厚 20 0 OA) 、 3〇0膜19 (膜厚 600〜: I 20 OA) 、 CVD法により 形成された S i 02膜 20 (膜厚 200 OA) の 3層構造からなるもの とした。 なお、 S i基板 14は、 実施例 1と同様の洗浄方法 (超純水の 水蒸気をウェハ上で凝結する洗浄工程の前処理を含む洗浄工程) で予め 洗浄処理が施されたものを使用した。 The present invention was implemented in a general wiring forming process using A1 (for example, described in JP-A-5-3255) in the process of manufacturing a semiconductor device. FIG. 5 shows a schematic diagram of a cross section of the semiconductor substrate. In FIG. 5 (a), reference numeral 14 denotes an Si substrate, 16 denotes an oxide film formed on the surface of the Si substrate 14, 17 denotes an A1 electrode, and 18 to 20 denote interlayer insulating layers. , SiO 2 film 18 (thickness 200 OA), 3〇0 film 19 (thickness 600 ~: I 20 OA) formed by CVD (chemical vapor deposition) method, formed by CVD method It had a three-layer structure of the obtained SiO 2 film 20 (film thickness 200 OA). Note that the Si substrate 14 used was a substrate that had been subjected to a cleaning process in advance by the same cleaning method as in Example 1 (a cleaning process including a pre-process of a cleaning process of condensing water vapor of ultrapure water on a wafer). .
第 5図 (a) に示すように、 フルォロカーボン系の C F 3、 C2F 6 等 を使用してドライエッチングによって層間絶縁膜層に孔の開口径が 1. 2 μ mのスル一ホール 21を形成して、 半導体基板上の A 1電極 17を 露出させる。 次に、 半導体基板を本発明により、 23°C、 20 T 0 r r で水蒸気を供給後、 80°Cの有機アルカリ液からなる処理液で 15分間 洗浄し、 ドライエッチングの際に生成した第 5図 (b) に示す副生成物 22を除去した。 次に、 20分間水洗を行った。 As shown in Fig. 5 (a), through holes 21 with a hole diameter of 1.2 μm are formed in the interlayer insulating film layer by dry etching using fluorocarbon CF 3 , C 2 F 6, etc. Then, the Al electrode 17 on the semiconductor substrate is exposed. Next, according to the present invention, the semiconductor substrate is supplied with steam at 23 ° C. and 20 T 0 rr, and then washed with a treatment solution composed of an organic alkali solution at 80 ° C. for 15 minutes. By-products shown in Figure (b) 22 was removed. Next, it was washed with water for 20 minutes.
次に、 スルーホール内部に水分が浸入しているので、 本発明にて 10 mTo r r程度の雰囲気中で乾燥した。 この状態においてスルーホール よリ露出させた A】電極には、 従来洗浄方法では生じた薄い A 1203な どの絶縁物の生成が見られなかった。 Next, since moisture had penetrated into the through-hole, it was dried in an atmosphere of about 10 mTorr according to the present invention. The A electrodes to expose by through holes Li in this state, generating a thin A 1 2 0 3 of any insulator that occurred was not observed in the conventional cleaning method.
次に、 A rスパッタ処理などを行う。  Next, an Ar sputtering process is performed.
さらに、 第 5図 (c) に示すように、 多層化するために A 1電極 17 上を含む基板表面に A 1配線層 17' を形成し、 これをパターン化して A 1電極 17につながる配線を形成する場合には上述した同様の要領に 従えばよい。  Furthermore, as shown in FIG. 5 (c), an A 1 wiring layer 17 ′ is formed on the substrate surface including on the A 1 electrode 17 for multilayering, and is patterned to form a wiring connected to the A 1 electrode 17. In the case where is formed, the same procedure as described above may be followed.
以上の工程で配線を形成した後に、 各配線層の接続状況について調査 した。 その結果、 配線層相互のコンタク ト不良はほとんどなく、 接触抵 抗は、 従来の接続に比較してきわめて小さいことが確かめられた。 従つ て、 本発明にょリ不良率が 5%減少し、 半導体を高品質、 高歩留まりで 製造することができた。  After wiring was formed in the above steps, the connection status of each wiring layer was investigated. As a result, it was confirmed that there was almost no contact failure between the wiring layers, and that the contact resistance was extremely small compared to the conventional connection. Therefore, according to the present invention, the defect rate was reduced by 5%, and semiconductors could be manufactured with high quality and high yield.
〈実施例 3〉  <Example 3>
半導体装置の製造工程のうち、 C IIを使用した一般的な配線の形成ェ 程 (例えば特開平 6— 326101号公報に記載) に本発明を実施した。 以下、 第 6図に示した半導体装置の製造工程図 (断面図) に従って説明 する。  The present invention was implemented in a general interconnect formation process using CII (for example, described in JP-A-6-326101) in a semiconductor device manufacturing process. Hereinafter, description will be made with reference to the manufacturing process diagram (cross-sectional view) of the semiconductor device shown in FIG.
第 6図 (a) に示すように、 拡散層等を有する (図示省略) 半導体基 板 23上に、 絶緣膜 (例えば BPSG膜 24 (ボロン ' リン ' シリケ一 トガラス) を CVD法にょリ形成する。 続いて、 その上にスパッタ法に より、 丁 1膜25を、 その上に T i N膜 26を形成し、 さらにその上に Cu膜 27を堆積する。 なお、 半導体基板 23としては、 実施例 1, 2 で説明したように、 予め水蒸気を基板上で凝結する洗浄の前処理工程を 含む本発明の洗浄方法で処理したものを使用した。 As shown in FIG. 6A, an insulating film (for example, BPSG film 24 (boron phosphorus phosphorus silicate glass)) is formed on a semiconductor substrate 23 having a diffusion layer and the like (not shown) by a CVD method. Subsequently, a film 25 is formed thereon by sputtering, a TiN film 26 is formed thereon, and a Cu film 27 is further deposited thereon. As explained in Examples 1 and 2, the pre-cleaning process for condensing water vapor on the substrate in advance Used in the cleaning method of the present invention.
次いで、 第 6図 (b) に示すように、 前記構造の上にレジスト 28を 塗布し、 周知のホトリソグラフィ 'エッチング技術にてパタ一ユングす る。  Next, as shown in FIG. 6 (b), a resist 28 is applied on the above structure, and patterned by a well-known photolithography and etching technique.
続いて、 第 6図 (c) に示すように、 そのレジスト 28をマスクにし て前記 Cu膜、 T i N膜、 T i膜をパターユングする。 つまリ配線とな る部分以外をエツチング除去する。  Subsequently, as shown in FIG. 6 (c), the Cu film, the TiN film, and the Ti film are patterned using the resist 28 as a mask. Etch and remove the part other than the part that becomes the wiring.
次いで、 第 6図 (d) に示すように、 前記レジストを除去した後、 フ ッ酸と過酸化水素水と超純水の混合洗浄液 (ただし、 溶液が PH=3と なるように混合比を調製) を実施例 1で述べた本発明の洗浄方法に従つ て洗浄及び乾燥を行った。  Next, as shown in FIG. 6 (d), after removing the resist, a mixed cleaning solution of hydrofluoric acid, hydrogen peroxide solution and ultrapure water (however, the mixing ratio is adjusted so that the solution becomes PH = 3). Was washed and dried according to the washing method of the present invention described in Example 1.
次に、 第 6図 (e) に示す CVD法にょリ前記工程で残った T i膜、 T i N膜、 Cu膜の 3層構造の配線部分を W膜 29で被覆する。  Next, the W film 29 covers the wiring portion having the three-layer structure of the Ti film, the TiN film, and the Cu film remaining in the above-described process according to the CVD method shown in FIG.
次いで、 第 6図 (f ) のように、 全体をパッシベーシヨン膜 30 (例 えば T i N膜) を CVD法で形成し、 配線部分を主体とした構造を完成 させた。  Next, as shown in FIG. 6 (f), a passivation film 30 (for example, a TiN film) was entirely formed by a CVD method to complete a structure mainly including a wiring portion.
従来の洗浄装置と比較して、 本発明の洗浄方法を適用した半導体装置 の製造方法により、 不良率が 5%減少し、 半導体装置を高品質、 高歩留 まりで製造することができた。 産業上の利用可能性  Compared with the conventional cleaning apparatus, the method of manufacturing a semiconductor device to which the cleaning method of the present invention is applied reduces the rejection rate by 5%, and makes it possible to manufacture the semiconductor device with high quality and high yield. Industrial applicability
以上詳述したように、 本発明により所期の目的を達成することができ た。 すなわち、 洗浄工程の前処理工程として、 その雰囲気の飽和蒸気圧 と温度を制御することによリ、 凹凸の激しい複雑な表面形状を有する半 導体ウェハに容易に洗浄液が浸入し、 洗浄及び乾燥を効果的に行うこと ができ、 半導体ウェハの洗浄に利用することができる。 また、 本発明は、 半導体ウェハの洗浄のみならず、 薄膜デバイス、 ディスク等の基板の洗 浄に利用できることは言うまでもない。 As described in detail above, the intended object has been achieved by the present invention. In other words, by controlling the saturated vapor pressure and temperature of the atmosphere as a pretreatment step of the cleaning step, the cleaning liquid easily penetrates into the semiconductor wafer having a complicated surface shape with severe irregularities, thereby performing cleaning and drying. It can be performed effectively and can be used for cleaning semiconductor wafers. In addition, the present invention It goes without saying that it can be used not only for cleaning semiconductor wafers, but also for cleaning substrates such as thin film devices and disks.

Claims

請 求 の 範 囲 . 半導体基板を洗浄液で洗浄するに際し、 その前処理工程として、 予 め洗浄液を気化しその蒸気を前記半導体基板上で凝結させる工程を有 してなる半導体基板の洗浄方法。A method of cleaning a semiconductor substrate, comprising a step of preliminarily evaporating the cleaning liquid and condensing the vapor on the semiconductor substrate as a pretreatment step before cleaning the semiconductor substrate with the cleaning liquid.
. 半導体基板を洗浄液で洗浄するに際し、 予め洗浄液を気化しその蒸 気を前記半導体基板上で液体に凝結させる前処理工程と、 該前処理工 程の後に洗浄液による洗浄工程を有してなる半導体基板の洗浄方法。 . 洗浄液を気化しその蒸気を半導体基板上で液体に凝結させる前処理 工程を、 処理雰囲気内の雰囲気圧をその雰囲気内の温度での液体の飽 和蒸気圧以上に上昇させて液体を半導体基板上に凝結させる工程とし てなる請求の範囲 1もしくは 2記載の半導体基板の洗浄方法。 In cleaning a semiconductor substrate with a cleaning liquid, a semiconductor comprising a pretreatment step of vaporizing the cleaning liquid in advance and condensing the vapor into a liquid on the semiconductor substrate; and a cleaning step with the cleaning liquid after the pretreatment step. Substrate cleaning method. The pretreatment step of vaporizing the cleaning liquid and condensing the vapor into a liquid on the semiconductor substrate is performed by increasing the atmospheric pressure in the processing atmosphere to a level higher than the saturated vapor pressure of the liquid at the temperature in the atmosphere. 3. The method for cleaning a semiconductor substrate according to claim 1, wherein said method is a step of coagulating on a semiconductor substrate.
. 洗浄液を気化しその蒸気を半導体基板上で液体に凝結させる前処理 工程を、 処理雰囲気内の温度を液体の飽和蒸気圧になるときの温度以 下に降下させて液体を半導体基板上に凝結させる工程としてなる請求 の範囲 1もしくは 2記載の半導体基板の洗浄方法。 In the pre-treatment process of evaporating the cleaning liquid and condensing the vapor into a liquid on the semiconductor substrate, the liquid in the processing atmosphere is reduced to a temperature below the saturation vapor pressure of the liquid to condense the liquid on the semiconductor substrate. 3. The method for cleaning a semiconductor substrate according to claim 1 or 2, wherein the cleaning is performed as a step.
. 洗浄液を気化しその蒸気を半導体基板上で液体に凝結させる前処理 工程を、 処理雰囲気内の雰囲気圧をその雰囲気内の温度での液体の飽 和蒸気圧以上に上昇させると共に、 温度を液体の飽和蒸気圧になると きの温度以下に降下させて液体を半導体基板上に凝結させる工程とを 有し、 処理雰囲気内の飽和蒸気圧と温度とを制御して基板上で蒸気を 液体に凝結する工程となした請求の範囲 1もしくは 2記載の半導体基 板の洗浄方法。The pre-treatment process of vaporizing the cleaning liquid and condensing the vapor into a liquid on the semiconductor substrate is performed by raising the atmospheric pressure in the processing atmosphere to a value higher than the saturated vapor pressure of the liquid at the temperature in the atmosphere and raising the temperature to liquid. Controlling the saturated vapor pressure and temperature in the processing atmosphere to condense the vapor to liquid on the substrate by lowering the temperature below the temperature at which the saturated vapor pressure is reached. 3. The method for cleaning a semiconductor substrate according to claim 1 or 2, wherein the cleaning is performed.
. 洗浄工程の後に、 処理雰囲気内の雰囲気圧をその雰囲気内の温度で の液体の飽和蒸気圧以下に下降させて半導体基板から液体を除去する 乾燥工程を付加してなる請求の範囲 1乃至 5のいずれか一つに記載の 半導体基板の洗浄方法。Claims 1 to 5 further comprising, after the cleaning step, a drying step of removing the liquid from the semiconductor substrate by lowering the atmospheric pressure in the processing atmosphere to a value lower than the saturated vapor pressure of the liquid at the temperature in the processing atmosphere. Described in any one of A method for cleaning a semiconductor substrate.
. 洗浄工程の後に、 処理雰囲気内の温度を液体の飽和蒸気圧になると きの温度以上に上昇させて半導体基板から液体を除去する乾燥工程を 付加してなる請求の範囲 1乃至 5のいずれか一つに記載の半導体基板 の洗浄方法。 The method according to any one of claims 1 to 5, further comprising, after the cleaning step, a drying step of removing the liquid from the semiconductor substrate by increasing the temperature in the processing atmosphere to a temperature or higher at which the saturated vapor pressure of the liquid is reached. A method for cleaning a semiconductor substrate according to one aspect.
. 洗浄工程の後に、 処理雰囲気内の雰囲気圧をその雰囲気内の温度で の液体の飽和蒸気圧以下に下降させると共に、 処理雰囲気内の温度を 液体の飽和蒸気圧になるときの温度以上に上昇させて半導体基板から 液体を除去する乾燥工程を付加してなる請求の範囲 1乃至 5のいずれ か一つに記載の半導体基板の洗浄方法。  After the cleaning process, the atmospheric pressure in the processing atmosphere is reduced below the saturated vapor pressure of the liquid at the temperature in the atmosphere, and the temperature in the processing atmosphere is raised above the temperature at which the saturated vapor pressure of the liquid is reached. 6. The method for cleaning a semiconductor substrate according to claim 1, further comprising a drying step of removing a liquid from the semiconductor substrate.
9 . 洗浄工程における洗浄液に超音波を照射する工程を付加してなる請 求の範囲 1乃至 8いずれか一つに記載の半導体基板の洗浄方法。  9. The method for cleaning a semiconductor substrate according to any one of claims 1 to 8, wherein a step of irradiating the cleaning liquid with ultrasonic waves in the cleaning step is added.
1 0 . 洗浄液を、 水もしくは薬液で構成してなる請求の範囲 1乃至 9い ずれか一つに記載の半導体基板の洗浄方法。 10. The method for cleaning a semiconductor substrate according to any one of claims 1 to 9, wherein the cleaning liquid comprises water or a chemical solution.
1 1 . 洗浄液を、 ①フッ化水素酸、 塩酸、 硫酸、 硝酸、 及び酢酸を含む 有機酸の少なく とも 1種の酸を含む酸性溶液、 ②前記酸性溶液①と過 酸化水素水及びフッ化アンモニゥムの少なくとも 1種とを含む酸性溶 液、 ③アンモニア水及びアミン少なくとも 1種を含むアルカリ性溶液、 ④前記アルカリ性溶液③と過酸化水素水及びフッ化アンモニゥムの少 なくとも 1種とを含むアルカリ性溶液、 ⑤前記①もしくは②の酸性溶 液と前記③もしくは④のアルカリ性溶液とを含む混合液、 もしくは⑥ 水を含む中性溶液で構成してなる請求の範囲 1乃至 9いずれか一つに 記載の半導体基板の洗浄方法。 1 1. The cleaning solution is composed of ① an acidic solution containing at least one kind of organic acid including hydrofluoric acid, hydrochloric acid, sulfuric acid, nitric acid, and acetic acid, ② the acidic solution ②, hydrogen peroxide solution and ammonium fluoride. An acidic solution containing at least one of the following: ③ an alkaline solution containing ammonia water and at least one of amines; ④ an alkaline solution containing the alkaline solution ③ and at least one of hydrogen peroxide solution and ammonium fluoride; 10. The semiconductor according to any one of claims 1 to 9, comprising a mixed solution containing the acidic solution of (1) or (2) and the alkaline solution of (3) or (2), or (2) a neutral solution containing water. Substrate cleaning method.
1 2 . 洗浄液を、 有機溶剤で構成してなる請求の範囲 1乃至 9いずれか 一つに記載の半導体基板の洗浄方法。  12. The method for cleaning a semiconductor substrate according to any one of claims 1 to 9, wherein the cleaning liquid comprises an organic solvent.
1 3 . 洗浄液に、 界面活性剤及び有機溶剤の少なくとも 1種を添加剤と して含有せしめてなる請求の範囲 1乃至 9いずれか一^ ^に記載の半導 体基板の洗浄方法。13 3. Add at least one of surfactant and organic solvent to the cleaning solution 10. The method for cleaning a semiconductor substrate according to any one of claims 1 to 9, wherein the semiconductor substrate is contained.
4 . 界面活性剤を、 陽イオン界面活性剤、 陰イオン界面活性剤及び両 性界面活性剤の少なく とも 1種で構成してなる請求の範囲 1 3記載の 半導体基板の洗浄方法。 4. The method for cleaning a semiconductor substrate according to claim 13, wherein the surfactant comprises at least one of a cationic surfactant, an anionic surfactant and an amphoteric surfactant.
5 . 少なくとも半導体基板の洗浄工程を有する半導体装置の製造方法 において、 該洗浄工程を、 請求の範囲 1乃至 1 4のいずれか一つに記 載の半導体基板の洗浄方法で構成してなる半導体装置の製造方法。  5. A method for manufacturing a semiconductor device having at least a semiconductor substrate cleaning step, wherein the cleaning step is constituted by the semiconductor substrate cleaning method according to any one of claims 1 to 14. Manufacturing method.
PCT/JP1998/004134 1997-09-17 1998-09-14 Method of washing semiconductor substrate and method of producing semiconductor devices using the same method WO1999014801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/251557 1997-09-17
JP25155797A JPH1197406A (en) 1997-09-17 1997-09-17 Cleaning method for semiconductor substrate and manufacture of semiconductor device using method thereof

Publications (1)

Publication Number Publication Date
WO1999014801A1 true WO1999014801A1 (en) 1999-03-25

Family

ID=17224599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004134 WO1999014801A1 (en) 1997-09-17 1998-09-14 Method of washing semiconductor substrate and method of producing semiconductor devices using the same method

Country Status (2)

Country Link
JP (1) JPH1197406A (en)
WO (1) WO1999014801A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385863B1 (en) * 1999-06-04 2002-05-14 Sez Semiconductor-Equipment Zubenor Fur Die Habbleiterfertigung Process and device for drying disk-like objects

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452894B2 (en) * 2008-07-17 2014-03-26 東京エレクトロン株式会社 Substrate processing method, substrate processing apparatus, and storage medium
JP6696441B2 (en) * 2017-01-12 2020-05-20 株式会社デンソー Wet etching equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177327A (en) * 1988-12-27 1990-07-10 Mitsubishi Electric Corp Cleaning of semiconductor wafer, etching thereof and semiconductor wafer treatment device
JPH0327524A (en) * 1989-06-23 1991-02-05 Mitsubishi Electric Corp Apparatus for processing of semiconductor wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177327A (en) * 1988-12-27 1990-07-10 Mitsubishi Electric Corp Cleaning of semiconductor wafer, etching thereof and semiconductor wafer treatment device
JPH0327524A (en) * 1989-06-23 1991-02-05 Mitsubishi Electric Corp Apparatus for processing of semiconductor wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385863B1 (en) * 1999-06-04 2002-05-14 Sez Semiconductor-Equipment Zubenor Fur Die Habbleiterfertigung Process and device for drying disk-like objects

Also Published As

Publication number Publication date
JPH1197406A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
US20030172954A1 (en) Methods and apparatuses for drying wafer
JP2003023000A5 (en)
JP4578507B2 (en) Semiconductor device manufacturing method, semiconductor manufacturing apparatus, and storage medium
US5902122A (en) Method of manufacturing an ILD layer by plasma treatment before applying SOG
US6784109B2 (en) Method for fabricating semiconductor devices including wiring forming with a porous low-k film and copper
US8158534B2 (en) Reduction of defects formed on the surface of a silicon oxynitride film
WO1999014801A1 (en) Method of washing semiconductor substrate and method of producing semiconductor devices using the same method
US5431964A (en) Method of pretreating the deposition chamber and/or the substrate for the selective deposition of tungsten
TWI242234B (en) Method of improving device performance
JPH10308355A (en) Manufacture of semiconductor substrate
JP4325095B2 (en) Manufacturing method of SiC element
JPH1187290A (en) Semiconductor substrate cleaning method and manufacture of semiconductor device using the same
EP1065714A1 (en) Method of fabricating semiconductor device
JP4515309B2 (en) Etching method
JP2558273B2 (en) Surface cleaning method
JPH1197401A (en) Method for cleaning semiconductor substrate and manufacture of semiconductor device using the method
JP2002016119A (en) Manufacturing method of semiconductor device and semiconductor cleaning evaluation method
JP3204041B2 (en) Method of forming insulating film
KR20000044890A (en) Method for forming inter level insulation film using flow-fill thin film of semiconductor device
TW501225B (en) Element with at least two adjacent isolation-layers and its production method
KR100972061B1 (en) Processing method of pad aluminum of semiconductor device
KR100563786B1 (en) Method for forming contact of semiconductor device
JP4609616B2 (en) Cleaning agent for semiconductor devices
JPH053255A (en) Method of forming multilayer metallic wiring later in semiconductor device
JP2001345363A (en) Surface treating method, surface treatment evaluating method, structure for evaluation and semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase