WO1999014560A1 - Vorrichtung zur messung der masse eines strömenden mediums - Google Patents

Vorrichtung zur messung der masse eines strömenden mediums Download PDF

Info

Publication number
WO1999014560A1
WO1999014560A1 PCT/DE1998/001892 DE9801892W WO9914560A1 WO 1999014560 A1 WO1999014560 A1 WO 1999014560A1 DE 9801892 W DE9801892 W DE 9801892W WO 9914560 A1 WO9914560 A1 WO 9914560A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
channel
measuring channel
deflection
flow
Prior art date
Application number
PCT/DE1998/001892
Other languages
English (en)
French (fr)
Inventor
Wolfgang Müller
Klaus Reymann
Uwe Konzelmann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP98943658A priority Critical patent/EP0938648B1/de
Priority to DE59814419T priority patent/DE59814419D1/de
Priority to US09/308,269 priority patent/US6779393B1/en
Priority to JP51725599A priority patent/JP3953535B2/ja
Publication of WO1999014560A1 publication Critical patent/WO1999014560A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow

Definitions

  • the invention relates to a device for measuring the mass of a flowing medium according to the preamble of claim 1.
  • a device is already known (DE-PS 44 07 209) which has a temperature-dependent measuring element which is accommodated in a rectilinear measuring channel .
  • the measuring channel extends in the
  • the measuring channel has a rectangular flow cross-section, two side surfaces facing the plate-shaped measuring element being designed to run obliquely, so that the measuring channel tapers in the flow direction of the medium.
  • a surface of the measuring channel which extends transversely to the side surfaces, from which the measuring element protrudes, and a lower surface of the measuring channel which is opposite the surface run flat or parallel with a constant distance from one another.
  • the measuring channel and the deflection channel are essentially formed from two parts, a part referred to below as the bottom part with the measuring element having a side surface, a surface and a bottom surface of the measuring channel and the Deflection channel contains.
  • the other part has only the second side surface of the measuring channel and the deflection channel and thus forms a cover part.
  • the bottom part and the cover part are preferably made of plastic, for example using plastic injection molding technology.
  • the device according to the invention for measuring the mass of a flowing medium with the characterizing features of claim 1 has the advantage that devices with a housing suitable for production can be mass-produced in such a way that only extremely small variations in the measuring accuracy occur. It is also particularly advantageous that Design of the walls of the measuring channel according to the invention furthermore allows acceleration of the flow in the measuring channel to be maintained, which is known to lead to stabilization of the flow of the medium in the measuring channel, in particular at the inlet.
  • An inclined configuration of an edge surface of the deflection channel with which it is possible to further simplify the manufacture of the measurement channel and the deflection channel, is particularly advantageous, which also leads to a further improvement in the measurement result.
  • the device has a significantly reduced measurement signal noise that can arise from turbulence occurring in the measurement channel.
  • FIG. 1 shows a partial sectional view of a side view of the device according to a first embodiment of the invention
  • Figure 2 shows a section through the Device along a line II-II in Figure 1
  • Figure 3 in partial sectional view a side view of the device according to a second embodiment of the invention.
  • FIG. 1 shows, in a partial sectional illustration, a side view of a device identified by 1, which is used to measure the mass of a flowing medium, in particular the intake air mass of internal combustion engines.
  • the internal combustion engine can be a mixture-compressing, spark-ignited or also an air-compressing, self-igniting.
  • the device 1 preferably has a slim, rod-shaped, cuboid shape that extends in the direction of a plug-in axis 10 and is, for example, inserted into an opening of a suction line 9 that is recessed from a wall 8.
  • the device 1 is sealed by means of a sealing ring 3 in the wall 8 and, for example by means of a screw connection, not shown, is firmly connected to the latter.
  • the hatched wall 8 is part of the, for example, cylindrical suction line 9 through which the internal combustion engine can suck in air from the surroundings via an air filter (not shown).
  • the wall 8 of the suction line 9 delimits a flow cross section, which in the case of the cylindrical suction line 9 has approximately a circular cross section, in the middle of which is parallel to the axial direction
  • Wall 8 extends a central axis 11 which is oriented perpendicular to the plug axis 10.
  • the device 1 projects into the flowing medium with a part referred to below as the measuring part 17, the measuring part 17 being located, for example, approximately in the region of the center of the suction line 9.
  • the device 1 is composed, for example, in one piece from the measuring part 17, a carrier part 18 and a holding part 19 and is preferably made of plastic using plastic injection molding technology.
  • a measuring element 21 is designed, for example, in the form of a so-called micromechanical component and has a plate-shaped carrier body 20 based on silicon, with a membrane-shaped sensor region which has been produced by etching and has an extremely small thickness and a plurality of resistance layers which have likewise been produced by etching. These resistance layers form at least one temperature-dependent measuring resistor and, for example, a heating resistor.
  • the heating resistor which can be switched off with the help of a
  • Temperature sensor is regulated to an excess temperature. Upstream and downstream of the heating area formed by the heating resistor there are two measuring resistors arranged symmetrically to the heating area.
  • a measuring element is known from the already mentioned SAE paper 950433 as well as from DE-OS 42 19 454, the disclosure of both documents being expressly part of the present patent application.
  • the carrier body 20 of the measuring element 21 is housed flush in a recess in a plate-shaped receptacle 23, for example made of metal, and is held, for example, by gluing.
  • the individual resistance layers of the measuring element 21 are electrically connected by means of connecting lines 26 running inside the device 1 to an electronic evaluation circuit 27 shown in dashed lines in FIGS. 1 and 3, which contains for example a bridge-like resistance measuring circuit. With a connector 28 provided on the holding part 19, the electrical provided by the evaluation circuit 27 can Signals, for example, are also fed to another electronic control unit for evaluation.
  • the measuring part 17 of the device 1 has a cuboid shape and a measuring channel 30, which extends along a measuring channel axis 12 running centrally in the measuring channel 30 from an inlet 32 having a rectangular cross section to a likewise rectangular cross section Outlet 33 extends.
  • the device 1 is in the
  • Suction line 9 preferably installed with the measuring channel axis 12 parallel to the central axis 11.
  • the measuring channel 30 merges downstream into an S-shaped deflection channel 31.
  • the measuring channel 30 is delimited by a surface 37 which is more distant from the central axis 11 and is at the top in FIGS. 1 and 3, and by a lower surface 38 which is closer to the central axis 11 and at the bottom in FIGS. 1 and 3 and by two side surfaces 39, 40, in Figures 1 and 3 only one of the side surfaces running parallel to the plane of the drawing, namely the
  • Inlet 34 of the deflection channel 31 represents.
  • the measuring element 21 with the resistance layers has a surface 24 which is exposed to the flow 43 in the measuring channel 30 and which is aligned with a surface 25 of the receptacle 23.
  • the in a plane transverse or substantially perpendicular to the surface 24 of the Plate-shaped measuring element 21 extending surfaces 37, 38 of the measuring channel 30 enclose an inclination angle ⁇ , which is preferably approximately 8 °.
  • FIG. 2 a sectional illustration along a line II-II in FIG. 1, the two side surfaces 39 and 40 run approximately parallel to the surface 24 of the measuring element 21. It therefore only results from the surfaces 37, 38 that converge an axial taper of the measuring channel 30 in the flow direction 43, the measuring element 21 preferably being arranged somewhat upstream of the narrowest point 36 of the measuring channel 30.
  • the tapering of the measuring channel 30 provided in the flow direction 43 or the steady reduction in the flow cross-section from the inlet 32 to the outlet 33 has the effect that an accelerated flow results in the area of the measuring element 21, which produces an almost undisturbed, uniform parallel flow in the area of the measuring element 21 causes.
  • Wall of the bottom part 45 in the region of the side surface 39 and the cover part 46 in the region of the side surface 40 is constant.
  • the constant thickness of the walls in the region of the side surfaces 39, 40 in addition to the simpler production method during injection molding, gives the advantage that a constant cooling rate can be achieved, which ensures compliance with an exact Flatness of surfaces 39 and 40 guaranteed.
  • Design of the recesses 48 can be achieved in particular in the region of the tapered measuring channel 30, a constant wall thickness, which leads to a constant cooling rate during manufacture, so that depressions or warpage on the surfaces 37, 38 of the measuring channel 30 can also be excluded.
  • FIG. 3 shows a second exemplary embodiment according to the invention, in which all the same or equivalent parts are shown with the same reference numerals from FIGS. 1 and 2.
  • the device 1 shown in FIG. 3 has a deflection channel 31 which is somewhat modified compared to FIG. 1 and whose edge surface 50, which runs perpendicular to the plane of the drawing, of a first section 51 of the deflection channel 31 directly adjoining the measuring channel 30 runs obliquely to the measuring channel axis 12.
  • An inclination angle ⁇ enclosed by the measuring channel axis 12 and the edge surface 50 is preferably approximately 45 °. However, it is also possible to design the edge surface 50 with an angle of inclination ⁇ which is in the range from approximately 30 ° to 60 °.
  • the inclined edge surface 50 is provided in order to divert the medium flowing from the outlet 33 of the measuring channel 30 into the first section 51 along the edge surface 50 into a second section 52 of the deflection channel 31, without an abrupt flow increase at one stage, as is the case in FIG Device 1 according to Figures 1 and 2 is the case.
  • the inclined design of the edge surface 50 also advantageously causes disturbances in the flow, which can occur, for example, in the form of eddies or in the form of pressure waves, emanating from the outlet 33 of the measuring channel 30 to be reflected at the edge surface 50.
  • an opening 60 can be provided downstream of the edge surface 50 in the deflection channel 31, which, for example in the form of a bore in the base part 45, connects the flow in the deflection channel 31 to the outside flow in the intake line 9. It is also conceivable to provide this opening 60 only in the cover part 46. Of course, there can also be a plurality of openings 60, for example in the base part 45 and / or in the cover part 46. Through the at least one opening 60 the from
  • Deflection channel 31 formed resonance space for the pressure waves downstream downstream of the outlet 33 of the measuring channel 30 are influenced in such a way that a pressure equalization leads to a weakening of the pressure waves reflected at the edge surface 50.
  • the size of the cross section of the at least one opening 60 allows the natural frequency of the resonance chamber to be matched to the frequency of the outgoing pressure waves in such a way that there is a further improvement in the measured value output by the measuring element 21.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Vorrichtung zur Messung der Masse eines strömenden Mediums mit einem temperaturabhängigen Meßelement mit einem Meßkanal (30), dessen senkrecht zu einer von Meßelement (21) aufgespannten Oberfläche (24) verlaufende Flächen (37, 38) geneigt sind und in Strömungsrichtung (43) des Mediums im Meßkanal (30) aufeinander zulaufen, wobei die Flächen (37-40) kontrollierbar konstante Wandstärken aufweisen. Die Erfindung ist insbesondere zur Messung der Ansaugluftmasse von Brennkraftmaschinen vorgesehen.

Description

Vorrichtung zur Messung der Masse eines strömenden Mediums
Stand der Technik
Die Erfindung geht aus von einer Vorrichtung zur Messung der Masse eines strömenden Mediums nach der Gattung des Anspruchs 1. Es ist schon eine Vorrichtung bekannt (DE-PS 44 07 209) , die ein temperaturabhängiges Meßelement aufweist, das in einem geradlinig verlaufenden Meßkanal untergebracht ist. Der Meßkanal erstreckt sich in der
Vorrichtung von einem Einlaß zu einem Auslaß, an den sich ein eine S-Form aufweisender Umlenkkanal anschließt. Das strömende Medium strömt von außen in den Meßkanal ein und anschließend in den Umlenkkanal, wo es aus einer Auslaßöffnung wieder ausströmt. Der Meßkanal hat einen rechteckfδrmigen Strömungsquerschnitt, wobei zwei dem plättchenförmigen Meßelement zugewandte Seitenflächen schräg verlaufend ausgebildet sind, so daß sich in Strömungsrichtung des Mediums im Meßkanal eine Verjüngung des Meßkanals ergibt. Eine quer zu den Seitenflächen verlaufende Oberfläche des Meßkanals, aus der das Meßelement herausragt und eine der Oberfläche gegenüberliegende Unterfläche des Meßkanals verlaufen dabei plan bzw. parallel mit gleichbleibendem Abstand zueinander. Eine mit einem derartigen Meßkanal ausgestattete Vorrichtung ist auch aus dem SAE-Paper 950433 (International Congress and Exposition Detroit, Michigan, February 27 - March 2, 1995, Reprinted from: Electronic Engine Controls 1995 (SP- 1082)) bekannt. Wie der Schnittdarstellung auf Seite 108 in Figur 7 oberes Bild entnehmbar ist, wird der Meßkanal und der Umlenkkanal im wesentlichen aus zwei Teilen gebildet, wobei ein im folgenden als Bodenteil bezeichnetes Teil mit dem Meßelement eine Seitenfläche, eine Oberfläche und eine Unterfläche des Meßkanals und des Umlenkkanals enthält. Das andere Teil besitzt nur die zweite Seitenfläche von Meßkanal und Umlenkkanal und bildet somit ein Deckelteil. Der Bodenteil und der Deckelteil sind vorzugsweise aus Kunststoff beispielsweise in Kunststoffspritzgußtechnik hergestellt. Bedingt durch die verjüngende Gestaltung der Seitenflächen des Meßkanals ergibt sich eine zunehmende Wanddicke in Strömungsrichtung. Bei der Herstellung hat sich gezeigt, daß es aufgrund der zunehmenden Wanddicke zu unterschiedlichen Abkühlungsgeschwindigkeiten und Materialanhäufungen kommt, die insbesondere zu Einsenkungen an den Seitenflächen des Meßkanals führen können. Bei einer vorgesehenen Massenherstellung der Vorrichtung hat dies die Folge, daß mehr oder weniger starke Streuungen der erzielbaren Meßgenauigkeit der Vorrichtungen auftreten.
Vorteile der Erfindung
Die erfindungsgemäße Vorrichtung zur Messung der Masse eines strömenden Mediums mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß in Massenherstellung Vorrichtungen mit einem fertigungsgerechten Gehäuse so herstellbar sind, daß nur äußerst geringe Streuungen der Meßgenauigkeit auftreten. Besonders vorteilhaft ist außerdem, daß durch die erfindungsgemäße Gestaltung der Wände des Meßkanals weiterhin eine Beschleunigung der Strömung im Meßkanal beibehalten werden kann, die bekanntermaßen zu einer Stabilisierung der Strömung des Mediums im Meßkanal, insbesondere am Einlaß, führt.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Vorrichtung möglich.
Besonders vorteilhaft ist eine geneigte Ausbildung einer Randfläche des Umlenkkanals, mit der es möglich ist, die Herstellung des Meßkanals und des Umlenkkanals weiter zu vereinfachen, wobei es außerdem zu einer weiteren Verbesserung des Meßergebnisses kommt.
Vorteilhaft ist ferner eine im Umlenkkanal vorgesehene Strömungsverbindung zur Außenstromung in der Ansaugleitung in Form einer Öffnung, mittels der eventuell noch vorhandene Reststörungen einer Druckwelle im Umlenkkanal gänzlich ausgeschaltet werden können, so daß sich eine weitere Verbesserung des Meßergebnisses erzielen läßt. Darüber hinaus weist die Vorrichtung ein deutlich reduziertes Meßsignalrauschen auf, das durch im Meßkanal auftretende Turbulenzen entstehen kann.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert . Es zeigen Figur 1 in teilweiser Schnittdarstellung eine Seitenansicht der Vorrichtung gemäß einem ersten erfindungsgemäßen Ausführungsbeispiel, Figur 2 einen Schnitt durch die Vorrichtung entlang einer Linie II-II in Figur 1, Figur 3 in teilweiser Schnittdarstellung eine Seitenansicht der Vorrichtung gemäß einem zweiten erfindungsgemäßen Ausführungsbeispiel .
Beschreibung der Ausführungsbeispiele
Die Figur 1 zeigt in teilweiser Schnittdarstellung eine Seitenansicht einer mit 1 gekennzeichneten Vorrichtung, die zur Messung der Masse eines strömenden Mediums, insbesondere der Ansaugluftmasse von Brennkraftmaschinen, dient. Bei der Brennkraftmaschine kann es sich um eine gemischverdichtende, fremdgezündete oder auch um eine luftverdichtende, selbstzündende handeln. Die Vorrichtung 1 hat vorzugsweise eine schlanke, stabförmige, sich in Richtung einer Steckachse 10 länglich erstreckende, quaderförmige Gestalt und ist in eine aus einer Wandung 8 ausgenommenen Öffnung einer Ansaugleitung 9 zum Beispiel steckbar eingeführt. Die Vorrichtung 1 ist mittels eines Dichtringes 3 in der Wandung 8 abgedichtet und beispielsweise mittels einer nicht näher dargestellten Schraubverbindung mit dieser fest verbunden. Die schraffiert dargestellte Wandung 8 ist Teil der beispielsweise zylindrisch ausgebildeten Ansaugleitung 9, durch die hindurch die Brennkraftmaschine über einen nicht näher dargestellten Luftfilter Luft aus der Umgebung ansaugen kann. Die Wandung 8 der Ansaugleitung 9 begrenzt einen Strömungsquerschnitt, der im Fall der zylindrischen Ansaugleitung 9 etwa einen kreisrunden Querschnitt aufweist, in dessen Mitte sich in axialer Richtung, parallel zur
Wandung 8 eine Mittelachse 11 erstreckt, die senkrecht zur Steckachse 10 orientiert ist. Die Vorrichtung 1 ragt mit einem im folgenden als Meßteil 17 bezeichneten Teil in das strömende Medium, wobei der Meßteil 17 sich beispielsweise etwa im Bereich der Mitte der Ansaugleitung 9 befindet. Die Vorrichtung 1 setzt sich zum Beispiel einstückig aus dem Meßteil 17, einem Trägerteil 18 und einem Halteteil 19 zusammen und ist vorzugsweise aus Kunststoff in Kunststoffspritzgußtechnik hergestellt. Ein Meßelement 21 ist beispielsweise in Form eines sogenannten mikromechanischen Bauteils ausgebildet und hat einen plattenförmigen Trägerkörper 20 auf Siliziumbasis, mit einem durch Ausätzen entstandenen membranförmigen Sensorbereich mit einer äußerst geringen Dicke und mehrere, ebenfalls durch Ausätzen entstandene Widerstandsschichten. Diese Widerstandsschichten bilden wenigstens einen temperaturabhängigen Meßwiderstand und beispielsweise einen Heizwiderstand. Vorzugsweise befindet sich in der Mitte der Membran der Heizwiderstand, der mit Hilfe eines
Temperaturfühlers auf eine Übertemperatur geregelt wird. Stromauf und stromab des vom Heizwiderstand gebildeten Heizbereichs befinden sich zwei, zum Heizbereich symmetrisch angeordnete Meßwiderstände. Ein derartiges Meßelement ist dem bereits genannten SAE-Paper 950433 wie auch durch die DE-OS 42 19 454 bekannt, wobei die Offenbarung beider Schriften ausdrücklich Bestandteil der hier vorliegenden Patentanmeldung sein soll. Der Trägerkörper 20 des Meßelements 21 ist dabei in eine Aussparung einer zum Beispiel aus Metall bestehenden plattenförmigen Aufnahme 23 bündig in dieser untergebracht und zum Beispiel durch Klebung gehalten. Die einzelnen Widerstandsschichten des Meßelements 21 sind mittels im Innern der Vorrichtung 1 verlaufenden Anschlußleitungen 26 mit einer in Figuren 1 und 3 gestrichelt dargestellten elektronischen Auswerteschaltung 27 elektrisch verbunden, die beispielsweise eine brückenähnliche Widerstandsmeßschaltung enthält. Mit einer am Halteteil 19 vorgesehenen Steckverbindung 28 können die von der AuswerteSchaltung 27 bereitgestellten elektrischen Signale beispielsweise auch einem weiteren elektronischen Steuergerät zur Auswertung zugeführt werden.
Wie in Figuren 1 und 2 dargestellt ist, besitzt der Meßteil 17 der Vorrichtung 1 eine quaderförmige Gestalt und einen Meßkanal 30, der sich entlang einer mittig im Meßkanal 30 verlaufenden Meßkanalachse 12 von einem einen rechteckförmigen Querschnitt aufweisenden Einlaß 32 zu einem ebenfalls einen rechteckförmigen Querschnitt aufweisenden Auslaß 33 erstreckt. Die Vorrichtung 1 ist in der
Ansaugleitung 9 vorzugsweise mit der Meßkanalachse 12 parallel zur Mittelachse 11 eingebaut . Es ist aber auch möglich, die Vorrichtung 1 mit schräger Einbaulage gedreht um die Steckachse 10 einzubauen. Denkbar ist auch, zusätzlich zur schrägen Einbaulage oder anstelle der schrägen Einbaulage, die Vorrichtung 1 in gekippter Einbaulage geneigt um die Mittelachse 11 einzubauen. Der Meßkanal 30 geht stromabwärts in einen eine S-Form aufweisenden Umlenkkanal 31 über. Der Meßkanal 30 ist von einer der Mittelachse 11 entfernteren, in den Figuren 1 und 3 oben liegenden Oberfläche 37 und von einer der Mittelachse 11 näheren, in den Figuren 1 und 3 unten liegenden Unterfläche 38 sowie von zwei Seitenflächen 39, 40 begrenzt, wobei in den Figuren 1 und 3 nur die eine der parallel zur Zeichenebene verlaufenden Seitenflächen, nämlich die
Seitenfläche 39 sichtbar ist. Die Oberfläche 37 und die Unterfläche 38 verlaufen in Richtung 43 des im Meßkanal 30 strömenden Mediums zum Meßelement 21 hin aufeinander zu und enden mit einem engsten Querschnitt an einer engsten Stelle 36 an dem Auslaß 33 des Meßkanals 30, der zugleich einen
Einlaß 34 des Umlenkkanals 31 darstellt. Das Meßelement 21 mit den Widerstandsschichten hat eine der Strömung 43 im Meßkanal 30 ausgesetzte Oberfläche 24, die mit einer Oberfläche 25 der Aufnahme 23 fluchtet. Die in einer Ebene quer bzw. im wesentlichen senkrecht zur Oberfläche 24 des plattenförmigen Meßelements 21 verlaufenden Flächen 37, 38 des Meßkanals 30 schließen dabei einen Neigungswinkel α ein, der vorzugsweise etwa 8° beträgt.
Wie in Figur 2, einer Schnittdarstellung entlang einer Linie II-II in Figur 1, näher dargestellt ist, verlaufen die beiden Seitenflächen 39 und 40 in etwa parallel zur Oberfläche 24 des Meßelements 21. Es ergibt sich somit nur durch die aufeinanderzulaufenden Flächen 37, 38 eine axiale Verjüngung des Meßkanals 30 in Strömungsrichtung 43, wobei das Meßelement 21 vorzugsweise etwas stromaufwärts der engsten Stelle 36 des Meßkanals 30 angeordnet ist. Die in Strömungsrichtung 43 vorgesehene Verjüngung des Meßkanals 30 bzw. stetige Verringerung des Strömungsquerschnittes vom Einlaß 32 zum Auslaß 33 hin hat den Effekt, daß im Bereich des Meßelements 21 sich eine beschleunigte Strömung ergibt, die eine nahezu ungestörte, gleichmäßige ParallelStrömung im Bereich des Meßelements 21 bewirkt.
Durch die erfindungsgemäße schräge Ausbildung der senkrecht zur Oberfläche 24 des Meßelements 21 verlaufenden Flächen 37, 38 ergibt sich, wie in Figur 2 dargestellt ist, ein die Seitenfläche 39 und die Flächen 37, 38 aufnehmendes Bodenteil 45 und ein mit dem Bodenteil 45 beispielsweise trennbar verbundenes Deckelteil 46, wobei die Dicke der
Wandung des Bodenteils 45 im Bereich der Seitenfläche 39 und des Deckelteils 46 im Bereich der Seitenfläche 40 konstant ist. Bei der vorgesehenen Herstellungsweise des Bodenteils 45 und des Deckelteils 46 durch KunststoffSpritzgießen ergibt sich durch die gleichbleibende Dicke der Wandungen im Bereich der Seitenflächen 39, 40 neben der einfacheren Herstellungsweise beim Spritzgießen der Vorteil, daß sich eine gleichbleibende Abkühlgeschwindigkeit einstellen kann, was die Einhaltung einer genauen Planheit der Flächen 39 und 40 gewährleistet. Wie in Figur 1 dargestellt ist, besitzt der Bodenteil 45 außerdem zum Beispiel mehrere rinnenförmige Vertiefungen 48, die zumindest am Randbereich des Meßteils 17 vorgesehen sind und in welche der Deckelteil 46 mittels Vorsprüngen eingreifen kann, um das Deckelteil 46 am Bodenteil 45 beispielsweise zu verrasten. Durch die
Gestaltung der Vertiefungen 48 läßt sich insbesondere im Bereich des verjüngend gestalteten Meßkanals 30 eine gleichbleibende Wandstärke bewerkstelligen, die beim Herstellen zu einer gleichbleibenden Abkühlgeschwindigkeit führt, so daß Einsenkungen oder Verwerfungen an den Flächen 37, 38 des Meßkanals 30 ebenfalls ausgeschlossen werden können.
In der Figur 3 ist ein zweites erfindungsgemäßes Ausführungsbeispiel dargestellt, bei dem alle gleichen oder gleichwirkenden Teile mit denselben Bezugszeichen der Figuren l und 2 dargestellt sind. Die in Figur 3 dargestellte Vorrichtung 1 weist einen gegenüber der Figur 1 etwas abgewandelt gestalteten Umlenkkanal 31 auf, dessen senkrecht zur Zeichenebene verlaufende Randfläche 50 eines an den Meßkanal 30 direkt anschließenden ersten Teilstücks 51 des Umlenkkanals 31 schräg zur Meßkanalachse 12 verläuft. Vorzugsweise beträgt dabei ein von der Meßkanalachse 12 und der Randfläche 50 eingeschlossener Neigungswinkel ß etwa 45°. Es ist aber auch möglich, die Randfläche 50 mit einem Neigungswinkel ß auszubilden, der im Bereich von etwa 30° bis 60° liegt. Die geneigte Randfläche 50 ist vorgesehen, um das vom Auslaß 33 des Meßkanals 30 in das erste Teilstück 51 einströmende Medium entlang der Randfläche 50 in ein zweites Teilstück 52 des Umlenkkanals 31 umzuleiten, ohne daß eine abrupte Strömungsvergrößerung an einer Stufe vorliegt, wie dies bei der Vorrichtung 1 gemäß Figuren 1 und 2 der Fall is . Die geneigte Ausbildung der Randfläche 50 bewirkt neben einer einfacher herzustellenden Kanalkontur vorteilhafterweise auch, daß vom Auslaß 33 des Meßkanals 30 ausgehende Störungen in der Strömung, die zum Beispiel in Form von Wirbeln oder in Form von Druckwellen auftreten können, an der Randfläche 50 reflektiert werden. Durch diese zeit- und ortsabhängige Reflexion der Störungen an der Randfläche 50 kann eine Beeinflussung des vom Meßelement 21 abgegebenen elektrischen Signals aufgrund von Störungen in der Strömung nahezu vollständig ausgeschlossen werden, so daß sich ein präzises Meßergebnis des Meßelements 21 einstellt. Außerdem kann noch stromabwärts der Randfläche 50 eine Öffnung 60 im Umlenkkanal 31 vorgesehen sein, die beispielsweise in Form einer Bohrung im Bodenteil 45 eine Verbindung der Strömung im Umlenkkanal 31 zur Außenströmung in der Ansaugleitung 9 herstellt. Denkbar ist auch, diese Öffnung 60 nur im Deckelteil 46 vorzusehen. Selbstverständlich können auch mehrere Öffnungen 60 zum Beispiel im Bodenteil 45 und/oder im Deckelteil 46 vorhanden sein. Durch die zumindest eine Öffnung 60 kann der vom
Umlenkkanal 31 gebildete Resonanzraum für die stromab des Auslasses 33 des Meßkanals 30 abgehenden Druckwellen derart beeinflußt werden, daß es durch einen Druckausgleich zu einer Abschwächung der an der Randfläche 50 reflektierten Druckwellen kommt. Es läßt sich dabei durch die Größe des Querschnitts der zumindest einen Öffnung 60 die Eigenfrequenz des Resonanzraums auf die Frequenz der abgehenden Druckwellen in der Weise abstimmen, daß es zu einer weiteren Verbesserung des vom Meßelement 21 abgegebenen Meßwertes kommt.

Claims

Patentansprüche
1. Vorrichtung zur Messung der Masse eines strömenden Mediums , insbesondere der Ansaugluf von Brennkraftmaschinen, mit einem vom strömenden Medium umströmten, temperaturabhängigen Meßelement, das in einem in der Vorrichtung verlaufenden Meßkanal angeordnet ist, der sich von einem Einlaß zu einem Auslaß erstreckt, an den sich ein Umlenkkanal anschließt, wobei der Meßkanal zwei in Richtung der Strömung im Meßkanal aufeinander zulaufende
Flächen hat, dadurch gekennzeichnet, daß die quer zu einer vom Meßelement (21) aufgespannten Oberfläche (24) liegenden Flächen (37, 38) des Meßkanals (30) geneigt ausgebildet sind und in Strömungsrichtung (43) des Mediums im Meßkanal (30) aufeinander zulaufen.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Strömungsquerschnitt des Meßkanals (30) rechteckförmig ist und zwei zur Oberfläche (24) des Meßelements (21) parallel verlaufende Flächen (39, 40) aufweist.
3. Vorrichtung nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß jeweils ein von den aufeinanderzulaufenden Flächen (37; 38) und einer mittig durch den Meßkanal (30) hindurchgehenden Achse (12) eingeschlossener Neigungswinkel α etwa 8° beträgt.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Meßkanal (30) und der Umlenkkanal (31) aus zwei zusammensetzbaren Teilen, einem Bodenteil (45) und einem Deckelteil (46) , gebildet wird.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß eine Randfläche (50) eines ersten Teilstücks (51) des
Umlenkkanals (31) zu einer mittig durch den Meßkanal (30) hindurchgehenden Achse (12) geneigt ausgebildet ist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß ein von der Randfläche (50) und der Achse (12) des Meßkanals
(30) eingeschlossener Neigungswinkel ß im Bereich von etwa 30° bis 60° liegt.
7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß im Umlenkkanal (31) zumindest eine Öffnung (60) vorgesehen ist, die eine Verbindung zu dem die Vorrichtung (1) umströmenden Medium herstellt.
8. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Dicke der Wandung von Bodenteil (45) und Deckelteil (46) im Bereich von Seitenfläche (39, 40), die parallel zur Oberfläche (24) des Meßelements (21) verlaufen, konstant ist.
9. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß im Bodenteil (45) zumindest im Bereich des Meßkanals (30) Vertiefungen (48) vorgesehen sind, die eine konstante Wandstärke der Flächen (37, 38) des Meßkanals (30) bewirken.
PCT/DE1998/001892 1997-09-18 1998-07-09 Vorrichtung zur messung der masse eines strömenden mediums WO1999014560A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98943658A EP0938648B1 (de) 1997-09-18 1998-07-09 Vorrichtung zur messung der masse eines strömenden mediums
DE59814419T DE59814419D1 (de) 1997-09-18 1998-07-09 Vorrichtung zur messung der masse eines strömenden mediums
US09/308,269 US6779393B1 (en) 1997-09-18 1998-07-09 Device for measuring the mass of a flowing medium in an intake tube
JP51725599A JP3953535B2 (ja) 1997-09-18 1998-07-09 流動媒体の質量を測定するための装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19741031.6 1997-09-18
DE19741031A DE19741031A1 (de) 1997-09-18 1997-09-18 Vorrichtung zur Messung der Masse eines strömenden Mediums

Publications (1)

Publication Number Publication Date
WO1999014560A1 true WO1999014560A1 (de) 1999-03-25

Family

ID=7842724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/001892 WO1999014560A1 (de) 1997-09-18 1998-07-09 Vorrichtung zur messung der masse eines strömenden mediums

Country Status (5)

Country Link
US (1) US6779393B1 (de)
EP (1) EP0938648B1 (de)
JP (1) JP3953535B2 (de)
DE (2) DE19741031A1 (de)
WO (1) WO1999014560A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502682A (ja) * 1999-06-18 2003-01-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 流動する媒体の量を測定するための装置
US6851311B2 (en) 2001-12-19 2005-02-08 Hitachi, Ltd. Thermal-type flow meter with bypass passage
US10928232B2 (en) 2014-11-06 2021-02-23 Hitachi Automotive Systems, Ltd. Thermal air flow meter

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019149B4 (de) * 2000-04-18 2007-06-06 Robert Bosch Gmbh Vorrichtung zur Bestimmung zumindest eines Parameters eines strömenden Mediums
WO2003008913A1 (fr) 2001-07-18 2003-01-30 Hitachi, Ltd. Equipement de mesure du debit d'un gaz
US7467546B2 (en) 2001-07-18 2008-12-23 Hitachi, Ltd. Equipment for measuring gas flow rate
DE10217883B4 (de) * 2002-04-22 2006-01-12 Siemens Ag Vorrichtung zur Messung einer Luftmasse im Ansaugtrakt einer Brennkraftmaschine
DE10245965B4 (de) * 2002-09-30 2021-06-02 Robert Bosch Gmbh Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums
US6973825B2 (en) * 2003-02-24 2005-12-13 Visteon Global Technologies, Inc. Hot-wire mass flow sensor with low-loss bypass passage
US8104340B2 (en) * 2008-12-19 2012-01-31 Honeywell International Inc. Flow sensing device including a tapered flow channel
JP5241669B2 (ja) * 2009-10-02 2013-07-17 日立オートモティブシステムズ株式会社 流量測定装置
US8113046B2 (en) 2010-03-22 2012-02-14 Honeywell International Inc. Sensor assembly with hydrophobic filter
US8656772B2 (en) 2010-03-22 2014-02-25 Honeywell International Inc. Flow sensor with pressure output signal
US8397586B2 (en) 2010-03-22 2013-03-19 Honeywell International Inc. Flow sensor assembly with porous insert
US8756990B2 (en) 2010-04-09 2014-06-24 Honeywell International Inc. Molded flow restrictor
US9003877B2 (en) 2010-06-15 2015-04-14 Honeywell International Inc. Flow sensor assembly
US8418549B2 (en) 2011-01-31 2013-04-16 Honeywell International Inc. Flow sensor assembly with integral bypass channel
WO2012049742A1 (ja) 2010-10-13 2012-04-19 日立オートモティブシステムズ株式会社 流量センサおよびその製造方法並びに流量センサモジュールおよびその製造方法
US8695417B2 (en) 2011-01-31 2014-04-15 Honeywell International Inc. Flow sensor with enhanced flow range capability
JP5662382B2 (ja) * 2012-06-15 2015-01-28 日立オートモティブシステムズ株式会社 熱式流量計
JP5662381B2 (ja) * 2012-06-15 2015-01-28 日立オートモティブシステムズ株式会社 熱式流量計
US9052217B2 (en) 2012-11-09 2015-06-09 Honeywell International Inc. Variable scale sensor
JP6116308B2 (ja) * 2013-03-25 2017-04-19 日立オートモティブシステムズ株式会社 熱式流量計
JP6065734B2 (ja) * 2013-04-26 2017-01-25 株式会社デンソー 流量測定装置
JP5936744B1 (ja) * 2015-05-15 2016-06-22 三菱電機株式会社 流量測定装置
US9952079B2 (en) 2015-07-15 2018-04-24 Honeywell International Inc. Flow sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0313089A2 (de) * 1987-10-23 1989-04-26 Hitachi, Ltd. Heissdraht-Luftdurchflussmesser und dessen Verwendung in einer Brennkraftmaschine
EP0441523A1 (de) * 1990-02-07 1991-08-14 Hitachi, Ltd. Luftströmungsmengenmesser für Brennkraftmaschine
EP0588626A2 (de) * 1992-09-17 1994-03-23 Hitachi, Ltd. Luftdurchflussmesser
DE4407209A1 (de) 1994-03-04 1995-09-07 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums
EP0708315A2 (de) 1994-10-18 1996-04-24 Hitachi, Ltd. Thermische Vorrichtung zum Messen der Luftströmung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4128448A1 (de) * 1991-08-28 1993-03-04 Bosch Gmbh Robert Gehaeuse fuer einen luftmassenmesser
US5355726A (en) * 1994-01-03 1994-10-18 Ford Motor Company Housing for reducing back air flow to mass air flow sensors
US6422070B2 (en) * 1994-03-04 2002-07-23 Robert Bosch Gmbh Device for measuring the mass of a flowing medium
DE4441874A1 (de) * 1994-11-24 1996-05-30 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums
DE19547915A1 (de) * 1995-12-21 1997-06-26 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums
DE19623334A1 (de) * 1996-06-12 1997-12-18 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums
DE19643996A1 (de) * 1996-10-31 1998-05-07 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0313089A2 (de) * 1987-10-23 1989-04-26 Hitachi, Ltd. Heissdraht-Luftdurchflussmesser und dessen Verwendung in einer Brennkraftmaschine
EP0441523A1 (de) * 1990-02-07 1991-08-14 Hitachi, Ltd. Luftströmungsmengenmesser für Brennkraftmaschine
EP0588626A2 (de) * 1992-09-17 1994-03-23 Hitachi, Ltd. Luftdurchflussmesser
DE4407209A1 (de) 1994-03-04 1995-09-07 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums
EP0708315A2 (de) 1994-10-18 1996-04-24 Hitachi, Ltd. Thermische Vorrichtung zum Messen der Luftströmung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
U.KONZELMANN ET AL.: "Breakthrough in Reverse Flow Detection - A New Mass Air Flow Meter Using Micro Silicon Technology", SAE-PAPER 950433; ELECTRONIC ENGINE CONTROLS 1995 (SP1082), WARRENDALE PA US, pages 105 - 110, XP002084070 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502682A (ja) * 1999-06-18 2003-01-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 流動する媒体の量を測定するための装置
JP4700242B2 (ja) * 1999-06-18 2011-06-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 流動する媒体の量を測定するための装置
US6851311B2 (en) 2001-12-19 2005-02-08 Hitachi, Ltd. Thermal-type flow meter with bypass passage
US10928232B2 (en) 2014-11-06 2021-02-23 Hitachi Automotive Systems, Ltd. Thermal air flow meter

Also Published As

Publication number Publication date
JP2001505314A (ja) 2001-04-17
US6779393B1 (en) 2004-08-24
DE19741031A1 (de) 1999-03-25
DE59814419D1 (de) 2010-01-21
EP0938648A1 (de) 1999-09-01
JP3953535B2 (ja) 2007-08-08
EP0938648B1 (de) 2009-12-09

Similar Documents

Publication Publication Date Title
WO1999014560A1 (de) Vorrichtung zur messung der masse eines strömenden mediums
EP0845099B1 (de) Vorrichtung zur messung der masse eines strömenden mediums
DE69525211T2 (de) Thermische Vorrichtung zum Messen der Luftströmung
EP0350612B1 (de) Messeinrichtung zur Erfassung des Drucks und der Temperatur
DE4407209C2 (de) Vorrichtung zur Messung der Masse eines in einer Leitung strömenden Mediums
DE19643996A1 (de) Vorrichtung zur Messung der Masse eines strömenden Mediums
EP0741859B1 (de) Vorrichtung zur messung der masse eines strömenden mediums
DE3839515C2 (de) Druckfühler
DE112017004131B4 (de) Strömungsvolumen-Erfassungsvorrichtung
EP0495935B1 (de) Verfahren zur herstellung eines druckgebers zur druckerfassung im brennraum von brennkraftmaschinen
DE19813756A1 (de) Messung des Drucks eines Fluids
EP0995979B1 (de) Druckaufnehmer
DE19815656A1 (de) Meßvorrichtung zum Messen der Masse eines strömenden Mediums
DE3032633A1 (de) Flussmessgeraet
EP1272821A1 (de) Schutzeinrichtung für einen massendurchflusssensor in einem ansaugluftkanal
DE19547915A1 (de) Vorrichtung zur Messung der Masse eines strömenden Mediums
DE102007044079B4 (de) Durchflusssensor
DE112017004373T5 (de) Messvorrichtung zur Bestimmung der Strömungsgeschwindigkeit von Luft
DE69209132T2 (de) Piezoelektrischer Messfühler
DE112021004518T5 (de) Erfassungsvorrichtung für eine physikalische Größe
WO2000028293A1 (de) Kapazitiver messaufnehmer und betriebsverfahren
DE112019004912T5 (de) Messvorrichtung für physikalische Größen
DE10224056B4 (de) Meßfühler
WO1991015741A1 (de) Druckgeber zur druckerfassung im brennraum von brennkraftmaschinen
DE112020004186T5 (de) Luftströmungsratenmessvorrichtung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1998943658

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1999 517255

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09308269

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998943658

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 2001 308269

Date of ref document: 20010708

Kind code of ref document: A

Format of ref document f/p: F