WO1999014494A1 - Valve structure and compressor - Google Patents

Valve structure and compressor Download PDF

Info

Publication number
WO1999014494A1
WO1999014494A1 PCT/JP1998/004113 JP9804113W WO9914494A1 WO 1999014494 A1 WO1999014494 A1 WO 1999014494A1 JP 9804113 W JP9804113 W JP 9804113W WO 9914494 A1 WO9914494 A1 WO 9914494A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
discharge
ports
chamber
port
Prior art date
Application number
PCT/JP1998/004113
Other languages
French (fr)
Japanese (ja)
Inventor
Katsutoshi Enomoto
Kiyoshi Yoshii
Makoto Tabata
Katsuhiko Arai
Original Assignee
Zexel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corporation filed Critical Zexel Corporation
Publication of WO1999014494A1 publication Critical patent/WO1999014494A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1073Adaptations or arrangements of distribution members the members being reed valves
    • F04B39/1086Adaptations or arrangements of distribution members the members being reed valves flat annular reed valves

Definitions

  • the present invention relates to a valve structure and a compressor having the valve structure.
  • FIGS. 8 (a) and (b) show the relationship between the reed valve of the conventional reciprocating compressor and the port of the valve plate.
  • FIG. 8 (a) is a plan view and FIG. 8 (b) ) Is a cross-sectional view taken along line 8B-8B in FIG. 8 (a).
  • the valve plate 503 is provided with a port 503a having a round hole, for example, a discharge port.
  • the reed valve 527 for example, the discharge valve is opened (elastically deformed) as shown by the two-dot chain line in FIG. 8 (b), the compression chamber and the discharge chamber communicate with each other through the port 503a, High-pressure refrigerant gas is discharged from the compression chamber to the discharge chamber.
  • FIG. 9 (a) to 9 (c) show the relationship between the reed valve having a reduced width and the port of the valve plate.
  • FIG. 9 (a) is a plan view and FIG. 9 (b) Fig. 9 (a) is a cross-sectional view taken along line 9B-9B, and Fig. 9 (c) is a cross-sectional view showing a state where the lead valve is bent.
  • the reed valve 627 is bent as shown in FIG. 9 (c), and stress concentration due to the bending is reduced. Occurs.
  • the reed valve 6 27 is easily damaged, and the durability is reduced.
  • the tip of the reed valve 627 sometimes cracked during high-speed operation. Disclosure of the invention
  • the present invention has been made in view of such circumstances, and its purpose is to secure a wide seating area of the lead valve, prevent the lead valve from bending when seated, and improve the durability of the lead valve.
  • An object of the present invention is to provide a valve structure and a compressor that can be improved.
  • a valve structure for controlling a flow of a fluid between a first chamber and a second chamber, wherein A partition member between the second chamber, a valve port formed in the partition member, and allowing the fluid to flow from one of the first chamber and the second chamber to the other chamber; A valve structure comprising a reed valve for opening and closing a valve port is provided.
  • a valve structure according to a first aspect of the present invention is characterized in that the valve port includes a plurality of ports arranged along a longitudinal direction of the reed valve.
  • the seating area of the partition member around the port on which the reed valve is seated increases, and the seating of the reed valve increases The impact of time is reduced, Also, the lead valve is less likely to bend and the durability of the reed valve is improved.
  • At least one of the plurality of ports is formed as a long hole.
  • a large channel area of the valve port can be easily secured by the long hole, and the seating portion of the lead valve secured between the long hole and the other hole allows The seating area of the reed valve is increased, the impact when the reed valve is seated is reduced, the reed valve is less likely to bend, and the durability of the reed valve is further improved.
  • the plurality of ports include a plurality of ports formed in a row.
  • the plurality of ports formed in one row are two elongated holes.
  • the plurality of ports formed in one row are three elongated holes.
  • the plurality of ports are preferably a plurality of ports formed in a plurality of rows.
  • the seating area of the lead valve is larger, and The shock is further reduced and the reed valve is more It becomes difficult to bend and the durability of the reed valve is further improved.
  • the plurality of ports are a plurality of long holes formed in parallel with each other.
  • the seating area of the reed valve is increased, and the impact when the lead valve is seated is reduced.
  • the lead valve hardly bends, and the durability of the lead valve is improved.
  • the plurality of long holes formed in parallel with each other are two long holes.
  • the plurality of ports are ports formed in a portion of the partition member where the tip side of the reed valve is seated, and have an opening area smaller than the opening areas of the other ports of the plurality of ports. Includes ports.
  • the opening area of the port facing the front end of the reed valve is smaller than the opening areas of the other ports, so that the seating area at the front end of the lead valve is larger than the seating area at the rear end. The impact will be reduced when the tip of the reed valve is seated.
  • the plurality of ports are formed as one round hole and one long hole, and the port having the smaller opening area is the round hole.
  • the first chamber is a compression chamber of a compressor
  • the second chamber is a discharge chamber of the compressor
  • the partition member is a valve plate.
  • the reed valve is a discharge valve portion formed integrally with a valve sheet disposed on the discharge chamber side of the valve plate.
  • a compression chamber for compressing a refrigerant a discharge chamber from which the compressed refrigerant is discharged from the compression chamber, A partition member disposed between the compression chamber and the discharge chamber, a discharge port formed in the partition member, a discharge port through which the compressed refrigerant passes, and a discharge valve for opening and closing the discharge port are provided.
  • the compressor according to a second aspect of the present invention is characterized in that the discharge valve is a reed valve, and the discharge port includes a plurality of ports disposed along a longitudinal direction of the discharge valve. I do.
  • At least one of the plurality of ports is formed as a long hole.
  • Fig. 1 (a) is a plan view of the valve plate, valve seat and part of the stopper plate which are overlapped with each other as viewed from the stopper plate side.
  • Fig. 1 (b) is 1B-1B of Fig. 1 (a).
  • FIG. 1 (c) is a sectional view taken along line 1C-1C of FIG. 1 (a).
  • FIG. 2 is a longitudinal sectional view showing the entire configuration of the swash plate type compressor according to the first embodiment of the present invention.
  • FIG. 3 is an exploded perspective view showing a valve plate, a valve seat, and a stop plate.
  • FIG. 4 (a) to 4 (c) are views showing a part of a swash plate type compressor according to a modified example of the first embodiment of the present invention
  • FIG. Fig. 4 (b) is a cross-sectional view taken along line 4B-4B in Fig. 4 (a)
  • Fig. 4 (c) is a plan view of a part of the valve seat and the stopper plate viewed from the stopper plate side.
  • Fig. 4 is a cross-sectional view taken along the line 4C-4C in Fig. 4 (a).
  • FIGS. 5 (a) to 5 (c) are views showing a part of a swash plate type compressor according to a second embodiment of the present invention
  • FIG. Fig. 5 (b) is a cross-sectional view taken along the line 5B-5B in Fig. 5 (a).
  • Figure (c) is a cross-sectional view along the line 5C-5C in Figure 5 (a).
  • FIGS. 6 (a) to 6 (c) are views showing a part of a swash plate type compressor according to a third embodiment of the present invention
  • FIG. 6 (a) is a view showing a valve plate and a valve sheet overlapping each other.
  • 6 (b) is a cross-sectional view taken along line 6B-6B in FIG. 6 (a)
  • FIG. 6 (c) is a cross-sectional view of the stopper plate as viewed from the stopper plate side.
  • Fig. 6 (a) is a cross-sectional view along the line 6C-6C.
  • FIG. 7 (a) to 7 (c) are views showing a part of a swash plate type compressor according to a fourth embodiment of the present invention
  • FIG. 7 (a) is a view showing a valve plate, a valve seat
  • FIG. 7 (b) is a cross-sectional view taken along line 7B-7B of FIG. 7 (a)
  • FIG. 7 (c) is a plan view of a part of the stop plate seen from the stop plate side.
  • FIG. 7 is a sectional view taken along the line 7 C— 7 C in FIG.
  • FIGS. 8 (a) and (b) are diagrams showing the relationship between the reed valve of the conventional reciprocating compressor and the port of the valve plate.
  • FIG. 8 (a) is a plan view
  • FIG. ) Is a sectional view taken along line 8B-8B in FIG. 8 (a).
  • 9 (a) to 9 (c) are views showing the relationship between the reed valve having a reduced width and the port of the valve plate, wherein FIG. 9 (a) is a plan view and FIG. 9 (b) Fig. 9 (a) is a sectional view taken along the line 9B-9B, and Fig. 9 (c) is a sectional view showing a state in which the reed valve is bent.
  • FIG. 2 is a longitudinal sectional view showing the entire swash plate type compressor according to the first embodiment of the present invention.
  • the front side cylinder block 1 and the rear side cylinder block 2 are axially opposed to each other and joined to form a cylinder assembly.
  • a front head (cylinder head) 4 is disposed on the front end surface of the cylinder assembly via a valve plate 3, a valve seat 27 and a stopper plate 29, and a valve plate 5 and a valve are disposed on the rear end surface.
  • a rear head (cylinder head) 6 is arranged via a seat 28 and a stopper plate 30.
  • the shell 13 on the front side is provided on the front head 4 and the shell 14 on the rear side is provided integrally with the head 6, and the front shell 13 and the shell 14 are O-ring 3. They are fitted to each other in the axial direction via 8.
  • the front head 4, the cylinder blocks 1 and 2, the shells 13 and 14, and the rear head 6 are axially connected by a plurality of through ports 39.
  • a drive shaft 7 is disposed at the center of the cylinder blocks 1 and 2, and a swash plate 8 is fixed to the drive shaft 7.
  • the drive shaft 7 and the swash plate 8 are connected to the cylinder block 1 by bearings 9 and 10, respectively.
  • , 2 are rotatably supported on the inner walls of the center holes 41, 42 penetrating the center.
  • the swash plate 8 is inclined with respect to the drive shaft 7.
  • the cylinder blocks 1 and 2 are provided with a plurality of cylinder pores 11.
  • the respective cylinder pores 11 are parallel to the drive shaft 7 and are arranged at predetermined intervals in a circumferential direction around the drive shaft 7.
  • a piston 12 is slidably accommodated in each cylinder bore 11.
  • Disc-shaped projections 15 are provided on both end faces 12 a of the piston 12.
  • Compression chamber (first chamber) on both sides of piston 1 2 in each cylinder pore 1 1 2 1 and 2 2 are formed.
  • the piston 1 2 has a substantially hemispherical shape 1 9,
  • the piston 12 is connected to the swash plate 8 via 20, and the piston 12 reciprocates in the cylinder pore 11 as the swash plate 8 rotates.
  • Fig. 3 is an exploded perspective view showing the valve plate, the valve seat and the stop plate.
  • Fig. 1 (a) is a view of the valve plate, the valve seat and a part of the stop plate overlapping each other, as viewed from the stop plate side.
  • Fig. 1 (b) is a cross-sectional view along the line IB-1B in Fig. 1 (a)
  • Fig. 1 (c) is a line 1C-1C in Fig. 1 (a). It is sectional drawing which follows.
  • Discharge ports (ports) 3 a for discharging refrigerant gas from the compression chambers 21 and 22 to the discharge chambers (second chamber, pressure chamber) 24 are provided in the substantially disk-shaped valve plates 3 and 5. , 5a, Suction valve escape holes 3b, 5b and through bolts that allow the suction valve parts 27d, 28d to escape to the compression chambers 21, 22 during the suction stroke
  • Port through holes 3 c and 5 (: f are respectively formed to insert 39.
  • the discharge ports 3a and 5a are formed of two holes arranged in the longitudinal direction of discharge valve portions 27a and 28a described later.
  • the suction valve relief holes 3b and 513 are adjacent to the suction ports 29d and 30d via the suction valve portions 27 and 28d, respectively, and the suction valve portions 27d and 28d during the suction stroke. When it opens, it communicates with the suction ports 29 d and 30 d.
  • the substantially disk-shaped valve seats 27 and 28 have tongue-shaped discharge valve parts (lead valves) 27a and 28a and tongue-shaped suction valve parts 27d and 28d, respectively. Notches are formed, and bolt through holes 27c and 28c are formed.
  • the substantially disk-shaped stopper plates 29 and 30 include groove-shaped stoppers 29 a and 30 a for suppressing the opening or deformation of the discharge valve portions 27 a and 28 a, and the suction chamber 23. Suction port for sucking the refrigerant gas into the compression chambers 21 and 22
  • the ports 29d and 30d and the port through holes 29c and 30c are formed respectively.
  • the bottom surfaces of the stoppers 29a and 30a are inclined at a predetermined angle or an arbitrary curvature with respect to the discharge valve portions 27a and 28a in the closed state.
  • ejection holes 29b, 30b are formed in the stopper plates 29, 30.
  • the discharge holes 29b and 30b are adjacent to the discharge ports 3a and 5a via the discharge valve portions 27a and 28a, respectively. During the discharge stroke, the discharge valve portions 27a and 28a When opened, it communicates with discharge ports 3a and 5a.
  • the swash plate 8 When the drive shaft 7 rotates, the swash plate 8 also rotates integrally. The rotation of the swash plate 8 causes the piston 12 to reciprocate in the cylinder pore 11.
  • the swash plate 8 makes a half turn from the position where the piston 1 2 comes closest to the valve plate 3 (the position of the top dead center of the piston 1 2 on the compression chamber 21 side)
  • the piston 1 2 moves to the valve plate 5 side.
  • the suction stroke is performed on the compression chamber 21 side until the end, and the compression stroke and the discharge stroke are performed on the compression chamber 21 side until the end.
  • the swash plate 8 further rotates 1Z2 from this state, the suction stroke is performed on the compression chamber 22 side until the compression stroke and the discharge stroke are completed on the compression chamber 21 side.
  • one of the pressures of the compression chambers 21 and 22 becomes smaller than the pressure of the suction chamber 23, and the suction valve portions 27d and 28d are moved toward the suction valve relief holes 3b and 5b. It is elastically deformed, and one of the compression chambers 21 and 22 communicates with the suction chamber 23 through the suction ports 29 d and 3 Od and the suction valve part relief holes 3 b and 5 b. Low-pressure refrigerant gas flows into one of the compression chambers 21 and 22 from the compressor. At this time, the discharge valve sections 27a and 28a are closed.
  • the piston 12 moves from the bottom dead center and enters the compression stroke. Screw As the ton 12 approaches the valve plates 3 and 5, the volume of one of the compression chambers 21 and 22 gradually decreases, and the refrigerant gas in one of the compression chambers 21 and 22 is compressed. At this time, the suction valve portions 27d and 28d and the discharge valve portions 27a and 28a are closed.
  • the process moves to the discharge stroke, and the discharge valve portions 27a and 28a elastically deform to the stoppers 29a and 30a, and discharge is performed.
  • One of the compression chambers 21 and 22 communicates with the discharge chamber 24 via the ports 3a and 5a and the discharge holes 29b and 30b, and from one of the compression chambers 21 and 22.
  • High-pressure refrigerant gas flows out to the discharge chamber 24.
  • the discharge valve portions 27a and 28a are pressed against the stoppers 29a and 30a, and the opening amounts of the discharge valve portions 27a and 28a are suppressed.
  • the discharge valve sections 27a and 28a Since the discharge ports 3a and 5a are composed of two holes along the longitudinal direction of the discharge valve sections 27a and 28a, the discharge valve sections 27a and 28a have a large seating area and discharge. The impact of the valve portions 27a and 28a when seated is reduced, and the discharge valve is almost completely interposed between the discharge valve portions 27a and 28a. The parts 27a and 28a do not bend.
  • the discharge valve portions 27 a and 28 a can secure a wide seating area and prevent the discharge valve portions 27 a and 28 a from bending, the discharge valve portion 27a and 28a can be prevented from being damaged, and the durability can be improved.
  • the discharge ports 3a and 5a are constituted by two long holes formed in one row along the longitudinal direction of the discharge valve portions 27a and 28a.
  • the width of the discharge valve sections 27a and 28a can be reduced, and the discharge valve sections 27a and 28a can be reduced in size, so that the discharge valve sections 27a and 28a open. It becomes easier (the valve opening time becomes earlier), and overcompression can be reduced.
  • the pressure at the time of discharge of the compression chambers 21 and 22 can be adjusted to a suitable level, so that the performance is improved. And reliability is improved.
  • FIG. 4 is a view showing a main part of a swash plate type compressor according to a modified example of the first embodiment of the present invention.
  • FIG. 4 (a) shows a valve plate, a valve sheet and a stopper plate which overlap each other.
  • Fig. 4 (b) is a cross-sectional view taken along the line 4B-4B in Fig. 4 (a)
  • Fig. 4 (c) is a diagram in Fig. 4 (a).
  • 4) is a cross-sectional view of FIG. Portions common to the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the discharge ports 3a and 5a are constituted by two long holes formed in one row along the longitudinal direction of the discharge valve portions 27a and 28a.
  • 103a and 105a were composed of three long holes formed in one row along the longitudinal direction of the discharge valve sections 27a and 28a.
  • the seating area of the discharge valve portions 27a, 28a becomes larger, so that the impact when the discharge valve portions 27a, 28a are seated is further alleviated. Since the parts 27a and 28a correspond to the two partition parts 140 and 150, the discharge valve parts 27a and 28a are more difficult to bend, and the discharge valve parts 27a and 28 The durability of a is further improved.
  • FIG. 5 is a view showing a main part of a swash plate type compressor according to a second embodiment of the present invention.
  • FIG. 5 (a) shows one of a valve plate, a valve sheet and a stopper plate which are overlapped with each other.
  • Fig. 5 (b) is a sectional view taken along the line 5B-5B in Fig. 5 (a)
  • Fig. 5 is a sectional view taken along the line 5C-5C in Fig. 5 (a).
  • Portions common to the above-described embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the discharge ports 3a and 5a are constituted by two holes arranged in the longitudinal direction of the discharge valve portions 27a and 28a, but in the second embodiment, the discharge ports 203a and 2a are formed.
  • 05a was constituted by two elongated holes parallel to each other along the longitudinal direction of the discharge valve portions 27a and 28a.
  • FIG. 6 is a view showing a main part of a swash plate type compressor according to a third embodiment of the present invention, and FIG. 6 (a) shows one of a valve plate, a valve sheet and a stopper plate which overlap each other.
  • Fig. 6 (b) is a cross-sectional view taken along line 6B-6B in Fig. 6 (a)
  • Fig. 6 (c) is Fig. 6 (a).
  • FIG. 3 is a cross-sectional view taken along line 6C-6C of FIG. Portions common to the above-described embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the discharge ports 303a and 305a are configured by four long holes formed in two rows along the longitudinal direction of the discharge valve portions 27a and 28a.
  • FIG. 7 is a view showing a main part of a swash plate type compressor according to a fourth embodiment of the present invention, and FIG. 7 (a) shows a part of a valve plate, a valve sheet and a stopper plate which overlap each other.
  • Fig. 7 (b) is a cross-sectional view taken along line 7B-7B in Fig. 7 (a), and Fig. 7 (c).
  • Fig. 7 is a sectional view taken along the line 7C-7C in Fig. 7 (a). Portions common to the above-described embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the discharge ports 403a and 405b are constituted by two ports formed in one row along the longitudinal direction of the discharge valve portions 27a and 28a. Out of the two ports, the ports located at the front end of the discharge valves 27a and 28a are round holes, and the ports located at the rear end of the discharge valves 27a and 28a are long holes. I made it. Moreover, the opening area of the round hole was made smaller than the opening area of the long hole.
  • the seating area at the front end side of the discharge valve sections 27a, 28a is larger than the seating area at the rear end side, so that the discharge valve sections 27a, 28a The impact at the time of seating of the tip is reduced, and the durability of the discharge valve portions 27a and 28a is further improved.
  • the discharge port is formed as a port, and the discharge valve portions 27a and 28a are formed as cut valves together with the suction valve portions 27d and 28d as reed valves.
  • the port is a suction port in addition to the discharge port
  • the reed valve is a suction port in addition to the discharge valve portions 27a and 28a.
  • valve parts 27 d and 28 d There are valve parts 27 d and 28 d.
  • the discharge valve and the suction valve serving as the reed valve are not limited to those integrally formed on the valve seat as in each of the above-described embodiments, and the discharge valve and the suction valve are separate and independent components. There may be.
  • valve structure of the present invention is applied to a swash plate type compressor.
  • scope of the present invention is not limited to this. It can be applied to various types of reciprocating compressors such as compressors (crank compressors) and other compressors, and can also be applied to equipment other than compressors.
  • valve structure of this invention the seating area of a reed valve becomes large, the impact at the time of seating of a reed valve is eased, and since a reed valve becomes hard to bend, the durability of a reed valve improves.
  • This valve structure can be suitably used for a discharge valve of a compressor, etc., and improves the performance and durability of the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

A valve structure and a compressor, in which a large seating area is ensured for a reed valve and flexure of the reed valve at the time of seating is prevented to improve durability of the reed valve. Specifically, a reciprocating compressor comprising cylinder blocks (1, 2) wherein compressing chambers (21, 22) are formed, cylinder heads (4, 6) wherein discharge chambers (24) are formed, valve plates (3, 5) wherein two discharge ports (3a, 5a) providing communication between the compressing chambers (21, 22) and the discharge chambers (24) are formed, and discharge valve sections (27a, 28a) which open and close the two discharge ports (3a, 5a), wherein the two discharge ports (3a, 5a) are aligned in the lengthwise direction of the discharge valve sections (27a, 28a).

Description

明細書 弁構造及び圧縮機 技術分野  Description Valve structure and compressor Technical field
この発明は、 弁構造及びその構造を備えた圧縮機に関する。 背景技術  The present invention relates to a valve structure and a compressor having the valve structure. Background art
第 8図 ( a) , (b) は従来の往復式圧縮機のリード弁とバルブプ レートのポートとの関係を示す図であって、 第 8図 ( a) は平面図、 第 8図 (b) は第 8図 ( a) の 8 B _ 8 B線に沿う断面図である。 バルブプレ一ト 5 0 3には丸孔のポート 5 0 3 a、 例えば吐出ポ一 トが設けられている。 リード弁 5 2 7、 例えば吐出弁が第 8図 (b) の 2点鎖線で示すように開く (弾性変形する) と、 ポート 5 0 3 aを 介して圧縮室と吐出室とが連通し、 圧縮室から吐出室に高圧の冷媒ガ スが吐出される。  FIGS. 8 (a) and (b) show the relationship between the reed valve of the conventional reciprocating compressor and the port of the valve plate. FIG. 8 (a) is a plan view and FIG. 8 (b) ) Is a cross-sectional view taken along line 8B-8B in FIG. 8 (a). The valve plate 503 is provided with a port 503a having a round hole, for example, a discharge port. When the reed valve 527, for example, the discharge valve is opened (elastically deformed) as shown by the two-dot chain line in FIG. 8 (b), the compression chamber and the discharge chamber communicate with each other through the port 503a, High-pressure refrigerant gas is discharged from the compression chamber to the discharge chamber.
このリード弁 5 2 7の小型化を図るには、 リード弁 5 2 7の幅寸法 Hを小さくする方法がある。 ちなみに、 リード弁 5 2 7の長手寸法を 小さくする方法も考えられるが、 小さくすればするほどリード弁 5 2 7は開きにくくなるので、 この方法は採用できない。  To reduce the size of the reed valve 527, there is a method of reducing the width H of the reed valve 527. Incidentally, a method of reducing the longitudinal dimension of the reed valve 527 is also conceivable, but the smaller the size, the more difficult it is to open the reed valve 527, so this method cannot be adopted.
第 9図 ( a) 〜 ( c ) は幅寸法を小さく したリード弁とバルブプレ ートのポートとの関係を示す図であって、 第 9図 ( a) は平面図、 第 9図 (b) の第 9図 ( a) の 9 B— 9 B線に沿う断面図、 第 9図 ( c ) はリ一ド弁が撓んだ状態を示す断面図である。  9 (a) to 9 (c) show the relationship between the reed valve having a reduced width and the port of the valve plate. FIG. 9 (a) is a plan view and FIG. 9 (b) Fig. 9 (a) is a cross-sectional view taken along line 9B-9B, and Fig. 9 (c) is a cross-sectional view showing a state where the lead valve is bent.
第 9図 ( a) に示すように、 リード弁 6 2 7の幅寸法 Hを小さくす るにともない、 ポート 6 0 3 aを長孔にする。 ポート 6 0 3 aを長孔 にすることによってポート 5 0 3と同程度の開口面積が確保される。 ところが、 リード弁 6 2 7の着座面積が小さくなり、 リード弁 6 2As shown in Fig. 9 (a), as the width dimension H of the reed valve 627 becomes smaller, the port 603a is made elongated. Port 6 03 a By doing so, the same opening area as the port 503 is secured. However, the seating area of the reed valve 6
7の着座時の衝撃力が増加する。 7 The impact force when sitting is increased.
また、 ポート 6 0 3 aがリード弁 6 2 7の長手方向に沿う長孔であ るので、 第 9図 ( c ) に示すようにリード弁 6 2 7が撓み、 撓みによ る応力集中が生じる。  Further, since the port 603a is a long hole along the longitudinal direction of the reed valve 627, the reed valve 627 is bent as shown in FIG. 9 (c), and stress concentration due to the bending is reduced. Occurs.
その結果、 リード弁 6 2 7が破損し易くなり、 耐久性が低下する。 例えば、高速運転時にリード弁 6 2 7の先端部が割れることがあった。 発明の開示  As a result, the reed valve 6 27 is easily damaged, and the durability is reduced. For example, the tip of the reed valve 627 sometimes cracked during high-speed operation. Disclosure of the invention
この発明はこのような事情に鑑みてなされたもので、 その目的はリ 一ド弁の広い着座面積を確保するとともに着座時のリ一ド弁の撓みを 防ぎ、 リ一ド弁の耐久性を向上させることができる弁構造及び圧縮機 を提供することである。  The present invention has been made in view of such circumstances, and its purpose is to secure a wide seating area of the lead valve, prevent the lead valve from bending when seated, and improve the durability of the lead valve. An object of the present invention is to provide a valve structure and a compressor that can be improved.
上記目的を達成するために、 本発明の第 1の態様によれば、 第 1の 室と第 2の室との間の流体の流れを制御する弁構造であって、 前記第 1の室と前記第 2の室との間の仕切部材と、 前記仕切部材に形成され 前記第 1の室と前記第 2の室の一方の室から他方の室へ前記流体を流 通させる弁ポートと、 前記弁ポ一トを開閉するリード弁とを備えた弁 構造が提供される。  According to a first aspect of the present invention, there is provided a valve structure for controlling a flow of a fluid between a first chamber and a second chamber, wherein A partition member between the second chamber, a valve port formed in the partition member, and allowing the fluid to flow from one of the first chamber and the second chamber to the other chamber; A valve structure comprising a reed valve for opening and closing a valve port is provided.
本発明の第 1の態様に係る弁構造は、 前記弁ポートが、 前記リード 弁の長手方向に沿って配設された複数のポー卜から成ることを特徴と する。  A valve structure according to a first aspect of the present invention is characterized in that the valve port includes a plurality of ports arranged along a longitudinal direction of the reed valve.
この弁構造によれば、 複数のポ一トがリード弁の長手方向に沿って 配設されているので、 リード弁が着座する前記ポート周囲の仕切部材 の着座面積が大きくなり、 リード弁の着座時の衝撃は緩和され、 しか もリ一ド弁が撓み難くなり、 リード弁の耐久性が向上する。 According to this valve structure, since the plurality of ports are disposed along the longitudinal direction of the reed valve, the seating area of the partition member around the port on which the reed valve is seated increases, and the seating of the reed valve increases The impact of time is reduced, Also, the lead valve is less likely to bend and the durability of the reed valve is improved.
前記複数のポー卜の少なくとも 1つは、 長孔として形成されている ことが好ましい。  It is preferable that at least one of the plurality of ports is formed as a long hole.
この好ましい態様によれば、 長孔により容易に弁ポートの大きな流 路面積を確保することができるとともに、 長孔と他の孔との間に確保 される前記リ一ド弁の着座部により、 前記リ一ド弁の着座面積が大き くなり、 リード弁の着座時の衝撃は緩和され、 しかもリード弁が撓み 難くなり、 リード弁の耐久性が一層向上する。  According to this preferred aspect, a large channel area of the valve port can be easily secured by the long hole, and the seating portion of the lead valve secured between the long hole and the other hole allows The seating area of the reed valve is increased, the impact when the reed valve is seated is reduced, the reed valve is less likely to bend, and the durability of the reed valve is further improved.
より好ましくは、 前記複数のポートは、 1列に形成された複数のポ More preferably, the plurality of ports include a plurality of ports formed in a row.
―トである。
この好ましい態様によれば、 前記リ一ド弁に対応する位置に前記ポ ―トを形成するのが容易である。  According to this preferred aspect, it is easy to form the port at a position corresponding to the lead valve.
さらに好ましくは、 前記 1列に形成された複数のポートは、 2つの 長孔である。  More preferably, the plurality of ports formed in one row are two elongated holes.
この好ましい態様によれば、 前記ポー卜に十分な流路面積を確保し かつ十分な着座面積を確保することができる。  According to this preferred aspect, it is possible to secure a sufficient flow passage area for the port and a sufficient seating area.
あるいは、 前記 1列に形成された複数のポートは、 3つの長孔であ る。  Alternatively, the plurality of ports formed in one row are three elongated holes.
この好ましい態様によれば、 前記ポー卜に十分な流路面積を確保し かつ十分な着座面積を確保することができるとともに、 リード弁がー 層橈み難くなる。  According to this preferred embodiment, it is possible to secure a sufficient flow passage area and a sufficient seating area in the port, and it is difficult for the reed valve to be bent in one layer.
あるいは、 前記複数のポートは、 複数列に形成された複数のポート であることが好ましい。  Alternatively, the plurality of ports are preferably a plurality of ports formed in a plurality of rows.
この好ましい態様によれば、 複数のポ一ト力 」一ド弁の長手方向に 沿って複数列に並んでいるので、 リ一ド弁の着座面積がより大きくな り、 リード弁の着座時の衝撃は一層緩和され、 しかもリード弁がより 撓み難くなり、 リード弁の耐久性が一層向上する。 According to this preferred aspect, since the plurality of port forces are arranged in a plurality of rows along the longitudinal direction of the lead valve, the seating area of the lead valve is larger, and The shock is further reduced and the reed valve is more It becomes difficult to bend and the durability of the reed valve is further improved.
より好ましくは、 前記複数のポートは、 互いに平行に形成された複 数の長孔である。  More preferably, the plurality of ports are a plurality of long holes formed in parallel with each other.
この好ましい態様によれば、 複数のポー卜が前記リ一ド弁の長手方 向に沿って、 並んでいるので、 リード弁の着座面積が大きくなり、 リ ―ド弁の着座時の衝撃は緩和され、 しかもリ一ド弁が撓み難くなり、 リ一ド弁の耐久性が向上する。  According to this preferred aspect, since the plurality of ports are arranged along the longitudinal direction of the lead valve, the seating area of the reed valve is increased, and the impact when the lead valve is seated is reduced. In addition, the lead valve hardly bends, and the durability of the lead valve is improved.
例えば、 前記互いに平行に形成された複数の長孔は、 2つの長孔で ある。  For example, the plurality of long holes formed in parallel with each other are two long holes.
好ましくは、 前記複数のポートは、 前記仕切部材の前記リード弁の 先端側が着座する部分に形成されたポートであって、 前記複数のポ一 トのその他のポートの開口面積より小さい開口面積を有するポートを 含む。  Preferably, the plurality of ports are ports formed in a portion of the partition member where the tip side of the reed valve is seated, and have an opening area smaller than the opening areas of the other ports of the plurality of ports. Includes ports.
この好ましい態様によれば、 リード弁の先端部と対向するポートの 開口面積が他のポートの開口面積より小さいので、 リ一ド弁の先端部 側の着座面積が後端部側の着座面積より大きくなり、 リード弁の先端 部の着座時の衝撃が緩和される。  According to this preferred aspect, the opening area of the port facing the front end of the reed valve is smaller than the opening areas of the other ports, so that the seating area at the front end of the lead valve is larger than the seating area at the rear end. The impact will be reduced when the tip of the reed valve is seated.
例えば、 前記複数のポートは、 1つの丸孔と 1つの長孔として形成 され、 前記より小さい開口面積を有するポートは、 前記丸孔である。 好ましくは、 前記第 1の室は、 圧縮機の圧縮室であり、 前記第 2の 室は前記圧縮機の吐出室であって、 前記仕切部材は、 バルブプレート である。  For example, the plurality of ports are formed as one round hole and one long hole, and the port having the smaller opening area is the round hole. Preferably, the first chamber is a compression chamber of a compressor, the second chamber is a discharge chamber of the compressor, and the partition member is a valve plate.
より好ましくは、 前記リード弁は、 前記バルブプレートの前記吐出 室側に配設されるバルブシ一トに一体に形成される吐出弁部である。 上記目的を達成するために、 本発明の第 2の態様によれば、 冷媒を 圧縮する圧縮室と、圧縮室から圧縮された冷媒が吐出される吐出室と、 前記圧縮室と吐出室の間に配設される仕切部材と、 前記仕切部材に形 成される吐出ポートであって、 前記圧縮された冷媒が通る吐出ポート と、前記吐出ポートを開閉する吐出弁とを備えた圧縮機が提供される。 本発明の第 2の態様に係る圧縮機は、前記吐出弁がリード弁であり、 前記吐出ポートが、 前記吐出弁の長手方向に沿って配設された複数の ポー卜から成ることを特徴とする。 More preferably, the reed valve is a discharge valve portion formed integrally with a valve sheet disposed on the discharge chamber side of the valve plate. In order to achieve the above object, according to a second aspect of the present invention, a compression chamber for compressing a refrigerant, a discharge chamber from which the compressed refrigerant is discharged from the compression chamber, A partition member disposed between the compression chamber and the discharge chamber, a discharge port formed in the partition member, a discharge port through which the compressed refrigerant passes, and a discharge valve for opening and closing the discharge port Are provided. The compressor according to a second aspect of the present invention is characterized in that the discharge valve is a reed valve, and the discharge port includes a plurality of ports disposed along a longitudinal direction of the discharge valve. I do.
前記複数のポ一卜の少なくとも 1つは、 長孔として形成されている ことが好ましい。 図面の簡単な説明  It is preferable that at least one of the plurality of ports is formed as a long hole. BRIEF DESCRIPTION OF THE FIGURES
第 1図 ( a) は互いに重なったバルブプレート、 弁シート及びスト ッパプレートの一部をス トツパプレート側から見た平面図、 第 1図 ( b ) は第 1図 ( a ) の 1 B— 1 B線に沿う断面図、 第 1図 ( c ) は 第 1図 ( a ) の 1 C一 1 C線に沿う断面図である。  Fig. 1 (a) is a plan view of the valve plate, valve seat and part of the stopper plate which are overlapped with each other as viewed from the stopper plate side. Fig. 1 (b) is 1B-1B of Fig. 1 (a). FIG. 1 (c) is a sectional view taken along line 1C-1C of FIG. 1 (a).
第 2図はこの発明の第 1実施形態に係る斜板式圧縮機の全体構成を 示す縦断面図である。  FIG. 2 is a longitudinal sectional view showing the entire configuration of the swash plate type compressor according to the first embodiment of the present invention.
第 3図はバルブプレートと弁シートとストツバプレートとを示す分 解斜視図である。  FIG. 3 is an exploded perspective view showing a valve plate, a valve seat, and a stop plate.
第 4図 ( a) 〜 ( c ) はこの発明の第 1実施形態の変形例に係る斜 板式圧縮機の一部を示す図であって、 第 4図 ( a) は互いに重なった バルブプレート、 弁シート及びストツパプレートの一部をストツパプ レート側から見た平面図、 第 4図 (b) は第 4図 ( a) の 4 B— 4 B 線に沿う断面図、 第 4図 (c ) は第 4図 ( a) の 4 C一 4 C線に沿う 断面図である。  4 (a) to 4 (c) are views showing a part of a swash plate type compressor according to a modified example of the first embodiment of the present invention, and FIG. Fig. 4 (b) is a cross-sectional view taken along line 4B-4B in Fig. 4 (a), and Fig. 4 (c) is a plan view of a part of the valve seat and the stopper plate viewed from the stopper plate side. Fig. 4 is a cross-sectional view taken along the line 4C-4C in Fig. 4 (a).
第 5図 ( a) 〜 ( c ) はこの発明の第 2実施形態に係る斜板式圧縮 機の一部を示す図であって、 第 5図 ( a) は互いに重なったバルブプ レ一ト、 弁シート及びス トッパプレー卜の一部をストッパプレート側 から見た平面図、 第 5図 (b) は第 5図 ( a) の 5 B— 5 B線に沿う 断面図、 第 5図 ( c ) は第 5図 ( a) の 5 C— 5 C線に沿う断面図で ある。 FIGS. 5 (a) to 5 (c) are views showing a part of a swash plate type compressor according to a second embodiment of the present invention, and FIG. Fig. 5 (b) is a cross-sectional view taken along the line 5B-5B in Fig. 5 (a). Figure (c) is a cross-sectional view along the line 5C-5C in Figure 5 (a).
第 6図 ( a) 〜 ( c ) はこの発明の第 3実施形態に係る斜板式圧縮 機の一部を示す図であって、 第 6図 ( a ) は互いに重なったバルブプ レート、 弁シー卜及びストッパプレー卜の一部をストッパプレー卜側 から見た平面図、 第 6図 (b) は第 6図 ( a ) の 6 B— 6 B線に沿う 断面図、 第 6図 ( c ) は第 6図 ( a) の 6 C— 6 C線に沿う断面図で ある。  FIGS. 6 (a) to 6 (c) are views showing a part of a swash plate type compressor according to a third embodiment of the present invention, and FIG. 6 (a) is a view showing a valve plate and a valve sheet overlapping each other. 6 (b) is a cross-sectional view taken along line 6B-6B in FIG. 6 (a), and FIG. 6 (c) is a cross-sectional view of the stopper plate as viewed from the stopper plate side. Fig. 6 (a) is a cross-sectional view along the line 6C-6C.
第 7図 ( a) 〜 ( c ) はこの発明の第 4実施形態に係る斜板式圧縮 機の一部を示す図であって、 第 7図 ( a ) は互いに重なったバルブプ レート、 弁シート及びストツパプレートの一部をストツパプレート側 から見た平面図、 第 7図 (b) は第 7図 ( a ) の 7 B— 7 B線に沿う 断面図、 第 7図 ( c ) は第 7図 ( a ) の 7 C— 7 C線に沿う断面図で ある。  7 (a) to 7 (c) are views showing a part of a swash plate type compressor according to a fourth embodiment of the present invention, and FIG. 7 (a) is a view showing a valve plate, a valve seat and FIG. 7 (b) is a cross-sectional view taken along line 7B-7B of FIG. 7 (a), and FIG. 7 (c) is a plan view of a part of the stop plate seen from the stop plate side. FIG. 7 is a sectional view taken along the line 7 C— 7 C in FIG.
第 8図 ( a) , (b) は従来の往復式圧縮機のリード弁とバルブプ レートのポートとの関係を示す図であって、 第 8図 ( a ) は平面図、 第 8図 (b) は第 8図 ( a) の 8 B— 8 B線に沿う断面図である。 第 9図 ( a) 〜 ( c ) は幅寸法を小さく したリード弁とバルブプレ 一卜のポートとの関係を示す図であって、 第 9図 ( a ) は平面図、 第 9図 (b) の第 9図 ( a) の 9 B— 9 B線に沿う断面図、 第 9図 ( c ) はリード弁が撓んだ状態を示す断面図である。 発明を実施するための最良の形態  FIGS. 8 (a) and (b) are diagrams showing the relationship between the reed valve of the conventional reciprocating compressor and the port of the valve plate. FIG. 8 (a) is a plan view, and FIG. ) Is a sectional view taken along line 8B-8B in FIG. 8 (a). 9 (a) to 9 (c) are views showing the relationship between the reed valve having a reduced width and the port of the valve plate, wherein FIG. 9 (a) is a plan view and FIG. 9 (b) Fig. 9 (a) is a sectional view taken along the line 9B-9B, and Fig. 9 (c) is a sectional view showing a state in which the reed valve is bent. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の形態を図面に基づいて説明する。 第 2図はこの発明の第 1実施形態に係る斜板式圧縮機の全体を示す 縦断面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a longitudinal sectional view showing the entire swash plate type compressor according to the first embodiment of the present invention.
フロント側のシリンダブロック 1 とリャ側のシリンダブロック 2と は軸方向に互いに対向接合されてシリンダアセンブリを形成している。 シリンダアセンブリのフロント側端面にはバルブプレート 3、 弁シ一 ト 2 7及びストッパプレート 2 9を介してフロントへッ ド (シリンダ ヘッ ド) 4が配置され、 リャ側端面にはバルブプレート 5、 弁シート 2 8及びストッパプレート 3 0を介してリャヘッ ド(シリンダヘッ ド) 6が配置されている。  The front side cylinder block 1 and the rear side cylinder block 2 are axially opposed to each other and joined to form a cylinder assembly. A front head (cylinder head) 4 is disposed on the front end surface of the cylinder assembly via a valve plate 3, a valve seat 27 and a stopper plate 29, and a valve plate 5 and a valve are disposed on the rear end surface. A rear head (cylinder head) 6 is arranged via a seat 28 and a stopper plate 30.
フロントへッ ド 4にフロント側のシェル 1 3が、 リャへッ ド 6にリ ャ側のシェル 1 4がそれぞれ一体に設けられ、 フロント側シェル 1 3 とリャ側シェル 1 4とが Oリング 3 8を介して軸方向に互いに嵌合し ている。  The shell 13 on the front side is provided on the front head 4 and the shell 14 on the rear side is provided integrally with the head 6, and the front shell 13 and the shell 14 are O-ring 3. They are fitted to each other in the axial direction via 8.
フロントヘッ ド 4、 シリンダブロック 1, 2、 シエリレ 1 3, 1 4、 リャへッ ド 6は複数の通しポルト 3 9で軸方向に結合されている。 シリンダブロック 1, 2の中心部には駆動軸 7が配設され、 この駆 動軸 7には斜板 8が固定され、 駆動軸 7及び斜板 8はベアリング 9, 1 0によりそれぞれシリンダブロック 1, 2の前記中心部を貫通する 中心孔 4 1, 4 2の内壁に回転可能に支持されている。 斜板 8は駆動 軸 7に対して傾いている。  The front head 4, the cylinder blocks 1 and 2, the shells 13 and 14, and the rear head 6 are axially connected by a plurality of through ports 39. A drive shaft 7 is disposed at the center of the cylinder blocks 1 and 2, and a swash plate 8 is fixed to the drive shaft 7. The drive shaft 7 and the swash plate 8 are connected to the cylinder block 1 by bearings 9 and 10, respectively. , 2 are rotatably supported on the inner walls of the center holes 41, 42 penetrating the center. The swash plate 8 is inclined with respect to the drive shaft 7.
シリンダブロック 1, 2には複数のシリンダポア 1 1が設けられて いる。 各シリンダポア 1 1は駆動軸 7に平行であって、 駆動軸 7を中 心とする円周方向に所定間隔おきに配置されている。 各シリンダボア 1 1内にはピストン 1 2が摺動可能に収容されている。 ピストン 1 2 の両方の端面 1 2 aには円板状の突起 1 5が設けられている。  The cylinder blocks 1 and 2 are provided with a plurality of cylinder pores 11. The respective cylinder pores 11 are parallel to the drive shaft 7 and are arranged at predetermined intervals in a circumferential direction around the drive shaft 7. A piston 12 is slidably accommodated in each cylinder bore 11. Disc-shaped projections 15 are provided on both end faces 12 a of the piston 12.
各シリンダポア 1 1内のピストン 1 2の両側には圧縮室(第 1の室) 2 1 , 2 2が形成される。 ピストン 1 2はほぼ半球体状のシュ一 1 9 ,Compression chamber (first chamber) on both sides of piston 1 2 in each cylinder pore 1 1 2 1 and 2 2 are formed. The piston 1 2 has a substantially hemispherical shape 1 9,
2 0を介して斜板 8に連結され、 ピストン 1 2は斜板 8の回転に連れ てシリンダポア 1 1内を往復運動する。 The piston 12 is connected to the swash plate 8 via 20, and the piston 12 reciprocates in the cylinder pore 11 as the swash plate 8 rotates.
第 3図はバルブプレー卜と弁シートとストツバプレー卜とを示す分 解斜視図、 第 1図 ( a) は互いに重なったバルブプレート、 弁シート 及びストツバプレートの一部をストツバプレート側から見た互平面図、 第 1図 (b) は第 1図 ( a) の I B— 1 B線に沿う断面図、 第 1図 ( c ) は第 1図 ( a) の 1 C— 1 C線に沿う断面図である。  Fig. 3 is an exploded perspective view showing the valve plate, the valve seat and the stop plate. Fig. 1 (a) is a view of the valve plate, the valve seat and a part of the stop plate overlapping each other, as viewed from the stop plate side. Fig. 1 (b) is a cross-sectional view along the line IB-1B in Fig. 1 (a), and Fig. 1 (c) is a line 1C-1C in Fig. 1 (a). It is sectional drawing which follows.
ほぼ円板状のバルブプレート 3, 5には、 圧縮室 2 1 , 2 2の冷媒 ガスを吐出室 (第 2の室、 圧力室) 2 4に吐出させるための吐出ポー ト (ポート) 3 a, 5 a、 吸入行程で吸入弁部 2 7 d, 2 8 dを圧縮 室 2 1 , 2 2側へ逃がす吸入弁部逃がし孔 3 b , 5 b及び通しボルト Discharge ports (ports) 3 a for discharging refrigerant gas from the compression chambers 21 and 22 to the discharge chambers (second chamber, pressure chamber) 24 are provided in the substantially disk-shaped valve plates 3 and 5. , 5a, Suction valve escape holes 3b, 5b and through bolts that allow the suction valve parts 27d, 28d to escape to the compression chambers 21, 22 during the suction stroke
3 9を挿入するためのポルト通し孔 3 c, 5 (:カ それぞれ形成され ている。 Port through holes 3 c and 5 (: f are respectively formed to insert 39.
吐出ポート 3 a , 5 aは、 第 1図に示すように、 後述する吐出弁部 2 7 a, 2 8 aの長手方向に並ぶ 2つの孔で構成されている。  As shown in FIG. 1, the discharge ports 3a and 5a are formed of two holes arranged in the longitudinal direction of discharge valve portions 27a and 28a described later.
吸入弁部逃がし孔 3 b, 5 13は、 吸入弁部2 7 , 2 8 dを介して 吸入ポート 2 9 d, 3 0 dに隣接し、 吸入行程で吸入弁部 2 7 d, 2 8 dが開いたときに吸入ポ一ト 2 9 d, 3 0 dと連通する。  The suction valve relief holes 3b and 513 are adjacent to the suction ports 29d and 30d via the suction valve portions 27 and 28d, respectively, and the suction valve portions 27d and 28d during the suction stroke. When it opens, it communicates with the suction ports 29 d and 30 d.
ほぼ円板状の弁シート 2 7, 2 8には、 舌片状の吐出弁部 (リード 弁) 2 7 a, 2 8 a及び舌片状の吸入弁部 2 7 d, 2 8 dがそれぞれ 切込み形成されているとともに、 ボルト通し孔 2 7 c , 2 8 cが形成 されている。  The substantially disk-shaped valve seats 27 and 28 have tongue-shaped discharge valve parts (lead valves) 27a and 28a and tongue-shaped suction valve parts 27d and 28d, respectively. Notches are formed, and bolt through holes 27c and 28c are formed.
ほぼ円板状のストッパプレート 2 9 , 3 0には、 吐出弁部 2 7 a , 2 8 aの開き量又は変形量を抑制する溝状のストツパ 2 9 a , 3 0 a、 吸入室 2 3の冷媒ガスを圧縮室 2 1 , 2 2に吸入させるための吸入ポ ート 2 9 d, 3 0 d及びポルト通し孔 2 9 c, 3 0 c力 、 それぞれ形 成されている。 ストッパ 2 9 a, 3 0 aの底面は閉弁状態の吐出弁部 2 7 a , 2 8 aに対して所定角度又は任意の曲率で傾斜している。 また、 ストッパプレート 2 9, 3 0には吐出用孔 2 9 b, 3 0 bが 形成されている。 吐出用孔 2 9 b, 3 O bは、 吐出弁部 2 7 a , 2 8 aを介して吐出ポート 3 a, 5 aに隣接し、 吐出行程で吐出弁部 2 7 a , 2 8 aが開いたときに吐出ポート 3 a, 5 aと連通する。 The substantially disk-shaped stopper plates 29 and 30 include groove-shaped stoppers 29 a and 30 a for suppressing the opening or deformation of the discharge valve portions 27 a and 28 a, and the suction chamber 23. Suction port for sucking the refrigerant gas into the compression chambers 21 and 22 The ports 29d and 30d and the port through holes 29c and 30c are formed respectively. The bottom surfaces of the stoppers 29a and 30a are inclined at a predetermined angle or an arbitrary curvature with respect to the discharge valve portions 27a and 28a in the closed state. In addition, ejection holes 29b, 30b are formed in the stopper plates 29, 30. The discharge holes 29b and 30b are adjacent to the discharge ports 3a and 5a via the discharge valve portions 27a and 28a, respectively. During the discharge stroke, the discharge valve portions 27a and 28a When opened, it communicates with discharge ports 3a and 5a.
次に、 この実施形態の斜板式圧縮機の作動を説明する。  Next, the operation of the swash plate type compressor of this embodiment will be described.
駆動軸 7が回転すると、 斜板 8も一体に回転する。 斜板 8の回転に よりピストン 1 2がシリンダポア 1 1内を往復運動する。 ピストン 1 2がバルブプレート 3に最も近づいた位置 (圧縮室 2 1側におけるピ ストン 1 2の上死点の位置) から斜板 8が 1 / 2回転すると、 ピスト ン 1 2がバルブプレート 5側へ移動し、 圧縮室 2 1側では吸入行程が 終了まで行なわれ、 圧縮室 2 2側では圧縮行程及び吐出行程が終了ま で行なわれる。 この状態から斜板 8が更に 1 Z 2回転すると、 逆に圧 縮室 2 2側で吸入行程が終了まで行なわれ、 圧縮室 2 1側で圧縮行程 及び吐出行程が終了まで行なわれる。  When the drive shaft 7 rotates, the swash plate 8 also rotates integrally. The rotation of the swash plate 8 causes the piston 12 to reciprocate in the cylinder pore 11. When the swash plate 8 makes a half turn from the position where the piston 1 2 comes closest to the valve plate 3 (the position of the top dead center of the piston 1 2 on the compression chamber 21 side), the piston 1 2 moves to the valve plate 5 side. Then, the suction stroke is performed on the compression chamber 21 side until the end, and the compression stroke and the discharge stroke are performed on the compression chamber 21 side until the end. When the swash plate 8 further rotates 1Z2 from this state, the suction stroke is performed on the compression chamber 22 side until the compression stroke and the discharge stroke are completed on the compression chamber 21 side.
吸入行程では圧縮室 2 1 , 2 2の一方の圧力が吸入室 2 3の圧力よ りも小さくなり、 吸入弁部 2 7 d , 2 8 dが吸入弁部逃がし孔 3 b, 5 b側へ弾性変形し、 吸入ポート 2 9 d, 3 O d及び吸入弁部逃がし 孔 3 b, 5 bを介して圧縮室 2 1, 2 2の一方と吸入室 2 3とが連通 し、 吸入室 2 3から圧縮室 2 1, 2 2の一方へ低圧の冷媒ガスが流入 する。 このとき吐出弁部 2 7 a、 2 8 aは閉じている。  In the suction stroke, one of the pressures of the compression chambers 21 and 22 becomes smaller than the pressure of the suction chamber 23, and the suction valve portions 27d and 28d are moved toward the suction valve relief holes 3b and 5b. It is elastically deformed, and one of the compression chambers 21 and 22 communicates with the suction chamber 23 through the suction ports 29 d and 3 Od and the suction valve part relief holes 3 b and 5 b. Low-pressure refrigerant gas flows into one of the compression chambers 21 and 22 from the compressor. At this time, the discharge valve sections 27a and 28a are closed.
ピストン 1 2が下死点に達すると吸入行程が終了する。 このとき圧 縮室 2 1、 2 2の一方の容積は最大になる。  When the piston 12 reaches the bottom dead center, the suction stroke ends. At this time, the volume of one of the compression chambers 21 and 22 becomes maximum.
その後、 ピストン 1 2が下死点から移動し、 圧縮行程に入る。 ビス トン 1 2がバルブプレート 3, 5に近づくにしたがって圧縮室 2 1 , 2 2の一方の容積が次第に小さくなり、 圧縮室 2 1 , 2 2の一方の内 部の冷媒ガスが圧縮される。 このとき吸入弁部 2 7 d , 2 8 d及び吐 出弁部 2 7 a, 2 8 aは閉じている。 Then, the piston 12 moves from the bottom dead center and enters the compression stroke. Screw As the ton 12 approaches the valve plates 3 and 5, the volume of one of the compression chambers 21 and 22 gradually decreases, and the refrigerant gas in one of the compression chambers 21 and 22 is compressed. At this time, the suction valve portions 27d and 28d and the discharge valve portions 27a and 28a are closed.
圧縮室 2 1, 2 2の一方の圧力がある値以上になると、 吐出行程に 移り、 吐出弁部 2 7 a, 2 8 aがストッパ 2 9 a, 3 0 a側へ弾性変 形し、 吐出ポート 3 a, 5 a及び吐出用孔 2 9 b, 3 O bを介して圧 縮室 2 1, 2 2の一方と吐出室 2 4とが連通し、 圧縮室 2 1 , 2 2の 一方から吐出室 24へ高圧の冷媒ガスが流出する。 このとき吐出弁部 2 7 a , 2 8 aがストツバ 2 9 a, 3 0 aに押し付けられ、 吐出弁部 2 7 a , 2 8 aの開弁量が抑制される。  When one of the pressures of the compression chambers 21 and 22 exceeds a certain value, the process moves to the discharge stroke, and the discharge valve portions 27a and 28a elastically deform to the stoppers 29a and 30a, and discharge is performed. One of the compression chambers 21 and 22 communicates with the discharge chamber 24 via the ports 3a and 5a and the discharge holes 29b and 30b, and from one of the compression chambers 21 and 22. High-pressure refrigerant gas flows out to the discharge chamber 24. At this time, the discharge valve portions 27a and 28a are pressed against the stoppers 29a and 30a, and the opening amounts of the discharge valve portions 27a and 28a are suppressed.
そして、 ピストン 1 2が上死点へ達すると吐出行程が終了する。 こ のときピストン 1 2の突起 1 5が吸入弁部逃がし孔 3 b , 5 bに進入 するとともに、 吐出弁部 2 7 a, 2 8 aがバルブプレート 3, 5に着 座する。  Then, when the piston 12 reaches the top dead center, the discharge stroke ends. At this time, the projection 15 of the piston 12 enters the suction valve portion relief holes 3b and 5b, and the discharge valve portions 27a and 28a are seated on the valve plates 3 and 5.
吐出ポート 3 a, 5 aは吐出弁部 2 7 a , 2 8 aの長手方向に沿う 2つの孔で構成されているので、 吐出弁部 2 7 a , 2 8 aの着座面積 が大きく、 吐出弁部 2 7 a, 2 8 aの着座時の衝撃は緩和され、 しか も吐出弁部 2 7 a, 2 8 aのほぼ中間部が仕切り部 4 0, 5 0に当た るため、 吐出弁部 2 7 a, 2 8 aは撓まない。  Since the discharge ports 3a and 5a are composed of two holes along the longitudinal direction of the discharge valve sections 27a and 28a, the discharge valve sections 27a and 28a have a large seating area and discharge. The impact of the valve portions 27a and 28a when seated is reduced, and the discharge valve is almost completely interposed between the discharge valve portions 27a and 28a. The parts 27a and 28a do not bend.
この第 1実施形態によれば、 吐出弁部 2 7 a , 2 8 aの広い着座面 積を確保し、 吐出弁部 2 7 a , 2 8 aの撓みを防ぐことができるので、 吐出弁部 2 7 a, 2 8 aの破損を防いで、 耐久性を向上させることが できる。  According to the first embodiment, since the discharge valve portions 27 a and 28 a can secure a wide seating area and prevent the discharge valve portions 27 a and 28 a from bending, the discharge valve portion 27a and 28a can be prevented from being damaged, and the durability can be improved.
また、 この実施形態では吐出ポート 3 a , 5 aを吐出弁部 2 7 a, 2 8 aの長手方向に沿って 1列に形成された 2つの長孔で構成したの で、 吐出弁部 2 7 a, 2 8 aの幅寸法を小さくすることができ、 吐出 弁部 2 7 a, 2 8 aを小型化できるので、 吐出弁部 2 7 a, 2 8 aが 開き易くなり (開弁時期が早くなり) 、 過圧縮を低減することができ る。 その結果、 圧縮室 2 1, 2 2の吐出時の圧力を好適なレベルにす ることができるため性能が向上し、 吐出弁部 2 7 a, 2 8 aがバタつ かないので、 脈動及び騒音が低減され、 信頼性も向上する。 Further, in this embodiment, the discharge ports 3a and 5a are constituted by two long holes formed in one row along the longitudinal direction of the discharge valve portions 27a and 28a. The width of the discharge valve sections 27a and 28a can be reduced, and the discharge valve sections 27a and 28a can be reduced in size, so that the discharge valve sections 27a and 28a open. It becomes easier (the valve opening time becomes earlier), and overcompression can be reduced. As a result, the pressure at the time of discharge of the compression chambers 21 and 22 can be adjusted to a suitable level, so that the performance is improved. And reliability is improved.
第 4図はこの発明の第 1実施形態の変形例に係る斜板式圧縮機の要 部を示す図であって、 第 4図 ( a) は互いに重なったバルブプレート、 弁シ一ト及びストッパプレートの一部をストッパプレート側から見た 平面図、 第 4図 (b) は第 4図 ( a) の 4 B— 4 B線に沿う断面図、 第 4図 ( c ) は第 4図 ( a) の 4 C一 4 C線に沿う断面図である。 前 述の実施形態と共通する部分には同一符号を付してその説明を省略す る。  FIG. 4 is a view showing a main part of a swash plate type compressor according to a modified example of the first embodiment of the present invention. FIG. 4 (a) shows a valve plate, a valve sheet and a stopper plate which overlap each other. Fig. 4 (b) is a cross-sectional view taken along the line 4B-4B in Fig. 4 (a), and Fig. 4 (c) is a diagram in Fig. 4 (a). 4) is a cross-sectional view of FIG. Portions common to the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
第 1実施形態では吐出ポート 3 a, 5 aを吐出弁部 2 7 a, 2 8 a の長手方向に沿って 1列に形成された 2つの長孔で構成したが、 この 変形例では吐出ポート 1 0 3 a, 1 0 5 aを吐出弁部 2 7 a, 2 8 a の長手方向に沿って 1列に形成された 3つの長孔で構成した。  In the first embodiment, the discharge ports 3a and 5a are constituted by two long holes formed in one row along the longitudinal direction of the discharge valve portions 27a and 28a. 103a and 105a were composed of three long holes formed in one row along the longitudinal direction of the discharge valve sections 27a and 28a.
この変形例によれば、 吐出弁部 2 7 a , 2 8 aの着座面積がより大 きくなつて、 吐出弁部 2 7 a , 2 8 aの着座時の衝撃は一層緩和され、 しかも吐出弁部 2 7 a, 2 8 aが 2つの仕切り部 1 4 0 , 1 5 0に当 たるため、 吐出弁部 2 7 a, 2 8 aはより撓みにくくなり、 吐出弁部 2 7 a, 2 8 aの耐久性が一段と向上する。  According to this modified example, the seating area of the discharge valve portions 27a, 28a becomes larger, so that the impact when the discharge valve portions 27a, 28a are seated is further alleviated. Since the parts 27a and 28a correspond to the two partition parts 140 and 150, the discharge valve parts 27a and 28a are more difficult to bend, and the discharge valve parts 27a and 28 The durability of a is further improved.
第 5図はこの発明の第 2実施形態に係る斜板式圧縮機の要部を示す 図であって、 第 5図 ( a) は互いに重なったバルブプレート、 弁シ一 ト及びストッパプレー卜の一部をストッパプレート側から見た平面図 第 5図 ( b) は第 5図 ( a ) の 5 B— 5 B線に沿う断面図、 第 5図 ( c ) は第 5図 ( a) の 5 C— 5 C線に沿う断面図である。 前述の実施形態 と共通する部分には同一符号を付してその説明を省略する。 FIG. 5 is a view showing a main part of a swash plate type compressor according to a second embodiment of the present invention. FIG. 5 (a) shows one of a valve plate, a valve sheet and a stopper plate which are overlapped with each other. Fig. 5 (b) is a sectional view taken along the line 5B-5B in Fig. 5 (a), Fig. 5 (c) Fig. 5 is a sectional view taken along the line 5C-5C in Fig. 5 (a). Portions common to the above-described embodiments are denoted by the same reference numerals, and description thereof is omitted.
第 1実施形態では吐出ポート 3 a, 5 aを吐出弁部 2 7 a, 2 8 a の長手方向に並ぶ 2つの孔で構成したが、 この第 2実施形態では吐出 ポート 2 0 3 a, 2 0 5 aを吐出弁部 2 7 a , 2 8 aの長手方向に沿 う互いに平行な 2つの長孔で構成した。  In the first embodiment, the discharge ports 3a and 5a are constituted by two holes arranged in the longitudinal direction of the discharge valve portions 27a and 28a, but in the second embodiment, the discharge ports 203a and 2a are formed. 05a was constituted by two elongated holes parallel to each other along the longitudinal direction of the discharge valve portions 27a and 28a.
この第 2実施形態によれば、 第 1実施形態と同様の効果を得ること ができる。  According to the second embodiment, the same effects as in the first embodiment can be obtained.
第 6図はこの発明の第 3実施形態に係る斜板式圧縮機の要部を示す 図であって、 第 6図 ( a) は互いに重なったバルブプレート、 弁シ一 ト及びストッパプレートとの一部をストツバプレート側から見た平面 図、 第 6図 (b) は第 6図 ( a) の 6 B— 6 B線に沿う断面図、 第 6 図 (c ) は第 6図 ( a) の 6 C _ 6 C線に沿う断面図である。 前述の 実施形態と共通する部分には同一符号を付してその説明を省略する。 第 3実施形態では、 吐出ポート 3 0 3 a , 3 0 5 aを、 吐出弁部 2 7 a , 2 8 aの長手方向に沿って 2列に形成された 4つの長孔で構成 した。  FIG. 6 is a view showing a main part of a swash plate type compressor according to a third embodiment of the present invention, and FIG. 6 (a) shows one of a valve plate, a valve sheet and a stopper plate which overlap each other. Fig. 6 (b) is a cross-sectional view taken along line 6B-6B in Fig. 6 (a), and Fig. 6 (c) is Fig. 6 (a). FIG. 3 is a cross-sectional view taken along line 6C-6C of FIG. Portions common to the above-described embodiments are denoted by the same reference numerals, and description thereof is omitted. In the third embodiment, the discharge ports 303a and 305a are configured by four long holes formed in two rows along the longitudinal direction of the discharge valve portions 27a and 28a.
この第 3実施形態によれば、 吐出弁部 2 7 a, 2 8 aの着座面積が より大きくなつて、 吐出弁部 2 7 a , 2 8 aの着座時の衝撃は一層緩 和され、 しかも吐出弁部 2 7 a, 2 8 aが十字の仕切り部 3 40, 3 5 0に当たるため、 吐出弁部 2 7 a, 2 8 aはより撓みにくくなり、 吐出弁部 2 7 a , 2 8 aの耐久性が一段と向上する。  According to the third embodiment, the larger the seating area of the discharge valve portions 27a and 28a is, the more the impact when the discharge valve portions 27a and 28a are seated is further reduced. Since the discharge valve portions 27a and 28a hit the cross partition portions 340 and 350, the discharge valve portions 27a and 28a are less likely to bend, and the discharge valve portions 27a and 28a Durability is further improved.
第 7図はこの発明の第 4実施形態に係る斜板式圧縮機の要部を示す 図であって、 第 7図 ( a) は互いに重なったバルブプレート、 弁シ一 ト及びストッパプレートの一部をストッパプレート側から見た平面図 第 7図 (b) は第 7図 ( a) の 7 B— 7 B線に沿う断面図、 第 7図 ( c ) は第 7図 ( a ) の 7 C— 7 C線に沿う断面図である。 前述の実施形態 と共通する部分には同一符号を付してその説明を省略する。 FIG. 7 is a view showing a main part of a swash plate type compressor according to a fourth embodiment of the present invention, and FIG. 7 (a) shows a part of a valve plate, a valve sheet and a stopper plate which overlap each other. Fig. 7 (b) is a cross-sectional view taken along line 7B-7B in Fig. 7 (a), and Fig. 7 (c). Fig. 7 is a sectional view taken along the line 7C-7C in Fig. 7 (a). Portions common to the above-described embodiments are denoted by the same reference numerals, and description thereof is omitted.
第 4実施形態では、 吐出ポート 4 0 3 a, 4 0 5 bを吐出弁部 2 7 a , 2 8 aの長手方向に沿って 1列に形成された 2つポートで構成す るとともに、 2つポートのうち、 吐出弁部 2 7 a, 2 8 aの先端部側 に位置するポートを丸孔にし、 吐出弁部 2 7 a, 2 8 aの後端部側に 位置するポートを長孔にした。 しかも丸孔の開口面積を長孔の開口面 積より小さく した。  In the fourth embodiment, the discharge ports 403a and 405b are constituted by two ports formed in one row along the longitudinal direction of the discharge valve portions 27a and 28a. Out of the two ports, the ports located at the front end of the discharge valves 27a and 28a are round holes, and the ports located at the rear end of the discharge valves 27a and 28a are long holes. I made it. Moreover, the opening area of the round hole was made smaller than the opening area of the long hole.
この第 4実施形態によれば、 吐出弁部 2 7 a , 2 8 aの先端部側の 着座面積が後端部側の着座面積より大きくなるので、吐出弁部 2 7 a , 2 8 aの先端部の着座時の衝撃が緩和され、 吐出弁部 2 7 a , 2 8 a の耐久性が一段と向上する。  According to the fourth embodiment, the seating area at the front end side of the discharge valve sections 27a, 28a is larger than the seating area at the rear end side, so that the discharge valve sections 27a, 28a The impact at the time of seating of the tip is reduced, and the durability of the discharge valve portions 27a and 28a is further improved.
なお、 前述の各実施形態では、 ポートとして吐出ポートを、 リード 弁として弁シー卜に吸入弁部 2 7 d , 2 8 dとともに切り込み形成さ れた吐出弁部 2 7 a, 2 8 aを例に説明したが、 この発明の適用範囲 はこれに限定されるものではなく、 ポートとしては吐出ポートの他に 吸入ポートが、 リード弁としては吐出弁部 2 7 a, 2 8 aの他に吸入 弁部 2 7 d, 2 8 dがある。 また、 リード弁としての吐出弁及び吸入 弁は前述の各実施形態のように弁シートに一体に形成されたものに限 定されるものではなく、 吐出弁及び吸入弁がそれぞれ別個独立の部品 であってもよい。  In each of the above-described embodiments, the discharge port is formed as a port, and the discharge valve portions 27a and 28a are formed as cut valves together with the suction valve portions 27d and 28d as reed valves. However, the scope of application of the present invention is not limited to this, and the port is a suction port in addition to the discharge port, and the reed valve is a suction port in addition to the discharge valve portions 27a and 28a. There are valve parts 27 d and 28 d. Further, the discharge valve and the suction valve serving as the reed valve are not limited to those integrally formed on the valve seat as in each of the above-described embodiments, and the discharge valve and the suction valve are separate and independent components. There may be.
また、 前述の実施形態ではこの発明の弁構造を斜板式圧縮機に適用 した場合について述べたが、 この発明の適用範囲はこれに限定される ものではなく、 揺動板式圧縮機、 列型圧縮機 (クランク式圧縮機) 等 の各種の往復式圧縮機、 その他の圧縮機に適用することが可能である とともに、 圧縮機以外の機器にも適用することが可能である。 産業上の利用可能性 In the above-described embodiment, the case where the valve structure of the present invention is applied to a swash plate type compressor has been described. However, the scope of the present invention is not limited to this. It can be applied to various types of reciprocating compressors such as compressors (crank compressors) and other compressors, and can also be applied to equipment other than compressors. Industrial applicability
本発明の弁構造によれば、 リード弁の着座面積が大きくなり、 リー ド弁の着座時の衝撃は緩和され、しかもリ一ド弁が撓み難くなるので、 リード弁の耐久性が向上する。 この弁構造は、 圧縮機の吐出弁などに 好適に用いることができ、 圧縮機の性能と耐久性を向上させる。  ADVANTAGE OF THE INVENTION According to the valve structure of this invention, the seating area of a reed valve becomes large, the impact at the time of seating of a reed valve is eased, and since a reed valve becomes hard to bend, the durability of a reed valve improves. This valve structure can be suitably used for a discharge valve of a compressor, etc., and improves the performance and durability of the compressor.

Claims

請求の範囲 The scope of the claims
1 . 第 1の室と第 2の室との間の流体の流れを制御する弁構造であ つて、 前記第 1の室と前記第 2の室との間の仕切部材と、 前記仕切部 材に形成され前記第 1の室と前記第 2の室の一方の室から他方の室へ 前記流体を流通させる弁ポートと、 前記弁ポートを開閉するリード弁 とを備えた弁構造において、 1. A valve structure for controlling a flow of a fluid between a first chamber and a second chamber, wherein a partition member between the first chamber and the second chamber, and the partition member A valve port formed in the first chamber and the second chamber, and having a valve port for flowing the fluid from one chamber to the other chamber, and a reed valve for opening and closing the valve port.
前記弁ポ一トは、 前記リード弁の長手方向に沿って配設された複数 のポートから成ることを特徴とする弁構造。  The valve structure, wherein the valve port comprises a plurality of ports arranged along a longitudinal direction of the reed valve.
2 . 前記複数のポートの少なくとも 1つは、 長孔として形成されて いることを特徴とする請求の範囲第 1項記載の弁構造。  2. The valve structure according to claim 1, wherein at least one of the plurality of ports is formed as an elongated hole.
3 . 前記複数のポ一卜は、 1列に形成された複数のポートであるこ とを特徴とする請求の範囲第 2項記載の弁構造。  3. The valve structure according to claim 2, wherein the plurality of ports are a plurality of ports formed in one row.
4 . 前記 1列に形成された複数のポートは、 2つの長孔であること を特徴とする請求の範囲第 3項記載の弁構造。  4. The valve structure according to claim 3, wherein the plurality of ports formed in one row are two long holes.
5 . 前記 1列に形成された複数のポートは、 3つの長孔であること を特徴とする請求の範囲第 3項記載の弁構造。  5. The valve structure according to claim 3, wherein the plurality of ports formed in one row are three elongated holes.
6 . 前記複数のポートは、 複数列に形成された複数のポートである ことを特徴とする請求の範囲第 2項記載の弁構造。  6. The valve structure according to claim 2, wherein the plurality of ports are a plurality of ports formed in a plurality of rows.
7 . 前記複数のポートは、 互いに平行に形成された複数の長孔であ ることを特徴とする請求の範囲第 2項記載の弁構造。  7. The valve structure according to claim 2, wherein the plurality of ports are a plurality of elongated holes formed in parallel with each other.
8 . 前記複数の長孔は、 2つの長孔であることを特徴とする請求の 範囲第 7項記載の弁構造。  8. The valve structure according to claim 7, wherein the plurality of slots are two slots.
9 . 前記複数のポートは、 前記仕切部材の前記リード弁の先端側が 着座する部分に形成されたポートであって、 前記複数のポートのその 他のポートの開口面積より小さい開口面積を有するポートを含むこと を特徴とする請求の範囲第 2項記載の弁構造。 9. The plurality of ports are ports formed at a portion of the partition member where the distal end side of the reed valve is seated, and have a smaller opening area than other ports of the plurality of ports. To include 3. The valve structure according to claim 2, wherein:
1 0 . 前記複数のポートは、 1つの丸孔と 1つの長孔として形成さ れ、 前記より小さい開口面積を有するポートは、 前記丸孔であること を特徴とする請求の範囲第 9項記載の弁構造。  10. The plurality of ports are formed as one round hole and one long hole, and the port having the smaller opening area is the round hole. Valve structure.
1 1 . 前記第 1の室は、 圧縮機の圧縮室であり、 前記第 2の室は前 記圧縮機の吐出室であって、 前記仕切部材は、 バルブプレートである ことを特徴とする請求の範囲第 1項記載の弁構造。  11. The first chamber is a compression chamber of a compressor, the second chamber is a discharge chamber of the compressor, and the partition member is a valve plate. 2. The valve structure according to item 1, wherein
1 2 . 前記リード弁は、 前記バルブプレートの前記吐出室側に配設 されるバルブシートに一体に形成される吐出弁部であることを特徴と する請求の範囲第 1 1項記載記載の弁構造。  12. The valve according to claim 11, wherein the reed valve is a discharge valve portion formed integrally with a valve seat disposed on the discharge chamber side of the valve plate. Construction.
1 3 . 冷媒を圧縮する圧縮室と、 圧縮室から圧縮される冷媒が吐出 される吐出室と、 前記圧縮室と吐出室の間に配設される仕切部材と、 前記仕切部材に形成される吐出ポー卜であって、 前記圧縮された冷媒 が通る吐出ポートと、 前記吐出ポートを開閉する吐出弁とを備えた圧 縮機において、  13. A compression chamber for compressing the refrigerant, a discharge chamber from which the refrigerant compressed from the compression chamber is discharged, a partition member disposed between the compression chamber and the discharge chamber, and the partition member. A compressor comprising: a discharge port, a discharge port through which the compressed refrigerant passes; and a discharge valve that opens and closes the discharge port.
前記吐出弁はリ一ド弁であり、  The discharge valve is a lead valve;
前記吐出ポー卜は、 前記吐出弁の長手方向に沿って配設された複数 のポー卜から成ることを特徴とする圧縮機。  The compressor, wherein the discharge port comprises a plurality of ports arranged along a longitudinal direction of the discharge valve.
1 4 . 前記複数のポートの少なくとも 1つは、 長孔として形成され ている請求の範囲第 1 3項記載の圧縮機。  14. The compressor according to claim 13, wherein at least one of said plurality of ports is formed as an elongated hole.
PCT/JP1998/004113 1997-09-18 1998-09-11 Valve structure and compressor WO1999014494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9272092A JPH1193840A (en) 1997-09-18 1997-09-18 Fluid passage structure and compressor
JP9/272092 1997-09-18

Publications (1)

Publication Number Publication Date
WO1999014494A1 true WO1999014494A1 (en) 1999-03-25

Family

ID=17508977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004113 WO1999014494A1 (en) 1997-09-18 1998-09-11 Valve structure and compressor

Country Status (2)

Country Link
JP (1) JPH1193840A (en)
WO (1) WO1999014494A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19931808A1 (en) * 1999-07-08 2001-01-18 Parkap Beteiligungs Und Verwal Method for converting an internal combustion engine to a piston compressor and piston compressor
CN103016297A (en) * 2011-09-27 2013-04-03 株式会社丰田自动织机 Compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101872374B1 (en) * 2012-05-29 2018-06-28 한온시스템 주식회사 Compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315527U (en) * 1976-07-22 1978-02-09
JPH0861242A (en) * 1994-08-10 1996-03-08 Iwata Air Compressor Mfg Co Ltd Reciprocating compressor and suction valve
JPH09209931A (en) * 1996-01-30 1997-08-12 Toyota Autom Loom Works Ltd Piston type compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315527U (en) * 1976-07-22 1978-02-09
JPH0861242A (en) * 1994-08-10 1996-03-08 Iwata Air Compressor Mfg Co Ltd Reciprocating compressor and suction valve
JPH09209931A (en) * 1996-01-30 1997-08-12 Toyota Autom Loom Works Ltd Piston type compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19931808A1 (en) * 1999-07-08 2001-01-18 Parkap Beteiligungs Und Verwal Method for converting an internal combustion engine to a piston compressor and piston compressor
CN103016297A (en) * 2011-09-27 2013-04-03 株式会社丰田自动织机 Compressor
US8998592B2 (en) 2011-09-27 2015-04-07 Kabushiki Kaisha Toyota Jidoshokki Compressor
CN103016297B (en) * 2011-09-27 2015-11-04 株式会社丰田自动织机 Compressor

Also Published As

Publication number Publication date
JPH1193840A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
US5147190A (en) Increased efficiency valve system for a fluid pumping assembly
US5266016A (en) Positive stop for a suction leaf valve of a compressor
JP3080279B2 (en) Reciprocating compressor
JPH10299656A (en) Reciprocating compressor
WO2007123002A1 (en) Compressor
KR20000076506A (en) Piston type compressor
JP3760440B2 (en) Fluid compression device
JP4146244B2 (en) Reciprocating compressor suction valve
WO1999014494A1 (en) Valve structure and compressor
KR100461232B1 (en) Apparatus for compressing fluid
US6174147B1 (en) Refrigerant compressor with an improved discharge valve assembly
JPH1182302A (en) Reciprocating compressor
JP5273504B2 (en) Compressor
JPH10196542A (en) Reciprocating compressor
US20040086406A1 (en) Cylinder assembly for hermetic compressor
JPH11173269A (en) Reciprocating compressor
JPH1182303A (en) Reciprocating compressor
JP3080263B2 (en) Suction plate compressor suction control mechanism
JPH10196541A (en) Reciprocating compressor
JP3232839B2 (en) Compressor valve device
US20050058561A1 (en) Compressor
WO1999014493A1 (en) Valve structure and reciprocating compressor
JP2002031058A (en) Reciprocating refrigerant compressor
JPH10299657A (en) Reciprocating compressor
JP3079743B2 (en) Refrigerant gas suction structure in piston type compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642