WO1999012046A1 - Pointer indicator - Google Patents

Pointer indicator Download PDF

Info

Publication number
WO1999012046A1
WO1999012046A1 PCT/JP1998/003269 JP9803269W WO9912046A1 WO 1999012046 A1 WO1999012046 A1 WO 1999012046A1 JP 9803269 W JP9803269 W JP 9803269W WO 9912046 A1 WO9912046 A1 WO 9912046A1
Authority
WO
WIPO (PCT)
Prior art keywords
pointer
angle
angle value
value
constant
Prior art date
Application number
PCT/JP1998/003269
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Asai
Original Assignee
Nippon Seiki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co., Ltd. filed Critical Nippon Seiki Co., Ltd.
Publication of WO1999012046A1 publication Critical patent/WO1999012046A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R7/00Instruments capable of converting two or more currents or voltages into a single mechanical displacement
    • G01R7/04Instruments capable of converting two or more currents or voltages into a single mechanical displacement for forming a quotient
    • G01R7/06Instruments capable of converting two or more currents or voltages into a single mechanical displacement for forming a quotient moving-iron type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/08Pointers; Scales; Scale illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage

Definitions

  • the present invention relates to a pointer indicating instrument, such as a cross-coil meter, a stepping motor type meter, etc., which performs display by a pointing operation based on a change in the angle of a pointer, and particularly to smoothing of the pointer indicating operation.
  • a pointer indicating instrument such as a cross-coil meter, a stepping motor type meter, etc.
  • General pointer indicating instruments process signals from various sensors installed on the object to be measured as appropriate, convert them to appropriate pointer driving signals, and display the state of the object to be measured by pointing movements due to changes in the angle of the pointer. Things.
  • the sensor signal is once digitized, subjected to a predetermined process, converted into an analog signal again, and the pointer is driven.
  • a pulse signal having a frequency proportional to the rotation speed is output from the sensor.
  • V conversion convert the converted voltage signal into a digital signal (digital numerical value), or count or measure the period of the pulse signal and output the state of the measured object as a digital signal.
  • the corresponding needle drive amount (angle) is calculated and processed by a control unit such as a microcomputer, and the angle of the pointer is controlled to display the engine speed.
  • the conventional example by detecting the amount of change in the output signal of the conversion unit and switching the smooth response characteristic, it is possible to quickly follow the pointer instruction operation to the change of the measured object, and to achieve quick response.
  • the problem of small fluctuations of the pointer that occurs can also be solved.
  • N of 1ZN which is a filter coefficient
  • the constant N is large, the rotation speed becomes low (the pulse signal frequency is low and the pulse period is long).
  • the filter effect of the smoothing portion is exerted and the slight fluctuation is absorbed to suppress the flickering of the display, it is not possible to follow a rapid change in the number of rotations, and the driver feels bodily. The difference from the display is felt so large that the user feels strange.
  • the constant N is small, a needle wobble phenomenon occurs, resulting in a lack of display quality.
  • An object of the present invention is to further improve this conventional example, and to provide an indicating instrument capable of realizing good smoothing without increasing the cost. Disclosure of the invention
  • the variable constant ⁇ ( ⁇ - ⁇ ) ⁇ 2 is calculated from the expected maximum angle difference ⁇ ⁇ ⁇ determined by the instrument and the fixed constant ⁇ 2. Therefore, the fixed constant K1 was a positive integer value proportional to the fixed constant ⁇ 2.
  • the present invention provides that the processing in the smoothing circuit is performed every time an average value of a continuous number of ⁇ output signals S (n) is measured, or from the averaged output signal S (n).
  • the B calculated swing angle values T (n) of the hands are obtained continuously and the average value is measured each time, or the variable constant N calculated from the averaged swing angle values T (n) of the hands is calculated. This is performed every time C averages are obtained continuously and the average value is measured.
  • FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing the configuration of the embodiment.
  • an input signal which is a pulse signal having a frequency proportional to the engine speed to be measured is input from an input terminal 1, a waveform shaping circuit 2 After the waveform shaping, the period measuring circuit 3 detects the rise or fall of the input signal, and outputs another high-frequency cut-off signal with the input signal, and momentarily at a predetermined measurement timing.
  • the changing engine speed is output as, for example, an 8-bit binary count value (digital signal) S (n).
  • the output signal S (n) of the period measuring circuit 3 is sent to the processing circuit 4 and converted to the most faithful finger swing angle value T (n) based on the current output signal S (n) of the instrument described later. Is converted into an instruction target angle value D (n) that has been subjected to a smoothing process by a smoothing circuit 5 by a method described later, and the instruction target angle value D (n) thus smoothed is It is supplied to an exciting coil (not shown) of the stepping motor type instrument 8 via the circuit 6 and, if necessary, the output circuit 7, and performs an instruction operation by changing the angle of the pointer 9 to display the engine speed.
  • the value of the difference ⁇ is calculated so as to take a predetermined range.
  • 100 [degrees] is the scheduled maximum angle difference (the maximum angle difference expected at one measurement timing) ⁇ ⁇ determined by the instrument.
  • the fixed constant ⁇ 1 takes a positive integer value having no decimal point or the like in proportion to the fixed constant ⁇ 2, so that the storage member for storing and storing these constants Kl and ⁇ 2 (for example, the processing circuit 4, And / or the built-in smoothing circuit 5) may not be required to have a large storage capacity, which is desirable for cost reduction.
  • the filter coefficient 1 ZN is determined by the magnitude of the difference (angle difference) between the shake angle value T (n) as input data and the indicated angle value D (n-1) as output data.
  • the filter coefficient changes by 20% when changing from 1/4 to 1/5 in the conventional 1ZN, but according to the present embodiment, the use of 8ZN It is possible to change from 1/4 to 1Z5 via 14.X, and the smoothness of the change of the indicated target angle value D (n) can be further improved.
  • the value of the fixed constant K1 can be arbitrarily selected according to the characteristics of the instrument 8 and the like.However, a smaller value generally results in poor smoothness, and a larger value causes an increase in processing load. It is necessary to determine an optimal value in consideration of the characteristics of the instrument 8 and the like and the processing capability of the entire configuration (particularly, the processing circuit 4 and the smoothing circuit 5).
  • the above-mentioned processing in the smoothing circuit 5 is not performed at every measurement timing as in the above-described embodiment, but, for example, four consecutive output signals S (n) are output. It is performed every time the average value is measured, or every time when four consecutive deflection angle values T (n) of the pointer obtained from the averaged output signal S (n) are obtained and the average value is measured. Alternatively, four consecutive variable constants N obtained from the averaged deflection angle value T (n) of the pointer may be obtained in succession, and the average value may be measured each time. It is effective for absorption.
  • the present invention is not limited to the stepping motor type instrument of the embodiment, but can be similarly applied to an instrument such as a cross coil type instrument which performs an instruction operation by changing the angle of another pointer.
  • the smoothing of the pointer indicating operation can be further realized by the processing in the smoothing circuit.
  • Signals from various sensors installed on the object to be measured change suddenly or irregularly. Even if it fluctuates, the above processing can suppress the occurrence of so-called needle jump or needle runout.
  • an indicator that displays the engine speed of a vehicle slight fluctuation of the pointer at low speed or high It is possible to prevent overshoot from the rotation speed to the low rotation speed, to obtain a smooth pointer indication, and to obtain a smooth pointer indication instrument with less visual unnaturalness.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instrument Panels (AREA)
  • Indicating Measured Values (AREA)

Abstract

A pointer indicator of which the pointer neither springs nor oscillates. A smoothing circuit (5) finds the difference υ = |T(n) - D(n-1)| between the deflection angle T(n) and the indication angle D(n-1). A variable constant N (= (M-υ) x K2) is found from the difference υ, a maximum expected angle difference M determined depending on the indicator, and a fixed constant K2. The fixed constant K2 is a positive integer that varies in proportion to a fixed constant K1. An indicated target angle D(n) (= D(n-1) + {T(n) - D(n-1)} x K1/N) is found from the latest deflection angle T(n), present indication angle D(n-1), fixed constant K1 and variable constant N. Based on the indication target angle D(n), a pointer (9) changes its deflection and indicates a measure.

Description

明細書 指針指示計器 技術分野  Description Pointer indicating instrument Technical field
この発明は、 交叉コイル式計器ゃステツビングモータ式計器等のような指針の 角度変化による指示動作にて表示を行う指針指示計器において、 特に指針指示動 作の平滑化に関する。 背景技術  The present invention relates to a pointer indicating instrument, such as a cross-coil meter, a stepping motor type meter, etc., which performs display by a pointing operation based on a change in the angle of a pointer, and particularly to smoothing of the pointer indicating operation. Background art
一般の指針指示計器は、 被測定対象に設置した各種センサからの信号を適宜処 理して適切な指針駆動信号に変換し、 被測定対象の状態を指針の角度変化による 指示動作にて表示するものである。 このような指示計器にあっては、 各種センサ からの信号処理のため、 前記センサ信号を一端デジタル化し、 所定の処理をなし た後、 再度アナログ化して、 指針を駆動させるものである。  General pointer indicating instruments process signals from various sensors installed on the object to be measured as appropriate, convert them to appropriate pointer driving signals, and display the state of the object to be measured by pointing movements due to changes in the angle of the pointer. Things. In such an indicating instrument, in order to process signals from various sensors, the sensor signal is once digitized, subjected to a predetermined process, converted into an analog signal again, and the pointer is driven.
具体的に説明すると、 交叉コイル式計器を用いて被測定対象である車両ェンジ ンの回転数を表示する場合、 センサからは回転数に比例した周波数のパルス信号 が出力され、 このパルス信号を F / V変換し、 この変換後の電圧信号をデジタル 信号 (デジタル数値) に変換したり、 または、 パルス信号の計数或いは周期計測 して被測定対象の状態をデジタル信号で出力し、 前記デジタル数値と対応した指 針駆動量 (角度) をマイコン等の制御部で演算処理して求め、 これにより指針の 角度を制御してェンジン回転数を表示する。  More specifically, when displaying the rotation speed of the vehicle engine to be measured using a cross-coil meter, a pulse signal having a frequency proportional to the rotation speed is output from the sensor. / V conversion, and convert the converted voltage signal into a digital signal (digital numerical value), or count or measure the period of the pulse signal and output the state of the measured object as a digital signal. The corresponding needle drive amount (angle) is calculated and processed by a control unit such as a microcomputer, and the angle of the pointer is controlled to display the engine speed.
斯かる計器において、 特開平 5— 1 8 0 8 7 2号公報には、 指針指示動作のス ムーズ化のために、 前記デジタル信号を平滑化するためのフィルタ係数 = 1 /N を有するフィルタ (平滑部) を備えることが開示されている。  In such an instrument, Japanese Patent Application Laid-Open No. 5-18072 discloses a filter having a filter coefficient = 1 / N for smoothing the digital signal in order to smooth the pointer indicating operation. (A smoothing portion).
これは、 被測定対象からの入力信号をデジタル化する変換部と、 この変換部か らのデジタノレ信号に対応した所定の指針指示信号を出力する駆動処理部と、 この 駆動処理部からの駆動出力を受けて指針を動作せしめる表示部とで構成され、 変 換部出力信号の変化量を検出して前記変換部出力信号のデジタル平滑処理を行う 平滑部を変換部と駆動処理部との間に設けることで、 変化量に応じて平滑応答特 性を切り替え、 平滑化を実現するものである。 This includes a conversion unit that digitizes an input signal from the device under test, a drive processing unit that outputs a predetermined pointer instruction signal corresponding to the digital nore signal from the conversion unit, and a drive output from the drive processing unit. And a display unit for operating the pointer in response to the change. The amount of change in the output signal of the conversion unit is detected, and digital smoothing of the output signal of the conversion unit is performed. By providing a smoothing unit between the conversion unit and the drive processing unit, the smoothing response characteristic is switched according to the amount of change, thereby realizing smoothing.
従来例によれば、 変換部出力信号の変化量を検出して平滑応答特性を切り替え ることにより、 被測定対象の変化に対する指針指示動作の速やかな追従を可能と し、 素早い応答性のために生じる指針の細かな振れ問題も解消することができる。 しかしながら、 フィルタ係数である 1ZNの定数 Nとして、 正の整数値からな る固定値を採用した場合には、 定数 Nが大きいと、 低回転数領域 (パルス信号の 周波数が低くパルス周期が長い) におレ、て前記平滑部のフィルタ効果が発揮され て僅かな変動を吸収することで表示のちらつきを抑えられるものの、 急激な回転 数の変化の追従することができず、 運転者は体感と表示との差を大きく感じて違 和感を持つこととなる。 また、 定数 Nが小さいと、 反対に、 指針の針振れ現象を 生じさせ、 表示品位を欠くこととなる。  According to the conventional example, by detecting the amount of change in the output signal of the conversion unit and switching the smooth response characteristic, it is possible to quickly follow the pointer instruction operation to the change of the measured object, and to achieve quick response. The problem of small fluctuations of the pointer that occurs can also be solved. However, when a fixed value consisting of a positive integer value is adopted as the constant N of 1ZN, which is a filter coefficient, if the constant N is large, the rotation speed becomes low (the pulse signal frequency is low and the pulse period is long). In addition, although the filter effect of the smoothing portion is exerted and the slight fluctuation is absorbed to suppress the flickering of the display, it is not possible to follow a rapid change in the number of rotations, and the driver feels bodily. The difference from the display is felt so large that the user feels strange. On the other hand, if the constant N is small, a needle wobble phenomenon occurs, resulting in a lack of display quality.
このため、 回転数の状態に応じて、 定数 Nを自動的に切り替えることも考えら れるが、 定数 Nのデータを記憶部にテーブルとして持たせる場合、 データ数が多 いと記憶部としては容量の大きいものが必要で、 これに伴いコストアップを招く こととなり望ましくない。  For this reason, it is conceivable that the constant N is automatically switched according to the state of the rotation speed. A large one is required, which leads to an increase in cost, which is not desirable.
本発明は、 この従来例を更に改良することを目的とし、 コストアップを招くこ となく、 良好な平滑化を実現することのできる指示計器の提供を目的とする。 発明の開示  An object of the present invention is to further improve this conventional example, and to provide an indicating instrument capable of realizing good smoothing without increasing the cost. Disclosure of the invention
本発明は、 被測定対象被測定対象の状態に応じて所定の計測タイミングにて 刻々変化するデジタル信号 S (n) による最も忠実な指 ^"の振れ角度値 T (n) を求め、 この最新の振れ角度値 T (n) と前回の計測タイミングで得られた現在 の指示角度値 D (n— 1) と固定定数 K1と可変定数 Nとから、 指示目標角度値 D (n) =D (n- 1 ) + {T (η) 一 D (n- 1)} XK1/Nを求め、 この指 示目標角度値 D (n) に基づいて前記指針の角度変化による指示動作にて表示す る指針指示計器であって、 前記振れ角度値 T (n) と前記指示角度値 D (n— 1) との差 Θ = | Τ (n) -D (n- 1) | を求め、 この差 Θと計器により定まる予 定最大角度差 Μと固定定数 Κ 2とから、 前記可変定数 Ν= (Μ- θ) ΧΚ2を求 め、 前記固定定数 K 1は前記固定定数 Κ 2に比例した正の整数値とした。 The present invention obtains a shake angle value T (n) of the most faithful finger ^ "based on a digital signal S (n) which changes momentarily at a predetermined measurement timing in accordance with the state of the object to be measured. From the swing angle value T (n), the current indicated angle value D (n-1) obtained at the previous measurement timing, the fixed constant K1, and the variable constant N, the indicated target angle value D (n) = D ( n-1) + {T (η) -1 D (n-1)} XK1 / N is obtained, and based on the indicated target angle value D (n), it is displayed by the instruction operation based on the angle change of the pointer. A pointer indicating instrument, wherein a difference 前 記 = | Τ (n) -D (n-1) | between the deflection angle value T (n) and the indicated angle value D (n-1) is obtained, and the difference Θ The variable constant Ν = (Μ-θ) ΧΚ2 is calculated from the expected maximum angle difference に よ り determined by the instrument and the fixed constant Κ2. Therefore, the fixed constant K1 was a positive integer value proportional to the fixed constant Κ2.
また、本発明は、前記平滑回路での前記処理を、連続した Α個の出力信号 S (n) の平均値を測定した毎に行ったり、 あるいは、 この平均した出力信号 S (n) か ら求まる指針の振れ角度値 T (n) を B個連続して求めてその平均値を測定した 毎に行ったり、 あるいは、 この平均した指針の振れ角度値 T (n) から求まる可 変定数 Nを C個連続して求めてその平均値を測定した毎に行う。 図面の簡単な説明  Further, the present invention provides that the processing in the smoothing circuit is performed every time an average value of a continuous number of 出力 output signals S (n) is measured, or from the averaged output signal S (n). The B calculated swing angle values T (n) of the hands are obtained continuously and the average value is measured each time, or the variable constant N calculated from the averaged swing angle values T (n) of the hands is calculated. This is performed every time C averages are obtained continuously and the average value is measured. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施例の構成を示すプロック図である。 発明を実施するための最良の形態  FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明を添付図面に記載のステッビングモータ式計器に適用した実施例に基づ き説明する。  The present invention will be described based on an embodiment in which the present invention is applied to a stepping motor type instrument shown in the accompanying drawings.
第 1図は、 実施例の構成を示すプロック図であり、 被測定対象であるエンジン 回転数に比例した周波数のパルス信号である入力信号が入力端子 1から入力され ると、 波形整形回路 2で波形整形された後、 周期測定回路 3において前記入力信 号の立上りや立下りを検出して別の高周波数ク口ック信号を前記入力信号にて力 ゥントし、 所定の計測タイミングにて刻々変化するエンジン回転数を例えば 8ビ ッ トの二進数計数値 (デジタル信号) S (n) として出力する。  FIG. 1 is a block diagram showing the configuration of the embodiment. When an input signal which is a pulse signal having a frequency proportional to the engine speed to be measured is input from an input terminal 1, a waveform shaping circuit 2 After the waveform shaping, the period measuring circuit 3 detects the rise or fall of the input signal, and outputs another high-frequency cut-off signal with the input signal, and momentarily at a predetermined measurement timing. The changing engine speed is output as, for example, an 8-bit binary count value (digital signal) S (n).
周期測定回路 3の出力信号 S (n) は、 処理回路 4へ送られて、 後述する計器 における現在の出力信号 S (n) に基づく最も忠実な指 ^"の振れ角度値 T (n) に変換され、 更に、 平滑回路 5により後述する方法にて平滑化処理を施された指 示目標角度値 D (n) に変換され、 こうして平滑化された指示目標角度値 D (n) は、 駆動回路 6及び必要に応じて出力回路 7を介してステッピングモータ式計器 8の図示しない励磁コイルに供給され、 指針 9の角度変化による指示動作を行い、 エンジン回転数を表示するものである。  The output signal S (n) of the period measuring circuit 3 is sent to the processing circuit 4 and converted to the most faithful finger swing angle value T (n) based on the current output signal S (n) of the instrument described later. Is converted into an instruction target angle value D (n) that has been subjected to a smoothing process by a smoothing circuit 5 by a method described later, and the instruction target angle value D (n) thus smoothed is It is supplied to an exciting coil (not shown) of the stepping motor type instrument 8 via the circuit 6 and, if necessary, the output circuit 7, and performs an instruction operation by changing the angle of the pointer 9 to display the engine speed.
次に、 平滑回路 5で行う処理の一例について説明する。 平滑回路 5は、 最新の 振れ角度値 T (n) と現在の指示角度値 D (n— 1) と固定定数 K1と可変定数 Nとから、 指示目標角度値 D (n) =D (n— 1) + {T (n) 一 D (n— 1)} XK1ノ Nを求めるもので、 その前提として振れ角度値 T (η) と指示角度値 D (n— 1) との差 Θ = | Τ (η) 一 D (n— 1) | を求め、 この差 Θと計器によ り定まる予定最大角度差 Mと固定定数 K2とから、 可変定数 N= (M— θ) XK 2を求めるもので、 固定定数 K 2は固定定数 K1に比例した正の整数値とする。 具体的には、 平滑回路 5は、 計測タイミング毎に、 振れ角度値 T (n) と指示 角度値 D (n— 1) との差 Θ = | Τ (η) — D (n— 1) | を求める。 この差 θ の値は、 所定の範囲を取るように計算されるもので、 例えば、 0 [度] く = θ < = 100 [度] の範囲で求める。 なお、 1 00 [度] は、 計器により定まる予定 最大角度差 ( 1回の計測タイミングで予定される最大の角度差) Μである。 Next, an example of the processing performed by the smoothing circuit 5 will be described. The smoothing circuit 5 calculates the indicated target angle value D (n) = D (n—from the latest shake angle value T (n), the current indicated angle value D (n—1), the fixed constant K1, and the variable constant N. 1) + {T (n) one D (n— 1)} XK1 N N is calculated, and as a prerequisite, the difference Θ = | Τ (η) – D (n−1) | between the deflection angle value T (η) and the indicated angle value D (n−1) The variable constant N = (M-θ) XK2 is calculated from the difference Θ, the maximum planned angle difference M determined by the instrument, and the fixed constant K2, where the fixed constant K2 is a positive integer Take a numerical value. Specifically, for each measurement timing, the smoothing circuit 5 calculates the difference between the shake angle value T (n) and the designated angle value D (n—1) Θ = | Τ (η) — D (n—1) | Ask for. The value of the difference θ is calculated so as to take a predetermined range. For example, the difference θ is obtained in a range of 0 [degrees] = θ <= 100 [degrees]. Note that 100 [degrees] is the scheduled maximum angle difference (the maximum angle difference expected at one measurement timing) 計 測 determined by the instrument.
次に、 この差 Θと予定最大角度差 Μと固定定数 Κ 2とから、 可変定数 Ν= (Μ 一 θ) ΧΚ 2を求めるが、 可変定数 Νが所定の範囲を取るように、 固定定数 Κ 2 を十分に大きな値を有する固定定数 Κ 1に比例した正の整数値とし、 例えば、 3 2く = Ν<= 200となるように、 K2=Kl/4、 Kl = 8とする。 従って、 Θ = 0 [度] では、 Ν= 200 =最大値となる。 なお、 Θ =Μ= 100 [度] で は、 Ν=0となる力 この時は Ν=32=最小値となるように設定(プログラム) しておき、 下限値を決めておく。 これは、 最大差 Μの場合には平滑回路 5の後述 するフィルタ係数を最小として指示目標角度値 D (η) の更新タイミングを速く するものの、 計器 8の特性等により応答性に限界があり、'指示目標角度値 D (η) の変化のスムーズ性を確保するべく、 これに応じた更新タイミングとするために 設定される。  Next, from the difference Θ, the expected maximum angle difference Μ, and the fixed constant Κ2, a variable constant Ν = (Μ θθ) ΧΚ2 is obtained, and the fixed constant Κ is set so that the variable constant を 取 る takes a predetermined range. Let 2 be a positive integer value proportional to a fixed constant Κ 1 having a sufficiently large value, for example, K2 = Kl / 4 and Kl = 8 so that 32 2 = Ν <= 200. Therefore, when Θ = 0 [degrees], Ν = 200 = maximum value. When Θ = Μ = 100 [degrees], force な る = 0 At this time, set (program) so that に = 32 = minimum value, and determine the lower limit. This is because, in the case of the maximum difference フ ィ ル タ, the update timing of the indicated target angle value D (η) is accelerated by minimizing the filter coefficient of the smoothing circuit 5 described later, but the response is limited due to the characteristics of the instrument 8 and the like. 'In order to ensure the smoothness of the change in the indicated target angle value D (η), this is set in order to set the update timing accordingly.
このように、 固定定数 Κ 1が固定定数 Κ 2に比例した小数点等を持たない正の 整数値を採ることにより、 これら定数 Kl, Κ 2を記憶保持する記憶部材 (例え ば、 処理回路 4、 及び/又は、 平滑回路 5に内蔵される) の記憶容量を多く用意 しなくても良く、 コスト低減に望ましいものとなる。  As described above, the fixed constant Κ1 takes a positive integer value having no decimal point or the like in proportion to the fixed constant Κ2, so that the storage member for storing and storing these constants Kl and Κ2 (for example, the processing circuit 4, And / or the built-in smoothing circuit 5) may not be required to have a large storage capacity, which is desirable for cost reduction.
そして、 最新の振れ角度値 Τ (η) と現在の指示角度値 D (η— 1) と固定定 数 K1 (=8) と可変定数 Νとから、 指示目標角度値 D (n) =D (n— 1) + {T (n) 一 D (n— 1)} X 8ZNを求める。 すなわち、 本実施例では、 可変定 数 Nが K1倍の精度となり、 フィルタ係数の分子も K1倍したもので、 平滑回路 5のフィルタ係数は、 「K1/N」 = 「8/N」 となる。 斯かる構成によれば、 入力データである振れ角度値 T (n) と出力データであ る指示角度値 D (n- 1) との差 (角度差) の大きさにより、 フィルター係数 1 ZNを可変として比率を変化させることで、 前記角度差が大きい場合に比率を大 きくし、 小さい場合には比率を小さくすることで、 応答性を損なわず、 変動を十 分に吸収することのできる特性を得ることができる。 Then, from the latest deflection angle value Τ (η), the current indicated angle value D (η−1), the fixed constant K1 (= 8), and the variable constant Ν, the indicated target angle value D (n) = D ( n— 1) + {T (n) one D (n— 1)} X 8ZN. That is, in the present embodiment, the variable constant N has a precision of K1 times and the numerator of the filter coefficient is also multiplied by K1, and the filter coefficient of the smoothing circuit 5 is “K1 / N” = “8 / N” . According to such a configuration, the filter coefficient 1 ZN is determined by the magnitude of the difference (angle difference) between the shake angle value T (n) as input data and the indicated angle value D (n-1) as output data. By changing the ratio as a variable, the ratio can be increased when the angle difference is large, and reduced when the angle difference is small, so that the response can be sufficiently absorbed without impairing the response. Obtainable.
特に、 可変定数 Nが変化する際、 従来例の 1ZNでは、 1/4から 1/5へ変 化すると 20%もフィルタ係数が変化するが、 本実施例によれば、 8ZNを用い ることにより、 1/4カ ら 1 4. Xを経て 1Z5へ変化することが可能となり、 指示目標角度値 D (n) の変化のスムーズ性が一層向上させることができる。 なお、 固定定数 K1の値は、 計器 8の特性等に応じて任意に選択できるが、 一 般的に小さくするとスムーズ性に劣り、 大きくすると処理負荷の増大という問題 が発生し、 よって、 個別の計器 8等の特性や全体構成の処理能力 (特に、 処理回 路 4と平滑回路 5) とを考慮して最適な値を決定する必要があり、 概ね 「5」 〜 「10」 程度が望ましい。  In particular, when the variable constant N changes, the filter coefficient changes by 20% when changing from 1/4 to 1/5 in the conventional 1ZN, but according to the present embodiment, the use of 8ZN It is possible to change from 1/4 to 1Z5 via 14.X, and the smoothness of the change of the indicated target angle value D (n) can be further improved. Note that the value of the fixed constant K1 can be arbitrarily selected according to the characteristics of the instrument 8 and the like.However, a smaller value generally results in poor smoothness, and a larger value causes an increase in processing load. It is necessary to determine an optimal value in consideration of the characteristics of the instrument 8 and the like and the processing capability of the entire configuration (particularly, the processing circuit 4 and the smoothing circuit 5).
本発明の他の実施例としては、 平滑回路 5での前記^;理を、 前記実施例のよう に計測タイミング毎に行うのではなく、 例えば、連続した 4個の出力信号 S (n) の平均値を測定した毎に行ったり、 あるいは、 この平均した出力信号 S (n) か ら求まる指針の振れ角度値 T (n) を 4個連続して求めてその平均値を測定した 毎に行ったり、 あるいは、 この平均した指針の振れ角度値 T (n) から求まる可 変定数 Nを 4個連続して求めてその平均値を測定した毎に行うこととしても良く、 被測定対象の変動を吸収するために有効である。 一般的には、 連続した A個の出 力信号 S (n) の平均値を測定した毎に行ったり、 あるいは、 この平均した出力 信号 S (n) から求まる指針の振れ角度値 T (n) を B個連続して求めてその平 均値を測定した毎に行ったり、 あるいは、 この平均した指針の振れ角度値 T (n) から求まる可変定数 Nを C個連続して求めてその平均値を測定した毎に行うこと となる。  As another embodiment of the present invention, the above-mentioned processing in the smoothing circuit 5 is not performed at every measurement timing as in the above-described embodiment, but, for example, four consecutive output signals S (n) are output. It is performed every time the average value is measured, or every time when four consecutive deflection angle values T (n) of the pointer obtained from the averaged output signal S (n) are obtained and the average value is measured. Alternatively, four consecutive variable constants N obtained from the averaged deflection angle value T (n) of the pointer may be obtained in succession, and the average value may be measured each time. It is effective for absorption. Generally, it is performed each time the average value of the continuous A output signals S (n) is measured, or the deflection angle value T (n) of the pointer obtained from the averaged output signal S (n) Is performed every time the average value is measured by calculating B consecutive times, or C variable constants N obtained from the averaged deflection angle value T (n) of the pointer are calculated continuously and the average value is calculated. Will be performed each time is measured.
また、 実施例のステッピングモータ式計器に限らず、 交叉コイル式計器等の他 の指針の角度変化による指示動作を行う計器において同様に適用することができ ることは言うまでもない。 産業上の利用可能性 Further, it is needless to say that the present invention is not limited to the stepping motor type instrument of the embodiment, but can be similarly applied to an instrument such as a cross coil type instrument which performs an instruction operation by changing the angle of another pointer. Industrial applicability
本発明によれば、 平滑回路における処理により、 指針の指示動作の一層の平滑 化を実現することのできるもので、 被測定対象に設置した各種センサからの信号 が急激に変化したり、 不規則に変動したとしても、 前記処理により所謂針飛びや 針振れの発生を抑えることができ、 特に車両のエンジン回転数を表示する指示計 器に場合、 低回転数時における指針の微変動や、 高回転数時から低回転数時にお けるオーバーシュートを防止して、 滑らかな指針指示を得ることができ、 視覚的 に不自然さの少ない円滑な指針指示計器を得ることができる。  According to the present invention, the smoothing of the pointer indicating operation can be further realized by the processing in the smoothing circuit. Signals from various sensors installed on the object to be measured change suddenly or irregularly. Even if it fluctuates, the above processing can suppress the occurrence of so-called needle jump or needle runout. Particularly in the case of an indicator that displays the engine speed of a vehicle, slight fluctuation of the pointer at low speed or high It is possible to prevent overshoot from the rotation speed to the low rotation speed, to obtain a smooth pointer indication, and to obtain a smooth pointer indication instrument with less visual unnaturalness.

Claims

請求の範囲 The scope of the claims
1. 被測定対象被測定対象の状態に応じて所定の計測タイミングにて刻々変化す るデジタル信号 S (n) による最も忠実な指針の振れ角度値 T (n) を求め、 こ の最新の振れ角度値 T (n) と前回の計測タイミングで得られた現在の指示角度 値 D (n— 1 ) と固定定数 K 1と可変定数 Nとから、 指示目標角度値 D (n) = D (n - 1 ) + {T (η) — D (η - l )} XK l ZNを求め、 この指示目標角度 値 D (n) に基づいて前記指針の角度変化による指示動作にて表示する指針指示 計器であって、 前記振れ角度値 T (n) と前記指示角度値 D (n - 1 ) との差 Θ = I T (n) ~D (n - 1 ) | を求め、 この差 Θと計器により定まる予定最大角 度差 Mと固定定数 K 2とから、 前記可変定数 N= (M— θ ) XK 2を求め、 前記 固定定数 K 1は前記固定定数 K 2に比例した正の整数値としたことを特徴とする 指針指示計器。 1. Obtain the most faithful pointer swing angle value T (n) based on the digital signal S (n), which changes every moment at a predetermined measurement timing according to the state of the measured object, and calculate the latest shake. From the angle value T (n), the current indicated angle value D (n-1) obtained at the previous measurement timing, the fixed constant K1, and the variable constant N, the indicated target angle value D (n) = D (n -1) + {T (η) — D (η-l)} XK l ZN is obtained, and based on the indicated target angle value D (n), a pointer indicating instrument to be displayed by an instruction operation based on the angle change of the pointer. A difference Θ = IT (n)) D (n−1) | between the shake angle value T (n) and the indicated angle value D (n−1), and is determined by the difference Θ and an instrument. From the expected maximum angle difference M and the fixed constant K2, the variable constant N = (M−θ) XK2 was obtained, and the fixed constant K1 was a positive integer value proportional to the fixed constant K2. Pointer indicator characterized by the following vessel.
2. 前記平滑回路での前記処理を、 連続した A個の出力信号 S (n) の平均値を 測定した毎に行ったり、 あるいは、 この平均した出力信号 S (n) 力 ^求まる指 針の振れ角度値 T (n) を B個連続して求めてその平均値を測定した毎に行った り、 あるいは、 この平均した指針の振れ角度値 T (n) から求まる可変定数 Nを C個連続して求めてその平均値を測定した毎に行うことを特徴とする請求項 1に 記載の指針指示計器。 2. The above-mentioned processing in the smoothing circuit is performed every time the average value of the continuous A output signals S (n) is measured, or the average output signal S (n) power It is performed every time the average of the B deflection angle values T (n) is obtained in succession, or C variable constants N obtained from the averaged deflection angle value T (n) of the pointer are continuously measured. 2. The pointer indicating instrument according to claim 1, wherein the measurement is performed every time the average value is obtained and measured.
PCT/JP1998/003269 1997-08-28 1998-07-21 Pointer indicator WO1999012046A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/232977 1997-08-28
JP23297797A JPH1172513A (en) 1997-08-28 1997-08-28 Pointer indicator

Publications (1)

Publication Number Publication Date
WO1999012046A1 true WO1999012046A1 (en) 1999-03-11

Family

ID=16947865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003269 WO1999012046A1 (en) 1997-08-28 1998-07-21 Pointer indicator

Country Status (2)

Country Link
JP (1) JPH1172513A (en)
WO (1) WO1999012046A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296659A (en) * 1991-03-26 1992-10-21 Rohm Co Ltd Meter drive device
JPH05180872A (en) * 1991-12-27 1993-07-23 Nippon Seiki Co Ltd Indicating instrument
JPH08327664A (en) * 1995-05-31 1996-12-13 Nippon Seiki Co Ltd Meter driver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296659A (en) * 1991-03-26 1992-10-21 Rohm Co Ltd Meter drive device
JPH05180872A (en) * 1991-12-27 1993-07-23 Nippon Seiki Co Ltd Indicating instrument
JPH08327664A (en) * 1995-05-31 1996-12-13 Nippon Seiki Co Ltd Meter driver

Also Published As

Publication number Publication date
JPH1172513A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
US20080114565A1 (en) Pedometer
US5357196A (en) Circuit for converting a frequency of an input signal so a signal having a digital value corresponding to the frequency
WO1999012046A1 (en) Pointer indicator
KR960005344B1 (en) Speed/ rpm transmission
JPH1164390A (en) Pointer indicator
JPH01118772A (en) Indicating instrument
US5561374A (en) Method for displaying a vehicle speed measurement with improved display response characteristics
WO2001094891A1 (en) Meter driving method
EP0505826B1 (en) Meter driving method
JPS62140071A (en) Drive apparatus for cross coil type meter
JPH0754327B2 (en) Instrument control circuit
JP3277813B2 (en) Numerical data indicating device
JP2985618B2 (en) Indicating instrument
JPH03137570A (en) Circuit for controlling indicator
JP3198503B2 (en) How to drive the instrument
JP3075319B2 (en) Electromagnetic flow meter
JP3057617B2 (en) Signal transmitter
JPH09145742A (en) Cross coil type measuring instrument
JP2825561B2 (en) Combination meter device for vehicles
JPH07136134A (en) Electronic sphygmomanometer
JPH1123603A (en) Driver for stepping motor type instrument
JP2720608B2 (en) Instrument angle conversion method
JP2001201509A (en) Rotational frequency display device
JPH05180872A (en) Indicating instrument
JPS63215968A (en) Speed measuring instrument

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase