WO1999011846A1 - Coiled carbon fiber, and method and apparatus for manufacturing the same - Google Patents

Coiled carbon fiber, and method and apparatus for manufacturing the same Download PDF

Info

Publication number
WO1999011846A1
WO1999011846A1 PCT/JP1998/003899 JP9803899W WO9911846A1 WO 1999011846 A1 WO1999011846 A1 WO 1999011846A1 JP 9803899 W JP9803899 W JP 9803899W WO 9911846 A1 WO9911846 A1 WO 9911846A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
coiled carbon
coil
gas
wire
Prior art date
Application number
PCT/JP1998/003899
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Motojima
Original Assignee
Electron Property Research Institute Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electron Property Research Institute Co., Ltd. filed Critical Electron Property Research Institute Co., Ltd.
Publication of WO1999011846A1 publication Critical patent/WO1999011846A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1278Carbon monoxide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor

Definitions

  • the present invention relates to a coiled carbon fiber used as a material for a three-dimensional reinforced composite material, an electromagnetic wave absorbing material, a micromechanical element, a micro-port switching element, a microsensor, a microfilter, an adsorbent, a method of manufacturing the same, and a method of manufacturing the same It relates to manufacturing equipment. Background art
  • Carbon fibers are made from conventional organic fibers, and are obtained by subjecting them to infusibilization, carbonization, graphitization, etc., such as PAN-based carbon fibers and pitch-based fibers obtained from polyacrylonitrile fibers.
  • PAN-based carbon fibers and pitch-based fibers obtained from polyacrylonitrile fibers.
  • pitch-based carbon fiber obtained there is a recently developed vapor-grown carbon fiber obtained by pyrolysis of hydrocarbons. Vapor-grown carbon fiber is formed in a straight line, has high strength, has a wide range of properties from metallic to semiconductive, and is expected to be applied as a functional material.
  • a method for producing a vapor-grown carbon fiber there is a method disclosed in Japanese Patent Publication No. 51-33210.
  • a mixed gas of a hydrocarbon such as benzene and a carrier gas is first introduced into a reaction tube supporting a metal powder catalyst maintained at a temperature of 100 ° C. or more, at a temperature of 100 to 1 ⁇ m.
  • the nucleus of fiber growth is formed at a flow rate of 50 O cmZ, and then the fiber is grown at a flow rate of 10 to 3 O cm / min.
  • these carbon fibers can reflect electromagnetic waves, but have a problem that electromagnetic wave absorption based on dielectric loss is not always sufficient.
  • the carbon fiber obtained by the method for producing a vapor-grown carbon fiber had a linear shape and the diameter of the fiber did not reach the micron order.
  • the yield of the coiled carbon fiber varies significantly depending on the metal manufacturer, storage conditions, pretreatment conditions, and the like, and the coiled carbon fiber may not be obtained at all. There was also.
  • An object of the present invention is to provide a coiled carbon fiber having a large coil diameter, a long coil length, and capable of efficiently absorbing and shielding electromagnetic waves.
  • Still another object is to provide a method and an apparatus for manufacturing a coiled carbon fiber which can effectively control a coil diameter, a coil pitch, and a coil length, and can improve reproducibility and yield.
  • the coiled carbon fiber of the present invention is formed into a coil shape by carbon fiber, the fiber diameter is 0.15 / zm, and the coil diameter is 0.1 to 0.1 / zm. 2 0 0 0 // m, the pitch of the coil is 0 to 50 ⁇ and the length of the coil is 1 ⁇ 0 ⁇ to 5 m, and the coil has a right-handed double spiral structure. And those having a left-handed double helix structure.
  • the coiled carbon fiber has a large coil diameter, a long coil length, and can efficiently absorb and shield electromagnetic waves.
  • the method for producing a coiled carbon fiber of the present invention includes the steps of: providing a metal catalyst, a gas of a compound belonging to Group 15 or 16 of the periodic table, a hydrogen gas, and a sealing gas; Heats carbon oxide to a temperature of 600 to 950 ° C and forms an electrostatic field And decompose hydrocarbons or carbon monoxide.
  • the growth of the coiled carbon fiber can be promoted, particularly by applying an electrostatic field.
  • the metal catalyst is nickel, titanium or tungsten
  • the compound is a compound containing a sulfur atom or a phosphorus atom
  • the hydrocarbon is acetylene
  • the seal is The gas is nitrogen or hemi-gas.
  • the metal catalyst, the gas compound of the Group 15 or Group 16 compound of the periodic table, and the hydrocarbon are each limited, it is possible to reliably obtain the desired coiled carbon fiber. it can.
  • the electrostatic field is a non-variable electrostatic field or a variable electrostatic field.
  • the growing carbon fiber can be formed in a coil shape, and the coil diameter, the coil pitch, and the coil length can be effectively controlled. .
  • the apparatus for producing coiled carbon fiber of the present invention distributes a hydrocarbon gas or a carbon monoxide gas, a gas of a compound belonging to Group 15 or 16 of the periodic table, and a hydrogen gas to a reaction vessel having a heater. And an inlet for injecting the seal gas, and a base material for forming a high-voltage electrostatic field or a conductor at a predetermined distance from the base material in the reaction vessel.
  • the coiled carbon fibers are grown on a substrate.
  • the raw material gas and the seal gas can be introduced into the reaction vessel, the acetylene, thiophene and hydrogen gas introduced into the reaction vessel are collected on the substrate, and the coiled carbon fiber is efficiently formed on the substrate.
  • the carbon fibers growing from the base material can be formed into a coil shape, and the coil diameter, the coil pitch, and the coil length can be effectively controlled. .
  • the substrate is movably disposed, and the substrate is moved in accordance with the growth of the coiled carbon fiber.
  • the coiled carbon fibers grown on the base material can be easily collected, and a new base material can be arranged at the position where the growth is most likely to occur, so that the coiled carbon fibers can be continuously arranged. It can be manufactured in a special way.
  • FIG. 1 is a cross-sectional view of a main part showing an apparatus for manufacturing a coiled carbon fiber according to a first embodiment.
  • Fig. 2 is an electrical circuit diagram showing the electrical configuration of the high-voltage electrostatic field generator.
  • FIG. 3 is a sectional view of a main part showing a manufacturing apparatus according to a second embodiment.
  • FIG. 4 is an essential part cross sectional view showing the operation of the manufacturing apparatus of the second embodiment.
  • FIG. 5 is a sectional view of a main part showing a manufacturing apparatus according to a third embodiment.
  • FIG. 6 is an essential part cross-sectional view showing another example of the manufacturing apparatus of the first embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • the coiled carbon fiber is formed in a coil shape by carbon, the diameter of the fiber is 0.01 to 5 ⁇ , and the diameter of the coil is 0. ⁇ 200 ⁇ m ⁇ , pitch of koinole is 0 ⁇ 50 ⁇ m and length of koinole is 100! 55 m, and the coils include those having a right-handed double helical structure and those having a left-handed double helical structure.
  • the coiled carbon fiber has a coil diameter substantially in the order of a micron, can absorb and block electromagnetic waves, and has excellent elasticity and high strength.
  • a coiled carbon fiber When a coiled carbon fiber is irradiated with electromagnetic waves from the outside and is exposed to a fluctuating electric field or magnetic field, an induced current due to induced electromotive force flows in the coil according to Faraday's law, generating joule heat and absorbing the electromagnetic waves .
  • the electromagnetic waves undergo circular and circular deflections by the coiled carbon fiber, and furthermore, the coiled carbon fiber is highly conductive, and suffers from reflection and scattering losses, etc., so that it rapidly declines.
  • the coiled carbon fibers are oriented in all directions in three dimensions, it is considered that electromagnetic waves are efficiently absorbed no matter where they are applied.
  • the frequency range of the electromagnetic wave absorbed by the coiled carbon fiber is as follows: Depends on pitch and coil length. If the coil length is long and the coil diameter is large, electromagnetic waves in the low frequency range will be absorbed. On the other hand, if the coil diameter is small, electromagnetic waves in the high frequency region are absorbed. Therefore, by controlling these, it can be applied as an electromagnetic wave absorber in a wide range. It can also be used as a new electrode material, energy conversion element, microsensor, micromechanical element, microfilter, high temperature 'high pressure' corrosion and elastic packing, antibacterial material, adsorbent, etc.
  • the coiled carbon fiber is used as a catalyst carrier as a biomaterial.
  • cells can be embedded in coils of coiled carbon fiber to exert a catalytic action in vivo.
  • Coiled carbon fibers can absorb electromagnetic waves in a wider wavelength range as the coil diameter is larger, and can absorb more electromagnetic waves as the coil length is longer.
  • the right-handed double-helical coil and the left-handed double-helical coil exist in a ratio of approximately 1: 1. Therefore, even though it looks like a single helical structure in terms of macro, it has a double helical structure in microscopic terms.
  • a reaction vessel 12 is a horizontal thermo-chemical vapor synthesis apparatus formed in a tubular shape, and is capable of growing coiled carbon fibers 10 therein.
  • the reaction vessel 12 is made of a metal material such as stainless steel or Inconel, or a ceramic material such as ceramic, alumina, or quartz.
  • the material of the reaction vessel 12 is preferably transparent quartz in terms of catalytic activity and internal observation.
  • the openings 13 at both ends of the reaction vessel 12 are closed by an insulating rubber stopper 14, and the inside of the reaction vessel 12 is kept electrically insulated.
  • the annular inlet 15 protrudes from the upper peripheral surface of the center of the reaction vessel 12, and is a gas containing hydrocarbon gas or carbon monoxide gas, or a group 15 or 16 element of the periodic table. And the hydrogen gas is allowed to flow into the reaction vessel 12.
  • a gas containing carbon atoms such as acetylene, methane, and propane or a carbon monoxide gas is used.
  • Acetylene is preferred in view of the anisotropy of the catalytic activity on the crystal plane.
  • Compounds containing sulfur atoms such as sulfur, thiophene, methyl mercaptan, and hydrogen sulfide, or compounds containing phosphorus atoms, such as phosphorus and phosphorus trichloride, are used as elements of Groups 15 and 16 of the periodic table. Is used. Of these, thiophene is preferred.
  • the concentration of the gas containing an element of Groups 15 and 16 of the periodic table in the reaction atmosphere is preferably 0.01 to 5 volumes. /. And more preferably within the range of 0.1 to 0.5% by volume. If the concentration is less than 0.01% by volume or exceeds 5% by volume, it becomes difficult to grow the coiled carbon fibers 10.
  • a pair of annular injection ports 16 are formed so as to protrude from upper peripheral surfaces of both ends of the reaction vessel 12 so as to inject a seal gas into the reaction vessel 12.
  • the seal gas used is an inert gas that is chemically inert, such as nitrogen gas or helium gas, and does not react with system substances. When the sealing gas is injected into the reaction vessel 12, it is possible to prevent extra or harmful effects of the oxygen gas or the like from being added to the reaction system in the reaction vessel 12.
  • annular outlet 17 is formed on the lower peripheral surface of the center of the reaction vessel 12 so as to correspond to the inlet 15, and hydrocarbon gas flowing through the reaction vessel 12 is provided. Carbon monoxide gas, seal gas, gas of compound of group 15 or 16 of the periodic table, hydrogen gas and gas generated by decomposition reaction are discharged.
  • the heater 18 is annularly mounted at the center of the reaction vessel 12 so as to sandwich the inflow port 15 and the outflow port 17 so as to raise the temperature of the reaction vessel 12 to a constant temperature.
  • the temperature is preferably set within a range of 600 to 950 ° C, and more preferably within a range of 700 to 850 ° C. When the reaction temperature is lower than 600 ° C. or higher than 950 ° C., the yield of the coiled carbon fiber 10 sharply decreases.
  • a substrate 19 formed in an elongated rectangular plate shape is used as a base material on which the coiled carbon fibers 10 grow.
  • a catalyst 20 made of metal powder is applied on the surface of the substrate 19, a catalyst 20 made of metal powder is applied.
  • the substrate 19 is one of allotropic carbon materials and is formed of graphite, also called graphite.
  • the connecting wires 21 are connected to both ends of the substrate 19 in pairs, and the connecting wires 21 are supported by the insulating rubber stoppers 14 so that the substrate 19 is in the air of the reaction vessel 12. Supported.
  • one connection line 2 1 is connected to a high-voltage electrostatic field generator 22 for applying an electrostatic field to the coiled carbon fiber 10 of the reaction vessel 12 ⁇ , and the other connection line 21 is open.
  • the metal catalyst 20 is at least one compound selected from transition metal oxides, carbides, sulfides, phosphides, carbonates and carbosulfides, and is preferably nickel, titanium or tungsten. It is a solid solution with oxygen, oxides, carbides, sulfides, phosphides, carbonates or carbosulfides. Of these, nickel is even more preferred.
  • the form of the metal catalyst 20 may be any of a powder, a metal plate, a sintered plate of a powder and the like, and is preferably a fine powder or a sintered plate having an average particle size of about 5 ⁇ .
  • the coil diameter, coil pitch, and coil length of the coiled carbon fiber 10 depend on the crystal anisotropy and the particle size of the metal catalyst 20. Therefore, if the crystal plane anisotropy changes due to the voltage of the electrostatic field or hydrogen gas, the coil diameter, coil pitch, and coil length also change. For example, as the particle size of the metal catalyst 20 decreases, the coil diameter decreases. In the case of the fine metal catalyst 2 °, it may be sprayed or applied on the substrate 19.
  • These metal catalysts 20 can be obtained by oxidizing, carbonizing, phosphating, carbonating and carbonizing under predetermined conditions before the reaction, in addition to a solid solution or a compound which has previously become a compound. Is also used.
  • the distance between the inflow port 15 for introducing the raw material gas and the like into the reaction vessel 12 and the substrate 19 is set to be within the range of 2 to 20 times.
  • the distance between the inlet 15 and the substrate 19 is less than two legs or more than 2 Omm, no coiled carbon fiber 10 can be obtained, and only carbon powder or straight carbon fiber Will begin to be analyzed.
  • the rod-shaped electrode 23 is formed of a conductive metal, and is disposed above the substrate 19 in the reaction vessel 12 at a predetermined distance.
  • the diameter of the rod-shaped electrode 23 is about 2 mm.
  • one end of the rod-shaped electrode 23 is connected to the ground wire 24, and the other end is open. Then, a predetermined electrostatic field can be generated between the substrate 19 and the rod-shaped electrode 23.
  • the high-voltage electrostatic field generator 22 is disposed at a location away from the reaction vessel 12, It is connected to the board 19 via the connection line 21.
  • the electric circuit of the high-voltage electrostatic field generator 22 will be described.
  • a breaker 26, a power switch 27, and a voltage regulator 28 are connected in series to a 100 V AC power supply terminal 25.
  • the indicator lamp 29 is connected in parallel with the voltage regulator 28.
  • the voltage regulator 28 can adjust the voltage by a variable terminal 30.
  • the primary coil 32 of the transformer 31 for high voltage and harmonic generation is connected in parallel to the voltage regulator 28.
  • the voltmeter 33 is connected in parallel with the primary coil 32 of the transformer 31.
  • connection line 21 is connected to the substrate 19 in the reaction vessel 12.
  • the protection resistor 36 functions to alleviate electric shock and to prevent electric leakage when an abnormal situation occurs on the short circuit path. As described above, one end on the output side of the secondary coil 34 of the high-voltage and harmonic generation transformer 31 is open. Therefore, no current flows on the output side of the secondary coil 34 of the transformer 31 for generating high voltage and harmonics, only high voltage is applied, and a high-voltage electrostatic field having a superimposed waveform including harmonic components is applied. You.
  • the electrostatic field is a non-variable electrostatic field or a variable electrostatic field generated by the high voltage electrostatic field generator 22.
  • the static electrostatic field is an electric field having a linear waveform generated by a constant voltage
  • the variable electrostatic field is an electric field having an AC waveform such as a sine wave, a rectangular wave, a sawtooth wave, and a superimposed wave.
  • an electric field having a superposed waveform including a harmonic component is preferable.
  • An electric field having a superimposed waveform can be obtained by an electric circuit having the transformer 31 for generating high voltage and harmonics, an electric circuit using a semiconductor, or the like.
  • an electrostatic field having a superimposed waveform including a harmonic component is obtained by an electric circuit including a transformer 31 for generating high voltage and harmonics in the electric circuit.
  • the superposition The waveform is obtained by superimposing sine waves of various wavelengths and the like in a superimposed manner.
  • Various harmonic AC waveforms of appropriate wavelengths are added in a state of being shifted in phase, and these waveforms are added to obtain an AC waveform.
  • a strain is formed on the top.
  • the thermal decomposition of the reaction gas can be promoted.
  • positively charged reactive species which are ionized by thermal decomposition and are positively charged, are efficiently guided to the metal catalyst 20 on the substrate 19, and the molecular motion of the reactive species is activated, thereby promoting the growth of carbon fibers. Is done. Then, by giving a direction to the grown carbon fiber by the superimposed waveform including the harmonic component, the coiled carbon fiber can be grown.
  • the reaction rate can be improved, the coiled carbon fibers can be grown, and the yield can be improved. Also, by increasing the anisotropy of the crystal plane of the metal catalyst 20, coiled carbon fibers 10 having a small coil diameter can be obtained, and by reducing the anisotropy, coiled carbon fibers having a large coil diameter can be obtained. Fiber 10 is obtained. Therefore, the size of the coil diameter of the coiled carbon fiber 10 can be controlled.
  • the substrate 19 to which the nickel powder 20 has been applied is supported at an appropriate position in the reaction vessel 12 by the connection wire 21. Then, the openings 13 at both ends of the reaction vessel 12 are closed by the insulating rubber stopper 14.
  • acetylene, thiophene and hydrogen gas are introduced into the reaction vessel 12 from the inlet 15.
  • Acetylene, thiophene, and hydrogen gas flow while contacting the substrate 19 in the reaction vessel 12 and flow out from the outlet 17.
  • nitrogen gas is injected from the pair of inlets 16 to prevent extra or harmful effects of oxygen gas or the like from being applied to the reaction system on the substrate 19.
  • the power switch 27 is turned on, and the high voltage is applied to the secondary coil 34 of the transformer 31. Generate. Thereby, an electrostatic field is applied between the substrate 19 and the rod-shaped electrode 23 via the connection line 21. Further, the reaction vessel 12 is heated to 600 to 950 ° C. by the heater 18.
  • acetylene is thermally decomposed by nickel 20 by catalytic catalysis, and a single crystal of nickel carbide ⁇ nickel carbide (N i 3 C) to that contain sulfur (S) and oxygen (O) ⁇ is formed. Further, the single crystal of nickel carbide is decomposed into nickel 20 and carbon, and intragranular and intergranular diffusion occurs on the crystal plane, and carbon fibers are formed on substrate 19.
  • the carbon fiber grown from the crystal plane having high catalytic activity has a large growth and curls so as to be outside the carbon fiber grown from the crystal plane having low catalytic activity. Grow while growing. Therefore, the two carbon fibers grow while forming a coil.
  • the coil diameter, coil pitch, and coil length are controlled by the applied strength, waveform, and applied time of the electrostatic field.
  • coiled carbon fibers 10 having a large coil diameter and a large coil pitch and a long coil length can be obtained.
  • the carbon fiber 10 of the first embodiment is formed in a coil shape, the coil diameter is substantially on the order of microns, and electromagnetic waves can be effectively absorbed and shielded. Excellent elasticity and high strength can be exhibited.
  • the reaction time, the type and particle size of the metal catalyst 20, the concentration of the gas used in the reaction, the reaction temperature, the voltage of the electrostatic field, and the substrate The coil diameter, coil pitch and coil length of the coiled carbon fiber 10 can be controlled by changing the distance between 19 and the rod-shaped electrode 23. Therefore, it is used as a wide range of electromagnetic wave absorbers, new electrode materials, energy conversion devices, microsensors, micromechanical devices, microfilters, high temperature 'high pressure' corrosion resistant 'elastic packing, catalyst carriers, antibacterial materials, adsorbents, etc. be able to.
  • the substrate 19 is connected to the high voltage electrostatic field generator 22 in the reaction vessel 12. Therefore, an electrostatic field can be applied to the coiled carbon fiber 10, and the coiled carbon fiber 10 having a large coil diameter and coil pitch and a long coil length can be obtained. The yield of the coiled carbon fibers 10 can be improved.
  • the catalytic activity of the crystal plane of the metal catalyst 20 can be controlled, and the magnitude of the anisotropy can be adjusted. Therefore, the coil diameter can be increased by reducing the crystal plane anisotropy, and the coil diameter can be reduced by increasing the crystal plane anisotropy.
  • the coil Acetylene, thiophene and hydrogen gas can be sprayed on the place where the carbon fibers 10 are growing. Therefore, the coiled carbon fiber 10 can be efficiently grown on the substrate 19.
  • the outlet 17 is formed so as to protrude from the lower peripheral surface of the center of the reaction vessel 12 located on the back side of the substrate 19. I have. Therefore, acetylene, thiophene, and hydrogen gas introduced into the reaction vessel 12 are collected on the substrate 19, and the coiled carbon fibers 10 can be efficiently grown on the substrate 19.
  • the injection ports 16 for injecting the sealing gas are formed one by one at both ends of the reaction vessel 12. For this reason, it is possible to prevent an extra or harmful influence of oxygen gas or the like from being applied to the reaction system on the substrate 19.
  • the heater 18 is attached to the central peripheral surface of the reaction vessel 12. Therefore, the substrate 19 disposed in the center of the reaction vessel 12 can be heated uniformly, and the reaction can proceed smoothly.
  • the distance between the substrate 19 and the inflow port 15 is set to be in the range of 2 to 20 min. . Therefore, the coiled carbon fibers 10 can be surely grown, and a decrease in yield can be prevented.
  • the reaction temperature is set in the range of 600 to 950 ° C, so that the reaction of the coiled carbon fiber 10 is maintained. And the yield can be improved.
  • a substrate 19 for growing the coiled carbon fiber 10 of the first embodiment is formed of a wire 37.
  • the wire 37 is formed of a metal wire such as stainless steel, nickel, titanium and tungsten, a carbon fiber, a ceramic fiber such as alumina or silicon carbide (SiC), and does not contain copper.
  • the same metal catalyst as in the first embodiment is used as the metal catalyst 20, and is applied to the entire peripheral surface of the wire 37.
  • the reaction vessel 12 is formed in a tubular shape and arranged vertically.
  • An opening 13 at one end of the reaction vessel 12 is closed by an insulating rubber stopper 14.
  • the other end is a bifurcated branch pipe 38, and a scraper 39 made of an insulating material is attached to the root of both branch pipes 38. With this scraper 39, the coiled carbon fiber 10 can be scraped off and distributed to both branch pipes 38.
  • the pair of opening / closing dampers 40 are detachably attached to the distal ends of the branch pipes 38, respectively. Then, the opening / closing damper 40 on the base side of the reaction vessel 12 is detached, and the opening / closing damper 40 on the tip side is inserted, so that the inside of the reaction vessel 12 is shut off and the opening / closing damper 40 on the front end side is closed.
  • the coiled carbon fiber 10 that has fallen in the branch pipe 38 is supported. Subsequently, as shown in FIG. 4, the opening / closing damper 40 on the base side is inserted, and the opening / closing damper 40 on the tip side is detached, so that the opening / closing damper 40 on the tip side is cut off while the inside of the reaction vessel 12 is shut off.
  • the coiled carbon fiber 10 supported above can be dropped.
  • a hopper 41 as a product receiver is installed at a position below the tip of each branch pipe 38 so as to accommodate the coiled carbon fiber 10.
  • the upper end of the wire 37 is wound around a wire roll 42 on the supply side disposed above the insulating rubber stopper 14 at one end of the reaction vessel 12.
  • the lower end of the wire rod 37 passes through the scraper 39 and is wound around the wire roll 43 on the collection side outside the reaction vessel 12. To be collected.
  • the high-voltage electrostatic field generator 22 is arranged at a location remote from the reaction vessel 12 and is in contact with the wire 37 via the connection line 21. Then, the electrostatic field generated from the high-voltage electrostatic field generator 22 is applied to the wire 37.
  • the ground plate 44 is attached in a ring shape so as to cover the peripheral surface of the heater 18, and is grounded via a ground wire 45.
  • the coiled carbon fiber 10 grows on the wire 37 in the reaction vessel 12 in the same manner as in the first embodiment. At this time, the coiled carbon fibers 10 grow in all directions from the peripheral surface of the wire rod 37. Then, as shown in FIG.
  • the wire 37 is used as a place for growing the coiled carbon fiber 10
  • the wire 37 is omnidirectional from the peripheral surface of the wire 37.
  • Coiled carbon fibers 10 can be grown in a larger area, and a larger amount of coiled carbon fibers 10 can be obtained per unit area than when substrate 19 is used.
  • the wire 37 is wound around the rolls 42 and 43 so that it can be continuously supplied, so that a long reaction time is required. And a large amount of coiled carbon fibers 10 can be obtained by continuous reaction. Further, since it is not necessary to replace the substrate 19 once, the manufacturing time can be reduced and the manufacturing cost can be reduced.
  • one end of the reaction vessel 12 is divided into two branches to form a branch pipe 38, and a scraper 39 is provided at the base of the branch pipe 38. Installed. Therefore, the coiled carbon fiber 10 grown on the wire 37 can be easily collected by winding the wire 37 through the scraper 39. Furthermore, since it passes through each branch pipe 38 and falls into the hopper 41, the coiled carbon fiber 10 can be reliably recovered.
  • the coiled carbon fiber manufacturing apparatus 11 of the second embodiment when two opening / closing dampers 40 are attached to one branch pipe 38, one opening / closing damper 40 is detached. Then, the other open / close damper 40 can be kept inserted. Therefore, the coiled carbon fibers 10 can be recovered while the reaction vessel 12 is kept closed.
  • An apparatus 11 for manufacturing coiled carbon fibers according to the third embodiment has a substrate 19 where the growth of the coiled carbon fibers 10 is formed of the same wire rod 37 as in the second embodiment.
  • the opening 13 at the lower end of the reaction vessel 12 is closed by an insulating rubber stopper 14.
  • the upper end is a reduced diameter portion 46 that decreases in diameter upward.
  • the length of the upper end of the reaction vessel 12 and the inlet 16 on the upper end side is longer than the length of the tip of the reaction vessel 12 and the inlet 16 of the first embodiment.
  • another injection port 47 is formed so as to protrude on the peripheral surface, and the sealing gas is introduced similarly to the injection port 16. .
  • the plurality of sealing materials 48 are formed in a conical shape at regular intervals by a metal plate, and their outer peripheral edges are joined to the inner peripheral surface of the reaction vessel 12. At each end, a passage hole 49 for allowing the wire 37 to pass is formed.
  • a labyrinth seal 50 is provided by the plurality of seal materials 48. The labyrinth seal 50 is attached to the upper end and the intermediate part in the reaction vessel 12 so that leakage of the reaction gas or the seal gas can be minimized.
  • the wire 37 is wound around a wire roll 42 on the supply side at the lower end of the reaction vessel 12.
  • the upper end of the wire rod 37 passes through the inside of the reaction vessel 12, passes through the reduced diameter portion 46 of the upper end of the reaction vessel 12, and is collected by the wire rod holder 43 on the collection side. .
  • the coiled carbon fiber 10 is formed downward at the reaction site because the reaction vessel 12 is suspended. Then, by collecting the wire 37 upward, the coil-shaped carbon fibers 10 are continuously long and formed into one long fiber.
  • Product collection roll 5 1 is the wire on the collection side It is arranged at a position adjacent to the use roll 43 so that the grown long coiled carbon fibers 10 can be collected.
  • the scraper 52 is formed in an inverted conical shape by a metal plate, and a through hole 53 for passing a wire is formed at the tip of the scraper. Then, the scraper 52 is arranged at a position where the wire rod 37 coming out of the passage hole 49 of the reduced diameter portion 46 can be passed through the through hole 53, and at the same time as passing the wire rod 37, The coiled carbon fiber 10 grown on the wire 37 can be scraped off. Then, at the same time as the wire rod 37 is collected, one long coiled carbon fiber 10 grown on the wire rod 37 is scraped off by the wire rod 37 and collected by the product collection roll 51. You.
  • the coiled carbon fiber 10 grows on the wire 37 in the reaction vessel 12 in the same manner as in the first embodiment.
  • the reaction vessel 12 is formed to be long toward the upper end, and since the production apparatus 11 is suspended, the coiled carbon fibers 10 grown on the wire 37 continuously flow downward due to gravity. It is formed.
  • the wire 37 is wound by the wire roll 43 on the collecting side, and the continuously grown coiled carbon fiber 10 is scraped by the scraper 52 and collected by the product collecting roll 51.
  • the reaction vessel 12 since the reaction vessel 12 is upright, the coiled carbon fiber 10 grown on the wire 37 is gravity-driven. It can be formed continuously downward. Therefore, the length of the coiled carbon fiber 10 can be increased to the order of m.
  • the coiled carbon fiber 10 grown on the wire 37 can be scraped off by the scraper 52. Further, the wire rod 37 is collected by the wire rod 43 on the collection side, and one long coiled carbon fiber 10 grown on the wire rod 37 can be collected by the product collection roll 51.
  • the present invention will be described more specifically with reference to examples.
  • Example 1 to 3 the average voltage, the coil pitch, and the coil length of the obtained coiled carbon fibers 10 were compared by changing the static voltage applied to the substrate 19 made of graphite.
  • nickel powder 20 with an average particle size of 5 ⁇ m was placed in the center of a horizontal thermochemical vapor phase synthesizer 12 consisting of a transparent quartz tube with a radius of 60 mm and a length of 100 mm.
  • the coated graphite substrate 19 was set.
  • acetylene, thiophene, and hydrogen gas were introduced from an inlet 15 at the upper center of the reaction vessel 12, and nitrogen gas was introduced as a sealing gas from inlets 16 at both ends of the reaction vessel 12.
  • the reaction was performed at 750 ° C for 2 hours.
  • the gas flow rates were acetylene at 60 O mlZ, thiophene at 12 ml / min, hydrogen at 140 O mlZ, and nitrogen at 100 O mlZ.
  • the distance between the inlet 15 for the source gas and the like and the substrate 19 was 1 O mm.
  • a 500 V static voltage was applied to the substrate 19 to ground the rod-shaped electrode 23.
  • the reaction was carried out under the same conditions as in Example 1 except that a static voltage of 1500 V was applied to the graphite substrate 19.
  • the yield of the coiled carbon fibers 10 based on the raw material acetylene was 90 mol%.
  • the average diameter of the coil was 50 / im, the pitch of the coil was 2 ⁇ m, and the length of the coil was 2 mm
  • the reaction was carried out under the same conditions as in Example 1 except that a static voltage of 500 V was applied to the graphite substrate 19.
  • the yield of the coiled carbon fiber 10 based on the raw material acetylene was 70 mono / 0 . Met.
  • the average Koinole diameter was 500 m
  • the Koinole pitch was 20 m
  • the Koinole length was 0.5 ram.
  • a static voltage of 500 V is applied to a 2 mm-diameter rod-shaped electrode 23 set at a position 3 mm above the graphite substrate 19, the substrate 19 is grounded, and the reaction time is reduced to 30%.
  • the reaction was carried out under the same conditions as in Example 1 except that the reaction time was changed to minutes.
  • the yield of the coiled carbon fiber 10 based on the raw material acetylene was 95 mol. /. Met.
  • the average Koinole diameter was 5 ⁇ m
  • the Koinole pitch was 0.2 / m
  • the Koinole length was 0.5 mni.
  • Example 1 was repeated except that a 500 V static voltage was applied to a rod-shaped electrode 23 having a diameter of 2 mm, which was set at a position 5 bands above the graphite substrate 19 and the reaction time was 30 minutes. The reaction was performed under the same conditions as described above.
  • the yield of coiled carbon fiber 1 ° based on the raw material acetylene was 80 moles 0 /. Met.
  • the average Koinole diameter was 4 ⁇ m
  • the Koinole pitch was 0.2 ⁇
  • the Koinole length was 0.5 mm.
  • Example 1 except that a static voltage of 150 V was applied to the rod electrode 23 of diameter 2 set at five positions above the graphite substrate 19 and the reaction time was set to 30 minutes. The reaction was performed under the same conditions as described above.
  • the yield of the coiled carbon fibers 10 based on the raw material acetylene was 80 mol%.
  • the average coil diameter was 100 ⁇ m
  • the coil pitch was 2 // m
  • the coil length was 0.2 bacteria.
  • Example 7 and Example 8 the distance between the inlet 15 of the raw material gas and the like and the tip of the grown coiled carbon fiber 10 was always about 3 mm so that the coiled carbon Fiber 10 was grown.
  • Example 9 the reaction vessel 12 was set upright, and the wire rod 37 was used as a place for the growth of the coiled carbon fiber 10 instead of the graphite substrate 19. The reaction was continuously carried out while winding up 7. A product recovery roll 5 1 for winding the coiled carbon fiber 10 and a wire rod 43 on the recovery side for winding the wire 3 7 are placed outside the reaction vessel 1 2, and the material gas inlet 15 The distance of the tip of the coiled carbon fiber 10 was kept at about 3 band, and the reaction was performed for 2000 hours while continuously winding the grown coil. Otherwise, the reaction was carried out under the same conditions as in Example 8.
  • the distance between the inlet 15 of the raw material gas and the tip of the grown coiled carbon fiber 10 should always be about 3 bands, and the coiled carbon fiber 10 will not react for a long time in the reaction vessel 12 Thus, it was shown that the coiled carbon fiber 10 continuously grown could be obtained by such a recovery.
  • the substrate 19 as a place where the coiled carbon fiber 10 grows is formed in a mesh shape with the wire 37. In addition, it should be formed in a belt shape using graphite.
  • a larger amount of coiled carbon fibers 10 can be grown than when the wire 37 is a single wire.
  • a larger amount of coiled carbon fibers 10 can be grown than in the case of a single substrate 19.
  • a metal catalyst 20 is applied to the rod-shaped electrode 23, an electrostatic field is applied, and a field where the coiled carbon fiber 10 grows is formed.
  • the coiled carbon fibers 10 can be grown from the rod-shaped electrodes 23.
  • the rod-shaped electrode 23 serving as ground is a conductive plate material. To form an annular shape, and attach it so as to cover the peripheral surface of the heater 18. Alternatively, the rod-shaped electrode 23 is formed in an annular shape from a conductive plate material, and is mounted so as to cover the peripheral surface of the heater 18, and the reaction vessel 12 is grounded.
  • the reaction gas can be efficiently circulated in the reaction vessel 12, and the reaction gas can be collected on the substrate 19 to improve the reaction efficiency.

Abstract

A coiled carbon fiber of 0.01-5 νm in fiber diameter, 0.1-2000 νm in coil diameter, 0-50 νm in coil pitch and 100 νm-5 m in coil length, including a coiled carbon fiber having a clockwise-twined double spiral structure and a coiled carbon fiber having a counterclockwise-twined double spiral structure; and a method of manufacturing the same, comprising placing a metal catalyst, a gas of a compound of an element of the group 15 or 16 in the periodic table and a sealing gas in a reaction tank, and heating hydrocarbon or carbon monoxide to a temperature of 600-950 °C while applying an electrostatic field thereto to decompose the hydrocarbon or carbon monoxide and obtain a carbon fiber grown to the mentioned shape.

Description

明細書 コイル状炭素繊維、 その製造方法及びその製造装置 技術分野  Description Coiled carbon fiber, method for producing the same, and apparatus for producing the same
この発明は、 三次元強化複合材、 電磁波吸収材、 マイクロメカニカル素子、 マ イク口スイッチング素子、 マイクロセンサ一、 マイクロフィルター、 吸着材等の 材料として使用されるコイル状炭素繊維、 その製造方法及びその製造装置に関す るものである。 背景技術  The present invention relates to a coiled carbon fiber used as a material for a three-dimensional reinforced composite material, an electromagnetic wave absorbing material, a micromechanical element, a micro-port switching element, a microsensor, a microfilter, an adsorbent, a method of manufacturing the same, and a method of manufacturing the same It relates to manufacturing equipment. Background art
近年になり、 携帯電話、 パソコン、 電磁調理器等が普及することにより、 市民 生活の身近なところに電磁波環境が増えるようになり、 電磁波による医療機器の 誤作動、 航空機、 鉄道車両などの運行障害、 あるいは健康障害に対する危惧が大 きな社会問題となっている。 そのため、 現在多くの電磁波吸収材、 遮蔽材が提案 、 実用化されている。 例えば、 カーボンブラック、 炭素繊維等を合成樹脂やゴム などの電気絶縁物中に分散させて、 その電気抵抗率を減少させることにより、 反 射損失や誘電損失に基づく電磁波シールド性を与えている。  In recent years, with the spread of mobile phones, personal computers, electromagnetic cookers, etc., the electromagnetic wave environment has increased in places close to the lives of citizens, causing malfunctions of medical equipment due to electromagnetic waves, and obstacles to operation of aircraft, railway cars, etc. Concerns about health problems have become a major social problem. For this reason, many electromagnetic wave absorbing materials and shielding materials are currently proposed and put into practical use. For example, carbon black, carbon fiber, and the like are dispersed in an electrical insulator such as synthetic resin or rubber to reduce the electrical resistivity, thereby providing electromagnetic wave shielding properties based on reflection loss and dielectric loss.
炭素繊維には、 従来からの有機繊維を原料とし、 これを不融化、 炭化、 黒鉛化 などの処理を行って得られる炭素繊維、 例えばポリアクリロニトリル繊維から得 られる P A N系炭素繊維、 ピッチ系繊維から得られるピッチ系炭素繊維などの他 に、 最近開発された、 炭化水素の熱分解により得られる気相成長炭素繊維がある 。 気相成長炭素繊維は、 直線状に形成され、 高強度で、 金属的から半導体的導電 性までの幅広い特性を有し、 機能性材料としての応用が期待されている。  Carbon fibers are made from conventional organic fibers, and are obtained by subjecting them to infusibilization, carbonization, graphitization, etc., such as PAN-based carbon fibers and pitch-based fibers obtained from polyacrylonitrile fibers. In addition to the pitch-based carbon fiber obtained, there is a recently developed vapor-grown carbon fiber obtained by pyrolysis of hydrocarbons. Vapor-grown carbon fiber is formed in a straight line, has high strength, has a wide range of properties from metallic to semiconductive, and is expected to be applied as a functional material.
気相成長炭素繊維の製造方法としては、 特公昭 5 1— 3 3 2 1 0号公報に開示 されるものがある。 この方法は、 ベンゼンなどの炭化水素とキャリアガスとの混 合ガスを、 1 0 0 0 °C以上の温度に保持された金属粉末触媒を担持させた反応管 内で、 まず 1 0 0〜 1 5 0 O cmZ分の流速で繊維成長の核を形成させ、 次に流速 を 1 0〜 3 O cm/分として繊維を成長させるものである。 ところが、 これらの炭素繊維は、 電磁波を反射させることができるが、 誘電損 失に基づく電磁波吸収性は必ずしも十分ではないといった問題があった。 また、 気相成長炭素繊維の製造方法により得られる炭素繊維は、 直線状で繊維の径がミ クロンオーダーに達していないものであった。 また、 遷移金属を触媒として用い た場合、 金属のメーカー、 貯蔵条件、 前処理条件などによりコイル状炭素繊維の 収率が著しく変化し、 コイル状炭素繊維が全く得られない場合もあるといった問 題もあった。 さらに、 コィノレの径がミクロンオーダーでコィ /レ長さの長いコィノレ 状炭素繊維を化学的に大量に合成することができないといった問題もあった。 As a method for producing a vapor-grown carbon fiber, there is a method disclosed in Japanese Patent Publication No. 51-33210. In this method, a mixed gas of a hydrocarbon such as benzene and a carrier gas is first introduced into a reaction tube supporting a metal powder catalyst maintained at a temperature of 100 ° C. or more, at a temperature of 100 to 1 μm. The nucleus of fiber growth is formed at a flow rate of 50 O cmZ, and then the fiber is grown at a flow rate of 10 to 3 O cm / min. However, these carbon fibers can reflect electromagnetic waves, but have a problem that electromagnetic wave absorption based on dielectric loss is not always sufficient. The carbon fiber obtained by the method for producing a vapor-grown carbon fiber had a linear shape and the diameter of the fiber did not reach the micron order. In addition, when a transition metal is used as a catalyst, the yield of the coiled carbon fiber varies significantly depending on the metal manufacturer, storage conditions, pretreatment conditions, and the like, and the coiled carbon fiber may not be obtained at all. There was also. In addition, there was a problem that it was not possible to chemically synthesize a large amount of carbon fiber having a large diameter and a long diameter in a micron order.
さらに、 コイル径、 コイルピッチ及びコイルの長さを制御することができると ともに、 高い再現性と収率でコイル状炭素繊維を得ることができる製造方法又は 製造装置はなかった。  Furthermore, there has been no production method or production apparatus capable of controlling the coil diameter, coil pitch, and coil length, and obtaining coiled carbon fibers with high reproducibility and yield.
この発明は、 上記従来技術に存在する問題を解決するためになされたものであ る。 その目的は、 コイル径が大きく、 コイル長さが長く、 電磁波を効率的に吸収 及び遮蔽することができるコイル状炭素繊維を提供することにある。  The present invention has been made to solve the problems existing in the above prior art. An object of the present invention is to provide a coiled carbon fiber having a large coil diameter, a long coil length, and capable of efficiently absorbing and shielding electromagnetic waves.
さらに、 その他の目的は、 コイル径、 コイルピッチ及びコイルの長さを有効に 制御でき、 再現性と収率を向上させることができるコイル状炭素繊維の製造方法 及び製造装置を提供することにある。 発明の開示  Still another object is to provide a method and an apparatus for manufacturing a coiled carbon fiber which can effectively control a coil diameter, a coil pitch, and a coil length, and can improve reproducibility and yield. . Disclosure of the invention
上記の目的を達成するために、 この発明のコイル状炭素繊維は、 炭素繊維によ りコイル状に形成され、 繊維の直径が 0 · 0 1〜5 /z m 、 コイルの直径が 0 . 1 〜2 0 0 0 // m 、 コィノレのピッチが 0〜 5 0 μ α 及ぴコィノレの長さが 1 ◦ 0 μ πι 〜 5 mであり、 コイルが右卷きの二重螺旋構造を有するものと、 左巻きの二重螺 旋構造を有するものとを含有するものである。  In order to achieve the above object, the coiled carbon fiber of the present invention is formed into a coil shape by carbon fiber, the fiber diameter is 0.15 / zm, and the coil diameter is 0.1 to 0.1 / zm. 2 0 0 0 // m, the pitch of the coil is 0 to 50 μα and the length of the coil is 1 ◦ 0 μπι to 5 m, and the coil has a right-handed double spiral structure. And those having a left-handed double helix structure.
この構成によれば、 コイル状炭素繊維はコイル径が大きく、 コイルの長さが長 く、 電磁波を効率的に吸収及び遮蔽することができる。  According to this configuration, the coiled carbon fiber has a large coil diameter, a long coil length, and can efficiently absorb and shield electromagnetic waves.
また、 この発明のコイル状炭素繊維の製造方法は、 金属触媒、 周期律表の第 1 5族又は第 1 6族の化合物のガス、 水素ガス及びシールガスの存在下に、 炭化水 素又は一酸化炭素を 6 0 0〜9 5 0 °Cの温度に加熱するとともに、 静電場を形成 し、 炭化水素又は一酸化炭素を分解するものである。 Further, the method for producing a coiled carbon fiber of the present invention includes the steps of: providing a metal catalyst, a gas of a compound belonging to Group 15 or 16 of the periodic table, a hydrogen gas, and a sealing gas; Heats carbon oxide to a temperature of 600 to 950 ° C and forms an electrostatic field And decompose hydrocarbons or carbon monoxide.
この構成によれば、 特に静電場を印加することにより、 コイル状の炭素繊維の 成長を促進させることができる。  According to this configuration, the growth of the coiled carbon fiber can be promoted, particularly by applying an electrostatic field.
さらに、 前記コイル状炭素繊維の製造方法において、 前記金属触媒はニッケル 、 チタン又はタングステンであり、 前記化合物は硫黄原子又はリン原子を含む化 合物であり、 前記炭化水素はアセチレンであり、 前記シールガスは窒素又はヘリ ゥムガスである。  Further, in the method for producing a coiled carbon fiber, the metal catalyst is nickel, titanium or tungsten, the compound is a compound containing a sulfur atom or a phosphorus atom, the hydrocarbon is acetylene, and the seal is The gas is nitrogen or hemi-gas.
この構成によれば、 金属触媒、 周期律表の第 1 5族又は第 1 6族の化合物のガ スの化合物及び炭化水素をそれぞれ限定したため、 所望とするコイル状炭素繊維 を確実に得ることができる。  According to this configuration, since the metal catalyst, the gas compound of the Group 15 or Group 16 compound of the periodic table, and the hydrocarbon are each limited, it is possible to reliably obtain the desired coiled carbon fiber. it can.
加えて、 コイル状炭素繊維の製造方法において、 前記静電場は無変動静電場又 は変動静電場である。  In addition, in the method for producing a coiled carbon fiber, the electrostatic field is a non-variable electrostatic field or a variable electrostatic field.
この構成によれば、 静電場は重畳波形を有するものであるため、 成長する炭素 繊維をコイル状に形成することができるとともに、 コイル径、 コイルピッチ及び コイル長さを有効に制御することができる。  According to this configuration, since the electrostatic field has a superimposed waveform, the growing carbon fiber can be formed in a coil shape, and the coil diameter, the coil pitch, and the coil length can be effectively controlled. .
また、 この発明のコイル状炭素繊維の製造装置は、 加熱器を有する反応容器に 炭化水素ガス又は一酸化炭素ガス、 周期律表の 1 5族又は 1 6族の化合物のガス 及び水素ガスを流通させるための流入口及び流出口を備え、 シールガスを注入す るための注入口を備えるとともに、 高圧静電場を形成するための基材又は基材か ら所定距離をおいた導体を反応容器内に配設し、 基材上にコイル状炭素繊維を成 長させるように構成したものである。  Further, the apparatus for producing coiled carbon fiber of the present invention distributes a hydrocarbon gas or a carbon monoxide gas, a gas of a compound belonging to Group 15 or 16 of the periodic table, and a hydrogen gas to a reaction vessel having a heater. And an inlet for injecting the seal gas, and a base material for forming a high-voltage electrostatic field or a conductor at a predetermined distance from the base material in the reaction vessel. The coiled carbon fibers are grown on a substrate.
この構成によれば、 原料ガスとシールガスを反応容器内に導入することができ 、 反応容器内に導入されたアセチレン、 チォフェン及び水素ガスを基板上に集め 、 基板上でコイル状炭素繊維を効率良く成長させることができる。 さらに、 基材 に高圧静電場を形成することにより、 基材から成長する炭素繊維をコイル状に形 成することができるとともに、 コイル径、 コイルピッチ及びコイル長さを有効に 制御することができる。  According to this configuration, the raw material gas and the seal gas can be introduced into the reaction vessel, the acetylene, thiophene and hydrogen gas introduced into the reaction vessel are collected on the substrate, and the coiled carbon fiber is efficiently formed on the substrate. Can grow well. Further, by forming a high-voltage electrostatic field on the base material, the carbon fibers growing from the base material can be formed into a coil shape, and the coil diameter, the coil pitch, and the coil length can be effectively controlled. .
前記コイル状炭素繊維の製造装置において、 基材を移動可能に配設し、 コイル 状炭素繊維の成長に対応させて基材を移動させるように構成したものである。 この構成によれば、 基材に成長したコイル状炭素繊維を容易に回収することが できるとともに、 最も成長しやすい位置に新たな基材を配置することができ、 コ ィル状炭素繊維を連続的に製造することができる。 図面の簡単な説明 In the above-described coiled carbon fiber manufacturing apparatus, the substrate is movably disposed, and the substrate is moved in accordance with the growth of the coiled carbon fiber. According to this configuration, the coiled carbon fibers grown on the base material can be easily collected, and a new base material can be arranged at the position where the growth is most likely to occur, so that the coiled carbon fibers can be continuously arranged. It can be manufactured in a special way. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 第 1実施形態のコイル状炭素繊維の製造装置を示す要部断面図。  FIG. 1 is a cross-sectional view of a main part showing an apparatus for manufacturing a coiled carbon fiber according to a first embodiment.
図 2は、 高電圧静電場発生装置の電気的構成を示す電気回路図。  Fig. 2 is an electrical circuit diagram showing the electrical configuration of the high-voltage electrostatic field generator.
図 3は、 第 2実施形態の製造装置を示す要部断面図。  FIG. 3 is a sectional view of a main part showing a manufacturing apparatus according to a second embodiment.
図 4は、 第 2実施形態の製造装置の作用を示す要部断面図。  FIG. 4 is an essential part cross sectional view showing the operation of the manufacturing apparatus of the second embodiment.
図 5は、 第 3実施形態の製造装置を示す要部断面図。  FIG. 5 is a sectional view of a main part showing a manufacturing apparatus according to a third embodiment.
図 6は、 第 1実施形態の製造装置の別例を示す要部断面図。 発明を実施するための最良の形態  FIG. 6 is an essential part cross-sectional view showing another example of the manufacturing apparatus of the first embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
(第 1実施形態)  (First Embodiment)
以下、 この発明の実施形態のコィル状炭素繊維につレ、て詳細に説明する。  Hereinafter, the coiled carbon fiber according to the embodiment of the present invention will be described in detail.
コイル状炭素繊維は、 炭素によりコイル状に形成され、 繊維の直径が 0 . 0 1 〜5 μ ιη 、 コィノレの直径が 0 . :!〜 2 0 0 0 μ πι 、 コィノレのピッチが 0〜5 0 μ m 及びコィノレの長さが 1 0 0 ! 〜 5 mであり、 コイルが右巻きの二重螺;旋構造 を有するものと、 左巻きの二重螺旋構造を有するものとを含有するものである。 このコイル状炭素繊維はコイル径が実質上ミク口ンオーダーであり、 電磁波を吸 収、 遮蔽することができ、 優れた弾力性と高い強度を有するものである。  The coiled carbon fiber is formed in a coil shape by carbon, the diameter of the fiber is 0.01 to 5 μιη, and the diameter of the coil is 0. ~ 200 μm πι, pitch of koinole is 0 ~ 50 μm and length of koinole is 100! 55 m, and the coils include those having a right-handed double helical structure and those having a left-handed double helical structure. The coiled carbon fiber has a coil diameter substantially in the order of a micron, can absorb and block electromagnetic waves, and has excellent elasticity and high strength.
コイル状炭素繊維は、 外部から電磁波が照射され、 変動電場や磁場にさらされ ると、 ファラデーの法則に従いコイル内に誘導起電力による誘導電流が流れてジ ユール熱が発生し、 電磁波を吸収する。 さらに、 電磁波はコイル状炭素繊維によ り直線偏向のほか円偏向を受け、 その上、 コイル状炭素繊維が高導電性であるの で反射、 散乱損失なども受け、 急激に衰退する。 しかも、 コイル状炭素繊維は 3 次元的にあらゆる方向を向いているので、 電磁波がどの方向から加わったとして も効率良く吸収されるものと考えられる。  When a coiled carbon fiber is irradiated with electromagnetic waves from the outside and is exposed to a fluctuating electric field or magnetic field, an induced current due to induced electromotive force flows in the coil according to Faraday's law, generating joule heat and absorbing the electromagnetic waves . In addition, the electromagnetic waves undergo circular and circular deflections by the coiled carbon fiber, and furthermore, the coiled carbon fiber is highly conductive, and suffers from reflection and scattering losses, etc., so that it rapidly declines. Moreover, since the coiled carbon fibers are oriented in all directions in three dimensions, it is considered that electromagnetic waves are efficiently absorbed no matter where they are applied.
コイル状炭素繊維により吸収される電磁波の周波数領域は、 コイル径 コイル ピッチ及びコイル長さに依存する。 コイル長さが長く、 コイル径が大きく形成さ れると低周波領域の電磁波が吸収される。 一方、 コイル径が小さく形成されると 高周波領域の電磁波が吸収される。 そのため、 これらを制御することにより、 幅 広い範囲の電磁波吸収材として適用することができる。 また、 新規電極材料、 ェ ネノレギー変換素子、 マイクロセンサー、 マイクロメカ二力ノレ素子、 マイクロフィ ルター、 高温 '高圧 '耐蝕 ·弾力性パッキング、 抗菌材、 吸着材などとしても適 用することができる。 The frequency range of the electromagnetic wave absorbed by the coiled carbon fiber is as follows: Depends on pitch and coil length. If the coil length is long and the coil diameter is large, electromagnetic waves in the low frequency range will be absorbed. On the other hand, if the coil diameter is small, electromagnetic waves in the high frequency region are absorbed. Therefore, by controlling these, it can be applied as an electromagnetic wave absorber in a wide range. It can also be used as a new electrode material, energy conversion element, microsensor, micromechanical element, microfilter, high temperature 'high pressure' corrosion and elastic packing, antibacterial material, adsorbent, etc.
また、 コイル状炭素繊維は、 生体材料としての触媒担体に使用される。 例えば 、 コイル状炭素繊維のコイルの中に菌体を埋め込み、 生体内において触媒作用を 発揮させることもできる。  Further, the coiled carbon fiber is used as a catalyst carrier as a biomaterial. For example, cells can be embedded in coils of coiled carbon fiber to exert a catalytic action in vivo.
コイル状炭素繊維は、 コィル径の範囲が大きければ大きいほど幅広い波長範囲 の電磁波を吸収することができ、 コイル長さが長ければ長いほど電磁波を多量に 吸収することができるものである。 また、 右卷きの二重螺旋構造のコイルと左卷 きの二重螺旋構造のコイルがほぼ 1対 1の割合で存在している。 そのため、 マク 口的には一重らせん構造のように見えるものでも、 ミクロ的には二重螺旋構造を 有している。  Coiled carbon fibers can absorb electromagnetic waves in a wider wavelength range as the coil diameter is larger, and can absorb more electromagnetic waves as the coil length is longer. The right-handed double-helical coil and the left-handed double-helical coil exist in a ratio of approximately 1: 1. Therefore, even though it looks like a single helical structure in terms of macro, it has a double helical structure in microscopic terms.
次に、 コイル状炭素繊維の製造装置について説明する。  Next, an apparatus for producing coiled carbon fiber will be described.
図 1に示すように、 反応容器 1 2は円管状に形成された横型熱化学気相合成装 置で、 コイル状炭素繊維 1 0をその中で成長させることができるようになってい る。 この反応容器 1 2はステンレス、 インコネル等の金属材料、 セラミック、 ァ ルミナ、 石英等のセラミック系材料により形成されている。 反応容器 1 2の材質 は、 触媒活性や内部観察の点から透明石英が好ましい。 反応容器 1 2の両端の開 口部 1 3は、 絶縁ゴム栓 1 4により閉塞され、 反応容器 1 2内が電気的に絶縁状 態に保持される。  As shown in FIG. 1, a reaction vessel 12 is a horizontal thermo-chemical vapor synthesis apparatus formed in a tubular shape, and is capable of growing coiled carbon fibers 10 therein. The reaction vessel 12 is made of a metal material such as stainless steel or Inconel, or a ceramic material such as ceramic, alumina, or quartz. The material of the reaction vessel 12 is preferably transparent quartz in terms of catalytic activity and internal observation. The openings 13 at both ends of the reaction vessel 12 are closed by an insulating rubber stopper 14, and the inside of the reaction vessel 12 is kept electrically insulated.
円環状の流入口 1 5は、 反応容器 1 2の中央上部周面に突出形成され、 炭化水 素ガス又は一酸化炭素ガス、 周期律表の第 1 5族及び第 1 6族元素を含むガス及 び水素ガスを反応容器 1 2内に流入させるようになっている。  The annular inlet 15 protrudes from the upper peripheral surface of the center of the reaction vessel 12, and is a gas containing hydrocarbon gas or carbon monoxide gas, or a group 15 or 16 element of the periodic table. And the hydrogen gas is allowed to flow into the reaction vessel 12.
前記炭化水素ガスとしてアセチレン、 メタン、 プロパン等の炭素原子を含むガ ス又は一酸化炭素ガスが使用される。 炭素繊維をコイル状に形成するために、 各 結晶面での触媒活性の異方性からアセチレンが好ましい。 As the hydrocarbon gas, a gas containing carbon atoms such as acetylene, methane, and propane or a carbon monoxide gas is used. In order to form carbon fiber into a coil, Acetylene is preferred in view of the anisotropy of the catalytic activity on the crystal plane.
前記周期律表の第 1 5族及び第 1 6族元素としては、 硫黄、 チォフェン、 メチ ルメルカプタン、 硫化水素等の硫黄原子を含む化合物又は、 リ ン、 3塩化リン等 のリン原子を含む化合物が使用される。 これらのうち、 好ましくはチオフヱンで ある。 反応雰囲気中における周期律表の第 1 5族及び第 1 6族元素を含むガスの 濃度は、 好ましくは 0 . 0 1〜 5容量。 /。の範囲内で、 さらに好ましくは 0 . 1〜 0 . 5容量%の範囲内である。 前記濃度が、 0 . 0 1容量%未満又は 5容量%を 越えると、 コイル状炭素繊維 1 0を成長させることが困難となる。  Compounds containing sulfur atoms, such as sulfur, thiophene, methyl mercaptan, and hydrogen sulfide, or compounds containing phosphorus atoms, such as phosphorus and phosphorus trichloride, are used as elements of Groups 15 and 16 of the periodic table. Is used. Of these, thiophene is preferred. The concentration of the gas containing an element of Groups 15 and 16 of the periodic table in the reaction atmosphere is preferably 0.01 to 5 volumes. /. And more preferably within the range of 0.1 to 0.5% by volume. If the concentration is less than 0.01% by volume or exceeds 5% by volume, it becomes difficult to grow the coiled carbon fibers 10.
また、 円環状をなす一対の注入口 1 6は、 反応容器 1 2の両端部の上部周面に 突出形成され、 シールガスを反応容器 1 2内に注入させるようになつている。 前 記シールガスは窒素ガス、 ヘリ ウムガス等の化学的に不活性で、 系の物質と反応 しない不活性ガスが使用される。 シールガスが反応容器 1 2内に注入されると、 反応容器 1 2内で、 酸素ガス等による余分な、 或いは有害な影響が反応系に加え られるのを防止できるようになっている。  Further, a pair of annular injection ports 16 are formed so as to protrude from upper peripheral surfaces of both ends of the reaction vessel 12 so as to inject a seal gas into the reaction vessel 12. The seal gas used is an inert gas that is chemically inert, such as nitrogen gas or helium gas, and does not react with system substances. When the sealing gas is injected into the reaction vessel 12, it is possible to prevent extra or harmful effects of the oxygen gas or the like from being added to the reaction system in the reaction vessel 12.
さらに、 円環状をなす流出口 1 7は、 反応容器 1 2の中央下部周面に、 前記流 入口 1 5に対応するように突出形成され、 反応容器 1 2内を流通した炭化水素ガ ス、 一酸化炭素ガス、 シールガス、 周期律表の 1 5族又は 1 6族の化合物のガス 、 水素ガス及び分解反応により生成したガスを流出するようになっている。  Further, an annular outlet 17 is formed on the lower peripheral surface of the center of the reaction vessel 12 so as to correspond to the inlet 15, and hydrocarbon gas flowing through the reaction vessel 12 is provided. Carbon monoxide gas, seal gas, gas of compound of group 15 or 16 of the periodic table, hydrogen gas and gas generated by decomposition reaction are discharged.
加熱器 1 8は反応容器 1 2の中央に前記流入口 1 5及び流出口 1 7を挟むよう に円環状に取り付けられ、 反応容器 1 2内を一定温度にまで上昇させるようにな つている。 前記温度は、 6 0 0〜 9 5 0 °Cの範囲内に設定されるのが望ましく、 7 0 0〜8 5 0 °Cの範囲内に設定されるのがさらに望ましい。 反応温度が 6 0 0 °C未満又は 9 5 0 °Cを越えるとコイル状炭素繊維 1 0の収率が急激に低下する。  The heater 18 is annularly mounted at the center of the reaction vessel 12 so as to sandwich the inflow port 15 and the outflow port 17 so as to raise the temperature of the reaction vessel 12 to a constant temperature. The temperature is preferably set within a range of 600 to 950 ° C, and more preferably within a range of 700 to 850 ° C. When the reaction temperature is lower than 600 ° C. or higher than 950 ° C., the yield of the coiled carbon fiber 10 sharply decreases.
コイル状炭素繊維 1 0が成長する場所としての基材としては、 細長い四角板状 に形成された基板 1 9が使用される。 その基板 1 9の表面には金属粉末よりなる 触媒 2 0が塗布されている。 この基板 1 9は、 炭素の同素体の一つで、 黒鉛とも 呼ばれるグラフアイ トにより形成されている。 また、 接続線 2 1は基板 1 9の両 端に一対ずつ接続され、 両接続線 2 1が絶縁ゴム栓 1 4に貫通支持されることに より、 基板 1 9は反応容器 1 2の空中に支持されている。 そして、 一本の接続線 2 1は反応容器 1 2內のコイル状炭素繊維 1 0に静電場を印加するための高電圧 静電場癸生装置 2 2に接続され、 他方の接続線 2 1は開放された状態になってい る。 As a base material on which the coiled carbon fibers 10 grow, a substrate 19 formed in an elongated rectangular plate shape is used. On the surface of the substrate 19, a catalyst 20 made of metal powder is applied. The substrate 19 is one of allotropic carbon materials and is formed of graphite, also called graphite. The connecting wires 21 are connected to both ends of the substrate 19 in pairs, and the connecting wires 21 are supported by the insulating rubber stoppers 14 so that the substrate 19 is in the air of the reaction vessel 12. Supported. And one connection line 2 1 is connected to a high-voltage electrostatic field generator 22 for applying an electrostatic field to the coiled carbon fiber 10 of the reaction vessel 12 內, and the other connection line 21 is open. You.
前記金属触媒 2 0は、 遷移金属の酸化物、 炭化物、 硫化物、 リン化物、 炭酸化 物及び炭硫化物から選択される少なく とも一種の化合物であり、 好ましくは、 二 ッケル、 チタン又はタングステンの酸素との固溶体、 酸化物、 炭化物、 硫化物、 リン化物、 炭酸化物又は炭硫化物である。 その中でも、 ニッケルがさらに、 好ま しい。 金属触媒 2 0の形態は、 粉末、 金属板、 粉末の焼結板等のいずれでもよく 、 好ましくは平均粒径が 5 μ πι 程度の微粉末又は焼結板である。  The metal catalyst 20 is at least one compound selected from transition metal oxides, carbides, sulfides, phosphides, carbonates and carbosulfides, and is preferably nickel, titanium or tungsten. It is a solid solution with oxygen, oxides, carbides, sulfides, phosphides, carbonates or carbosulfides. Of these, nickel is even more preferred. The form of the metal catalyst 20 may be any of a powder, a metal plate, a sintered plate of a powder and the like, and is preferably a fine powder or a sintered plate having an average particle size of about 5 μπι.
また、 コイル状炭素繊維 1 0のコイル径、 コイルピッチ及びコイル長さは、 金 属触媒 2 0の結晶面の異方性や粒径に依存している。 そのため、 静電場の電圧や 水素ガス等により結晶面の異方性が変化すると、 コイル径、 コイルピッチ及びコ ィル長さも変化する。 例えば、 金属触媒 2 0の粒径が小さくなるとコイル径は小 さくなる。 微粉末金属触媒 2◦の場合は、 基板 1 9上へ散布又は塗布しても良い 。 これらの金属触媒 2 0は、 あらかじめ固溶体或レ、は化合物となったもののほか 、 金属粉末或いは板材を反応前に所定条件で酸化、 炭化、 リン化、 炭酸化及ぴ炭 硫化処理して得られたものでも使用される。  The coil diameter, coil pitch, and coil length of the coiled carbon fiber 10 depend on the crystal anisotropy and the particle size of the metal catalyst 20. Therefore, if the crystal plane anisotropy changes due to the voltage of the electrostatic field or hydrogen gas, the coil diameter, coil pitch, and coil length also change. For example, as the particle size of the metal catalyst 20 decreases, the coil diameter decreases. In the case of the fine metal catalyst 2 °, it may be sprayed or applied on the substrate 19. These metal catalysts 20 can be obtained by oxidizing, carbonizing, phosphating, carbonating and carbonizing under predetermined conditions before the reaction, in addition to a solid solution or a compound which has previously become a compound. Is also used.
原料ガス等を反応容器 1 2内に導入するための流入口 1 5と基板 1 9 との距離 は、 2〜 2 0誦の範囲内になるように設定される。 流入口 1 5と基板 1 9との距 離が小さいほど、 コイル状炭素繊維 1 0の収率を向上させることができる。 しか し、 流入口 1 5と基板 1 9との距離が 2腿未満又は 2 O mmを越えると、 コイル状 炭素繊維 1 0を全く得ることができず、 炭素粉末又は直線状の炭素繊維のみが析 出するようになる。  The distance between the inflow port 15 for introducing the raw material gas and the like into the reaction vessel 12 and the substrate 19 is set to be within the range of 2 to 20 times. The smaller the distance between the inlet 15 and the substrate 19 is, the more the yield of the coiled carbon fibers 10 can be improved. However, if the distance between the inlet 15 and the substrate 19 is less than two legs or more than 2 Omm, no coiled carbon fiber 10 can be obtained, and only carbon powder or straight carbon fiber Will begin to be analyzed.
棒状電極 2 3は導電性を有する金属により形成され、 反応容器 1 2内の基板 1 9の上方に所定距離をおいて配置されている。 棒状電極 2 3の直径は 2 mm程度で ある。 また、 棒状電極 2 3の一端はアース線 2 4に接続され、 他端は開放された 状態になっている。 そして、 基板 1 9と棒状電極 2 3との間に所定の静電場を発 生させることができる。  The rod-shaped electrode 23 is formed of a conductive metal, and is disposed above the substrate 19 in the reaction vessel 12 at a predetermined distance. The diameter of the rod-shaped electrode 23 is about 2 mm. Also, one end of the rod-shaped electrode 23 is connected to the ground wire 24, and the other end is open. Then, a predetermined electrostatic field can be generated between the substrate 19 and the rod-shaped electrode 23.
前記高電圧静電場発生装置 2 2は、 反応容器 1 2から離れた場所に配置され、 接続線 2 1を介して基板 1 9に接続されている。 この高電圧静電場発生装置 2 2 の電気回路について説明する。 図 2に示すように、 1 0 0 Vの交流電源端子 2 5 にはブレーカー 2 6と電源スィツチ 2 7と電圧調整器 2 8とが直列接続されてい る。 表示ランプ 2 9は電圧調整器 2 8と並列接続されている。 前記電圧調整器 2 8は可変端子 3 0により電圧を調整できるようになつている。 高電圧及び高調波 発生用トランス 3 1の 1次コイル 3 2は電圧調整器 2 8に並列接続されている。 電圧計 3 3は、 トランス 3 1の 1次コイル 3 2に並列接続されている。 高電圧及 び高調波発生用トランス 3 1の 2次コイル 3 4の一端側は開放されたままにされ 、 他端側の出力端子 3 5には 1 Μ Ω程度の保護抵抗 3 6を介して接続線 2 1から 反応容器 1 2内の基板 1 9に接続されている。 The high-voltage electrostatic field generator 22 is disposed at a location away from the reaction vessel 12, It is connected to the board 19 via the connection line 21. The electric circuit of the high-voltage electrostatic field generator 22 will be described. As shown in FIG. 2, a breaker 26, a power switch 27, and a voltage regulator 28 are connected in series to a 100 V AC power supply terminal 25. The indicator lamp 29 is connected in parallel with the voltage regulator 28. The voltage regulator 28 can adjust the voltage by a variable terminal 30. The primary coil 32 of the transformer 31 for high voltage and harmonic generation is connected in parallel to the voltage regulator 28. The voltmeter 33 is connected in parallel with the primary coil 32 of the transformer 31. One end of the secondary coil 34 of the high voltage and harmonic generation transformer 31 is left open, and the other end of the output terminal 35 is connected to the output terminal 35 via a protection resistor 36 of about 1 Ω. The connection line 21 is connected to the substrate 19 in the reaction vessel 12.
この保護抵抗 3 6は、 回路短路の異常事態が生じたとき、 電撃を緩和するとと もに、 漏電防止用としても機能する。 前述のように、 高電圧及び高調波発生用ト ランス 3 1の 2次コイル 3 4の出力側の一端は開放されている。 従って、 高電圧 及び高調波発生用トランス 3 1の 2次コイル 3 4の出力側には電流が流れず、 高 電圧のみが印加され、 高調波成分を含む重畳波形を有する高圧静電場が印加され る。  The protection resistor 36 functions to alleviate electric shock and to prevent electric leakage when an abnormal situation occurs on the short circuit path. As described above, one end on the output side of the secondary coil 34 of the high-voltage and harmonic generation transformer 31 is open. Therefore, no current flows on the output side of the secondary coil 34 of the transformer 31 for generating high voltage and harmonics, only high voltage is applied, and a high-voltage electrostatic field having a superimposed waveform including harmonic components is applied. You.
そして、 電圧調整器 2 8において可変端子 3 0を所定の抵抗値に設定した後、 電源スィッチ 2 7をオンにすると、 表示ランプ 2 9が点灯するとともに、 高電圧 及び高調波発生用トランス 3 1の 2次コイル 3 4の出力側で高電圧が発生する。 この高電圧により接続線 2 1、 基板 1 9を介して反応容器 1 2内に高圧静電場が 印加される。  Then, after setting the variable terminal 30 to a predetermined resistance value in the voltage regulator 28, when the power switch 27 is turned on, the indicator lamp 29 is turned on, and the high voltage and harmonic generation transformer 31 is turned on. A high voltage is generated at the output side of the secondary coil 34. This high voltage applies a high-voltage electrostatic field into the reaction vessel 12 via the connection line 21 and the substrate 19.
前記静電場は、 高電圧静電場発生装置 2 2により発生する無変動静電場又は変 動静電場である。 無変動静電場は一定の電圧により発生する直線状の波形を有す る電場であり、 変動静電場は正弦波、 矩形波、 ノコギリ波、 重畳波等の交流波形 を有する電場である。 これらの静電場のうち、 好ましくは、 高調波成分を含む重 畳波形を有する電場である。 重畳波形を有する電場は、 前記高電圧及び高調波発 生用トランス 3 1を有する電気回路や半導体を用いた電気回路等により得られる 。 これらのうち、 高調波成分を含む重畳波形を有する静電場は、 電気回路内に高 電圧及び高調波発生用トランス 3 1を備える電気回路により得られる。 前記重畳 波形は、 各種波長の正弦波等が重畳的に合成されたものであり、 適切な波長の多 種の高調波交流波形が位相をずらした状態で加えられ、 それらの波形が加算され 、 交流波形上にひずみが形成されたものである。 The electrostatic field is a non-variable electrostatic field or a variable electrostatic field generated by the high voltage electrostatic field generator 22. The static electrostatic field is an electric field having a linear waveform generated by a constant voltage, and the variable electrostatic field is an electric field having an AC waveform such as a sine wave, a rectangular wave, a sawtooth wave, and a superimposed wave. Among these electrostatic fields, an electric field having a superposed waveform including a harmonic component is preferable. An electric field having a superimposed waveform can be obtained by an electric circuit having the transformer 31 for generating high voltage and harmonics, an electric circuit using a semiconductor, or the like. Among them, an electrostatic field having a superimposed waveform including a harmonic component is obtained by an electric circuit including a transformer 31 for generating high voltage and harmonics in the electric circuit. The superposition The waveform is obtained by superimposing sine waves of various wavelengths and the like in a superimposed manner. Various harmonic AC waveforms of appropriate wavelengths are added in a state of being shifted in phase, and these waveforms are added to obtain an AC waveform. A strain is formed on the top.
このような静電場を形成することにより、 反応ガスの熱分解を促進させること ができる。 さらに、 熱分解によりイオン化され、 プラスの電荷を帯びた反応種を 基板 1 9上の金属触媒 2 0に効率良く誘導されるとともに、 反応種の分子運動が 活性化され、 炭素繊維の成長が促進される。 そして、 高調波成分を含む重畳波形 により、 成長してきた炭素繊維に方向性を与えることにより、 コイル状の炭素繊 維を成長させることができる。  By forming such an electrostatic field, the thermal decomposition of the reaction gas can be promoted. In addition, positively charged reactive species, which are ionized by thermal decomposition and are positively charged, are efficiently guided to the metal catalyst 20 on the substrate 19, and the molecular motion of the reactive species is activated, thereby promoting the growth of carbon fibers. Is done. Then, by giving a direction to the grown carbon fiber by the superimposed waveform including the harmonic component, the coiled carbon fiber can be grown.
従って、 反応速度を向上させることができるとともに、 コイル状の炭素繊維を 成長させることができるとともに、 収率を向上させることができる。 また、 金属 触媒 2 0の結晶面の異方性を大きくすることにより、 コイル径の小さいコイル状 炭素繊維 1 0が得られ、 異方性を小さくすることにより、 コイル径の大きいコィ ル状炭素繊維 1 0が得られる。 このため、 コイル状炭素繊維 1 0のコイル径の大 きさを制御することができる。  Therefore, the reaction rate can be improved, the coiled carbon fibers can be grown, and the yield can be improved. Also, by increasing the anisotropy of the crystal plane of the metal catalyst 20, coiled carbon fibers 10 having a small coil diameter can be obtained, and by reducing the anisotropy, coiled carbon fibers having a large coil diameter can be obtained. Fiber 10 is obtained. Therefore, the size of the coil diameter of the coiled carbon fiber 10 can be controlled.
次に、 コイル状炭素繊維の製造方法について説明する。  Next, a method for producing the coiled carbon fiber will be described.
二ッケル粉末 2 0が塗布された基板 1 9は、 接続線 2 1により反応容器 1 2内 の適切な位置に支持される。 そして、 反応容器 1 2の両端の開口部 1 3が絶縁ゴ ム栓 1 4により閉塞される。  The substrate 19 to which the nickel powder 20 has been applied is supported at an appropriate position in the reaction vessel 12 by the connection wire 21. Then, the openings 13 at both ends of the reaction vessel 12 are closed by the insulating rubber stopper 14.
次に、 流入口 1 5よりアセチレン、 チォフェン及ぴ水素ガスが反応容器 1 2内 に流入される。 アセチレン、 チォフェン及び水素ガスは、 反応容器 1 2内の基板 1 9に接触しながら流通し、 流出口 1 7から外部へ流出される。 また、 一対の注 入口 1 6から窒素ガスが注入され、 基板 1 9上で、 酸素ガス等による余分な、 或 いは有害な影響が反応系に加えられるのが防止される。  Next, acetylene, thiophene and hydrogen gas are introduced into the reaction vessel 12 from the inlet 15. Acetylene, thiophene, and hydrogen gas flow while contacting the substrate 19 in the reaction vessel 12 and flow out from the outlet 17. Further, nitrogen gas is injected from the pair of inlets 16 to prevent extra or harmful effects of oxygen gas or the like from being applied to the reaction system on the substrate 19.
次いで、 高電圧静電場発生装置 2 2の電圧調整器 2 8において可変端子 3 0を 所定位置に接続した後、 電源スィッチ 2 7をオンにし、 トランス 3 1の 2次コィ ル 3 4に高電圧を発生させる。 これにより、 接続線 2 1を介して基板 1 9と棒状 電極 2 3との間に静電場が印加される。 さらに、 加熱器 1 8により反応容器 1 2 內が 6 0 0〜9 5 0 °Cまで加熱される。 その結果、 ニッケル 2 0、 炭素、 水素、 硫黄又はリン及び酸素の 5元系からな る反応の場において、 ニッケル 2 0によりアセチレンが接触的な触媒作用により 熱分解され、 炭化ニッケルの単結晶 {炭化ニッケル (N i 3 C ) に硫黄原子 (S ) と酸素原子 (O ) が含まれるもの } が形成される。 さらに、 炭化ニッケル単結 晶がニッケル 2 0と炭素に分解され、 結晶面において粒内及び粒界拡散が生じ、 基板 1 9上に炭素繊維が形成される。 Next, after the variable terminal 30 is connected to a predetermined position in the voltage regulator 28 of the high-voltage electrostatic field generator 22, the power switch 27 is turned on, and the high voltage is applied to the secondary coil 34 of the transformer 31. Generate. Thereby, an electrostatic field is applied between the substrate 19 and the rod-shaped electrode 23 via the connection line 21. Further, the reaction vessel 12 is heated to 600 to 950 ° C. by the heater 18. As a result, in a reaction site consisting of a ternary system of nickel 20, carbon, hydrogen, sulfur or phosphorus and oxygen, acetylene is thermally decomposed by nickel 20 by catalytic catalysis, and a single crystal of nickel carbide { nickel carbide (N i 3 C) to that contain sulfur (S) and oxygen (O)} is formed. Further, the single crystal of nickel carbide is decomposed into nickel 20 and carbon, and intragranular and intergranular diffusion occurs on the crystal plane, and carbon fibers are formed on substrate 19.
このとき、 ニッケル 2 0結晶面の異方性より、 触媒活性の大きい結晶面から成 長した炭素繊維は成長が大きく、 触媒活性の小さい結晶面から成長した炭素繊維 の外側になるようにカールしながら成長する。 そのため、 2つの炭素繊維はコィ ルを形成しながら成長する。 このとき、 静電場の印加強度、 波形、 印加時間等に よりコイル径、 コイルピッチ及びコイル長さは制御される。  At this time, due to the anisotropy of the nickel 20 crystal plane, the carbon fiber grown from the crystal plane having high catalytic activity has a large growth and curls so as to be outside the carbon fiber grown from the crystal plane having low catalytic activity. Grow while growing. Therefore, the two carbon fibers grow while forming a coil. At this time, the coil diameter, coil pitch, and coil length are controlled by the applied strength, waveform, and applied time of the electrostatic field.
このような製造方法により、 コイル径及びコイルピッチが大きく、 コイル長さ が長いコイル状炭素繊維 1 0が得られる。  By such a manufacturing method, coiled carbon fibers 10 having a large coil diameter and a large coil pitch and a long coil length can be obtained.
前記第 1実施形態より発揮される効果について、 以下に記載する。  The effects exerted by the first embodiment will be described below.
( 1 ) 第 1実施形態のコイル状炭素繊維 1 0によれば、 炭素繊維がコイル状に 形成され、 コイル径が実質上ミクロンオーダーとなり、 電磁波を効果的に吸収、 遮蔽することができるとともに、 優れた弾力性と高い強度を発揮することができ る。  (1) According to the coiled carbon fiber 10 of the first embodiment, the carbon fiber is formed in a coil shape, the coil diameter is substantially on the order of microns, and electromagnetic waves can be effectively absorbed and shielded. Excellent elasticity and high strength can be exhibited.
( 2 ) 第 1実施形態のコイル状炭素繊維 1 0によれば、 反応時間、 金属触媒 2 0の種類や粒径、 反応に使用されるガスの濃度、 反応温度、 静電場の電圧及び基 板 1 9と棒状電極 2 3との距離を変化させることにより、 コイル状炭素繊維 1 0 のコイル径、 コイルピッチ及びコイル長さを制御することができる。 そのため、 幅広い範囲の電磁波吸収材、 新規電極材料、 エネルギー変換素子、 マイクロセン サー、 マイクロメカニカル素子、 マイクロフィルター、 高温 '高圧 '耐蝕 '弾力 性パッキング、 触媒担体、 抗菌材、 吸着材などとして適用することができる。  (2) According to the coiled carbon fiber 10 of the first embodiment, the reaction time, the type and particle size of the metal catalyst 20, the concentration of the gas used in the reaction, the reaction temperature, the voltage of the electrostatic field, and the substrate The coil diameter, coil pitch and coil length of the coiled carbon fiber 10 can be controlled by changing the distance between 19 and the rod-shaped electrode 23. Therefore, it is used as a wide range of electromagnetic wave absorbers, new electrode materials, energy conversion devices, microsensors, micromechanical devices, microfilters, high temperature 'high pressure' corrosion resistant 'elastic packing, catalyst carriers, antibacterial materials, adsorbents, etc. be able to.
( 3 ) 第 1実施形態のコイル状炭素繊維の製造装置 1 1によれば、 反応容器 1 2內には基板 1 9が高電圧静電場発生装置 2 2に接続されている。 そのため、 コ ィル状炭素繊維 1 0に静電場を印加することができ、 コイル径及びコイルピッチ が大きく、 コイル長さが長いコイル状炭素繊維 1 0を得ることができるとともに 、 コイル状炭素繊維 1 0の収率を向上させることができる。 (3) According to the coiled carbon fiber manufacturing apparatus 11 of the first embodiment, the substrate 19 is connected to the high voltage electrostatic field generator 22 in the reaction vessel 12. Therefore, an electrostatic field can be applied to the coiled carbon fiber 10, and the coiled carbon fiber 10 having a large coil diameter and coil pitch and a long coil length can be obtained. The yield of the coiled carbon fibers 10 can be improved.
さらに、 静電場を印加することにより、 金属触媒 2 0の結晶面の触媒活性を制 御し、 異方性の大小を調節することができる。 そのため、 結晶面の異方性を小さ くすることによりコイル径を大きくすることができ、 結晶面の異方性を大きくす ることによりコイル径を小さくすることができる。  Further, by applying an electrostatic field, the catalytic activity of the crystal plane of the metal catalyst 20 can be controlled, and the magnitude of the anisotropy can be adjusted. Therefore, the coil diameter can be increased by reducing the crystal plane anisotropy, and the coil diameter can be reduced by increasing the crystal plane anisotropy.
( 4 ) 第 1実施形態のコイル状炭素繊維の製造装置 1 1によれば、 基板 1 9に 対向する反応容器 1 2の中央上部周面に流入口 1 5が突出形成されているため、 コイル状炭素繊維 1 0の成長している場所にアセチレン、 チォフェン及び水素ガ スを吹き付けることができる。 そのため、 基板 1 9上でコイル状炭素織維 1 0を 効率良く成長させることができる。  (4) According to the coiled carbon fiber manufacturing apparatus 11 of the first embodiment, since the inflow port 15 protrudes from the center upper peripheral surface of the reaction vessel 12 facing the substrate 19, the coil Acetylene, thiophene and hydrogen gas can be sprayed on the place where the carbon fibers 10 are growing. Therefore, the coiled carbon fiber 10 can be efficiently grown on the substrate 19.
( 5 ) 第 1実施形態のコイル状炭素繊維の製造装置 1 1によれば、 基板 1 9の 裏面側に位置する反応容器 1 2の中央下部の周面に流出口 1 7が突出形成されて いる。 このため、 反応容器 1 2内に導入されたアセチレン、 チォフェン及び水素 ガスが基板 1 9上に集められ、 基板 1 9上でコイル状炭素繊維 1 0を効率良く成 長させることができる。  (5) According to the coiled carbon fiber manufacturing apparatus 11 of the first embodiment, the outlet 17 is formed so as to protrude from the lower peripheral surface of the center of the reaction vessel 12 located on the back side of the substrate 19. I have. Therefore, acetylene, thiophene, and hydrogen gas introduced into the reaction vessel 12 are collected on the substrate 19, and the coiled carbon fibers 10 can be efficiently grown on the substrate 19.
( 6 ) 第 1実施形態のコイル状炭素繊維の製造装置 1 1によれば、 シールガス を注入するための注入口 1 6は反応容器 1 2の両端部に一本ずつ突出形成されて いる。 そのため、 基板 1 9上で、 酸素ガス等による余分な、 或いは有害な影響が 反応系に加えられるのを防止できる。  (6) According to the coiled carbon fiber manufacturing apparatus 11 of the first embodiment, the injection ports 16 for injecting the sealing gas are formed one by one at both ends of the reaction vessel 12. For this reason, it is possible to prevent an extra or harmful influence of oxygen gas or the like from being applied to the reaction system on the substrate 19.
( 7 ) 第 1実施形態のコイル状炭素繊維の製造装置 1 1によれば、 加熱器 1 8 は反応容器 1 2の中央の周面に取り付けられている。 そのため、 反応容器 1 2内 の中央に配置された基板 1 9を均一に加熱させることができ、 反応を円滑に進め ることができる。  (7) According to the coiled carbon fiber manufacturing apparatus 11 of the first embodiment, the heater 18 is attached to the central peripheral surface of the reaction vessel 12. Therefore, the substrate 19 disposed in the center of the reaction vessel 12 can be heated uniformly, and the reaction can proceed smoothly.
( 8 ) 第 1実施形態のコイル状炭素繊維の製造装置 1 1によれば、 基板 1 9と 流入口 1 5との距離は、 2〜2 O minの範囲內になるように設定されている。 その ため、 コイル状炭素繊維 1 0を確実に成長させることができるとともに、 収率の 低下を防止することができる。  (8) According to the coiled carbon fiber manufacturing apparatus 11 of the first embodiment, the distance between the substrate 19 and the inflow port 15 is set to be in the range of 2 to 20 min. . Therefore, the coiled carbon fibers 10 can be surely grown, and a decrease in yield can be prevented.
( 9 ) 第 1実施形態のコイル状炭素繊維 1 0の製造方法によれば、 反応温度を 6 0 0〜9 5 0 °Cの範囲内に設定したため、 コイル状炭素繊維 1 0の反応を維持 させることができるとともに、 収率を向上させることができる。 (9) According to the method for producing the coiled carbon fiber 10 of the first embodiment, the reaction temperature is set in the range of 600 to 950 ° C, so that the reaction of the coiled carbon fiber 10 is maintained. And the yield can be improved.
(第 2実施形態)  (Second embodiment)
次に、 第 2実施形態について説明する。 なお、 この第 2実施形態においては、 上記第 1実施形態と異なる部分を中心に説明する。  Next, a second embodiment will be described. Note that the description of the second embodiment will focus on the differences from the first embodiment.
第 2実施形態のコイル状炭素繊維の製造装置 1 1は、 第 1実施形態のコイル状 炭素繊維 1 0の成長の場である基板 1 9が線材 3 7により形成されている。 この 線材 3 7はステンレス、 ニッケル、 チタン及びタングステンなどの金属線、 カー ボン繊維、 アルミナや炭化珪素 (S i C ) などのセラミック繊維等により形成さ れ、 銅は含まれていない。 金属触媒 2 0は第 1実施形態と同様のものが使用され 、 線材 3 7の周面全体に塗布される。  In the coiled carbon fiber manufacturing apparatus 11 of the second embodiment, a substrate 19 for growing the coiled carbon fiber 10 of the first embodiment is formed of a wire 37. The wire 37 is formed of a metal wire such as stainless steel, nickel, titanium and tungsten, a carbon fiber, a ceramic fiber such as alumina or silicon carbide (SiC), and does not contain copper. The same metal catalyst as in the first embodiment is used as the metal catalyst 20, and is applied to the entire peripheral surface of the wire 37.
図 3に示すように、 反応容器 1 2は円管状に形成され、 縦型に配置されている 。 反応容器 1 2の一端の開口部 1 3は絶縁ゴム栓 1 4により閉塞されている。 他 端は二股に分かれた分岐管 3 8となり、 両分岐管 3 8の根元には絶縁材料で形成 されたスクレーパー 3 9が取り付けられている。 このスクレーパー 3 9により、 コイル状炭素繊維 1 0をかきとることができるとともに、 両分岐管 3 8に分配す ることができるようになつている。  As shown in FIG. 3, the reaction vessel 12 is formed in a tubular shape and arranged vertically. An opening 13 at one end of the reaction vessel 12 is closed by an insulating rubber stopper 14. The other end is a bifurcated branch pipe 38, and a scraper 39 made of an insulating material is attached to the root of both branch pipes 38. With this scraper 39, the coiled carbon fiber 10 can be scraped off and distributed to both branch pipes 38.
一対の開閉ダンパー 4 0は各分岐管 3 8の先端にそれぞれ揷脱可能に取り付け られている。 そして'、 反応容器 1 2の根元側の開閉ダンパー 4 0を離脱し、 先端 側の開閉ダンパー 4 0を挿入することにより、 反応容器 1 2内を遮断したまま先 端側の開閉ダンパー 4 0上に分岐管 3 8内を落下してきたコイル状炭素繊維 1 0 が支持される。 続いて、 図 4に示すように、 根元側の開閉ダンパー 4 0を挿入し 、 先端側の開閉ダンパー 4 0を離脱することにより、 反応容器 1 2内を遮断した まま先端側の開閉ダンパー 4 0上に支持されたコイル状炭素繊維 1 0を落下させ ることができるようになつている。 また、 製品受けとしてのホッパー 4 1は各分 岐管 3 8の先端の下方位置に設置され、 コイル状炭素繊維 1 0を収容するように なっている。  The pair of opening / closing dampers 40 are detachably attached to the distal ends of the branch pipes 38, respectively. Then, the opening / closing damper 40 on the base side of the reaction vessel 12 is detached, and the opening / closing damper 40 on the tip side is inserted, so that the inside of the reaction vessel 12 is shut off and the opening / closing damper 40 on the front end side is closed. The coiled carbon fiber 10 that has fallen in the branch pipe 38 is supported. Subsequently, as shown in FIG. 4, the opening / closing damper 40 on the base side is inserted, and the opening / closing damper 40 on the tip side is detached, so that the opening / closing damper 40 on the tip side is cut off while the inside of the reaction vessel 12 is shut off. The coiled carbon fiber 10 supported above can be dropped. A hopper 41 as a product receiver is installed at a position below the tip of each branch pipe 38 so as to accommodate the coiled carbon fiber 10.
上記線材 3 7の上端は、 反応容器 1 2の一端の絶縁ゴム栓 1 4の上方に配置さ れた供給側の線材用ロール 4 2に卷回されている。 線材 3 7の下端はスクレーパ 一 3 9の中を通って反応容器 1 2の外方の回収側の線材用ロール 4 3に巻き取ら れて回収されるようになつている。 The upper end of the wire 37 is wound around a wire roll 42 on the supply side disposed above the insulating rubber stopper 14 at one end of the reaction vessel 12. The lower end of the wire rod 37 passes through the scraper 39 and is wound around the wire roll 43 on the collection side outside the reaction vessel 12. To be collected.
高電圧静電場発生装置 2 2は、 反応容器 1 2から離れた場所に配置され、 接続 線 2 1を介して線材 3 7に接触されている。 そして、 高電圧静電場発生装置 2 2 から発生した静電場は線材 3 7に印加される。 アース板 4 4は加熱器 1 8の周面 を覆うように環状に取り付けられ、 アース線 4 5を介してアースされている。 さて、 図 3に示すように、 第 1実施形態と同様の方法でコイル状炭素繊維 1 0 が反応容器 1 2内の線材 3 7上に成長する。 このとき、 コイル状炭素繊維 1 0は 線材 3 7の周面から全方向へ成長する。 そして、 図 4に示すように、 回収側の線 材用ロール 4 3により線材 3 7を巻き取ると、 コイル状炭素繊維 1 0が成長、 付 着している線材 3 7が巻き取られる。 このとき、 コイル状炭素繊維 1 0がスク レ 一パー 3 9によりかきとられ、 各分岐管 3 8內を落下していく。 そして、 各分岐 管 3 8の先端の開閉ダンパー 4 0を交互に離脱することにより、 反応容器 1 2内 が遮断されたままホッパー 4 1內にコイル状炭素繊維 1 0が回収される。  The high-voltage electrostatic field generator 22 is arranged at a location remote from the reaction vessel 12 and is in contact with the wire 37 via the connection line 21. Then, the electrostatic field generated from the high-voltage electrostatic field generator 22 is applied to the wire 37. The ground plate 44 is attached in a ring shape so as to cover the peripheral surface of the heater 18, and is grounded via a ground wire 45. Now, as shown in FIG. 3, the coiled carbon fiber 10 grows on the wire 37 in the reaction vessel 12 in the same manner as in the first embodiment. At this time, the coiled carbon fibers 10 grow in all directions from the peripheral surface of the wire rod 37. Then, as shown in FIG. 4, when the wire 37 is wound by the wire roll 43 on the collection side, the wire 37 on which the coiled carbon fiber 10 grows and is attached is wound. At this time, the coiled carbon fiber 10 is scraped off by the scraper 39 and falls down each branch pipe 38 3. Then, by opening and closing the opening / closing dampers 40 at the ends of the branch pipes 38 alternately, the coiled carbon fibers 10 are collected in the hopper 41 內 while the inside of the reaction vessel 12 is shut off.
前記第 2実施形態より発揮される効果について、 以下に記載する。  The effects exerted by the second embodiment will be described below.
( 1 ) 第 2実施形態のコイル状炭素繊維の製造装置 1 1によれば、 線材 3 7を コイル状炭素繊維 1 0の成長の場として使用するため、 線材 3 7の周面から全方 向にコイル状炭素繊維 1 0を成長させることができ、 基板 1 9を使用する場合よ り、 単位面積当たり多量のコイル状炭素繊維 1 0を得ることができる。  (1) According to the coiled carbon fiber manufacturing apparatus 11 of the second embodiment, since the wire 37 is used as a place for growing the coiled carbon fiber 10, the wire 37 is omnidirectional from the peripheral surface of the wire 37. Coiled carbon fibers 10 can be grown in a larger area, and a larger amount of coiled carbon fibers 10 can be obtained per unit area than when substrate 19 is used.
( 2 ) 第 2実施形態のコイル状炭素繊維の製造装置 1 1によれば、 線材 3 7を ロール 4 2、 4 3に卷回して連続的に供給できるようにしたため、 反応時間を多 く取ることができ、 連続して反応させて多量のコイル状炭素繊維 1 0を得ること ができる。 さらに、 基板 1 9を一回ずつ交換しなくても良いため、 製造時間の短 縮と製造コストの低減を図ることができる。  (2) According to the coiled carbon fiber manufacturing apparatus 11 of the second embodiment, the wire 37 is wound around the rolls 42 and 43 so that it can be continuously supplied, so that a long reaction time is required. And a large amount of coiled carbon fibers 10 can be obtained by continuous reaction. Further, since it is not necessary to replace the substrate 19 once, the manufacturing time can be reduced and the manufacturing cost can be reduced.
( 3 ) 第 2実施形態のコイル状炭素繊維の製造装置 1 1によれば、 反応容器 1 2の一端を二股に分けて分岐管 3 8とし、 その分岐管 3 8の根元にスクレーパー 3 9が取り付けられている。 そのため、 線材 3 7をスクレーパー 3 9を通過させ て卷き取ることにより線材 3 7に成長したコイル状炭素繊維 1 0を容易に回収す ることができる。 さらに、 各分岐管 3 8を通過してホッパー 4 1内に落ちるため 、 確実にコイル状炭素繊維 1 0を回収することができる。 ( 4 ) 第 2実施形態のコイル状炭素繊維の製造装置 1 1によれば、 一本の分岐 管 3 8に 2本の開閉ダンパー 4 0を取り付けたため、 一方の開閉ダンパー 4 0を 離脱したときに、 他方の開閉ダンパー 4 0を揷入したままにすることができる。 そのため、 反応容器 1 2を遮断したままコイル状炭素繊維 1 0を回収することが できる。 (3) According to the coiled carbon fiber manufacturing apparatus 11 of the second embodiment, one end of the reaction vessel 12 is divided into two branches to form a branch pipe 38, and a scraper 39 is provided at the base of the branch pipe 38. Installed. Therefore, the coiled carbon fiber 10 grown on the wire 37 can be easily collected by winding the wire 37 through the scraper 39. Furthermore, since it passes through each branch pipe 38 and falls into the hopper 41, the coiled carbon fiber 10 can be reliably recovered. (4) According to the coiled carbon fiber manufacturing apparatus 11 of the second embodiment, when two opening / closing dampers 40 are attached to one branch pipe 38, one opening / closing damper 40 is detached. Then, the other open / close damper 40 can be kept inserted. Therefore, the coiled carbon fibers 10 can be recovered while the reaction vessel 12 is kept closed.
(第 3実施形態)  (Third embodiment)
次に、 第 3実施形態について説明する。 なお、 この第 3実施形態においては、 上記第 2実施形態と異なる部分を中心に説明する。  Next, a third embodiment will be described. Note that, in the third embodiment, a description will be given focusing on a portion different from the second embodiment.
第 3実施形態のコィル状炭素繊維の製造装置 1 1は、 コィル状炭素繊維 1 0の 成長の場である基板 1 9が第 2実施形態と同様の線材 3 7により形成されている 図 5に示すように、 反応容器 1 2の下端の開口部 1 3は絶縁ゴム栓 1 4により 閉塞されている。 上端は上方ほど縮径する縮径部 4 6となっている。 また、 反応 容器 1 2の上端と上端側の注入口 1 6との長さは、 第 1実施形態の反応容器 1 2 の先端と注入口 1 6との長さよりも長く形成されている。 そして、 反応容器 1 2 の上端と注入口 1 6との間に、 別の注入口 4 7が周面に突出形成され、 注入口 1 6と同様にシールガスが導入されるようになっている。  An apparatus 11 for manufacturing coiled carbon fibers according to the third embodiment has a substrate 19 where the growth of the coiled carbon fibers 10 is formed of the same wire rod 37 as in the second embodiment. As shown, the opening 13 at the lower end of the reaction vessel 12 is closed by an insulating rubber stopper 14. The upper end is a reduced diameter portion 46 that decreases in diameter upward. The length of the upper end of the reaction vessel 12 and the inlet 16 on the upper end side is longer than the length of the tip of the reaction vessel 12 and the inlet 16 of the first embodiment. Further, between the upper end of the reaction vessel 12 and the injection port 16, another injection port 47 is formed so as to protrude on the peripheral surface, and the sealing gas is introduced similarly to the injection port 16. .
複数のシール材 4 8は金属板により一定間隔をおいて円錐状に形成され、 それ らの外周縁が反応容器 1 2の内周面に接合されている。 各先端部には線材 3 7を 通過させるための通過孔 4 9が形成されている。 そして、 これら複数のシール材 4 8により、 ラビリンスシール 5 0が設けられている。 ラビリンスシール 5 0は 反応容器 1 2内の上端部と中間部に取り付けられ、 反応ガス又はシールガスの漏 洩を最小限にすることができるようになっている。  The plurality of sealing materials 48 are formed in a conical shape at regular intervals by a metal plate, and their outer peripheral edges are joined to the inner peripheral surface of the reaction vessel 12. At each end, a passage hole 49 for allowing the wire 37 to pass is formed. A labyrinth seal 50 is provided by the plurality of seal materials 48. The labyrinth seal 50 is attached to the upper end and the intermediate part in the reaction vessel 12 so that leakage of the reaction gas or the seal gas can be minimized.
線材 3 7は、 反応容器 1 2下端の供給側の線材用ロール 4 2に卷回されている 。 線材 3 7の上端は反応容器 1 2内を通過して反応容器 1 2の上端の縮径部 4 6 を通過して回収側の線材用ロ一ノレ 4 3に回収されるようになっている。 コイル状 炭素繊維 1 0は、 反応容器 1 2が垂立されているため、 反応の場で下方向に形成 される。 そして、 線材 3 7を上方へ回収することによりコイル状炭素繊維 1 0が 長く連なり、 一本の長い繊維に形成される。 製品回収ロール 5 1は回収側の線材 用ロール 4 3に隣接する位置に配設され、 成長した長いコイル状炭素繊維 1 0を 回収することができるようになっている。 The wire 37 is wound around a wire roll 42 on the supply side at the lower end of the reaction vessel 12. The upper end of the wire rod 37 passes through the inside of the reaction vessel 12, passes through the reduced diameter portion 46 of the upper end of the reaction vessel 12, and is collected by the wire rod holder 43 on the collection side. . The coiled carbon fiber 10 is formed downward at the reaction site because the reaction vessel 12 is suspended. Then, by collecting the wire 37 upward, the coil-shaped carbon fibers 10 are continuously long and formed into one long fiber. Product collection roll 5 1 is the wire on the collection side It is arranged at a position adjacent to the use roll 43 so that the grown long coiled carbon fibers 10 can be collected.
かきとり器 5 2は金属板により逆円錐形状に形成され、 その先端部には線材を 通過させるための透孔 5 3が形成されている。 そして、 かきとり器 5 2は、 縮径 部 4 6の通過孔 4 9から出てきた線材 3 7を透孔 5 3に通過させることができる 位置に配置され、 線材 3 7を通過させると同時に、 線材 3 7に成長したコイル状 炭素繊維 1 0をかきとることができるようになつている。 そして、 線材 3 7が回 収されると同時に、 線材 3 7上に成長した一本の長いコイル状炭素繊維 1 0が線 材 3 7カゝらかきとられ、 製品回収ロール 5 1に回収される。  The scraper 52 is formed in an inverted conical shape by a metal plate, and a through hole 53 for passing a wire is formed at the tip of the scraper. Then, the scraper 52 is arranged at a position where the wire rod 37 coming out of the passage hole 49 of the reduced diameter portion 46 can be passed through the through hole 53, and at the same time as passing the wire rod 37, The coiled carbon fiber 10 grown on the wire 37 can be scraped off. Then, at the same time as the wire rod 37 is collected, one long coiled carbon fiber 10 grown on the wire rod 37 is scraped off by the wire rod 37 and collected by the product collection roll 51. You.
さて、 第 1実施形態と同様の方法でコイル状炭素繊維 1 0が反応容器 1 2内の 線材 3 7上に成長する。 このとき、 反応容器 1 2は上端方向へ長く形成され、 こ の製造装置 1 1は垂立されているため、 線材 3 7に成長したコイル状炭素繊維 1 0は重力により下方向へ連続して形成される。  Now, the coiled carbon fiber 10 grows on the wire 37 in the reaction vessel 12 in the same manner as in the first embodiment. At this time, the reaction vessel 12 is formed to be long toward the upper end, and since the production apparatus 11 is suspended, the coiled carbon fibers 10 grown on the wire 37 continuously flow downward due to gravity. It is formed.
そして、 回収側の線材用ロール 4 3により線材 3 7が巻き取られるとともに、 連続成長したコイル状炭素繊維 1 0がかきとり器 5 2によりかきとられ、 製品回 収ローノレ 5 1に回収される。  Then, the wire 37 is wound by the wire roll 43 on the collecting side, and the continuously grown coiled carbon fiber 10 is scraped by the scraper 52 and collected by the product collecting roll 51.
前記第 3実施形態より発揮される効果について、 以下に記载する。  The effects exerted by the third embodiment will be described below.
( 1 ) 第 3実施形態のコイル状炭素繊維の製造装置 1 1によれば、 反応容器 1 2が垂立されているため、 線材 3 7に成長したコイル状炭素繊維 1 0を重力によ り下方向へ連続的に形成させることができる。 従って、 コイル状炭素繊維 1 0の 長さを mオーダーまで長くすることができる。  (1) According to the coiled carbon fiber manufacturing apparatus 11 of the third embodiment, since the reaction vessel 12 is upright, the coiled carbon fiber 10 grown on the wire 37 is gravity-driven. It can be formed continuously downward. Therefore, the length of the coiled carbon fiber 10 can be increased to the order of m.
( 2 ) 第 3実施形態のコイル状炭素繊維の製造装置 1 1によれば、 反応容器 1 2内にラビリンスシール 5 0が設けられているため、 反応ガス又はシールガスの 漏洩を最小限にすることができ、 反応を円滑に進行させることができる。  (2) According to the coiled carbon fiber manufacturing apparatus 11 of the third embodiment, since the labyrinth seal 50 is provided in the reaction vessel 12, leakage of the reaction gas or the seal gas is minimized. And the reaction can proceed smoothly.
( 3 ) 第 3実施形態のコイル状炭素繊維の製造装置 1 1によれば、 かきとり器 5 2により、 線材 3 7に成長したコイル状炭素繊維 1 0をかきとることができる 。 また、 回収側の線材用ロール 4 3により線材 3 7を回収すると同時に、 線材 3 7上に成長した一本の長いコイル状炭素繊維 1 0を製品回収ロール 5 1に回収す ることができる。 以下、 実施例により、 この発明をさらに具体的に説明する。 (3) According to the coiled carbon fiber manufacturing apparatus 11 of the third embodiment, the coiled carbon fiber 10 grown on the wire 37 can be scraped off by the scraper 52. Further, the wire rod 37 is collected by the wire rod 43 on the collection side, and one long coiled carbon fiber 10 grown on the wire rod 37 can be collected by the product collection roll 51. Hereinafter, the present invention will be described more specifically with reference to examples.
実施例 1〜実施例 3では、 グラフアイ ト製の基板 1 9に印加する静電圧を変化 させ、 得られたコイル状炭素繊維 1 0の平均コイル径、 コイルピッチ及びコイル 長さを比較した。  In Examples 1 to 3, the average voltage, the coil pitch, and the coil length of the obtained coiled carbon fibers 10 were compared by changing the static voltage applied to the substrate 19 made of graphite.
(実施例 1 )  (Example 1)
図 1に示すように、 半径 6 0 mm、 長さ 1 0 0 O mmの透明石英管からなる横型熱 化学気相合成装置 1 2の中央部に平均粒径 5 μ mのニッケル粉末 2 0を塗布した グラフアイ ト基板 1 9をセッ トした。 そして、 反応容器 1 2の中央上部の流入口 1 5からアセチレン、 チォフェン及び水素ガスを流入させ、 反応容器 1 2の両側 端の注入口 1 6からシールガスとして窒素ガスを導入した。 7 5 0 °Cで 2時間反 応を行った。 ガス流量は、 アセチレン 6 0 O mlZ分、 チォフェン 1 2 ml/分、 水 素 1 4 0 O mlZ分、 窒素 1 0 0 O mlZ分とした。 原料ガス等の流入口 1 5と基板 1 9 との距離は 1 O mmとした。 反応中、 基板 1 9に 5 0 0 0 Vの静電圧を印加し 、 棒状電極 2 3からアースした。  As shown in Fig. 1, nickel powder 20 with an average particle size of 5 μm was placed in the center of a horizontal thermochemical vapor phase synthesizer 12 consisting of a transparent quartz tube with a radius of 60 mm and a length of 100 mm. The coated graphite substrate 19 was set. Then, acetylene, thiophene, and hydrogen gas were introduced from an inlet 15 at the upper center of the reaction vessel 12, and nitrogen gas was introduced as a sealing gas from inlets 16 at both ends of the reaction vessel 12. The reaction was performed at 750 ° C for 2 hours. The gas flow rates were acetylene at 60 O mlZ, thiophene at 12 ml / min, hydrogen at 140 O mlZ, and nitrogen at 100 O mlZ. The distance between the inlet 15 for the source gas and the like and the substrate 19 was 1 O mm. During the reaction, a 500 V static voltage was applied to the substrate 19 to ground the rod-shaped electrode 23.
その結果、 平均のコィノレ径が約 5 m、 コイルピッチが 0 . 2 /i m、 長さが 4 mmの非常に緻密に卷かれたコイル状炭素繊維 1 0が、 原料アセチレンに対して 9 5モノレ%の収率で得られた。  As a result, very densely wound coil-shaped carbon fibers 10 with an average diameter of about 5 m, a coil pitch of 0.2 / im and a length of 4 mm were converted to 95 monoliters of acetylene as raw material. % Yield.
(実施例 2 )  (Example 2)
グラフアイ ト基板 1 9に静電圧を 1 5 0 0 V印加した以外、 実施例 1 と同じ条 件で反応を行った。  The reaction was carried out under the same conditions as in Example 1 except that a static voltage of 1500 V was applied to the graphite substrate 19.
原料アセチレンに対するコイル状炭素繊維 1 0の収率は 9 0モル%であった。 平均のコイノレ径は 5 0 /i m、 コイスレピッチは 2 μ m、 コィノレ長さは 2 mmであった  The yield of the coiled carbon fibers 10 based on the raw material acetylene was 90 mol%. The average diameter of the coil was 50 / im, the pitch of the coil was 2 μm, and the length of the coil was 2 mm
(実施例 3 ) (Example 3)
グラフアイ ト基板 1 9に静電圧を 5 0 0 V印加した以外、 実施例 1 と同じ条件 で反応を行った。 原料アセチレンに対するコイル状炭素繊維 1 0の収率は 7 0モ ノレ0 /。であった。 平均のコイノレ径は 5 0 0 m、 コィノレピッチは 2 0 m、 コィノレ 長さは 0 . 5 ramであった。 The reaction was carried out under the same conditions as in Example 1 except that a static voltage of 500 V was applied to the graphite substrate 19. The yield of the coiled carbon fiber 10 based on the raw material acetylene was 70 mono / 0 . Met. The average Koinole diameter was 500 m, the Koinole pitch was 20 m, and the Koinole length was 0.5 ram.
印加される静電圧が大きいほどコイル状炭素繊維 1 0の収率は向上し、 コ 径とコイルピッチはミクロンオーダーに近づき、 コイル長さは長くなることが示 された。 The higher the applied electrostatic voltage, the higher the yield of the coiled carbon fiber 10 is. It was shown that the diameter and coil pitch approached the micron order, and the coil length became longer.
次に、 実施例 4〜実施例 6では、 グラフアイ ト基板 1 9の上部の棒状電極 2 3 に静電場を印加し、 グラフアイ ト基板 1 9をアースとした。 そして、 棒状電極 2 3とグラフアイ ト基板 1 9との距離を変化させ、 また、 静電場の電圧を変化させ てコイル状炭素繊維 1 0を成長させ、 得られたコイル状炭素繊維 1 0の平均コィ ル径、 コイルピッチ及びコイル長さを比較した。  Next, in Examples 4 to 6, an electrostatic field was applied to the rod-shaped electrode 23 on the top of the graphite substrate 19, and the graphite substrate 19 was grounded. Then, the distance between the rod-shaped electrode 23 and the graphite substrate 19 is changed, and the voltage of the electrostatic field is changed to grow the coiled carbon fiber 10. The average coil diameter, coil pitch and coil length were compared.
(実施例 4 )  (Example 4)
グラフアイ ト基板 1 9の上方 3 mmの位置にセッ トされた直径 2 mmの棒状電極 2 3に 5 0 0 0 Vの静電圧を印加し、 基板 1 9をアースし、 反応時間を 3 0分とし た以外、 実施例 1 と同じ条件で反応を行った。  A static voltage of 500 V is applied to a 2 mm-diameter rod-shaped electrode 23 set at a position 3 mm above the graphite substrate 19, the substrate 19 is grounded, and the reaction time is reduced to 30%. The reaction was carried out under the same conditions as in Example 1 except that the reaction time was changed to minutes.
原料アセチレンに対するコイル状炭素繊維 1 0の収率は 9 5モル。/。であった。 平均のコイノレ径は 5 μ m、 コィノレピッチは 0 . 2 / m、 コィノレ長さは 0 . 5 mniで あった。  The yield of the coiled carbon fiber 10 based on the raw material acetylene was 95 mol. /. Met. The average Koinole diameter was 5 μm, the Koinole pitch was 0.2 / m, and the Koinole length was 0.5 mni.
(実施例 5 )  (Example 5)
グラフアイ ト基板 1 9の上方 5匪の位置にセッ トした直径 2 mmの棒状電極 2 3 に 5 0 0 0 Vの静電圧を印加し、 反応時間を 3 0分とした以外、 実施例 1 と同じ 条件で反応を行った。  Example 1 was repeated except that a 500 V static voltage was applied to a rod-shaped electrode 23 having a diameter of 2 mm, which was set at a position 5 bands above the graphite substrate 19 and the reaction time was 30 minutes. The reaction was performed under the same conditions as described above.
原料アセチレンに対するコイル状炭素繊維 1 ◦の収率は 8 0モル0/。であった。 平均のコイノレ径は 4 μ m、 コィノレピッチは 0 . 2 μ πι、 コィノレ長さは 0 . 5 mmで あった。 The yield of coiled carbon fiber 1 ° based on the raw material acetylene was 80 moles 0 /. Met. The average Koinole diameter was 4 μm, the Koinole pitch was 0.2 μπι, and the Koinole length was 0.5 mm.
(実施例 6 )  (Example 6)
グラフアイ ト基板 1 9の上方 5顧の位置にセッ トした直径 2匪の棒状電極 2 3 に 1 5 0 0 Vの静電圧を印加し、 反応時間を 3 0分とした以外、 実施例 1 と同じ 条件で反応を行った。  Example 1 except that a static voltage of 150 V was applied to the rod electrode 23 of diameter 2 set at five positions above the graphite substrate 19 and the reaction time was set to 30 minutes. The reaction was performed under the same conditions as described above.
原料アセチレンに対するコイル状炭素繊維 1 0の収率は 8 0モル%であった。 平均のコィ 7レ径は 1 0 0 μ m、 コィノレピッチは 2 // m、 コイスレ長さは 0 . 2菌で めった。  The yield of the coiled carbon fibers 10 based on the raw material acetylene was 80 mol%. The average coil diameter was 100 μm, the coil pitch was 2 // m, and the coil length was 0.2 bacteria.
グラフアイ ト基板 1 9と静電場が印加される棒状電極 2 3との距離が長いとコ ィル状炭素繊維 1 0の収率が低下するとともに、 平均のコイル径が大きくなるこ とが示された。 また、 グラフアイ ト基板 1 9と静電場が印加される棒状電極 2 3 との距離が長く、 印加される静電場の電圧が低いと、 コイル状炭素繊維 1 0の収 率は低下するとともに、 コイル径、 コイルピッチ及びコイル長さも悪くなること が示された。 If the distance between the graphite substrate 19 and the rod electrode 23 to which the electrostatic field is applied is long, It was shown that the yield of the coiled carbon fibers 10 was reduced and the average coil diameter was increased. Further, if the distance between the graphite substrate 19 and the rod-shaped electrode 23 to which the electrostatic field is applied is long and the voltage of the applied electrostatic field is low, the yield of the coiled carbon fiber 10 decreases, It was shown that the coil diameter, coil pitch, and coil length also deteriorated.
次に、 実施例 7及び実施例 8では、 原料ガス等の流入口 1 5と成長してきたコ ィル状炭素繊維 1 0の先端との距離が常に約 3删となるようにしてコイル状炭素 繊維 1 0を成長させた。  Next, in Example 7 and Example 8, the distance between the inlet 15 of the raw material gas and the like and the tip of the grown coiled carbon fiber 10 was always about 3 mm so that the coiled carbon Fiber 10 was grown.
(実施例 7 )  (Example 7)
內径 6 0皿、 長さ 1 0 0 O inmの透明石英管からなる反応容器 1 2の中央部に平 均粒径 5 mのニッケル粉末 2 0を塗布したグラフアイ ト基板 1 9をセッ トした 。 そして、 流入口 1 5からアセチレン、 チォフェン及び水素の混合ガスを導入し 、 注入口 1 6からシールガスとして窒素ガスを注入し、 7 5 0 °Cで 2 0時間反応 を行った。 ガス流量は、 アセチレン 5 0 m 1 Z分、 チォフェン l m lノ分、 水素 4 0 0 m l 分、 窒素 1 0 0 m l Z分とした。 原料ガスの流入口 1 5と基板 1 9 との距離は、 常に約 3腿となるようにコイルの成長と共に基板 1 9の位置を連続 的に下げながら反応を行った。 反応中、 基板 1 9に 5 0 0 0 Vの静電圧を印加し た。  Set a graphite substrate 19 coated with nickel powder 20 with an average particle size of 5 m in the center of a reaction vessel 12 made of a transparent quartz tube with a diameter of 60 dishes and a length of 100 Oinm. did . Then, a mixed gas of acetylene, thiophene and hydrogen was introduced from the inlet 15, nitrogen gas was injected from the inlet 16 as a seal gas, and the reaction was carried out at 75 ° C. for 20 hours. The gas flow rates were 50 m 1 Z for acetylene, 1 ml for thiophene, 400 ml for hydrogen, and 100 ml for nitrogen. The reaction was performed while continuously lowering the position of the substrate 19 with the growth of the coil so that the distance between the inlet 15 of the raw material gas and the substrate 19 was always about three legs. During the reaction, a static voltage of 500 V was applied to the substrate 19.
その結果、 平均のコィノレ径が約 5 μ m、 コィノレピッチが 0 . 2 / m、 長さが 3 cmの非常に緻密に巻かれた長いコイル状炭素繊維 1 0が、 原料アセチレンに対し て 9 5モル0 /。の収率で得られた。 As a result, very densely wound long coiled carbon fibers 10 with an average Koinole diameter of about 5 μm, a Koinole pitch of 0.2 / m, and a length of 3 cm were 95% of the raw material acetylene. Mol 0 /. Was obtained in a yield of
(実施例 8 )  (Example 8)
反応時間を 2 0 0時間とした以外、 実施例 7と同じ条件で反応を行った。 その 結果、 平均のコイル径が約 5 πι、 コィノレピッチが◦ . 2 / m、 長さが 3 O cmの 非常に緻密に巻かれた長いコイル状炭素繊維 1 0が、 原料アセチレンに対して 9 0モノレ%の収率で得られた。  The reaction was carried out under the same conditions as in Example 7, except that the reaction time was set to 200 hours. As a result, a very densely wound long coiled carbon fiber 10 with an average coil diameter of about 5πι, a coil pitch of ◦ .2 / m, and a length of 3 Ocm was 90% of the raw material acetylene. Obtained in a yield of% monol.
原料ガスの流入口 1 5と成長してきたコイル状炭素繊維 1 0の先端との距離が 常に約 3龍となるようにすると平均コイル径、 コイルピッチ及びコイル長さの全 てが良好なコイル状炭素繊維 1 0が得られることが示された。 しかし、 反応時間 が長すぎると収率が低下することが示された。 If the distance between the raw material gas inlet 15 and the tip of the grown coiled carbon fiber 10 is always about 3 dragons, the average coil diameter, coil pitch and coil length are all good. It was shown that carbon fiber 10 was obtained. But the reaction time Was too long, the yield was shown to decrease.
(実施例 9 )  (Example 9)
図 5に示すように、 実施例 9では、 反応容器 1 2を垂立させ、 グラフアイ ト基 板 1 9の代わりに線材 3 7をコイル状炭素繊維 1 0の成長の場とし、 その線材 3 7を巻き取りながら反応を連続して行った。 反応容器 1 2外部にコイル状炭素繊 維 1 0を巻き取る製品回収ロール 5 1 と線材 3 7を卷き取る回収側の線材用ロー ル 4 3を配置し、 原料ガスの流入口 1 5とコイル状炭素繊維 1 0の先端の距離を 常に約 3匪に保てるようにし、 成長したコイルを連続的に巻き取りながら 2 0 0 0時間反応を行った。 それ以外は、 実施例 8 と同じ条件で反応を行った。  As shown in FIG. 5, in Example 9, the reaction vessel 12 was set upright, and the wire rod 37 was used as a place for the growth of the coiled carbon fiber 10 instead of the graphite substrate 19. The reaction was continuously carried out while winding up 7. A product recovery roll 5 1 for winding the coiled carbon fiber 10 and a wire rod 43 on the recovery side for winding the wire 3 7 are placed outside the reaction vessel 1 2, and the material gas inlet 15 The distance of the tip of the coiled carbon fiber 10 was kept at about 3 band, and the reaction was performed for 2000 hours while continuously winding the grown coil. Otherwise, the reaction was carried out under the same conditions as in Example 8.
その結果、 平均のコイル径が約 5 μ m、 コイルピッチ 0 . 2 /x m、 長さが 3 0 O cmの非常に緻密に卷かれた長いコイル状炭素繊維 1 0が、 原料アセチレンに対 して 9 0モル0 /。の収率で得られた。 As a result, a very densely wound long coiled carbon fiber 10 with an average coil diameter of about 5 μm, a coil pitch of 0.2 / xm, and a length of 30 Ocm was used for the raw acetylene. 90 moles 0 /. Was obtained in a yield of
原料ガスの流入口 1 5と成長してきたコイル状炭素繊維 1 0の先端との距離が 常に約 3匪となるようにし、 コイル状炭素繊維 1 0が反応容器 1 2内で長時間反 応しないように回収することにより、 連続成長したコイル状炭素繊維 1 0が得ら れることが示された。  The distance between the inlet 15 of the raw material gas and the tip of the grown coiled carbon fiber 10 should always be about 3 bands, and the coiled carbon fiber 10 will not react for a long time in the reaction vessel 12 Thus, it was shown that the coiled carbon fiber 10 continuously grown could be obtained by such a recovery.
尚、 前記実施形態を次のように変更して具体化することも可能である。  The above-described embodiment can be embodied with the following modifications.
( 1 ) コイル状炭素繊維 1 0が成長する場としての基板 1 9を線材 3 7でメ ッ シュ状に形成すること。 また、 グラフアイ トにより帯状に形成すること。  (1) The substrate 19 as a place where the coiled carbon fiber 10 grows is formed in a mesh shape with the wire 37. In addition, it should be formed in a belt shape using graphite.
線材 3 7でメッシュ状に形成した場合、 線材 3 7が単線の場合よりもさらに多 量のコイル状炭素繊維 1 0を成長させることができる。 帯状に形成した場合、 基 板 1 9一枚の場合に比べて多量のコイル状炭素繊維 1 0を成長させることができ る。  When the wire 37 is formed in a mesh shape, a larger amount of coiled carbon fibers 10 can be grown than when the wire 37 is a single wire. When formed in a belt shape, a larger amount of coiled carbon fibers 10 can be grown than in the case of a single substrate 19.
( 2 ) 第 1実施形態において、 棒状電極 2 3に金属触媒 2 0を塗布して、 静電 場を印加し、 コイル状炭素繊維 1 0が成長する場とし、 基材 1 9にアース線 2 4 を接続してアース板とすること。  (2) In the first embodiment, a metal catalyst 20 is applied to the rod-shaped electrode 23, an electrostatic field is applied, and a field where the coiled carbon fiber 10 grows is formed. Connect 4 to use as a ground plate.
このように構成した場合も、 棒状電極 2 3からコイル状炭素繊維 1 0を成長さ せることができる。  Also in such a configuration, the coiled carbon fibers 10 can be grown from the rod-shaped electrodes 23.
( 3 ) 図 6に示すように、 アースと しての棒状電極 2 3を導電性を有する板材 により環状に形成し、 加熱器 1 8の周面を覆うように取り付けること。 あるいは 、 棒状電極 2 3を導電性を有する板材により環状に形成し、 加熱器 1 8の周面を 覆うように取り付け、 反応容器 1 2をアースとすること。 (3) As shown in Fig. 6, the rod-shaped electrode 23 serving as ground is a conductive plate material. To form an annular shape, and attach it so as to cover the peripheral surface of the heater 18. Alternatively, the rod-shaped electrode 23 is formed in an annular shape from a conductive plate material, and is mounted so as to cover the peripheral surface of the heater 18, and the reaction vessel 12 is grounded.
このように構成した場合、 反応容器 1 2内に反応ガスを効率良く流通させるこ とができ、 基板 1 9上に反応ガスを集め、 反応効率を向上させることができる。  With such a configuration, the reaction gas can be efficiently circulated in the reaction vessel 12, and the reaction gas can be collected on the substrate 19 to improve the reaction efficiency.

Claims

請求の範囲 The scope of the claims
1. 炭素繊維によりコイル状に形成され、 繊維の直径が 0. 0 1〜5 μιη 、 コィ ルの直径が 0. 1〜2000 μιη 、 コイルのピッチが 0〜 50 / Hi 及びコイルの 長さが Ι Ο Ο μπ! 〜 5mであり、 コイルが右巻きの二重螺旋構造を有するものと 、 左巻きの二重螺旋構造を有するものとを含有するコィル状炭素繊維。 1. Formed as a coil from carbon fiber, the fiber diameter is 0.1 to 5 μιη, the coil diameter is 0.1 to 2000 μιη, the coil pitch is 0 to 50 / Hi, and the coil length is Ι Ο Ο μπ! A coiled carbon fiber containing a coil having a right-handed double helical structure and a coil having a left-handed double helical structure.
2. 請求項 1において、 前記右巻きの二重螺旋構造を有するコイルと左巻きの二 重螺旋構造を有するコイルがほぼ 1対 1の割合で存在するコイル状炭素繊維。 2. The coiled carbon fiber according to claim 1, wherein the coil having the right-handed double helical structure and the coil having the left-handed double helical structure are present in a ratio of approximately one to one.
3. 金属触媒、 周期律表の第 1 5族又は第 1 6族の化合物のガス、 水素ガス及び シールガスの存在下に、 炭化水素又は一酸化炭素を 600〜9 50°Cの温度に加 熱するとともに、 静電場を形成し、 炭化水素又は一酸化炭素を分解するコイル状 炭素繊維の製造方法。 3. Hydrocarbon or carbon monoxide is heated to a temperature of 600 to 950 ° C in the presence of a metal catalyst, a gas of a compound of group 15 or 16 of the periodic table, hydrogen gas and a sealing gas. A method for producing coiled carbon fiber that forms an electrostatic field upon heating and decomposes hydrocarbon or carbon monoxide.
4. 請求項 3において、 前記金属触媒はニッケル、 チタン又はタングステンであ り、 前記化合物は硫黄原子又はリン原子を含む化合物であり、 前記炭化水素はァ セチレンであり、 前記シールガスは窒素又はヘリゥムガスであるコイル状炭素繊 維の製造方法。 4. The metal catalyst according to claim 3, wherein the metal catalyst is nickel, titanium or tungsten, the compound is a compound containing a sulfur atom or a phosphorus atom, the hydrocarbon is acetylene, and the seal gas is nitrogen or helium gas. A method for producing a coiled carbon fiber.
5. 請求項 3又は請求項 4において、 前記静電場は無変動静電場又は変動静電場 であるコィル状炭素繊維の製造方法。 5. The method for producing a coiled carbon fiber according to claim 3 or 4, wherein the electrostatic field is a non-variable electrostatic field or a variable electrostatic field.
6. 請求項 5において、 前記静電場は、 高調波成分を含む重畳波形を有する高圧 静電場であるコィル状炭素繊維の製造方法。 6. The method according to claim 5, wherein the electrostatic field is a high-pressure electrostatic field having a superimposed waveform including a harmonic component.
7. 請求項 3又は請求項 4において、 前記周期律表の第 1 5族及び第 1 6族の化 合物のガスの濃度は、 反応雰囲気中に 0. 01〜5容量%の範囲内であるコイル 状炭素繊維の製造方法。 7. The gas concentration of the compounds of Groups 15 and 16 of the periodic table according to Claim 3 or Claim 4, wherein the gas concentration in the reaction atmosphere is within a range of 0.01 to 5% by volume. A method for producing a coiled carbon fiber.
8 . 加熱器を有する反応容器に炭化水素ガス又は一酸化炭素ガス、 周期律表の 1 5族又は 1 6族の化合物のガス及び水素ガスを流通させるための流入口及び流出 口を備え、 シールガスを注入するための注入口を備えるとともに、 高圧静電場を 形成するための基材又は基材から所定距離をおいた導体を反応容器内に配設し、 基材上にコィル状炭素繊維を成長させるように構成したコィル状炭素繊維の製造 装置。 8. A reaction vessel having a heater is provided with an inlet and an outlet for flowing hydrocarbon gas or carbon monoxide gas, gas of a compound of group 15 or 16 of the periodic table and hydrogen gas, and a seal. In addition to providing an inlet for injecting gas, a base material for forming a high-voltage electrostatic field or a conductor at a predetermined distance from the base material is arranged in the reaction vessel, and the coiled carbon fiber is placed on the base material. An apparatus for producing coiled carbon fibers configured to grow.
9 . 請求項 8において、 前記基材を移動可能に配設し、 コイル状炭素繊維の成長 に対応させて基材を移動させるように構成したコイル状炭素繊維の製造装置。 9. The apparatus for producing coiled carbon fibers according to claim 8, wherein the substrate is movably disposed, and the substrate is moved in accordance with the growth of the coiled carbon fibers.
1 0 . 請求項 8又は請求項 9において、 前記基材を線材又は帯材で構成したコィ ル状炭素繊維の製造装置。 10. The apparatus for producing coiled carbon fibers according to claim 8, wherein the base material is a wire or a band.
1 1 . 請求項 8において、 前記基材を線材又は帯材で構成し、 反応容器の一端側 の外方に線材又は帯材を卷回して供給するための線材用ロールを配置し、 他端側 の外方に線材又は帯材を卷回して回収するための線材用ロールを配置したコイル 状炭素繊維の製造装置。 11. The wire according to claim 8, wherein the base material is made of a wire or a strip, and a wire roll for winding and supplying the wire or the strip is disposed outside one end of the reaction vessel. An apparatus for producing coiled carbon fibers in which a wire roll for winding and recovering a wire or a strip is arranged outside the side.
1 2 . 請求項 8において、 前記基材を線材又は帯材で構成し、 反応容器の一端に コイル状炭素繊維を分配するための分岐管を形成し、 前記分岐管の根元に線材又 は帯材に成長したコイル状炭素繊維を搔き取るためのスクレーパーを取り付けた コイル状炭素繊維の製造装置。 12. The claim according to claim 8, wherein the base material is made of a wire or a strip, and a branch pipe for distributing the coiled carbon fiber is formed at one end of the reaction vessel, and a wire or a strip is formed at a root of the branch pipe. Equipment for manufacturing coiled carbon fiber equipped with a scraper for removing coiled carbon fiber grown on the material.
1 3 . 請求項 8又は請求項 9において、 前記基板と流入口との距離を 2〜 2 0腿 の範囲に設定したコィル状炭素繊維の製造装置。 13. The apparatus for producing coiled carbon fibers according to claim 8 or 9, wherein a distance between the substrate and the inflow port is set in a range of 2 to 20 feet.
1 4 . 請求項 8において、 前記基材は、 表面に金属粉末よりなる触媒が塗布され た基板であるコィル状炭素繊維の製造装置。 14. The apparatus for producing coiled carbon fibers according to claim 8, wherein the base material is a substrate having a surface coated with a catalyst made of a metal powder.
PCT/JP1998/003899 1997-09-01 1998-09-01 Coiled carbon fiber, and method and apparatus for manufacturing the same WO1999011846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23617697A JP3215656B2 (en) 1997-09-01 1997-09-01 Method and apparatus for producing coiled carbon fiber
JP9/236176 1997-09-01

Publications (1)

Publication Number Publication Date
WO1999011846A1 true WO1999011846A1 (en) 1999-03-11

Family

ID=16996902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003899 WO1999011846A1 (en) 1997-09-01 1998-09-01 Coiled carbon fiber, and method and apparatus for manufacturing the same

Country Status (3)

Country Link
JP (1) JP3215656B2 (en)
TW (1) TW363938B (en)
WO (1) WO1999011846A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106480550A (en) * 2016-10-31 2017-03-08 哈尔滨天顺化工科技开发有限公司 A kind of labyrinth type gas lock and its control device for carbon fiber production
JPWO2017010509A1 (en) * 2015-07-14 2018-06-07 三菱ケミカル株式会社 Carbon material and manufacturing method thereof
EP3323915A4 (en) * 2015-07-14 2018-06-20 Mitsubishi Chemical Corporation Carbon material and production method for same
CN109161990A (en) * 2018-09-10 2019-01-08 临沂大学 A kind of double-helix carbon fiber and preparation method thereof
CN117209869A (en) * 2023-10-08 2023-12-12 江苏多肯新材料有限公司 Composite rubber material for preparing buffer block for vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307974A (en) * 1998-04-27 1999-11-05 Sony Corp Apparatus and method for electromagnetic shield
EP1146135B1 (en) 1998-12-04 2010-04-28 Stella Chemifa Kabushiki Kaisha Stainless steel having passive fluoride film formed thereon and equipment manufactured therefrom
JP2002221513A (en) * 2001-01-25 2002-08-09 Seiji Motojima Micro sensor and its use
JP2003003336A (en) * 2001-06-18 2003-01-08 Seiji Motojima Coil-shaped carbon fiber and use of the same
JP2003109732A (en) * 2001-09-27 2003-04-11 Seiji Motojima Heating element equipped with coiled carbon fiber and coiled carbon fiber for use with same as well as uses
US7767987B2 (en) 2005-10-18 2010-08-03 Japan Ae Power Systems Corporation Electron beam irradiation method, electron beam irradiation apparatus, and electron beam irradiation apparatus for open-mouthed container
JP2007113936A (en) * 2005-10-18 2007-05-10 Japan Ae Power Systems Corp Method and device for radiating electron beam
JP5710185B2 (en) 2010-09-10 2015-04-30 株式会社Cmc総合研究所 Micro coil manufacturing method and manufacturing apparatus
CN103015165A (en) * 2012-12-05 2013-04-03 中南大学 Novel carbon fiber with spiral structure and preparation method thereof
CN106435839A (en) * 2016-10-31 2017-02-22 哈尔滨天顺化工科技开发有限公司 Static electricity discharge system for carbon fiber raw material polymerization production
JP6854410B2 (en) * 2016-12-05 2021-04-07 住友電気工業株式会社 Manufacturing method of carbon structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104095A (en) * 1981-12-14 1983-06-21 Asahi Chem Ind Co Ltd Carbonaceous whisker
JPH04222228A (en) * 1990-09-29 1992-08-12 Central Glass Co Ltd Production of coiled carbon fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104095A (en) * 1981-12-14 1983-06-21 Asahi Chem Ind Co Ltd Carbonaceous whisker
JPH04222228A (en) * 1990-09-29 1992-08-12 Central Glass Co Ltd Production of coiled carbon fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017010509A1 (en) * 2015-07-14 2018-06-07 三菱ケミカル株式会社 Carbon material and manufacturing method thereof
EP3323915A4 (en) * 2015-07-14 2018-06-20 Mitsubishi Chemical Corporation Carbon material and production method for same
US10975501B2 (en) 2015-07-14 2021-04-13 Mitsubishi Chemical Corporation Carbon material and production method for same
CN106480550A (en) * 2016-10-31 2017-03-08 哈尔滨天顺化工科技开发有限公司 A kind of labyrinth type gas lock and its control device for carbon fiber production
CN106480550B (en) * 2016-10-31 2018-11-30 哈尔滨天顺化工科技开发有限公司 A kind of labyrinth type gas lock and its control device for carbon fiber production
CN109161990A (en) * 2018-09-10 2019-01-08 临沂大学 A kind of double-helix carbon fiber and preparation method thereof
CN109161990B (en) * 2018-09-10 2020-12-15 临沂大学 Double-helix carbon fiber and preparation method thereof
CN117209869A (en) * 2023-10-08 2023-12-12 江苏多肯新材料有限公司 Composite rubber material for preparing buffer block for vehicle

Also Published As

Publication number Publication date
JP3215656B2 (en) 2001-10-09
JPH1181051A (en) 1999-03-26
TW363938B (en) 1999-07-11

Similar Documents

Publication Publication Date Title
JP3215656B2 (en) Method and apparatus for producing coiled carbon fiber
AU2005230961B2 (en) Systems and methods for synthesis of extended length nanostructures
Rodriguez-Mirasol et al. Structural and textural properties of pyrolytic carbon formed within a microporous zeolite template
Huang et al. Exploring the conversion mechanisms of toluene as a biomass tar model compound on NiFe2O4 oxygen carrier
Wang et al. Preparation of Fe-doped carbon catalyst for methane decomposition to hydrogen
NZ539973A (en) Application of conductive absorbents, activated carbon granules and carbon fibers as substrates in catalysis
US6790547B2 (en) Process for reducing coke formation in hydrocarbon processing by application of radio frequency electromagnetic radiation utility
CN101177803A (en) Method for preparing nano carbon fiber
KR100561166B1 (en) The apparatus and method for preparing synthesis gas by using barrier discharge reaction
KR102159158B1 (en) Method to produce light hydrocarbons by COx hydrogenation in a dielectric barrier discharge plasma reactor system
KR20160077957A (en) Method to convert from greenhouse gases to synthesis gas using catalytic complexes and apparatus used for conversion to synthesis gas
CN112760974B (en) Carbon nanotube-copper composite fiber and preparation method thereof
Xia et al. CeO2-enhanced CO2 decomposition via frosted dielectric barrier discharge plasma
CN104631099A (en) Method for growing carbon nanofibers rapidly and directionally on surface of carbon fiber
CN104418318A (en) Continuous growth device for carbon nano-tube
JP4064514B2 (en) Vapor phase production method and production apparatus for coiled carbon fiber
Liu et al. Methane incorporation into liquid fuel by nonequilibrium plasma discharges
KR100556644B1 (en) Apparatus and process for synthesis of carbon nanotubes or carbon nanofibers using flames
EP2597068B1 (en) Micro coil manufacturing method and manufacturing device thereof
Arizapana et al. Harnessing the Synergy of Fe and Co with Carbon Nanofibers for Enhanced CO2 Hydrogenation Performance
CN104418317A (en) Continuous growth device for carbon nano-tube
CN1328424C (en) Micro carbon roll, process for preparing same and use thereof
JP2002201532A (en) Method for producing coiled carbon fiber and device for producing the same
Khan Microwave-Assisted Methane Pyrolysis in a Fluidized Bed Reactor for CO 2-Free Hydrogen and Solid Carbon Production
JP2002088590A (en) Method for producing carbon fiber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase