WO1999010186A1 - Image forming material, image forming method, lithographic printing plate manufacturing method and apparatus, lithographic printing plate making method, and printed wiring board manufacturing method - Google Patents

Image forming material, image forming method, lithographic printing plate manufacturing method and apparatus, lithographic printing plate making method, and printed wiring board manufacturing method Download PDF

Info

Publication number
WO1999010186A1
WO1999010186A1 PCT/JP1997/003819 JP9703819W WO9910186A1 WO 1999010186 A1 WO1999010186 A1 WO 1999010186A1 JP 9703819 W JP9703819 W JP 9703819W WO 9910186 A1 WO9910186 A1 WO 9910186A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
fine particle
printing plate
lithographic printing
Prior art date
Application number
PCT/JP1997/003819
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Hyodo
Wakana Aizawa
Yuji Takagami
Kenji Tsuda
Original Assignee
Mitsubishi Paper Mills Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP22626297A external-priority patent/JPH1165099A/en
Priority claimed from JP22626397A external-priority patent/JPH1165100A/en
Application filed by Mitsubishi Paper Mills Limited filed Critical Mitsubishi Paper Mills Limited
Priority to DE19781578T priority Critical patent/DE19781578C2/en
Publication of WO1999010186A1 publication Critical patent/WO1999010186A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • B41C1/1025Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials using materials comprising a polymeric matrix containing a polymeric particulate material, e.g. hydrophobic heat coalescing particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
    • G03F7/2016Contact mask being integral part of the photosensitive element and subject to destructive removal during post-exposure processing
    • G03F7/202Masking pattern being obtained by thermal means, e.g. laser ablation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/065Etching masks applied by electrographic, electrophotographic or magnetographic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/02Positive working, i.e. the exposed (imaged) areas are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/04Negative working, i.e. the non-exposed (non-imaged) areas are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/06Developable by an alkaline solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/22Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by organic non-macromolecular additives, e.g. dyes, UV-absorbers, plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/24Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0212Resin particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0562Details of resist
    • H05K2203/0577Double layer of resist having the same pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0786Using an aqueous solution, e.g. for cleaning or during drilling of holes
    • H05K2203/0793Aqueous alkaline solution, e.g. for cleaning or etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1355Powder coating of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0073Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces
    • H05K3/0079Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces characterised by the method of application or removal of the mask
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0094Filling or covering plated through-holes or blind plated vias, e.g. for masking or for mechanical reinforcement

Definitions

  • Image forming material Description Image forming material, image forming method, lithographic printing plate manufacturing method and manufacturing apparatus, lithographic printing plate making method, and printed wiring board manufacturing method
  • the present invention relates to an image forming material and an image forming method capable of easily and inexpensively obtaining an image having high resolution. Further, the present invention relates to a method and an apparatus for manufacturing a lithographic printing plate, a method for manufacturing a lithographic printing plate, and a method for manufacturing a printed wiring board using the image forming material and the image forming method.
  • lithographic printing plates are manufactured by providing a lipophilic ink-receiving layer on a substrate such as an aluminum plate, zinc plate, or paper whose surface has been hydrophilized.
  • a lithographic printing plate using a photosensitive material such as polymer is most common.
  • a circuit is formed of a conductive material such as copper on an insulating substrate.
  • a method for manufacturing such a printed wiring board is to provide a corrosion-resistant etching resist layer on a conductive layer of a laminate in which a conductive layer is laminated on an insulating substrate in advance, and to etch away the exposed conductive layer by etching. Active method, and an additive method in which a corrosion-resistant plating resist layer is provided on an insulating substrate, and then a conductive layer is formed on the exposed insulating substrate by metal plating or the like. .
  • a method using a photopolymer is generally used as a method for forming an etching resist layer or an applied resist layer.
  • an etching resist layer, or a plating resist layer (hereinafter referred to as an image layer) using a azo compound or a photopolymer
  • a substrate such as a metal plate, paper, a laminated plate, or an insulating substrate is formed on a substrate.
  • a photosensitive material such as a diazo compound or photopolymer.
  • the photosensitive material is irradiated with light to cause a chemical change, thereby changing the solubility in a developing solution.
  • Photosensitive materials are divided into two types depending on the type of chemical change. being classified.
  • the exposure method is one of the important factors that determine the resolution.
  • the mainstream has been to produce a film for exposure and then to perform a contact exposure method using ultraviolet light or white light.
  • laser direct writing methods that transmit digital signals from computer information to an exposure device (computer 'edge' plate) and directly expose the photosensitive material using a laser are used. It is like that.
  • This laser direct writing method has advantages such as low cost, high speed, and high productivity with many kinds and small lots.
  • the optical sensitivity of the photosensitive material In order to perform this laser direct writing method, the optical sensitivity of the photosensitive material must be increased.
  • Jiazo compound or follower Toporima to accompany the photochemical reaction, optical science sensitivity is low, a few to several hundred m J / cm 2. Therefore, the laser output device must have a high output, and there have been problems such as an increase in the size of the device and an increase in cost.
  • Photochemical reactions of diazo compounds and photopolymers also proceed under room light or sunlight. Also, reactivity changes even at high temperatures. In addition, the presence of oxygen is an inhibitor of the reaction. Therefore, the photosensitive material has a drawback that the preservation before the exposure step, the application step to the substrate, and the like must be performed in the dark or under a safety light or under a low oxygen concentration.
  • an aqueous dispersion paint containing a coloring agent and a particulate resin having a hydrophilic surface and a hydrophobic inside is applied to a supporting substrate, The coating is formed by drying while maintaining the particle morphology of the particle layer, and then the fine particle layer corresponding to the image is heated to lose the particle morphology, and is fixed together with the colorant on the supporting substrate, and the image is formed. Is not formed An image forming method of separating with an alkaline aqueous solution is disclosed.
  • Japanese Patent Application Laid-Open No. 9-117129 / 49 discloses an image forming layer on a hydrophilic surface of a lithographic base, the image forming layer comprising hydrophobic thermoplastic polymer particles dispersed in a hydrophilic binder.
  • a method for making a lithographic printing plate is disclosed in which imagewise exposure is performed, followed by development using fresh water or an aqueous liquid, and further heating the imaged image forming layer.
  • the hydrophobic thermoplastic polymer particles in the hydrophilic binder are melted by exposure and become insoluble in fresh water or aqueous liquid.
  • it in order to exhibit insolubility, it must contain many hydrophobic thermoplastic polymer fine particles. If the amount of the hydrophobic thermoplastic polymer particles is too large, there is a problem that the amount of the hydrophilic binder is too small to completely remove the unnecessary image forming layer in the non-image area.
  • the problem that the image area is not completely covered by the hydrophobic part, in which case pinholes and the like are generated. There was also. In particular, such a problem is likely to occur in a solid portion (large-area image portion).
  • the resolution of an image is determined by the melting of the fine particles.
  • the hydrophilic binder is contained in the fine particle layer, the resolution is reduced unlike the case where the image layer is formed only with the fine particle layer. There was a disadvantage.
  • a coating liquid for forming an image forming layer is an aqueous dispersion using water as a medium. is there.
  • the medium In order for the medium to evaporate after application, work must be performed at low temperatures so that the particulate layer does not melt. The disadvantage was that it took a long time to remove water at low temperatures.
  • An object of the present invention is to provide an image capable of easily and inexpensively obtaining an image having high resolution and reliability in a lithographic printing plate and printed wiring board manufacturing technology, and capable of responding to a laser direct drawing method.
  • An object of the present invention is to provide a forming material and an image forming method. Further, it is intended to provide a method and an apparatus for manufacturing a lithographic printing plate, a method for making a lithographic printing plate, and a method for manufacturing a printed wiring board using the image forming material and the image forming method.
  • An image-forming material comprising a heat-fusible fine particle layer provided on a substrate.
  • thermofusible fine particle layer contains a light absorber
  • the substrate is a printing plate support, the alkali-soluble resin layer is formed by electrodeposition, the heat-meltable fine particle layer is formed by electrodeposition, and the heat-meltable fine particle layer is formed by laser.
  • the substrate is a support for the manufacture of printed wiring boards, the resin layer is formed by electrodeposition, and the layer of heat-meltable fine particles is fused and fixed by laser. (4) or (8) ).
  • the base material is a support for manufacturing a printed wiring board, the alkali-soluble resin layer is formed by an electrodeposition method, the heat-meltable fine particle layer is formed by an electrodeposition method, and the heat-meltable fine particles are formed.
  • a method for producing a lithographic printing plate comprising: applying a coating liquid containing fine particles; evaporating the dispersion medium at an ambient temperature equal to or lower than the softening point of the heat-meltable fine particles to form the heat-meltable fine particle layer in a layered form.
  • the coating liquid is heat-fusible fine particles having a charge dispersed in a dispersion medium having a high electrical resistivity, and the heat-fusible fine particles are applied on a photosensitive lithographic printing plate before image exposure by an electrodeposition method.
  • a coating liquid containing a dispersion medium and heat-meltable fine particles is applied, and the dispersion medium is evaporated at an ambient temperature equal to or lower than the softening point of the heat-meltable fine particles to form the heat-meltable fine particles in a layer.
  • a lithographic printing plate manufacturing apparatus comprising: means for supplying a fine particle-containing coating liquid; means for applying a voltage from the electrode to the lithographic printing plate; and means for squeezing excess coating liquid downstream of the electrode.
  • the means for squeezing the excess coating liquid is a squeezing roll pair, and means for blowing gas toward a gap formed between the squeezing roll pair and an end of the photosensitive lithographic printing plate.
  • heat-fusible fine particles are provided in a layer on the photosensitive layer of the photosensitive lithographic printing plate, and the heat-fusible fine particle layer in a portion to be an image is heated and melted and fixed on the photosensitive lithographic printing plate;
  • a plate making method of a lithographic printing plate for eluting and removing a non-image portion is provided.
  • the photosensitive lithographic printing plate is of a negative type, and the plate surface is irradiated with ultraviolet light after removing the non-image portion, and the non-image portion of the photosensitive lithographic printing plate is eluted and removed, followed by a burning treatment.
  • the photosensitive lithographic printing plate is of a positive type, and the plate surface is irradiated with ultraviolet light before the hot-melt fine particle layer is provided, and after the non-image portion of the photosensitive lithographic printing plate is eluted and removed.
  • a method for manufacturing a printed wiring board comprising the steps of: providing a resist layer; etching away the attached conductive layer and the conductive layer that are not covered with the etching resist layer; and removing the remaining etching resist layer as the case may be.
  • a method for manufacturing a printed wiring board wherein an etching resist layer is formed by removing a fine particle layer and a soluble dry film.
  • thermofusible fine particle layer is fused and fixed by a laser.
  • FIG. 1 is a conceptual diagram illustrating an example of the image forming material of the present invention.
  • FIG. 2 is a conceptual diagram illustrating an example of the image forming method of the present invention.
  • 3A, 3B and 3C are conceptual diagrams showing an example of the image forming material of the present invention.
  • 4A, 48 and 4 are conceptual diagrams illustrating an example of the image forming method of the present invention.
  • FIG. 5 is a conceptual diagram illustrating an example of the image forming method of the present invention.
  • FIG. 6 is a conceptual diagram illustrating an example of the image forming method of the present invention.
  • FIG. 7 is a conceptual diagram illustrating an example of the image forming method of the present invention.
  • 8A, 8B, 8 and 80 are conceptual diagrams showing a method of forming an etching resist layer according to the method of manufacturing a printed wiring board of the present invention.
  • 9A, 9B, 9C, and 9D are conceptual diagrams illustrating a method of forming an etching resist layer according to the method of manufacturing a printed wiring board of the present invention.
  • FIG. 10 is a schematic side sectional view showing an example of the lithographic printing plate manufacturing apparatus of the present invention.
  • 11A, 11B, 11C, 11D, 11E, and 11F are schematic diagrams of a method of manufacturing a printed wiring board having through holes by a subtractive method. In these figures, each symbol indicates the following.
  • the image-forming material (1) of the present invention comprises a heat-fusible fine particle layer provided on a substrate.
  • the portion of the image forming material (1) according to the present invention which is to be an image is heated and melted and fixed on the surface of the substrate.
  • the image forming method (3) of the present invention when the corresponding portion is heated in accordance with a desired image on the heat-meltable fine particle layer, the fine particles of the heat-meltable fine particle layer are melted and bonded to each other to form a film structure. Is formed, and the adhesiveness to the substrate is significantly improved. For this reason, the presence or absence of this heat fixing causes a difference in the adhesive strength to the substrate surface.
  • a printing plate support is used as a base material and the image forming material of the present invention on which an image is formed by the image forming method of the present invention is mounted on a lithographic printing machine and printing is started, the material is heated and fixed.
  • the melt-fixed part receives the ink and becomes an image area, and in the part that is not heated, the heat-fusible fine particle layer has a weak adhesion to the substrate surface, so it is immediately separated and removed, and the hydrophilic surface of the substrate Is exposed and becomes a non-image area of ink non-reception (water reception), and lithographic printing becomes possible.
  • a liquid developer and its device are heated and fixed according to a desired image, for example, by thermal printing head-laser exposure. It is possible to easily produce an image layer without using any kind.
  • the image forming material (2) of the present invention has an alkali-soluble resin layer and a heat-meltable fine particle layer in this order on a substrate.
  • the heat-fusible fine particle layer corresponding to the image portion of the image forming material having such a structure is melt-fixed and bonded to each other and to the alkali-soluble resin layer. Allow the structure to form.
  • an image is formed on the substrate by removing the heat-fusible fine particle layer corresponding to the non-image portion and the layer that has not been melt-fixed and the soluble layer using an alkaline solution.
  • the image forming method (4) of the present invention when the relevant portion is heated in accordance with a desired image on the heat-meltable fine particle layer, the fine particles of the heat-meltable fine particle layer are fused and bonded to each other to form a film structure. Is formed, and the image portion develops resistance to the alkaline solution. In the non-image area where the heat-fusible fine particle layer is not fused and fixed, the heat-fusible fine particle layer In this state, the alkaline liquid easily permeates, dissolves the lower alkali-soluble resin layer, and can be removed together with the heat-meltable fine particles.
  • the image forming materials (1) and (2) of the present invention are very stable against oxygen, sunlight and room light. Therefore, it can be stored in a bright room or under oxygen. Further, the image forming methods (3) and (4) can be performed in a bright room.
  • the heat-meltable fine particle layer corresponding to the image area can be melt-fixed by laser exposure to obtain an image with extremely high resolution. be able to. Therefore, a laser direct drawing method corresponding to a computer 'head' plate can be performed, and high productivity can be obtained.
  • the image-forming material (1) and the heat-meltable fine particle layer according to the image-forming method (3) of the present invention, and the image-forming material (2) and the image of the present invention By including a light absorber in at least one of the alkali-soluble resin layer and the heat-meltable fine particle layer in the formation method (4), energy can be efficiently used for fusing and fixing heat and light. It becomes possible to absorb. Therefore, for example, when fusing and fixing with a laser, a low output laser can be used, and the equipment cost / operating cost can be reduced.
  • the image forming materials (1) and (2) and the image forming methods (3) and (4) of the present invention can be used in the field of printing and in the field of manufacturing printed wiring boards.
  • a lithographic printing plate is produced by forming a layer of heat-meltable fine particles on a photosensitive lithographic printing plate.
  • the heat corresponding to the image portion of the heat-meltable fine particle layer provided on the surface of the photosensitive lithographic printing plate before image exposure is provided.
  • the fusible fine particle layer is melt-fixed and bound to each other and the alkali-soluble resin layer to form a film structure.
  • an image is formed on the substrate by eluting and removing the non-fused hot-melt fine particle layer corresponding to the non-image portion and the photosensitive layer of the photosensitive lithographic printing plate therebelow.
  • a commercially available photosensitive lithographic printing plate (PS plate) is provided with a heat-fusible fine particle layer containing a light absorbing agent.
  • the heat-fusible fine particle layer can be melt-fixed by a laser, and an image with extremely high resolution can be obtained. Therefore, PT /
  • the dispersion medium is evaporated at an ambient temperature equal to or lower than the softening point of the heat-meltable fine particles, so that the heat-meltable fine particles are not fused and fixed. It can be fixed in layers on the lithographic printing plate surface. For this reason, it is possible to prevent the non-image portion from fusing and fixing to become a capri.
  • the coating liquid according to the method (22) for producing a lithographic printing plate according to the present invention comprises a hot melt having a charge dispersed in a dispersion medium having a high electrical resistivity.
  • the heat-fusible fine particles in the coating liquid by selectively applying the heat-fusible fine particles in the coating solution to the photosensitive lithographic printing plate before image exposure by electrodeposition. Therefore, the heat-meltable fine particle layer can be formed more efficiently.
  • the heat-fusible fine particle layer can be efficiently and uniformly fixed to the surface of the planographic printing plate in a layered manner.
  • Means for squeezing excess coating liquid include, for example, a roll pair, an air knife that blows air over the entire width of a lithographic printing plate, and a corona discharge.
  • the squeezed liquid by a roll pair consisting of is preferred because it can be squeezed efficiently and stably for a long period of time. More preferably, it is a roll pair having nitrile butadiene rubber (NBR) on the surface in a rubber hardness range of 20 to 70 degrees.
  • NBR nitrile butadiene rubber
  • the means for squeezing excess coating liquid is a squeezing roll pair, and a gap formed between the squeezing roll pair and an end of the photosensitive lithographic printing plate.
  • the apparatus for manufacturing a lithographic printing plate of the present invention (26) has a means for adsorbing and transporting the back surface of the photosensitive lithographic printing plate downstream of the pair of squeezing rolls, so that the formed fusible fine particle layer is brought into contact with It is possible to carry to the next step without performing. Therefore, it is possible to prevent destruction of the heat-meltable fine particle layer due to transportation.
  • a dispersion medium evaporation promoting means is provided downstream of the squeezing roll pair, so that the dispersion medium is continuously formed with the heat-meltable fine particle layer. Can be evaporated, so that the time required for producing a lithographic printing plate can be reduced.
  • the method of making a lithographic printing plate (29) of the present invention is characterized in that the photosensitive lithographic printing plate is a negative type.
  • the image area is polymerized and hardened by irradiating the plate surface with ultraviolet light after removing the non-image area, and the printing durability is further improved. be able to.
  • the light absorbing agent contained in the heat-meltable fine particle layer has an absorption maximum near the near-infrared region (600 nm to 1200 nm), and has a maximum absorption at a wavelength less than 600 nm.
  • the image portion can more efficiently absorb ultraviolet light, especially when the photosensitive lithographic printing plate is a negative type.
  • the photosensitive lithographic printing plate is of a positive type.
  • irradiating the plate surface with ultraviolet light before providing the heat-meltable fine particle layer improves the solubility, so that the heat-meltable fine particle layer is heated.
  • the non-image area can be easily eluted after fixing.
  • the method of making a lithographic printing plate according to any of (29) to (31) according to the present invention comprises the steps of: Burning is performed after elution and removal of the image part.
  • the binding process crosslinks the binder resin in the image area of the photosensitive lithographic printing plate, forms a stronger film, and further improves printing performance such as printing durability.
  • both the heat-meltable fine particle layer and the alkali-soluble resin layer used for forming the etching resist layer are exposed to oxygen, sunlight, and room light. It is very stable. Therefore, it can be stored in a bright room or in the presence of oxygen. Also, the image forming step can be performed in a bright room.
  • the alkali-soluble dry film and the heat-meltable fine particle layer in the printed wiring board manufacturing method (38) of the present invention also have the same properties.
  • the heat-fusible fine particle layer Alternatively, the alkali-soluble resin layer contains a light absorber.
  • the heat-meltable fine particle layer or the alkali-soluble dry film contains a light absorber. Therefore, it becomes possible to efficiently absorb energy such as heat and light for fusing and fixing the heat-meltable fine particle layer in a portion corresponding to the wiring portion. Therefore, it is possible to reduce the cost, work cost, and the like of the device that provides this energy.
  • the portion of the heat-meltable fine particle layer corresponding to the roto-roof portion is fused and fixed by a laser to provide an etching resist having a very high resolution. Layers can be obtained. In addition, high productivity can be obtained by using a laser direct writing method compatible with computer boards.
  • the electrodeposition method is used as a method for applying a photopolymer in the manufacture of some printed wiring boards, such as painting automobiles.
  • the electrodeposition method has good followability to the substrate to be coated, and can uniformly form the thickness of the soluble resin layer regardless of the shape of the substrate to be coated. Also, there are very few defects such as pinholes.
  • the image forming method of the present invention (12), (13), (17), (21), the method of manufacturing a lithographic printing plate of the present invention (23), and the method of manufacturing a printed wiring board (44)
  • the heat-meltable fine particle layer is formed by the electrodeposition method, but a uniform thin film with few defects can be obtained in the same manner as described above.
  • FIG. 1 is a schematic view showing an example of the image forming material (1) of the present invention.
  • the image forming material (1) of the present invention has a structure in which a heat fusible fine particle layer 1 is provided on a substrate 10.
  • T thermoelectric
  • FIG. 2 is a schematic view showing an example of the image forming material (2) of the present invention.
  • the image forming material (2) of the present invention has a structure in which a resin layer 2 and a thermofusible fine particle layer 1 are sequentially formed on a substrate 10.
  • FIG. 3 is a schematic view showing an example of the image forming method (3) of the present invention.
  • the image forming method (3) of the present invention first, the heat fusible fine particle layer 1 is provided on the substrate 10 (FIG. 3A). Next, the portion of the heat-meltable fine particle layer 1 corresponding to the image area is melt-fixed to form a melt-fixing layer 3 (FIG. 3B).
  • FIG. 4 is a schematic diagram illustrating an example of the image forming method (4) of the present invention.
  • the image forming method of the present invention first, a portion corresponding to an image portion of an image forming material (FIG. 4A) having an alkali-soluble resin layer 2 and a heat-fusible fine particle layer 1 on a substrate 10 in this order.
  • the heat-fusible fine particle layer 1 is fused and fixed to form a fusion-fixed layer 3 (FIG. 4B).
  • the non-image portion of the heat-meltable fine particle layer 1 and the resin layer 2 are removed with an alkaline solution (FIG. 4C).
  • the heat-fusible fine particle layer 1 in the non-image area which is not fused and fixed, is in a very sparse state, so that the alkali liquid can easily penetrate and can be removed together with the underlying alkali-soluble resin layer 2 It is.
  • An image is formed with the fusion fixing layer 3 and the alkali-soluble resin layer 2 remaining on the substrate 10 (FIG. 4).
  • the base material 10 having a surface on which a fusion-fixing layer 3 corresponding to an image area and a heat-fusible fine particle layer 1 corresponding to a non-image area obtained by the image forming method (3) of the present invention,
  • the layer 1 is in a sparse state and has poor adhesion to the substrate 10 as compared with the fusion-fixing layer 3. Therefore, when printing is performed using a printing plate support as the substrate 10 and printing is performed as a printing plate, the thermally fusible fine particle layer 1 having poor adhesion is removed at the initial stage of printing, and the substrate 10 The surface will be exposed (Figure 3C). In this manner, a form in which the fusion fixing layer 3 which is the lipophilic ink receiving layer is formed on the base material having the hydrophilic surface, and printing is possible.
  • FIG. 5 to 7 are schematic views showing an example of the method (29) of making a lithographic printing plate according to the present invention.
  • the heat-meltable fine particle layer 1 is provided on the photosensitive layer 11 of the photosensitive lithographic printing plate (PS plate) 13 (FIG. 5).
  • the heat-fusible fine particle layer 1 at the portion corresponding to the image area is melted and fixed by heating to form a melt-fixed layer 3 (FIG. 6).
  • the photosensitive layer 11 of the photosensitive lithographic printing plate is removed together with the heat-fusible fine particle layer 1 in the non-image area using a treatment solution capable of eluting and removing (FIG. 7).
  • FIG. 11 is a schematic diagram showing a general method of manufacturing a printed rookie board having through holes by a subtractive method.
  • a through-hole 23 is formed in a laminated board 20 (FIG. 11A) provided with a conductive layer 22 on at least one surface of an insulating substrate 21 (see FIG.
  • the conductive layer 24 is formed on the surface of the laminated layer 20 including the inside of the through hole 23 (FIG. 11C).
  • an etching resist layer 25 corresponding to the wiring portion is provided (FIG. 11D), and the plating conductive layer 24 and the conductive layer 22 not covered with the etching resist layer 25 are etched and removed (see FIG. 11D).
  • FIG. 8 is a conceptual diagram showing a method of forming an etching resist layer in the method (37) of manufacturing a printed wiring board of the present invention.
  • the hot-melt fine particle layer 1 and the non-wiring soluble resin layer 2 in the non-wiring portion are removed with an alkaline liquid (FIG. 8D).
  • the heat-fusible fine particle layer 1 that has not been fused and fixed is in a very sparse state, so that the liquid can easily penetrate, and can be removed together with the lower layer of the soluble resin layer 2. It is possible.
  • the remaining melt-fixing layer 3, alkali-soluble resin layer 2, and filling ink 5 are used as an etching resist layer 25a.
  • FIG. 9 is a conceptual diagram showing a method of forming an etching resist layer in the method (38) of manufacturing a printed wiring board of the present invention.
  • the alkali-soluble dry film 4 is attached to the laminate (Fig. 11C) (Fig. 9 A)
  • the heat-meltable fine particle layer 1 is formed on the soluble dry film 4 (FIG. 9B), and the heat-meltable fine particle layer 1 corresponding to the wiring portion is melt-fixed. (Fig. 9C).
  • the heat-fusible fine particle layer 1 and the non-wiring soluble dry film 4 at the non-wiring portion are removed with an alkaline solution (FIG. 9D).
  • the remaining resist layer 3 and the alkali-soluble dry film 4 are used as an etching resist layer 25b.
  • the heat-fusible fine particle layer according to the image forming material, the image forming method, the lithographic printing plate manufacturing method and manufacturing apparatus, the lithographic printing plate plate making method, and the printed wiring board manufacturing method of the present invention is a fine particle layer at normal temperature. It has the property of forming a dense film structure by fusing and fixing.
  • the material forming such heat-fusible fine particles include (meth) acrylic resin, vinyl acetate resin, polyethylene resin, polypropylene resin, polybutadiene resin, vinyl chloride resin, vinyl acetal resin, vinylidene chloride resin, styrene resin, and polyester.
  • Examples include resin, polyamide resin, phenol resin, xylene resin, alkyd resin, gelatin, cellulose, wax, and the like.
  • the image forming material, the image forming method, the lithographic printing plate manufacturing method and manufacturing apparatus of the present invention, the lithographic printing plate plate making method, and the method for forming a heat-fusible fine particle layer according to the method for manufacturing a printed wiring board include at least:
  • the hot-melt fine particles are dispersed in an appropriate dispersion medium, and are dipped, spin-coated, bar-coated, white-coated, roll-coated, spray-coated, force-coated, air-knife-coated, It can be formed by using a coating method such as a blade coating method and an electrodeposition method.
  • the electrodeposition method has good adherence to base materials, alkali-soluble resin layers, photosensitive lithographic printing plates, alkali-soluble dry films, etc., good adhesion, and very few defects such as pinholes. Further, since a thin film to which the heat-fusible fine particles are uniformly attached can be obtained, it can be used most advantageously. Further, even when the concentration of the heat-meltable fine particle dispersion is low, the heat-meltable fine particle layer can be efficiently formed.
  • the image forming material, the image forming method, the lithographic printing plate manufacturing method and manufacturing apparatus, the lithographic printing plate plate making method, and the method for forming a heat-fusible fine particle layer according to the method of manufacturing a printed wiring board according to the present invention include: As a liquid that does not dissolve Water, linear, branched or cyclic hydrocarbons, their halogen-substituted products, silicone oils, and the like.
  • a material having a high electric resistivity is preferable, and a material having a low dielectric constant is preferable.
  • the dispersion medium that can be used in the electrodeposition method include aliphatic hydrocarbons.
  • a low-fraction aliphatic hydrocarbon In order to quickly remove the dispersion medium after the formation of the heat-fusible fine particle layer, it is more preferable to use a low-fraction aliphatic hydrocarbon.
  • Examples of commercially available products include Shellsol 71 (manufactured by Shell Petroleum), Biopar G, Biopar H and Biopar L (manufactured by Exxon Chemical), and IP Solvent IP_1620 (manufactured by Idemitsu Petroleum).
  • hydrocarbon-based petroleum solvents having a low vapor pressure and hydrocarbons having a high molecular weight can be used.
  • the heat-meltable fine particle layer according to the image forming material, the image forming method, the lithographic printing plate manufacturing method and manufacturing apparatus, the lithographic printing plate making method, and the printed wiring board manufacturing method of the present invention is formed by an electrodeposition method.
  • a charge control agent is contained in the heat-fusible fine particle layer dispersion in order to keep the heat-fusible fine particle layer charged.
  • the charge control agent include metal salts of fatty acids such as naphthenic acid, octenoic acid, and oleic acid, metal salts of sulfosuccinate esters, metal salts of oil-soluble sulfonic acids, metal salts of phosphoric acid esters, and aromatic carboxylic acids.
  • the heat-meltable fine particle layer according to the image forming material, the image forming method, the lithographic printing plate manufacturing method and manufacturing apparatus, the lithographic printing plate making method, and the printed wiring board manufacturing method of the present invention is formed by an electrodeposition method.
  • a commercially available toner (wet developer) for an electrophotographic lithographic printing plate can be used.
  • the above-mentioned heat-meltable fine particle layer, dispersion medium, charge control agent, dispersant, dispersion stabilizer and the like are prepared in advance and can be used easily.
  • the method for forming a heat-meltable fine particle layer according to the image forming material, the image forming method, the lithographic printing plate manufacturing method and the manufacturing apparatus, the lithographic printing plate making method, and the printed wiring board manufacturing method of the present invention To disperse the conductive fine particles in the dispersion medium, use a mechanical or ultrasonic disperser or stirrer such as an agitator, ball mill, homogenizer, etc. Can be used. At this time, a dispersion stabilizer and a dispersant such as a surfactant and a resin soluble in a dispersion medium can be used.
  • the dispersing medium-soluble resin When a dispersing medium-soluble resin is used as the dispersing (stabilizing) agent, the dispersing medium-soluble resin is contained in the heat-meltable fine particle layer.
  • the content of the dispersing medium-soluble resin is increased, the resin acts as a binder and may reduce image resolution. Therefore, the content of the dispersing medium-soluble resin is preferably 0.1 to 30% by weight based on the weight of the heat-meltable fine particles.
  • the image forming method (4) of the present invention having a step of removing a non-image portion with an alkaline solution, the plate making method of a lithographic printing plate of the present invention (29), the method of manufacturing a printed wiring board (37) and (37)
  • the resin soluble in a dispersion medium is preferably alkali-resistant, more preferably hydrophobic, in order not to lower the alkali resistance of the heat-meltable fine particle layer.
  • the heat-meltable fine particle layer according to the image forming material, the image forming method, the lithographic printing plate manufacturing method and the manufacturing apparatus, the lithographic printing plate making method, and the printed wiring board manufacturing method of the present invention is obtained by applying the above-described coating method.
  • the dispersion medium is dried in an atmosphere temperature range equal to or lower than the softening point of the heat-meltable fine particle layer, and the dispersion medium is removed by evaporation.
  • the softening point of the heat-meltable fine particles is the temperature at which a film is formed by heating, and the numerical value is that when the heat-meltable fine particle dispersion is sealed and gradually heated, the heat-meltable fine particles melt to form a film.
  • the temperature can be obtained by a simple experiment.
  • the alkali-soluble resin that can be used in the alkali-soluble resin layer according to the image forming material (2), the image forming method (4), and the method for manufacturing a printed wiring board (37) of the present invention.
  • a monomer having an anionic group such as a carboxylic acid group, a sulfoxyamide group, a sulfonic acid group, a sulfonamide group, a sulfonimide group, a phosphonic acid group, etc.
  • a monomers may be copolymerized to control alkali solubility, film strength, heat melting temperature, and the like. Further, two or more kinds of alkali-soluble resins may be mixed.
  • the alkali-soluble resin layer according to the image-forming material (2), the image-forming method (4) and the method for manufacturing a printed wiring board (37) of the present invention comprises at least an alkali-soluble resin in an appropriate medium. Disperse or dissolve, dipping, spin coating, bar coating, roll coating, spray coating, curtain coating, air knife coating It can be formed by using a coating method such as a coating method, a blade coating method, and an electrodeposition method. In particular, the electrodeposition method can be advantageously used because it has good followability and adhesion to a substrate to be coated, has very few defects such as pinholes, and can provide a good thin film. .
  • the main component of the Alkali soluble soluble film according to the method (38) for producing a printed wiring board of the present invention is an alkali-soluble resin.
  • the alkali-soluble resin includes at least one monomer component having a monomer having an anionic group such as a carboxylic acid group, a carboxyamide group, a sulfonic acid group, a sulfonamide group, a sulfonimide group, and a phosphonic acid group.
  • various monomers may be copolymerized to control alkali solubility, film strength, adhesion, softening temperature, glass transition point, and the like.
  • two or more kinds of soluble resins may be mixed and used.
  • the alkali-soluble dry film according to the method (38) for producing a printed wiring board of the present invention is generally formed by dissolving the above-mentioned alkali-soluble resin in a medium and coating it on a substrate.
  • a substrate films of polytetrafluoroethylene, polyethylene terephthalate, alamide, Kapton, polymethylpentene, polyethylene, polypropylene, polyvinyl chloride, etc. can be used.
  • the method of fusing and fixing the image portion of the heat-fusible fine particle layer includes heat fixing, light fixing, pressure fixing, and solvent. There are methods such as fixing. In order to perform a direct drawing method using a computer chip plate to increase productivity, it is desirable to use a laser for fusing and fixing.
  • Lasers include gas lasers such as carbon dioxide laser, nitrogen laser, Ar laser, HeZNe laser, HeZCd laser, Kr laser, solid lasers such as liquid (dye) laser, ruby laser, NdZY AG laser, GaAsZGaAlAs, I nG a a s a semiconductor laser such as a laser, K r F laser, XEC l laser, XeF laser, the use of excimer laser or the like of the Ar 2 laser or the like leaving at.
  • gas lasers such as carbon dioxide laser, nitrogen laser, Ar laser, HeZNe laser, HeZCd laser, Kr laser
  • solid lasers such as liquid (dye) laser, ruby laser, NdZY AG laser, GaAsZGaAlAs, I nG a a s a semiconductor laser such as a laser, K r F laser, XEC l laser, XeF laser, the use of excimer laser or the like of the Ar 2 laser or the
  • the heat fusible fine particle layer is used in order to improve the melting and fixing ability of the heat fusible fine particle layer.
  • the heat fusible fine particle layer is used.
  • thermofusible fine particle layer with small heat or light energy.
  • the light absorber for example, carbon black, cyanine, metal-free or metal phthalocyanine, metal dithiolene, anthraquinone and the like can be used.
  • a light absorber having the maximum absorption at the wavelength of the laser For example, when fixing a heat-meltable fine particle layer using a semiconductor laser of 830 nm, a cyanine dye having a heptamethine skeleton can be suitably used.
  • Ripbon black is a light absorber that can be used most preferably because it has a wide light absorption wavelength range and high heat absorption efficiency.
  • the image forming method (4) and the method for manufacturing a printed wiring board (37) of the present invention similarly to the above, it is selected from an alkali-soluble resin layer or a heat-meltable fine particle layer.
  • at least one layer contains a light absorber.
  • at least one layer selected from the group consisting of a soluble dry film and a heat-meltable fine particle layer contains a light absorber.
  • a negative PS plate is used in the method (29) to (31) of making a lithographic printing plate of the present invention.
  • the plate surface is irradiated with ultraviolet light after elution and removal of the non-image portion. Therefore, a light absorber having low absorption in a wavelength region of 600 nm or less is desirable.
  • the alkali-soluble resin layer or the alkali-soluble dry film in the non-image portion or the non-circuit portion, and The hot-melt fine particle layer formed on the substrate is removed using an alkaline solution.
  • the heat-fusible fine particle layer that is not melt-fixed is in a very sparse state, and the alkali solution can easily penetrate and is removed together with the underlying alkali-soluble resin layer or Al-soluble dry film. It is possible.
  • the alkaline liquid water can be advantageously used as a solvent.
  • alkali metal gayate alkali metal hydroxide, phosphoric acid and alkali metal carbonate and ammonium salt
  • ethanolamine ethylenediamine, propanediamine, triethylenetetramine, morpholine and the like
  • a water-soluble alcohol / surfactant may be contained.
  • a commercially available PS plate developer can be used as the photosensitive layer eluting solution in the plate making method (29) of the present invention. If there is a dedicated or recommended developer for the PS plate to be used, it can be suitably used. Further, for example, a negative / positive common developer as described in JP-A-6-282709 can be used. Furthermore, it can be treated with an alkaline solution containing water as a main solvent. Examples of such an alkaline liquid include the alkaline liquids relating to the above-described image forming method (4) and methods (37) and (38) for producing a printed wiring board of the present invention.
  • the substrate relating to the image forming materials (1) and (2) and the image forming methods (3) and (4) of the present invention for example, in the case of producing a printing plate, polyethylene terephthalate, polyethylene naphthalate, A metal plate such as a plastic plate such as polyphenylene sulfide, paper, an aluminum plate, a zinc plate, and a copper Z aluminum plate can be used.
  • epoxy resin-impregnated glass substrate epoxy resin-impregnated paper substrate, phenol resin-impregnated glass substrate, phenol resin-impregnated paper substrate, polyimide film
  • an insulating substrate such as a polyester film, a laminated plate or a metal plate provided with a conductive layer of copper, aluminum, silver, iron, gold, or the like on at least one surface of the insulating substrate.
  • a commercially available PS plate is not limited to a negative type or a positive type, and It can be used without being affected by the type and thickness of the support.
  • a commercially available PS plate is not limited to a negative type or a positive type, and It can be used without being affected by the type and thickness of the support.
  • an elution type printing plate that forms an image by an electrophotographic method can be used.
  • the photosensitive lithographic printing plate according to the lithographic printing plate making method (29) of the present invention is a negative type, as described in the lithographic printing plate making methods (32) and (35) of the present invention
  • ultraviolet light such as a mercury lamp
  • the photosensitive layer is polymerized and hardened, and the image area can be made stronger.
  • a solvent or the like that dissolves only the melt-fixing layer in the image area. After separating the fixing layer, ultraviolet light irradiation can be performed.
  • the lithographic printing plate making method of the present invention (33) and (36) are as follows. Before providing the heat-meltable fine particle layer, the surface of the photosensitive lithographic printing plate is irradiated with ultraviolet light such as a mercury lamp in advance to improve the solubility of the photosensitive layer, and a plate-making process using the heat-meltable fine particles is performed. . By irradiating with ultraviolet light, the solubility of the photosensitive layer of the photosensitive lithographic printing plate in the elution treatment liquid increases, and the photosensitive layer in the non-image area can be removed very easily.
  • ultraviolet light such as a mercury lamp
  • a non-image portion of the photosensitive lithographic printing plate is eluted and removed, and then a burning process is performed to further strengthen the image portion.
  • a burning process a method generally applied to a PS plate, such as heating at 200 to 250 ° C. for several minutes, can be used. Such a burning process is described in, for example, “PS Version Overview” (by Yonezawa Teruhiko, published by The Printing Society of Japan, pp. 107-108).
  • a dry (air-drying) type hole filling ink for example, a dry (air-drying) type hole filling ink, an ultraviolet light curing type hole filling ink, or a thermosetting type hole filling ink can be used.
  • a method of filling the filling hole inside the through hole a roll coating method, a squeegee method, a multi-pin injection method, or the like can be used.
  • the filling ink that has adhered to the outside of the through-hole may be left as it is, or may be removed by wiping or puffing.
  • Examples of the laminated board provided with a conductive layer on at least one surface of an insulating substrate according to the method for manufacturing a printed wiring board of the present invention include, for example, “Printed Circuit Technology Handbook-Second Edition 1”
  • the insulating substrate examples include a paper substrate or a glass substrate impregnated with an epoxy resin or a phenol resin, a polyester film, a polyimide film, and the like.
  • the material of the conductive layer examples include copper, silver, and aluminum.
  • a method for forming a plated conductive layer according to the method for manufacturing a printed wiring board of the present invention for example, when the plated conductive layer is copper, “Surface mounting technology” (June 1993, June, Electroless plating step, electroless plating-one electrolytic plating step, direct electrolytic plating step, etc. described in Nikkan Kogyo Shimbun, etc.) can be used.
  • the etching resist layer after removing the unnecessary conductive layer and the plated conductive layer may be left as it is, but is unnecessary when loading and connecting circuit components and the like. If it becomes, remove it.
  • an alkali solution can be advantageously used. In the case where the solubility of the etching resist layer in the alkaline solution is low, a force for appropriately adding an organic solvent or only the organic solvent may be used.
  • FIG. 10 is a schematic side sectional view showing an example of the lithographic printing plate manufacturing apparatus (24) of the present invention.
  • the printing plate 4 14 with its surface facing upward is introduced into a gap formed by the electrode 41 and the guide plate 42 by a pair of feed rolls 4 3 and 4 4 whose surface is formed of rubber.
  • the liquid supply section attached to the recovery tank 410, the pump 41, and the electrode 41 which constitutes the hot-melt fine particle-containing coating liquid supply means, sends the liquid to the gap. Is discharged.
  • a voltage is supplied from a voltage supply unit 413, which is a charge application unit connected to the electrode 41, the conductive grounding piece 47, and the plate guide 49.
  • the polarity of the supplied voltage is the same as the polarity of the charged electrode of the hot-melt particles in the coating liquid, and the hot-melt particles are electrodeposited on the surface of the printing plate 4 14.
  • the printing plate 4 14 is a gas blowing means in which excess coating liquid is squeezed by a pair of squeezing rolls 4 5 and 4 6 which are squeezing means, and at the same time, is connected to a high-pressure air source (not shown). High-pressure air is blown from the air knife 48 to the gap formed by the printing plate 4 14 and the squeezing roll pairs 45, 46.
  • the printing plate 4 14 is suctioned on its back surface by suction conveyance means composed of a conveyance belt 4 24 suspended on four rotating shafts 4 23 and a suction box 4 22. Conveyed.
  • the suction box 4 22 has a plurality of suction ports on its upper surface for sucking the printing plate 4 14, and the air inside the suction box 4 22 is exhausted by an exhaust fan (not shown) installed inside. It is being discharged.
  • two drying fans 420 are arranged as a means for promoting the evaporation of the dispersion medium, so that the dispersion medium in the coating liquid that has not been squeezed on the printing plate 4 14 is sealed. I have.
  • an air temperature control unit (not shown) is introduced into the drying fan 420.
  • an exhaust duct 421 is provided at the upper part as an evaporation promoting means, so that the evaporated dispersion medium can be discharged as required.
  • the transport speed of the printing plate 4 14 can be arbitrarily set according to the evaporation speed of the dispersion medium used.
  • the printing plate 4 14 processed as described above reaches a buffer unit composed of a transport belt 4 31 suspended on two rotating shafts 4 30.
  • the printing plate 4 14 may be taken out, or may be transported to a stocker capable of stocking a plurality of printing plates.
  • a JIS 1550 aluminum sheet was immersed in an aqueous solution of 10% NaOH at 60 ° C, and the surface was etched so that the amount of aluminum dissolved was 6 gZm 2 . After washing with water, it was immersed in a 30% aqueous nitric acid solution for 1 minute to neutralize, and washed thoroughly with water. Thereafter, electrolytic surface roughening was performed in a 2.0% aqueous nitric acid solution for 25 seconds, and the surface was washed by immersion in a 20% aqueous sulfuric acid solution at 50 ° C., and then washed with water. Furthermore, the substrate (printing plate support, A3 size) is prepared by anodizing in a 20% sulfuric acid aqueous solution, washing with water, and drying.
  • the heat-meltable fine particle layer corresponding to the image area was fused and fixed by a semiconductor laser exposure device (780 nm) to obtain a printing plate.
  • a printing plate Using this printing plate, printing was performed with an offset printing machine (Ryobi 3200 MCD).
  • an offset printing machine Rost 3200 MCD.
  • a layer of heat-meltable fine particles that had not been fused was fixed. was completely removed, and the hydrophilically treated surface of the substrate was exposed.
  • the remaining melt-fixing layer as the ink receiving layer, it was possible to obtain good printed matter free of stains and the like up to 60,000 sheets.
  • a substrate having the same specifications as in Example 1 (hydrophilic aluminum sheet, 110 ⁇ 398 mm) was coated with a coating solution having the composition shown in Table 2 by a curtain coating method, and the coating was performed at 30 °. After drying for 5 minutes at C, a heat-meltable fine particle layer (2.5 m thick) was formed.
  • Table 2 Compositions Polyuryl methacrylate (molecular weight 2,000,000) 5 Polyvinyl acetate emulsion (average particle size 0.2 ⁇ m) 25 Carbon black 5 Saturated hydrocarbons (IP-1620; Idemitsu Petrochemical) 2 1 5 Formation of fusing layer
  • the printing plate was obtained by fusing and fixing the heat-meltable fine particle layer corresponding to the image area with a semiconductor laser exposure device (780 nm). Using this printing plate, we performed printing with an offset printing machine (Ryobi 320 MCD). At the initial stage of printing (about 10 sheets), the heat-fusible fine particles that had not been fused and fixed were used. The layer was completely removed, exposing the hydrophilized surface of the substrate. By using the remaining melt-fixing layer as the ink receiving layer, it was possible to obtain good printed matter free of stains and the like up to 60,000 sheets.
  • the heat-meltable fine particle layer corresponding to the image area was fused and fixed by a semiconductor laser exposure device (780 nm) to obtain a printing plate.
  • a semiconductor laser exposure device 780 nm
  • we performed printing with an offset printing machine (Ryobi 320 MCD).
  • the heat-fusible fine particles that had not been fused and fixed were used.
  • the layer was completely removed, exposing the hydrophilized surface of the substrate.
  • the remaining melt-fixing layer as the ink receiving layer, no stains or the like were generated up to 70,000 sheets, and good printed matter was obtained.
  • a semiconductor laser exposure device (780 nm) melts and fixes the heat-meltable fine particle layer corresponding to the image area, and then sprays 5.0% sodium carbonate solution (liquid temperature 35 ° C) (2.0 kg / cm 2 ) to remove the hot-melt fine particle layer and the alkali-soluble resin layer in the non-image area to obtain a printing plate.
  • Observation with a microscope of the image layer composed of the alkali-soluble resin layer and the heat-meltable fine particle layer revealed that the image had a high resolution without any missing image portions and no stain on non-image portions.
  • an offset printing machine Hamaduster 600 CD
  • Coating Co., Ltd. 200 x 300 x 1.6 mm, copper thickness 18 ⁇ m) using a coating solution having the composition shown in Table 6 by dipping and then 90 ° After drying at C for 5 minutes, an alkali-soluble resin layer (5.2 m in thickness) was obtained.
  • a coating solution having the composition shown in Table 7 coating was performed by a curtain coating method to form a heat-meltable fine particle layer (thickness: 1.2 m).
  • the copper-clad laminate on which the image layer was formed was prepared using a commercially available ferric chloride solution.
  • Table 8 shows a single-sided copper-clad laminate (Matsushita Electric Works, Ltd., 200 mm x 300 mm, copper thickness 18 mm, copper thickness 18 ⁇ m) with copper foil laminated to one side of a paper-based epoxy resin plate.
  • a coating solution having the following composition apply by electrodeposition (applied current: 100 mA), and then dry at 90 ° C for 10 minutes to obtain an alkali-soluble resin layer (thickness 3.2 ⁇ m). ).
  • coating solution having the composition shown in Table 3 coating was carried out by the electrodeposition method (applied voltage: 180 V), and then air-dried at 40 ° C for 2 minutes. 0 um).
  • Observation with a microscope of the image layer composed of the alkali-soluble resin layer and the heat-meltable fine particle layer revealed a high-resolution image with no missing image portions and no stain on non-image portions.
  • the copper-clad laminate on which the image layer was formed was treated with a commercially available ferric chloride solution (45 ° C, spray pressure: 3.0 kg / cm 2 ), and the portion not covered with the image layer was treated.
  • Drift film photoresist (Nippon Gohsei Chemical Co., Ltd.) as a photopolymer was thermocompression-bonded on the copper-clad laminate having the same specifications as in Examples 5 and 6. This photopoly Exposure was performed with the same semiconductor laser exposure apparatus as in Examples 1 and 2, but no photopolymerization reaction could be caused and no image could be obtained. Further, when a dry film photoresist was thermocompression-bonded on a copper-clad laminate and stored for 30 months in a bright room, the polymerization reaction proceeded and the photosensitive properties were deactivated.
  • a curtain coating method was applied to a commercially available unexposed negative PS plate (Fuji Photo Film, FNS), followed by air drying at 40 ° C for 2 minutes. A thermally fusible fine particle layer (thickness: 3.0 fim) was obtained.
  • a semiconductor laser exposure device (830 nm) melts and fixes the hot-melt fine particle layer corresponding to the image area, and then uses a commercially available negative-type PS plate developer (Fuji Photo Film, DN 3C).
  • the heat-meltable fine particle layer and the PS plate photosensitive layer in the non-image area were removed.
  • the plate surface was once subjected to gumming treatment and subjected to burning treatment in an oven heated to 200 ° C to obtain a lithographic printing plate. Observation of the plate surface with a microscope revealed that the image had high resolution without any missing image portions and poor elution in non-image portions. Offset printing was performed using this lithographic printing plate. As a result, good scumming property and printing durability were obtained, and good printed matter was obtained.
  • a semiconductor laser exposure device (830 nm) melts and fixes the heat-meltable fine particle layer corresponding to the image area, and then uses a commercially available negative-type PS plate developer (Fuji Photo Film, DN 3C).
  • the heat-meltable fine particle layer and the PS plate photosensitive layer in the non-image area were removed.
  • the plate surface was irradiated with ultraviolet light from a mercury lamp, the plate surface was once subjected to gumming treatment, and subjected to burning treatment in an oven heated to 200 ° C. to obtain a lithographic printing plate. Observation of the plate surface with a microscope revealed that the image had high resolution without any missing image areas and poor elution in non-image areas. Offset printing was performed using this lithographic printing plate. As a result, it was possible to obtain a printed matter that had good scumming properties and printing durability, and was good even with the 50,000th print.
  • Table 11 Composition Polyradiryl methacrylate (molecular weight 2,000,000) 5 Polyvinyl acetate emulsion (average particle size 0.2 ⁇ m) 2 5 Power black 5 Saturated hydrocarbon (IP-160; Idemitsu Petrochemical Co., Ltd.
  • a semiconductor laser exposure device (830 nm) fuses and fixes the heat-meltable fine particle layer corresponding to the image area, and then a commercially available positive PS plate developer (Fuji Photo Film, Using DP 4), the heat-fusible fine particle layer and the PS plate photosensitive layer in the non-image area were removed, and a gumming treatment was performed. Thereafter, a lithographic printing plate was obtained by performing a burning treatment in an oven heated to 200 ° C. Observation of the plate surface with a microscope revealed that the image had high resolution without any missing image portions and poor elution in non-image portions. Offset printing was performed using this lithographic printing plate. As a result, it was possible to obtain a printed matter having good scumming property and printing durability, and having a printability of 50,000 sheets.
  • a printing plate 4 1 4 with its surface facing upwards by means of a feed roller pair 43, 44 formed of nitrile butadiene rubber (NBR) having a hardness of 45 degrees (in this example, a positive PS plate) Is introduced into a gap formed by an electrode 41 made of SUS304 (JIS stainless steel) and a guide plate 42 made of polycarbonate.
  • NBR nitrile butadiene rubber
  • the liquid is fed from the collection tank 4 10 to the gap by the pump 4 12 from the recovery tank 4 10 to the liquid discharge portion 4 11 1 attached to the electrode 41, and is applied.
  • the voltage supply unit 4 1 3 connected to the electrode 1 and the phosphor bronze ground strip 47 and the SUS 304 pass-through guide 49 Are supplied with a voltage.
  • the polarity of the supplied voltage was set to + (plus) because the heat-fusible fine particles in the coating liquid had a positive charge, and a voltage of 180 V was applied.
  • the printing plate 4 14 is squeezed out of the excess coating liquid by the squeezing roll pairs 45, 46, and at the same time, the air nip 48, which is a gas blowing means connected to a high-pressure air source (not shown), is provided. Then, high-pressure air (pressure 2 kgZcm 2 ) is blown toward the gap formed by the printing plate 4 14 and the squeezing roll pairs 45, 46.
  • the printing plate 4 14 is conveyed while its back surface is adsorbed by the adsorbing / conveying means composed of the conveying belt 4 24 suspended on the four rotating shafts 4 2 3 and the suction box 4 22.
  • the suction box 4 2 2 two exhaust fans (not shown) with a maximum air flow of 500 1 / min are provided.
  • two drying fans (maximum static pressure 6 mm A q), which are means for accelerating the dispersion medium evaporation, are arranged. It is designed to air dry.
  • the blowing temperature of the drying fan was measured and found to be 20 ° C.
  • the printing plate 4 14 is conveyed to a buffer section comprising a conveying belt 4 31 suspended on two rotating shafts 4 30.
  • the printing plate 4 14 was taken out.
  • the PS plate treated as described above is melt-fixed with a semiconductor laser exposure apparatus (830 nm) to a hot-melt fine particle layer corresponding to the image area, and then a commercially available positive PS plate developer (Fuji Using a photographic film, DP4), the heat-meltable fine particle layer and the PS plate photosensitive layer in the non-image area were removed.
  • the lithographic printing plate was obtained by performing a gumming treatment on the plate surface and a burning treatment in an oven heated to 200 ° C. Observation of the plate surface with a microscope revealed that the image had high resolution without any missing image portions and poor elution in non-image portions. Offset printing was performed using this lithographic printing plate. As a result, it was possible to obtain a printed material that had good scumming resistance and printing durability from the start of printing, and was good for the 50,000th print.
  • a heat-meltable fine particle layer was formed in the same manner as in Example 7, except that a commercially available electrophotographic lithographic printing plate (ODP ND-300, manufactured by Mitsubishi Paper Mills) was used as the printing plate.
  • ODP ND-300 commercially available electrophotographic lithographic printing plate
  • the processed printing plate is melt-fixed with a semiconductor laser exposure device (830 nm) to a heat-fusible fine particle layer corresponding to the image area, and then an electrophotographic lithographic printing plate eluent (Mitsubishi Paper, Using ODP-DF), the fusible fine particle layer and the photosensitive layer in the non-image area were removed to obtain a lithographic printing plate.
  • Observation of the plate surface with a microscope revealed that the image had high resolution without any missing image portions and poor elution in non-image portions.
  • Offset printing was performed using this lithographic printing plate. As a result, it was possible to obtain a printed matter which had good soiling properties and printing durability from the start of
  • a copper plating process (Okuno Pharmaceutical Co., Ltd., 0PC process M) is applied to the surface of the laminated board including the inside of the through holes.
  • a copper plating layer having a thickness of 8 m was provided.
  • a hole-filling ink (SER-450W, manufactured by San-ei Chemical Co., Ltd.) was applied to the inside of the through-hole by a roll coating method, followed by heat curing. Filling ink on the copper plating layer other than inside the through holes was removed by buffing and washing.
  • the coating solution having the composition shown in Table 4 is applied by the curtain coating method, and the coating is dried at 90 ° C for 10 minutes. A layer (film thickness 4.5) was obtained. Furthermore, using a coating solution having the composition shown in Table 5, the composition was applied by curtain coating, and then air-dried at 40 ° C for 2 minutes to obtain a heat-meltable fine particle layer (film thickness: 1.5 / m). .
  • a semiconductor laser exposure apparatus (780 nm) melts and fixes the heat-meltable fine particle layer corresponding to the wiring section to form a fusion-fixed layer, and then sprays 5.0% sodium carbonate solution (liquid temperature of 35 ° C) ( 2.0 kg / cm 2 ) to remove the heat-fusible fine particle layer and the alkali-soluble resin layer in the non-wiring area, and form an etching resist layer consisting of the alkali-soluble resin layer, the fusion fixing layer, and the ink for filling the hole. Obtained. Observe this etching resist layer with a microscope. From the observation, it was a high-resolution wiring image with no missing wiring parts and no stain on non-image parts.
  • the etching resist layer After the etching resist layer is formed, it is treated with a ferric chloride solution (45 ° C, spray pressure: 3.0 kg / cm 2 ), and the copper plating layer and the copper that are not covered with the etching resist layer The layer was removed. Then, the substrate was treated with a 3.0% sodium hydroxide solution at 40 ° C. to remove the remaining etching resist layer, thereby obtaining a printed wiring board. Observation of the obtained printed wiring board with a microscope showed no defects such as disconnection. No defects such as pinholes were found inside the through holes. Storage test
  • the etching resist layer is formed in the same manner as above. As a result, a wiring image free from defects was obtained.
  • the coating solution having the composition shown in Table 12 was applied to a polyester film having a thickness of 15 m by the roll coating method, and then dried at 60 ° C for 20 minutes to obtain an alkali-soluble dry film (thickness 15). fim). After the formation of the through holes, an alkali-soluble dry film was thermocompression-bonded to the surface of the copper plating layer of the laminate, the polyester film was removed, and the plating conductive layer was covered with the dry film.
  • Table 1 Composition methacrylic acid Z-methacrylic acid n-butyl / acrinoleic acid n—
  • butyl copolymer (weight ratio: 3 / 3Z'4, weight average molecular weight
  • Lauryl copolymer (weight ratio 1/1 / 1'3, weight average molecular weight 15
  • a semiconductor laser exposure apparatus (780 nm) melts and fixes the heat-meltable fine particle layer corresponding to the wiring section to form a fusion-fixed layer, and then sprays 5.0% sodium carbonate solution (liquid temperature of 35 ° C) ( 2.0 kg / cm 2 ) to remove the heat-meltable fine particle layer and the soluble dry film in the non-wiring area to obtain an etching resist layer consisting of the soluble dry film and the fusion fixing layer.
  • the etching resist layer After the etching resist layer is formed, it is treated with a ferric chloride solution (45 ° C, spray pressure: 3.0 kg / cm 2 ). The copper layer was removed. Next, the printed wiring board is obtained by removing the remaining etching resist layer by treating it with a 3.0% hydroxylamine solution at 40 ° C. Was. Observation of the obtained printed wiring board with a microscope showed no defects such as disconnection. No defects such as pinholes were found inside the through holes. Storage test
  • the etching resist layer After forming the etching resist layer, it is treated with a ferric chloride solution (45 ° C, spray pressure: 3.0 kg / cm 2 ), and the copper plating layer and the copper that are not covered with the etching resist layer The layer was removed. Next, treatment with a 3.0% sodium hydroxide solution at 40 ° C. was performed to remove the remaining etching resist layer, thereby obtaining a printed wiring board. Observation of the obtained printed wiring board with a microscope showed no defects such as disconnection. No defects such as pinholes were found inside the through holes. Storage test
  • the etching resist layer is formed in the same manner as described above. As a result, no defect was found and a wiring image could be obtained.
  • the etching resist layer After the etching resist layer is formed, it is treated with a ferric chloride solution (45 ° C, spray pressure: 3.0 kg / cm 2 ), and the copper plating layer and the copper that are not covered with the etching resist layer The layer was removed. Then, the substrate was treated with a 3.0% sodium hydroxide solution at 40 ° C. to remove the remaining etching resist layer, thereby obtaining a printed wiring board. Observation of the obtained printed wiring board with a microscope showed no defects such as disconnection. No defects such as pinholes were found inside the through holes. Storage test
  • the laminated plate on which the soluble dry film coating and the heat-fusible fine particle layer were formed was stored for 4 months in a light room at 30 ° C, and then an etching resist layer was formed in the same manner as above. However, a defect-free wiring image could be obtained.
  • a double-sided copper-clad laminate with copper foil laminated on both sides of a glass-based epoxy resin plate (Mitsubishi Gas Chemical Co., Ltd., 200 x 300 x 0.8 mm, copper thickness 18 zm)
  • a copper plating treatment (Okuno Pharmaceutical Co., Ltd., 0PC process M) is applied, and the thickness of the laminated board surface including the inside of the through holes is increased.
  • An 8 m copper plating layer was provided.
  • the filling ink used in Example 12 was filled in the inside of the through-hole by a roll coating method, and was thermally cured. Filling ink on the copper-plated layer other than inside the through hole was removed by buffing and washing.
  • a semiconductor laser exposure apparatus (780 nm) melts and fixes the heat-meltable fine particle layer corresponding to the wiring section to form a fusion-fixed layer, and then sprays 5.0% sodium carbonate solution (liquid temperature of 35 ° C) ( 2.0 kg / cm 2 ) to remove the heat-fusible fine particle layer and the alkali-soluble resin layer in the non-wiring area, and form an etching resist layer consisting of the alkali-soluble resin layer, the fusion fixing layer, and the ink for filling the hole. Obtained. Observation of this etching resist layer with a microscope revealed that it was a high-resolution wiring image with no missing wiring parts and no stain on non-image parts.o
  • the etching resist layer After the etching resist layer is formed, it is treated with a ferric chloride solution (45 ° C, spray pressure: 3.0 kg / cm 2 ), and the copper plating layer and the copper that are not covered with the etching resist layer The layer was removed. Next, the substrate was treated with a 3.0% sodium hydroxide solution at 40 ° C. to remove the remaining etching resist layer, thereby obtaining a printed wiring board. Observation of the obtained printed wiring board with a microscope showed no defects such as disconnection. No defects such as pinholes were found inside the through holes. Storage test
  • the etching resist layer is formed in the same manner as described above. After forming, a wiring image without any defects could be obtained ⁇
  • This photopolymer was exposed to light using the same semiconductor laser exposure apparatus as in Examples 12 to 16 above, but no photopolymerization reaction could be caused. After the dry finolem photoresist was thermocompressed and stored in a light room at 30 ° C for 3 months, the polymer was inactivated.
  • the image forming material of the present invention has better storage stability than the conventional image forming material using a photopolymer. Further, in the image forming method, the lithographic printing plate making method, and the printed wiring board manufacturing method of the present invention, it is possible to easily form an image by a direct drawing method using a low-output laser, and to use a computer. It is also compatible with a flat plate, and has an excellent effect that an image having high resolution can be obtained easily and at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Materials For Photolithography (AREA)

Abstract

An image forming material and an image forming method which are capable of accommodating a direct laser drawing method, producing an image of a high resolution easily and performing an image forming operation easily in a bright room, lithographic printing plate manufacturing method and apparatus, a lithographic printing plate making method, and a printed wiring board manufacturing method are provided. Concretely speaking, an image forming material having a layer of thermally meltable fine particles on a base material, and a method of forming an image on a base material by melt-fixing the portion of a layer of the thermally meltable fine particles of the image forming material which corresponds to an image portion, and then removing the portion of the layer of thermally meltable fine paticles which corresponds to a non-image portion are provided. The layer of thermally meltable fine particles can be melt-fixed by a laser. The removing of the non-image portion of the layer of thermally meltable fine particles can be done more easily by providing a layer of an alkali-soluble resin between the base material and the layer of thermally meltable fine particles, and applying an alkali solution to this layer of an alkali-soluble resin.

Description

明 細 書 画像形成材料、 画像形成方法、 平版印刷版の製造方法および製造装置、 平版印刷版の製版方法、 およびプリント配線板の製造方法 技術分野  Description Image forming material, image forming method, lithographic printing plate manufacturing method and manufacturing apparatus, lithographic printing plate making method, and printed wiring board manufacturing method
本発明は、 高い解像性を有する画像を容易かつ安価に得ることが可能な画像形 成材料および画像形成方法に関する。 また、 本発明は、 該画像形成材料および画 像形成方法を利用した、 平版印刷版の製造方法および製造装置、 平版印刷版の製 版方法、 プリ ント配線板の製造方法に関する。  The present invention relates to an image forming material and an image forming method capable of easily and inexpensively obtaining an image having high resolution. Further, the present invention relates to a method and an apparatus for manufacturing a lithographic printing plate, a method for manufacturing a lithographic printing plate, and a method for manufacturing a printed wiring board using the image forming material and the image forming method.
背景技術 Background art
現在、 平版印刷版は表面を親水化処理したアルミニウム板、 亜鉛板、 紙等の基 材上に親油性のィンク受理層を設けることにより製造される力 \ P S版と呼ばれ るジァゾ化合物ゃフオ トポリマー等の感光材料を用いた平版印刷版が最も一般的 である。  Currently, lithographic printing plates are manufactured by providing a lipophilic ink-receiving layer on a substrate such as an aluminum plate, zinc plate, or paper whose surface has been hydrophilized. A lithographic printing plate using a photosensitive material such as polymer is most common.
電気製品内部に使用されているプリン卜配線板は、 絶縁性基板上に銅等の導電 性材料で回路が形成されている。 このようなプリ ント配線板の製造方法は、 予め 絶縁性基板上に導電層を張り合わせた積層板の導電層上に、 耐食性のエッチング レジスト層を設け、 露出している導電層をエッチング除去するサブトラクティブ 法力、、 絶縁性基板上に耐食性のめっきレジス卜層を設けた後、 露出している絶縁 性基板上に金属めつき処理等で導電層を形成するアディティブ法の二つに大別さ れる。 現在、 プリント配線板の製造方法においても、 エッチングレジスト層また はめつきレジスト層を形成する方法としては、 フォトポリマ一を用いた方法が一 般的である。  In a printed wiring board used inside an electric appliance, a circuit is formed of a conductive material such as copper on an insulating substrate. A method for manufacturing such a printed wiring board is to provide a corrosion-resistant etching resist layer on a conductive layer of a laminate in which a conductive layer is laminated on an insulating substrate in advance, and to etch away the exposed conductive layer by etching. Active method, and an additive method in which a corrosion-resistant plating resist layer is provided on an insulating substrate, and then a conductive layer is formed on the exposed insulating substrate by metal plating or the like. . At present, even in a method for manufacturing a printed wiring board, a method using a photopolymer is generally used as a method for forming an etching resist layer or an applied resist layer.
ジァゾ化合物やフォ トポリマ一によってインク受理層、 エッチングレジスト層 またはめつきレジスト層 (以降画像層という) を形成する方法においては、 まず 金属板、 紙、 積層板、 絶縁性基板等の基材上にジァゾ化合物ゃフォトポリマー等 の感光材料を塗布する。 次いで、 光を照射して感光材料に化学変化を生じさせて、 現像液に対する溶解性を変化させる。 感光材料は化学変化の種類によつて二つに 分類される。 光が照射された部分が重合、 硬化して、 現像液に対して不溶性にな るネガ型と、 逆に光が照射された部分の官能基が変化して、 現像液に対する溶解 性を有するようになるポジ型である。 何れの場合にも、 現像液による処理後に基 材上に残存する、 現像液に不溶の感光材料が画像層となる。 In the method of forming an ink receiving layer, an etching resist layer, or a plating resist layer (hereinafter referred to as an image layer) using a azo compound or a photopolymer, first, a substrate such as a metal plate, paper, a laminated plate, or an insulating substrate is formed on a substrate. Apply a photosensitive material such as a diazo compound or photopolymer. Then, the photosensitive material is irradiated with light to cause a chemical change, thereby changing the solubility in a developing solution. Photosensitive materials are divided into two types depending on the type of chemical change. being classified. A negative type in which the light-irradiated part is polymerized and cured to become insoluble in the developer, and conversely, the functional group in the light-irradiated part changes to have solubility in the developer. It is a positive type. In either case, the photosensitive material remaining on the substrate after processing with the developer and insoluble in the developer becomes the image layer.
上記のような感光材料を用いて画像層を形成する場合に、 露光方法が解像性を 決定する重要な因子の一つとなっている。 従来は、 露光用フィルムを作製し、 次 いで紫外光または白色光を使用した密着露光方法を行うのが主流であった。 しか し、 コンピュータの進歩に伴って、 コンピュータ情報からのディジタル信号を露 光装置へと送信 (コンピュータ 'ッゥ 'プレート) し、 レーザを用いて直接感光 材料を露光するレーザ直接描画方法が行われるようになつている。 このレーザ直 接描画方法は、 コストが安い、 速度が速い、 多品種少ロッ ト品での生産性が高い 等の利点がある。  When an image layer is formed using the above-described photosensitive material, the exposure method is one of the important factors that determine the resolution. Conventionally, the mainstream has been to produce a film for exposure and then to perform a contact exposure method using ultraviolet light or white light. However, with the advancement of computers, laser direct writing methods that transmit digital signals from computer information to an exposure device (computer 'edge' plate) and directly expose the photosensitive material using a laser are used. It is like that. This laser direct writing method has advantages such as low cost, high speed, and high productivity with many kinds and small lots.
このレーザ直接描画方法を行うためには、 感光材料の光学感度を高くしなけれ ばならない。 ジァゾ化合物やフォ トポリマーでは、 光化学反応を伴うために、 光 学感度は低く、 数〜数百 m J / c m 2 である。 そのため、 レーザ出力装置が高出 力でなければならず、 装置が大きくなったり、 コス卜が高くなるなどの問題があ つた。 In order to perform this laser direct writing method, the optical sensitivity of the photosensitive material must be increased. In Jiazo compound or follower Toporima, to accompany the photochemical reaction, optical science sensitivity is low, a few to several hundred m J / cm 2. Therefore, the laser output device must have a high output, and there have been problems such as an increase in the size of the device and an increase in cost.
また、 ジァゾ化合物やフォトポリマーの光化学反応は、 室内光や太陽光下でも 進行する。 また、 高温下でも反応性に変化が生じる。 さらに、 酸素が存在すると、 反応の阻害剤となる。 したがって、 上記感光材料は露光工程を行う前までの保存、 基材への塗布工程等を、 暗中もしくはセーフティライト下や、 低酸素濃度下で行 わなければならないという欠点があつた。  Photochemical reactions of diazo compounds and photopolymers also proceed under room light or sunlight. Also, reactivity changes even at high temperatures. In addition, the presence of oxygen is an inhibitor of the reaction. Therefore, the photosensitive material has a drawback that the preservation before the exposure step, the application step to the substrate, and the like must be performed in the dark or under a safety light or under a low oxygen concentration.
そこで、 このようなジァゾ化合物ゃフォトポリマーに起因する欠点を改善した 画像形成方法で、 微粒子を用いた方法が特公平 4一 6 1 7 8 9号公報、 特開平 9 - 1 7 1 2 4 9号公報に開示されている。 特公平 4— 6 1 7 8 9号公報では、 着 色剤と、 表面が親水性であり、 かつ内部が疎水性の粒子状樹脂とを含有する水性 分散塗料を支持基体上に塗布し、 上記粒子層の粒子形態を保持させたまま乾燥し て塗膜を形成し、 次いで画像に相当する部分の微粒子層を加熱して粒子形態を消 失せしめ、 着色剤と共に支持基体上に定着させ、 画像が形成されていない部分を アルカリ性水溶液で剝離する画像形成方法が開示されている。 In view of the above, an image forming method in which the defects caused by such a diazo compound / photopolymer are improved, and a method using fine particles is disclosed in Japanese Patent Publication No. Hei 4-171889, Japanese Patent Application Laid-open No. Hei 9-1717249. No. 6,086,045. In Japanese Patent Publication No. 4-617889, an aqueous dispersion paint containing a coloring agent and a particulate resin having a hydrophilic surface and a hydrophobic inside is applied to a supporting substrate, The coating is formed by drying while maintaining the particle morphology of the particle layer, and then the fine particle layer corresponding to the image is heated to lose the particle morphology, and is fixed together with the colorant on the supporting substrate, and the image is formed. Is not formed An image forming method of separating with an alkaline aqueous solution is disclosed.
また、 特開平 9一 1 7 1 2 4 9号公報には、 平版ベースの親水性表面上の、 親 水性結合剤中に分散された疎水性熱可塑性重合体粒子を含んでなる像形成層を像 通りに露光し、 次いで淡水または水性液体を用いて現像し、 さらに像形成された 像形成層を加熱する平版印刷版の製造方法が開示されている。  Japanese Patent Application Laid-Open No. 9-117129 / 49 discloses an image forming layer on a hydrophilic surface of a lithographic base, the image forming layer comprising hydrophobic thermoplastic polymer particles dispersed in a hydrophilic binder. A method for making a lithographic printing plate is disclosed in which imagewise exposure is performed, followed by development using fresh water or an aqueous liquid, and further heating the imaged image forming layer.
特公平 4一 6 1 7 8 9号公報記載の画像形成方法では、 表面がアルカリ性水溶 液に溶解する親水性であって、 かつ内部が疎水性の粒子状樹脂を使用しているの で、 加熱して微粒子層の粒子形態を消失せしめた部分においても、 内部の疎水性 部分が完全に表面に出現してこない場合があり、 アル力リ性水溶液によって剥離 除去されたり、 ピンホールが生じることがあり、 信頼性の高い画像を得られない 場合があった。  In the image forming method described in Japanese Patent Publication No. Hei 41-18989, heating is performed because a hydrophilic particulate resin whose surface is dissolved in an alkaline aqueous solution and a hydrophobic resin is used inside. Even in the part where the particle morphology of the fine particle layer has disappeared, the internal hydrophobic part may not completely appear on the surface, and it may be peeled off and pinholes may be generated by the aqueous solution In some cases, highly reliable images could not be obtained.
特開平 9一 1 7 1 4 2 9号公報記載の画像形成方法においても、 露光によって 親水性結合剤中の疎水性熱可塑性重合体微粒子が溶融して、 淡水または水性液体 に対して不溶性となるが、 不溶性を発現するためには、 多くの疎水性熱可塑性重 合体微粒子を含有していなければならない。 疎水性熱可塑性重合体微粒子の量が 多すぎると、 親水性結合剤の量が少なくなつて、 非画像部の不要な像形成層の除 去が不完全になるという問題があった。 また、 特公平 4一 6 1 7 8 9公報記載の 画像形成方法と同様に、 画像部が疎水性部分によつて完全に被覆されなレ、場合は、 ピンホール等が生じてしまう等の問題もあった。 特にベタ部 (大面積の画像部) において、 このような問題が発生しやすい。  In the image forming method described in Japanese Patent Application Laid-Open No. Hei 9-171714, the hydrophobic thermoplastic polymer particles in the hydrophilic binder are melted by exposure and become insoluble in fresh water or aqueous liquid. However, in order to exhibit insolubility, it must contain many hydrophobic thermoplastic polymer fine particles. If the amount of the hydrophobic thermoplastic polymer particles is too large, there is a problem that the amount of the hydrophilic binder is too small to completely remove the unnecessary image forming layer in the non-image area. In addition, similar to the image forming method described in Japanese Patent Publication No. Hei 4 6-1789, the problem that the image area is not completely covered by the hydrophobic part, in which case pinholes and the like are generated. There was also. In particular, such a problem is likely to occur in a solid portion (large-area image portion).
また、 微粒子を用いた画像形成方法では、 微粒子の溶融によって画像の解像性 が決定される。 特開平 9一 1 7 1 4 2 9号公報では、 親水性結合剤が微粒子層に 含有されているために、 微粒子層のみで画像層が形成される場合と異なって、 解 像性が低下するという欠点があつた。  In an image forming method using fine particles, the resolution of an image is determined by the melting of the fine particles. In Japanese Patent Application Laid-Open No. Hei 9-171,429, since the hydrophilic binder is contained in the fine particle layer, the resolution is reduced unlike the case where the image layer is formed only with the fine particle layer. There was a disadvantage.
さらに、 特公平 4— 6 1 7 8 9号公報および特開平 9 - 1 7 1 4 2 9号公報で は、 像形成層を行うための塗液は、 媒体として水を用いた水性分散液である。 塗 布後に媒体を蒸発させるには、 微粒子層が溶融しないように、 低温で作業を行わ なければならない。 し力、し、 水は低温では除去するのには、 非常に時間がかかる という欠点があった。 本発明の課題は、 平版印刷版やプリント配線板の製造技術において、 高い解像 性と信頼性を有する画像を容易かつ安価に得ることができ、 かつレーザ直接描画 方法に対応することができる画像形成材料および画像形成方法を提供することで ある。 また、 該画像形成材料および画像形成方法を利用した、 平版印刷版の製造 方法および製造装置、 平版印刷版の製版方法、 プリント配線板の製造方法を提供 するしと める Further, in Japanese Patent Publication No. 4-61789 and Japanese Patent Application Laid-Open No. Hei 9-171429, a coating liquid for forming an image forming layer is an aqueous dispersion using water as a medium. is there. In order for the medium to evaporate after application, work must be performed at low temperatures so that the particulate layer does not melt. The disadvantage was that it took a long time to remove water at low temperatures. An object of the present invention is to provide an image capable of easily and inexpensively obtaining an image having high resolution and reliability in a lithographic printing plate and printed wiring board manufacturing technology, and capable of responding to a laser direct drawing method. An object of the present invention is to provide a forming material and an image forming method. Further, it is intended to provide a method and an apparatus for manufacturing a lithographic printing plate, a method for making a lithographic printing plate, and a method for manufacturing a printed wiring board using the image forming material and the image forming method.
発明の開示 Disclosure of the invention
本発明者らは、 上記課題を解決するために鋭意検討した結果、 以下の発明を見 出した。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found the following invention.
(1) 基材上に、 熱溶融性微粒子層を設けてなる画像形成材料。  (1) An image-forming material comprising a heat-fusible fine particle layer provided on a substrate.
(2) 基材上に、 アルカリ可溶樹脂層と熱溶融性微粒子層とを順に有する画像 形成材料。  (2) An image forming material having an alkali-soluble resin layer and a heat-meltable fine particle layer in this order on a substrate.
(3) 基材上に、 熱溶融性微粒子層を設け、 画像とする部分の熱溶融性微粒子 層を加熱溶融させ、 基材表面上に定着させる画像形成方法。  (3) An image forming method in which a heat-meltable fine particle layer is provided on a base material, and the heat-meltable fine particle layer in a portion to be imaged is heated and melted and fixed on the base material surface.
(4) 基材上に、 アルカリ可溶樹脂層と熱溶融性微粒子層とを順に有する画像 形成材料の該熱溶融性微粒子層の画像部に相当する部分を溶融定着させた後、 非 画像部に相当する熱溶融性微粒子層およびアル力リ可溶樹脂層をアル力リ液によ つて除去することによって、 基材上に画像を形成する画像形成方法。  (4) On a base material, a portion corresponding to an image portion of the heat-fusible fine particle layer of an image forming material having an alkali-soluble resin layer and a heat-fusible fine particle layer in this order is fused and fixed, and then a non-image portion is formed. An image forming method for forming an image on a substrate by removing a hot-melt fine particle layer and a soluble resin layer corresponding to the above-mentioned method using a concentrated liquid.
(5) 前記熱溶融性微粒子層が光吸収剤を含有する上記 (1) 記載の画像形成 材料。  (5) The image forming material according to the above (1), wherein the heat-fusible fine particle layer contains a light absorbing agent.
( 6 ) アル力リ可溶樹脂層および熱溶融性微粒子層の少なくとも一つの層が光 吸収剤を含有する上記 (2) 記載の画像形成材料。  (6) The image forming material according to the above (2), wherein at least one of the resin layer and the heat-meltable fine particle layer contains a light absorber.
(7) 前記熱溶融性微粒子層が光吸収剤を含有する上記 (3) 記載の画像形成 方法。  (7) The image forming method according to the above (3), wherein the heat-fusible fine particle layer contains a light absorbing agent.
( 8 ) アル力リ可溶樹脂層および熱溶融性微粒子層の少なくとも一つの層が光 吸収剤を含有する上記 (4) 記載の画像形成方法。  (8) The image forming method according to the above (4), wherein at least one of the resin layer and the thermofusible fine particle layer contains a light absorber.
(9) アルカリ可溶樹脂層を電着法で形成する上記 (4) または (8) 記載の 画像形成方法。  (9) The image forming method according to (4) or (8), wherein the alkali-soluble resin layer is formed by an electrodeposition method.
(1 0) 熱溶融性微粒子層をレーザで溶融定着させる上記 (3) 、 (4) 、 (7) 、 (8) のいずれか記載の画像形成方法。 (10) The above-mentioned (3), (4), and The image forming method according to any one of (7) and (8).
(1 1) アルカリ可溶樹脂層を電着法で形成し、 かつ熱溶融性微粒子層をレ一 ザで溶融定着させる上記 (4) または (8) 記載の画像形成方法。  (11) The image forming method according to the above (4) or (8), wherein the alkali-soluble resin layer is formed by an electrodeposition method, and the heat-fusible fine particle layer is fused and fixed by a laser.
(1 2) 熱溶融性微粒子層を電着法で形成する上記 (3) 、 (4) 、 (7) 、 (8) のいずれか記載の画像形成方法。  (1 2) The image forming method according to any one of the above (3), (4), (7) and (8), wherein the heat-fusible fine particle layer is formed by an electrodeposition method.
(1 3) アルカリ可溶樹脂層を電着法で形成し、 熱溶融性微粒子層を電着法で 形成し、 かつ熱溶融性微粒子層をレーザで溶融定着させる上記 (4) または ( (13) The above (4) or (4) wherein the alkali-soluble resin layer is formed by an electrodeposition method, the heat-meltable fine particle layer is formed by an electrodeposition method, and the heat-meltable fine particle layer is fused and fixed by a laser.
8 ) 記載の画像形成方法。 8) The image forming method described in the above.
(1 4) 基材が印刷版用支持体である上記 ( 1 ) 、 ( 2 ) 、 ( 5 ) 、 ( 6 ) の いずれか記載の画像形成材料。  (14) The image forming material according to any one of the above (1), (2), (5) and (6), wherein the substrate is a support for a printing plate.
(1 5) 基材が印刷版用支持体である上記 (3) 、 (4) 、 (7) 、 (8) の 、ずれか記載の画像形成方法。  (15) The image forming method as described in (3), (4), (7) or (8) above, wherein the substrate is a printing plate support.
(1 6) 基材が印刷版用支持体であって、 アルカリ可溶樹脂層を電着法で形成 し、 かつ熱溶融性微粒子層をレーザで溶融定着させる上記 (4) または (8) 記 載の画像形成方法。  (16) The substrate according to the above (4) or (8), wherein the substrate is a printing plate support, wherein the alkali-soluble resin layer is formed by an electrodeposition method, and the heat-meltable fine particle layer is fused and fixed by a laser. Image forming method described above.
(1 7) 基材が印刷版用支持体であって、 アルカリ可溶樹脂層を電着法で形成 し、 熱溶融性微粒子層を電着法で形成し、 かつ熱溶融性微粒子層をレーザで溶融 定着させる上記 (4) または (8) 記載の画像形成方法。  (17) The substrate is a printing plate support, the alkali-soluble resin layer is formed by electrodeposition, the heat-meltable fine particle layer is formed by electrodeposition, and the heat-meltable fine particle layer is formed by laser. The image forming method according to the above (4) or (8), wherein the image is fused and fixed.
(1 8) 基材がプリン卜配線板製造用支持体である上記 ( 1 ) 、 (2) 、 (5) 、 (6) のいずれか画像形成材料。  (18) The image forming material according to any one of the above (1), (2), (5) and (6), wherein the substrate is a support for producing a printed wiring board.
(1 9) 基材がプリント配線板製造用支持体である上記 (3) 、 (4) 、 (7) 、 (8) のいずれか記載の画像形成方法。  (19) The image forming method according to any one of the above (3), (4), (7) and (8), wherein the substrate is a support for manufacturing a printed wiring board.
(20) 基材がプリント配線板製造用支持体であって、 アル力リ可溶樹脂層を 電着法で形成し、 かつ熱溶融性微粒子層をレーザで溶融定着させる (4) または (8) 記載の画像形成方法。  (20) The substrate is a support for the manufacture of printed wiring boards, the resin layer is formed by electrodeposition, and the layer of heat-meltable fine particles is fused and fixed by laser. (4) or (8) ).
(2 1) 基材がプリ ント配線板製造用支持体であって、 アルカリ可溶樹脂層を 電着法で形成し、 熱溶融性微粒子層を電着法で形成し、 かつ熱溶融性微粒子層を レーザで溶融定着する上記 (4) または (8) 記載の画像形成方法。  (21) The base material is a support for manufacturing a printed wiring board, the alkali-soluble resin layer is formed by an electrodeposition method, the heat-meltable fine particle layer is formed by an electrodeposition method, and the heat-meltable fine particles are formed. The image forming method according to the above (4) or (8), wherein the layer is fused and fixed by a laser.
(22) 画像露光前の感光性平版印刷版の感光層上に、 分散媒と熱溶融性微粒 子を含む塗液を塗布し、 該熱溶融性微粒子の軟化点以下の雰囲気温度で該分散媒 を蒸発させて、 該熱溶融性微粒子層を層状に形成させる平版印刷版の製造方法。 (22) On the photosensitive layer of the photosensitive lithographic printing plate before image exposure, A method for producing a lithographic printing plate, comprising: applying a coating liquid containing fine particles; evaporating the dispersion medium at an ambient temperature equal to or lower than the softening point of the heat-meltable fine particles to form the heat-meltable fine particle layer in a layered form.
(2 3) 前記塗液が、 高電気抵抗率の分散媒に分散させた荷電を有する熱溶融 性微粒子であつて、 電着法により画像露光前の感光性平版印刷版上に該熱溶融性 微粒子を塗布する上記 (2 2) 記載の平版印刷版の製造方法。  (23) The coating liquid is heat-fusible fine particles having a charge dispersed in a dispersion medium having a high electrical resistivity, and the heat-fusible fine particles are applied on a photosensitive lithographic printing plate before image exposure by an electrodeposition method. (22) The method for producing a lithographic printing plate as described in (22) above, wherein fine particles are applied.
(2 4) 分散媒と熱溶融性微粒子を含む塗液を塗布し、 該熱溶融性微粒子の軟 化点以下の雰囲気温度で該分散媒を蒸発させて、 該熱溶融性微粒子を層状に形成 させる装置であって、 ガイド板およびそれに対向して設置された電極、 前記ガイ ド板と電極とで形成される間隙に、 高電気抵抗率の分散媒に分散させた荷電を有 する熱溶融性微粒子含有塗液を供給する手段、 前記電極から電圧を平版印刷版に 向け印加する手段、 および前記電極の下流に位置し余剰の塗液を絞液する手段を 有する平版印刷版の製造装置。  (24) A coating liquid containing a dispersion medium and heat-meltable fine particles is applied, and the dispersion medium is evaporated at an ambient temperature equal to or lower than the softening point of the heat-meltable fine particles to form the heat-meltable fine particles in a layer. A heat-fusible material having a charge dispersed in a dispersion medium having a high electrical resistivity in a gap formed between the guide plate and the electrode disposed opposite the guide plate, and the guide plate and the electrode. A lithographic printing plate manufacturing apparatus, comprising: means for supplying a fine particle-containing coating liquid; means for applying a voltage from the electrode to the lithographic printing plate; and means for squeezing excess coating liquid downstream of the electrode.
(2 5) 前記余剰の塗液を絞液する手段が絞りロール対であって、 該絞りロー ル対と前記感光性平版印刷版の端部とで形成される空隙部に向けた気体吹き付け 手段を有する上記 (2 4) 記載の平版印刷版の製造装置。  (25) The means for squeezing the excess coating liquid is a squeezing roll pair, and means for blowing gas toward a gap formed between the squeezing roll pair and an end of the photosensitive lithographic printing plate. The lithographic printing plate manufacturing apparatus according to the above (24), comprising:
(2 6) 前記絞りロール対の下流に、 前記感光性平版印刷版の裏面を吸着して 搬送する手段を有する上記 (2 4) または (2 5) 記載の平版印刷版の製造装置。  (26) The apparatus for producing a lithographic printing plate as described in (24) or (25) above, further comprising means for adsorbing and transporting the back surface of the photosensitive lithographic printing plate downstream of the squeezing roll pair.
(2 7) 前記絞りロール対の下流に、 分散媒蒸発促進手段を有する上記 (2 4) または (2 5) のいずれか記載の平版印刷版の製造装置。  (27) The apparatus for producing a lithographic printing plate as described in any of (24) or (25) above, further comprising a dispersion medium evaporation promoting means downstream of the squeezing roll pair.
( 2 8 ) 前記絞りロール対の下流に、 前記感光性平版印刷版の裏面を吸着して 搬送する手段を有し、 かつ分散媒蒸発促進手段を有する上記 (2 4) または (2 5 ) 記載の平版印刷版の製造装置。  (28) The above (24) or (25) above, further comprising means for adsorbing and transporting the rear surface of the photosensitive lithographic printing plate downstream of the pair of squeezing rolls, and further comprising means for accelerating dispersion medium evaporation. Lithographic printing plate manufacturing equipment.
(2 9) 感光性平版印刷版の感光層上に熱溶融性微粒子を層状に設け、 画像と する部分の該熱溶融性微粒子層を加熱溶融させ前記感光性平版印刷版上に定着さ せ、 次いで非画像部を溶出除去する平版印刷版の製版方法。  (29) heat-fusible fine particles are provided in a layer on the photosensitive layer of the photosensitive lithographic printing plate, and the heat-fusible fine particle layer in a portion to be an image is heated and melted and fixed on the photosensitive lithographic printing plate; Next, a plate making method of a lithographic printing plate for eluting and removing a non-image portion.
(3 0) 前記熱溶融性微粒子層に光吸収剤を含有する上記 (2 9) 記載の平版 印刷版の製版方法。  (30) The method of making a lithographic printing plate as described in (29) above, wherein the heat-fusible fine particle layer contains a light absorbing agent.
(3 1 ) 前記光吸収剤が 6 0 0 nm以上の波長域に吸収極大を有し、 6 0 0 nm未満の波長では吸収が極大値の 1Z2である上記 (3 0) 記載の平版印刷 版の製版方法。 (3 1) The lithographic printing according to the above (30), wherein the light absorber has an absorption maximum in a wavelength region of 600 nm or more, and the absorption is a maximum value of 1Z2 at a wavelength of less than 600 nm. Plate making method.
(32) 前記感光性平版印刷版がネガ型であり、 非画像部除去後に版面に対し 紫外光を照射する上記 (29) 〜 (3 1) のいずれか記載の平版印刷版の製版方 法。  (32) The method of making a lithographic printing plate as described in any of (29) to (31) above, wherein the photosensitive lithographic printing plate is a negative type, and the plate surface is irradiated with ultraviolet light after removing a non-image portion.
(33) 前記感光性平版印刷版がポジ型であり、 前記熱溶融性微粒子層を設け る前に版面に対し紫外光を照射する上記 (29) 〜 (3 1) のいずれか記載の平 版印刷版の製版方法。  (33) The lithographic plate according to any one of the above (29) to (31), wherein the photosensitive lithographic printing plate is a positive type, and the plate surface is irradiated with ultraviolet light before providing the heat fusible fine particle layer. How to make a printing plate.
(34) 前記感光性平版印刷版の非画像部を溶出除去した後にバーニング処理 を行う上記 (29) 〜 (3 1) のいずれか記載の平版印刷版の製版方法。  (34) The method of making a lithographic printing plate as described in any one of (29) to (31) above, wherein a burning process is performed after a non-image portion of the photosensitive lithographic printing plate is eluted and removed.
(35) 前記感光性平版印刷版がネガ型であり、 非画像部除去後に版面に対し 紫外光を照射し、 かつ感光性平版印刷版の非画像部を溶出除去した後にバ一二ン グ処理を行う上記 (29) 〜 (3 1) のいずれか記載の平版印刷版の製版方法。  (35) The photosensitive lithographic printing plate is of a negative type, and the plate surface is irradiated with ultraviolet light after removing the non-image portion, and the non-image portion of the photosensitive lithographic printing plate is eluted and removed, followed by a burning treatment. The method of making a lithographic printing plate according to any one of the above (29) to (31).
(36) 前記感光性平版印刷版がポジ型であり、 前記熱溶融性微粒子層を設け る前に版面に対し紫外光を照射し、 かつ感光性平版印刷版の非画像部を溶出除去 した後にバーニング処理を行う上記 (29) 〜 (3 1) のいずれか記載の平版印 刷版の製版方法。  (36) The photosensitive lithographic printing plate is of a positive type, and the plate surface is irradiated with ultraviolet light before the hot-melt fine particle layer is provided, and after the non-image portion of the photosensitive lithographic printing plate is eluted and removed. The method of making a lithographic printing plate according to any one of the above (29) to (31), wherein the burning treatment is performed.
(37) 絶縁性基板の少なくとも片面に導電層を設けた積層板にスルーホール を開けた後、 スルーホール内部を含む積層板表面にめっき導電層を形成し、 次い で配線部に相当するエッチングレジスト層を設け、 該エッチングレジスト層で被 覆されていないめつき導電層および導電層をエッチング除去し、 場合に応じて残 存するエッチングレジスト層を除去するプリント配線板の製造方法において、 ス ルーホール内部を穴埋めィンキで充填した後、 めっき導電層上にアル力リ可溶樹 脂層と熱溶融性微粒子層をこの順に形成し、 続 、て配線部に相当する部分の熱溶 融性微粒子層を溶融定着させた後、 非配線部に相当する部分の熱溶融性微粒子層 とアル力リ可溶樹脂層を除去することによってエッチングレジスト層を形成する プリント配線板の製造方法。  (37) After opening a through hole in the laminated board provided with a conductive layer on at least one side of the insulating substrate, form a plated conductive layer on the surface of the laminated board including the inside of the through hole, and then perform etching corresponding to the wiring section A method for manufacturing a printed wiring board, comprising the steps of: providing a resist layer; etching away the attached conductive layer and the conductive layer that are not covered with the etching resist layer; and removing the remaining etching resist layer as the case may be. Is filled in with a filling pad, and then a layer of soluble resin and a layer of heat-meltable fine particles are formed in this order on the conductive layer of plating, and then the layer of heat-meltable fine particles corresponding to the wiring portion is formed. After fusing and fixing, an etching resist layer is formed by removing the heat-meltable fine particle layer and the resin layer soluble in the area corresponding to the non-wiring area Printed wiring The method of production.
(38) 絶縁性基板の少なくとも片面に導電層を設けた積層板にスルーホール を開けた後、 スルーホール内部を含む積層板表面にめっき導電層を形成し、 次い で配線部に相当するエッチングレジスト層を設け、 該エッチングレジスト層で被 覆されていないめつき導電層および導電層をエッチング除去し、 場合に応じて残 存するエッチングレジスト層を除去するプリント配線板の製造方法において、 了 ルカリ可溶性ドライフィルムでめつき導電層上を被覆した後、 該ァルカリ可溶性 ドライフィルム上に熱溶融性微粒子層を形成し、 続いて配線部に相当する部分の 熱溶融性微粒子層を溶融定着させた後、 非配線部に相当する部分の熱溶融性微粒 子層とアル力リ可溶性ドライフィルムを除去することによってエッチングレジス ト層を形成するプリント配線板の製造方法。 (38) After opening a through hole in the laminated board provided with a conductive layer on at least one side of the insulating substrate, form a plated conductive layer on the surface of the laminated board including the inside of the through hole, and then perform etching corresponding to the wiring section Providing a resist layer, and covering with the etching resist layer. In a method for manufacturing a printed wiring board, the uncovered plated conductive layer and the conductive layer are removed by etching, and the remaining etching resist layer is removed as the case may be, the plated conductive layer is coated with a soluble soluble dry film. Thereafter, a heat-fusible fine particle layer is formed on the alkali soluble dry film, and then the heat-fusible fine particle layer in a portion corresponding to the wiring portion is melt-fixed. A method for manufacturing a printed wiring board, wherein an etching resist layer is formed by removing a fine particle layer and a soluble dry film.
(3 9) アルカリ可溶樹脂層および熱溶融性微粒子層から選ばれる少なくとも 一つの層が光吸収剤を含有する上記 (3 7) 記載のプリント配線板の製造方法。  (39) The method for producing a printed wiring board according to the above (37), wherein at least one layer selected from an alkali-soluble resin layer and a heat-meltable fine particle layer contains a light absorbing agent.
( 4 0 ) アルカリ可溶性ドライフィルムおよび熱溶融性微粒子層から選ばれる 少なくとも一つの層が光吸収剤を含有する上記 (3 8) 記載のプリント配線板の 製造方法。  (40) The method for producing a printed wiring board according to the above (38), wherein at least one layer selected from an alkali-soluble dry film and a heat-meltable fine particle layer contains a light absorbing agent.
(4 1) アルカリ可溶樹脂層を電着法で形成する上記 (3 7) または (3 9) 記載のプリン卜配線板の製造方法。  (41) The method for producing a printed wiring board according to the above (37) or (39), wherein the alkali-soluble resin layer is formed by an electrodeposition method.
(4 2) 熱溶融性微粒子層をレーザで溶融定着させる上記 (3 7) 〜 (40) のいずれか記載のプリント配線板の製造方法。  (42) The method for producing a printed wiring board according to any one of the above (37) to (40), wherein the thermofusible fine particle layer is fused and fixed by a laser.
(4 3) アルカリ可溶樹脂層を電着法で形成し、 熱溶融性微粒子層をレーザで 溶融定着させる上記 (3 7) または (3 9) 記載のプリント配線板の製造方法。  (43) The method for producing a printed wiring board according to the above (37) or (39), wherein the alkali-soluble resin layer is formed by an electrodeposition method, and the heat-meltable fine particle layer is melted and fixed by a laser.
(4 4) 熱溶融性微粒子層を電着法で形成する上記 (3 7) 〜 (4 0) のいず れか記載のプリント配線板の製造方法。  (44) The method for producing a printed wiring board according to any one of the above (37) to (40), wherein the heat-fusible fine particle layer is formed by an electrodeposition method.
(4 5) アルカリ可溶樹脂層を電着法で形成し、 かつ熱溶融性微粒子層を電着 法で形成する上記 (3 7) または (3 9) 記載のプリント配線板の製造方法。  (45) The method for producing a printed wiring board according to the above (37) or (39), wherein the alkali-soluble resin layer is formed by an electrodeposition method, and the heat-fusible fine particle layer is formed by an electrodeposition method.
(4 6) 熱溶融性微粒子層を電着法で形成し、 かつ熱溶融性微粒子層をレーザ で溶融定着させる上記 (3 7:) 〜 (4 0) のいずれか記載のプリント配線板の製 造方法。  (46) The printed wiring board according to any one of (37) to (40), wherein the heat-meltable fine particle layer is formed by an electrodeposition method, and the heat-meltable fine particle layer is fused and fixed by a laser. Construction method.
(4 7) アルカリ可溶樹脂層を電着法で形成し、 また熱溶融性微粒子層を電着 法で形成し、 熱溶融性微粒子層をレーザで溶融定着させる上記 (3 7) または (47) The method described in (37) above, wherein the alkali-soluble resin layer is formed by an electrodeposition method, the heat-meltable fine particle layer is formed by an electrodeposition method, and the heat-meltable fine particle layer is fused and fixed by a laser.
(3 9) 記載のプリント配線板の製造方法。 (39) The method for producing a printed wiring board as described in (39).
図面の簡単な説明 図 1は、 本発明の画像形成材料の一例を表す概念図である。 BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a conceptual diagram illustrating an example of the image forming material of the present invention.
図 2は、 本発明の画像形成方法の一例を表す概念図である。  FIG. 2 is a conceptual diagram illustrating an example of the image forming method of the present invention.
図 3 A、 3 B及び 3 Cは、 本発明の画像形成材料の一例を表す概念図である。 図 4 A、 4 8及び4 (:は、 本発明の画像形成方法の一例を表す概念図である。 図 5は、 本発明の画像形成方法の一例を表す概念図である。  3A, 3B and 3C are conceptual diagrams showing an example of the image forming material of the present invention. 4A, 48 and 4 (: are conceptual diagrams illustrating an example of the image forming method of the present invention. FIG. 5 is a conceptual diagram illustrating an example of the image forming method of the present invention.
図 6は、 本発明の画像形成方法の一例を表す概念図である。  FIG. 6 is a conceptual diagram illustrating an example of the image forming method of the present invention.
図 7は、 本発明の画像形成方法の一例を表す概念図である。  FIG. 7 is a conceptual diagram illustrating an example of the image forming method of the present invention.
図 8 A、 8 B、 8じ及び8 0は、 本発明のプリント配線板の製造方法に係わる エッチングレジスト層を形成する方法を表す一概念図である。  8A, 8B, 8 and 80 are conceptual diagrams showing a method of forming an etching resist layer according to the method of manufacturing a printed wiring board of the present invention.
図 9 A、 9 B、 9 C及び 9 Dは、 本発明のプリント配線板の製造方法に係わる エッチングレジスト層を形成する方法を表す概念図である。  9A, 9B, 9C, and 9D are conceptual diagrams illustrating a method of forming an etching resist layer according to the method of manufacturing a printed wiring board of the present invention.
図 1 0は、 本発明の平版印刷版の製造装置の一例を示す側断面概念図である。 図 1 1 A、 1 1 B、 1 1 C、 1 1 D、 1 1 E及び 1 1 Fは、 サブストラクティ ブ法によるスルーホールを有するプリント配線板の製造方法の概略図である。 これらの図中、 各符号は以下のものを示す。  FIG. 10 is a schematic side sectional view showing an example of the lithographic printing plate manufacturing apparatus of the present invention. 11A, 11B, 11C, 11D, 11E, and 11F are schematic diagrams of a method of manufacturing a printed wiring board having through holes by a subtractive method. In these figures, each symbol indicates the following.
1 :熱溶融性微粒子層  1: Hot-melt fine particle layer
2 : アル力リ可溶樹脂層  2: Soluble resin layer
3 :溶融定着層  3: Fusing layer
4 : ァルカリ可溶性ドライフィルム  4: Alkali soluble dry film
5 :穴埋めィンキ  5: Filling the hole
1 0 :基材  10: Base material
1 1 :感光層  1 1: Photosensitive layer
1 :支持体  1: Support
1 3 :感光性平版印刷版  1 3: photosensitive lithographic printing plate
2 0 :積層板  20: Laminated plate
2 1 :絶縁性基板  2 1: Insulating substrate
2 2 :導電層  2 2: Conductive layer
2 3 : スル一ホール  2 3: Through Hole
2 4 :めつき導電層 P 2 4: Plated conductive layer P
1 0  Ten
2 5 : 2 5 a , 2 5 b エッチングレジスト層  25: 25a, 25b etching resist layer
発明を実施するための最良の態様 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の画像形成材料 (1 ) は、 基材上に熱溶融性微粒子層を設けてなる。 本 発明の画像形成方法 (3 ) は、 本発明の画像形成材料 (1 ) の画像とする部分の 熱溶融性微粒子層を加熱溶融させ、 基材表面上に定着させるものである。  The image-forming material (1) of the present invention comprises a heat-fusible fine particle layer provided on a substrate. In the image forming method (3) of the present invention, the portion of the image forming material (1) according to the present invention which is to be an image is heated and melted and fixed on the surface of the substrate.
本発明の画像形成方法 (3 ) では、 熱溶融性微粒子層に所望する画像に従って 該当部分に加熱を行うと、 熱溶融性微粒子層の微粒子が溶融して相互の結着がな されて膜構造の形成が行われ、 基材への接着性が格段に向上する。 このため、 こ の加熱定着の有無により基材表面との接着力に差異が生じることとなる。 例えば、 基材として印刷版用支持体を用い、 本発明の画像形成方法によって画像を形成し た本発明の画像形成材料を平版印刷機に装着して印刷を開始すると、 加熱され定 着されている溶融定着部分はィンキを受理し画像部となり、 加熱されていない部 分では熱溶融性微粒子層が基材表面との接着力が弱いため、 直ちに剝離、 除去さ れ、 基材の親水性表面が露出しインキ非受理 (水受理) の非画像部となり、 平版 印刷が可能となる。  In the image forming method (3) of the present invention, when the corresponding portion is heated in accordance with a desired image on the heat-meltable fine particle layer, the fine particles of the heat-meltable fine particle layer are melted and bonded to each other to form a film structure. Is formed, and the adhesiveness to the substrate is significantly improved. For this reason, the presence or absence of this heat fixing causes a difference in the adhesive strength to the substrate surface. For example, when a printing plate support is used as a base material and the image forming material of the present invention on which an image is formed by the image forming method of the present invention is mounted on a lithographic printing machine and printing is started, the material is heated and fixed. The melt-fixed part receives the ink and becomes an image area, and in the part that is not heated, the heat-fusible fine particle layer has a weak adhesion to the substrate surface, so it is immediately separated and removed, and the hydrophilic surface of the substrate Is exposed and becomes a non-image area of ink non-reception (water reception), and lithographic printing becomes possible.
本発明の画像形成材料 (1 ) および画像形成方法 (3 ) によれば、 所望する画 像に従って、 例えば感熱印字へッドゃレーザ露光等によって、 加熱定着すること で液体の現像剤やその装置類を用いることなく、 簡便に画像層を作製することが 可能となる。  According to the image-forming material (1) and the image-forming method (3) of the present invention, a liquid developer and its device are heated and fixed according to a desired image, for example, by thermal printing head-laser exposure. It is possible to easily produce an image layer without using any kind.
本発明の画像形成材料 (2 ) は、 基材上に、 アルカリ可溶樹脂層と熱溶融性微 粒子層とを順に有する。 本発明の画像形成方法 (4 ) では、 このような構造の画 像形成材料の画像部に相当する熱溶融性微粒子層を溶融定着させ、 相互およびァ ルカリ可溶樹脂層と結着させ、 膜構造を形成させる。 次いで非画像部に相当する 溶融定着されていない熱溶融性微粒子層とアル力リ可溶層をアル力リ液によって 除去することによって、 基材上に画像を形成する。  The image forming material (2) of the present invention has an alkali-soluble resin layer and a heat-meltable fine particle layer in this order on a substrate. In the image forming method (4) of the present invention, the heat-fusible fine particle layer corresponding to the image portion of the image forming material having such a structure is melt-fixed and bonded to each other and to the alkali-soluble resin layer. Allow the structure to form. Next, an image is formed on the substrate by removing the heat-fusible fine particle layer corresponding to the non-image portion and the layer that has not been melt-fixed and the soluble layer using an alkaline solution.
本発明の画像形成方法 (4 ) では、 熱溶融性微粒子層に所望する画像に従って 該当部分に加熱を行うと、 熱溶融性微粒子層の微粒子が溶融して相互の結着がな されて膜構造の形成が行われ、 この画像部はアル力リ液に対する耐性が発現する。 熱溶融性微粒子層の溶融定着が行われない非画像部では、 熱溶融性微粒子層が疎 な状態で存在するため、 アルカリ液が容易に浸透して、 下層のアルカリ可溶樹脂 層を溶解し、 熱溶融性微粒子と共に除去することが可能となる。 In the image forming method (4) of the present invention, when the relevant portion is heated in accordance with a desired image on the heat-meltable fine particle layer, the fine particles of the heat-meltable fine particle layer are fused and bonded to each other to form a film structure. Is formed, and the image portion develops resistance to the alkaline solution. In the non-image area where the heat-fusible fine particle layer is not fused and fixed, the heat-fusible fine particle layer In this state, the alkaline liquid easily permeates, dissolves the lower alkali-soluble resin layer, and can be removed together with the heat-meltable fine particles.
本発明の画像形成材料 (1 ) および (2 ) は、 酸素や太陽光、 室内光に対して 非常に安定である。 したがって、 明室や酸素下で保存が可能である。 また、 画像 形成方法 (3 ) および (4 ) も明室下で行うことができる。  The image forming materials (1) and (2) of the present invention are very stable against oxygen, sunlight and room light. Therefore, it can be stored in a bright room or under oxygen. Further, the image forming methods (3) and (4) can be performed in a bright room.
本発明の画像形成方法 (3 ) および (4 ) において、 画像部に相当する熱溶融 性微粒子層はレーザ露光によつて溶融定着することが可能であり、 非常に解像性 の高い画像を得ることができる。 したがって、 コンピュータ 'ッゥ 'プレートに 対応したレ一ザ直接描画方法を行うことができ、 高 、生産性を得ることができる。  In the image forming methods (3) and (4) of the present invention, the heat-meltable fine particle layer corresponding to the image area can be melt-fixed by laser exposure to obtain an image with extremely high resolution. be able to. Therefore, a laser direct drawing method corresponding to a computer 'head' plate can be performed, and high productivity can be obtained.
レーザ直接描画方法をより有利に実施するために、 本発明の画像形成材料 (1 ) および画像形成方法 (3 ) に係わる熱溶融性微粒子層に、 また本発明の画像形成 材料 (2 ) および画像形成方法 (4 ) に係わるアルカリ可溶樹脂層および熱溶融 性微粒子層の少なくとも一つの層に、 光吸収剤を含有させておくことで、 熱、 光 等の溶融定着のためにエネルギーを効率良く吸収することが可能となる。 したが つて、 例えばレーザによって溶融定着を行う場合には、 低出カレ一ザを使用する ことができ、 装置コストゃ作業コストを低く抑えることができる。  In order to carry out the laser direct writing method more advantageously, the image-forming material (1) and the heat-meltable fine particle layer according to the image-forming method (3) of the present invention, and the image-forming material (2) and the image of the present invention By including a light absorber in at least one of the alkali-soluble resin layer and the heat-meltable fine particle layer in the formation method (4), energy can be efficiently used for fusing and fixing heat and light. It becomes possible to absorb. Therefore, for example, when fusing and fixing with a laser, a low output laser can be used, and the equipment cost / operating cost can be reduced.
本発明の画像形成材料 (1 ) 、 (2 ) および画像形成方法 (3 ) 、 (4 ) は、 印刷分野やプリント配線板製造分野での利用が可能である。  The image forming materials (1) and (2) and the image forming methods (3) and (4) of the present invention can be used in the field of printing and in the field of manufacturing printed wiring boards.
本発明の平版印刷版の製造方法 (2 2 ) では、 感光性平版印刷版上に熱溶融性 微粒子層を形成させて平版印刷版を製造する。 該平版印刷版を用いた本発明の平 版印刷版の製版方法 (2 9 ) においては、 画像露光前の感光性平版印刷版表面に 設けられた熱溶融性微粒子層の画像部に相当する熱溶融性微粒子層を溶融定着さ せ、 相互およびアルカリ可溶樹脂層と結着させ、 膜構造を形成させる。 次いで非 画像部に相当する溶融定着されていない熱溶融性微粒子層とその下の感光性平版 印刷版の感光層を溶出除去することによって、 基材上に画像が形成される。  In the method (22) for producing a lithographic printing plate of the present invention, a lithographic printing plate is produced by forming a layer of heat-meltable fine particles on a photosensitive lithographic printing plate. In the method of making a lithographic printing plate of the present invention using the lithographic printing plate (29), the heat corresponding to the image portion of the heat-meltable fine particle layer provided on the surface of the photosensitive lithographic printing plate before image exposure is provided. The fusible fine particle layer is melt-fixed and bound to each other and the alkali-soluble resin layer to form a film structure. Next, an image is formed on the substrate by eluting and removing the non-fused hot-melt fine particle layer corresponding to the non-image portion and the photosensitive layer of the photosensitive lithographic printing plate therebelow.
本発明の平版印刷版の製造方法 (2 2 ) により、 市販の感光性平版印刷版 (P S版) に光吸収剤を含有する熱溶融性微粒子層を設ければ、 本発明の平版印刷版 の製版方法 (3 0 ) において、 レーザによって該熱溶融性微粒子層を溶融定着す ることが可能であり、 非常に解像性の高い画像を得ることができる。 したがって、 P T/ According to the method (22) for producing a lithographic printing plate of the present invention, a commercially available photosensitive lithographic printing plate (PS plate) is provided with a heat-fusible fine particle layer containing a light absorbing agent. In the plate making method (30), the heat-fusible fine particle layer can be melt-fixed by a laser, and an image with extremely high resolution can be obtained. Therefore, PT /
1 2  1 2
レーザに対して製版感度を有していない通常の P S版を用いてもコンピュータ · ッゥ ·プレー卜に対応することができる。 Even a normal PS plate having no plate-making sensitivity to a laser can be used for a computer / plate.
本発明の平版印刷版の製造方法 (2 2 ) においては、 熱溶融性微粒子の軟化点 以下の雰囲気温度で分散媒を蒸発させることで、 熱溶融性微粒子を溶融定着させ ることなく、 感光性平版印刷版表面上に層状に固定することができる。 そのため、 非画像部が溶融定着してカプリとなることが防止できる。  In the method (22) for producing a lithographic printing plate according to the present invention, the dispersion medium is evaporated at an ambient temperature equal to or lower than the softening point of the heat-meltable fine particles, so that the heat-meltable fine particles are not fused and fixed. It can be fixed in layers on the lithographic printing plate surface. For this reason, it is possible to prevent the non-image portion from fusing and fixing to become a capri.
本発明の平版印刷版の製造方法 (2 3 ) において、 本発明の平版印刷版の製造 方法 (2 2 ) に係わる塗液が、 高電気抵抗率の分散媒に分散させた荷電を有する 熱溶融性微粒子層であつて、 電着により画像露光前の感光性平版印刷版上に該熱 溶融性微粒子を塗布することで、 塗液中の熱溶融性微粒子層を選択的に版面に付 着させることができるので、 より効率良く熱溶融性微粒子層を形成することがで さる。  In the method (23) for producing a lithographic printing plate according to the present invention, the coating liquid according to the method (22) for producing a lithographic printing plate according to the present invention comprises a hot melt having a charge dispersed in a dispersion medium having a high electrical resistivity. The heat-fusible fine particles in the coating liquid by selectively applying the heat-fusible fine particles in the coating solution to the photosensitive lithographic printing plate before image exposure by electrodeposition. Therefore, the heat-meltable fine particle layer can be formed more efficiently.
本発明の平版印刷版の製造装置 (2 4 ) によれば、 平版印刷版の表面に効率良 く、 均一に熱溶融性微粒子層を層状に固定することができる。 また、 余剰の塗液 を絞液する手段としては、 例えばロール対によるものや平版印刷版の幅全面に対 して空気を吹き付けるエアナイフによるもの、 コロナ放電によるもの等が挙げら れる力 表面がゴムからなるロール対による絞液が効率良くかつ長期に渡って安 定に絞液できるので好ましい。 より好ましくは、 ゴム硬度 2 0〜 7 0度の範囲の 二トリルブタジエンゴム (N B R) を表面に有するロール対によるものである。 本発明の平版印刷版の製造装置 (2 5 ) において、 余剰の塗液を絞液する手段 が絞りロール対であって、 絞りロール対と感光性平版印刷版の端部とで形成され る空隙部に向けた気体吹き付け手段を有することで、 空隙部から漏出する塗液を 抑え、 版面に残存する分散媒の量が少なくなり、 蒸発に要する時間が短縮される。 本発明の平版印刷版の製造装置 (2 6 ) において、 絞りロール対の下流に感光 性平版印刷版の裏面を吸着して搬送する手段を有することで、 形成された熱溶融 性微粒子層に接触することなく次工程へ搬送することが可能である。 したがって、 搬送による熱溶融性微粒子層の破壊等をふせぐことができる。  According to the planographic printing plate manufacturing apparatus (24) of the present invention, the heat-fusible fine particle layer can be efficiently and uniformly fixed to the surface of the planographic printing plate in a layered manner. Means for squeezing excess coating liquid include, for example, a roll pair, an air knife that blows air over the entire width of a lithographic printing plate, and a corona discharge. The squeezed liquid by a roll pair consisting of is preferred because it can be squeezed efficiently and stably for a long period of time. More preferably, it is a roll pair having nitrile butadiene rubber (NBR) on the surface in a rubber hardness range of 20 to 70 degrees. In the lithographic printing plate manufacturing apparatus (25) of the present invention, the means for squeezing excess coating liquid is a squeezing roll pair, and a gap formed between the squeezing roll pair and an end of the photosensitive lithographic printing plate. By having the gas blowing means directed to the portion, the coating liquid leaking from the gap is suppressed, the amount of the dispersion medium remaining on the plate surface is reduced, and the time required for evaporation is reduced. The apparatus for manufacturing a lithographic printing plate of the present invention (26) has a means for adsorbing and transporting the back surface of the photosensitive lithographic printing plate downstream of the pair of squeezing rolls, so that the formed fusible fine particle layer is brought into contact with It is possible to carry to the next step without performing. Therefore, it is possible to prevent destruction of the heat-meltable fine particle layer due to transportation.
本発明の平版印刷版の製造装置 (2 7 ) において、 絞りロール対の下流に、 分 散媒蒸発促進手段を有することで、 熱溶融性微粒子層の形成と連続して、 分散媒 を蒸発させることができるため、 平版印刷版の製造に要する時間を短縮すること ができる。 In the lithographic printing plate manufacturing apparatus (27) of the present invention, a dispersion medium evaporation promoting means is provided downstream of the squeezing roll pair, so that the dispersion medium is continuously formed with the heat-meltable fine particle layer. Can be evaporated, so that the time required for producing a lithographic printing plate can be reduced.
本発明の平版印刷版の製版方法 (3 2 ) では、 本発明の平版印刷版の製版方法 ( 2 9 ) において、 感光性平版印刷版がネガ型であることを特徴としている。 ネ ガ型の感光性平版印刷版を用いる場合には、 非画像部除去後に版面に対して紫外 光を照射することで、 画像部が重合 ·硬化して強固となり、 耐刷能力をより向上 させることができる。  In the method (32) of making a lithographic printing plate of the present invention, the method of making a lithographic printing plate (29) of the present invention is characterized in that the photosensitive lithographic printing plate is a negative type. When a negative photosensitive lithographic printing plate is used, the image area is polymerized and hardened by irradiating the plate surface with ultraviolet light after removing the non-image area, and the printing durability is further improved. be able to.
また、 熱溶融性微粒子層に含有される光吸収剤が近赤外領域付近 (6 0 0 n m 〜1 2 0 0 n m) に吸収極大を有し、 6 0 0 n m未満の波長では吸収が極大値の 1 / 2である本発明の平版印刷版の製版方法 (3 1 ) では、 特に感光性平版印刷 版がネガ型である場合に、 紫外光をより効率よく画像部が吸収することが可能と なる。  In addition, the light absorbing agent contained in the heat-meltable fine particle layer has an absorption maximum near the near-infrared region (600 nm to 1200 nm), and has a maximum absorption at a wavelength less than 600 nm. In the plate making method (31) of the lithographic printing plate of the present invention, which has a value of 1/2, the image portion can more efficiently absorb ultraviolet light, especially when the photosensitive lithographic printing plate is a negative type. And
本発明の平版印刷版の製版方法 (3 3 ) では、 本発明の平版印刷版の製版方法 ( 2 9 ) において、 感光性平版印刷版がポジ型であることを特徴としている。 ポ ジ型の感光性平版印刷版を用いる場合には、 熱溶融性微粒子層を設ける前に版面 に対して紫外光を照射することで、 溶解性が向上するので熱溶融性微粒子層の加 熱定着後に非画像部を容易に溶出することができる。  In the method (33) of making a lithographic printing plate according to the present invention, in the method (29) of making a lithographic printing plate according to the present invention, the photosensitive lithographic printing plate is of a positive type. When using a photosensitive lithographic printing plate of the positive type, irradiating the plate surface with ultraviolet light before providing the heat-meltable fine particle layer improves the solubility, so that the heat-meltable fine particle layer is heated. The non-image area can be easily eluted after fixing.
本発明の平版印刷版の製版方法 (3 4 ) 〜 (3 6 ) では、 本発明の平版印刷版 の製版方法 (2 9 ) 〜 (3 1 ) のいずれかにおいて、 感光性平版印刷版の非画像 部を溶出除去した後にバーニング処理を行うことを特徴としている。 該バ一ニン グ処理によって、 感光性平版印刷版の画像部の結着樹脂が架橋し、 より強固な膜 が形成され、 耐刷能力等の印刷性能がより向上する。  In the method of making a lithographic printing plate according to the present invention (34) to (36), the method of making a lithographic printing plate according to any of (29) to (31) according to the present invention comprises the steps of: Burning is performed after elution and removal of the image part. The binding process crosslinks the binder resin in the image area of the photosensitive lithographic printing plate, forms a stronger film, and further improves printing performance such as printing durability.
本発明のプリント配線板の製造方法 ( 3 7 ) では、 エッチングレジス卜層を形 成するために用いられる熱溶融性微粒子層、 アルカリ可溶樹脂層の何れも、 酸素 や太陽光、 室内光に対して非常に安定である。 したがって、 明室下や酸素存在下 での保存が可能である。 また、 画像形成工程も明室下で行うことができる。 本発 明のプリント配線板の製造方法 (3 8 ) におけるアルカリ可溶性ドライフィルム および熱溶融性微粒子層も同様の性質を有する。  In the method (37) for producing a printed wiring board of the present invention, both the heat-meltable fine particle layer and the alkali-soluble resin layer used for forming the etching resist layer are exposed to oxygen, sunlight, and room light. It is very stable. Therefore, it can be stored in a bright room or in the presence of oxygen. Also, the image forming step can be performed in a bright room. The alkali-soluble dry film and the heat-meltable fine particle layer in the printed wiring board manufacturing method (38) of the present invention also have the same properties.
本発明のプリント配線板の製造方法 (3 7 ) において、 熱溶融性微粒子層もし くはアルカリ可溶樹脂層が光吸収剤を含有する。 また、 本発明のプリント配線板 の製造方法 (3 8) において、 熱溶融性微粒子層もしくはアルカリ可溶ドライフ イルムが光吸収剤を含有する。 このため、 配線部に相当する部分の熱溶融性微粒 子層を溶融定着させるための、 熱、 光等のエネルギーを効率良く吸収することが 可能となる。 したがって、 このエネルギーを提供する装置のコスト、 作業コスト 等を低く抑えることが可能である。 In the method (37) for producing a printed wiring board according to the present invention, the heat-fusible fine particle layer Alternatively, the alkali-soluble resin layer contains a light absorber. In the method (38) for producing a printed wiring board of the present invention, the heat-meltable fine particle layer or the alkali-soluble dry film contains a light absorber. Therefore, it becomes possible to efficiently absorb energy such as heat and light for fusing and fixing the heat-meltable fine particle layer in a portion corresponding to the wiring portion. Therefore, it is possible to reduce the cost, work cost, and the like of the device that provides this energy.
本発明のプリント酉己線板の製造方法 (4 2) において、 酉己線部に相当する部分 の熱溶融性微粒子層をレーザによって溶融定着することにより、 非常に高い解像 性を有するエッチングレジスト層を得ることができる。 また、 コンピュータ 'ッ ゥ ·プレートに対応したレーザ直接描画方法を行うことで、 高い生産性を得るこ とが可能となる。  In the method (42) for producing a printed roto-line board of the present invention, the portion of the heat-meltable fine particle layer corresponding to the roto-roof portion is fused and fixed by a laser to provide an etching resist having a very high resolution. Layers can be obtained. In addition, high productivity can be obtained by using a laser direct writing method compatible with computer boards.
本発明の画像形成方法 ( 9 ) 、 (1 1) 、 (1 3) 、 (1 6) 、 (1 7) 、 (2 0) 、 (2 1) およびプリント配線板の製造方法 (4 1) 、 (4 3) 、 (4 5) 、 (4 7) において、 アルカリ可溶樹脂層を形成する手段として電着法を用 いる。 電着法は、 自動車の塗装をはじめ、 一部のプリント配線板製造時のフォ ト ポリマーの塗布方法として使用されている。 電着法は、 被塗布基材への追従性が 良好で、 被塗布基材の形状と無関係にアル力リ可溶樹脂層の膜厚を均一に形成さ せることができる。 また、 ピンホール等の欠陥が非常に少ない。 本発明のプリン ト配線板の製造方法 (4 1) 、 (4 3) 、 (4 5) 、 (4 7) では、 特に、 めつ き導電層およびアルカリ可溶樹脂層の種類によっては、 両層間に化学的な結合を 生じる場合があり、 非常に接着性に優れたアル力リ可溶樹脂層を得ることが可能 となる。  Image forming method (9), (11), (13), (16), (17), (20), (21) of the present invention and a method of manufacturing a printed wiring board (41) , (43), (45) and (47), the electrodeposition method is used as a means for forming the alkali-soluble resin layer. The electrodeposition method is used as a method for applying a photopolymer in the manufacture of some printed wiring boards, such as painting automobiles. The electrodeposition method has good followability to the substrate to be coated, and can uniformly form the thickness of the soluble resin layer regardless of the shape of the substrate to be coated. Also, there are very few defects such as pinholes. In the production methods (41), (43), (45) and (47) of the printed wiring board of the present invention, in particular, depending on the types of the conductive conductive layer and the alkali-soluble resin layer, both methods are required. In some cases, chemical bonding may occur between the layers, and it is possible to obtain an Al-soluble resin layer having extremely excellent adhesion.
本発明の画像形成方法 (1 2) 、 (1 3) 、 (1 7) 、 (2 1) 、 本発明の平 版印刷版の製造方法 (2 3) 、 およびプリント配線板の製造方法 (44) 〜 (4 7 ) においては、 熱溶融性微粒子層を電着法を用いて形成するが、 上記と同様に 均一で欠陥の少ない薄膜を得ることが可能である。  The image forming method of the present invention (12), (13), (17), (21), the method of manufacturing a lithographic printing plate of the present invention (23), and the method of manufacturing a printed wiring board (44) In (4) to (47), the heat-meltable fine particle layer is formed by the electrodeposition method, but a uniform thin film with few defects can be obtained in the same manner as described above.
以下、 図面を使って、 本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明の画像形成材料 (1) の一例を表す概略図である。 本発明の画 像形成材料 (1 ) は、 基材 1 0上に熱溶融性微粒子層 1を有する構造となってい T FIG. 1 is a schematic view showing an example of the image forming material (1) of the present invention. The image forming material (1) of the present invention has a structure in which a heat fusible fine particle layer 1 is provided on a substrate 10. T
1 5  1 5
る。 You.
図 2は本発明の画像形成材料 (2 ) の一例を表す概略図である。 本発明の画像 形成材料 ( 2 ) は、 基材 1 0上にアル力リ可溶樹脂層 2と熱溶融性微粒子層 1を 順に有する構造となっている。  FIG. 2 is a schematic view showing an example of the image forming material (2) of the present invention. The image forming material (2) of the present invention has a structure in which a resin layer 2 and a thermofusible fine particle layer 1 are sequentially formed on a substrate 10.
図 3は本発明の画像形成方法 ( 3 ) の一例を表す概略図である。 本発明の画像 形成方法 (3 ) では、 まず、 基材 1 0上に熱溶融性微粒子層 1を設ける (図 3 A) 。 次いで、 画像部に相当する部分の熱溶融性微粒子層 1を溶融定着して溶 融定着層 3とする (図 3 B ) 。  FIG. 3 is a schematic view showing an example of the image forming method (3) of the present invention. In the image forming method (3) of the present invention, first, the heat fusible fine particle layer 1 is provided on the substrate 10 (FIG. 3A). Next, the portion of the heat-meltable fine particle layer 1 corresponding to the image area is melt-fixed to form a melt-fixing layer 3 (FIG. 3B).
図 4は、 本発明の画像形成方法 (4 ) の一例を表す概略図である。 本発明の画 像形成方法では、 まず基材 1 0上に、 アルカリ可溶樹脂層 2と熱溶融性微粒子層 1とを順に有する画像形成材料 (図 4 A) の画像部に相当する部分の熱溶融性微 粒子層 1を溶融定着して溶融定着層 3とする (図 4 B ) 。 次いで、 アルカリ液に よつて非画像部の熱溶融性微粒子層 1とアル力リ可溶樹脂層 2を除去する (図 4 C ) 。 溶融定着されていない非画像部の熱溶融性微粒子層 1は、 非常に疎な状態 であり、 アルカリ液が容易に浸透することができ、 下層のアルカリ可溶樹脂層 2 と共に除去することが可能である。 基材 1 0上に残存する溶融定着層 3およびァ ルカリ可溶樹脂層 2をもって画像となす (図 4 ) 。  FIG. 4 is a schematic diagram illustrating an example of the image forming method (4) of the present invention. In the image forming method of the present invention, first, a portion corresponding to an image portion of an image forming material (FIG. 4A) having an alkali-soluble resin layer 2 and a heat-fusible fine particle layer 1 on a substrate 10 in this order. The heat-fusible fine particle layer 1 is fused and fixed to form a fusion-fixed layer 3 (FIG. 4B). Next, the non-image portion of the heat-meltable fine particle layer 1 and the resin layer 2 are removed with an alkaline solution (FIG. 4C). The heat-fusible fine particle layer 1 in the non-image area, which is not fused and fixed, is in a very sparse state, so that the alkali liquid can easily penetrate and can be removed together with the underlying alkali-soluble resin layer 2 It is. An image is formed with the fusion fixing layer 3 and the alkali-soluble resin layer 2 remaining on the substrate 10 (FIG. 4).
本発明の画像形成方法 (3 ) によって得られる、 画像部に相当する溶融定着層 3と非画像部に相当する熱溶融性微粒子層 1とを表面に有する基材 1 0において、 熱溶融性微粒子層 1は、 溶融定着層 3と比較して、 疎な状態であり、 かつ基材 1 0に対する接着性が悪い。 したがって、 基材 1 0として印刷版用支持体を使用し て印刷版とし印刷を行った場合、 印刷の初段階で接着性の悪い熱溶融性微粒子層 1が除去されて、 基材 1 0の表面が露出することになる (図 3 C ) 。 こうして、 親水性表面を有する基材に、 親油性のインク受理層である溶融定着層 3が形成さ れた形態となり、 印刷が可能となる。  The base material 10 having a surface on which a fusion-fixing layer 3 corresponding to an image area and a heat-fusible fine particle layer 1 corresponding to a non-image area obtained by the image forming method (3) of the present invention, The layer 1 is in a sparse state and has poor adhesion to the substrate 10 as compared with the fusion-fixing layer 3. Therefore, when printing is performed using a printing plate support as the substrate 10 and printing is performed as a printing plate, the thermally fusible fine particle layer 1 having poor adhesion is removed at the initial stage of printing, and the substrate 10 The surface will be exposed (Figure 3C). In this manner, a form in which the fusion fixing layer 3 which is the lipophilic ink receiving layer is formed on the base material having the hydrophilic surface, and printing is possible.
図 5〜図 7は、 本発明に係わる平版印刷版の製版方法 (2 9 ) の一例を表す概 略図である。 まず、 感光性平版印刷版 (P S版) 1 3の感光層 1 1上に熱溶融性 微粒子層 1を設ける (図 5 ) 。 次いで、 画像部に相当する部分の熱溶融性微粒子 層 1を加熱することにより溶融定着して溶融定着層 3とする (図 6 ) 。 続いて、 感光性平版印刷版の感光層 1 1を溶出除去可能な処理液によって非画像部の熱溶 融性微粒子層 1と共に除去する (図 7 ) 。 溶融定着されていない非画像部の熱溶 融性微粒子層 1は、 非常に疎な状態であり、 処理液が容易に浸透することができ、 下層の感光性平版印刷版の感光層 1 1と共に除去することが可能である。 支持体 1 2上に残存する溶融定着層 3および感光層 1 1をもって画像となす (図 7 ) 。 図 1 1は、 サブトラクティブ法によるスルーホールを有するプリント酉己線板の 一般的な製造方法を表す概略図である。 スルーホールを有するプリント配線板を 製造する場合、 まず絶縁性基板 2 1の少なくとも片面に導電層 2 2を設けた積層 板 2 0 (図 1 1 A) にスルーホール 2 3を開けた後 (図 1 1 B ) 、 スルーホール 2 3内部を含む積層扳 2 0表面にめつき導電層 2 4を形成する (図 1 1 C ) 。 次 いで配線部に相当するエッチングレジスト層 2 5を設け (図 1 1 D ) 、 このエツ チングレジスト層 2 5で被覆されていないめっき導電層 2 4と導電層 2 2をエツ チング除去し (図 1 1 E ) 、 さらに場合に応じて残存するエッチングレジスト層 2 5を除去して (図 1 1 F ) 、 絶縁性基板上に導電層およびめつき導電層で配線 が形成されたプリント配線板が製造される。 5 to 7 are schematic views showing an example of the method (29) of making a lithographic printing plate according to the present invention. First, the heat-meltable fine particle layer 1 is provided on the photosensitive layer 11 of the photosensitive lithographic printing plate (PS plate) 13 (FIG. 5). Next, the heat-fusible fine particle layer 1 at the portion corresponding to the image area is melted and fixed by heating to form a melt-fixed layer 3 (FIG. 6). continue, The photosensitive layer 11 of the photosensitive lithographic printing plate is removed together with the heat-fusible fine particle layer 1 in the non-image area using a treatment solution capable of eluting and removing (FIG. 7). The heat-fusible fine particle layer 1 in the non-image area, which has not been fused and fixed, is in a very sparse state, so that the processing liquid can easily penetrate, and together with the lower photosensitive layer 11 of the photosensitive lithographic printing plate. It is possible to remove it. An image is formed with the fusion fixing layer 3 and the photosensitive layer 11 remaining on the support 12 (FIG. 7). FIG. 11 is a schematic diagram showing a general method of manufacturing a printed rookie board having through holes by a subtractive method. When manufacturing a printed wiring board having a through-hole, first, a through-hole 23 is formed in a laminated board 20 (FIG. 11A) provided with a conductive layer 22 on at least one surface of an insulating substrate 21 (see FIG. 11B), the conductive layer 24 is formed on the surface of the laminated layer 20 including the inside of the through hole 23 (FIG. 11C). Next, an etching resist layer 25 corresponding to the wiring portion is provided (FIG. 11D), and the plating conductive layer 24 and the conductive layer 22 not covered with the etching resist layer 25 are etched and removed (see FIG. 11D). 11E) and, if necessary, the remaining etching resist layer 25 is removed (FIG. 11F), and the printed wiring board on which the wiring is formed by the conductive layer and the plated conductive layer is formed on the insulating substrate. Manufactured.
図 8は、 本発明のプリント配線板の製造方法 (3 7 ) におけるエッチングレジ スト層を形成する方法を表す一概念図である。 めっき導電層 2 4を形成した後の 積層板 (図 1 1 C ) のスルーホール 2 3内部を穴埋めインキ 5で充填した後 (図 8 A) 、 めつき導電層 2 4上にアル力リ可溶樹脂層 2と熱溶融性微粒子層 1をこ の順に形成する (図 8 B ) 。 次いで、 配線部に相当する部分の熱溶融性微粒子層 1を溶融定着させて、 溶融定着層 3とする (図 8 C ) 。 続いて、 アル力リ液 によって非配線部の熱溶融性微粒子層 1とアル力リ可溶樹脂層 2を除去する (図 8 D ) 。 溶融定着されていない熱溶融性微粒子層 1は、 非常に疎な状態であり、 アル力リ液が容易に浸透することができ、 下層のアル力リ可溶樹脂層 2と共に除 去することが可能である。 残存する溶融定着層 3、 アルカリ可溶樹脂層 2、 穴埋 めインキ 5をもってエッチングレジス卜層 2 5 aとなす。  FIG. 8 is a conceptual diagram showing a method of forming an etching resist layer in the method (37) of manufacturing a printed wiring board of the present invention. After the inside of the through hole 23 of the laminated board (Fig. 11C) after the formation of the plated conductive layer 24 is filled with the filling ink 5 (Fig. 8A), it is possible to apply a force on the plated conductive layer 24. The molten resin layer 2 and the thermally fusible fine particle layer 1 are formed in this order (FIG. 8B). Next, the portion of the heat-fusible fine particle layer 1 corresponding to the wiring portion is melt-fixed to form a melt-fixing layer 3 (FIG. 8C). Subsequently, the hot-melt fine particle layer 1 and the non-wiring soluble resin layer 2 in the non-wiring portion are removed with an alkaline liquid (FIG. 8D). The heat-fusible fine particle layer 1 that has not been fused and fixed is in a very sparse state, so that the liquid can easily penetrate, and can be removed together with the lower layer of the soluble resin layer 2. It is possible. The remaining melt-fixing layer 3, alkali-soluble resin layer 2, and filling ink 5 are used as an etching resist layer 25a.
図 9は、 本発明のプリント配線板の製造方法 (3 8 ) におけるエッチングレジ スト層を形成する方法を表す一概念図である。 めっき導電層 2 4を形成した後の 積層板 (図 1 1 C ) に、 アルカリ可溶性ドライフィルム 4を張り合わせる (図 9 A) 。 次いで、 このアル力リ可溶性ドライフィルム 4上に熱溶融性微粒子層 1を 形成し (図 9 B ) 、 配線部に相当する部分の熱溶融性微粒子層 1を溶融定着させ て、 溶融定着層 3とする (図 9 C ) 。 続いて、 アルカリ液によって非配線部の熱 溶融性微粒子層 1とアル力リ可溶性ドライフィルム 4を除去する (図 9 D) 。 残 存する溶融定着層 3、 アルカリ可溶ドライフィルム 4をもってエッチングレジス ト層 2 5 bとなす。 FIG. 9 is a conceptual diagram showing a method of forming an etching resist layer in the method (38) of manufacturing a printed wiring board of the present invention. After the conductive layer 24 is formed, the alkali-soluble dry film 4 is attached to the laminate (Fig. 11C) (Fig. 9 A) Next, the heat-meltable fine particle layer 1 is formed on the soluble dry film 4 (FIG. 9B), and the heat-meltable fine particle layer 1 corresponding to the wiring portion is melt-fixed. (Fig. 9C). Subsequently, the heat-fusible fine particle layer 1 and the non-wiring soluble dry film 4 at the non-wiring portion are removed with an alkaline solution (FIG. 9D). The remaining resist layer 3 and the alkali-soluble dry film 4 are used as an etching resist layer 25b.
本発明の画像形成材料、 画像形成方法、 平版印刷版の製造方法および製造装置、 平版印刷版の製版方法、 およびプリント配線板の製造方法に係わる熱溶融性微粒 子層とは、 常温では微粒子状である熱溶融性微粒子を含有していて、 溶融定着す ることによって密なフィルム構造となる性質を有している。 このような熱溶融性 微粒子を形成する素材の例としては、 (メタ) ァクリル樹脂、 酢酸ビニル樹脂、 ポリエチレン樹脂、 ポリプロピレン樹脂、 ポリブタジエン樹脂、 塩化ビニル樹脂、 ビニルァセタール樹脂、 塩化ビニリデン樹脂、 スチレン樹脂、 ポリエステル樹脂、 ポリアミ ド樹脂、 フヱノール樹脂、 キシレン樹脂、 アルキッ ド樹脂、 ゼラチン、 セルロース、 ワックス、 蠟等を挙げることができる。  The heat-fusible fine particle layer according to the image forming material, the image forming method, the lithographic printing plate manufacturing method and manufacturing apparatus, the lithographic printing plate plate making method, and the printed wiring board manufacturing method of the present invention is a fine particle layer at normal temperature. It has the property of forming a dense film structure by fusing and fixing. Examples of the material forming such heat-fusible fine particles include (meth) acrylic resin, vinyl acetate resin, polyethylene resin, polypropylene resin, polybutadiene resin, vinyl chloride resin, vinyl acetal resin, vinylidene chloride resin, styrene resin, and polyester. Examples include resin, polyamide resin, phenol resin, xylene resin, alkyd resin, gelatin, cellulose, wax, and the like.
本発明の画像形成材料、 画像形成方法、 平版印刷版の製造方法および製造装置、 平版印刷版の製版方法、 およびプリント配線板の製造方法に係わる熱溶融性微粒 子層の形成方法としては、 少なくとも熱溶融性微粒子を適当な分散媒に分散せし めて、 浸漬法、 スピンコート法、 バーコート法、 ホエラーコート法、 ロールコ一 ト法、 スプレーコート法、 力一テンコート法、 エアナイフコート法、 ブレードコ ート法、 電着法等の塗布方法を用いて形成することができる。 この中で、 電着法 は、 基材、 アルカリ可溶樹脂層、 感光性平版印刷版、 アルカリ可溶性ドライフィ ルム等への追従性、 接着性が良好で、 ピンホール等の欠陥が非常に少なく、 また 熱溶融性微粒子が均一に付着した薄膜を得ることができるので、 最も有利に用い ることができる。 また、 熱溶融性微粒子分散液の液濃度が低濃度であっても、 効 率良く熱溶融性微粒子層を形成することができる。  The image forming material, the image forming method, the lithographic printing plate manufacturing method and manufacturing apparatus of the present invention, the lithographic printing plate plate making method, and the method for forming a heat-fusible fine particle layer according to the method for manufacturing a printed wiring board include at least: The hot-melt fine particles are dispersed in an appropriate dispersion medium, and are dipped, spin-coated, bar-coated, white-coated, roll-coated, spray-coated, force-coated, air-knife-coated, It can be formed by using a coating method such as a blade coating method and an electrodeposition method. Among them, the electrodeposition method has good adherence to base materials, alkali-soluble resin layers, photosensitive lithographic printing plates, alkali-soluble dry films, etc., good adhesion, and very few defects such as pinholes. Further, since a thin film to which the heat-fusible fine particles are uniformly attached can be obtained, it can be used most advantageously. Further, even when the concentration of the heat-meltable fine particle dispersion is low, the heat-meltable fine particle layer can be efficiently formed.
本発明の画像形成材料、 画像形成方法、 平版印刷版の製造方法および製造装置、 平版印刷版の製版方法、 およびプリント配線板の製造方法に係わる熱溶融性微粒 子層の形成方法において、 分散媒としては、 熱溶融性微粒子を溶解しない液状の ものであれば良く、 水、 直鎖状、 分枝状もしくは環状の炭化水素やそれらのハロ ゲン置換体、 シリコーンオイル類等が挙げられる。 電着法を用いる場合には、 高 電気抵抗率のものが良く、 さらに低誘電率であることが好ましい。 電着法で用い ることができる分散媒としては、 例えば、 脂肪族系炭化水素を挙げることができ る。 熱溶融性微粒子層を形成した後に、 分散媒を迅速に除去せしめるためには、 低留分の脂肪族系炭化水素を用いることがより好ましい。 市販例としては、 シェ ルゾル 7 1 (シヱル石油製) 、 ァイソパー G、 ァイソパー Hおよびァイソパー L (ェクソン化学製) 、 I Pソルベント I P _ 1 6 2 0 (出光石油製) が挙げられ る。 また、 安全性や環境を考慮すると、 蒸気圧の低い炭化水素系の石油溶媒や高 分子量化した炭化水素などを用いることもできる。 The image forming material, the image forming method, the lithographic printing plate manufacturing method and manufacturing apparatus, the lithographic printing plate plate making method, and the method for forming a heat-fusible fine particle layer according to the method of manufacturing a printed wiring board according to the present invention include: As a liquid that does not dissolve Water, linear, branched or cyclic hydrocarbons, their halogen-substituted products, silicone oils, and the like. When the electrodeposition method is used, a material having a high electric resistivity is preferable, and a material having a low dielectric constant is preferable. Examples of the dispersion medium that can be used in the electrodeposition method include aliphatic hydrocarbons. In order to quickly remove the dispersion medium after the formation of the heat-fusible fine particle layer, it is more preferable to use a low-fraction aliphatic hydrocarbon. Examples of commercially available products include Shellsol 71 (manufactured by Shell Petroleum), Biopar G, Biopar H and Biopar L (manufactured by Exxon Chemical), and IP Solvent IP_1620 (manufactured by Idemitsu Petroleum). Considering safety and the environment, hydrocarbon-based petroleum solvents having a low vapor pressure and hydrocarbons having a high molecular weight can be used.
本発明の画像形成材料、 画像形成方法、 平版印刷版の製造方法および製造装置、 平版印刷版の製版方法、 およびプリント配線板の製造方法に係わる熱溶融性微粒 子層を電着法で形成する場合、 熱溶融性微粒子層に荷電を与えておくために、 熱 溶融性微粒子層分散液に電荷制御剤を含有させる。 電荷制御剤としては、 例えば ナフテン酸、 ォクテン酸、 ォレイン酸等の脂肪酸の金属塩、 スルホコハク酸エス テル類の金属塩、 油溶性スルホン酸金属塩、 リン酸エステル金属塩、 芳香族カル ボン酸またはスルホン酸の金属塩、 イオン製または非イオン性界面活性剤、 高分 子型界面活性剤、 四級アンモニゥム塩、 有機ホウ酸塩類、 親油性および親水性を 有するブロックまたはグラフト重合体、 レシチン等を挙げることができる。  The heat-meltable fine particle layer according to the image forming material, the image forming method, the lithographic printing plate manufacturing method and manufacturing apparatus, the lithographic printing plate making method, and the printed wiring board manufacturing method of the present invention is formed by an electrodeposition method. In this case, a charge control agent is contained in the heat-fusible fine particle layer dispersion in order to keep the heat-fusible fine particle layer charged. Examples of the charge control agent include metal salts of fatty acids such as naphthenic acid, octenoic acid, and oleic acid, metal salts of sulfosuccinate esters, metal salts of oil-soluble sulfonic acids, metal salts of phosphoric acid esters, and aromatic carboxylic acids. Metal salts of sulfonic acids, ionic or nonionic surfactants, polymeric surfactants, quaternary ammonium salts, organic borates, lipophilic and hydrophilic block or graft polymers, lecithin, etc. Can be mentioned.
本発明の画像形成材料、 画像形成方法、 平版印刷版の製造方法および製造装置、 平版印刷版の製版方法、 およびプリント配線板の製造方法に係わる熱溶融性微粒 子層を電着法で形成する場合、 市販の電子写真平版印刷版用のトナー (湿式現像 剤) を用いることができる。 このトナーは、 上述の熱溶融性微粒子層、 分散媒、 電荷制御剤、 分散剤、 分散安定剤等が予め調製されており、 簡便に用いることが できる。  The heat-meltable fine particle layer according to the image forming material, the image forming method, the lithographic printing plate manufacturing method and manufacturing apparatus, the lithographic printing plate making method, and the printed wiring board manufacturing method of the present invention is formed by an electrodeposition method. In such a case, a commercially available toner (wet developer) for an electrophotographic lithographic printing plate can be used. In this toner, the above-mentioned heat-meltable fine particle layer, dispersion medium, charge control agent, dispersant, dispersion stabilizer and the like are prepared in advance and can be used easily.
本発明の画像形成材料、 画像形成方法、 平版印刷版の製造方法および製造装置、 平版印刷版の製版方法、 およびプリント配線板の製造方法に係わる熱溶融性微粒 子層の形成方法において、 熱溶融性微粒子を分散媒に分散するには、 アジテ一タ ―、 ボールミル、 ホモジナイザー等の機械式や超音波式の分散機もしくは撹拌機 を用いることができる。 このとき、 界面活性剤や分散媒可溶樹脂等の分散安定剤、 分散剤を使用することができる。 分散 (安定) 剤として分散媒可溶樹脂を用いる 場合、 熱溶融性微粒子層内に該分散媒可溶樹脂が含有されることになる。 分散媒 可溶樹脂の含有量が多くなると、 該樹脂が結着剤として作用し、 画像の解像性を 低下させることがある。 したがって、 該分散媒可溶樹脂は、 熱溶融性微粒子に対 して、 0 . 1〜3 0重量%であることが好ましい。 また、 アルカリ液によって非 画像部を除去する工程を有する本発明の画像形成方法 (4 ) 、 本発明の平版印刷 版の製版方法 (2 9 ) 、 プリント配線板の製造方法 (3 7 ) および (3 8 ) にお いては、 熱溶融性微粒子層の耐アルカリ性を低下させないために、 分散媒可溶樹 脂は耐アルカリ性、 より好ましくは疎水性であることが好ましい。 In the method for forming a heat-meltable fine particle layer according to the image forming material, the image forming method, the lithographic printing plate manufacturing method and the manufacturing apparatus, the lithographic printing plate making method, and the printed wiring board manufacturing method of the present invention, To disperse the conductive fine particles in the dispersion medium, use a mechanical or ultrasonic disperser or stirrer such as an agitator, ball mill, homogenizer, etc. Can be used. At this time, a dispersion stabilizer and a dispersant such as a surfactant and a resin soluble in a dispersion medium can be used. When a dispersing medium-soluble resin is used as the dispersing (stabilizing) agent, the dispersing medium-soluble resin is contained in the heat-meltable fine particle layer. When the content of the dispersing medium-soluble resin is increased, the resin acts as a binder and may reduce image resolution. Therefore, the content of the dispersing medium-soluble resin is preferably 0.1 to 30% by weight based on the weight of the heat-meltable fine particles. Further, the image forming method (4) of the present invention having a step of removing a non-image portion with an alkaline solution, the plate making method of a lithographic printing plate of the present invention (29), the method of manufacturing a printed wiring board (37) and (37) In 38), the resin soluble in a dispersion medium is preferably alkali-resistant, more preferably hydrophobic, in order not to lower the alkali resistance of the heat-meltable fine particle layer.
本発明の画像形成材料、 画像形成方法、 平版印刷版の製造方法および製造装置、 平版印刷版の製版方法、 およびプリント配線板の製造方法に係わる熱溶融性微粒 子層は、 上述の塗布方法を用いて形成した後、 熱溶融性微粒子層の軟化点以下の 雰囲気温度範囲で乾燥させ、 分散媒を蒸発除去する。 熱溶融性微粒子の軟化点は、 加熱により皮膜を形成する温度であり、 その数値は熱溶融性微粒子分散液を封緘 し、 徐々に加熱したときに、 熱溶融性微粒子が溶融して皮膜となった温度を求め るといつた簡単な実験で得ることができる。  The heat-meltable fine particle layer according to the image forming material, the image forming method, the lithographic printing plate manufacturing method and the manufacturing apparatus, the lithographic printing plate making method, and the printed wiring board manufacturing method of the present invention is obtained by applying the above-described coating method. Then, the dispersion medium is dried in an atmosphere temperature range equal to or lower than the softening point of the heat-meltable fine particle layer, and the dispersion medium is removed by evaporation. The softening point of the heat-meltable fine particles is the temperature at which a film is formed by heating, and the numerical value is that when the heat-meltable fine particle dispersion is sealed and gradually heated, the heat-meltable fine particles melt to form a film. The temperature can be obtained by a simple experiment.
本発明の画像形成材料 (2 ) 、 画像形成方法 (4 ) および本発明のプリント配 線板の製造方法 (3 7 ) に係わるアルカリ可溶樹脂層に使用することができるァ ルカリ可溶樹脂としては、 アルカリ可溶性を発現するために、 カルボン酸基、 力 ルポキシアミ ド基、 スルホン酸基、 スルホンアミ ド基、 スルホンイミ ド基、 ホス ホン酸基等のァニォン性基を有する単量体を少なくとも単量体成分として含有す る。 その他に、 アルカリ可溶性、 膜強度、 熱溶融温度等を制御するために種々の 単量体を共重合させても良い。 また、 2種以上のアルカリ可溶樹脂を混合しても 良い。  The alkali-soluble resin that can be used in the alkali-soluble resin layer according to the image forming material (2), the image forming method (4), and the method for manufacturing a printed wiring board (37) of the present invention. In order to express alkali solubility, at least a monomer having an anionic group such as a carboxylic acid group, a sulfoxyamide group, a sulfonic acid group, a sulfonamide group, a sulfonimide group, a phosphonic acid group, etc. Contains as an ingredient. In addition, various monomers may be copolymerized to control alkali solubility, film strength, heat melting temperature, and the like. Further, two or more kinds of alkali-soluble resins may be mixed.
本発明の画像形成材料 (2 ) 、 画像形成方法 (4 ) および本発明のプリント配 線板の製造方法 (3 7 ) に係わるアルカリ可溶樹脂層は、 少なくともアルカリ可 溶樹脂を適当な媒体に分散または溶解して、 浸漬法、 スピンコート法、 バーコ一 ト法、 ロールコート法、 スプレーコート法、 カーテンコート法、 エアナイフコ一 ト法、 ブレードコート法、 電着法等の塗布方法を用いて形成することができる。 特に、 電着法は、 被塗布基材への追従性、 接着性が良好で、 ピンホール等の欠陥 が非常に少ない、 良好な薄膜を得ることが可能であるので、 優位に用いることが できる。 The alkali-soluble resin layer according to the image-forming material (2), the image-forming method (4) and the method for manufacturing a printed wiring board (37) of the present invention comprises at least an alkali-soluble resin in an appropriate medium. Disperse or dissolve, dipping, spin coating, bar coating, roll coating, spray coating, curtain coating, air knife coating It can be formed by using a coating method such as a coating method, a blade coating method, and an electrodeposition method. In particular, the electrodeposition method can be advantageously used because it has good followability and adhesion to a substrate to be coated, has very few defects such as pinholes, and can provide a good thin film. .
本発明のプリント配線板の製造方法 (38) に係わるアル力リ可溶性ドライフ イルムの主成分は、 アルカリ可溶樹脂である。 該アルカリ可溶樹脂は、 カルボン 酸基、 カルボキシアミ ド基、 スルホン酸基、 スルホンアミ ド基、 スルホンイミ ド 基、 ホスホン酸基等のァニオン性基を有する単量体を少なくとも一つの単量体成 分として含有する。 その他に、 アルカリ可溶性、 膜強度、 密着性、 軟化温度、 ガ ラス転移点等を制御するために種々の単量体を共重合させても良い。 また、 2種 以上のアル力リ可溶樹脂を混合して用いても良い。  The main component of the Alkali soluble soluble film according to the method (38) for producing a printed wiring board of the present invention is an alkali-soluble resin. The alkali-soluble resin includes at least one monomer component having a monomer having an anionic group such as a carboxylic acid group, a carboxyamide group, a sulfonic acid group, a sulfonamide group, a sulfonimide group, and a phosphonic acid group. Contained as In addition, various monomers may be copolymerized to control alkali solubility, film strength, adhesion, softening temperature, glass transition point, and the like. Also, two or more kinds of soluble resins may be mixed and used.
本発明のプリント配線板の製造方法 (38) に係わるアルカリ可溶性ドライフ イルムは、 一般的には上記のアル力リ可溶樹脂を媒体に溶解せしめて基体上に塗 布して形成する。 基体としては、 ポリテトラフルォロエチレン、 ポリエチレンテ レフ夕レート、 ァラミ ド、 カプトン、 ポリメチルペンテン、 ポリエチレン、 ポリ プロピレン、 ポリ塩化ビニル等のフィルムを使用することができる。  The alkali-soluble dry film according to the method (38) for producing a printed wiring board of the present invention is generally formed by dissolving the above-mentioned alkali-soluble resin in a medium and coating it on a substrate. As the substrate, films of polytetrafluoroethylene, polyethylene terephthalate, alamide, Kapton, polymethylpentene, polyethylene, polypropylene, polyvinyl chloride, etc. can be used.
本発明の画像形成方法、 平版印刷版の製版方法、 プリント配線板の製造方法に おいて、 熱溶融性微粒子層の画像部を溶融定着させる方法としては、 熱定着、 光 定着、 圧力定着、 溶剤定着等の方法がある。 生産性を上げるためにコンピュータ · ッゥ 'プレートによる直接描画法を行うためには、 レーザを用いた溶融定着が 望ましい。 レーザとしては炭酸ガスレーザ、 窒素レーザ、 Arレーザ、 HeZ N eレーザ、 H eZC dレーザ、 K rレーザ等の気体レーザ、 液体 (色素) レーザ、 ルビーレーザ、 NdZY AGレーザ等の固体レーザ、 GaAsZ GaAlAs、 I nG a A sレーザ等の半導体レーザ、 K r Fレーザ、 XeC l レーザ、 XeFレーザ、 Ar2 レーザ等のエキシマレーザ等を使用することがで さる。 In the method of forming an image, the method of making a lithographic printing plate, and the method of manufacturing a printed wiring board of the present invention, the method of fusing and fixing the image portion of the heat-fusible fine particle layer includes heat fixing, light fixing, pressure fixing, and solvent. There are methods such as fixing. In order to perform a direct drawing method using a computer chip plate to increase productivity, it is desirable to use a laser for fusing and fixing. Lasers include gas lasers such as carbon dioxide laser, nitrogen laser, Ar laser, HeZNe laser, HeZCd laser, Kr laser, solid lasers such as liquid (dye) laser, ruby laser, NdZY AG laser, GaAsZGaAlAs, I nG a a s a semiconductor laser such as a laser, K r F laser, XEC l laser, XeF laser, the use of excimer laser or the like of the Ar 2 laser or the like leaving at.
本発明の画像形成材料 (1) 、 画像形成方法 (3) および平版印刷版の製版方 法 (22) において、 熱溶融性微粒子層の溶融定着能を向上させるためには、 熱 溶融性微粒子層が光吸収剤を含有していることが好ましい。 これによつて、 より P T 7 In the image forming material (1), the image forming method (3), and the plate making method (22) of the lithographic printing plate of the present invention, in order to improve the melting and fixing ability of the heat fusible fine particle layer, the heat fusible fine particle layer is used. Preferably contains a light absorbing agent. This allows PT 7
2 1 小さい熱または光エネルギーで熱溶融性微粒子層を溶融定着することが可能にな る。 光吸収剤としては、 例えばカーボンブラック、 シァニン、 無金属または金属 フタロシアニン、 金属ジチオレン、 アントラキノン等を使用することができる。 また、 レーザ露光を行う場合には、 そのレーザの波長に最大吸収を有する光吸収 剤を選択することが好ましい。 例えば、 8 3 0 n mの半導体レーザを用いて熱溶 融性微粒子層の定着を行う場合には、 ヘプタメチン骨格を有するシァニン染料を 好適に用いることができる。 力一ボンブラックは、 光の吸収波長範囲が広く、 ま た熱の吸収効率も高いので、 最も好適に用いることができる光吸収剤である。 本発明の画像形成材料 (2 ) 、 画像形成方法 (4 ) およびプリント配線板の製 造方法 (3 7 ) においても、 上記と同様に、 アルカリ可溶樹脂層または熱溶融性 微粒子層から選ばれる少なくともひとつの層が光吸収剤を含有していることが好 ましい。 また、 本発明のプリント配線板の製造方法 (3 8 ) においても、 アル力 リ可溶性ドライフィルムまたは熱溶融性微粒子層から選ばれる少なくともひとつ の層が光吸収剤を含有していること力好ましい。  2 1 It becomes possible to fuse and fix the thermofusible fine particle layer with small heat or light energy. As the light absorber, for example, carbon black, cyanine, metal-free or metal phthalocyanine, metal dithiolene, anthraquinone and the like can be used. When performing laser exposure, it is preferable to select a light absorber having the maximum absorption at the wavelength of the laser. For example, when fixing a heat-meltable fine particle layer using a semiconductor laser of 830 nm, a cyanine dye having a heptamethine skeleton can be suitably used. Ripbon black is a light absorber that can be used most preferably because it has a wide light absorption wavelength range and high heat absorption efficiency. Also in the image forming material (2), the image forming method (4) and the method for manufacturing a printed wiring board (37) of the present invention, similarly to the above, it is selected from an alkali-soluble resin layer or a heat-meltable fine particle layer. Preferably, at least one layer contains a light absorber. Also, in the method (38) for producing a printed wiring board of the present invention, it is preferable that at least one layer selected from the group consisting of a soluble dry film and a heat-meltable fine particle layer contains a light absorber.
本発明の平版印刷版の製版方法 (3 2 ) および (3 5 ) では、 本発明の平版印 刷版の製版方法 (2 9 ) 〜 (3 1 ) において、 ネガ型の P S版を用いる。 この場 合、 非画像部の溶出除去後に版面に対し紫外光を照射する力 紫外光の吸収をで きるだけ効率良く行うことが好ましい。 したがって、 6 0 0 n m以下の波長域の 吸収が低い光吸収剤が望ましい。  In the method (32) and (35) of making a lithographic printing plate of the present invention, a negative PS plate is used in the method (29) to (31) of making a lithographic printing plate of the present invention. In this case, it is preferable that the plate surface is irradiated with ultraviolet light after elution and removal of the non-image portion. Therefore, a light absorber having low absorption in a wavelength region of 600 nm or less is desirable.
本発明の画像形成方法 (4 ) 、 プリント配線板の製造方法 (3 7 ) および (3 8 ) において、 非画像部または非回路部のアルカリ可溶樹脂層またはアルカリ可 溶性ドライフィルムと、 その上に形成されている熱溶融性微粒子層は、 アル力リ 液を用いて除去する。 溶融定着されていない熱溶融性微粒子層は、 非常に疎な状 態にあり、 アルカリ液が容易に浸透することができ、 下層のアルカリ可溶樹脂層 またはアル力リ可溶性ドラィフィルムと共に除去することが可能である。 該アル カリ液としては、 溶媒として有利に水を用いることができる。 また、 塩基'性化合 物として、 ゲイ酸アルカリ金属塩、 アルカリ金属水酸化物、 リン酸および炭酸ァ ルカリ金属およびアンモニゥム塩、 エタノールァミン、 エチレンジァミン、 プロ パンジァミン、 トリエチレンテトラミン、 モルホリン等を使用することができる。 さらに溶解能を高めるために水溶性のアルコール類ゃ界面活性剤を含有させるこ ともできる。 In the image forming method (4) and the printed wiring board manufacturing methods (37) and (38) according to the present invention, the alkali-soluble resin layer or the alkali-soluble dry film in the non-image portion or the non-circuit portion, and The hot-melt fine particle layer formed on the substrate is removed using an alkaline solution. The heat-fusible fine particle layer that is not melt-fixed is in a very sparse state, and the alkali solution can easily penetrate and is removed together with the underlying alkali-soluble resin layer or Al-soluble dry film. It is possible. As the alkaline liquid, water can be advantageously used as a solvent. In addition, as the base compound, alkali metal gayate, alkali metal hydroxide, phosphoric acid and alkali metal carbonate and ammonium salt, ethanolamine, ethylenediamine, propanediamine, triethylenetetramine, morpholine and the like are used. be able to. In order to further enhance the dissolving ability, a water-soluble alcohol / surfactant may be contained.
本発明の平版印刷版の製版方法 (2 9 ) に係わる感光層溶出処理液としては、 市販の P S版現像液を用いることができる。 用いる P S版に専用もしくは推奨の 現像液があれば、 それを好適に用いることができる。 また、 例えば特開平 6— 2 8 2 0 7 9号公報に記載のようなネガ ·ポジ共通の現像液を用いることもできる。 さらに、 水を主溶媒としたアルカリ液でも処理可能である。 このようなアルカリ 液としては、 上述の本発明の画像形成方法 (4 ) 、 プリント配線板の製造方法 ( 3 7 ) および (3 8 ) に係わるアルカリ液を挙げることができる。  A commercially available PS plate developer can be used as the photosensitive layer eluting solution in the plate making method (29) of the present invention. If there is a dedicated or recommended developer for the PS plate to be used, it can be suitably used. Further, for example, a negative / positive common developer as described in JP-A-6-282709 can be used. Furthermore, it can be treated with an alkaline solution containing water as a main solvent. Examples of such an alkaline liquid include the alkaline liquids relating to the above-described image forming method (4) and methods (37) and (38) for producing a printed wiring board of the present invention.
本発明の画像形成材料 ( 1 ) 、 (2 ) および画像形成方法 (3 ) 、 (4 ) に係 わる基材としては、 例えば印刷版を製造する場合にはポリエチレンテレフタレー ト、 ポリエチレンナフタレート、 ポリフエ二レンサルファイ ド等のプラスチック 板、 紙、 アルミニウム板、 亜 板、 銅 Zアルミニウム板等の金属板を使用するこ とができる。 また、 プリント配線板を製造する場合には、 エポキシ樹脂含浸ガラ ス基材板、 エポキシ樹脂含浸紙基材板、 フヱノール樹脂含浸ガラス基材板、 フヱ ノール樹脂含浸紙基材板、 ポリイミ ドフィルム、 ポリエステルフィルム等の絶縁 性基材、 該絶縁性基材の少なくとも片面に銅、 アルミニウム、 銀、 鉄、 金等の導 電層を設けた積層板、 金属板等を使用することができる。  As the substrate relating to the image forming materials (1) and (2) and the image forming methods (3) and (4) of the present invention, for example, in the case of producing a printing plate, polyethylene terephthalate, polyethylene naphthalate, A metal plate such as a plastic plate such as polyphenylene sulfide, paper, an aluminum plate, a zinc plate, and a copper Z aluminum plate can be used. In the case of manufacturing printed wiring boards, epoxy resin-impregnated glass substrate, epoxy resin-impregnated paper substrate, phenol resin-impregnated glass substrate, phenol resin-impregnated paper substrate, polyimide film And an insulating substrate such as a polyester film, a laminated plate or a metal plate provided with a conductive layer of copper, aluminum, silver, iron, gold, or the like on at least one surface of the insulating substrate.
本発明の平版印刷版の製造方法、 および製造装置、 本発明の平版印刷版の製版 方法に係わる感光性平版印刷版としては、 市販の P S版をネガ型 ·ポジ型に係わ らず、 また支持体の種類や厚みにも影響されず用いることができる。 また、 平版 印刷版の大量生産に対応するためには、 シート状に裁断される前のウエッブ (巻 き取り) 状態のものを使用することも可能である。 また、 電子写真方式で画像を 形成する溶出型の印刷版を使用することもできる。  As the photosensitive lithographic printing plate according to the method and apparatus for manufacturing a lithographic printing plate of the present invention, and the method of making a lithographic printing plate according to the present invention, a commercially available PS plate is not limited to a negative type or a positive type, and It can be used without being affected by the type and thickness of the support. In addition, in order to cope with mass production of lithographic printing plates, it is possible to use web (rolled) ones before being cut into sheets. Also, an elution type printing plate that forms an image by an electrophotographic method can be used.
本発明の平版印刷版の製版方法 (2 9 ) に係わる感光性平版印刷版がネガ型で ある場合は、 本発明の平版印刷版の製版方法 (3 2 ) および (3 5 ) のように、 非画像部除去後に水銀ランプ等の紫外光を版面に照射することで感光層が重合 · 硬化して、 画像部をより強固なものとすることができる。 また、 紫外光の照射効 率を上げるために、 画像部の溶融定着層のみ溶解する溶剤等を用いて、 予め溶融 定着層を剝離した後に、 紫外光照射を行うこともできる。 When the photosensitive lithographic printing plate according to the lithographic printing plate making method (29) of the present invention is a negative type, as described in the lithographic printing plate making methods (32) and (35) of the present invention, By irradiating the plate surface with ultraviolet light such as a mercury lamp after removing the non-image area, the photosensitive layer is polymerized and hardened, and the image area can be made stronger. In order to increase the efficiency of UV light irradiation, use a solvent or the like that dissolves only the melt-fixing layer in the image area. After separating the fixing layer, ultraviolet light irradiation can be performed.
本発明の平版印刷版の製版方法 (2 9 ) に係わる感光性平版印刷版がポジ型で ある場合は、 本発明の平版印刷版の製版方法 (3 3 ) および (3 6 ) のように、 熱溶融性微粒子層を設ける前に、 予め感光性平版印刷版面に水銀ランプ等の紫外 光を照射して、 感光層の溶解性を向上させておき、 熱溶融性微粒子を用いた製版 処理を行う。 紫外光を照射することで、 感光性平版印刷版の感光層の溶出処理液 に対する溶解性が増して、 非画像部の感光層を極めて容易に除去することができ る。  When the photosensitive lithographic printing plate according to the lithographic printing plate making method (29) of the present invention is of a positive type, the lithographic printing plate making method of the present invention (33) and (36) are as follows. Before providing the heat-meltable fine particle layer, the surface of the photosensitive lithographic printing plate is irradiated with ultraviolet light such as a mercury lamp in advance to improve the solubility of the photosensitive layer, and a plate-making process using the heat-meltable fine particles is performed. . By irradiating with ultraviolet light, the solubility of the photosensitive layer of the photosensitive lithographic printing plate in the elution treatment liquid increases, and the photosensitive layer in the non-image area can be removed very easily.
本発明の平版印刷版の製版方法 (3 4 ) 〜 (3 6 ) において、 感光性平版印刷 版の非画像部を溶出除去した後にバーニング処理を行って、 画像部をより強化な ものにすることができる。 バーニング処理としては、 2 0 0〜2 5 0 °Cで数分間 加熱するなど一般的に P S版に適用される方法を用いることができる。 このよう なバーニング処理は、 例えば 「P S版概論」 (米澤輝彦著、 (株) 印刷学会出版 部発行、 1 0 7〜1 0 8頁) に記載されている。  In the method of making a lithographic printing plate according to the present invention (34) to (36), a non-image portion of the photosensitive lithographic printing plate is eluted and removed, and then a burning process is performed to further strengthen the image portion. Can be. As the burning treatment, a method generally applied to a PS plate, such as heating at 200 to 250 ° C. for several minutes, can be used. Such a burning process is described in, for example, “PS Version Overview” (by Yonezawa Teruhiko, published by The Printing Society of Japan, pp. 107-108).
本発明のプリント配線板の製造方法 (3 7 ) に係わる穴埋めィンキとしては、 例えば乾燥 (風乾) 型穴埋めインク、 紫外光硬化型穴埋めインク、 熱硬化型穴埋 めィンクを用いることができる。 スルーホール内部に穴埋めィンクを充塡する方 法としては、 ロールコート法、 スキージ法、 多ピン注入法等を使用することがで きる。 スルーホール外に付着した穴埋めインクは、 そのままにしておいても、 搔 き取り、 パフ研磨等で除去しても良い。  As the hole filling ink relating to the method (37) for producing a printed wiring board of the present invention, for example, a dry (air-drying) type hole filling ink, an ultraviolet light curing type hole filling ink, or a thermosetting type hole filling ink can be used. As a method of filling the filling hole inside the through hole, a roll coating method, a squeegee method, a multi-pin injection method, or the like can be used. The filling ink that has adhered to the outside of the through-hole may be left as it is, or may be removed by wiping or puffing.
本発明のプリント配線板の製造方法に係わる絶縁性基板の少なくとも片面に導 電層を設けた積層板としては、 例えば 「プリント回路技術便覧一第二版一」 Examples of the laminated board provided with a conductive layer on at least one surface of an insulating substrate according to the method for manufacturing a printed wiring board of the present invention include, for example, “Printed Circuit Technology Handbook-Second Edition 1”
( (社) プリント回路学会編、 日刊工業新聞社発刊) に記載されているものを使 用することができる。 絶縁性基板としては、 紙基材またはガラス基材にエポキシ 樹脂またはフヱノール樹脂等を含浸させたもの、 ポリエステルフィルム、 ポリイ ミ ドフィルム等が挙げられる。 導電層の材料としては、 例えば、 銅、 銀、 アルミ 等が挙げられる。 ((Corporation) Printed Circuit Society, edited by Nikkan Kogyo Shimbun) can be used. Examples of the insulating substrate include a paper substrate or a glass substrate impregnated with an epoxy resin or a phenol resin, a polyester film, a polyimide film, and the like. Examples of the material of the conductive layer include copper, silver, and aluminum.
本発明のプリント配線板の製造方法に係わるめっき導電層の形成方法としては、 例えば、 めっき導電層が銅の場合には、 「表面実装技術」 ( 1 9 9 3年 6月号、 日刊工業新聞社発刊) 等記載の無電解めつき工程、 無電解めつき一電解めつきェ 程、 直接電解めつき工程等を使用することができる。 As a method for forming a plated conductive layer according to the method for manufacturing a printed wiring board of the present invention, for example, when the plated conductive layer is copper, “Surface mounting technology” (June 1993, June, Electroless plating step, electroless plating-one electrolytic plating step, direct electrolytic plating step, etc. described in Nikkan Kogyo Shimbun, etc.) can be used.
本発明のプリント配線板の製造方法において、 エッチングレジスト層を形成し た後に非配線部の導電層およびめつき導電層を除去する方法としては、 「プリン ト回路技術便覧—第二版一」 「プリント回路ハンドブック一原書第 3版—」 (1 9 9 1年、 C . F . クームズ, J r . 編、 (社) プリント回路学会監訳、 近代科 学社発刊) 記載のエッチング装置、 エッチング液等を使用することができる。 本発明のプリント配線板の製造方法において、 不要な導電層およびめつき導電 層を除去した後のエッチングレジスト層は、 そのまま残しておいても良いが、 回 路構成部品等の積載、 接続時に不要となる場合には除去する。 このエッチングレ ジスト層を除去するには、 アルカリ液を有利に用いることができる。 エッチング レジスト層のアル力リ液に対する溶解性が低い場合には、 適宜有機溶媒を添加す る力、、 もしくは有機溶媒のみを使用しても良い。  In the method for manufacturing a printed wiring board of the present invention, as a method of removing the conductive layer and the plated conductive layer of the non-wiring portion after forming the etching resist layer, see “Printed Circuit Technology Handbook-Second Edition 1” Etching equipment, etchant, etc. described in "Printed Circuit Handbook, Original Edition, Third Edition" (edited by C. F. Coombs, Jr., 1991, edited by The Printed Circuit Society, published by Modern Science Co., Ltd.) Can be used. In the method for manufacturing a printed wiring board according to the present invention, the etching resist layer after removing the unnecessary conductive layer and the plated conductive layer may be left as it is, but is unnecessary when loading and connecting circuit components and the like. If it becomes, remove it. To remove the etching resist layer, an alkali solution can be advantageously used. In the case where the solubility of the etching resist layer in the alkaline solution is low, a force for appropriately adding an organic solvent or only the organic solvent may be used.
図 1 0は、 本発明の平版印刷版の製造装置 (2 4 ) の一例を表す側断面概略図 である。 まず、 表面を上向きとした印刷版 4 1 4は、 表面がゴムで形成された送 りロール対 4 3、 4 4によって電極 4 1とガイド板 4 2で形成された間隙に導入 される。 このときに熱溶融性微粒子含有塗液供給手段を構成する、 回収タンク 4 1 0、 ポンプ 4 1 2、 電極 4 1に取り付けられている液吐出部 4 1 1力、ら、 前記 間隙に送液され吐出される。 また同時に電極 4 1と導電性アース片 4 7および通 版ガイド 4 9とに接続された電荷印加手段である電圧供給部 4 1 3から電圧が供 給されるようになっている。 供給される電圧の極性は塗液中の熱溶融性微粒子の 荷電極性と同極性であり、 印刷版 4 1 4の表面に熱溶融性微粒子が電着されるよ うになつている。  FIG. 10 is a schematic side sectional view showing an example of the lithographic printing plate manufacturing apparatus (24) of the present invention. First, the printing plate 4 14 with its surface facing upward is introduced into a gap formed by the electrode 41 and the guide plate 42 by a pair of feed rolls 4 3 and 4 4 whose surface is formed of rubber. At this time, the liquid supply section attached to the recovery tank 410, the pump 41, and the electrode 41, which constitutes the hot-melt fine particle-containing coating liquid supply means, sends the liquid to the gap. Is discharged. At the same time, a voltage is supplied from a voltage supply unit 413, which is a charge application unit connected to the electrode 41, the conductive grounding piece 47, and the plate guide 49. The polarity of the supplied voltage is the same as the polarity of the charged electrode of the hot-melt particles in the coating liquid, and the hot-melt particles are electrodeposited on the surface of the printing plate 4 14.
続いて、 印刷版 4 1 4は絞液手段である絞りロール対 4 5、 4 6により、 余剰 の塗液が絞液され、 同時に、 図示しない高圧空気源と配管された気体吹き付け手 段であるエアナイフ 4 8から印刷版 4 1 4と絞りロール対 4 5、 4 6とで形成さ れる空隙部に向けて高圧空気が吹き付けられる。  Subsequently, the printing plate 4 14 is a gas blowing means in which excess coating liquid is squeezed by a pair of squeezing rolls 4 5 and 4 6 which are squeezing means, and at the same time, is connected to a high-pressure air source (not shown). High-pressure air is blown from the air knife 48 to the gap formed by the printing plate 4 14 and the squeezing roll pairs 45, 46.
さらに印刷版 4 1 4は、 4つの回転軸 4 2 3に懸架された搬送ベルト 4 2 4と 吸引ボックス 4 2 2から構成される吸着搬送手段によりその裏面を吸着されつつ 搬送される。 吸引ボックス 4 2 2は上面に印刷版 4 1 4を吸着するための吸着口 が複数配置されており、 内部に設置された排気ファン (図示せず) により吸引ボ ックス 4 2 2内の空気が排出されるようになっている。 この上部には分散媒の蒸 発促進手段として乾燥ファン 4 2 0が 2台配置されており、 印刷版 4 1 4上の絞 り切れなかった塗液中の分散媒を封緘するようになつている。 Further, the printing plate 4 14 is suctioned on its back surface by suction conveyance means composed of a conveyance belt 4 24 suspended on four rotating shafts 4 23 and a suction box 4 22. Conveyed. The suction box 4 22 has a plurality of suction ports on its upper surface for sucking the printing plate 4 14, and the air inside the suction box 4 22 is exhausted by an exhaust fan (not shown) installed inside. It is being discharged. In the upper part, two drying fans 420 are arranged as a means for promoting the evaporation of the dispersion medium, so that the dispersion medium in the coating liquid that has not been squeezed on the printing plate 4 14 is sealed. I have.
なお、 用いる熱溶融性微粒子の軟化点によっては、 図示しない空気温度調節部 より冷却または加熱された空気が乾燥ファン 4 2 0へ導入されるようになってい る。 さらに蒸発促進手段として上部には排気ダクト 4 2 1が設けられており、 必 要に応じて蒸発した分散媒を排出できるようになっている。 分散媒蒸気を排出す ることで蒸気圧を下げることができ、 さらに版面上の分散媒の蒸発速度を速める ことができる。 また印刷版 4 1 4の搬送速度は用いる分散媒の蒸発速度に応じて 任意に設定できるようになつている。  Note that, depending on the softening point of the heat-fusible fine particles used, air cooled or heated by an air temperature control unit (not shown) is introduced into the drying fan 420. Further, an exhaust duct 421 is provided at the upper part as an evaporation promoting means, so that the evaporated dispersion medium can be discharged as required. By discharging the dispersion medium vapor, the vapor pressure can be reduced and the evaporation speed of the dispersion medium on the plate surface can be increased. The transport speed of the printing plate 4 14 can be arbitrarily set according to the evaporation speed of the dispersion medium used.
以上のように処理された印刷版 4 1 4は 2つの回転軸 4 3 0に懸架された搬送 ベルト 4 3 1からなるバッファ部へ至る。 ここで印刷版 4 1 4を取り出しても良 いし、 あるいは複数枚ストック可能なストッカーに搬送しても良い。 また、 この 後に引き続いて加熱描画を行う装置を接続し、 熱溶融性微粒子層の形成と連続し て描画処理することも可能である。  The printing plate 4 14 processed as described above reaches a buffer unit composed of a transport belt 4 31 suspended on two rotating shafts 4 30. Here, the printing plate 4 14 may be taken out, or may be transported to a stocker capable of stocking a plurality of printing plates. In addition, it is also possible to connect a device that performs heating and drawing subsequently, and perform drawing processing continuously with the formation of the heat-meltable fine particle layer.
以下本発明を実施例により詳説するが、 本発明はその趣旨を逸脱しない限り、 下記実施例に限定されるものではない。  Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples unless departing from the gist thereof.
実施例 1  Example 1
基材の作製  Fabrication of base material
J I S 1 0 5 0アルミニウムシ一トを 6 0 °C 1 0 % N a O H水溶液に浸漬し、 アルミニウム溶解量が 6 gZm2 になるように表面をエッチングした。 水洗後、 3 0 %硝酸水溶液に 1分間浸潰して中和し、 充分水洗した。 その後、 2 . 0 %硝 酸水溶液中で、 2 5秒間電解粗面化を行い、 5 0 °C 2 0 %硫酸水溶液中に浸漬 して表面を洗浄した後、 水洗した。 更に、 2 0 %硫酸水溶液中で陽極酸化処理を 施して、 水洗、 乾燥することにより、 基材 (印刷版用支持体、 A 3サイズ) を作A JIS 1550 aluminum sheet was immersed in an aqueous solution of 10% NaOH at 60 ° C, and the surface was etched so that the amount of aluminum dissolved was 6 gZm 2 . After washing with water, it was immersed in a 30% aqueous nitric acid solution for 1 minute to neutralize, and washed thoroughly with water. Thereafter, electrolytic surface roughening was performed in a 2.0% aqueous nitric acid solution for 25 seconds, and the surface was washed by immersion in a 20% aqueous sulfuric acid solution at 50 ° C., and then washed with water. Furthermore, the substrate (printing plate support, A3 size) is prepared by anodizing in a 20% sulfuric acid aqueous solution, washing with water, and drying.
: し : S
熱溶融性微粒子層の形成 表 1の塗布液を用いて、 カーテンコート法により塗布後、 4 0 °Cで 2分間風乾 させて、 熱溶融性微粒子層 (膜厚 3 . 0 u rn) を得た。 Formation of hot-melt fine particle layer The coating solution of Table 1 was applied by a curtain coating method and then air-dried at 40 ° C for 2 minutes to obtain a heat-meltable fine particle layer (thickness: 3.0 urn).
表 1 組成物 ポリメタクリル酸ラウリル (分子量 2 . 0万) 5 ポリ酢酸ビニルェマルジョン (平均粒子径 0 . 2〃 m) 2 5 飽和炭化水素 ( I P— 1 6 2 0 ;出光石油化学 (株) 製) 2 2 0 溶融定着層の形成  Table 1 Compositions Polyuryl lauryl methacrylate (molecular weight: 200000) 5 Polyvinyl acetate emulsion (average particle size: 0.2〃m) 25 Saturated hydrocarbons (IP-1620; Idemitsu Petrochemical Co., Ltd.) 2) Formation of fusing and fixing layer
半導体レーザ露光装置 (7 8 0 n m) で画像部に相当する熱溶融性微粒子層を 溶融定着させて、 印刷版を得た。 この印刷版を用いて、 オフセット印刷機 (リョ —ビ 3 2 0 0 M C D) にて印刷を行ったところ、 印刷の初段階 (約 1 0枚) で、 溶融定着されていない熱溶融性微粒子層は完全に除去され、 基材の親水化処理面 が露出した。 残存する溶融定着層をインク受理層として、 6万枚まで汚れ等が生 じない良好な印刷物を得ることができた。  The heat-meltable fine particle layer corresponding to the image area was fused and fixed by a semiconductor laser exposure device (780 nm) to obtain a printing plate. Using this printing plate, printing was performed with an offset printing machine (Ryobi 3200 MCD). At the initial stage of printing (approximately 10 sheets), a layer of heat-meltable fine particles that had not been fused was fixed. Was completely removed, and the hydrophilically treated surface of the substrate was exposed. By using the remaining melt-fixing layer as the ink receiving layer, it was possible to obtain good printed matter free of stains and the like up to 60,000 sheets.
保存性試験 Storage test
熱溶融性微粒子層を形成した基材を 3 0 °Cの明室下で 6ヶ月保存した後に、 上 記と同様の方法で、 印刷版の形成を試みたところ、 欠陥のない印刷版を得ること ができた。  After storing the substrate with the heat-meltable fine particle layer in a light room at 30 ° C for 6 months, a printing plate was tried in the same manner as above to obtain a printing plate without defects. I was able to do it.
実施例 2  Example 2
熱溶融性微粒子層の形成 Formation of hot-melt fine particle layer
実施例 1と同仕様の基材 (親水化アルミニウムシ一ト、 1 1 1 0 X 3 9 8 mm) に表 2の組成を有する塗布液を用いて、 カーテンコート法により塗布し、 3 0 °C で 5分間乾燥させて、 熱溶融性微粒子層 (膜厚 2 . 5 m) を形成した。 表 2 組成物 ポリメタクリル酸ラゥリル (分子量 2 . 0万) 5 ポリ酢酸ビニルェマルジョン (平均粒子径 0 . 2 〃 m) 2 5 カーボンブラック 5 飽和炭化水素 ( I P— 1 6 2 0 ;出光石油化学 (株) 製) 2 1 5 溶融定着層の形成 A substrate having the same specifications as in Example 1 (hydrophilic aluminum sheet, 110 × 398 mm) was coated with a coating solution having the composition shown in Table 2 by a curtain coating method, and the coating was performed at 30 °. After drying for 5 minutes at C, a heat-meltable fine particle layer (2.5 m thick) was formed. Table 2 Compositions Polyuryl methacrylate (molecular weight 2,000,000) 5 Polyvinyl acetate emulsion (average particle size 0.2 μm) 25 Carbon black 5 Saturated hydrocarbons (IP-1620; Idemitsu Petrochemical) 2 1 5 Formation of fusing layer
半導体レーザ露光装置 ( 7 8 0 n m) で画像部に相当す.る熱溶融性微粒子層を 溶融定着させて、 印刷版を得た。 この印刷版を用いて、 オフセット印刷機 (リョ ービ 3 2 0 0 M C D) にて印刷を行ったところ、 印刷の初段階 (約 1 0枚) で、 溶融定着されていな 、熱溶融性微粒子層は完全に除去され、 基材の親水化処理面 が露出した。 残存する溶融定着層をインク受理層として、 6万枚まで汚れ等が生 じない良好な印刷物を得ることができた。  The printing plate was obtained by fusing and fixing the heat-meltable fine particle layer corresponding to the image area with a semiconductor laser exposure device (780 nm). Using this printing plate, we performed printing with an offset printing machine (Ryobi 320 MCD). At the initial stage of printing (about 10 sheets), the heat-fusible fine particles that had not been fused and fixed were used. The layer was completely removed, exposing the hydrophilized surface of the substrate. By using the remaining melt-fixing layer as the ink receiving layer, it was possible to obtain good printed matter free of stains and the like up to 60,000 sheets.
保存性試験 Storage test
熱溶融性微粒子層を形成した基材を 3 0 °Cの明室下で 6ヶ月保存した後に、 上 記と同様の方法で、 印刷版の形成を試みたところ、 欠陥のない印刷版を得ること ができた。  After storing the substrate with the heat-meltable fine particle layer in a light room at 30 ° C for 6 months, a printing plate was tried in the same manner as above to obtain a printing plate without defects. I was able to do it.
実施例 3  Example 3
熱溶融性微粒子層の形成 Formation of hot-melt fine particle layer
実施例 1と同仕様の基材 (親水化アルミニウムシート、 A 3サイズ) に表 3の 組成を有する塗布液を用いて、 電着法 (印加電圧 1 5 0 V) により塗布し、 4 0 °Cで 2分間乾燥させて、 熱溶融性微粒子層 (膜厚 2 . 0 u rn) を形成した。 表 3 組成物 ポリメタクリル酸ラゥリル (重量平均分子量 2 . 0万) Using a coating solution having the composition shown in Table 3 on a base material (hydrophilic aluminum sheet, A3 size) having the same specifications as in Example 1 and applying it by electrodeposition (applied voltage: 150 V), 40 ° After drying at C for 2 minutes, a heat-meltable fine particle layer (film thickness 2.0 urn) was formed. Table 3 Composition Polyradiryl methacrylate (weight average molecular weight 200000)
ポリ酢酸ビニルェマルジョン (平均粒子径 0 . 2〃 m) Polyvinyl acetate emulsion (average particle size 0.2〃m)
ォクタデシルビニルエーテル Z無水マレイン酸共重合体 (重 Octadecyl vinyl ether Z maleic anhydride copolymer
量組成比 3 / 1、 無水マレイン酸加水分解率 5 4 %、 重量平 Amount composition ratio 3/1, maleic anhydride hydrolysis rate 54%, weight average
均分子量 1 . 3万) 0 . 0 1 カーボン: ラック 0 . 5 飽和炭化水素 ( I P— 1 6 2 0 ;出光石油化学 (株) 製) 7 4 4 溶融定着層の形成 0.01 Carbon: Rack 0.5 Saturated hydrocarbon (IP-1620; manufactured by Idemitsu Petrochemical Co., Ltd.) 744 Formation of fusion fixing layer
半導体レーザ露光装置 (7 8 0 n m) で画像部に相当する熱溶融性微粒子層を 溶融定着させて、 印刷版を得た。 この印刷版を用いて、 オフセット印刷機 (リョ ービ 3 2 0 0 M C D) にて印刷を行ったところ、 印刷の初段階 (約 1 0枚) で、 溶融定着されていな 、熱溶融性微粒子層は完全に除去され、 基材の親水化処理面 が露出した。 残存する溶融定着層をインク受理層として、 7万枚まで汚れ等が生 じなし、良好な印刷物を得ることができた。  The heat-meltable fine particle layer corresponding to the image area was fused and fixed by a semiconductor laser exposure device (780 nm) to obtain a printing plate. Using this printing plate, we performed printing with an offset printing machine (Ryobi 320 MCD). At the initial stage of printing (about 10 sheets), the heat-fusible fine particles that had not been fused and fixed were used. The layer was completely removed, exposing the hydrophilized surface of the substrate. By using the remaining melt-fixing layer as the ink receiving layer, no stains or the like were generated up to 70,000 sheets, and good printed matter was obtained.
保存性試験 Storage test
熱溶融性微粒子層を形成した基材を 3 0 °Cの明室下で 6ヶ月保存した後に、 上 記と同様の方法で、 印刷版の形成を試みたところ、 欠陥のない印刷版を得ること ができた。  After storing the substrate with the heat-meltable fine particle layer in a light room at 30 ° C for 6 months, a printing plate was tried in the same manner as above to obtain a printing plate without defects. I was able to do it.
実施例 4  Example 4
アル力リ可溶樹脂層および熱溶融性微粒子層の形成  Formation of Al-soluble resin layer and hot-melt fine particle layer
実施例 1と同仕様の基材 (親水化アルミニウムシー卜、 1 1 1 0 X 3 9 8 mm) に表 4の塗布液を用いて、 カーテンコート法により塗布後、 9 0 °Cで 1 0分間乾 燥させて、 アルカリ可溶樹脂層 (膜厚 4 . 6 m) を得た。 さらに、 表 5の塗布 液を用いて、 カーテンコート法により塗布後、 4 0 °Cで 2分間風乾させて、 熱溶 融性微粒子層 (膜厚 1 . 5 // m) を得た。 組成物 龍部 メタクリル酸/メタクリノレ酸 n—フ fチル /了クリル酸 n—プチ After applying the coating solution shown in Table 4 to a substrate (hydrophilic aluminum sheet, 1110 x 398 mm) having the same specifications as in Example 1 by the curtain coating method, it was heated at 90 ° C to 10 ° C. After drying for an minute, an alkali-soluble resin layer (4.6 m thick) was obtained. Furthermore, after applying the coating solution shown in Table 5 by the curtain coating method, it was air-dried at 40 ° C. for 2 minutes to obtain a heat-meltable fine particle layer (film thickness: 1.5 // m). Composition Ryu of methacrylic acid / Metakurinore acid n- off f chill / Ryo acrylic acid n- Petit
ル共重合体 (重量比: 3/3/4, 重量平均分子量 3. 5万) 1 0 カーボンブラック 5 ブチルセ口ソルブ 8 5 表 5 組成物 ポリメタクリル酸ラウリル (分子量 2. 0万) 5 ポリ酢酸ビニルェマルジヨン (平均粒子径 0. 2 zm) 2 5 飽和炭化水素 ( I P— 1 6 2 0 ;出光石油化学 (株) 製) 27 0 画像層の形成 Copolymer (weight ratio: 3/3/4, weight-average molecular weight: 350,000) 10 carbon black 5 butyl cellulose sorb 8 5 Table 5 Composition Polyuryl lauryl methacrylate (molecular weight 2,000,000) 5 polyacetic acid Vinylemulsion (average particle size 0.2 zm) 25 Saturated hydrocarbon (IP-1620; manufactured by Idemitsu Petrochemical Co., Ltd.) 270 Formation of image layer
半導体レーザ露光装置 ( 7 8 0 nm) で画像部に相当する熱溶融性微粒子層を 溶融定着させ、 次いで 5. 0%炭酸ナトリウム溶液 (液温 3 5°C) をスプレー (2. 0 k g/cm2 ) し、 非画像部の熱溶融性微粒子層とアルカリ可溶樹脂層 を除去して、 印刷版を得た。 アルカリ可溶樹脂層と熱溶融性微粒子層からなる画 像層を顕微鏡で観察したところ、 画像部の欠落、 非画像部の汚れ等のない高い解 像度を有する画像であった。 また、 この印刷版を用いて、 オフセット印刷機 (ハ マダスター 6 0 0 CD) にて印刷を行ったところ、 8万枚まで汚れ等が生じな い良好な印刷物を得ることができた。 A semiconductor laser exposure device (780 nm) melts and fixes the heat-meltable fine particle layer corresponding to the image area, and then sprays 5.0% sodium carbonate solution (liquid temperature 35 ° C) (2.0 kg / cm 2 ) to remove the hot-melt fine particle layer and the alkali-soluble resin layer in the non-image area to obtain a printing plate. Observation with a microscope of the image layer composed of the alkali-soluble resin layer and the heat-meltable fine particle layer revealed that the image had a high resolution without any missing image portions and no stain on non-image portions. When printing was performed using this printing plate with an offset printing machine (Hamaduster 600 CD), it was possible to obtain up to 80,000 sheets of good printed matter free of stains and the like.
保存性試験 Storage test
アル力リ可溶樹脂層および熱溶融性微粒子層を形成した印刷版用基材を 3 0°C の明室下で 6ヶ月保存した後に、 上記と同様の方法で、 画像層の形成を試みたと ころ、 鲜明で欠陥のない画像層を得ることができた。  After storing the printing plate substrate on which the soluble resin layer and the heat-fusible fine particle layer were formed in a bright room at 30 ° C for 6 months, an attempt was made to form an image layer using the same method as above. At that time, a clear and defect-free image layer could be obtained.
実施例 5 アル力リ可溶樹脂層および熱溶融性微粒子層の形成 Example 5 Formation of Al-soluble resin layer and hot-melt fine particle layer
紙基材エポキシ樹脂板の片面に銅箔を張り合わせた片面銅張積層板 (松下電工One-sided copper-clad laminate with copper foil laminated on one side of a paper-based epoxy resin plate (Matsushita Electric Works
(株) 製、 2 0 0 X 3 0 0 X 1. 6 mm、 銅厚 1 8〃m) に、 表 6の組成を有す る塗布液を用いて、 浸漬法によって塗布後、 9 0°Cで 5分間乾燥し、 アルカリ可 溶樹脂層 (膜厚 5. 2 m) を得た。 次いで、 表 7の組成を有する塗布液を用い て、 カーテンコート法により塗布し、 熱溶融性微粒子層 (膜厚 1. 2 ^m) を形 成した。 Coating Co., Ltd., 200 x 300 x 1.6 mm, copper thickness 18 〃m) using a coating solution having the composition shown in Table 6 by dipping and then 90 ° After drying at C for 5 minutes, an alkali-soluble resin layer (5.2 m in thickness) was obtained. Next, using a coating solution having the composition shown in Table 7, coating was performed by a curtain coating method to form a heat-meltable fine particle layer (thickness: 1.2 m).
表 6 組成物 クロトン酸 Z酢酸ビニル共重合体 (重量比: 3Z97、 重量平  Table 6 Composition Crotonic acid Z-vinyl acetate copolymer (weight ratio: 3Z97, weight average)
均分子量 3. 5万) 1 5 ブチルセ口ソルブ 8 5 Equivalent molecular weight: 350,000) 1 5
組成物 重量部 ポリメタクリル酸ラゥリル (分子量 2. 0万) 5 ポリ酢酸ビニルエマルジョン (平均粒子径 0. 2 m) 2 5 カーボンブラック 5 飽和炭化水素 ( I P— 1 6 2 0 ;出光石油化学 (株) 製) 2 7 0 画像層の形成 Composition by weight Polyuryl methacrylate (molecular weight: 2,000,000) 5 Polyvinyl acetate emulsion (average particle size: 0.2 m) 25 Carbon black 5 Saturated hydrocarbon (IP-1620; Idemitsu Petrochemical Co., Ltd.) 2) 70 Image layer formation
半導体レーザ露光装置 ( 7 8 0 nm) で画像部に相当する熱溶融性微粒子層を 溶融定着させ、 次いで 5. 0%炭酸ナトリウム溶液 (液温 3 5 °C) をスプレー (2. 0 k g/cm2 ) し、 非画像部の熱溶融性微粒子層とアル力リ可溶樹脂層 を除去した。 アル力リ可溶樹脂層と熱溶融性微粒子層からなる画像層を顕微鏡で 観察したところ、 画像部の欠落、 非画像部の汚れ等のない高い解像度を有する画 像であった。 また、 この画像層を形成した銅張積層板を、 市販の塩化第二鉄溶液 (4 5°C、 スプレー圧: 3. 0 k g/cm2 ) で処理し、 画像層で被覆されてい ない部分の銅箔を除去した。 次いで、 4 0 °Cの 3. 0 %水酸化ナトリウム溶液で 処理し、 残存する画像層を除去し、 プリント配線板を得た。 得られたプリント配 線板を顕微鏡で観察したところ、 途中断線等の欠陥が無い高解像性の回路パター ノ めつた o A semiconductor laser exposure device (780 nm) melts and fixes the heat-meltable fine particle layer corresponding to the image area, and then sprays 5.0% sodium carbonate solution (liquid temperature of 35 ° C) (2.0 kg / cm 2 ) to remove the heat-meltable fine particle layer and the non-imageable resin layer in the non-image area. Observation with a microscope of the image layer comprising the resin layer and the heat-meltable fine particle layer revealed a high-resolution image with no missing image portions and no stain on non-image portions. In addition, the copper-clad laminate on which the image layer was formed was prepared using a commercially available ferric chloride solution. (45 ° C, spray pressure: 3.0 kg / cm 2 ) to remove the copper foil in the area not covered by the image layer. Then, treatment with a 3.0% sodium hydroxide solution at 40 ° C. was performed to remove the remaining image layer, thereby obtaining a printed wiring board. Observation of the obtained printed wiring board with a microscope revealed that the circuit pattern had high resolution and no defects such as disconnection during the course o
保存性試験 Storage test
アル力リ可溶樹脂層および熱溶融性微粒子層を形成した銅張積層扳を 3 0°Cの 明室下で 4ヶ月保存した後に、 上記と同様の方法で、 画像層の形成を試みたとこ ろ、 鮮明で欠陥のない画像層を得ることができた。  After storing the copper-clad laminate を on which the resin layer and the heat-fusible fine particle layer were formed for 4 months in a light room at 30 ° C, an attempt was made to form an image layer in the same manner as above. In this case, a clear and defect-free image layer could be obtained.
実施例 6  Example 6
アル力リ可溶樹脂層および熱溶融性微粒子層の形成  Formation of Al-soluble resin layer and hot-melt fine particle layer
紙基材エポキシ樹脂板の片面に銅箔を張り合わせた片面銅張積層板 (松下電工 (株) 製、 2 0 0 X 3 0 0 Xし 6 mm、 銅厚 1 8〃 m) に、 表 8の組成を有す る塗布液を用いて、 電着法 (印加電流 1 0 0mA) により塗布後、 9 0°Cで 1 0 分間乾燥させて、 アルカリ可溶樹脂層 (膜厚 3. 2 um) を得た。 さらに、 表 3 の組成を有する塗布液を用いて、 電着法 (印加電圧 1 8 0 V) により塗布後、 4 0°Cで 2分間風乾させて、 熱溶融性微粒子層 (膜厚 2. 0 um) を得た。 Table 8 shows a single-sided copper-clad laminate (Matsushita Electric Works, Ltd., 200 mm x 300 mm, copper thickness 18 mm, copper thickness 18〃m) with copper foil laminated to one side of a paper-based epoxy resin plate. Using a coating solution having the following composition, apply by electrodeposition (applied current: 100 mA), and then dry at 90 ° C for 10 minutes to obtain an alkali-soluble resin layer (thickness 3.2 μm). ). Furthermore, using a coating solution having the composition shown in Table 3, coating was carried out by the electrodeposition method (applied voltage: 180 V), and then air-dried at 40 ° C for 2 minutes. 0 um).
表 8 組成物 ァクリル酸 Zメタクリノレ酸 n—ブチル /ァクリル酸 n—ブ Table 8 Compositions Acrylic acid Z-N-butyl methacrylate / N-butyl acrylate
チル共重合体 (重量比: 2 / 3ノ 4、 重量平均分子量 Chill copolymer (weight ratio: 2/3/4, weight average molecular weight
5. 5万) 2 0 卜リェチルァミ ン 1 ブチルセ口ソルブ 9 0 イオン交換水 9 0 画像層の形成 5.50000) 20 Triethylamine 1 butyl sesolve 9 0 Deionized water 9 0 Image layer formation
半導体レーザ露光装置 (7 8 0 nm) で画像部に相当する熱溶融性微粒子層を 溶融定着させ、 次いで 5. 0%炭酸ナトリウム溶液 (液温 3 5°C) をスプレー (2. 0 k g/cm2 ) し、 非画像部の熱溶融性微粒子層とアルカリ可溶樹脂層 を除去した。 アルカリ可溶樹脂層と熱溶融性微粒子層からなる画像層を顕微鏡で 観察したところ、 画像部の欠落、 非画像部の汚れ等のない高い解像度を有する画 像であった。 また、 この画像層を形成した銅張積層板を、 市販の塩化第二鉄溶液 (4 5°C、 スプレー圧: 3. 0 k g/cm2 ) で処理し、 画像層で被覆されてい ない部分の銅箔を除去した。 次いで、 4 0 °Cの 3. 0 %水酸化ナトリウム溶液で 処理し、 残存する画像層を除去し、 プリント配線板を得た。 得られたプリント配 線板を顕微鏡で観察したところ、 途中断線等の欠陥が無い高解像性の回路パター ンであった。 A semiconductor laser exposure device (780 nm) melts and fixes the heat-meltable fine particle layer corresponding to the image area, and then sprays 5.0% sodium carbonate solution (liquid temperature 35 ° C) (2.0 kg / cm 2 ) to remove the hot-melt fine particle layer and the alkali-soluble resin layer in the non-image area. Observation with a microscope of the image layer composed of the alkali-soluble resin layer and the heat-meltable fine particle layer revealed a high-resolution image with no missing image portions and no stain on non-image portions. The copper-clad laminate on which the image layer was formed was treated with a commercially available ferric chloride solution (45 ° C, spray pressure: 3.0 kg / cm 2 ), and the portion not covered with the image layer was treated. Was removed. Then, treatment with a 3.0% sodium hydroxide solution at 40 ° C. was performed to remove the remaining image layer, thereby obtaining a printed wiring board. Observation of the obtained printed wiring board with a microscope revealed a high-resolution circuit pattern without any defects such as disconnection in the middle.
保存性試験 Storage test
アル力リ可溶樹脂層および熱溶融性微粒子層を形成した銅張積層板を 3 0°Cの 明室下で 4ヶ月保存した後に、 上記と同様の方法で、 画像層の形成を試みたとこ ろ、 鮮明で欠陥のない画像層を得ることができた。  After storing the copper-clad laminate on which the resin layer and the heat-fusible fine particle layer were formed for 4 months in a light room at 30 ° C, an attempt was made to form an image layer in the same manner as above. In this case, a clear and defect-free image layer could be obtained.
比較例 1  Comparative Example 1
実施例 5および 6と同仕様の銅張積層扳上に、 フォトポリマーであるドライフ イルムフォ トレジスト (日本合成化学 (株) 製) を熱圧着した。 このフォ トポリ マーに、 実施例 1および 2と同じ半導体レーザ露光装置で、 露光を行ったが、 光 重合反応を起こすことができず、 画像を得ることはできなかった。 また、 銅張積 層板上にドライフィルムフォ トレジストを熱圧着し、 3 0て、 明室下で 3 ヶ月保 存したところ、 重合反応が進行し、 感光特性が失活していた。 Drift film photoresist (Nippon Gohsei Chemical Co., Ltd.) as a photopolymer was thermocompression-bonded on the copper-clad laminate having the same specifications as in Examples 5 and 6. This photopoly Exposure was performed with the same semiconductor laser exposure apparatus as in Examples 1 and 2, but no photopolymerization reaction could be caused and no image could be obtained. Further, when a dry film photoresist was thermocompression-bonded on a copper-clad laminate and stored for 30 months in a bright room, the polymerization reaction proceeded and the photosensitive properties were deactivated.
実施例 7  Example 7
市販の未露光のネガ型 P S版 (富士写真フィルム製、 FNS) に、 表 9の組成 を有する塗液を用いて、 カーテンコート法により塗布後、 4 0°Cで 2分間風乾さ せて、 熱溶融性微粒子層 (膜厚 3. 0 fim) を得た。  Using a coating solution having the composition shown in Table 9, a curtain coating method was applied to a commercially available unexposed negative PS plate (Fuji Photo Film, FNS), followed by air drying at 40 ° C for 2 minutes. A thermally fusible fine particle layer (thickness: 3.0 fim) was obtained.
表 9 組成物 ポリメタクリノレ酸ラウリル (分子量 2. 0万) 5 ポリ酢酸ビニルェマルジョン (平均粒子径 0. 2 m) 5 0 カーボンブラック 5 飽和炭化水素 ( I P— 1 6 2 0 ;出光石油化学 (株) 製) 2 2 0 なお、 この塗液を用いて作製したポリ酢酸ビニル微粒子層の軟化点は 6 2 で めつた o  Table 9 Compositions Polyuryl lauryl methacrylate (Molecular weight 200000) 5 Polyvinyl acetate emulsion (average particle size 0.2 m) 50 Carbon black 5 Saturated hydrocarbons (IP-1620; Idemitsu Petrochemical) 220) The softening point of the polyvinyl acetate fine particle layer produced using this coating solution was 62.
半導体レーザ露光装置 ( 8 3 0 nm) で画像部に相当する熱溶融性微粒子層を 溶融定着させ、 次いで市販のネガ型 P S版用現像液 (富士写真フィルム製、 DN 3 C) を用いて、 非画像部の熱溶融性微粒子層と P S版感光層を除去した。 一旦 版面にガム引き処理を行って 2 0 0 °Cに加熱したオーブンでバ一ニング処理を施 して平版印刷版を得た。 版面を顕微鏡で観察したところ、 画像部の欠落、 非画像 部の溶出不良等のない高い解像性を有する画像であった。 また、 この平版印刷版 を用いて、 オフセット印刷を行ったところ、 地汚れ性、 耐刷力ともに良好で、 良 い印刷物を得ることができた。  A semiconductor laser exposure device (830 nm) melts and fixes the hot-melt fine particle layer corresponding to the image area, and then uses a commercially available negative-type PS plate developer (Fuji Photo Film, DN 3C). The heat-meltable fine particle layer and the PS plate photosensitive layer in the non-image area were removed. The plate surface was once subjected to gumming treatment and subjected to burning treatment in an oven heated to 200 ° C to obtain a lithographic printing plate. Observation of the plate surface with a microscope revealed that the image had high resolution without any missing image portions and poor elution in non-image portions. Offset printing was performed using this lithographic printing plate. As a result, good scumming property and printing durability were obtained, and good printed matter was obtained.
実施例 8  Example 8
市販の未露光のネガ型 P S版 (富士写真フィルム製、 FNS) に、 表 1 0の組 成を有する塗液を用いて、 カーテンコート法により塗布後、 4 0°Cで 2分間風乾 させて、 熱溶融性微粒子層 (膜厚 3. 0 fim を得た Using a coating solution with the composition shown in Table 10 on a commercially available unexposed negative PS plate (FNS, FNS) using the curtain coating method, air-dry at 40 ° C for 2 minutes. Then, a heat-meltable fine particle layer (thickness: 3.0 fim was obtained).
表 1 0 組成物 ポリメタクリル酸ラウリル (分子量 2. 0万) 5 ポリ酢酸ビニルェマルジョン (平均粒子径 0. 2〃 m) 5 0 下式 Iで表されるヘプタメチンシァニン染料 6 飽和炭化水素 ( I P— 1 6 2 0 ;出光石油化学製) 2 20  Table 10 Composition Polyuryl lauryl methacrylate (molecular weight 200000) 5 Polyvinyl acetate emulsion (average particle size 0.2〃m) 50 0 Heptamethine cyanine dye represented by the following formula I 6 Saturated hydrocarbon (IP-1620; manufactured by Idemitsu Petrochemical) 2 20
Figure imgf000036_0001
Figure imgf000036_0001
半導体レーザ露光装置 (8 3 0 nm) で画像部に相当する熱溶融性微粒子層を 溶融定着させ、 次いで市販のネガ型 PS版用現像液 (富士写真フィルム製、 DN 3 C) を用いて、 非画像部の熱溶融性微粒子層と PS版感光層を除去した。 さら に、 水銀灯により版面に紫外光を照射し、 一旦版面にガム引き処理を行って 2 0 0°Cに加熱したオーブンでバ一ニング処理を施して平版印刷版を得た。 版面を顕 微鏡で観察したところ、 画像部の欠落、 非画像部の溶出不良等のない高い解像性 を有する画像であった。 また、 この平版印刷版を用いて、 オフセッ ト印刷を行つ たところ、 地汚れ性、 耐刷力ともに良好で、 印刷枚数 5万枚目でも良い印刷物を 得ることができた。 A semiconductor laser exposure device (830 nm) melts and fixes the heat-meltable fine particle layer corresponding to the image area, and then uses a commercially available negative-type PS plate developer (Fuji Photo Film, DN 3C). The heat-meltable fine particle layer and the PS plate photosensitive layer in the non-image area were removed. Further, the plate surface was irradiated with ultraviolet light from a mercury lamp, the plate surface was once subjected to gumming treatment, and subjected to burning treatment in an oven heated to 200 ° C. to obtain a lithographic printing plate. Observation of the plate surface with a microscope revealed that the image had high resolution without any missing image areas and poor elution in non-image areas. Offset printing was performed using this lithographic printing plate. As a result, it was possible to obtain a printed matter that had good scumming properties and printing durability, and was good even with the 50,000th print.
実施例 9  Example 9
市販のポジ型 PS版 (富士写真フィルム製、 VS) を水銀灯にて版面を露光し た後に、 表 1 1の塗液を用いて、 力一テンコート法により塗布後、 室温で 1 0分 間風乾させて、 熱溶融性微粒子層 (膜厚 2. 5 u ) を得た。 表 1 1 組成物 ポリメタクリル酸ラゥリル (分子量 2 . 0万) 5 ポリ酢酸ビニルェマルジョン (平均粒子径 0 . 2〃 m) 2 5 力一ボンブラック 5 飽和炭化水素 ( I P— 1 6 2 0 ;出光石油化学製) 2 1 5 半導体レーザ露光装置 ( 8 3 0 n m) で画像部に相当する熱溶融性微粒子層を 溶融定着させ、 次いで市販のポジ型 P S版用現像液 (富士写真フィルム製、 D P 4 ) を用いて、 非画像部の熱溶融性微粒子層と P S版感光層を除去すると共に、 ガム引き処理を行った。 その後、 2 0 0 °Cに加熱したオーブンでバーニング処理 を施して平版印刷版を得た。 版面を顕微鏡で観察したところ、 画像部の欠落、 非 画像部の溶出不良等のない高い解像性を有する画像であった。 また、 この平版印 刷版を用いて、 オフセッ ト印刷を行ったところ、 地汚れ性、 耐刷力ともに良好で、 印刷枚数 5万枚目でも良い印刷物を得ることができた。 After exposing the commercially available positive PS plate (manufactured by Fuji Photo Film, VS) with a mercury lamp, applying the coating solution shown in Table 11 by the force coating method and then air-drying at room temperature for 10 minutes. As a result, a heat-fusible fine particle layer (film thickness 2.5 u) was obtained. Table 11 1 Composition Polyradiryl methacrylate (molecular weight 2,000,000) 5 Polyvinyl acetate emulsion (average particle size 0.2〃m) 2 5 Power black 5 Saturated hydrocarbon (IP-160; Idemitsu Petrochemical Co., Ltd. 2 15 A semiconductor laser exposure device (830 nm) fuses and fixes the heat-meltable fine particle layer corresponding to the image area, and then a commercially available positive PS plate developer (Fuji Photo Film, Using DP 4), the heat-fusible fine particle layer and the PS plate photosensitive layer in the non-image area were removed, and a gumming treatment was performed. Thereafter, a lithographic printing plate was obtained by performing a burning treatment in an oven heated to 200 ° C. Observation of the plate surface with a microscope revealed that the image had high resolution without any missing image portions and poor elution in non-image portions. Offset printing was performed using this lithographic printing plate. As a result, it was possible to obtain a printed matter having good scumming property and printing durability, and having a printability of 50,000 sheets.
実施例 1 0  Example 10
下記の製造装置を用いて、 市販のポジ型 P S版 (富士写真フィルム製、 V S ) を全面に紫外光を照射した後に、 市販の液体トナー (三菱製紙製、 O D P— TW) を用いて、 熱溶融性微粒子層を形成させた。 なお、 この塗液を用いて作製した熱 溶融性微粒子層の軟化点は 6 5 °Cであつた。  After irradiating the entire surface of a commercially available positive PS plate (manufactured by Fuji Photo Film, VS) with ultraviolet light using the following manufacturing equipment, heat was applied using a commercially available liquid toner (manufactured by Mitsubishi Paper Mills, ODP-TW). A fusible fine particle layer was formed. The softening point of the heat-fusible fine particle layer produced using this coating solution was 65 ° C.
本実施の製造装置について図 1 0を用いて説明する。 まず、 表面が硬度 4 5度 の二トリルブタジエンゴム (N B R) で形成された送りローノレ対 4 3、 4 4によ つて表面を上向きとした印刷版 4 1 4 (本実施例ではポジ型 P S版である) は、 S U S 3 0 4 ( J I Sステンレス鋼) 製の電極 4 1とポリカーボネート製のガイ ド板 4 2で形成された間隙に導入される。 このときに回収タンク 4 1 0からボン プ 4 1 2によって液体トナー力 \ 電極 4 1に取り付けられている液吐出部 4 1 1 力、ら、 前記間隙に送液され塗出される。 また同時に電極 1と燐青銅製のアース片 4 7および S U S 3 0 4製の通版ガイド 4 9とに接続された電圧供給部 4 1 3か ら電圧が供給されるようになっている。 本実施例では、 供給される電圧の極性は 塗液中の熱溶融性微粒子が正電荷であるために、 + (プラス) とし、 1 8 0 Vの 電圧を印加した。 The manufacturing apparatus of this embodiment will be described with reference to FIG. First, a printing plate 4 1 4 with its surface facing upwards by means of a feed roller pair 43, 44 formed of nitrile butadiene rubber (NBR) having a hardness of 45 degrees (in this example, a positive PS plate) Is introduced into a gap formed by an electrode 41 made of SUS304 (JIS stainless steel) and a guide plate 42 made of polycarbonate. At this time, the liquid is fed from the collection tank 4 10 to the gap by the pump 4 12 from the recovery tank 4 10 to the liquid discharge portion 4 11 1 attached to the electrode 41, and is applied. At the same time, the voltage supply unit 4 1 3 connected to the electrode 1 and the phosphor bronze ground strip 47 and the SUS 304 pass-through guide 49 Are supplied with a voltage. In the present example, the polarity of the supplied voltage was set to + (plus) because the heat-fusible fine particles in the coating liquid had a positive charge, and a voltage of 180 V was applied.
続いて、 印刷版 4 1 4は絞りロール対 4 5、 4 6により、 余剰の塗液が絞液さ れ、 同時に、 図示しない高圧空気源と配管された気体吹き付け手段であるエアナ ィフ 4 8から印刷版 4 1 4と絞りロール対 4 5、 4 6とで形成される空隙部に向 けて高圧空気 (圧力 2 k gZ c m2 ) が吹き付けられる。 Subsequently, the printing plate 4 14 is squeezed out of the excess coating liquid by the squeezing roll pairs 45, 46, and at the same time, the air nip 48, which is a gas blowing means connected to a high-pressure air source (not shown), is provided. Then, high-pressure air (pressure 2 kgZcm 2 ) is blown toward the gap formed by the printing plate 4 14 and the squeezing roll pairs 45, 46.
さらに印刷版 4 1 4は、 4つの回転軸 4 2 3に懸架された搬送ベルト 4 2 4と 吸引ボックス 4 2 2から構成される吸着搬送手段によりその裏面を吸着されつつ 搬送される。 吸引ボックス 4 2 2内部には最大風量 5 0 0 1 /m i nの排気ファ ン (図示せず) が 2台設けられている。 この上部には分散媒の蒸発促進手段であ る乾燥ファン (最大静圧 6 mm A q ) が 2台配置されており、 印刷版 4 1 4上の 絞り切れなかった塗液中の分散媒を風乾するようになっている。 本実施例では、 乾燥ファンの吹き出し温度を測定したところ、 2 0 °Cであった。  Further, the printing plate 4 14 is conveyed while its back surface is adsorbed by the adsorbing / conveying means composed of the conveying belt 4 24 suspended on the four rotating shafts 4 2 3 and the suction box 4 22. Inside the suction box 4 2 2, two exhaust fans (not shown) with a maximum air flow of 500 1 / min are provided. Above this, two drying fans (maximum static pressure 6 mm A q), which are means for accelerating the dispersion medium evaporation, are arranged. It is designed to air dry. In this example, the blowing temperature of the drying fan was measured and found to be 20 ° C.
続いて、 印刷版 4 1 4は 2つの回転軸 4 3 0に懸架された搬送ベルト 4 3 1力、 らなるバッファ部へ搬送される。 ここで印刷版 4 1 4を取り出した。  Subsequently, the printing plate 4 14 is conveyed to a buffer section comprising a conveying belt 4 31 suspended on two rotating shafts 4 30. Here, the printing plate 4 14 was taken out.
以上のように処理を施した P S版を、 半導体レーザ露光装置 ( 8 3 0 n m) で 画像部に相当する熱溶融性微粒子層を溶融定着させ、 次いで市販のポジ型 P S版 用現像液 (富士写真フィルム製、 D P 4 ) を用いて、 非画像部の熱溶融性微粒子 層と P S版感光層を除去した。 一旦版面にガム引き処理を行って 2 0 0 °Cに加熱 したオーブンでバーニング処理を施して平版印刷版を得た。 版面を顕微鏡で観察 したところ、 画像部の欠落、 非画像部の溶出不良等のない高い解像性を有する画 像であった。 また、 この平版印刷版を用いて、 オフセット印刷を行ったところ、 印刷開始時から地汚れ性、 耐刷力ともに良好で、 印刷枚数 5万枚目でも良い印刷 物を得ることができた。  The PS plate treated as described above is melt-fixed with a semiconductor laser exposure apparatus (830 nm) to a hot-melt fine particle layer corresponding to the image area, and then a commercially available positive PS plate developer (Fuji Using a photographic film, DP4), the heat-meltable fine particle layer and the PS plate photosensitive layer in the non-image area were removed. The lithographic printing plate was obtained by performing a gumming treatment on the plate surface and a burning treatment in an oven heated to 200 ° C. Observation of the plate surface with a microscope revealed that the image had high resolution without any missing image portions and poor elution in non-image portions. Offset printing was performed using this lithographic printing plate. As a result, it was possible to obtain a printed material that had good scumming resistance and printing durability from the start of printing, and was good for the 50,000th print.
実施例 1 1  Example 1 1
用いる印刷版として市販の電子写真方式の平版印刷版 (三菱製紙製、 O D P · N D - 3 0 0 ) を使用した他は実施例 7と同様にして熱溶融性微粒子層を形成さ せた。 処理を施した印刷版を、 半導体レーザ露光装置 (8 3 0 nm) で画像部に相当 する熱溶融性微粒子層を溶融定着させ、 次いで電子写真方式の平版印刷版用溶出 液 (三菱製紙製、 ODP— DF) を用いて、 非画像部の熱溶融性微粒子層と感光 層を除去し、 平版印刷版を得た。 版面を顕微鏡で観察したところ、 画像部の欠落、 非画像部の溶出不良等のない高い解像性を有する画像であった。 また、 この平版 印刷版を用いて、 オフセット印刷を行ったところ、 印刷開始時から地汚れ性、 耐 刷力ともに良好で、 印刷枚数 1 0万枚目でも良い印刷物を得ることができた。 実施例 1 2 A heat-meltable fine particle layer was formed in the same manner as in Example 7, except that a commercially available electrophotographic lithographic printing plate (ODP ND-300, manufactured by Mitsubishi Paper Mills) was used as the printing plate. The processed printing plate is melt-fixed with a semiconductor laser exposure device (830 nm) to a heat-fusible fine particle layer corresponding to the image area, and then an electrophotographic lithographic printing plate eluent (Mitsubishi Paper, Using ODP-DF), the fusible fine particle layer and the photosensitive layer in the non-image area were removed to obtain a lithographic printing plate. Observation of the plate surface with a microscope revealed that the image had high resolution without any missing image portions and poor elution in non-image portions. Offset printing was performed using this lithographic printing plate. As a result, it was possible to obtain a printed matter which had good soiling properties and printing durability from the start of printing, and was satisfactory even on the 100,000th print. Example 1 2
スルーホールの形成と穴埋めインクの充塡 Formation of through holes and filling of filling ink
ガラス基材エポキシ樹脂板の両面に銅箔を張り合わせた両面銅張積層板 (三菱 ガス化学 (株) 製、 2 0 0 X 3 0 0 X 0. 8 mm、 銅厚 1 8 /m) に、 0. 4mm0および 0. 6 mm0のスルーホールを 1 0 0個ずつ開けた後、 銅めつき 処理 (奥野製薬 (株) 、 0 PCプロセス M) を施し、 スルーホール内部を含む積 層板表面に厚さ 8 mの銅めつき層を設けた。 次いで、 穴埋めインク (三栄化学 (株) 製、 SER— 4 5 0W) をロールコート法によってスルーホール内部に充 塡した後、 熱硬化させた。 スルーホール内部以外の銅めつき層上の穴埋めインク はバフ研磨および水洗処理により除去した。  On a double-sided copper-clad laminate (200 x 300 x 0.8 mm, copper thickness 18 / m, manufactured by Mitsubishi Gas Chemical Co., Ltd.) After drilling 100 through holes of 0.4 mm0 and 0.6 mm0 each, a copper plating process (Okuno Pharmaceutical Co., Ltd., 0PC process M) is applied to the surface of the laminated board including the inside of the through holes. A copper plating layer having a thickness of 8 m was provided. Next, a hole-filling ink (SER-450W, manufactured by San-ei Chemical Co., Ltd.) was applied to the inside of the through-hole by a roll coating method, followed by heat curing. Filling ink on the copper plating layer other than inside the through holes was removed by buffing and washing.
アル力リ可溶樹脂層および熱溶融性微粒子層の形成  Formation of Al-soluble resin layer and hot-melt fine particle layer
スルーホールへの穴埋めィンクの充塡を完了した後、 表 4の組成を有する塗布 液を用いて、 カーテンコート法により塗布後、 9 0°Cで 1 0分間乾燥させて、 ァ ルカリ可溶樹脂層 (膜厚 4. 5 ) を得た。 さらに、 表 5の組成を有する塗布 液を用いて、 カーテンコート法により塗布後、 4 0°Cで 2分間風乾させて、 熱溶 融性微粒子層 (膜厚 1. 5 / m) を得た。  After the filling of the through-hole filling ink into the through-hole is completed, the coating solution having the composition shown in Table 4 is applied by the curtain coating method, and the coating is dried at 90 ° C for 10 minutes. A layer (film thickness 4.5) was obtained. Furthermore, using a coating solution having the composition shown in Table 5, the composition was applied by curtain coating, and then air-dried at 40 ° C for 2 minutes to obtain a heat-meltable fine particle layer (film thickness: 1.5 / m). .
エッチングレジスト層の形成  Formation of etching resist layer
半導体レーザ露光装置 (7 8 0 nm) で配線部に相当する熱溶融性微粒子層を 溶融定着させて溶融定着層とし、 次いで 5. 0 %炭酸ナトリウム溶液 (液温 3 5 °C) をスプレー (2. 0 k g/cm2 ) し、 非配線部の熱溶融性微粒子層とアル カリ可溶樹脂層を除去して、 アルカリ可溶樹脂層、 溶融定着層、 穴埋めインクと からなるエッチングレジスト層を得た。 このエツチングレジスト層を顕微鏡で観 察したところ、 配線部の欠落、 非画像部分の汚れ等のない高解像性の配線画像で あった。 A semiconductor laser exposure apparatus (780 nm) melts and fixes the heat-meltable fine particle layer corresponding to the wiring section to form a fusion-fixed layer, and then sprays 5.0% sodium carbonate solution (liquid temperature of 35 ° C) ( 2.0 kg / cm 2 ) to remove the heat-fusible fine particle layer and the alkali-soluble resin layer in the non-wiring area, and form an etching resist layer consisting of the alkali-soluble resin layer, the fusion fixing layer, and the ink for filling the hole. Obtained. Observe this etching resist layer with a microscope. From the observation, it was a high-resolution wiring image with no missing wiring parts and no stain on non-image parts.
エツ ンク: Etunk:
エッチングレジスト層を形成した後、 塩化第二鉄溶液 (4 5°C、 スプレー圧: 3. 0 k g/cm2 ) で処理し、 エッチングレジスト層で被覆されていない部分 の銅めつき層および銅層を除去した。 次いで、 4 0°Cの 3. 0%水酸化ナトリウ ム溶液で処理し、 残存するエッチングレジスト層を除去し、 プリント配線板を得 た。 得られたプリント配線板を顕微鏡で観察したところ、 断線等の欠陥は見られ なかった。 また、 スルーホール内部にもピンホール等の欠陥は確認されなかった。 保存性試験 After the etching resist layer is formed, it is treated with a ferric chloride solution (45 ° C, spray pressure: 3.0 kg / cm 2 ), and the copper plating layer and the copper that are not covered with the etching resist layer The layer was removed. Then, the substrate was treated with a 3.0% sodium hydroxide solution at 40 ° C. to remove the remaining etching resist layer, thereby obtaining a printed wiring board. Observation of the obtained printed wiring board with a microscope showed no defects such as disconnection. No defects such as pinholes were found inside the through holes. Storage test
穴埋めインク充填、 アルカリ可溶樹脂層形成、 および熱溶融性微粒子層形成を 行った積層板を 3 0°Cの明室下で 4ヶ月保存した後に、 上記と同様の方法でエツ チングレジスト層の形成を行ったところ、 欠陥の無い配線画像を得ることができ た。  After storing the laminated board on which the ink for filling the hole, the formation of the alkali-soluble resin layer, and the formation of the heat-meltable fine particle layer have been stored for 4 months in a light room at 30 ° C, the etching resist layer is formed in the same manner as above. As a result, a wiring image free from defects was obtained.
実施例 1 3  Example 13
スルーホールの形成  Forming through holes
ガラス基材エポキシ樹脂板の両面に銅箔を張り合わせた両面銅張積層板 (三菱 ガス化学 (株) 製、 2 0 0 X 3 0 0 X 0. 8 mm、 銅厚 1 8 〃 m) に、 0. To a double-sided copper-clad laminate (Mitsubishi Gas Chemical Co., Ltd., 200 x 300 x 0.8 mm, copper thickness 18 〃 m) with copper foil laminated on both sides of a glass base epoxy resin plate, 0.
4 mm0および 0. 6 mm0のスルーホールを 1 0 0個ずつ開けた後、 銅めつき 処理 (奥野製薬 (株) 、 0 PCプロセス M) を施し、 スルーホール内部を含む積 層板表面に厚さ 8 zmの銅めつき層を設けた。 After opening 100mm through holes of 4mm0 and 0.6mm0 each, copper plating treatment (Okuno Pharmaceutical Co., Ltd., 0PC process M) is applied and the thickness of the laminated board surface including the inside of the through holes is increased. An 8 zm copper plating layer was provided.
アル力リ可溶性ドライフィルムの被覆  Coating of soluble dry film
表 1 2の組成を有する塗布液をロールコート法によって厚さ 1 5〃mのポリエ ステルフィルムに塗布後、 6 0°Cで 2 0分間乾燥して、 アルカリ可溶ドライフィ ルム (厚さ 1 5 fim) を得た。 上記スルーホール形成後積層板の銅めつき層表面 に、 アルカリ可溶性ドライフィルムを熱圧着し、 ポリエステルフィルムを除去し てめつき導電層を該ドライフィルムで被覆した。 CT / The coating solution having the composition shown in Table 12 was applied to a polyester film having a thickness of 15 m by the roll coating method, and then dried at 60 ° C for 20 minutes to obtain an alkali-soluble dry film (thickness 15). fim). After the formation of the through holes, an alkali-soluble dry film was thermocompression-bonded to the surface of the copper plating layer of the laminate, the polyester film was removed, and the plating conductive layer was covered with the dry film. CT /
3 9  3 9
表 1 2 組成 メタクリル酸 Zメタクリノレ酸 n—ブチル /ァクリノレ酸 n—  Table 1 2 Composition methacrylic acid Z-methacrylic acid n-butyl / acrinoleic acid n—
ブチル共重合体 (重量比: 3/3Z ' 4、 重量平均分子量 Butyl copolymer (weight ratio: 3 / 3Z'4, weight average molecular weight
3. 5万) 1 0 メタクリル酸/メタクリノレ酸 n—ブ 'チル Zァクリル酸 n—  3.50,000) 10 methacrylic acid / methacrylic acid n—butyl acrylic acid n—
ラウリル共重合体 (重量比 1 / 1 / ' 3、 重量平均分子量 1 5Lauryl copolymer (weight ratio 1/1 / 1'3, weight average molecular weight 15
1. 2万) 1.20,000)
カーボンブラック 5 ブチルセ口ソルブ 7 0 熱溶融性微粒子層の形成 Carbon black 5 Solvent with butyl mouth 7 0 Formation of heat-meltable fine particle layer
アル力リ可溶性ドライフィルムで銅めつき層を被覆した後、 表 5の組成を有す る塗布液を用いて、 ロールコート法で塗布後、 40°Cで風乾して、 アルカリ可溶 性ドライフィルム上に熱溶融性微粒子層 (膜厚 2. 1 ^m) を形成した。  After coating the copper plating layer with a soluble dry film, use a coating solution having the composition shown in Table 5 and apply it by the roll coating method, and then air dry at 40 ° C to obtain an alkali-soluble dry film. A hot-melt fine particle layer (film thickness 2.1 ^ m) was formed on the film.
エツチングレジスト層の形成 Formation of etching resist layer
半導体レーザ露光装置 ( 7 8 0 nm) で配線部に相当する熱溶融性微粒子層を 溶融定着させて溶融定着層とし、 次いで 5. 0%炭酸ナトリウム溶液 (液温 3 5 °C) をスプレー (2. 0 k g/cm2 ) し、 非配線部の熱溶融性微粒子層とアル 力リ可溶性ドライフィルムを除去して、 アル力リ可溶性ドライフィルムと溶融定 着層とからなるエッチングレジスト層を得た。 このエッチングレジスト層を顕微 鏡で観察したところ、 配線部の欠落、 非画像部分の汚れ等のない高解像性の配線 画像であつた。 A semiconductor laser exposure apparatus (780 nm) melts and fixes the heat-meltable fine particle layer corresponding to the wiring section to form a fusion-fixed layer, and then sprays 5.0% sodium carbonate solution (liquid temperature of 35 ° C) ( 2.0 kg / cm 2 ) to remove the heat-meltable fine particle layer and the soluble dry film in the non-wiring area to obtain an etching resist layer consisting of the soluble dry film and the fusion fixing layer. Was. Observation of this etching resist layer with a microscope revealed a high-resolution wiring image with no missing wiring portions and no stain on non-image portions.
エツチンクニ Etchinchini
エッチングレジス卜層を形成した後、 塩化第二鉄溶液 (4 5°C、 スプレー圧: 3. 0 k g/cm2 ) で処理し、 エッチングレジスト層で被覆されていない部分 の銅めつき層および銅層を除去した。 次いで、 4 0°Cの 3. 0 %水酸ィヒナトリゥ ム溶液で処理し、 残存するエッチングレジスト層を除去し、 プリント配線板を得 た。 得られたプリント配線板を顕微鏡で観察したところ、 断線等の欠陥は見られ なかった。 また、 スルーホール内部にもピンホール等の欠陥は確認されなかった。 保存性試験 After the etching resist layer is formed, it is treated with a ferric chloride solution (45 ° C, spray pressure: 3.0 kg / cm 2 ). The copper layer was removed. Next, the printed wiring board is obtained by removing the remaining etching resist layer by treating it with a 3.0% hydroxylamine solution at 40 ° C. Was. Observation of the obtained printed wiring board with a microscope showed no defects such as disconnection. No defects such as pinholes were found inside the through holes. Storage test
アル力リ可溶'性ドライフィルム被覆および熱溶融性微粒子層形成を行った積層 板を 3 0°Cの明室下で 4ヶ月保存した後に、 上記と同様の方法でエッチングレジ スト層の形成を行ったところ、 欠陥の無い配線画像を得ることができた。  After storing the laminated plate on which the dry film coating with heat flux and the heat-meltable fine particle layer were formed for 4 months in a light room at 30 ° C, an etching resist layer was formed in the same manner as above. As a result, a wiring image free from defects was obtained.
実施例 1 4  Example 14
スル二ホールの形成と穴埋めインクの充塡 Formation of through hole and filling of filling ink
ガラス基材エポキシ樹脂板の両面に銅箔を張り合わせた両面銅張積層板 (三菱 ガス化学 (株) 製、 2 0 0 X 3 0 0 X 0. 8 mm、 銅厚 1 8 〃 m) に、 0. 4mm0および 0. 6 mm0のスルーホールを 1 0 0個ずつ開けた後、 銅めつき 処理 (奥野製薬 (株) 、 0 PCプロセス M) を施し、 スルーホール内部を含む積 層板表面に厚さ 8 mの銅めつき層を設けた。 次いで、 実施例 1で使用した穴埋 めインクをスキージ法によってスルーホール内部に充填した後、 熱硬化させた。 スルーホール内部以外の銅めつき層上の穴埋めィンクはバフ研磨および水洗処理 により除去した。  To a double-sided copper-clad laminate (Mitsubishi Gas Chemical Co., Ltd., 200 x 300 x 0.8 mm, copper thickness 18 〃 m) with copper foil laminated on both sides of a glass base epoxy resin plate, After drilling 100 through holes of 0.4 mm0 and 0.6 mm0 each, a copper plating process (Okuno Pharmaceutical Co., Ltd., 0PC process M) is applied to the surface of the laminated board including the inside of the through holes. A copper plating layer having a thickness of 8 m was provided. Next, the hole filling ink used in Example 1 was filled in the through holes by a squeegee method, and was thermally cured. Filling ink on the copper plating layer other than inside the through hole was removed by buffing and washing.
アル力リ可溶樹脂層および熱溶融性微粒子層の形成 Formation of Al-soluble resin layer and hot-melt fine particle layer
スルーホールへの穴埋めインクの充塡を完了した後、 表 6の組成を有する塗布 液を用いて、 浸漬法により塗布後、 9 0°Cで 1 0分間乾燥させて、 アルカリ可溶 樹脂層 (膜厚 3. 2 /zm) を得た。 さらに、 表 3の組成を有する塗布液を用いて、 電着法 (印加電圧 1 5 0 V) により塗布後、 4 0°Cで 2分間風乾させて、 熱溶融 性微粒子層 (膜厚 2. 0 zm) を得た。  After the filling of the through-hole with the filling ink is completed, it is applied by a dipping method using a coating solution having the composition shown in Table 6, and then dried at 90 ° C for 10 minutes to obtain an alkali-soluble resin layer ( A film thickness of 3.2 / zm) was obtained. Furthermore, using a coating solution having the composition shown in Table 3, coating was performed by an electrodeposition method (applied voltage: 150 V), followed by air-drying at 40 ° C for 2 minutes to obtain a heat-meltable fine particle layer (film thickness 2. 0 zm).
エッチングレジスト層の形成  Formation of etching resist layer
半導体レーザ露光装置 (7 8 0 nm) で配線部に相当する熱溶融性微粒子層を 溶融定着させて溶融定着層とし、 次いで 5. 0%炭酸ナトリウム溶液 (液温 3 5 A semiconductor laser exposure device (780 nm) melts and fixes the heat-meltable fine particle layer corresponding to the wiring section to form a melt-fixed layer. Then, a 5.0% sodium carbonate solution (liquid temperature 35
°C) をスプレー (2. 0 k g/cm2 ) し、 非酉己線部の熱溶融性微粒子層とアル カリ可溶樹脂層を除去して、 アルカリ可溶樹脂層、 溶融定着層、 穴埋めインクと からなるエッチングレジスト層を得た。 このエツチングレジスト層を顕微鏡で観 察したところ、 配線部の欠落、 非画像部分の汚れ等のない高解像性の配線画像で あつた o ° C) was sprayed (2. 0 kg / cm 2) , the heat melting particles layer and alkali-soluble resin layer of non Rooster himself wire unit is removed, the alkali-soluble resin layer, fusing layer, filling An etching resist layer composed of the ink and was obtained. Observation of this etching resist layer with a microscope revealed a high-resolution wiring image with no missing wiring parts and no stain on non-image parts. Hot o
エッチング Etching
エッチングレジスト層を形成した後、 塩化第二鉄溶液 (4 5 °C、 スプレー圧: 3 . 0 k g / c m2 ) で処理し、 エッチングレジスト層で被覆されていない部分 の銅めつき層および銅層を除去した。 次いで、 4 0 °Cの 3 . 0 %水酸化ナトリウ ム溶液で処理し、 残存するエッチングレジスト層を除去し、 プリント配線板を得 た。 得られたプリント配線板を顕微鏡で観察したところ、 断線等の欠陥は見られ なかった。 また、 スルーホール内部にもピンホール等の欠陥は確認されなかった。 保存性試験 After forming the etching resist layer, it is treated with a ferric chloride solution (45 ° C, spray pressure: 3.0 kg / cm 2 ), and the copper plating layer and the copper that are not covered with the etching resist layer The layer was removed. Next, treatment with a 3.0% sodium hydroxide solution at 40 ° C. was performed to remove the remaining etching resist layer, thereby obtaining a printed wiring board. Observation of the obtained printed wiring board with a microscope showed no defects such as disconnection. No defects such as pinholes were found inside the through holes. Storage test
穴埋めインク充塡、 アルカリ可溶樹脂層形成、 および熱溶融性微粒子層形成を 行った積層板を 3 0 °Cの明室下で 4ヶ月保存した後に、 上記と同様の方法でエツ チングレジスト層の形成を行つたところ、 欠陥の無レ、配線画像を得ることができ た。  After storing the laminate having been filled with the ink for filling in holes, forming the alkali-soluble resin layer, and forming the heat-meltable fine particle layer in a light room at 30 ° C for 4 months, the etching resist layer is formed in the same manner as described above. As a result, no defect was found and a wiring image could be obtained.
実施例 1 5  Example 15
スルーホールの形成 Forming through holes
ガラス基材エポキシ樹脂板の両面に銅箔を張り合わせた両面銅張積層板 (三菱 ガス化学 (株) 製、 2 0 0 X 3 0 0 X 0 . 8 m m. 銅厚 1 8 〃 m) に、 0 . 4 mm øおよび 0 . 6 mm øのスルーホールを 1 0 0個ずつ開けた後、 銅めつき 処理 (奥野製薬 (株) 、 ◦ P Cプロセス M) を施し、 スルーホール内部を含む積 層板表面に厚さ 8 z mの銅めつき層を設けた。  To a double-sided copper-clad laminate (Mitsubishi Gas Chemical Co., Ltd., 200 mm x 300 mm x 0.8 mm, copper thickness 18 mm) After opening 100 through holes of 0.4 mm ø and 0.6 mm ø each, and then performing copper plating (Okuno Pharmaceutical Co., Ltd., PC process M), the product including the inside of the through holes A copper plating layer having a thickness of 8 zm was provided on the surface of the layer plate.
アルカリ可溶性ドライフィルムの被覆 Coating of alkali-soluble dry film
スルーホールを形成した後、 実施例 2と同様の方法でアルカリ可溶性ドライフ イルムを、 銅めつき層表面に被覆した。  After forming the through holes, an alkali-soluble dry film was coated on the copper plating layer surface in the same manner as in Example 2.
熱溶融性微粒子層の形成 Formation of hot-melt particulate layer
アル力リ可溶性ドライフィルムで銅めつき層を被覆した後、 表 3の組成を有す る塗布液を用いて、 電着法で塗布後、 4 0 °Cで風乾して、 アルカリ可溶性フィル ム上に熱溶融性微粒子層 (膜厚 2 . 6 m) を形成した。  After coating the copper plating layer with an Al-soluble dry film, apply it by the electrodeposition method using a coating solution having the composition shown in Table 3, then air-dry at 40 ° C to obtain an alkali-soluble film. A hot-melt fine particle layer (2.6 m thick) was formed thereon.
エッチングレジスト層の形成  Formation of etching resist layer
半導体レーザ露光装置 (7 8 0 n m) で配線部に相当する熱溶融性微粒子層を CT/JP 7 3 1 Using a semiconductor laser exposure device (780 nm), a layer of heat-meltable fine particles CT / JP 7 3 1
4 2 溶融定着させて溶融定着層とし、 次いで 5. 0%炭酸ナトリウム溶液 (液温 3 5 °C) をスプレー (2. 0 k g/cm2 ) し、 非配線部の熱溶融性微粒子層とアル 力リ可溶性ドライフィルムを除去して、 アル力リ可溶性ドライフィルムと溶融定 着層とからなるエッチングレジスト層を得た。 このエッチングレジスト層を顕微 鏡で観察したところ、 配線部の欠落、 非画像部分の汚れ等のない高解像性の配線 画像であつた。 4 2 Fusing and fixing to form a fusing layer, then spraying (2.0 kg / cm 2 ) with 5.0% sodium carbonate solution (liquid temperature 35 ° C) The soluble dry film was removed to obtain an etching resist layer composed of the soluble dry film and the fusion fixing layer. Observation of this etching resist layer with a microscope revealed a high-resolution wiring image with no missing wiring portions and no stain on non-image portions.
エッチング Etching
エッチングレジスト層を形成した後、 塩化第二鉄溶液 (4 5°C、 スプレー圧: 3. 0 k g/cm2 ) で処理し、 エッチングレジスト層で被覆されていない部分 の銅めつき層および銅層を除去した。 次いで、 4 0°Cの 3. 0%水酸化ナトリウ ム溶液で処理し、 残存するエッチングレジスト層を除去し、 プリント配線板を得 た。 得られたプリント配線板を顕微鏡で観察したところ、 断線等の欠陥は見られ なかった。 また、 スルーホール内部にもピンホール等の欠陥は確認されなかった。 保存性試験 After the etching resist layer is formed, it is treated with a ferric chloride solution (45 ° C, spray pressure: 3.0 kg / cm 2 ), and the copper plating layer and the copper that are not covered with the etching resist layer The layer was removed. Then, the substrate was treated with a 3.0% sodium hydroxide solution at 40 ° C. to remove the remaining etching resist layer, thereby obtaining a printed wiring board. Observation of the obtained printed wiring board with a microscope showed no defects such as disconnection. No defects such as pinholes were found inside the through holes. Storage test
アル力リ可溶性ドライフィルム被覆および熱溶融性微粒子層形成を行った積層 板を 3 0°Cの明室下で 4ヶ月保存した後に、 上記と同様の方法でエッチングレジ スト層の形成を行ったところ、 欠陥の無い配線画像を得ることができた。  The laminated plate on which the soluble dry film coating and the heat-fusible fine particle layer were formed was stored for 4 months in a light room at 30 ° C, and then an etching resist layer was formed in the same manner as above. However, a defect-free wiring image could be obtained.
実施例 1 6  Example 16
スルーホールの形成と穴埋めィンクの充塡  Formation of through holes and filling of fill holes
ガラス基材エポキシ樹脂板の両面に銅箔を張り合わせた両面銅張積層扳 (三菱 ガス化学 (株) 製、 2 0 0 X 3 0 0 X 0. 8 mm、 銅厚 1 8 zm) に、 0. 4mm0および 0. 6 mm0のスルーホールを 1 00個ずつ開けた後、 銅めつき 処理 (奥野製薬 (株) 、 0 PCプロセス M) を施し、 スルーホール内部を含む積 層板表面に厚さ 8 mの銅めつき層を設けた。 次いで、 実施例 1 2で使用した穴 埋めインクをロールコート法によってスルーホール内部に充塡した後、 熱硬化さ せた。 スルーホール内部以外の銅めつき層上の穴埋めィンクはバフ研磨および水 洗処理により除去した。  A double-sided copper-clad laminate with copper foil laminated on both sides of a glass-based epoxy resin plate (Mitsubishi Gas Chemical Co., Ltd., 200 x 300 x 0.8 mm, copper thickness 18 zm) After opening 100 through holes of 4 mm0 and 0.6 mm0 each, a copper plating treatment (Okuno Pharmaceutical Co., Ltd., 0PC process M) is applied, and the thickness of the laminated board surface including the inside of the through holes is increased. An 8 m copper plating layer was provided. Next, the filling ink used in Example 12 was filled in the inside of the through-hole by a roll coating method, and was thermally cured. Filling ink on the copper-plated layer other than inside the through hole was removed by buffing and washing.
アル力リ可溶樹脂層および熱溶融性微粒子層の形成  Formation of Al-soluble resin layer and hot-melt fine particle layer
スルーホールへの穴埋めインクの充塡を完了した後、 表 8の組成を有する塗布 液を用いて、 電着法 (印加電流 1 0 O mA) により塗布後、 9 0°Cで 1 0分間乾 燥させて、 アルカリ可溶樹脂層 (膜厚 3. 2 fim) を得た。 さらに、 表 3の組成 を有する塗布液を用いて、 電着法 (印加電圧 1 8 0 V) により塗布後、 4 0°Cで 2分間風乾させて、 熱溶融性微粒子層 (膜厚 2. 0 τη を得た。 After filling the through-hole with filling ink, fill with the composition shown in Table 8 The solution was applied by electrodeposition (applied current: 10 O mA) and dried at 90 ° C for 10 minutes to obtain an alkali-soluble resin layer (thickness: 3.2 fim). Furthermore, using a coating solution having the composition shown in Table 3, coating was performed by an electrodeposition method (applied voltage: 180 V), and then air-dried at 40 ° C for 2 minutes to obtain a heat-meltable fine particle layer (film thickness 2. 0 τη was obtained.
エッチングレジスト層の形成 Formation of etching resist layer
半導体レーザ露光装置 (7 8 0 nm) で配線部に相当する熱溶融性微粒子層を 溶融定着させて溶融定着層とし、 次いで 5. 0 %炭酸ナトリウム溶液 (液温 3 5 °C) をスプレー (2. 0 k g/cm2 ) し、 非配線部の熱溶融性微粒子層とアル カリ可溶樹脂層を除去して、 アルカリ可溶樹脂層、 溶融定着層、 穴埋めインクと からなるエッチングレジスト層を得た。 このエッチングレジスト層を顕微鏡で観 察したところ、 配線部の欠落、 非画像部分の汚れ等のない高解像性の配線画像で めつた o A semiconductor laser exposure apparatus (780 nm) melts and fixes the heat-meltable fine particle layer corresponding to the wiring section to form a fusion-fixed layer, and then sprays 5.0% sodium carbonate solution (liquid temperature of 35 ° C) ( 2.0 kg / cm 2 ) to remove the heat-fusible fine particle layer and the alkali-soluble resin layer in the non-wiring area, and form an etching resist layer consisting of the alkali-soluble resin layer, the fusion fixing layer, and the ink for filling the hole. Obtained. Observation of this etching resist layer with a microscope revealed that it was a high-resolution wiring image with no missing wiring parts and no stain on non-image parts.o
エツチン Etchin
エッチングレジスト層を形成した後、 塩化第二鉄溶液 (4 5°C、 スプレー圧: 3. 0 k g/cm2 ) で処理し、 エッチングレジスト層で被覆されていない部分 の銅めつき層および銅層を除去した。 次いで、 4 0°Cの 3. 0 %水酸化ナトリウ ム溶液で処理し、 残存するエッチングレジスト層を除去し、 プリント配線板を得 た。 得られたプリント配線板を顕微鏡で観察したところ、 断線等の欠陥は見られ なかった。 また、 スルーホール内部にもピンホール等の欠陥は確認されなかった。 保存性試験 After the etching resist layer is formed, it is treated with a ferric chloride solution (45 ° C, spray pressure: 3.0 kg / cm 2 ), and the copper plating layer and the copper that are not covered with the etching resist layer The layer was removed. Next, the substrate was treated with a 3.0% sodium hydroxide solution at 40 ° C. to remove the remaining etching resist layer, thereby obtaining a printed wiring board. Observation of the obtained printed wiring board with a microscope showed no defects such as disconnection. No defects such as pinholes were found inside the through holes. Storage test
穴埋めインク充填、 アルカリ可溶樹脂層形成、 および熱溶融性微粒子層形成を 行った積層板を 3 0°Cの明室下で 4ヶ月保存した後に、 上記と同様の方法でエツ チングレジスト層の形成を行ったところ、 欠陥の無い配線画像を得ることができ ο  After storing the laminated board on which the ink for filling the hole, the formation of the alkali-soluble resin layer, and the formation of the heat-meltable fine particle layer have been stored for 4 months in a light room at 30 ° C, the etching resist layer is formed in the same manner as described above. After forming, a wiring image without any defects could be obtained ο
比較例 2  Comparative Example 2
ガラス基材エポキシ樹脂板の両面に銅箔を張り合わせた両面銅張積層板 (三菱 ガス化学 (株) 製、 2 0 0 X 3 0 0 X 0. 8 mm、 銅厚 1 8 〃 m) に、 0. 4 mm0および 1. 6 mm0のスルーホールを 1 0 0個ずつ開けた後、 銅めつき 処理 (奥野製薬 (株) 、 0 P Cプロセス M) を施し、 スルーホール内部を含む積 層板 Λ面に厚さ 8 mの銅めつき層を設けた。 この銅めつき層上にフォトポリマ —であるドライフィルムフォトレジスト (日本合成化学 (株) 製) を熱圧着した。 このフォトポリマーに、 上記実施例 1 2〜1 6と同様の半導体レーザ露光装置で、 露光を行ったが、 光重合反応を起こすことができなかった。 また、 ドライフィノレ ムフォトレジストを熱圧着した後、 3 0 °Cの明室下で 3ヶ月保存したところ、 重 合性が失活していた。 To a double-sided copper-clad laminate (Mitsubishi Gas Chemical Co., Ltd., 200 x 300 x 0.8 mm, copper thickness 18 〃 m) with copper foil laminated on both sides of a glass base epoxy resin plate, After drilling 100 through holes of 0.4 mm0 and 1.6 mm0 at a time, copper plating treatment (Okuno Pharmaceutical Co., Ltd., 0PC process M) is applied to the product including the inside of the through holes. Layer plate A copper plating layer with a thickness of 8 m was provided on the surface. A dry polymer photoresist (manufactured by Nippon Synthetic Chemical Co., Ltd.), which is a photopolymer, was thermocompression-bonded on the copper plating layer. This photopolymer was exposed to light using the same semiconductor laser exposure apparatus as in Examples 12 to 16 above, but no photopolymerization reaction could be caused. After the dry finolem photoresist was thermocompressed and stored in a light room at 30 ° C for 3 months, the polymer was inactivated.
産業上の利用可能性 Industrial applicability
以上説明したごとく、 本発明の画像形成材料は、 従来のフォトポリマ一を用い た画像形成材料よりも保存性が良好である。 また、 本発明の画像形成方法、 平版 印刷版の製版方法、 プリント配線板の製造方法では、 低出力のレーザを用いて容 易に直接描画方法で画像形成をすることが可能であり、 コンピュータ 'ッゥ 'プ レートにも対応することができ、 高解像性を有する画像を容易かつ低コス卜で得 ることができるという秀逸な効果をもたらす。  As described above, the image forming material of the present invention has better storage stability than the conventional image forming material using a photopolymer. Further, in the image forming method, the lithographic printing plate making method, and the printed wiring board manufacturing method of the present invention, it is possible to easily form an image by a direct drawing method using a low-output laser, and to use a computer. It is also compatible with a flat plate, and has an excellent effect that an image having high resolution can be obtained easily and at low cost.

Claims

請 求 の 範 囲 The scope of the claims
1. 基材上に、 熱溶融性微粒子層を設けてなる画像形成材料。 1. An image-forming material comprising a base material and a layer of heat-meltable fine particles.
2. 基材上に、 アルカリ可溶樹脂層と熱溶融性微粒子層とを順に有する画像形 成材料。  2. An image forming material having an alkali-soluble resin layer and a heat-meltable fine particle layer in this order on a substrate.
3. 基材上に、 熱溶融性微粒子層を設け、 画像とする部分の熱溶融性微粒子層 を加熱溶融させ、 基材表面上に定着させる画像形成方法。  3. An image forming method in which a heat-meltable fine particle layer is provided on a base material, and the heat-meltable fine particle layer in a portion to be imaged is heated and melted and fixed on the base material surface.
4. 基材上に、 アルカリ可溶樹脂層と熱溶融性微粒子層とを順に有する画像形 成材料の該熱溶融性微粒子層の画像部に相当する部分を溶融定着させた後、 非画 像部に相当する熱溶融性微粒子層およびアル力リ可溶樹脂層をアル力リ液によつ て除去することによって、 基材上に画像を形成する画像形成方法。  4. An image forming material having an alkali-soluble resin layer and a heat-fusible fine particle layer in this order on a base material is melt-fixed at a portion corresponding to the image area of the heat-fusible fine particle layer, and then the non-image is formed. An image forming method for forming an image on a base material by removing a hot-melt fine particle layer and a soluble resin layer corresponding to a part by a concentrated liquid.
5. 熱溶融性微粒子層が光吸収剤を含有する請求項 1記載の画像形成材料。 5. The image forming material according to claim 1, wherein the heat fusible fine particle layer contains a light absorbing agent.
6. アル力リ可溶樹脂層および熱溶融性微粒子層の少なくとも一つの層が光吸 収剤を含有する請求項 2記載の画像形成材料。 6. The image forming material according to claim 2, wherein at least one of the resin layer and the thermofusible fine particle layer contains a light absorbing agent.
7. 熱溶融性微粒子層が光吸収剤を含有する請求項 3記載の画像形成方法。 7. The image forming method according to claim 3, wherein the heat-meltable fine particle layer contains a light absorbing agent.
8. アル力リ可溶樹脂層および熱溶融性微粒子層の少なくとも一つの層が光吸 収剤を含有する請求項 4記載の画像形成方法。 8. The image forming method according to claim 4, wherein at least one of the resin layer and the thermofusible fine particle layer contains a light absorbing agent.
9. アル力リ可溶樹脂層を電着法で形成する請求項 4または 8記載の画像形成 方法。  9. The image forming method according to claim 4, wherein the soluble resin layer is formed by an electrodeposition method.
1 0. 熱溶融性微粒子層をレーザで溶融定着させる請求項 3、 4、 7、 8のい ずれか記載の画像形成方法。  10. The image forming method according to any one of claims 3, 4, 7, and 8, wherein the thermofusible fine particle layer is fused and fixed by a laser.
1 1. アルカリ可溶樹脂層を電着法で形成し、 かつ熱溶融性微粒子層をレーザ で溶融定着させる請求項 4または 8記載の画像形成方法。  11. The image forming method according to claim 4, wherein the alkali-soluble resin layer is formed by an electrodeposition method, and the thermofusible fine particle layer is fused and fixed by a laser.
1 2. 熱溶融性微粒子層を電着法で形成する請求項 3、 4、 7、 8のいずれか 記載の画像形成方法。  1 2. The image forming method according to claim 3, wherein the heat-meltable fine particle layer is formed by an electrodeposition method.
1 3. アルカリ可溶樹脂層を電着法で形成し、 熱溶融性微粒子層を電着法で形 成し、 かつ熱溶融性微粒子層をレーザで溶融定着させる請求項 4または 8記載の 画像形成方法。  The image according to claim 4 or 8, wherein the alkali-soluble resin layer is formed by an electrodeposition method, the heat-meltable fine particle layer is formed by an electrodeposition method, and the heat-meltable fine particle layer is fused and fixed by a laser. Forming method.
1 4. 基材が印刷版用支持体である請求項 1、 2、 5、 6のいずれか記載の画 像形成材料。 1 4. The image according to any one of claims 1, 2, 5, and 6, wherein the substrate is a support for a printing plate. Imaging material.
1 5. 基材が印刷版用支持体である請求項 3、 4、 7、 8のいずれか記載の画 像形成方法。  1 5. The image forming method according to claim 3, wherein the substrate is a support for a printing plate.
1 6. 基材が印刷版用支持体であって、 アルカリ可溶樹脂層を電着法で形成し、 かつ熱溶融性微粒子層をレーザで溶融定着させる請求項 4または 8記載の画像形 成方法。  1 6. The image forming method according to claim 4 or 8, wherein the base material is a support for a printing plate, the alkali-soluble resin layer is formed by an electrodeposition method, and the heat-meltable fine particle layer is fused and fixed by a laser. Method.
1 7. 基材が印刷版用支持体であって、 アルカリ可溶樹脂層を電着法で形成し、 熱溶融性微粒子層を電着法で形成し、 かつ熱溶融性微粒子層をレーザで溶融定着 させる請求項 4または 8記載の画像形成方法。  1 7. The substrate is a printing plate support, the alkali-soluble resin layer is formed by electrodeposition, the heat-meltable fine particle layer is formed by electrodeposition, and the heat-meltable fine particle layer is formed by laser. 9. The image forming method according to claim 4, wherein the fixing is performed by fusing.
1 8. 基材がプリント配線板製造用支持体である請求項 1、 2、 5、 6のいず れか記載の画像形成材料。  1 8. The image forming material according to any one of claims 1, 2, 5, and 6, wherein the substrate is a support for manufacturing a printed wiring board.
1 9. 基材がプリント配線板製造用支持体である請求項 3、 4、 7、 8のいず れか記載の画像形成方法。  1 9. The image forming method according to any one of claims 3, 4, 7, and 8, wherein the substrate is a support for manufacturing a printed wiring board.
2 0. 基材がプリント配線板製造用支持体であって、 アル力リ可溶樹脂層を電 着法で形成し、 かつ熱溶融性微粒子層をレーザで溶融定着させる請求項 4または 8記載の画像形成方法。  20. The substrate according to claim 4, wherein the base material is a support for manufacturing a printed wiring board, wherein the resin layer is formed by an electrodeposition method, and the layer of the heat-meltable fine particles is fused and fixed by a laser. Image forming method.
2 1. 基材がプリント酉己線扳製造用支持体であって、 アル力リ可溶樹脂層を電 着法で形成し、 熱溶融性微粒子層を電着法で形成し、 かつ熱溶融性微粒子層をレ 一ザで溶融定着させる請求項 4または 8記載の画像形成方法。  2 1. The base material is a substrate for the production of printed Tokki Line Co., Ltd., and the resin layer that can be dissolved is formed by electrodeposition, and the layer of heat-meltable fine particles is formed by electrodeposition. 9. The image forming method according to claim 4, wherein the conductive fine particle layer is fused and fixed by a laser.
2 2. 画像露光前の感光性平版印刷版の感光層上に、 分散媒と熱溶融性微粒子 を含む塗液を塗布し、 該熱溶融性微粒子の軟化点以下の雰囲気温度で該分散媒を 蒸発させて、 該熱溶融性微粒子層を層状に形成させる平版印刷版の製造方法。  2 2. On the photosensitive layer of the photosensitive lithographic printing plate before image exposure, apply a coating solution containing a dispersion medium and heat-meltable fine particles, and apply the dispersion medium at an ambient temperature equal to or lower than the softening point of the heat-meltable fine particles. A method for producing a lithographic printing plate wherein the heat-fusible fine particle layer is formed into a layer by evaporating.
2 3. 前記塗液が、 高電気抵抗率の分散媒に分散させた荷電を有する熱溶融性 微粒子であって、 電着法により画像露光前の感光性平版印刷版上に該熱溶融性微 粒子を塗布する請求項 2 2記載の平版印刷版の製造方法。  2 3. The coating liquid is heat-fusible fine particles having a charge dispersed in a dispersion medium having a high electric resistivity, and the heat-fusible fine particles are deposited on a photosensitive lithographic printing plate before image exposure by an electrodeposition method. The method for producing a lithographic printing plate according to claim 22, wherein the particles are applied.
2 4. 分散媒と熱溶融性微粒子を含む塗液を塗布し、 該熱溶融性微粒子の軟化 点以下の雰囲気温度で該分散媒を蒸発させて、 該熱溶融性微粒子を層状に形成さ せる装置であって、 ガイド板およびそれに対向して設置された電極、 前記ガイド 板と電極とで形成される間隙に、 高電気抵抗率の分散媒に分散させた荷電を有す る熱溶融性微粒子含有塗液を供給する手段、 前記電極から電圧を平版印刷版 ίこ向 け印加する手段、 および前記電極の下流に位置し余剰の塗液を絞液する手段を有 する平版印刷版の製造装置。 2 4. A coating liquid containing a dispersion medium and heat-meltable fine particles is applied, and the dispersion medium is evaporated at an ambient temperature equal to or lower than the softening point of the heat-meltable fine particles to form the heat-meltable fine particles in a layer. An apparatus, comprising: a guide plate and an electrode disposed opposite to the guide plate; and a gap formed between the guide plate and the electrode, having a charge dispersed in a dispersion medium having a high electrical resistivity. A lithographic printing plate having means for supplying a coating liquid containing heat-fusible fine particles, a means for applying a voltage from the electrode to a lithographic printing plate, and a means for squeezing excess coating liquid downstream of the electrode. Printing plate manufacturing equipment.
2 5. 前記余剰の塗液を絞液する手段が絞りロール対であって、 該絞りロール 対と前記感光性平版印刷版の端部とで形成される空隙部に向けた気体吹き付け手 段を有する請求項 2 4記載の平版印刷版の製造装置。  2 5. The means for squeezing the excess coating liquid is a squeezing roll pair, and means for blowing gas toward a gap formed between the squeezing roll pair and an end of the photosensitive lithographic printing plate. 25. The lithographic printing plate manufacturing apparatus according to claim 24, wherein:
2 6. 前記絞りロール対の下流に、 前記感光性平版印刷版の裏面を吸着して搬 送する手段を有する請求項 2 4または 2 5記載の平版印刷版の製造装置。  26. The lithographic printing plate manufacturing apparatus according to claim 24, further comprising means for adsorbing and transporting the back surface of the photosensitive lithographic printing plate downstream of the squeezing roll pair.
2 7. 前記絞りロール対の下流に、 分散媒蒸発促進手段を有する請求項 2 4ま たは 2 5記載の平版印刷版の製造装置。  27. The lithographic printing plate manufacturing apparatus according to claim 24 or 25, further comprising a dispersion medium evaporation promoting means downstream of the squeezing roll pair.
2 8. 前記絞りロール対の下流に、 前記感光性平版印刷版の裏面を吸着して搬 送する手段を有し、 かつ分散媒蒸発促進手段を有する請求項 2 4または 2 5記載 の平版印刷版の製造装置。  28. The lithographic printing method according to claim 24, further comprising means for adsorbing and transporting the back surface of the photosensitive lithographic printing plate downstream of the pair of squeezing rolls, and further comprising means for accelerating dispersion medium evaporation. Plate manufacturing equipment.
2 9. 感光性平版印刷版の感光層上に熱溶融性微粒子を層状に設け、 画像とす る部分の該熱溶融性微粒子層を加熱溶融させ前記感光性平版印刷版上に定着させ、 次いで非画像部を溶出除去する平版印刷版の製版方法。  2 9. Heat-fusible fine particles are provided in a layer on the photosensitive layer of the photosensitive lithographic printing plate, and the hot-melt fine particle layer in a portion to be an image is heated and melted and fixed on the photosensitive lithographic printing plate. A plate making method for lithographic printing plates that elutes and removes non-image areas.
3 0. 前記熱溶融性微粒子層に光吸収剤を含有する請求項 2 9記載の平版印刷 版の製版方法。  30. The method of making a lithographic printing plate according to claim 29, wherein the heat-fusible fine particle layer contains a light absorbing agent.
3 1. 前記光吸収剤が 6 0 0 n m以上の波長域に吸収極大を有し、 6 0 0 n m 未満の波長では吸収が極大値の 1 / 2である請求項 3 0記載の平版印刷版の製版 方法。  31. The lithographic printing plate according to claim 30, wherein the light absorber has an absorption maximum in a wavelength region of 600 nm or more, and the absorption is a half of a maximum value at a wavelength of less than 600 nm. Plate making method.
3 2. 前記感光性平版印刷版がネガ型であり、 非画像部除去後に版面に対し紫 外光を照射する請求項 2 9〜3 1のいずれか記載の平版印刷版の製版方法。  32. The method of making a lithographic printing plate according to any one of claims 29 to 31, wherein the photosensitive lithographic printing plate is a negative type, and the plate surface is irradiated with ultraviolet light after removing a non-image portion.
3 3. 前記感光性平版印刷版がポジ型であり、 前記熱溶融性微粒子層を設ける 前に版面に対し紫外光を照射する請求項 2 9〜3 1のいずれか記載の平版印刷版 の製版方法。  3 3. The lithographic printing plate according to any one of claims 29 to 31, wherein the photosensitive lithographic printing plate is a positive type, and the plate surface is irradiated with ultraviolet light before providing the heat-fusible fine particle layer. Method.
3 4. 前記感光性平版印刷版の非画像部を溶出除去した後にバーニング処理を 行う請求項 2 9〜3 1のいずれか記載の平版印刷版の製版方法。  31. The plate making method for a lithographic printing plate according to any one of claims 29 to 31, wherein a burning treatment is performed after a non-image portion of the photosensitive lithographic printing plate is eluted and removed.
3 5. 前記感光性平版印刷版がネガ型であり、 非画像部除去後に版面に対し紫 外光を照射し、 力、つ感光性平版印刷版の非画像部を溶出除去した後にバー二ング 処理を行う請求項 2 9〜3 1のいずれか記載の平版印刷版の製版方法。 3 5. The photosensitive lithographic printing plate is negative type, and after removing the non-image area, 32. The method of making a lithographic printing plate according to any one of claims 29 to 31, wherein a burning treatment is performed after irradiating external light to elute and remove a non-image portion of the photosensitive lithographic printing plate.
3 6. 前記感光性平版印刷版がポジ型であり、 前記熱溶融性微粒子層を設ける 前に版面に対し紫外光を照射し、 かつ感光性平版印刷版の非画像部を溶出除去し た後にバーニング処理を行う請求項 2 9〜 3 1のいずれか記載の平版印刷版の製 服 法。  3 6. The photosensitive lithographic printing plate is of a positive type, after irradiating the plate surface with ultraviolet light before providing the heat-meltable fine particle layer, and eluting and removing a non-image portion of the photosensitive lithographic printing plate. 31. The method of manufacturing a lithographic printing plate according to claim 29, wherein the lithographic printing plate is subjected to a burning treatment.
3 7. 絶縁性基板の少なくとも片面に導電層を設けた積層板にスルーホールを 開けた後、 スルーホール内部を含む積層板表面にめっき導電層を形成し、 次いで 配線部に相当するエッチングレジスト層を設け、 該エツチングレジスト層で被覆 されていないめつき導電層および導電層をエッチング除去し、 場合に応じて残存 するエッチングレジスト層を除去するプリント配線板の製造方法において、 スル 一ホール内部を穴埋めィンキで充填した後、 めっき導電層上にアル力リ可溶樹脂 層と熱溶融性微粒子層をこの順に形成し、 、て配線部に相当する部分の熱溶融 性微粒子層を溶融定着させた後、 非配線部に相当する部分の熱溶融性微粒子層と アルカリ可溶樹脂層を除去することによってエッチングレジスト層を形成するプ リント配線板の製造方法。  3 7. After making a through hole in the laminated board provided with a conductive layer on at least one side of the insulating substrate, a plated conductive layer is formed on the laminated board surface including the inside of the through hole, and then an etching resist layer corresponding to the wiring part A method of manufacturing a printed wiring board in which the adhered conductive layer and the conductive layer which are not covered with the etching resist layer are removed by etching, and the remaining etching resist layer is removed as the case may be. After filling with an ink, an Al-soluble resin layer and a heat-fusible fine particle layer are formed in this order on the plating conductive layer, and the heat-fusible fine particle layer at the portion corresponding to the wiring portion is fused and fixed. A printed wiring board in which an etching resist layer is formed by removing the heat-meltable fine particle layer and the alkali-soluble resin layer in a portion corresponding to the non-wiring portion. Production method.
3 8. 絶縁性基板の少なくとも片面に導電層を設けた積層板にスルーホ一ルを 開けた後、 スルーホール内部を含む積層板表面にめっき導電層を形成し、 次いで 配線部に相当するエッチングレジスト層を設け、 該エッチングレジスト層で被覆 されていないめつき導電層および導電層をエッチング除去し、 場合に応じて残存 するエッチングレジスト層を除去するプリント配線板の製造方法において、 アル 力リ可溶性ドライフィルムでめつき導電層上を被覆した後、 該ァルカリ可溶性ド ライフィルム上に熱溶融性微粒子層を形成し、 続いて配線部に相当する部分の熱 溶融性微粒子層を溶融定着させた後、 非配線部に相当する部分の熱溶融性微粒子 層とアル力リ可溶性ドライフィルムを除去することによってエッチングレジスト 層を形成するプリン卜配線板の製造方法。  3 8. After opening a through hole in the laminated board provided with a conductive layer on at least one side of the insulating substrate, form a plated conductive layer on the laminated board surface including the inside of the through hole, and then etch resist corresponding to the wiring section A method of manufacturing a printed wiring board, wherein a conductive layer and a conductive layer which are not covered with the etching resist layer are removed by etching, and the remaining etching resist layer is removed as the case may be. After coating the conductive layer with a film, a heat-meltable fine particle layer is formed on the alkali soluble dry film, and then the heat-meltable fine particle layer in a portion corresponding to the wiring portion is melted and fixed. An etching resist layer is formed by removing the heat-meltable fine particle layer and the Al-soluble soluble dry film in the part corresponding to the non-wiring part Manufacturing method of printed wiring board.
3 9. アル力リ可溶樹脂層および熱溶融性微粒子層から選ばれる少なくとも一 つの層が光吸収剤を含有する請求項 3 7記載のプリント酉己線板の製造方法。  39. The method according to claim 37, wherein at least one layer selected from the group consisting of a soluble resin layer and a thermally fusible fine particle layer contains a light absorbing agent.
4 0. アルカリ可溶性ドライフィルムおよび熱溶融性微粒子層から選ばれる少 なくとも一つの層が光吸収剤を含有する請求項 3 8記載のプリント配線板の製造 方法。 40. Small amount selected from alkali-soluble dry film and hot-melt fine particle layer 39. The method for producing a printed wiring board according to claim 38, wherein at least one layer contains a light absorbing agent.
4 1. アル力リ可溶樹脂層を電着法で形成する請求項 3 7または 3 9記載のプ リント配線板の製造方法。  41. The method for producing a printed wiring board according to claim 37, wherein the soluble resin layer is formed by an electrodeposition method.
4 2. 熱溶融性微粒子層をレ一ザで溶融定着させる請求項 3 7〜 4 0のいずれ か記載のプリント配線板の製造方法。  42. The method for producing a printed wiring board according to any one of claims 37 to 40, wherein the thermofusible fine particle layer is fused and fixed by a laser.
4 3. アル力リ可溶樹脂層を電着法で形成し、 熱溶融性微粒子層をレーザで溶 融定着させる請求項 3 7または 3 9記載のプリント配線板の製造方法。  40. The method for producing a printed wiring board according to claim 37, wherein the soluble resin layer is formed by an electrodeposition method, and the heat-meltable fine particle layer is fused and fixed by a laser.
4 4. 熱溶融性微粒子層を電着法で形成する請求項 3 7〜 4 0のレ、ずれか記載 のプリント配線板の製造方法。  4 4. The method for producing a printed wiring board according to any one of claims 37 to 40, wherein the heat-meltable fine particle layer is formed by an electrodeposition method.
4 5. アル力リ可溶樹脂層を電着法で形成し、 かつ熱溶融性微粒子層を電着法 で形成する請求項 3 7または 3 9記載のプリント配線板の製造方法。  40. The method for producing a printed wiring board according to claim 37, wherein the soluble resin layer is formed by an electrodeposition method, and the thermofusible fine particle layer is formed by an electrodeposition method.
4 6. 熱溶融性微粒子層を電着法で形成し、 かつ熱溶融性微粒子層をレーザで 溶融定着させる請求項 3 7〜 4 0のいずれか記載のプリント配線板の製造方法。  46. The method for producing a printed wiring board according to any one of claims 37 to 40, wherein the heat-meltable fine particle layer is formed by an electrodeposition method, and the heat-meltable fine particle layer is fused and fixed by a laser.
4 7. アルカリ可溶樹脂層を電着法で形成し、 また熱溶融性微粒子層を電着法 で形成し、 熱溶融性微粒子層をレーザで溶融定着させる請求項 3 7または 3 9記 載のプリント配線板の製造方法。  4 7. Claim 37 or 39, wherein the alkali-soluble resin layer is formed by an electrodeposition method, the heat-meltable fine particle layer is formed by an electrodeposition method, and the heat-meltable fine particle layer is fused and fixed by a laser. Manufacturing method of printed wiring board.
PCT/JP1997/003819 1997-08-22 1997-10-22 Image forming material, image forming method, lithographic printing plate manufacturing method and apparatus, lithographic printing plate making method, and printed wiring board manufacturing method WO1999010186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19781578T DE19781578C2 (en) 1997-08-22 1997-10-22 Imaging material, imaging method, method of making a lithographic printing plate and equipment used therefor, method of making a plate for a lithographic printing plate and method of making a printed wiring board

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/226262 1997-08-22
JP22626297A JPH1165099A (en) 1997-08-22 1997-08-22 Preparing method for lithographic printing plate
JP22626397A JPH1165100A (en) 1997-08-22 1997-08-22 Manufacturing method and device for lithographic printing plate
JP9/226263 1997-08-22

Publications (1)

Publication Number Publication Date
WO1999010186A1 true WO1999010186A1 (en) 1999-03-04

Family

ID=26527088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003819 WO1999010186A1 (en) 1997-08-22 1997-10-22 Image forming material, image forming method, lithographic printing plate manufacturing method and apparatus, lithographic printing plate making method, and printed wiring board manufacturing method

Country Status (2)

Country Link
DE (1) DE19781578C2 (en)
WO (1) WO1999010186A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160083A2 (en) 2000-06-02 2001-12-05 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1193055A2 (en) * 2000-09-28 2002-04-03 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor, printing method and printing machine
EP1228865A2 (en) 2001-02-06 2002-08-07 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1238801A2 (en) 2001-03-07 2002-09-11 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1287985A2 (en) * 2001-08-24 2003-03-05 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1302313A2 (en) 2001-10-16 2003-04-16 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1344644A2 (en) 2002-03-13 2003-09-17 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1356929A2 (en) 2002-04-24 2003-10-29 Fuji Photo Film Co., Ltd. Method of preparation of lithographic printing plates
EP1393899A2 (en) 2002-08-29 2004-03-03 Fuji Photo Film Co., Ltd. On-press developable lithographic printing plate precursor
US6815137B2 (en) 2000-12-28 2004-11-09 Fuji Photo Film Co., Ltd. Process for producing polymer fine particles and lithographic printing plate precursor using the same
EP1707352A1 (en) 2005-03-31 2006-10-04 Fuji Photo Film Co., Ltd. Method of producing a planographic printing plate
US7132212B2 (en) 2001-06-13 2006-11-07 Fuji Photo Film Co., Ltd. Presensitized plate
EP1972439A2 (en) 2007-03-20 2008-09-24 FUJIFILM Corporation On-press developable lithographic printing plate precursor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216833B2 (en) * 1978-12-20 1987-04-14 Tomoegawa Paper Mfg Ltd
JPH06237064A (en) * 1993-02-12 1994-08-23 Mitsubishi Rayon Co Ltd Manufacture of printed wiring board
JPH0851270A (en) * 1994-08-06 1996-02-20 Ibiden Co Ltd Manufacture of printed wiring board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614198B2 (en) * 1986-03-18 1994-02-23 三菱製紙株式会社 Printing plate for electrophotographic plate making
EP0770495B1 (en) * 1995-10-24 2002-06-19 Agfa-Gevaert A method for making a lithographic printing plate involving on press development
DE69608522T2 (en) * 1995-11-09 2001-01-25 Agfa Gevaert Nv Heat sensitive recording element and method for producing a lithographic printing form therewith
EP0773113B1 (en) * 1995-11-09 2000-05-24 Agfa-Gevaert N.V. Heat sensitive imaging element and method for making a printing plate therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216833B2 (en) * 1978-12-20 1987-04-14 Tomoegawa Paper Mfg Ltd
JPH06237064A (en) * 1993-02-12 1994-08-23 Mitsubishi Rayon Co Ltd Manufacture of printed wiring board
JPH0851270A (en) * 1994-08-06 1996-02-20 Ibiden Co Ltd Manufacture of printed wiring board

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160083A2 (en) 2000-06-02 2001-12-05 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
US6942955B2 (en) 2000-06-02 2005-09-13 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
US6905803B2 (en) 2000-06-02 2005-06-14 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1410907A2 (en) 2000-06-02 2004-04-21 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1193055A2 (en) * 2000-09-28 2002-04-03 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor, printing method and printing machine
EP1193055A3 (en) * 2000-09-28 2004-04-07 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor, printing method and printing machine
US6815137B2 (en) 2000-12-28 2004-11-09 Fuji Photo Film Co., Ltd. Process for producing polymer fine particles and lithographic printing plate precursor using the same
EP1228865A3 (en) * 2001-02-06 2003-12-03 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
US6641977B2 (en) 2001-02-06 2003-11-04 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1228865A2 (en) 2001-02-06 2002-08-07 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1238801A2 (en) 2001-03-07 2002-09-11 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
US7132212B2 (en) 2001-06-13 2006-11-07 Fuji Photo Film Co., Ltd. Presensitized plate
EP1287985A3 (en) * 2001-08-24 2003-11-26 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1287985A2 (en) * 2001-08-24 2003-03-05 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1302313A2 (en) 2001-10-16 2003-04-16 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1344644A2 (en) 2002-03-13 2003-09-17 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
US7078145B2 (en) 2002-03-13 2006-07-18 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
EP1356929A2 (en) 2002-04-24 2003-10-29 Fuji Photo Film Co., Ltd. Method of preparation of lithographic printing plates
US7198876B2 (en) 2002-04-24 2007-04-03 Fuji Photo Film Co., Ltd. Method of preparation of lithographic printing plates
EP1393899A2 (en) 2002-08-29 2004-03-03 Fuji Photo Film Co., Ltd. On-press developable lithographic printing plate precursor
US6969575B2 (en) 2002-08-29 2005-11-29 Fuji Photo Film Co., Ltd. On-press developable lithographic printing plate precursor
EP1707352A1 (en) 2005-03-31 2006-10-04 Fuji Photo Film Co., Ltd. Method of producing a planographic printing plate
EP1972439A2 (en) 2007-03-20 2008-09-24 FUJIFILM Corporation On-press developable lithographic printing plate precursor

Also Published As

Publication number Publication date
DE19781578C2 (en) 2001-11-15
DE19781578T1 (en) 1999-06-17

Similar Documents

Publication Publication Date Title
US5641608A (en) Direct imaging process for forming resist pattern on a surface and use thereof in fabricating printing plates
TWI458648B (en) A method for manufacturing a photographic mask for printing a resin, and a screen printing mask for resin
KR840001602B1 (en) Positire-working radiation-sensitive composition
WO1999010186A1 (en) Image forming material, image forming method, lithographic printing plate manufacturing method and apparatus, lithographic printing plate making method, and printed wiring board manufacturing method
WO1993018440A1 (en) Method for preparing and using a screen printing stencil having raised edges
US4717639A (en) Process for preparation of a stencil or resist image
EP0557138A2 (en) Direct imaging process for forming resist pattern on a surface, and use thereof in fabricating printed circuit boards
US5494764A (en) Method for making printed circuit boards
JP3586803B2 (en) Manufacturing method of printed wiring board
JP2004214253A (en) Method of forming metal pattern
JP3466355B2 (en) Image forming material, image forming method, and method of manufacturing printed wiring board
JP4238023B2 (en) Method for producing printed wiring board by electrophotographic method
JPH10215051A (en) Image forming method, manufacture of electronic circuit and electronic circuit manufactured by manufacturing method thereof
WO2013160652A1 (en) A method for photoimaging a substrate
JPH09286172A (en) Image forming material and image forming method
JPH09130016A (en) Circuit formation method
JPH09300821A (en) Image forming material and image forming method
JP2005286299A (en) Method of manufacturing circuit board
JP2004138666A (en) Resist material and method for manufacturing printed wiring board by using the same
JP2002016343A (en) Method for directly writing printed board
JP2002261424A (en) Method of manufacturing printed-wiring board
JPH07273427A (en) Manufacture of printed wiring board
JP2004347734A (en) Electrophotographic composition, electrophotographic dry film and method for manufacturing printed wiring board by electrophotographic process using the same
JP2002064261A (en) Direct-write patterning method for printed board
JP2002314224A (en) Laminate for electrophotographic printed circuit board and its manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09125193

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

RET De translation (de og part 6b)

Ref document number: 19781578

Country of ref document: DE

Date of ref document: 19990617

WWE Wipo information: entry into national phase

Ref document number: 19781578

Country of ref document: DE