WO1999008960A1 - Spherical porous body - Google Patents

Spherical porous body Download PDF

Info

Publication number
WO1999008960A1
WO1999008960A1 PCT/JP1998/003681 JP9803681W WO9908960A1 WO 1999008960 A1 WO1999008960 A1 WO 1999008960A1 JP 9803681 W JP9803681 W JP 9803681W WO 9908960 A1 WO9908960 A1 WO 9908960A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
particles
porous
inorganic porous
fluorine
Prior art date
Application number
PCT/JP1998/003681
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Okuyama
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Publication of WO1999008960A1 publication Critical patent/WO1999008960A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties

Definitions

  • the present invention relates to a spherical inorganic porous material and a method for producing the same.
  • the spherical inorganic porous material of the present invention is useful as various carriers and molecular sieves.
  • the present invention relates to a porous composite and a method for producing the same, and more specifically, to a novel porous composite obtained by immobilizing a fluorine-containing organic substance in inorganic porous particles and immobilizing the same, and a method for producing the same.
  • the porous composite of the present invention is suitable for ion exchange, peroxidation, various kinds of chromatography, etc., or a catalyst, particularly an acid catalyst.
  • Inorganic porous materials have been conventionally used for applications such as catalyst carriers, adsorbents, and filter media. It is considered that the reason why the inorganic porous material is used in such a field is that the inorganic substance has excellent rigidity, heat resistance and chemical resistance. On the other hand, the requirements for the properties of the pores of the inorganic porous material are becoming diverse and precise depending on the application.
  • uniform macropores in the present invention, macropores have a pore diameter of 100 or more persons
  • An inorganic porous body having the following is considered to be advantageous, and a material having a large porosity is strongly desired.
  • the inorganic porous material is used for the above purpose, it is very advantageous that it is spherical. In the case of crushed or deformed particles, the particle angle is likely to collapse during handling, which not only tends to cause clogging of the generated fine powder and increases pressure loss, but also makes the packing state unstable. From such a viewpoint, a spherical inorganic large pore porous support is desired.
  • silica gel and porous glass have been known as inorganic porous materials.
  • Silica gel is usually produced by reacting sodium silicate with sulfuric acid or hydrochloric acid to obtain a silica hydrate gel, which is washed with water, dried and, if necessary, calcined.
  • the silica gel thus obtained has the property that it is often spherical, has a wide pore size distribution, or has a small pore size (several hundred A). Furthermore, its skeleton The strength is relatively low because the silica fine particles have a particulate structure in which the fine particles are maintained while maintaining the shape.
  • the silica composition is about 98% by weight. Examples of the method for producing silica gel include JP-A-58-1040417 and JP-A-47-51817.
  • Porous glass is made by melting and molding borage acid glass with a specific composition, heat-treating it within a certain temperature range to cause phase separation, and then perform acid treatment to remove the eluted phase and wash the remaining solid phase with water. It is manufactured by drying.
  • the porous glass obtained in this way has a structure in which the skeleton is columnar and intertwined (columnar structure).
  • boric anhydride and sodium oxide are used. Since it contains as a constituent component, not only is the chemical resistance of acids and the like limited, but also the pore volume is generally small.
  • porous glass is melted at a high temperature, it must be crushed in order to turn it into powder, resulting in broken frame-shaped particles.
  • the production method of porous glass is described in, for example, US—A—2, 106, 744 (1934) and US—A—4, 657, 875 (1968) Have been.
  • Ion exchange resins, chelate resins, and inorganic ion exchangers are widely used in separation processes such as adsorption chromatography, ion exchange chromatography, and distribution chromatography, and in adsorption processes.
  • the ion exchange resin and the chelate resin have physical strength, particle dimensional stability, etc., and the inorganic ion exchanger has the particle shape and effective absorption capacity. Height, particle packing density, deployment pressure, etc. are severely restricted and are not satisfactory.
  • non-porous ala is a complex obtained by introducing a functional group into the outer surface of a porous inorganic material by a silylation reaction. 2—4 8 5 18
  • the amount of exchange groups that can be introduced in this complex is extremely small, and it is insufficient to obtain a large amount of adsorption and separation per unit complex.
  • the polymerizable monomer enters the pores of the porous inorganic carrier by capillary action, but enters the pores so as to close the pores, so that the substance to be adsorbed moves toward the functional groups in the pores
  • the space to be absorbed is greatly limited, and as a result, the problem of low absorption speed ⁇ occurs.
  • fluorine-containing compounds form a dense structure due to the high electronegativity and small atomic radius of fluorine atoms, and exhibit high heat resistance and chemical resistance.
  • the compound containing fluorine has a cation exchange group such as sulfonic acid-sulfonic acid, the carboxylic acid-sulfonic acid exhibits high acidity.
  • naphion manufactured by EI duPont de Nemours and Comany
  • EI duPont de Nemours and Comany which is one of three perfluorocarbon sulfonic acid.
  • a composite porous body in which a naphthion is entangled with a silica skeleton has been proposed by adding a solution of a naphthion to an alkoxysilane and hydrolyzing the solution (sol-gel method) (J. Am. Chem. Soc.). , (1996) 1 1 8,7708).
  • naphthion is temporarily fixed to a silica skeleton, and it is said that naphthion is difficult to escape during use.
  • naphth ions escape.
  • the acid catalyst examples include mineral acids such as sulfuric acid and strong organic acids such as trifluoromethanesulfonic acid, which are currently used as acid catalysts for various organic reactions.
  • these acid catalysts have drawbacks such as being corrosive, difficult to separate the product or reactant from the catalyst, and incapable of regenerating and reusing the catalyst.
  • the complex of the nafion and silica by the sol-gel method has a problem in that the nafion component is eluted in a polar organic solvent, and the reaction speed is low due to too small pores, resulting in poor reaction efficiency. There is a problem that becomes.
  • phosphotungstic acid can be compounded only at 1 O wt% or less, so that the number of active sites as an acid catalyst is small, the shape of particles is crushed,
  • it has disadvantages such as that it is small and takes a long time to diffuse, and that the acidity is lower than that of perfluorocarbonsulfonic acid.
  • An object of the present invention is to provide a spherical inorganic large-pore porous body having a large average pore diameter and a high porosity, and having excellent rigidity and chemical resistance, and a method for producing the same.
  • a fluorine-containing organic substance exhibits chemical resistance and heat resistance, and exhibits excellent ion exchange ability, catalytic ability, and metal ion adsorption ability by having appropriate functional groups.
  • the inventor of the present invention has made intensive studies to solve the above problems, and as a result, has accomplished the present invention.
  • the present invention is as follows.
  • Silica sol and inorganic salts having a melting point in the range of 400 to 800 ° C are formed by heterogeneizing a homogeneous aqueous solution of a mixture of inorganic salts, followed by granulation. A method for producing a porous body.
  • the inorganic salt is molybdate, molybdenum oxide, molybdate or a mixture of molybdenum oxide and phosphate, phosphate, aluminum chloride, aluminum sulfate, and the like. 4. The method for producing a spherical inorganic porous material according to the above item 3, wherein the spherical inorganic porous material is at least one selected from the group consisting of a mixture of any one of the above and an alkaline earth metal salt. 5. Inorganic porous particles having a particle size of 1 ⁇ m to 5 mm, a porosity of 0.20 to 0.90, and an average pore size of 5 to 500 nm, A porous composite containing a supported fluorine-containing organic substance.
  • FIG. 1 is a scanning electron micrograph showing a skeleton of a columnar entangled structure of the first spherical inorganic porous particles of the present invention.
  • FIG. 2 is a scanning electron micrograph showing an example in which the skeleton of the inorganic porous particles has a particulate structure (commercially available silica gel, trade name: MB-100, manufactured by Fuji Silica Chemical Co., Ltd.).
  • Examples of the constituent components of the first spherical inorganic porous material of the present invention include silica, alumina, silica-alumina, titania, zirconia, and a mixture of two or more of these. Among them, silica is preferred because of its high acid resistance.
  • the present invention will be described with reference to the die force as an example.
  • the first spherical inorganic porous material of the present invention is a spherical particle, and has a spheroidization ratio A of 75 to 100 (defined below).
  • A spheroidization ratio
  • the shape of the particles spherical, an inorganic porous body having high rigidity can be obtained. If the spheroidization ratio is larger than 75, the strength of the particles is large and the particles are hard to break, and this may be due to the loss of particles in practical use or the fine powder generated by crushing clogging the filter of the power ram. Pressure loss is less likely to occur.
  • the spheroidization ratio A is defined by the following equation (1):
  • A B X 100 / C (1)
  • B the area of the particle
  • C the area of the smallest circumcircle of the particle surface.
  • the inorganic porous material of the present invention has a skeleton having a columnar entangled structure.
  • the columnar entangled structure mentioned here refers to a structure in which columnar sili- cle forces of approximately the same thickness have developed three-dimensionally, for example, the structure shown in Fig. 1. In such a structure, it is considered that the strength inherent in silica is exhibited because a weak portion where stress is concentrated is not specified or is small.
  • the skeletal structure of porous particles has a columnar entangled structure and a particulate structure.
  • the fine particles of silicon force contact each other while maintaining the An original structure is formed, and the diameter of the contact portion between the fine particles is smaller than the diameter of the fine particles themselves. Therefore, when a force such as compression is applied, stress concentration occurs at the weakest contact point of the silica fine particles, and the overall strength is thought to decrease.
  • the skeleton of the particulate structure is shown, for example, in FIG.
  • the fracture strength when a compressive load is applied to a single porous silica particle is measured using a micro-compression tester MC TM-500 type (manufactured by Shimadzu Corporation), which is an example of a porous silica material having a particulate structure. porosity 0 compressive fracture strength. 6 8 silica gel MB 5 0 0 0 (manufactured by Fuji Shirishia chemical) whereas a 9 1 kg / cm 2, the porous silica of the columnar entanglement structure used in the present invention For example, the porosity was 0.74, and the compressive fracture strength was 128 kg / cm 2 . It is experimentally clear that the strength of the porous porous body of ordinary granular structure is lower than that of porous silica of columnar entangled structure.
  • the first spherical inorganic porous material of the present invention has a large average pore diameter and a large pore volume (porosity). This was achieved because the strength of the porous body was large because it had a columnar entangled structure and was spherical. It is a feature of the spherical inorganic porous material of the present invention that it is a spherical particle having such an internal structure.
  • the average pore diameter of the spherical inorganic porous material is 100 to 200 nm, preferably 300 to 150 nm, more preferably 500 to 150 nm, and still more preferably 500 nm. 1100 nm. Within this range, the spherical inorganic porous material tends to have a columnar entangled structure.
  • the porosity is defined as the ratio of the volume of pores to the total volume of the inorganic porous material particles, and is 0.5 to 0.9, preferably 0.6 to 0.9, more preferably 0.65 to 0.9. .8.
  • the porosity is in a range larger than 0.5, the amount of various kinds of supported materials can be increased. Further, when the porosity is in a range smaller than 0.9, the strength of the porous particles becomes large and the porous particles become suitable for practical use.
  • the spherical inorganic porous body of the present invention has a solid interior.
  • solid as used herein means that the interior is not hollow, that is, one or a few large pores do not occupy the majority of the particle volume, but rather countless pores having a small diameter compared to the particle size. It means that a porous body is formed. Preferably, it means that there are no or few holes having a hole diameter larger by one digit or more than the average pore diameter inside the particles. Solid or hollow Whether it is present can be easily determined by observing the cross section with a scanning electron microscope.
  • the particle diameter of the first spherical inorganic porous material of the present invention is 1 m to 5 mm, preferably 1 m to 3 mm, more preferably 10 ⁇ to 1 ⁇ , and still more preferably 10 m to 200 m. It is. If the particle diameter is larger than 1 m, a columnar entangled structure tends to be formed due to the balance between the pore diameter and the particle diameter. Further, when the particle diameter is smaller than 5 mm, when the particles are used as various carriers, for example, diffusion of reactive molecules and ions in the particles becomes sufficient. Further, when the constituent material of the porous body is silica, it is preferable that the spherical inorganic porous body substantially contains a silicic anhydride as a constituent unit.
  • a substantial part of the skeleton of the porous silica is a three-dimensional polymer containing 99% or more by weight of gay acid as a constituent unit. If the content of gay anhydride is 99% or more, high chemical resistance, especially acid resistance can be obtained because there are few impurities (inorganic salts and inorganic oxides) in the mixture. There is little adverse effect as impurities in the atmosphere.
  • the first method for producing a spherical inorganic porous material starts with preparing an aqueous solution of silica sol and an inorganic salt.
  • water is used as a solvent, but water is selected from the viewpoint of environmental safety, and other solvents such as alcohols and polar solvents such as dimethylformamide that dissolve inorganic salts are also used.
  • the solid content of the solution is not particularly limited, but is preferably from 10 to 80% by weight, more preferably from 20 to 50% by weight. The higher the water content of the solution, the greater the amount of heat required for drying. On the other hand, if the solids content is too high, the dispersibility of the solids tends to deteriorate, and the physical properties of the porous material tend to be uneven.
  • Inorganic salts are (1) compounds that exhibit a melting point between 400 and 800 ° C during sintering, and (2) compounds that have a high affinity with the silicic power of inorganic porous materials and are easily compatible. preferable.
  • the sintering operation is performed at a temperature higher than the sintering temperature of the sintering force.
  • the conditions (1) and (2) above are closely related to the sintering temperature. This is because at the sintering temperature, the added inorganic salt is molten and becomes liquid, This is because it is considered that the interaction at the interface between the liquid phase and the solid of the Siri force acts to form the structure of the first porous body of the present invention. Any inorganic salt that satisfies the conditions (1) and (2) can be used.
  • molybdate molybdenum oxide
  • molybdenum oxide or a mixture of molybdate and phosphate.
  • Phosphates alkali metal chlorides such as sodium chloride and potassium chloride; alkali metal sulfates such as potassium sulfate; and mixtures of these with alkaline earth metal salts such as calcium chloride.
  • molybdenum oxide has low solubility in water and is difficult to use as it is, it is preferably used in the form of an ammonium molybdate salt which is oxidized during sintering and changes into molybdenum oxide, and has high solubility in water.
  • inorganic salts can be used alone or in a mixture of two or more.
  • conditions such as the type of salt used a porous silicon material having a desired pore size / narrow pore size distribution can be obtained.
  • the method disclosed in JP-B-3-39730 or JP-B-6-154427 is exemplified.
  • Anmoniumu and monosodium phosphate molybdate as an inorganic salt N a / / M with o molar ratio 6 Z 4 ⁇ 0. 5/ 9. 5 Composition of
  • volume ratio of the use ,, inorganic salt / silica force It is preferable to use an aqueous solution having a charge composition of 2/1 (porosity 0.60) to 12Z1 (porosity 0.90).
  • the hot air temperature under the spray drying conditions ⁇ the amount of the feed liquid, and the amount of hot air can be varied, However, particles having a low spheroidization ratio can be obtained even if the viscosity of the mixture, the solid content, and the drying conditions, which are considered to be other factors, are changed. On the other hand, particles having a high spheroidization ratio can be obtained only when the mixture is brought into a state in which precipitation occurs or in a non-uniform state in which gelation occurs.
  • the non-uniformity referred to in the invention of the present application is a microscopic phenomenon in which the solution is gelled or precipitated and the solution becomes cloudy. Refers to unevenness. It is presumed that the uniformity of the composition inside the particles after granulation and drying has been improved by making the liquid mixture once uniform and then making it non-uniform.
  • the method of making the mixture non-uniform is not particularly limited. One of them is the acidity of the mixture.
  • the acid and acid added to the mixed solution to control the pH can be exemplified.
  • the acid is preferably a mineral acid, particularly nitric acid, and the acid is particularly preferably aqueous ammonia. This is because both nitric acid and ammonia vaporize as nitrogen oxides during the baking process and are removed from the particles.
  • the pH at which the mixed solution becomes uneven depends on the type and amount of the inorganic salt used and the temperature of the solution. For example, when ammonium molybdate and sodium phosphate are used as the inorganic salt, the mixture becomes non-uniform at either pH 1 or lower or 7 or higher and 10 or lower.
  • the value of pH here is, of course, a value measured in a state where the aqueous solution is stirred to some extent. If the aqueous solution is not sufficiently stirred or if the aqueous solution is not stirred, a phenomenon in which only local opacity and gelation occur is observed, and the apparent pH is 1 or less or 7 or more and 10 or less. However, it may not be within the range of deviation. If granulation is carried out with a spray dryer using this insufficiently stirred liquid, a part of the force to obtain spherical particles will be partly mixed with irregularly shaped particles. Therefore, the liquid is preferably stirred.
  • the acidity (pH) of the solution of silica gel, ammonium molybdate, and monosodium phosphate is preferable to adjust the acidity (pH) of the solution of silica gel, ammonium molybdate, and monosodium phosphate. Spray-drying is carried out in a state where gelation has been advanced.
  • Granulation means removing mixed water by producing mixed droplets having a predetermined diameter and then drying. There is no particular limitation on the granulation method.
  • the shape of the porous silica particles also depends on the granulation conditions.
  • the granulation method include a spray drying method and a method in which uniform droplets are formed using ultrasonic waves and then dried (JP-B-3-39730).
  • the particle shape becomes Decided.
  • Factors that determine the particle shape include non-uniformity of the mixture, physical properties such as solid content and viscosity, and drying conditions such as temperature and humidity.
  • the drying conditions are also factors directly related to the productivity and price of the product.
  • the temperature of the hot air at the entrance of the drying tower is preferably around 200 ° C.
  • a spray drying method capable of mass production was selected in consideration of economy, but the present invention is not limited thereto.
  • the change in the shape of the obtained particles is relatively small even if the granulation conditions such as the hot air temperature, the amount of hot air, and the amount of the mixed liquid introduced are variously changed.
  • the firing temperature is usually from 400 to 100 ° C.
  • the inorganic salt used must be melted, that is, at a temperature not lower than the melting point of the inorganic salt and not higher than 200 ° C higher than the melting point of the inorganic salt.
  • baking is performed. If the temperature is higher than the melting point of the inorganic salt, the average pore size is likely to be large. If the temperature is 200 ° C. or lower than the melting point, the average pore size is unlikely to be too large. For example, baking is performed at 675 for 1 hour (average pore diameter of 500 nm) to 75 ° C for 4 hours (average pore diameter of 2000 nm). The melting point is 10
  • the desired product may be obtained even at temperatures as low as ⁇ 20 ° C.
  • the firing time is set in relation to the firing temperature.
  • the baking is performed in a short time at a high temperature and for a long time at a low temperature. Considering workability, etc.
  • calcination is performed at around 300 to 400 ° C. to remove ammonia, and then calcination is performed at the above temperature.
  • the inorganic salt is removed from the obtained calcined product by washing.
  • Any washing solution can be used as long as it does not dissolve silica but dissolves inorganic salts.
  • water is preferably used in terms of cost and environment.
  • an existing spherical inorganic porous material is used as a starting material. Used as In this method, the spherical inorganic porous body having a large pore diameter of the present invention can be produced while maintaining the spherical shape of the existing spherical inorganic porous body. Therefore, it is necessary that the existing spherical inorganic porous material itself has an appropriate spheroidizing ratio.
  • the existing spherical inorganic porous material is not particularly limited as long as it has an appropriate spheroidizing ratio. Examples thereof include silica, alumina, silica-alumina, titania, zirconium, and a mixture of two or more of these. And a spherical inorganic porous material. Among these, spherical porous silica is most commonly used as typified by silica gel, and is preferably used because of the high acid resistance of silica.
  • the second method will be described using a spherical porous body as an example of the existing spherical inorganic porous body.
  • the first step of the second method is to prepare an aqueous solution of an inorganic salt.
  • water is used as the solvent, it is not limited to water as in the first production method of the present invention.
  • the concentration of the solution is between 0.1% and 80% by weight, preferably between 5% and 80% by weight.
  • the concentration is 0.1% by weight or more, the inorganic salt easily enters the porous silica and the phase separation easily proceeds by only one impregnation and drying step. Therefore, the number of times of repeating the impregnation / drying process is reduced, which is efficient.
  • the inorganic salt used here is the same as the inorganic salt that can be used in the first method.
  • an aqueous solution of an inorganic salt is impregnated into the porous silica.
  • the amount (volume) of the aqueous inorganic salt solution is 50% to 100%, preferably 60% to 90%, of the pore volume (volume) of the used porous silica material. If it is 50% or more, the inorganic salt aqueous solution easily enters the pores of the porous silica material as a whole, and spots hardly occur. On the other hand, if the content is less than 100%, it becomes difficult for the aqueous solution of the inorganic salt to exist outside the porous silica, and the dissolved inorganic salt is effectively used, which causes coalescence of the porous silica particles. Hateful.
  • the porous silicon body is brought into contact with and mixed with an aqueous solution of an inorganic salt under atmospheric pressure or reduced pressure.
  • the mixing method is not limited, but an evaporator or various mixers can be used.
  • the mixing time is until the aqueous solution of the inorganic salt enters the porous porous body, and is, for example, 0.5 to 1 hour.
  • the porous silicon body containing the inorganic salt aqueous solution is dried.
  • the drying method is not particularly limited, and drying is performed under normal pressure or reduced pressure, at normal temperature, or while heating.
  • the rate is between 10 and 100%, preferably between 30 and 100%, more preferably between 50 and 100%. If it is lower than 100%, the pores are unlikely to be enlarged by sintering, and if it is higher than 100%, the coalescence of particles may be caused.
  • residual moisture there is no limitation on the residual moisture during drying, but it is preferably 0.1 to 10% by weight. Residual water is removed in the next baking step, but if more than 10% by weight of water remains, there is a possibility of rapid evaporation of water during baking and destroying the structure of porous silica. .
  • This firing step is the same as the above-mentioned first manufacturing method.
  • the inorganic salt is removed from the obtained fired product by washing. This step is also the same as the first production method of the present invention.
  • the inorganic porous material obtained by these methods and the like is classified, for example, by a sieve so as to have a predetermined particle size, and if necessary, washed with water and dried before being used. There is no particular limitation on the drying method.
  • the first spherical inorganic porous material of the present invention is extremely excellent in that despite its high porosity, it has excellent mechanical strength, is hard to crack during use, and can have a relatively uniform particle size. It has characteristics.
  • porosity and strength are higher than those using commercially available silica gel or porous glass, stationary phases for gas chromatography and liquid chromatography, stationary phases for preparative chromatography, and cell culture carriers It is useful as an adsorbent, a catalyst, or a carrier thereof.
  • the porous composite of the present invention is obtained by incorporating a fluorine-containing organic substance into inorganic porous particles and substantially preventing elution of the fluorine-containing organic substance from the pores of the inorganic porous particles serving as a carrier. Fluorine-containing organic substances are substantially fixed to inorganic porous particles.
  • the particle diameter of the inorganic porous material particles used as the carrier of the porous composite is 1 zm to 5 mm, preferably 1 zm to 3 mm, and more preferably 10 ⁇ m to 1 mm. If the particle size of the inorganic porous particles is 1 / m or more, handling is relatively easy, and for example, when used by filling in a power ram, the pressure loss before and after the power ram can be relatively low. : When the particle diameter is 5 mm or less, it is necessary for diffusion inside the pores of the porous composite Since the time is short, the functions of organic substances, such as ion exchange, catalyst, and adsorption of metal elements, can be sufficiently exhibited.
  • the porosity of the inorganic porous material particles is from 0.2 to 0.9, preferably from 0.6 to 0.9, more preferably from 0.65 to 0.8, from the viewpoint of compatibility between mechanical strength and catalytic efficiency. It is. The higher the porosity, the more organic substances can be supported, and the capacity as a porous composite, for example, the amount of catalytic active sites, can be increased.
  • polytrifluorostyrene sulfonic acid is supported on the porous silicon bodies (i) and (ii) having a porosity of 0.50 and 0.80, respectively. It is assumed that the amount of vacancy is 0.25 ml with 1 ml of the inorganic-organic composite.
  • the silica becomes 0.50 m
  • the polytrifluorostyrene sulfonic acid becomes 0.25 m1
  • the porosity becomes 0.25 m1
  • the volume of the porous composite becomes 1.47 meq / m1 and 1.01 meq Zg, respectively (the specific gravity of silica is 2.2, the specific gravity of polytrifluorofluorstyrenesulfonic acid is 1.40).
  • porous silica (ii) has only 1.6 times greater porosity than porous silica (i), but has an exchange capacity per volume and weight of 2.2 times, respectively. 2. You can see that it is 6 times. It is preferable to increase the porosity as much as the mechanical strength allows, since the diffusion rate of the substance in the porous composite particles can be increased.
  • the average pore size of the inorganic porous particles is 5 to 200 nm, preferably 100 to 2000 nm, and more preferably 800 to 200 nm.
  • the average pore diameter is equal to or larger than the lower limit, it is easy to secure a route for the reactant to enter the organic substance in the pores of the inorganic porous material particles.As a result, for example, a catalytic reaction occurs efficiently c
  • the average pore diameter is equal to or smaller than the upper limit. Then, the mechanical strength of the inorganic porous material particles is maintained.
  • porous ceramic particles are preferably used as the inorganic porous particles.
  • inorganic porous particles made of silica, alumina, silica-alumina, titania, zirconia, or a mixture of two or more thereof are exemplified.
  • porous silica particles are preferably used because they can easily produce substantially spherical particles, have a narrow particle size distribution, and have high acid resistance of silica.
  • the pore state of the porous silica particle surface is the same as that of the inside, and there are no shells with a low pore state on the surface, for example, when the adsorbed species moves into the particles when used as an adsorbent. It is preferable from the viewpoint of easiness.
  • the porous composite of the present invention it is particularly preferable to use the first or second spherical inorganic porous material of the present invention from the viewpoint of particle strength and utilization efficiency of the fluorine-containing organic substance.
  • the content of the fluorine-containing organic substance per unit volume can be increased, and the apparatus can be made more compact.
  • the column pressure since the amount of space (porosity) after the fluorine-containing organic substance is included in the inorganic porous material can be increased, the column pressure must be kept low, for example, when the column is filled and used. Can be.
  • an ion exchanger is used as the fluorine-containing organic substance, the resistance to changes in the type and concentration of the eluent during adsorption and desorption increases, and the particles are crushed when packed into a large column. Atomization can be prevented, and the separation operation can be repeated stably.
  • the porous composite of the present invention is obtained by supporting a fluorine-containing organic substance on the inorganic porous particles as described above and substantially fixing the same.
  • the fluorinated organic substance referred to here is not limited in chemical properties such as its composition and molecular structure, and can be selected from various organic compounds having fluorine molecules. Fluoride is preferred because of its excellent heat resistance and solvent resistance due to the large electronegativity and small atomic diameter of fluorine. In particular, perfluorocarbon is preferable because of its excellent heat resistance and solvent resistance. Further, not limited to the fluorine-containing organic substance, a halogen-containing organic substance having a halogen atom other than fluorine may be used.
  • the fluorine-containing organic substance has functional groups corresponding to various uses.
  • the term “functional group” refers to a functional group having functionality and a reactive group that is an atom or atomic group having high chemical reactivity. Specific examples of the functionality of the functional group include: , Chelating ability, redox ability, catalytic coordination ability, etc. Examples of functional groups having these functions include sulfonic acid groups, carboxylic acid groups, phosphonic acid groups, primary to tertiary amine-derived amino groups, hydroquinone groups, and thiol groups. There are groups.
  • the reactive group having high chemical reactivity includes, for example, an isocyanate group, a diazonium group, a chloromethyl group, an aldehyde group, an epoxy group, a halogen group, a carboxyl group, and an amino group.
  • the fluorine-containing organic substances having these functional groups include ion-exchange fluorine-containing resins, chelate fluorine-containing resins containing chelating ligands, and redox fluorine-containing resins having hydroquinone and thiol.
  • the ion-exchange fluororesin may be a fluororesin having both cation and anion exchange groups in addition to a fluororesin having a cation or anion exchange group.
  • cation exchange groups include sulfonic, carboxyl or phosphate groups.
  • the fluorine-containing organic material before being contained in the inorganic porous material particles may have a functional group, or the organic material may be reacted with the functional group-introducing agent after being carried on the inorganic porous material particles.
  • a functional group may be introduced.
  • examples of useful fluorine-containing organic substances when the porous composite of the present invention is used as an acid catalyst or the like include one or more polymerizable monomers represented by the following formula (2) and a polymerizable monomer described below. And copolymers obtained by combining one or more polymerizable monomers selected from the group of hydrophilic monomers.
  • _Y are, - S0 3 H, -SO, F, -SO 3 Na, - S0 3 K, one S0 2 NH 2, One S0 2 NH 4, One CO_ ⁇ _H one CN, one COF, One COOR
  • R is an alkyl group having 1 to 1 0 carbon
  • _PO alkyl group having 1 to 1 0 carbon
  • _PO alkyl group having 1 to 1 0 carbon
  • _PO alkyl group having 1 to 1 0 carbon
  • _PO alkyl group having 1 to 1 0 carbon
  • a is an integer of 0 to 6
  • b is an integer of 0 to 6
  • c is 0 or 1
  • n is an integer from 0 to 6.
  • X is any one of ⁇ 1, Br or F when 11 ⁇ 1, or a combination of plural kinds.
  • R t and R t ′ independently comprise F, Cl, a perfluoroalkyl group having 1 to 10 carbon atoms and a fluorochloroalkyl group having 1 to 10 carbon atoms. It is selected from a group.
  • the polymerizable monomers to be copolymerized with these are tetrafluoroethylene, trifluoromonoethylene, trifluoroethylene, vinylidene fluoride, 1,1-difluoro-2,2- Dichloroethylene, 1,1-difluoro-2-chloroethylene, hexafluoropropylene, 1,1,1,3,3_pentafluorofluoropropylene, octafluoroisobutylene, ethylene, vinyl chloride and alkyl vinyl Esters and the like.
  • the copolymerization may be performed before or after the polymerizable monomer is contained in the inorganic porous particles as a carrier. After the copolymerization, if necessary, the functional group is converted to an ion-exchange group by a post-treatment such as hydrolysis.
  • the exchange capacity of the ion-exchange group of such a fluorine-containing organic substance is defined by the number of moles of the ion-exchange group per gram, and is usually measured by a titration method. Desirable exchange capacity of the fluorine-containing organic substance used in the porous composite of the present invention is 0.70 to 2.00 meq / g, preferably 0.90 to 1.40 meq / g. And more preferably from 1.0 to 1.40 meq Zg. If it is smaller than 0.90 milliequivalent Zg, the exchange capacity of the composite becomes small and the performance is reduced. On the other hand, if it is more than 2.0 meq / g, it becomes difficult to maintain the shape in the composite, and the fluorine-containing organic substance tends to elute from the inorganic porous material.
  • the exchange capacity of the composite of the fluorine-containing organic substance and the inorganic porous particles is not limited, but is preferably 0.10 meq / g or more. If it is smaller than this, the adsorptivity and the efficiency as a catalyst are low, which is practically disadvantageous.
  • the fluorinated organic substance contained in the inorganic porous particles does not elute from the inorganic porous particles as a carrier under various use conditions and is substantially fixed. Is important.
  • porous composite of the present invention is not limited by the elution prevention method exemplified below. Absent.
  • One method is to include a fluorine-containing organic substance in the inorganic porous material particles, heat the same for a certain time in a certain temperature range, and then cool it.
  • the fluorine-containing organic substance can be substantially immobilized on the inorganic porous material particles by performing the heat treatment under appropriate conditions. For example, when silica and a fluorine-containing organic substance are mixed and dried by the sol-gel method, or when a solution of the fluorine-containing organic substance is impregnated into inorganic porous material particles and dried, the polymer chains of the fluorine-containing organic substance are sufficient. No entanglement, no crystallization.
  • the heating temperature is preferably at least 50 ° C. lower than the melting point of the fluorinated organic substance and not higher than the decomposition temperature of the fluorinated organic substance. It is more preferable that the temperature is lower than the decomposition temperature.
  • the fluorine-containing organic substance is perfluorocarbon sulfonic acid, if it is a Na salt or a K salt, the melting point clearly appears in the measurement with a differential scanning calorimeter. It is preferable to heat around the melting point.
  • the heating time is related to the heating temperature. Heating at a relatively high temperature for a relatively short time and at a relatively low temperature for a relatively long time are effective in preventing elution. Preferably, the heating time is between 30 minutes and 2 hours.
  • the cooling temperature may be around room temperature.
  • a wide-angle X-ray diffraction method (Rigakusha Co., Ltd.) was used for a porous composite made through impregnation, heating, and cooling steps using Amplex (manufactured by Asahi Chemical Industry Co., Ltd.), which is one of perfluorocarbon sulfonic acids.
  • the crystallinity of perfluorocarbon sulfonic acid was measured by Rigaku Rotaf 1 ex RU-200), and the exchange capacity was 1.11 meq Zg and the crystallinity was 10% and 1%. It was 16% at 0.00 meq / 8 and 18% at 0.91 meq Zg.
  • Another method for preventing the elution of the fluorinated organic substance is to allow the fluorinated organic substance to be contained in the inorganic porous material particles and then to crosslink the fluorinated organic substance.
  • Divinylbenzene, divinyltoluene, divinylxylene, divinylethylbenze Divinylbenzene, divinyldiphenyl, divinyldiphenylmethane, divinyldibenzyl, divinylphenylether, divinyldiphenylsulfide, divinyldiphenylamine, divinylsulfone, divinylketone, divinylpyri Gin, diaryl phthalate, diaryl maleate, diaryl fumarate, diaryl succinate, diaryl oxalate, diaryl adipate, diaryl sebacate, diarylamine, triarylamine, N, N'-ethylenediacrylamide, N , N'-Methylenediacrylamide, N, N'-
  • Yet another method for preventing elution is to bond a fluorine-containing organic substance to the inorganic porous particles by a covalent bond.
  • a functional group is introduced into the surface of the porous silicon body by a silylating agent having a functional group such as vinylsilanediarylsilane, and a radical polymerization reaction is performed between the functional group and a fluorine-containing organic substance having a vinyl group.
  • a functional group is introduced into the surface of the porous silicon body by a silylating agent having a functional group such as vinylsilanediarylsilane, and a radical polymerization reaction is performed between the functional group and a fluorine-containing organic substance having a vinyl group.
  • the first method is the simplest and preferred because it has less restrictions on conditions.
  • the composites obtained by the above-mentioned elution prevention methods are obtained by attaching a fluoropolymer in a layered or granular form to the surface of the skeleton inside the inorganic porous particles.
  • the reactant and the adsorbed material move in the remaining space of the pores of the inorganic porous material not occupied by the fluoropolymer.
  • the inorganic porous particles have a relatively large pore size and porosity, even if a large amount of fluoropolymer is supported, a space (pore) through which the reactant and the adsorbent move is left. As a result, large utilization efficiency and reaction efficiency can be expected.
  • Whether or not the fluorinated organic substance is substantially immobilized on the inorganic porous material can be evaluated by heating the complex carrying the fluorinated organic substance having an ion-exchange group in dimethyl sulfoxide. .
  • 1 g of the complex was added to 100 g of dimethyl sulfoxide (special grade manufactured by Wako Pure Chemical Industries, Ltd.), heated at 90 ° C for 3 hours, filtered, and washed with dimethyl sulfoxide (hereinafter, referred to as dimethyl sulfoxide). This is referred to as dimethyl sulfoxide treatment.) Then, measure the exchange capacity.
  • the dissolution rate (%) is defined by the following equation (3), where D is the exchange capacity of the complex before dimethyl sulfoxide treatment and E is the exchange capacity after treatment.
  • the dissolution rate of the complex of the present invention is preferably from 0 to 70%, more preferably from 0 to 50%.
  • the remaining portion after the easily eluted portion is not eluted. Therefore, the exchange capacity after the eluted portion elutes is also important.
  • the preferred exchange capacity after the dimethyl sulfoxide heat treatment is 0.10 meq Z g or more. With an exchange capacity smaller than 0.10 meq Zg, there is little part that acts as an ion-exchange group, and this is likely to be practically disadvantageous. Next, a method for producing the composite of the present invention will be described.
  • One of the methods for producing the composite of the present invention is to include a homogeneous mixed solution containing a fluorine-containing organic substance and a diluent in the pores of the inorganic porous material particles, and then remove the diluent.
  • This is a method of performing a heating treatment and a cooling treatment, which are one of the above-described fixing treatments.
  • the composition of the homogeneous mixture containing the fluorine-containing organic substance and the diluent is not particularly limited, but preferably contains 1 to 70 wt%, more preferably 2 to 50 ⁇ % of the fluorine-containing organic substance. .
  • the amount of the fluorinated organic substance is too small, it is not efficient because a large number of the steps of including and drying the mixed solution are repeated in order to include a predetermined amount of the fluorinated organic substance in the pores of the inorganic porous material. On the other hand, if the amount is too large, the viscosity of the homogeneous mixed solution becomes too large, and the containing treatment becomes substantially difficult.
  • the homogeneous mixture is brought into contact with the inorganic porous particles in order to introduce the homogeneous mixture containing the fluoropolymer substance and the diluent into the pores of the inorganic porous particles.
  • Various methods can be used for introducing the mixed solution. For example, a method in which the particles and the homogeneous mixed solution are simply brought into contact with each other under atmospheric pressure, preferably with low-speed stirring, a method in which the particles and the homogeneous mixed solution are brought into contact under vacuum, and a method in which the particles are treated by a silyl reaction or the like.
  • a method of contacting with a homogeneous mixed solution may, for example, be mentioned.
  • the mixed liquid adheres and remains on the outer surface to some extent.
  • adjust the amount of The amount of pores should be equal to or less than the pore size, and then brought into contact under low-speed stirring. In this way, the mixture remaining on the outer surface of the particles can be made very small.
  • the inorganic porous particles can be placed on a glass filter, etc., and then washed with an inert liquid insoluble in the mixture. Good.
  • the type of inert liquid used is selected according to the type of homogeneous mixture. For example, water is used as an inert liquid when the mixture is fat-soluble.
  • the diluent is removed.
  • the method of removal but for example, evaporative drying by heating (in this case, the pressure may be reduced if necessary), a solvent that does not dissolve the fluoropolymer substance but dissolves the diluent
  • the method include washing.
  • a heating step is performed.
  • the purpose of this step is to fix the fluorine-containing polymer substance by melting and crystallization as described above, and the heating temperature for that purpose is not less than 50 ° C lower than the melting point of the fluorine-containing polymer substance.
  • the temperature is not higher than the decomposition temperature of the fluorine-containing polymer substance, preferably from the melting point of the fluorine-containing polymer substance to the decomposition temperature of the fluorine-containing polymer substance. According to the measurement by the differential scanning calorimeter, the polymer substance shows a relatively broad endothermic curve.
  • the melting phenomenon occurs even at a lower temperature.Therefore, even if the temperature is 50 ° C lower than the melting point, the melting time may be prolonged by prolonging the heating time. Can be.
  • the heating time depends on the heating temperature, but it is 30 minutes to 2 hours to perform it efficiently.
  • cooling is performed.
  • the purpose of cooling is to maintain the entanglement of the molecular chains of the molten polymer and to crystallize the polymer. It is considered that the fluorine-containing organic substance contained in the carrier is thereby immobilized on the carrier.
  • the cooling method is not particularly limited as long as it achieves this purpose. For example, there are a method in which the furnace is taken out of the heating furnace to room temperature and allowed to cool, and a method in which the power of the heating furnace is turned off and allowed to cool as is.
  • Another method for producing a composite is a sol-gel method in which a porous silicon force is produced by hydrolysis of an alkoxysilane.
  • the fluorine-containing organic substance and the inorganic porous material can be mixed.
  • a gel solution is formed by adding a mixed solution of naphion, which is one of the fluorine-containing organic substances, and sodium hydroxide to this mixed solution, and then dried and washed with hydrochloric acid.
  • W0 9 5/1 9 2 2 2 Contact Ri is disclosed in, actually SAC - 1 3 R marketed in (US D u P 0 nt Co.) the trade name I have.
  • the fluorinated organic substance is simply included in the skeleton of the inorganic porous material, and since the above-mentioned immobilization treatment has not been performed, methanol, acetone, When heated in a raw solvent such as dimethyl sulfoxide, naphth ions in the mixed solid elute.
  • a raw solvent such as dimethyl sulfoxide
  • naphth ions in the mixed solid elute.
  • Another method for producing the composite of the present invention is a method for producing a composite including a polymerizable monomer or a polymerizable oligomer which can be a fluorine-containing polymer in pores of an inorganic porous material, a crosslinking agent, a radical initiator and a diluent.
  • a mixed liquid or a homogeneous mixed liquid containing a fluorine-containing organic substance, a cross-linking agent and a diluent polymerization or Z or cross-linking reaction is carried out by heating or light irradiation, and then the resulting resin This is a method of removing diluent from the inside.
  • This production method is started by introducing the mixed liquid into the pores by contacting the inorganic porous material with the homogeneous mixed liquid as described above.
  • the polymerizable monomer that can be a fluorine-containing polymer substance used in the homogeneous mixed solution, one having a vinyl group is preferable.
  • the diluent may be any as long as it can form a uniform mixture with the monomer, oligomer or polymer compound and the crosslinking agent.
  • the monomer, oligomer or polymer compound is lipophilic, an organic liquid is preferable, and when these raw materials are hydrophilic, water or an aqueous solution is preferable.
  • the diluent may be used not only alone but also as a mixture.
  • preferred types of diluents include not only compatibility but also various conditions for producing the complex, such as the configuration of the reaction system, temperature and pressure, or the spatial characteristics to be imparted to the resin in the produced complex. Etc.
  • a method of forming a resin by polymerization or cross-linking reaction after allowing the homogeneous mixed solution to be contained in the pores of the inorganic porous material is performed by directly heating or irradiating light, or by mixing the homogeneous mixed solution in the dispersion.
  • the method is broadly divided into methods in which the inorganic porous material particles are dispersed and then heated or irradiated with light.
  • the compatibility between the dispersion and the diluent must be considered. That is, when the dispersion is hydrophilic, a lipophilic organic liquid is preferable as the diluent. On the other hand, when the dispersion is lipophilic, a hydrophilic liquid is preferable.
  • diluents include water and chlorobenzene, toluene, xylene, octane, decane, methanol, butanol, octanol, getyl phthalate, dioctyl phthalate, ethyl benzoate, methyl isobutyl ketone, ethyl acetate, Organic liquids such as getyl oxalate, ethyl carbonate, nitroethane, and cyclohexanone are exemplified.
  • the amount of the homogeneous mixture adhering may be reduced as much as possible before starting the polymerization reaction or the crosslinking reaction. Two methods can be exemplified as this method.
  • the first method is a filtration method. That is, by filtering the particles containing the mixed liquid, the mixed liquid remaining on the outer surface thereof can be reduced. In this case, it is preferable to use a filtration method such as pressure filtration or centrifugal filtration because the filtration time is reduced.
  • the second method is to incorporate the mixed solution into the particles and then disperse the particles in the liquid while forcibly agitating them without reacting with the mixed solution or dissolving the mixed solution.
  • a dispersion containing a dispersant it is preferable to use a dispersion containing a dispersant. The dispersion stably holds the mixed liquid shaken off from the outer surface of the particles by forced stirring in the dispersed liquid, and prevents the mixed liquid from re-adhering to the particle surface.
  • dispersing agents such as gum arabic, rosin, pectin, alginate, tragacanth, agar, methylcellulose, starch, carboxymethylcellulose, karaya gum, gelatin, etc., and sodium polyacrylate , Polyvinyl alcohol, polyvinylpyrrolidone, carbopol, synthetic polymers such as diacetolein, magnesium, aluminum silicate, velmagel, hydrated magnesium silicate, titanium oxide, zinc oxide, calcium carbonate, tanolek, barium sulfate, Inorganic substances such as calcium phosphate, aluminum hydroxide, and anhydrous sulfuric acid can be used. If necessary, salts such as salt, pH adjusters, and surfactants Etc. may be added.
  • the inorganic porous particles after the treatment for containing the homogeneous mixed solution are subjected to a heat treatment or a light irradiation treatment.
  • the homogeneous mixture is composed of a monomer or oligomer, a cross-linking agent and a diluent
  • polymerization or cross-linking reaction occurs by heating or light irradiation.
  • a monomer containing a vinyl group is used, the polymerization reaction generates a force that can be used in any polymerization reaction that proceeds according to the radical polymerization or ion polymerization mechanism depending on the added chemicals and the configuration of the reaction system. Radical polymerization is preferred because the properties of the resin can be easily controlled.
  • suitable polymerization initiators for radical polymerization include benzoyl peroxide, lauroyl peroxide, and other acyl peroxides, azobisdisoptyronitrile, 2,2, -azobis (2,4-dimethylmalelonitrile).
  • Azonitrile compounds such as tolyl), peroxides such as dibutyl peroxide, dicumyl peroxide, methylethyl ketone peroxide, hydroperoxides such as cumene hydroperoxide and tertiary hydroperoxide. Oxides can be exemplified.
  • the amount of the polymerization initiator required depends on the polymerization reaction temperature and the amount and type of the monomer, but is usually 0.01 to 12% by weight based on the weight of the monomer.
  • the temperature and time of the heat treatment for causing the polymerization reaction and the crosslinking reaction are 40 to 150 ° C. and 2 to 100 hours, respectively.
  • the particles including the mixed solution may be heated as it is, or may be heated while being dispersed in the dispersion.
  • the porous composite manufactured under the above conditions contains a diluent inside. Therefore, the complex is immersed in a solvent that dissolves them and left for a while to be filtered off, or the complex is put into a column, and the washing solvent is allowed to flow down, so that the diluent is effective from inside the complex. Can be removed.
  • a solvent that dissolves them and left for a while to be filtered off, or the complex is put into a column, and the washing solvent is allowed to flow down, so that the diluent is effective from inside the complex. Can be removed.
  • a water-soluble solvent such as methanol or acetone is used as a washing solvent, and the diluent can be easily removed by further washing the washing solvent with water.
  • the composite obtained in this manner may be used as it is for a filler for ion-exchange resin chromatography or as an adsorbent, or may be subjected to a post-reaction to be used as it is.
  • a functional group may be introduced into the resin for use.
  • the reaction for introducing a functional group is not limited, and a normal organic reaction can be performed.
  • the composite particles of perfluorocarbon sulfonic acid and porous silica which is one of the porous composites of the present invention, can be used as a solid acid catalyst by utilizing its large acidity.
  • the use form of the porous composite of the present invention as a reaction catalyst is not particularly limited, and examples thereof include a fluidized bed type, a fixed bed type, and a reactive distillation type.
  • the reaction solution and the solid catalyst can be easily separated by, for example, a filtration method.
  • the reaction product precipitates as a solid from the reaction solution for example, the reaction solution is separated from the catalyst and the product by a filtration method, then dissolved in a solvent that dissolves the product, and the product is dissolved. Can be separated from catalyst. If necessary, the complex of the present invention separated from the reaction system can be easily regenerated and purified by contact with a mineral acid.
  • the organic reaction using the porous composite of the present invention as a solid acid catalyst is not particularly limited.
  • alkylation of aromatic compounds such as benzene and toluene with olefins, alcohols, alkyl halides, alkyl esters, etc .
  • Isomerization, disproportionation and transalkylation dimerization of ⁇ -methylstyrene; di-tolization, sulphonation, sulfonylation and phosphorylation of aromatic compounds
  • isomerization of brominated aromatic compounds Cationic polymerization of olefins; synthesis reaction of ether and ester; synthesis reaction of acetal, thioacetal and gem-diacetate; hydrolysis reaction of epoxy group and ester group; transfer reaction such as pinacol / pinacolone; And condensation reactions such as dioxane synthesis.
  • the porous composite of the present invention has, for example, an ion-exchange group, its substantial ion exchange capacity is extremely high, and its mechanical strength is relatively small while the amount of ion exchanger is small. It has extremely excellent properties such as excellent resistance to cracking during use, and a relatively uniform particle size. Further, the ion exchanger using the porous composite of the present invention has a larger porosity and a skeleton having a columnar entangled structure as compared with a case where commercially available silica gel or porous glass is used as a carrier. Therefore, it has great strength.
  • the porous composite can be used as a stationary phase for gas chromatography and liquid chromatography, a stationary phase for preparative chromatography, a cell culture carrier, an adsorbent, a catalyst or its carrier, particularly an acid catalyst.
  • an esterification reaction applied acid catalyst such as an esterification reaction applied acid catalyst, an ester hydrolysis acid catalyst, a nitration reaction acid catalyst, an olefin hydration reaction acid catalyst, a trioxane synthesis acid catalyst, or cooling water of a nuclear power plant.
  • An ion exchange treatment agent of hot water can be used.
  • B is the area of the particle in the photograph
  • C is the area of the minimum circumscribed circle of the particle surface in the photograph.
  • the measurement pressure range was 0.1 to 20 OMPa, and the measurement hole radius was 3.7 to 750 nm.
  • a densitometer (trade name: Multi-Volume Densitometer 1305, manufactured by Micromeritex Corporation) using helium gas as the substance that enters the pores, the inorganic porous particles and And the specific gravity d (g / ml) of the complex.
  • the amount of pores per unit weight of 0 (mlg) was measured using a mercury porosimeter (trade name: PAS CAL — 240, manufactured by CE-Instrument).
  • the volume average particle diameter was measured using Microtrack X-100 manufactured by Honeywell.
  • ICP inductively coupled plasma
  • the measurement was performed with a differential scanning calorimeter (trade name: DSC 210, manufactured by Seiko Instruments Inc.).
  • the measurement conditions are as follows: in air, at a heating rate of 5 ° CZ, and in a measuring temperature range of 25 to 800 ° C.
  • micro compression tester (trade name: MCTM-500 type, manufactured by Shimadzu Corporation), measured at room temperature at a load speed of 0.79 g / sec, the load at the break point was calculated, and the following formula (5) was used. Was used to calculate the strength.
  • the porous composite was placed in a special column with a glass filter of 3 G attached to the bottom of a glass ring with a diameter of 100 mm and a length of 100 mm, and 1N hydrochloric acid was passed through the column to make a sulfonic acid type. Subsequently, the hydrochloric acid in the void was removed by flowing methanol. At this time, it was confirmed with litmus paper that the eluted methanol was neutral.
  • the temperature of hot air entering the drying tower is 230 ° C, the amount of hot air is 310 Nm 3 Z hours, and the amount of mixed liquid introduced is 90 LZ hours.
  • the obtained granulated powder (1 OmL) was calcined in an electric furnace at 350 ° C for 2 hours, and then at 690 ° C for 2 hours. This is added to 10OmL of hot water at 70 ° C, kept while stirring for 30 minutes, then filtered with a filter paper, washed with excess water, and then meshed with 400 mesh (opening of 32 ⁇ m). ) And a sieve having a mesh size of 200 (mesh size: 75 jm), and dried under reduced pressure at 70 ° C.
  • the average spheroidization ratio of the obtained porous silica having a large pore diameter was 86.5, and the columnar entangled skeleton structure having an average pore diameter of 675 nm, a porosity of 0.74, and a silica composition of 99.5% by weight was used. It was built. The strength was 1.3 kgf / mm 2 .
  • the average spheroidization ratio of the obtained porous silica having a large pore diameter was 87.0, and the average pore diameter was 87.0.
  • Example 2 Using this mixture, granulation was performed by spray drying in the same manner as in Example 1.
  • the obtained granulated powder (10 mL) was calcined in an electric furnace at 350 ° C. for 2 hours and then at 69 ° C. for 2 hours. This was added to 10OmL of hot water at 70 ° C, kept while stirring for 30 minutes, then filtered with filter paper, washed with excess water, and then meshed with 400 mesh (opening of 32 ⁇ m). ) And a sieve having a mesh size of 200 (mesh size: 75 ⁇ m), and then dried under reduced pressure at 70 ° C.
  • the average spheroidization ratio of the obtained porous silica having a large pore diameter was 84.5, and the average pore diameter was 84.5.
  • Example 1 The firing conditions were changed using the granulated particles prepared in Example 1. A porous material with a large pore diameter and a different average pore diameter having a spheroidization ratio of 86.5 and a porosity of 0.74 was obtained. Table 1 shows the firing conditions and the average pore size of the obtained porous body. Table 1 Firing temperature (° C) Firing time (hour) Average pore size obtained (nm) Example 4 700 1 820
  • silica gel 5D Take 20 g of silica gel 5D into a 50 OmL eggplant-shaped flask, add 14.8 mL of the above aqueous solution of the inorganic salt (98.6% based on the pore volume of silica gel) to this, and add a rotary evaporator. The mixture was rotated and mixed for 30 minutes. Then, it was dried in a vacuum dryer at 70 ° C under reduced pressure for 5 hours. 1 l mL of the above inorganic salt solution was added to the silica gel, and the mixture was rotated under the same conditions and dried. Further, 9 mL of an inorganic salt solution was added, and the third rotation mixing and drying were performed. The pore volume of the obtained inorganic salt-impregnated silica gel was 0.332 mL / g.
  • the average spheroidization ratio of the obtained porous silica having a large pore diameter was 69.6, and a columnar entangled skeleton having an average pore diameter of 81.4 nm, a porosity of 0.71, and a sily force composition of 99.6% by weight. It was a structure.
  • the strength was 0.7 kg fZmm 2 .
  • the solid content of this solution was 26% by weight.
  • granulation was carried out by spray drying in the same manner as in Example 1.
  • the obtained granulated powder (1 OmL) was calcined in an electric furnace at 350 ° C. for 2 hours and then at 69 ° C. for 2 hours. This was added to 10OmL of hot water at 70 ° C, kept while stirring for 30 minutes, then filtered off with filter paper, washed with excess water, and then meshed with 400 mesh (32 urn and 2 mesh). After classifying through a sieve of 00 mesh (opening of 75 ⁇ m), the mixture was dried under reduced pressure at 70 ° C.
  • the average spheroidization ratio of the obtained porous silica having a large pore diameter was 72.9.
  • the obtained granulated powder (1 OmL) was calcined in an electric furnace at 350 ° C for 2 hours and then at 700 ° C for 2 hours. This was added to 10OmL of hot water at 70 ° C, kept while stirring for 30 minutes, then filtered off with filter paper, washed with excess water, and reduced to 400 mesh (mesh size 32rn). After classification with a sieve of 200 mesh (opening of 75 ⁇ m), drying was performed at 70 ° C. under reduced pressure.
  • the average spheroidization ratio of the obtained spherical silica large pore porous material was 72.2. It had a columnar entangled skeletal structure with an average pore size of 3666 nm, a porosity of 0.69, and a silica composition of 99.0% by weight. The strength was 0.8 kgf / mm 2 .
  • the mixed aqueous solution was introduced into a spray dryer (trade name: OC-16, manufactured by Okawara Kakoki Co., Ltd.) while stirring, and granulated.
  • the rotating dish for generating droplets used had a diameter of 8 cm, and had a rotation speed of 2100 rpm.
  • the temperature at the inlet of the drying tower was 230 ° C, the amount of hot air was 310 Nm 3 / hour, and the introduced amount of the mixed liquid was 90 LZ hours.
  • the obtained granulated product was heated in an electric furnace at 350 ° C.
  • the obtained spherical inorganic porous body had a columnar entangled structure with an average pore diameter of 705 nm and a porosity of 0.70.
  • the pressure was reduced while heating in a water bath, and water-methanol as a solvent was removed by evaporation. This operation was repeated for a total of 5 times to obtain an inorganic porous material containing an acylplex.
  • the aqueous methanol solution of the acylplex fed in each operation was 14.8 g for the second time, 14.1 g for the third time, 13.6 g for the fourth time, and 13.2 g for the fifth time.
  • Part of the obtained inorganic porous material containing a complex is immersed in an excess of 5 wt% aqueous sodium chloride (manufactured by Wako Pure Chemical Industries, Ltd., special grade) aqueous solution, kept at room temperature for 2 hours, and then filtered and dried. And heat-treated in air at 250 ° C. for 1 hour. After the heat treatment was completed, the mixture was taken out to room temperature and allowed to cool to obtain a porous inorganic-organic composite.
  • aqueous sodium chloride manufactured by Wako Pure Chemical Industries, Ltd., special grade
  • the exchange capacity of the composite was 0.20 meq / g per dry composite weight.
  • Example 11 A portion of the inorganic porous body containing a complex obtained by liquid impregnation and drying in 1 was immersed in an excess 5 wt% aqueous solution of sodium chloride (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and kept at room temperature for 2 hours. Then, the mixture was filtered, dried, and then heat-treated in an air at 250 ° C. for 30 minutes using an electric furnace. After the completion of the heat treatment, it was taken out to room temperature and allowed to cool.
  • sodium chloride special grade, manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 11 A portion of the inorganic porous body containing a complex obtained by liquid impregnation and drying in 1 was immersed in an excess 5 wt% aqueous solution of sodium chloride (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and kept at room temperature for 2 hours. Then, the resultant was filtered, dried, and then heat-treated in an air at 250 ° C. for 10 minutes using an electric furnace. After the completion of the heat treatment, it was taken out to room temperature and allowed to cool.
  • sodium chloride special grade, manufactured by Wako Pure Chemical Industries, Ltd.
  • the exchange capacity of the obtained composite was measured. However, when trying to flow methanol, the flow force became very slow. The methanol flow was completed overnight, and the measured value was 0.0 meq Zg. The elution rate was 100%.
  • the aqueous methanol solution of the aciplex fed in each operation was 14.8 g for the second run, 14.1 g for the third run, 13.6 g for the fourth run, 13.2 g for the fifth run, and 12.8 for the sixth run. g, 72.5 times, 12.5 g.
  • Part of the obtained inorganic porous material containing a complex is immersed in an excess of 5 wt% aqueous sodium chloride (manufactured by Wako Pure Chemical Industries, Ltd., special grade) aqueous solution, kept at room temperature for 2 hours, and then filtered and dried. And heat-treated in air at 250 ° C. for 1 hour. After the heat treatment, the sample was taken out into room temperature and allowed to cool.
  • aqueous sodium chloride manufactured by Wako Pure Chemical Industries, Ltd., special grade
  • This liquid was added to the above tetramethoxysilane mixed liquid and stirred.
  • the liquid immediately gelled and further solidified.
  • This solid was dried at 95 ° C for 24 hours. This was crushed in a mortar and then placed in a 3.5 M aqueous hydrochloric acid solution and left overnight. Thereafter, it was filtered off, washed with water, and it was confirmed that the washing solution became neutral, and dried at 95 ° C.
  • the exchange capacity of the obtained powder was 0.19 meq /.
  • Example 14 The powder before heat treatment obtained in Example 14 was subjected to a dimethyl sulfoxide heat treatment.
  • the subsequent exchange capacity was 0.05 meq Zg (74% elution).
  • SAC-13 manufactured by DuPont, USA, a mixture of naphion and silicide by a sol-gel method
  • the exchange capacity was 0.04 meq / g (elution rate 75%).
  • Example 11 Using the porous composite synthesized in Example 11 as a solid acid catalyst, a hydrolysis reaction of ethyl acetate was performed.
  • ethyl acetate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was added to 475 g of water to prepare a 5 wt% aqueous solution of ethyl acetate. Initially, the ethyl acetate and water were separated. When the mixture was stirred at room temperature, it became a homogeneous liquid in about 10 minutes. 200 g of this aqueous solution of ethinole acetate was taken, 0.50 g of the porous composite synthesized in Example 1 was added thereto, and the mixture was stirred and reacted at 57 ° C. After starting the reaction, 10 ml of the reaction solution was sampled at 30 minutes, 1 hour, 2 hours, and 3 hours.
  • the sampling liquid was diluted to 150 ml with water, and titrated with a 0.1 N aqueous sodium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd., for titration). From the value, the concentration of acetic acid generated in the reaction solution was determined. The results were 2.2 mmol / L at 30 minutes, 4.0 mmol ZL at 1 hour, 7.6 mmol / L at 2 hours, and 11.2 mmo1Z at 3 hours.
  • This hydrolysis reaction can be analyzed by a primary reaction.
  • the reaction rate constant: k (1 / m i ⁇ ) can be calculated by the following equation (7).
  • C A is the concentration of acetic acid produced (mmo 1ZL)
  • C A is the initial ethyl acetate concentration (mmolZL)
  • t is the time (min).
  • reaction rate constant per functional group k 1 (1 / minZ equivalent) was calculated by the following equation (8) and used for comparison of solid acid catalyst performance.
  • k av is the reaction rate constant (lZmin)
  • F is the amount of catalyst used (g)
  • EC is the exchange capacity (equivalent Zg).
  • the reaction rate constant per functional group in the hydrolysis reaction of ethyl acetate of the porous composite obtained in Example 1 was 1.18 ZminZ equivalent.
  • Example 14 The same reaction as in Example 14 was performed, except that 0.55 g of Amberlyst 15 (manufactured by Rohm and House, USA) was used instead of the porous composite.
  • the concentration of acetic acid generated in the reaction was 7.8 mmoLZL in 30 minutes, 16.6 mmoL / L in 65 minutes, 32.OmmoLZL in 2 hours, and the reaction rate constant per functional group was 0. 2 / minZ equivalent, which was 6 times higher than the result of Example 14 by 1 Z.
  • a spherical inorganic large-pore porous body having a large average pore diameter and a high porosity, and having excellent mechanical rigidity and chemical resistance. It is easy to obtain a porous body with a relatively uniform particle shape, and despite its relatively large pores, it has excellent mechanical strength, so particles are not easily broken during use, handling is easy, and columns The column pressure can be prevented from increasing even when used after filling.
  • the porous composite of the present invention has a fluorine-containing organic substance substantially immobilized on a carrier, and can be used with stable performance. For example, it can be used relatively stably even in an environment where it comes into contact with a polar organic solvent.
  • the use efficiency of the fluorinated organic substance is excellent, and the effective use rate of the properties of the fluorinated organic substance, for example, the reaction in the functional group, is high for the supported amount of the fluorinated organic substance.
  • the use efficiency of separation, adsorption, etc. is excellent, the pore volume can be increased, so that the operating pressure of the separation column can be kept low.
  • a porous inorganic composite containing, for example, perfluorocarbon sulfonic acid as a fluorine-containing organic substance is useful as a solid acid catalyst because of its super-strong acidity, excellent heat resistance and solvent resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

A spherical porous inorganic body having a diameter of 1 νm to 5 mm, an average spheroidizing rate of 75 or higher, the skeleton of a columnar entanglement structure, an average pore diameter of 100 to 2,000 nm, and a porosity of 0.50 to 0.90.

Description

明 細 書 球状多孔体 技術分野  Description Spherical porous body Technical field
本発明は、 球状無機多孔体とその製造方法に関する。 本発明の球状無機多孔体 は各種の担体や分子ふるいとして有用である。  The present invention relates to a spherical inorganic porous material and a method for producing the same. The spherical inorganic porous material of the present invention is useful as various carriers and molecular sieves.
また、 本発明は、 多孔性複合体とその製造法に関し、 具体的には、 無機多孔体 粒子に含フッ素有機物質を包含させ、 固定化してなる新規な多孔性複合体とその 製造法に関する。 本発明の多孔性複合体は、 イオン交換、 ヰレート、 各種クロマ トグラフィ一等、 又は触媒、 特に酸触媒に好適である。  In addition, the present invention relates to a porous composite and a method for producing the same, and more specifically, to a novel porous composite obtained by immobilizing a fluorine-containing organic substance in inorganic porous particles and immobilizing the same, and a method for producing the same. The porous composite of the present invention is suitable for ion exchange, peroxidation, various kinds of chromatography, etc., or a catalyst, particularly an acid catalyst.
背景技術  Background art
無機多孔体は、 従来から触媒担体、 吸着剤、 濾過材等の用途に供されている。 このような分野で無機多孔体が利用される理由は、 無機物質が剛性、 耐熱性及び 耐薬品性に優れていることであると考えられる。 一方、 用途に応じて無機多孔体 の孔の特性に対する要求は多様かつ精密となってきている。 特にクロマトグラフ ィ—担体、 触媒担体、 分子ふるい、 機能性基固定母体、 多孔成形用材料等では、 均一なマクロ孔 (なお、 本発明においてマクロ孔とは 1 0 0 0人以上の孔径を有 する孔を意味する。 ) を有する無機多孔体が有利とされ、 さらに空孔率の大きな 材料が強く望まれている。 また、 無機多孔体が上記用途に用いられる場合、 球状 であることが非常に有利である。 破砕型や変形粒子の場合、 取り扱い中に粒子角 が崩れやすく、 発生した微粉が詰まりや圧力損失の増加の原因になりやすいだけ でなく、 充てん状態が不安定になりやすい。 このような観点から球状の無機大孔 径多孔担体が望まれている。  Inorganic porous materials have been conventionally used for applications such as catalyst carriers, adsorbents, and filter media. It is considered that the reason why the inorganic porous material is used in such a field is that the inorganic substance has excellent rigidity, heat resistance and chemical resistance. On the other hand, the requirements for the properties of the pores of the inorganic porous material are becoming diverse and precise depending on the application. In particular, in a chromatographic carrier, a catalyst carrier, a molecular sieve, a base for fixing a functional group, a material for porous molding, etc., uniform macropores (in the present invention, macropores have a pore diameter of 100 or more persons) An inorganic porous body having the following is considered to be advantageous, and a material having a large porosity is strongly desired. When the inorganic porous material is used for the above purpose, it is very advantageous that it is spherical. In the case of crushed or deformed particles, the particle angle is likely to collapse during handling, which not only tends to cause clogging of the generated fine powder and increases pressure loss, but also makes the packing state unstable. From such a viewpoint, a spherical inorganic large pore porous support is desired.
従来、 無機多孔体として、 シリカゲルや多孔性ガラス等が知られている。 シリカゲルは、 通常、 ケィ酸ソ一ダと硫酸又は塩酸との反応によりシリカヒド 口ゲルを得、 これを、 水洗、 乾燥、 さらに必要ならば焼成することにより製造さ れる。 このようにして得られるシリカゲルは球状であることが多い力く、 孔径分布 が広いか、 又は孔径が小さい (数百 A) という特性を有する。 さらに、 その骨格 形状がシリカ微粒子がその形状を保ったままくつついた粒子状構造を有している ため、 強度が比較的小さい。 なお、 そのシリカ組成は 9 8重量%程度である。 シ リカゲルの製造方法に関しては例えば J P— A— 5 8— 1 0 4 0 1 7、 J P— A - 4 7 - 5 8 1 7が挙げられる。 Conventionally, silica gel and porous glass have been known as inorganic porous materials. Silica gel is usually produced by reacting sodium silicate with sulfuric acid or hydrochloric acid to obtain a silica hydrate gel, which is washed with water, dried and, if necessary, calcined. The silica gel thus obtained has the property that it is often spherical, has a wide pore size distribution, or has a small pore size (several hundred A). Furthermore, its skeleton The strength is relatively low because the silica fine particles have a particulate structure in which the fine particles are maintained while maintaining the shape. The silica composition is about 98% by weight. Examples of the method for producing silica gel include JP-A-58-1040417 and JP-A-47-51817.
多孔性ガラスは、 特定の組成のホウゲイ酸ガラスを溶融、 成形後、 一定の温度 範囲内で熱処理して相分離を生ぜしめ、 その後酸処理を行って溶出相を除去し、 残存固体相を水洗、 乾燥することにより製造される。 このようにして得られる多 孔性ガラスは、 骨格が柱状で絡み合った構造 (柱状構造) をしているが、 代表的 には 9 6 %の無水ゲイ酸のほかに、 無水ホウ酸及び酸化ナトリウムを構成成分と して含んでいるため、 酸等の耐薬品性に限界があるだけでなく、 一般に細孔容積 が小さい。 また、 多孔性ガラスは高温で溶融するために、 これを粉体にするため には破砕する必要があり、 結果として破枠型の粒子となる。 多孔性ガラスの製造 法は、 例えば US— A— 2, 1 0 6, 7 4 4 ( 1 9 3 4 ) や US— A— 4, 6 5 7, 8 7 5 ( 1 9 8 7 ) に記載されている。  Porous glass is made by melting and molding borage acid glass with a specific composition, heat-treating it within a certain temperature range to cause phase separation, and then perform acid treatment to remove the eluted phase and wash the remaining solid phase with water. It is manufactured by drying. The porous glass obtained in this way has a structure in which the skeleton is columnar and intertwined (columnar structure). Typically, in addition to 96% of gay anhydride, boric anhydride and sodium oxide are used. Since it contains as a constituent component, not only is the chemical resistance of acids and the like limited, but also the pore volume is generally small. In addition, since porous glass is melted at a high temperature, it must be crushed in order to turn it into powder, resulting in broken frame-shaped particles. The production method of porous glass is described in, for example, US—A—2, 106, 744 (1934) and US—A—4, 657, 875 (1968) Have been.
イオン交換樹脂、 キレート樹脂、 無機イオン交換体などは、 吸着クロマトグラ フィ一、 イオン交換クロマトグラフィー、 分配クロマ トグラフィー等の分離工程 や、 吸着工程に広範囲に使用されている。  Ion exchange resins, chelate resins, and inorganic ion exchangers are widely used in separation processes such as adsorption chromatography, ion exchange chromatography, and distribution chromatography, and in adsorption processes.
し力、しな力 ら、 イオン交換樹脂ゃキレート樹脂は物现的強度、 粒子の寸法安定 性等の面で、 また無機イオン交換体は粒形や有効吸 容量等の面で、 充填塔の高 さ、 粒子充填密度、 展開圧力等が厳しく制限されるため、 満足のいくものではな い。  The ion exchange resin and the chelate resin have physical strength, particle dimensional stability, etc., and the inorganic ion exchanger has the particle shape and effective absorption capacity. Height, particle packing density, deployment pressure, etc. are severely restricted and are not satisfactory.
一方、 無機構造体の物理的強度を利用して、 無孔性乂は多孔性の無機材料の外 表面にシリル化反応で官能基を導入して複合体とする例が、 J P— B— 5 2— 4 8 5 1 8に開示されている。 しかし、 この複合体では導入できる交換基の量が著 しく小さく、 単位複合体あたりで大きな吸着量、 分離量を獲得するには不十分で あ 。  On the other hand, using a physical strength of an inorganic structure, non-porous ala is a complex obtained by introducing a functional group into the outer surface of a porous inorganic material by a silylation reaction. 2—4 8 5 18 However, the amount of exchange groups that can be introduced in this complex is extremely small, and it is insufficient to obtain a large amount of adsorption and separation per unit complex.
また、 多孔性無機担体の孔内にラジカル重合性単量体及び/又は架橋剤をラジ 力ル開始剤とともに含浸し架橋重合した後、 官能基を導入する等によりイオン交 換用ゃキレ一ト用の複合体を得る方法が、 J P— A— 5 2— 1 4 6 2 9 8に開示 されている。 この複合体作製方法では、 毛細管現象で多孔性無機担体の孔内に重 合性単量体が入るものの、 孔を閉塞させるように入り込むため、 被吸着物が孔内 の官能基に向かって移動する空間が大きく制限されてしまい、 その結果として吸 着速度が遅いという問題力 <生じる。 この欠点を克服するものとしては、 無機多孔 体粒子の孔の内部表面を部分的に又は完全に樹脂が占有し、 かつ樹脂部分の内部 に無機多孔体粒子の外部と連通した空間を有する複合体が J P— B— 6 -6 23 46に開示されている。 し力、しな力 ら、 この複合体では吸脱着する化学種が樹脂 内部にある比較的小さな空間を拡散するため、 化学種の吸脱着速度に限界がある。 一方、 フッ素を含む化合物はフッ素原子の大きな電気陰性度と小さな原子半径 のために緻密な構造体を構成し、 大きな耐熱性及び耐薬品性を示す。 また、 フッ 素を含む化合物が力ルポン酸ゃスルホン酸などのカチォン交換基を有している場 合には、 そのカルボン酸ゃスルホン酸は高い酸性度を示す。 In addition, after impregnating a radical polymerizable monomer and / or a crosslinking agent together with a radial initiator in the pores of the porous inorganic carrier and performing cross-linking polymerization, a functional group-introduced polymer for ion exchange is used. A method for obtaining a complex for use is disclosed in JP-A-52-146-298. Have been. In this method for producing a composite, the polymerizable monomer enters the pores of the porous inorganic carrier by capillary action, but enters the pores so as to close the pores, so that the substance to be adsorbed moves toward the functional groups in the pores The space to be absorbed is greatly limited, and as a result, the problem of low absorption speed <occurs. As a method for overcoming this drawback, a composite in which the resin partially or completely occupies the inner surface of the pores of the inorganic porous particles, and has a space inside the resin portion that communicates with the outside of the inorganic porous particles. Is disclosed in JP-B-6-6-6246. In this complex, the adsorption and desorption rate of chemical species is limited because the adsorbed and desorbed species diffuse in a relatively small space inside the resin. On the other hand, fluorine-containing compounds form a dense structure due to the high electronegativity and small atomic radius of fluorine atoms, and exhibit high heat resistance and chemical resistance. When the compound containing fluorine has a cation exchange group such as sulfonic acid-sulfonic acid, the carboxylic acid-sulfonic acid exhibits high acidity.
フッ素を含む化合物のこの性質を利用しゃすくするために形態を粒子状にした ものとしては、 ペルフルォロカ一ボンスルホン酸の一^ 3であるナフイオン (E. I. duPon t d e Nemo u r s and Com a ny社製) を、 粒子状にしたものが開示されている (CHEMTE CH 1 987,  In order to make use of this property of a fluorine-containing compound to make it into a particle form, naphion (manufactured by EI duPont de Nemours and Comany), which is one of three perfluorocarbon sulfonic acid, is used. , But in particulate form (CHEMTE CH 1987,
Ame r i c an Ch emi c a l S o c i e t y, 1 7, 438) 。 この 粒子は有機反応の酸触媒に使うことを目的としている。 し力、しな力 ら、 この粒子 は表面積が 0. 02 m2 /g以下と非常に小さく、 大部分のスルホン酸基は粒子 内部に埋め込まれており、 触媒作用に有効に働いていない。 Americ an Chemical Society, 17, 438). These particles are intended for use as acid catalysts in organic reactions. The surface area of these particles is extremely small, less than 0.02 m 2 / g, and most of the sulfonic acid groups are embedded inside the particles, and do not work effectively for catalysis.
また、 アルコキシシランにナフイオンの溶液を加えて加水分解する (ゾルーゲ ル法) ことにより、 シリカ骨格にナフイオンを絡み合わせた複合多孔体が提案さ れている (J. Am. Ch em. S o c. , ( 1 996 ) 1 1 8, 7708) 。 この複合多孔体は、 ナフイオンがシリカ骨格に一応固定されており、 使用中にナ フイオンが抜け出にくいと言われている。 しかし、 実際には極性のある有機溶媒 中に浸漬するとナフイオンが抜け出ることが確認された。 また、 製造工程におけ る加水分解で副成するアルコール及び引き続いて生じる縮合反応で副成する水が、 ゲルから外部に抜ける際に、 1 0 nm程度の小さな孔径の孔が形成される。 この 小さな孔を通して反応物が移動するのである力 孔が小さすぎるために反応物の 移動速度が小さく反応効率が悪くなる。 そこで、 ゾルに炭酸カルシウムの粒を入 れてゲル化させた後、 ゲルを溶出して 5 0 0 n m程度の大きな孔径の孔を共存さ せるという工夫も行われている。 し力、し、 大きな孔は分散状態が均一になりにく いことに加え、 シリカ骨格が粒子状であることから、 複合体粒子の強度は弱い。 さらに、 実際の使用時にはゾルーゲル法で作った塊を粉砕しているため、 粒子の 形状は球状ではなく破碎型である。 破砕型形状の粒子は取り扱い中又は使用中に 角張つた部分が欠け落ちやすく、 カラム詰まりや損失の原因となりやすレ、。 Also, a composite porous body in which a naphthion is entangled with a silica skeleton has been proposed by adding a solution of a naphthion to an alkoxysilane and hydrolyzing the solution (sol-gel method) (J. Am. Chem. Soc.). , (1996) 1 1 8,7708). In this composite porous body, naphthion is temporarily fixed to a silica skeleton, and it is said that naphthion is difficult to escape during use. However, it was confirmed that when immersed in a polar organic solvent, naphth ions escape. Also, when the alcohol by-produced in the hydrolysis in the production process and the water by-produced in the subsequent condensation reaction escape from the gel to the outside, pores having a small pore diameter of about 10 nm are formed. The force through which the reactant moves through this small hole The moving speed is small and the reaction efficiency is poor. Therefore, a method has been devised in which particles of calcium carbonate are put into a sol and gelled, and then the gel is eluted to allow pores having a large pore diameter of about 500 nm to coexist. The large pores make it difficult for the dispersed state to become uniform, and the particle strength of the silica skeleton makes the composite particles weak. In addition, the lumps made by the sol-gel method are actually crushed during actual use, so the shape of the particles is not spherical but crushed. Crushed particles tend to chip off during handling or use, which can cause column clogging and loss.
酸触媒としては、 現在、 各種有機反応の酸触媒として用いられている、 硫酸等 の鉱酸ゃトリフルォロメタンスルホン酸等の強有機酸が挙げられる。 しかしなが ら、 これらの酸触媒は、 腐食性を有すること、 生成物又は反応物と触媒との分離 が困難なこと、 そして触媒の再生再使用ができないことなどの欠点を有しており、 これらの欠点のない固体酸触媒が切望されている。 この目的のため、 上記のゾル ―ゲル法によるナフイオンとシリカとの複合体や、 リンタングステン酸をゾルー ゲル法でシリカ内部に閉じこめた複合体を使用することが提案されている。 しか しながら、 ゾルーゲル法によるナフイオンとシリカとの複合体は、 上述の通り、 極性有機溶媒中でナフイオン成分が溶出することや、 孔が小さすぎるために反応 物の移動速度が小さく反応効率が悪くなるという問題点がある。 また、 リンタン グステン酸とシリカとの複合体では、 リンタングステン酸を 1 O w t %以下でし か複合化できないので酸触媒としての活性点が少ないこと、 粒子の形状が破砕型 であること、 孔が小さく拡散に時間がかかること、 酸性度がペルフルォロカーボ ンスルホン酸より小さいこと等の欠点がある。  Examples of the acid catalyst include mineral acids such as sulfuric acid and strong organic acids such as trifluoromethanesulfonic acid, which are currently used as acid catalysts for various organic reactions. However, these acid catalysts have drawbacks such as being corrosive, difficult to separate the product or reactant from the catalyst, and incapable of regenerating and reusing the catalyst. There is a long-felt need for a solid acid catalyst that does not have these disadvantages. For this purpose, it has been proposed to use a complex of the above nafion and silica by the sol-gel method or a complex in which phosphotungstic acid is confined inside silica by the sol-gel method. However, as described above, the complex of the nafion and silica by the sol-gel method has a problem in that the nafion component is eluted in a polar organic solvent, and the reaction speed is low due to too small pores, resulting in poor reaction efficiency. There is a problem that becomes. Also, in the composite of phosphorous tungstic acid and silica, phosphotungstic acid can be compounded only at 1 O wt% or less, so that the number of active sites as an acid catalyst is small, the shape of particles is crushed, However, it has disadvantages such as that it is small and takes a long time to diffuse, and that the acidity is lower than that of perfluorocarbonsulfonic acid.
本発明は、 平均孔径と空孔率が大きく、 かつ剛性及び耐薬品性にすぐれた球状 の無機大孔径多孔体及びその製造方法を提供することを課題とする。  An object of the present invention is to provide a spherical inorganic large-pore porous body having a large average pore diameter and a high porosity, and having excellent rigidity and chemical resistance, and a method for producing the same.
また、 含フッ素有機物質が比較的少量でも耐薬品製や耐熱性を発揮し、 さらに 適当な官能基を持たせることなどにより優れたイオン交換能、 触媒能及び金属ィ オン吸着能を発揮するという性質、 並びに、 含フッ素有機物質が無機担体に固定 ィヒされていると、 極性有機溶媒によっても含フッ素有機物質の流れ出しが少ない という性質を利用した、 実用上の取り扱い性、 機械的強度、 耐薬品性に優れた多 孔性複合体及びその製造方法を提供することを課題とする。 さらには、 酸触媒として用いた場合に、 含フッ素有機物質が溶出しにく く、 反 応効率が高く効率的な多孔性複合体を提供することを課題とする。 In addition, even a relatively small amount of a fluorine-containing organic substance exhibits chemical resistance and heat resistance, and exhibits excellent ion exchange ability, catalytic ability, and metal ion adsorption ability by having appropriate functional groups. The practical use, mechanical strength, and resistance to the properties of the fluorinated organic substance immobilized on the inorganic carrier when the fluorinated organic substance is immobilized on the inorganic carrier. It is an object to provide a porous composite having excellent chemical properties and a method for producing the same. Furthermore, it is another object of the present invention to provide a porous composite having high reaction efficiency and high efficiency in which fluorine-containing organic substances are not easily eluted when used as an acid catalyst.
発明の開示 Disclosure of the invention
本発明者は上記の問題点を解決するために鋭意研究の結果、 本発明をなすに至 つた。  The inventor of the present invention has made intensive studies to solve the above problems, and as a result, has accomplished the present invention.
本発明は下記の通りである。  The present invention is as follows.
1 . 平均球状化率が 7 5以上で、 骨格が柱状絡み合い構造であり、 平均孔径が 1 0 0〜 2 0 0 0 n mで、 空孔率が 0 . 5 0〜 9 0である粒子径 l 〃m〜 5 mmの球状無機多孔体。  1. Particle size l with an average spheroidization ratio of 75 or more, a skeleton having a columnar entangled structure, an average pore size of 100 to 200 nm, and a porosity of 0.50 to 90球状 m to 5 mm spherical inorganic porous material.
2 . 実質的に無水ゲイ酸を構成単位とする上記 1に記載の球状無機多孔体。 2. The spherical inorganic porous material as described in 1 above, wherein the structural unit is substantially composed of gay anhydride.
3 . シリカゾルと、 融点が 4 0 0〜 8 0 0 °Cの範囲にある無機塩スは無機塩の混 合物との均一水溶液を、 不均一化し、 次いで造粒を行うことからなる球状無機多 孔体の製造方法。 3. Silica sol and inorganic salts having a melting point in the range of 400 to 800 ° C are formed by heterogeneizing a homogeneous aqueous solution of a mixture of inorganic salts, followed by granulation. A method for producing a porous body.
4 . 前記無機塩が、 モリブデン酸塩、 酸化モリブデン、 モリブデン酸塩又は酸化 モリブデンとリン酸塩との混合物、 リン酸塩、 アル力リ金属塩化物、 アル力リ金 属硫酸塩、 及びこれらのいずれかとアル力リ土類金属塩との混合物からなる群か ら選ばれた少なくとも 1種である上記 3に記載の球状無機多孔体の製造方法。 5 . 粒子径が 1 ^ m〜 5 mm、 空孔率が 0 . 2 0〜 0 . 9 0、 平均孔径が 5〜 5 0 0 0 n mである無機多孔体粒子と、 該無機多孔体粒子に担持された含フッ素有 機物質を含む多孔性複合体。  4. The inorganic salt is molybdate, molybdenum oxide, molybdate or a mixture of molybdenum oxide and phosphate, phosphate, aluminum chloride, aluminum sulfate, and the like. 4. The method for producing a spherical inorganic porous material according to the above item 3, wherein the spherical inorganic porous material is at least one selected from the group consisting of a mixture of any one of the above and an alkaline earth metal salt. 5. Inorganic porous particles having a particle size of 1 ^ m to 5 mm, a porosity of 0.20 to 0.90, and an average pore size of 5 to 500 nm, A porous composite containing a supported fluorine-containing organic substance.
6 . 前記含フッ素有機物質が官能基を有する含フッ素高分子物質である上記 5に 記載の多孔性複合体。  6. The porous composite according to the above item 5, wherein the fluorinated organic substance is a fluorinated polymer substance having a functional group.
7 . 前記官能基が力チォン交換基である上記 6に記載の多孔性複合体。  7. The porous composite according to the above item 6, wherein the functional group is a cation exchange group.
8 . 無機多孔体粒子に含フッ素有機物質と希釈剤とを含む溶液を含有させ、 次い で該希釈剤を除去し、 その後、 該含フッ素有機物質の融点より 5 0 °C低い温度以 上でかつ該含フッ素有機物質の分解温度以下の温度範囲で加熱処理を行い、 しか る後冷却すること力、らなる上記 5又は 6のいずれかに記載の多孔性複合体の製造 方法。  8. Incorporate a solution containing a fluorine-containing organic substance and a diluent into the inorganic porous particles, then remove the diluent, and then raise the temperature to a temperature lower by 50 ° C than the melting point of the fluorine-containing organic substance. 7. The method for producing a porous composite according to any one of the above items 5 or 6, comprising performing a heat treatment in a temperature range equal to or lower than the decomposition temperature of the fluorine-containing organic substance and then cooling.
9 . 上記 7に記載の多孔性複合体を含む酸触媒。 図面の簡単な説明 9. An acid catalyst comprising the porous composite according to 7 above. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の球状無機多孔体粒子の柱状絡み合い構造の骨格を示す 走査電子顕微鏡写真である。  FIG. 1 is a scanning electron micrograph showing a skeleton of a columnar entangled structure of the first spherical inorganic porous particles of the present invention.
図 2は、 無機多孔体粒子の骨格が粒子状構造である一例 (市販シリカゲル、 商 品名 M B— 1 0 0 0、 富士シリシァ化学株式会社製) を示す走査電子顕微鏡写真 あ 。  FIG. 2 is a scanning electron micrograph showing an example in which the skeleton of the inorganic porous particles has a particulate structure (commercially available silica gel, trade name: MB-100, manufactured by Fuji Silica Chemical Co., Ltd.).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1の球状無機多孔体の構成成分としては、 例えば、 シリカ、 アルミ ナ、 シリカ一アルミナ、 チタニア、 ジルコニァもしくはこれらの二以上の混合物 などが挙げられる。 なかでもシリカはその高い耐酸性のため好ましい。 以下、 シ リ力を例にとって本発明を説明していく。  Examples of the constituent components of the first spherical inorganic porous material of the present invention include silica, alumina, silica-alumina, titania, zirconia, and a mixture of two or more of these. Among them, silica is preferred because of its high acid resistance. Hereinafter, the present invention will be described with reference to the die force as an example.
本発明の第 1の球状無機多孔体は、 形状が球状の粒子であり、 その球状化率 A は (以下に定義する) 7 5〜1 0 0である。 粒子の形状を球状とすることにより 剛性の高い無機多孔体を得ることができる。 球状化率が 7 5より大きければ、 粒 子としての強度が大きく破損しにく くなるため、 実用時の粒子の損失や破砕によ り生じる微粉が力ラムのフィルタ一に詰まる等の原因による圧力損失が起こりに く くなる。  The first spherical inorganic porous material of the present invention is a spherical particle, and has a spheroidization ratio A of 75 to 100 (defined below). By making the shape of the particles spherical, an inorganic porous body having high rigidity can be obtained. If the spheroidization ratio is larger than 75, the strength of the particles is large and the particles are hard to break, and this may be due to the loss of particles in practical use or the fine powder generated by crushing clogging the filter of the power ram. Pressure loss is less likely to occur.
球状化率 Aは、 下記 (1 ) 式で定義される :  The spheroidization ratio A is defined by the following equation (1):
A = B X 1 0 0 / C ( 1 ) ここで、 Bは粒子の面積、 Cはその粒子面の最小外接円の面積である。 測定は、 走査型電子顕微鏡写真を用いる画像解析法によって うことができる。  A = B X 100 / C (1) where B is the area of the particle, and C is the area of the smallest circumcircle of the particle surface. The measurement can be performed by an image analysis method using a scanning electron micrograph.
本発明の無機多孔体は、 柱状絡み合い構造の骨格を有する。 ここにいう柱状絡 み合い構造とは、 ほぼ同じ太さの柱状シリ力が三次元的に発達した構造を言い、 例えば図 1のような構造を言う。 このような構造においては、 応力が集中するよ うな弱い箇所が特定されることがないか、 又は少ないために、 本来シリカが有し ている強度が発揮されるものと考えられる。  The inorganic porous material of the present invention has a skeleton having a columnar entangled structure. The columnar entangled structure mentioned here refers to a structure in which columnar sili- cle forces of approximately the same thickness have developed three-dimensionally, for example, the structure shown in Fig. 1. In such a structure, it is considered that the strength inherent in silica is exhibited because a weak portion where stress is concentrated is not specified or is small.
多孔体粒子の骨格構造においては、 一般に柱状絡み合い構造と粒子状構造があ o  In general, the skeletal structure of porous particles has a columnar entangled structure and a particulate structure.
粒子状構造では、 シリ力微粒子が粒子形状を保持したまま互いに接触して三次 元構造を形成しており、 シリ力微粒子どうしの接触部分の径はシリ力微粒子自体 の径より小さい。 そのため、 圧縮などの力が加わった場合にもっとも弱いシリカ 微粒子の接触部分に応力集中が生じ、 全体的な強度が低下すると考えられる。 粒 子状構造の骨格は、 例えば図 2に示される。 In the particulate structure, the fine particles of silicon force contact each other while maintaining the An original structure is formed, and the diameter of the contact portion between the fine particles is smaller than the diameter of the fine particles themselves. Therefore, when a force such as compression is applied, stress concentration occurs at the weakest contact point of the silica fine particles, and the overall strength is thought to decrease. The skeleton of the particulate structure is shown, for example, in FIG.
実際に、 シリカ多孔体粒子一個に圧縮荷重をかけたときの破壊強度を微小圧縮 試験機 M C TM— 5 0 0形 (島津製作所製) で測定すると、 粒子状構造のシリカ 多孔体の例である空孔率 0 . 6 8のシリカゲル M B 5 0 0 0 (富士シリシァ化学 製) の圧縮破壊強度は 9 1 k g / c m 2 であるのに対し、 本発明で使用する柱状 絡み合い構造のシリカ多孔体は、 例えば、 空孔率 0 . 7 4で圧縮破壊強度が 1 2 8 k g / c m 2 であった。 通常の粒状構造のシリ力多孔体は、 柱状絡み合い構造 のシリカ多孔体より強度が小さいことが実験的にも明らかである。 Actually, the fracture strength when a compressive load is applied to a single porous silica particle is measured using a micro-compression tester MC TM-500 type (manufactured by Shimadzu Corporation), which is an example of a porous silica material having a particulate structure. porosity 0 compressive fracture strength. 6 8 silica gel MB 5 0 0 0 (manufactured by Fuji Shirishia chemical) whereas a 9 1 kg / cm 2, the porous silica of the columnar entanglement structure used in the present invention For example, the porosity was 0.74, and the compressive fracture strength was 128 kg / cm 2 . It is experimentally clear that the strength of the porous porous body of ordinary granular structure is lower than that of porous silica of columnar entangled structure.
本発明の第 1の球状無機多孔体は、 平均孔径が大きく、 孔量 (空孔率) が大き い。 これは多孔体が柱状絡み合い構造を有し、 かつ球状であるために、 強度が大 きいことにより実現できたものである。 このような内部構造を有する球状粒子で あることが本発明の球状無機多孔体の特徴である。  The first spherical inorganic porous material of the present invention has a large average pore diameter and a large pore volume (porosity). This was achieved because the strength of the porous body was large because it had a columnar entangled structure and was spherical. It is a feature of the spherical inorganic porous material of the present invention that it is a spherical particle having such an internal structure.
球状無機多孔体の平均孔径は、 1 0 0〜 2 0 0 0 n m、 好ましくは 3 0 0〜 1 5 0 0 n m、 より好ましくは 5 0 0〜 1 5 0 0 n m、 さらに好ましくは 5 0 0〜 1 0 0 0 n mである。 この範囲内であれば、 球状無機多孔体が柱状絡み合い構造 をとりやすい。  The average pore diameter of the spherical inorganic porous material is 100 to 200 nm, preferably 300 to 150 nm, more preferably 500 to 150 nm, and still more preferably 500 nm. 1100 nm. Within this range, the spherical inorganic porous material tends to have a columnar entangled structure.
また、 空孔率は無機多孔体粒子全体積に占める孔の体積の割合として定義され、 0 . 5〜0 . 9、 好ましくは 0 . 6〜0 . 9、 より好ましくは 0 . 6 5〜0 . 8 である。 空孔率が 0 . 5より大きい範囲であれば、 各種担持物の量を多くするこ とができる。 また、 空孔率が 0 . 9より小さい範囲であれば、 多孔体粒子の強度 が大きく実用に適するようになる。  The porosity is defined as the ratio of the volume of pores to the total volume of the inorganic porous material particles, and is 0.5 to 0.9, preferably 0.6 to 0.9, more preferably 0.65 to 0.9. .8. When the porosity is in a range larger than 0.5, the amount of various kinds of supported materials can be increased. Further, when the porosity is in a range smaller than 0.9, the strength of the porous particles becomes large and the porous particles become suitable for practical use.
本発明の球状無機多孔体はその内部が充実している。 ここにいう 「充実してい る」 とは、 内部が中空でない、 すなわち単一又は少数の大きな孔が粒子体積の大 部分を占めるのではなく、 粒径に比して小さい孔径の無数の孔により多孔体を形 成していることを意味する。 好ましくは、 粒子内部に平均孔径に比べて 1桁以上 大きな穴径をもつ穴が無いか、 又は少ないことを意味する。 充実であるか中空で あるかは、 断面を走査電子顕微鏡で観察することにより簡単に判別できる。 本発明の第 1の球状無機多孔体の粒子径は 1 m〜 5 mm、 好ましくは 1 m 〜3 mm、 より好ましくは 1 0 πι〜1 πιιη、 さらに好ましくは 1 0 m〜2 0 0〃mである。 粒子径が 1 mより大きいと孔径と粒子径とのバランスで柱状絡 み合い構造となりやすい。 また、 粒子径が 5 mmより小さいと、 該粒子を各種担 体として用いた時に、 例えば反応分子やイオンの粒子内拡散が十分となる。 さらに、 多孔体の構成材料がシリカの場合、 球状無機多孔体が実質的に無水ケ ィ酸を構成単位としていることが好ましい。 具体的には、 シリカ多孔体の骨格を なす実質的部分が重量分率で 9 9 %以上の無水ゲイ酸を構成単位として含有する 三次元重合体であることが好ましい。 無水ゲイ酸が 9 9 %以上であれば、 混在す る不純物 (無機塩や無機酸化物) が少ないために、 高い耐薬品性、 特に耐酸性が 得られ、 また、 不純物が溶出して使用工程での不純物として悪影響を与えること も少ない。 The spherical inorganic porous body of the present invention has a solid interior. The term “solid” as used herein means that the interior is not hollow, that is, one or a few large pores do not occupy the majority of the particle volume, but rather countless pores having a small diameter compared to the particle size. It means that a porous body is formed. Preferably, it means that there are no or few holes having a hole diameter larger by one digit or more than the average pore diameter inside the particles. Solid or hollow Whether it is present can be easily determined by observing the cross section with a scanning electron microscope. The particle diameter of the first spherical inorganic porous material of the present invention is 1 m to 5 mm, preferably 1 m to 3 mm, more preferably 10 πι to 1 πιιη, and still more preferably 10 m to 200 m. It is. If the particle diameter is larger than 1 m, a columnar entangled structure tends to be formed due to the balance between the pore diameter and the particle diameter. Further, when the particle diameter is smaller than 5 mm, when the particles are used as various carriers, for example, diffusion of reactive molecules and ions in the particles becomes sufficient. Further, when the constituent material of the porous body is silica, it is preferable that the spherical inorganic porous body substantially contains a silicic anhydride as a constituent unit. Specifically, it is preferable that a substantial part of the skeleton of the porous silica is a three-dimensional polymer containing 99% or more by weight of gay acid as a constituent unit. If the content of gay anhydride is 99% or more, high chemical resistance, especially acid resistance can be obtained because there are few impurities (inorganic salts and inorganic oxides) in the mixture. There is little adverse effect as impurities in the atmosphere.
次に、 球状無機多孔体の製造方法の例を説明する。 製造方法はここでは二つ例 示するが、 本発明の球状無機多孔体及びその製法方法はこれらに制限されるもの ではない。  Next, an example of a method for producing a spherical inorganic porous body will be described. Although two production methods are described here, the spherical inorganic porous material of the present invention and the production method thereof are not limited thereto.
球状無機多孔体を製造する第一の方法は、 まず、 シリカゾルと無機塩の水溶液 を調製することから始まる。 この方法では、 溶媒として水を用いるが、 環境安全 性の観点から水を選択したものであり、 その他の溶剤、 例えば、 アルコール類、 ジメチルホルムァミ ド等の極性溶媒でも無機塩を溶解するものであれば使用でき る。 溶液の固形分率に特に制限はないが、 好ましくは 1 0重量 〜 8 0重量%、 より好ましくは 2 0重量%〜5 0重量%である。 溶液の水分が多い程乾燥に要す る熱量が多く必要となり、 一方固形分率が多すぎると固形物分散性が悪くなりや すく、 多孔体物性の不均一につながりやすい。  The first method for producing a spherical inorganic porous material starts with preparing an aqueous solution of silica sol and an inorganic salt. In this method, water is used as a solvent, but water is selected from the viewpoint of environmental safety, and other solvents such as alcohols and polar solvents such as dimethylformamide that dissolve inorganic salts are also used. Can be used. The solid content of the solution is not particularly limited, but is preferably from 10 to 80% by weight, more preferably from 20 to 50% by weight. The higher the water content of the solution, the greater the amount of heat required for drying. On the other hand, if the solids content is too high, the dispersibility of the solids tends to deteriorate, and the physical properties of the porous material tend to be uneven.
無機塩は、 ①焼結時に 4 0 0でから 8 0 0 °Cの間に融点を示す化合物であり、 かつ②無機多孔体材料であるシリ力と親和性が大きくなじみやすい化合物である ことが好ましい。 シリ力のシンタリングが進む温度以上で焼結操作を行うのであ る力^ 前述の①及び②の条件は焼結温度と密接に関係している。 なぜならば、 焼 結温度では添加した無機塩が溶融して液状になっていること、 さらに、 無機塩の 液相とシリ力の固体との界面において相互作用が働くことにより、 発明の第 1の 多孔体の構造が形成されると考えられるからである。 前記①及び②の条件を満た す無機塩であれば全て使用可能であるが、 特に好ましい具体例を挙げると、 モリ ブデン酸塩、 酸化モリブデン、 酸化モリブデン又はモリブデン酸塩とリン酸塩と の混合物、 リン酸塩、 塩化ナトリウム、 塩化カリウム等のアルカリ金属塩化物、 硫酸カリウム等のアル力リ金属硫酸塩、 及びこれらと塩化カルシウム等のアル力 リ土類金属塩との混合物である。 酸化モリブデンは、 水に対する溶解性が小さく、 そのままでは使用が難しいため、 焼結時に酸化されて酸化モリブデンに変化し、 かつ水に対する溶解性が大きいモリブデン酸アンモニゥム塩の形で使用するのが 好ましい。 Inorganic salts are (1) compounds that exhibit a melting point between 400 and 800 ° C during sintering, and (2) compounds that have a high affinity with the silicic power of inorganic porous materials and are easily compatible. preferable. The sintering operation is performed at a temperature higher than the sintering temperature of the sintering force. The conditions (1) and (2) above are closely related to the sintering temperature. This is because at the sintering temperature, the added inorganic salt is molten and becomes liquid, This is because it is considered that the interaction at the interface between the liquid phase and the solid of the Siri force acts to form the structure of the first porous body of the present invention. Any inorganic salt that satisfies the conditions (1) and (2) can be used. Particularly preferred specific examples are molybdate, molybdenum oxide, molybdenum oxide, or a mixture of molybdate and phosphate. , Phosphates, alkali metal chlorides such as sodium chloride and potassium chloride; alkali metal sulfates such as potassium sulfate; and mixtures of these with alkaline earth metal salts such as calcium chloride. Since molybdenum oxide has low solubility in water and is difficult to use as it is, it is preferably used in the form of an ammonium molybdate salt which is oxidized during sintering and changes into molybdenum oxide, and has high solubility in water.
これらの無機塩は一種又は二種以上の混合物で使用することができる。 使用す る塩の種類などの条件を選定することによって所望の孔径ゃ狭い孔径分布のシリ 力多孔体を得ることができる。 具体的には J P— B— 3— 3 9 7 3 0又は J P— B - 6 - 1 5 4 2 7に開示されている方法が例示される。 無機塩として好ましく はモリブデン酸アンモニゥムとリン酸一ナトリウム (N a //M oモル比で6 Z 4 〜 0 . 5 / 9 . 5の組成) を用 、、 無機塩/シリ力の体積比が 2 / 1 (空孔率 0 . 6 0 ) 〜1 2 Z 1 (空孔率 0 . 9 0 ) の仕込み組成の水溶液を使用するのが好ま しい。 These inorganic salts can be used alone or in a mixture of two or more. By selecting conditions such as the type of salt used, a porous silicon material having a desired pore size / narrow pore size distribution can be obtained. Specifically, the method disclosed in JP-B-3-39730 or JP-B-6-154427 is exemplified. Preferably Anmoniumu and monosodium phosphate molybdate as an inorganic salt (N a / / M with o molar ratio 6 Z 4 ~ 0. 5/ 9. 5 Composition of) volume ratio of the use ,, inorganic salt / silica force It is preferable to use an aqueous solution having a charge composition of 2/1 (porosity 0.60) to 12Z1 (porosity 0.90).
シリ力ゾル又は水ガラスと無機塩との混合液の均一水溶液を調製した後、 これ を何らかの操作によって沈殿又はゲル化させて不均一化させた後、 スプレードラ ィャ一や振動造粒機等の装置で造粒を行う。 これらの処理のうち特に不均一化処 理が重要である。 シリ力ゾル又は水ガラスと無機塩との混合液が均一かつ透明の 状態で造粒を行うと、 噴霧乾燥条件の熱風温度ゃフィ一ド液量、 そして熱風量を 各種変化させても、 また、 他の要因と考えられる混合液粘度や固形分率、 乾燥条 件を変化させても、 球状化率の低い粒子が得られる。 一方、 混合液から沈殿が生 じる状態にしたり、 又は、 ゲル化が生じるような不均一な状態にすると初めて球 状化率の高い粒子を得ることができる。 混合液が不均一であるか否かは、 均一な 状態で透明であった液が白濁してくることから目視で判断できる。 すなわち本願 発明に言う不均一とは、 液にゲル化や沈殿が生じ、 液が白濁するような微視的な 不均一をいう。 一度均一な混合液とし、 その後不均一にすることで造粒乾燥後の 粒子内部での組成の均一性が向上していると推定される。 After preparing a homogeneous aqueous solution of a mixed solution of silicic acid sol or water glass and inorganic salt, precipitate or gel it by any operation to make it non-uniform, and then use a spray dryer, vibrating granulator, etc. Granulation is performed by the apparatus described in (1). Of these treatments, the non-uniformity treatment is particularly important. If granulation is performed with a uniform and transparent mixture of the sily sol or the water glass and the inorganic salt, the hot air temperature under the spray drying conditions ゃ the amount of the feed liquid, and the amount of hot air can be varied, However, particles having a low spheroidization ratio can be obtained even if the viscosity of the mixture, the solid content, and the drying conditions, which are considered to be other factors, are changed. On the other hand, particles having a high spheroidization ratio can be obtained only when the mixture is brought into a state in which precipitation occurs or in a non-uniform state in which gelation occurs. Whether or not the mixed solution is non-uniform can be visually judged from the fact that the solution which was transparent in a uniform state becomes cloudy. That is, the non-uniformity referred to in the invention of the present application is a microscopic phenomenon in which the solution is gelled or precipitated and the solution becomes cloudy. Refers to unevenness. It is presumed that the uniformity of the composition inside the particles after granulation and drying has been improved by making the liquid mixture once uniform and then making it non-uniform.
混合液を不均一にする方法は特に限定されない力 その一つに混合液の酸性度 The method of making the mixture non-uniform is not particularly limited. One of them is the acidity of the mixture.
( p H) を制御する方法が例示できる。 p Hを制御するために混合液に加える酸 及びアル力リに限定はないが、 酸としては鉱酸、 特に硝酸が好ましく、 アル力リ としては特にアンモニア水が好ましい。 なぜなら、 硝酸及びアンモニアともに焼 成工程で窒素酸化物として気化し、 粒子から除かれるためである。 混合液が不均 一になる p Hは使用する無機塩の種類や量、 そして液の温度に依存する。 例えば、 無機塩にモリブデン酸アンモニゥムとりん酸ナトリウムを用いた場合には、 混合 液が不均一になるのは p H 1以下又は 7以上 1 0以下のいずれかである。 なお、 ここにいう p Hの値は、 当然のことながら水溶液のある程度の攪拌がなされた状 態で測定した値である。 水溶液の攪拌が不十分であるか、 又は水溶液を攪拌しな い場合は、 局所的にのみ白濁しゲル化等が生じる現象が観察され、 見かけ上 の p Hが 1以下又は 7以上 1 0以下の 、ずれの範囲にも入らないことがあり得る。 この攪拌が不十分な液を用いて噴霧乾燥機で造粒を行うと、 一部は球状粒子が得 られる力 一部は異形粒子が混在することになる。 従って、 液は攪拌することが 好ましい。 (p H) can be exemplified. There is no particular limitation on the acid and acid added to the mixed solution to control the pH, but the acid is preferably a mineral acid, particularly nitric acid, and the acid is particularly preferably aqueous ammonia. This is because both nitric acid and ammonia vaporize as nitrogen oxides during the baking process and are removed from the particles. The pH at which the mixed solution becomes uneven depends on the type and amount of the inorganic salt used and the temperature of the solution. For example, when ammonium molybdate and sodium phosphate are used as the inorganic salt, the mixture becomes non-uniform at either pH 1 or lower or 7 or higher and 10 or lower. The value of pH here is, of course, a value measured in a state where the aqueous solution is stirred to some extent. If the aqueous solution is not sufficiently stirred or if the aqueous solution is not stirred, a phenomenon in which only local opacity and gelation occur is observed, and the apparent pH is 1 or less or 7 or more and 10 or less. However, it may not be within the range of deviation. If granulation is carried out with a spray dryer using this insufficiently stirred liquid, a part of the force to obtain spherical particles will be partly mixed with irregularly shaped particles. Therefore, the liquid is preferably stirred.
混合液の不均一化の造粒粒子形状への影響については明らかにされておらず推 定の域を出ないが、 混合液の液滴が乾燥塔に入り ; 0 () °c前後の熱風に触れた時 (乾燥が始まった時) に液滴中に沈殿物やゲル物が詰まっていることが球状粒子 のできる要件であると推察している。  The effect of the heterogeneity of the mixture on the granulated particle shape has not been clarified and remains within the estimation range, but droplets of the mixture enter the drying tower; hot air around 0 () ° c It is presumed that the requirement for the formation of spherical particles is that the precipitates and gels are clogged in the droplets when touching (when drying starts).
すなわち、 球状化率を 7 5以上にするには、 シリカゲルとモリブデン酸アンモ 二ゥム、 リン酸一ナトリウムの溶液の酸性度 (p H ) を調整することが好ましい c P Hを 7以上とし、 溶液のゲル化を進めた状態で噴霧乾燥する。  That is, in order to make the spheroidization ratio 75 or more, it is preferable to adjust the acidity (pH) of the solution of silica gel, ammonium molybdate, and monosodium phosphate. Spray-drying is carried out in a state where gelation has been advanced.
次に造粒を行う。 造粒とは、 所定の径の混合液滴を生成させた後に乾燥して水 分を除去することである。 造粒法に特に制限はない。  Next, granulation is performed. Granulation means removing mixed water by producing mixed droplets having a predetermined diameter and then drying. There is no particular limitation on the granulation method.
一般に、 シリカ多孔体粒子の形状は造粒条件にも依存する。 造粒法としては例 えば、 噴霧乾燥法や超音波を利用し均一液滴生成後に乾燥を行う方法 (J P— B - 3 - 3 9 7 3 0 ) などがある。 生成した混合液滴を乾燥するときに粒子形状が 決まる。 この粒子形状を決める要因としては、 混合液の不均一性や固形分率、 粘 度といった物性、 温度や湿度などの乾燥条件が考えられる。 乾燥条件は製品の生 産性や価格にも直接関連する要因でもあり、 この点を考慮すると例えば噴霧乾燥 法では乾燥塔の入り口における熱風の温度は 2 0 0 °C前後が好ましい。 本発明の 実施例では、 経済性を考慮し、 大量製造が可能な噴霧乾燥法を選択したが、 本発 明はこれにより制限されるものではない。 Generally, the shape of the porous silica particles also depends on the granulation conditions. Examples of the granulation method include a spray drying method and a method in which uniform droplets are formed using ultrasonic waves and then dried (JP-B-3-39730). When drying the generated mixed droplets, the particle shape becomes Decided. Factors that determine the particle shape include non-uniformity of the mixture, physical properties such as solid content and viscosity, and drying conditions such as temperature and humidity. The drying conditions are also factors directly related to the productivity and price of the product. In view of this, for example, in the spray drying method, the temperature of the hot air at the entrance of the drying tower is preferably around 200 ° C. In the embodiment of the present invention, a spray drying method capable of mass production was selected in consideration of economy, but the present invention is not limited thereto.
なお、 上に例示した製造方法では、 熱風温度、 熱風量、 混合液導入量など造粒 条件を各種変化させても、 得られる粒子の形状の変化は比較的小さい。  In the manufacturing method exemplified above, the change in the shape of the obtained particles is relatively small even if the granulation conditions such as the hot air temperature, the amount of hot air, and the amount of the mixed liquid introduced are variously changed.
次に焼成を行う。 焼成温度は通常、 4 0 0〜1 0 0 0 °Cである。 しかしながら、 所定の平均孔径と狭い孔径分布を実現するためには、 使用した無機塩を溶融させ ること、 すなわち無機塩の融点以上で、 かつ無機塩の融点より 2 0 0 °C高い温度 以下で焼成を行うことが好ましい。 無機塩の融点より高い温度であれば、 平均孔 径が大きくなりやすく、 融点より 2 0 0 °C高い温度以下であれば、 平均孔径が大 きくなりすぎることが少ない。 例えば、 6 7 5でで 1時間 (平均孔径 5 0 0 n m) 〜7 5 0 °Cで 4時間 (平均孔径 2 0 0 0 n m) で焼成する。 なお、 融点より 1 0 Next, firing is performed. The firing temperature is usually from 400 to 100 ° C. However, in order to achieve a predetermined average pore size and a narrow pore size distribution, the inorganic salt used must be melted, that is, at a temperature not lower than the melting point of the inorganic salt and not higher than 200 ° C higher than the melting point of the inorganic salt. Preferably, baking is performed. If the temperature is higher than the melting point of the inorganic salt, the average pore size is likely to be large. If the temperature is 200 ° C. or lower than the melting point, the average pore size is unlikely to be too large. For example, baking is performed at 675 for 1 hour (average pore diameter of 500 nm) to 75 ° C for 4 hours (average pore diameter of 2000 nm). The melting point is 10
〜2 0 °C低い温度でも目的物が得られることがある。 The desired product may be obtained even at temperatures as low as ~ 20 ° C.
焼成時間は焼成温度との関連で設定する。 高い温度の場合は短い時間で、 また 低い温度の場合は長い時間で焼成を行う。 作業性等を考慮すると所定温度で 0 . The firing time is set in relation to the firing temperature. The baking is performed in a short time at a high temperature and for a long time at a low temperature. Considering workability, etc.
5〜5時間保持することが好ましい。 ここで、 例えばモリブデン酸アンモニゥム 等の塩を用いた場合には、 アンモニアを除くために 3 0 0〜4 0 0 °C付近で仮焼 を行つた後、 上記温度で焼成を行う。 It is preferable to hold for 5 to 5 hours. Here, for example, when a salt such as ammonium molybdate is used, calcination is performed at around 300 to 400 ° C. to remove ammonia, and then calcination is performed at the above temperature.
次に、 冷却後、 得られた焼成物から無機塩を洗浄により除去する。 洗浄液とし てはシリカを溶解せず、 無機塩を溶解するものであればいずれも使用できる。 塩 酸や硫酸などの鉱酸酸性溶液も使用できる力 \ 特に、 水がコスト面や環境面から 好ましく使用される。 洗浄液の量や洗浄温度に特に制限はなく、 シリ力多孔体中 の無機塩が 9 9重量%以上除去される条件を設定する。 得られた無機塩の溶液は 必要に応じて再使用したり、 そのなかから無機塩を回収したりすることが好まし い。  Next, after cooling, the inorganic salt is removed from the obtained calcined product by washing. Any washing solution can be used as long as it does not dissolve silica but dissolves inorganic salts. Ability to use acidic solutions of mineral acids such as hydrochloric acid and sulfuric acid. In particular, water is preferably used in terms of cost and environment. There is no particular limitation on the amount of the cleaning solution or the cleaning temperature, and conditions are set for removing at least 99% by weight of the inorganic salt in the porous silicon body. It is preferable that the obtained solution of the inorganic salt is reused as necessary, or the inorganic salt is recovered from the solution.
球状無機多孔体を製造する第二の方法では、 既存の球状無機多孔体を出発物質 として用いる。 この方法では既存の球状無機多孔体の球形をそのまま保持して、 本発明の大孔径の球状無機多孔体を作ることができる。 従って、 既存の球状無機 多孔体自体が適当な球状化率を有する必要がある。 In the second method for producing a spherical inorganic porous material, an existing spherical inorganic porous material is used as a starting material. Used as In this method, the spherical inorganic porous body having a large pore diameter of the present invention can be produced while maintaining the spherical shape of the existing spherical inorganic porous body. Therefore, it is necessary that the existing spherical inorganic porous material itself has an appropriate spheroidizing ratio.
既存の球状無機多孔体としては、 適当な球状化率を有していれば、 特に限定さ れないが、 例えば、 シリカ、 アルミナ、 シリカ一アルミナ、 チタニア、 ジルコ二 ァ又はこれらの二以上の混合物による球状無機多孔体が挙げられる。 この中で球 状シリカ多孔体は、 シリ力ゲルに代表されるように最も汎用的に使用されており、 シリカの高い耐酸性のため好ましく用いられる。 以下、 既存の球状無機多孔体と して球状シリ力多孔体を例にとって第二の方法を説明する。  The existing spherical inorganic porous material is not particularly limited as long as it has an appropriate spheroidizing ratio. Examples thereof include silica, alumina, silica-alumina, titania, zirconium, and a mixture of two or more of these. And a spherical inorganic porous material. Among these, spherical porous silica is most commonly used as typified by silica gel, and is preferably used because of the high acid resistance of silica. Hereinafter, the second method will be described using a spherical porous body as an example of the existing spherical inorganic porous body.
第二の方法の第一段階は、 無機塩の水溶液を調製することである。 溶媒として 水を用いているが本発明の第一の製造方法と同様に水に限定されるものではない。 溶液の濃度は 0 . 1重量%〜 8 0重量%、 好ましくは 5重量%〜 8 0重量%であ る。 0 . 1重量%以上の濃度であれば、 一回の含浸 ·乾燥工程だけで、 シリカ多 孔体中に無機塩が入りやすく、 相分離が進みやすくなる。 従って、 含浸 ·乾燥ェ 程を繰り返す回数が少なくなり効率的である。  The first step of the second method is to prepare an aqueous solution of an inorganic salt. Although water is used as the solvent, it is not limited to water as in the first production method of the present invention. The concentration of the solution is between 0.1% and 80% by weight, preferably between 5% and 80% by weight. When the concentration is 0.1% by weight or more, the inorganic salt easily enters the porous silica and the phase separation easily proceeds by only one impregnation and drying step. Therefore, the number of times of repeating the impregnation / drying process is reduced, which is efficient.
ここで使用する無機塩は、 第一の方法で使用できる無機塩と同様である。  The inorganic salt used here is the same as the inorganic salt that can be used in the first method.
次に無機塩水溶液をシリカ多孔体に含浸する。 無機塩水溶液の量 (体積) は用 いたシリ力多孔体の孔量 (体積) の 5 0〜 1 0 0 %、 好ましくは 6 0〜 9 0 %で ある。 5 0 %以上であれば、 シリカ多孔体の孔に全体的に無機塩水溶液が入りや すくなり、 斑がおきにく くなる。 一方、 1 0 0 %以下であれば、 シリカ多孔体の 外部に無機塩水溶液が存在しにく くなり、 溶けている無機塩が有効に使用され、 シリ力多孔体粒子の合一の原因となりにくい。 シリ力多孔体を大気圧下又は減圧 下で無機塩水溶液と接触させ混合する。 混合の仕方に制限はないが、 エバポレー ターを用いたり、 各種ミキサーを用いたりすることができる。 混合時間は、 無機 塩水溶液がシリ力多孔体中に人り込むまでであり、 例えば、 0 . 5〜 1時間であ る。  Next, an aqueous solution of an inorganic salt is impregnated into the porous silica. The amount (volume) of the aqueous inorganic salt solution is 50% to 100%, preferably 60% to 90%, of the pore volume (volume) of the used porous silica material. If it is 50% or more, the inorganic salt aqueous solution easily enters the pores of the porous silica material as a whole, and spots hardly occur. On the other hand, if the content is less than 100%, it becomes difficult for the aqueous solution of the inorganic salt to exist outside the porous silica, and the dissolved inorganic salt is effectively used, which causes coalescence of the porous silica particles. Hateful. The porous silicon body is brought into contact with and mixed with an aqueous solution of an inorganic salt under atmospheric pressure or reduced pressure. The mixing method is not limited, but an evaporator or various mixers can be used. The mixing time is until the aqueous solution of the inorganic salt enters the porous porous body, and is, for example, 0.5 to 1 hour.
次に無機塩水溶液を含んだシリ力多孔体を乾燥する。 乾燥方法に特に制限はな く、 常圧下あるいは減圧下で、 常温で、 又は加熱しながら乾燥を行う。 これによ り、 シリカ多孔体の孔に無機塩が入った状態になる力 無機塩の孔に対する体積 率は 1 0〜1 0 0 %、 好ましくは 3 0〜 1 0 0 %、 より好ましくは 5 0〜1 0 0 %である。 1 0 %より低いと焼成により孔が大きくなりにく く、 1 0 0 %より大 きいと粒子の合一の原因となる可能性がある。 シリ力多孔体への無機塩水溶液の 含浸 ·乾燥工程を何回か繰り返して、 孔に対する無機塩の体積率を増やすことが できる。 乾燥時の残留水分に制限はないが、 好ましくは 0 . 1〜1 0重量%であ る。 次の焼成工程で残存している水分が除去されるが、 水分が 1 0重量%より多 く残っていると焼成時に急激な水の蒸発が生じてシリカ多孔体の構造を壊す可能 性がある。 Next, the porous silicon body containing the inorganic salt aqueous solution is dried. The drying method is not particularly limited, and drying is performed under normal pressure or reduced pressure, at normal temperature, or while heating. As a result, the force at which the inorganic salt enters the pores of the porous silica body The rate is between 10 and 100%, preferably between 30 and 100%, more preferably between 50 and 100%. If it is lower than 100%, the pores are unlikely to be enlarged by sintering, and if it is higher than 100%, the coalescence of particles may be caused. By repeating the impregnation and drying steps of the aqueous inorganic salt solution into the porous porous body several times, the volume ratio of the inorganic salt to the pores can be increased. There is no limitation on the residual moisture during drying, but it is preferably 0.1 to 10% by weight. Residual water is removed in the next baking step, but if more than 10% by weight of water remains, there is a possibility of rapid evaporation of water during baking and destroying the structure of porous silica. .
次に焼成を行う。 この焼成工程は上記の第一の製造方法と同一である。  Next, firing is performed. This firing step is the same as the above-mentioned first manufacturing method.
次に得られた焼成物から無機塩を洗浄により除去する。 この工程も上記本発明 の第一の製造法と同一である。  Next, the inorganic salt is removed from the obtained fired product by washing. This step is also the same as the first production method of the present invention.
これらの方法等で得られた無機多孔体は、 例えば篩により所定の粒子径となる ように分級され、 必要ならば水洗、 乾燥をした後利用に供せられる。 乾燥方法に は特に制限はない。  The inorganic porous material obtained by these methods and the like is classified, for example, by a sieve so as to have a predetermined particle size, and if necessary, washed with water and dried before being used. There is no particular limitation on the drying method.
本発明の第 1の球状無機多孔体は、 空孔率が高いにもかかわらず、 機械的強度 に優れ、 使用中に割れにくい、 粒径を比較的均一にすることができる等という、 極めて優れた特性を有する。 また、 市販のシリカゲルや多孔性ガラスを用いた場 合に比べて大きな空孔率でかつ強度が大きいから、 ガスクロマトグラフィ一及び 液体クロマトグラフィー用固定相、 分取クロマトグラフィー用固定相、 細胞培養 担体、 吸着剤、 又は触媒若しくはその担体として有用である。  The first spherical inorganic porous material of the present invention is extremely excellent in that despite its high porosity, it has excellent mechanical strength, is hard to crack during use, and can have a relatively uniform particle size. It has characteristics. In addition, since the porosity and strength are higher than those using commercially available silica gel or porous glass, stationary phases for gas chromatography and liquid chromatography, stationary phases for preparative chromatography, and cell culture carriers It is useful as an adsorbent, a catalyst, or a carrier thereof.
本発明の多孔性複合体は、 無機多孔体粒子に含フッ素有機物質を包含させ、 か つ担体である無機多孔体粒子の孔からの含フッ素有機物質の溶出を実質的に防止 したもの、 すなわち、 含フッ素有機物質を無機多孔体粒子に実質的に固定化した ものである。  The porous composite of the present invention is obtained by incorporating a fluorine-containing organic substance into inorganic porous particles and substantially preventing elution of the fluorine-containing organic substance from the pores of the inorganic porous particles serving as a carrier. Fluorine-containing organic substances are substantially fixed to inorganic porous particles.
多孔性複合体の担体として使用する無機多孔体粒子の粒子径は 1 z m〜 5 mm、 好ましくは 1 z m〜3 mm、 より好ましくは 1 0〃m〜l mmである。 無機多孔 体粒子の粒径が 1 / m以上であれば、 取り扱いが比較的容易であり、 また、 例え ば力ラムに充填して使用する場合には力ラム前後の圧力損失を比較的低くできる: 粒子径が 5 mm以下であれば、 多孔性複合体の孔の内部における拡散に要する時 間が短くて済むので、 有機物質の機能、 例えばイオン交換、 触媒、 金属元素の吸 着などが十分に発揮され得る。 The particle diameter of the inorganic porous material particles used as the carrier of the porous composite is 1 zm to 5 mm, preferably 1 zm to 3 mm, and more preferably 10 µm to 1 mm. If the particle size of the inorganic porous particles is 1 / m or more, handling is relatively easy, and for example, when used by filling in a power ram, the pressure loss before and after the power ram can be relatively low. : When the particle diameter is 5 mm or less, it is necessary for diffusion inside the pores of the porous composite Since the time is short, the functions of organic substances, such as ion exchange, catalyst, and adsorption of metal elements, can be sufficiently exhibited.
無機多孔体粒子の空孔率は、 機械的強度と触媒効率の両立の観点から、 0. 2 〜0. 9、 好ましくは 0. 6〜0. 9、 より好ましくは 0. 65〜0. 8である。 空孔率が大きいと、 それだけ多くの有機物質を担持することが可能となり、 多孔 性複合体としての能力、 例えば触媒活性点量等を大きくすることができる。 仮に 空孔率がそれぞれ 0. 50と 0. 80のシリ力多孔体 ( i ) 及び ( i i ) にポリ トリフルォロスチレンスルホン酸を担持した場合を定量的に比較してみる。 無機 有機複合体 1 m 1で空孔量が 0. 25mlを確保した 、場合を想定する。 空孔率 0. 50のシリカ多孔体 (i) では、 シリカが 0. 5 0mし ポリ トリフルォロ スチレンスルホン酸 0. 25 m 1、 空孔量が 0. 25 m 1となり、 多孔性複合体 の体積あたり及び重量あたりの交換容量はそれぞれ 1. 4 7 ミリ当量/ m 1及び 1. 0 1 ミリ当量 Zgである (シリカの比重を 2. 2、 ポリ トリフルォロスチレ ンスルホン酸の比重を 1. 40とする。 以下シリカ多孔体 ( i i) の計算におい ても同じ。 ) 。 一方、 空孔率 0. 80のシリ力多孔体 ( i i ) では、 シリ力が 0. 20m l、 ポリ トリフルォロスチレンスルホン酸が 0. 5 5m l、 孔量が 0. 2 5 m 1となり、 多孔性複合体の体積あたり及び重量あたりのポリ トリフルォ口ス チレンスルホン酸の交換容量はそれぞれ 3. 24 ミ リ当量 Zm l及び 2. 67ミ リ当量/ gとなる。 シリカ多孔体 (i i) は、 シリカ多孔体 (i) に比べて空孔 率が 1. 6倍大きいだけにすぎないにもかかわらず、 体積あたり及び重量あたり の交換容量がそれぞれ 2. 2倍及び 2. 6倍になっていることがわかる。 空孔率 は機械的強度が許す限り大きくすることが、 多孔性複合体粒子内の物質の拡散速' 度を大きくすることができるため好ましい。  The porosity of the inorganic porous material particles is from 0.2 to 0.9, preferably from 0.6 to 0.9, more preferably from 0.65 to 0.8, from the viewpoint of compatibility between mechanical strength and catalytic efficiency. It is. The higher the porosity, the more organic substances can be supported, and the capacity as a porous composite, for example, the amount of catalytic active sites, can be increased. Suppose that polytrifluorostyrene sulfonic acid is supported on the porous silicon bodies (i) and (ii) having a porosity of 0.50 and 0.80, respectively. It is assumed that the amount of vacancy is 0.25 ml with 1 ml of the inorganic-organic composite. In the porous silica (i) with a porosity of 0.50, the silica becomes 0.50 m, the polytrifluorostyrene sulfonic acid becomes 0.25 m1, the porosity becomes 0.25 m1, and the volume of the porous composite becomes The exchange capacities per weight and weight are 1.47 meq / m1 and 1.01 meq Zg, respectively (the specific gravity of silica is 2.2, the specific gravity of polytrifluorofluorstyrenesulfonic acid is 1.40). Hereinafter, the same applies to the calculation of the porous silica (ii).) On the other hand, in the porous silicon material (ii) with a porosity of 0.80, the silicon power is 0.20 ml, the polytrifluorostyrenesulfonic acid is 0.55 ml, and the pore volume is 0.25 m1. The exchange capacity of polytrifluorene styrene sulfonic acid per volume and weight of the porous composite is 3.24 milliequivalents Zml and 2.67 milliequivalents / g, respectively. Porous silica (ii) has only 1.6 times greater porosity than porous silica (i), but has an exchange capacity per volume and weight of 2.2 times, respectively. 2. You can see that it is 6 times. It is preferable to increase the porosity as much as the mechanical strength allows, since the diffusion rate of the substance in the porous composite particles can be increased.
無機多孔体粒子の平均孔径は 5〜 20 0 0 n m、 好ましくは 1 00〜 2000 nm、 より好ましくは 800〜20 0 O nmである。 平均孔径が下限以上の場合 に、 無機多孔体粒子の孔中にある有機物質に反応物質が進入する経路が確保され やすく、 その結果、 例えば触媒反応が効率良く生じる c 平均孔径が上限以下であ れば、 無機多孔体粒子の機械的強度が維持される。  The average pore size of the inorganic porous particles is 5 to 200 nm, preferably 100 to 2000 nm, and more preferably 800 to 200 nm. When the average pore diameter is equal to or larger than the lower limit, it is easy to secure a route for the reactant to enter the organic substance in the pores of the inorganic porous material particles.As a result, for example, a catalytic reaction occurs efficiently c The average pore diameter is equal to or smaller than the upper limit. Then, the mechanical strength of the inorganic porous material particles is maintained.
無機多孔体粒子としては、 公知の多孔体セラミックス粒子が好ましく使用され る。 具体的には、 シリカ、 アルミナ、 シリカ一アルミナ、 チタニア、 ジルコニァ 又はこれらの二以上の混合物からなる無機多孔体粒子が例示される。 これらの中 でシリカ多孔体粒子は、 実質的に球状のものを容易に作れること、 その粒径分布 が狭いこと、 及びシリカの高い耐酸性のため好ましく用いられる。 As the inorganic porous particles, known porous ceramic particles are preferably used. You. Specifically, inorganic porous particles made of silica, alumina, silica-alumina, titania, zirconia, or a mixture of two or more thereof are exemplified. Among these, porous silica particles are preferably used because they can easily produce substantially spherical particles, have a narrow particle size distribution, and have high acid resistance of silica.
さらには、 シリカ多孔体粒子表面の開孔状態が内部と同様であり、 表面に開孔 状態の低い殻がないものが、 例えば吸着剤として使用する場合の被吸着種の粒子 内への移動のし易さの点から好ましい。  Furthermore, the pore state of the porous silica particle surface is the same as that of the inside, and there are no shells with a low pore state on the surface, for example, when the adsorbed species moves into the particles when used as an adsorbent. It is preferable from the viewpoint of easiness.
本発明の多孔性複合体においては、 特に本発明の第 1又は第 2の球状無機多孔 体を使用することが、 粒子強度及び含フッ素有機物質の利用効率の観点から好ま しい。  In the porous composite of the present invention, it is particularly preferable to use the first or second spherical inorganic porous material of the present invention from the viewpoint of particle strength and utilization efficiency of the fluorine-containing organic substance.
このような無機多孔体粒子を使用することにより、 単位体積あたりの含フッ素 有機物質の包含量を大きくすることができ、 装置をよりコンパク 卜にすることが 可能になる。 また、 無機多孔体中に含フッ素有機物質を包含した後の空間の量 (空孔量) を大きくとることができるので、 例えばカラムに充塡して使用する場 合ではカラム圧力を低く抑えることができる。 さらには、 例えば、 含フッ素有機 物質としてイオン交換体を用いた場合、 吸着 ·脱着時の溶離液などの種類や濃度 の変化に対する強度上の耐性が増し、 大型カラムに充填した際の粒子の破砕、 微 粒化が防止でき、 安定して分離操作を繰り返すことができる。  By using such inorganic porous particles, the content of the fluorine-containing organic substance per unit volume can be increased, and the apparatus can be made more compact. In addition, since the amount of space (porosity) after the fluorine-containing organic substance is included in the inorganic porous material can be increased, the column pressure must be kept low, for example, when the column is filled and used. Can be. Furthermore, for example, when an ion exchanger is used as the fluorine-containing organic substance, the resistance to changes in the type and concentration of the eluent during adsorption and desorption increases, and the particles are crushed when packed into a large column. Atomization can be prevented, and the separation operation can be repeated stably.
本発明の多孔性複合体は、 上記のごとき無機多孔体粒子に含フッ素有機物質を 担持し、 実質的に固定化したものである。  The porous composite of the present invention is obtained by supporting a fluorine-containing organic substance on the inorganic porous particles as described above and substantially fixing the same.
ここにいう含フッ素有機物質は、 その組成、 分子構造等の化学的特性に制限は なく、 フッ素分子を持つ各種の有機化合物の中から選ぶことができる。 フッ素化 物はフッ素の大きな電気陰性度と小さな原子径による優れた耐熱性、 耐溶剤性の ために好ましい。 特にペルフルォロカ一ボンは耐熱性、 耐溶剤性が優れているの で好ましい。 また、 含フッ素有機物質に限らず、 フッ素以外のハロゲン原子を有 する含ハロゲン有機物質を用いてもよい。  The fluorinated organic substance referred to here is not limited in chemical properties such as its composition and molecular structure, and can be selected from various organic compounds having fluorine molecules. Fluoride is preferred because of its excellent heat resistance and solvent resistance due to the large electronegativity and small atomic diameter of fluorine. In particular, perfluorocarbon is preferable because of its excellent heat resistance and solvent resistance. Further, not limited to the fluorine-containing organic substance, a halogen-containing organic substance having a halogen atom other than fluorine may be used.
含フッ素有機物質は、 さまざまな用途に対応した官能基を有することが望まし い。 ここにいう官能基とは、 機能性をもつ官能基及び化学反応性に富む原子又は 原子団である反応基を言う。 官能基のもつ機能性を具体的に挙げれば、 たとえば、 ,キレート形成能、 酸化還元能、 触媒配位能などがある。 また、 こ れらの機能性を有する官能基の例としては、 スルホン酸基、 カルボン酸基、 ホス ホン酸基、 第 1級から第 3級までのァミン由来のアミノ基、 ヒドロキノン基、 チ オール基などがある。 また、 化学反応性に富む反応基としては、 例えば、 イソシ ァネート基、 ジァゾニゥム基、 クロロメチル基、 アルデヒド基、 エポキシ基、 ハ ロゲン基、 カルボキシル基、 アミノ基などがある。 これらの官能基を有する含フ ッ素有機物質の例としては、 イオン交換含フッ素樹脂、 キレート配位子を含むキ レ一ト含フッ素樹脂、 ヒドロキノン、 チオールなどをもつ酸化還元含フッ素樹脂 などが挙げられる。 なお、 イオン交換含フッ素樹脂は、 カチオン又はァニオンの 交換基を有している含フッ素樹脂の他、 カチオン及びァニオン双方の交換基を有 する含フッ素樹脂であってもよい。 カチオン交換基の例としては、 スルホン酸基、 カルボキシル基又はリン酸基が挙げられる。 It is desirable that the fluorine-containing organic substance has functional groups corresponding to various uses. As used herein, the term “functional group” refers to a functional group having functionality and a reactive group that is an atom or atomic group having high chemical reactivity. Specific examples of the functionality of the functional group include: , Chelating ability, redox ability, catalytic coordination ability, etc. Examples of functional groups having these functions include sulfonic acid groups, carboxylic acid groups, phosphonic acid groups, primary to tertiary amine-derived amino groups, hydroquinone groups, and thiol groups. There are groups. The reactive group having high chemical reactivity includes, for example, an isocyanate group, a diazonium group, a chloromethyl group, an aldehyde group, an epoxy group, a halogen group, a carboxyl group, and an amino group. Examples of the fluorine-containing organic substances having these functional groups include ion-exchange fluorine-containing resins, chelate fluorine-containing resins containing chelating ligands, and redox fluorine-containing resins having hydroquinone and thiol. No. The ion-exchange fluororesin may be a fluororesin having both cation and anion exchange groups in addition to a fluororesin having a cation or anion exchange group. Examples of cation exchange groups include sulfonic, carboxyl or phosphate groups.
官能基の導入方法としては、 無機多孔体粒子に含有させる前の含フッ素有機物 質が官能基を有していてもよいし、 無機多孔体粒子に担持させた後で官能基導入 剤と反応せしめることにより官能基を導入してもよい。  As a method for introducing a functional group, the fluorine-containing organic material before being contained in the inorganic porous material particles may have a functional group, or the organic material may be reacted with the functional group-introducing agent after being carried on the inorganic porous material particles. In this case, a functional group may be introduced.
特に酸触媒等として本発明の多孔性複合体を利用する場合に有用な含フッ素有 機物質の例として、 下記式 (2) で表される重合性単量体の一種以上と、 後述の 重合性単量体の群から選ばれた一種類又は二種類以上の重合性単量体とを組み合 わせて得られる共重合体が挙げられる。  In particular, examples of useful fluorine-containing organic substances when the porous composite of the present invention is used as an acid catalyst or the like include one or more polymerizable monomers represented by the following formula (2) and a polymerizable monomer described below. And copolymers obtained by combining one or more polymerizable monomers selected from the group of hydrophilic monomers.
Figure imgf000018_0001
Figure imgf000018_0001
(式中、 _Yは、 — S03 H, -SO, F、 —SO 3 Na、 — S03 K、 一 S02 NH2 、 一 S02 NH4 、 一 CO〇H、 一 CN、 一 COF、 一 COOR(Wherein, _Y are, - S0 3 H, -SO, F, -SO 3 Na, - S0 3 K, one S0 2 NH 2, One S0 2 NH 4, One CO_〇_H one CN, one COF, One COOR
(Rは炭素数 1〜1 0のアルキル基) 、 _PO;! H2 又は— P03 Hである。 a は 0〜 6の整数、 bは 0〜 6の整数、 cは 0又は 1であり、 且つ a + b— c≠ 0 であり、 nは 0〜6の整数である。 Xは、 11≥ 1のとき〇 1、 B r又は Fのいず れか一種、 又は複数種の組合せである。 Rt 及び Rt ' は独立に、 F、 C l、 1 〜1 0個の炭素原子を有するパーフルォロアルキル基及び 1〜1 0個の炭素原子 を有するフルォロクロロアルキル基からなる群から選択されるものである。 ) そして、 これらに共重合させる重合性単量体群としては、 テトラフルォロェチ レン、 トリフルォロモノクロ口エチレン、 トリフルォロエチレン、 フッ化ビニリ デン、 1, 1—ジフルオロー 2, 2—ジクロロエチレン、 1, 1ージフルオロー 2—クロ口エチレン、 へキサフルォロプロピレン、 1, 1, 1, 3, 3_ペン夕 フルォロプロピレン、 ォクタフルォロイソブチレン、 エチレン、 塩化ビニル及び アルキルビニルエステル等が挙げられる。 共重合は、 これらの重合性単量体を担 体である無機多孔体粒子に含有させる前に行ってもよいし、 含有させた後に行つ てもよい。 共重合後、 必要であれば、 例えば、 加水分解したりするなどの後処理 にて官能基をィォン交換基に変換する。 (R is an alkyl group having 1 to 1 0 carbon), _PO;! H 2 or - P0 3 H. a is an integer of 0 to 6, b is an integer of 0 to 6, c is 0 or 1, and a + b—c ≠ 0 And n is an integer from 0 to 6. X is any one of 〇1, Br or F when 11 ≥ 1, or a combination of plural kinds. R t and R t ′ independently comprise F, Cl, a perfluoroalkyl group having 1 to 10 carbon atoms and a fluorochloroalkyl group having 1 to 10 carbon atoms. It is selected from a group. The polymerizable monomers to be copolymerized with these are tetrafluoroethylene, trifluoromonoethylene, trifluoroethylene, vinylidene fluoride, 1,1-difluoro-2,2- Dichloroethylene, 1,1-difluoro-2-chloroethylene, hexafluoropropylene, 1,1,1,3,3_pentafluorofluoropropylene, octafluoroisobutylene, ethylene, vinyl chloride and alkyl vinyl Esters and the like. The copolymerization may be performed before or after the polymerizable monomer is contained in the inorganic porous particles as a carrier. After the copolymerization, if necessary, the functional group is converted to an ion-exchange group by a post-treatment such as hydrolysis.
なお、 このような含フッ素有機物質が有するイオン交換基の交換容量は、 l g 当たりのイオン交換基のモル数で定義され、 通常、 滴定法により測定される。 本 発明の多孔性複合体に用いられる含フッ素有機物質で望ましい交換容量は、 0. 7 0〜2. 0 0 ミリ当量/ g、 好ましくは 0. 9 0〜1. 4 0 ミ リ当量/ g、 よ り好ましくは 1. 0 0〜1. 4 0 ミリ当量 Zgである。 0. 9 0 ミリ当量 Zgよ り小さいと複合体としたときの交換容量が小さくなり性能が低下する。 また、 2. 0 0 ミリ当量/ gより大きいと複合体中で形状が保持されにく くなり、 含フッ素 有機物質が無機多孔体から溶出する原因となりやすレ、。  The exchange capacity of the ion-exchange group of such a fluorine-containing organic substance is defined by the number of moles of the ion-exchange group per gram, and is usually measured by a titration method. Desirable exchange capacity of the fluorine-containing organic substance used in the porous composite of the present invention is 0.70 to 2.00 meq / g, preferably 0.90 to 1.40 meq / g. And more preferably from 1.0 to 1.40 meq Zg. If it is smaller than 0.90 milliequivalent Zg, the exchange capacity of the composite becomes small and the performance is reduced. On the other hand, if it is more than 2.0 meq / g, it becomes difficult to maintain the shape in the composite, and the fluorine-containing organic substance tends to elute from the inorganic porous material.
含フッ素有機物質と無機多孔体粒子との複合体としての交換容量に制限はない 、 好ましくは 0. 1 0 ミリ当量/ g以上である。 これより小さいと吸着能や触 媒としての効率などが低く、 実用的に不利となる。  The exchange capacity of the composite of the fluorine-containing organic substance and the inorganic porous particles is not limited, but is preferably 0.10 meq / g or more. If it is smaller than this, the adsorptivity and the efficiency as a catalyst are low, which is practically disadvantageous.
本発明の多孔性複合体では、 無機多孔体粒子に含有された含フッ素有機物質が、 さまざまな使用条件下で、 担体である無機多孔体粒子から溶出せず、 実質的に固 定化されていることが重要である。  In the porous composite of the present invention, the fluorinated organic substance contained in the inorganic porous particles does not elute from the inorganic porous particles as a carrier under various use conditions and is substantially fixed. Is important.
溶出を防ぐための担持方法としては以下の三つの方法が例示される。 なお、 本 発明の多孔性複合体は、 以下に例示する溶出防止方法により制限されるものでは ない。 The following three methods are exemplified as a supporting method for preventing elution. In addition, the porous composite of the present invention is not limited by the elution prevention method exemplified below. Absent.
一つの方法は、 含フッ素有機物質を無機多孔体粒子に含有させたのち、 一定時 間一定温度範囲で加熱し、 その後冷却する方法である。 適当な条件下で加熱処理 を行うことにより意外にも含フッ素有機物質を無機多孔体粒子に実質的に固定化 することができる。 例えば、 ゾルゲル法でシリカと含フッ素有機物質を混合し乾 燥した状態、 又は、 無機多孔体粒子に含フッ素有機物質の溶液を含浸し乾燥した 状態では、 含フッ素有機物質のポリマー鎖同志が十分絡まりあっておらず、 また 結晶化も生じていない。 この状態の含フッ素有機物質を、 融点付近で加熱するこ とによりポリマー鎖力十分絡まり、 ?令却することにより結晶化が起こり、 含フッ 素有機物質が溶出しなくなると考えている。 加熱する際の温度は、 含フッ素有機 物質の融点より 5 0 °C低い温度以上であって、 かつ含フッ素有機物質の分解温度 以下の温度であることが好ましく、 含フッ素有機物質の融点以上から分解温度以 下の温度であることがより好ましい。 含フッ素有機物質がペルフルォロカーボン スルホン酸の場合、 N a塩や K塩であれば示差走査熱量計による測定で融点が明 確に現れることから、 N a塩や K塩にしてから、 その融点付近で加熱することが 好ましい。 加熱時間は加熱温度に関連し、 比較的高い温度では比較的短時間で、 比較的低い温度では比較的長時間での加熱処理が、 溶出防止に効果がある。 好ま し 、加熱時間は 3 0分から 2時間である。  One method is to include a fluorine-containing organic substance in the inorganic porous material particles, heat the same for a certain time in a certain temperature range, and then cool it. Surprisingly, the fluorine-containing organic substance can be substantially immobilized on the inorganic porous material particles by performing the heat treatment under appropriate conditions. For example, when silica and a fluorine-containing organic substance are mixed and dried by the sol-gel method, or when a solution of the fluorine-containing organic substance is impregnated into inorganic porous material particles and dried, the polymer chains of the fluorine-containing organic substance are sufficient. No entanglement, no crystallization. By heating the fluorinated organic substance in this state near the melting point, the polymer chain force becomes sufficiently entangled. It is believed that the rejection results in crystallization and the elimination of fluorine-containing organic substances. The heating temperature is preferably at least 50 ° C. lower than the melting point of the fluorinated organic substance and not higher than the decomposition temperature of the fluorinated organic substance. It is more preferable that the temperature is lower than the decomposition temperature. When the fluorine-containing organic substance is perfluorocarbon sulfonic acid, if it is a Na salt or a K salt, the melting point clearly appears in the measurement with a differential scanning calorimeter. It is preferable to heat around the melting point. The heating time is related to the heating temperature. Heating at a relatively high temperature for a relatively short time and at a relatively low temperature for a relatively long time are effective in preventing elution. Preferably, the heating time is between 30 minutes and 2 hours.
加熱処理終了後、 冷却を行う。 冷却温度は室温付近であればよい。  After the heat treatment, cool down. The cooling temperature may be around room temperature.
パーフルォロカ一ボンスルホン酸の一つであるアンプレックス (旭化成工業株 式会社製) を用いて、 含浸、 加熱、 及び冷却工程を経て作成した多孔性複合体に ついて、 広角 X線回折法 (理学社製、 R i g a k u R o t a f 1 e x R U— 2 0 0 ) によりパーフルォロカ一ボンスルホン酸の結晶化度を測定したところ、 交換 容量が 1 . 1 1 ミリ当量 Z gで結晶化度は 1 0 %、 1 . 0 0 ミリ当量/ 8で1 6 %、 0 . 9 1 ミリ当量 Z gで 1 8 %であった。  A wide-angle X-ray diffraction method (Rigakusha Co., Ltd.) was used for a porous composite made through impregnation, heating, and cooling steps using Amplex (manufactured by Asahi Chemical Industry Co., Ltd.), which is one of perfluorocarbon sulfonic acids. The crystallinity of perfluorocarbon sulfonic acid was measured by Rigaku Rotaf 1 ex RU-200), and the exchange capacity was 1.11 meq Zg and the crystallinity was 10% and 1%. It was 16% at 0.00 meq / 8 and 18% at 0.91 meq Zg.
含フッ素有機物の溶出を防止するためのもう一つの方法は、 含フッ素有機物質 を無機多孔体粒子に含有させたのち、 含フッ素有機物質を架橋させることである そのための架橋剤として使用できる二官能性又は多官能性単量体の例として、 ジ ビニルベンゼン、 ジビニルトルエン、 ジビニルキシレン、 ジビニルェチルベンゼ ン、 トリビニルベンゼン、 ジビニルジフヱニル、 ジビニルジフヱニルメタン、 ジ ビニルジベンジル、 ジビニルフヱ二ルェ一テル、 ジビニルジフヱニルスルフィ ド、 ジビニルジフヱニルァミ ン、 ジビニルスルホン、 ジビニルケトン、 ジビニルピリ ジン、 フタル酸ジァリル、 マレイン酸ジァリル、 フマル酸ジァリル、 コハク酸ジ ァリル、 シユウ酸ジァリル、 アジピン酸ジァリル、 セバシン酸ジァリル、 ジァリ ルァミ ン、 トリァリルァミ ン、 N, N' —エチレンジアクリルアミ ド、 N, N' —メチレンジアクリルアミ ド、 N, N' —メチレンジメタクリルアミ ド、 ェチレ ングリコールジメタクリ レー ト、 1, 3—ブチレングリコールジァクリレート、 トリァリルイソシァヌレート、 クェン酸トリアリル、 トリメ リ ッ ト酸トリアリル、 シァヌノレ酸トリァリルなどが挙げられる。 Another method for preventing the elution of the fluorinated organic substance is to allow the fluorinated organic substance to be contained in the inorganic porous material particles and then to crosslink the fluorinated organic substance. Divinylbenzene, divinyltoluene, divinylxylene, divinylethylbenze Divinylbenzene, divinyldiphenyl, divinyldiphenylmethane, divinyldibenzyl, divinylphenylether, divinyldiphenylsulfide, divinyldiphenylamine, divinylsulfone, divinylketone, divinylpyri Gin, diaryl phthalate, diaryl maleate, diaryl fumarate, diaryl succinate, diaryl oxalate, diaryl adipate, diaryl sebacate, diarylamine, triarylamine, N, N'-ethylenediacrylamide, N , N'-Methylenediacrylamide, N, N'-Methylenedimethacrylamide, Ethylene glycol dimethacrylate, 1,3-Butylene glycol diacrylate, Triaryl isocyanurate, Triallyl citrate, Trimeric trimellitate Le, and the like Shianunore acid Toriariru.
溶出防止のためのさらにもう一つの方法は、 無機多孔体粒子に共有結合で含フ ッ素有機物質を結合させることである。 例えば、 ビニルシランゃァリルシランな どの官能基を有するシリル化剤によりシリ力多孔体表面に官能基を導入し、 この 官能基とビニル基を持つ含フッ素有機物質とでラジカル重合反応を行う。 これに より、 複合体からの含フッ素有機物質の溶出を防ぐことができる。  Yet another method for preventing elution is to bond a fluorine-containing organic substance to the inorganic porous particles by a covalent bond. For example, a functional group is introduced into the surface of the porous silicon body by a silylating agent having a functional group such as vinylsilanediarylsilane, and a radical polymerization reaction is performed between the functional group and a fluorine-containing organic substance having a vinyl group. Thus, elution of the fluorine-containing organic substance from the composite can be prevented.
これらの三つの方法のうち、 第 1の方法が条件の制約が少なく最も簡便で好ま しい。  Of these three methods, the first method is the simplest and preferred because it has less restrictions on conditions.
これらの上記溶出防止方法により得られた複合体は、 無機多孔体粒子内部の骨 格の表面に含フッ素高分子が層状又は粒状等の形をとつて張り付いたものである。 反応物質や吸着物質は無機多孔体の孔のうち含フッ素高分子で占められていない 残りの空間を移動することになる。 つまり、 無機多孔体粒子が比較的大きな孔径、 空孔率を有しているために、 多くの含フッ素高分子を担持しても、 反応物質や吸 着物質が移動する空間 (孔) が残存し、 結果として大きな利用効率及び反応効率 を発現し得ると考えられる。  The composites obtained by the above-mentioned elution prevention methods are obtained by attaching a fluoropolymer in a layered or granular form to the surface of the skeleton inside the inorganic porous particles. The reactant and the adsorbed material move in the remaining space of the pores of the inorganic porous material not occupied by the fluoropolymer. In other words, since the inorganic porous particles have a relatively large pore size and porosity, even if a large amount of fluoropolymer is supported, a space (pore) through which the reactant and the adsorbent move is left. As a result, large utilization efficiency and reaction efficiency can be expected.
含フッ素有機物質が無機多孔体に実質的に固定化されているかどうかは、 ィォ ン交換基を有する含フッ素有機物質を担持せしめた複合体をジメチルスルホキシ ド中で加熱する方法で評価できる。 具体的には、 複合体 1 gをジメチルスルホキ シド (和光純薬製特級) 1 0 0 gに加え、 9 0 °Cで 3時間加熱し、 濾別し、 ジメ チルスルホキシドで洗浄 (以下、 ここまでをジメチルスルホキシド処理という。 ) 後、 交換容量を測定する。 ジメチルスルホキシド処理前の複合体の交換容量を D、 処理後の交換容量を Eとして、 溶出率 (%) を次式 (3 ) で定義する。 Whether or not the fluorinated organic substance is substantially immobilized on the inorganic porous material can be evaluated by heating the complex carrying the fluorinated organic substance having an ion-exchange group in dimethyl sulfoxide. . Specifically, 1 g of the complex was added to 100 g of dimethyl sulfoxide (special grade manufactured by Wako Pure Chemical Industries, Ltd.), heated at 90 ° C for 3 hours, filtered, and washed with dimethyl sulfoxide (hereinafter, referred to as dimethyl sulfoxide). This is referred to as dimethyl sulfoxide treatment.) Then, measure the exchange capacity. The dissolution rate (%) is defined by the following equation (3), where D is the exchange capacity of the complex before dimethyl sulfoxide treatment and E is the exchange capacity after treatment.
溶出率二 (D— E ) X 1 0 0 /D ( 3 ) 本発明の複合体の溶出率は 0〜 7 0 %であることが好ましく、 0〜 5 0 %であ ることがより好ましい。  Dissolution rate 2 (D−E) X 100 / D (3) The dissolution rate of the complex of the present invention is preferably from 0 to 70%, more preferably from 0 to 50%.
本発明で例示した溶出防止方法 (固定化方法) によると、 溶出しやすい部分が 溶出した後の残りの部分は溶出しない。 したがって、 溶出しやすい部分が溶出し た後の交換容量も重要である。 ジメチルスルホキシド加熱処理後の好ましい交換 容量は 0 . 1 0 ミリ当量 Z g以上である。 0 . 1 0 ミリ当量 Zgより小さい交換 容量ではイオン交換基として働く部分が少なく、 実用的に不利となりやすい。 次に本発明の複合体の製造方法について説明する。  According to the elution prevention method (immobilization method) exemplified in the present invention, the remaining portion after the easily eluted portion is not eluted. Therefore, the exchange capacity after the eluted portion elutes is also important. The preferred exchange capacity after the dimethyl sulfoxide heat treatment is 0.10 meq Z g or more. With an exchange capacity smaller than 0.10 meq Zg, there is little part that acts as an ion-exchange group, and this is likely to be practically disadvantageous. Next, a method for producing the composite of the present invention will be described.
本発明の複合体を製造する方法の一つは、 無機多孔体粒子の孔内に含フッ素有 機物質と希釈剤とを含む均一混合液を含有させた後、 希釈剤を除去し、 その後、 上記の固定化処理の一つである加熱処理及び冷却処理を行う方法である。 含フッ 素有機物質と希釈剤とを含む均一混合液の組成は、 特に制限されるものではない が、 含フッ素有機物質を好ましくは 1〜7 0 w t より好ましくは 2〜5 0 ^^ %含む。 含フッ素有機物質が少なすぎると、 所定の量の含フッ素有機物質 を無機多孔体の孔に含ませるためには、 混合液の含有 ·乾燥工程を多数繰り返す ことになるので効率的ではない。 また、 多すぎると均一混合液の粘性が大きくな りすぎ、 実質的に含有処理が難しくなる。  One of the methods for producing the composite of the present invention is to include a homogeneous mixed solution containing a fluorine-containing organic substance and a diluent in the pores of the inorganic porous material particles, and then remove the diluent. This is a method of performing a heating treatment and a cooling treatment, which are one of the above-described fixing treatments. The composition of the homogeneous mixture containing the fluorine-containing organic substance and the diluent is not particularly limited, but preferably contains 1 to 70 wt%, more preferably 2 to 50 ^^% of the fluorine-containing organic substance. . If the amount of the fluorinated organic substance is too small, it is not efficient because a large number of the steps of including and drying the mixed solution are repeated in order to include a predetermined amount of the fluorinated organic substance in the pores of the inorganic porous material. On the other hand, if the amount is too large, the viscosity of the homogeneous mixed solution becomes too large, and the containing treatment becomes substantially difficult.
含フッ素高分子物質と希釈剤を含む均一混合液を無機多孔体粒子の孔内に導入 するために、 均一混合液を無機多孔体粒子と接触させる。 混合液の導入法として は、 各種の方法を利用することができる。 例えば、 大気圧下で単に粒子と均一混 合液を、 好ましくは低速で攪拌しながら接触させる方法、 真空下で粒子と均一混 合液を接触させる方法、 粒子をシリル反応等で処理した後、 均一混合液と接触さ せる方法等が挙げられる。  The homogeneous mixture is brought into contact with the inorganic porous particles in order to introduce the homogeneous mixture containing the fluoropolymer substance and the diluent into the pores of the inorganic porous particles. Various methods can be used for introducing the mixed solution. For example, a method in which the particles and the homogeneous mixed solution are simply brought into contact with each other under atmospheric pressure, preferably with low-speed stirring, a method in which the particles and the homogeneous mixed solution are brought into contact under vacuum, and a method in which the particles are treated by a silyl reaction or the like. A method of contacting with a homogeneous mixed solution may, for example, be mentioned.
このようにして得られた、 均一混合液を含む無機多孔体粒子には、 その外部表 面に多少とも混合液が付着し残存する。 この残存液は少なければ少ない程良い。 残存液を少なくするには、 例えば粒子と接触させる混合液の量を、 予め粒子内部 の孔量と等しいか、 それ以下としたうえで、 低速の攪拌下で接触させればよい。 このようにして、 粒子の外部表面に残存する混合液を極めて少量にすることがで きる。 それでも無機多孔体粒子の外部表面に残存した混合液を除く方法としては、 無機多孔体粒子をグラスフィルタ一等の上に置いた後、 混合液に不溶性の不活性 な液体で粒子を洗浄すればよい。 使用される不活性な液体の種類は均一混合液の 種類に応じて選択される。 例えば、 混合液が脂溶性のとき不活性な液体として水 が使用される。 In the inorganic porous particles containing the homogeneous mixed liquid thus obtained, the mixed liquid adheres and remains on the outer surface to some extent. The smaller this residual liquid is, the better. To reduce the residual liquid, for example, adjust the amount of The amount of pores should be equal to or less than the pore size, and then brought into contact under low-speed stirring. In this way, the mixture remaining on the outer surface of the particles can be made very small. To remove the mixture remaining on the outer surface of the inorganic porous particles, the inorganic porous particles can be placed on a glass filter, etc., and then washed with an inert liquid insoluble in the mixture. Good. The type of inert liquid used is selected according to the type of homogeneous mixture. For example, water is used as an inert liquid when the mixture is fat-soluble.
均一混合液を無機多孔体粒子に含有させた後、 希釈剤を除去する。 除去する方 法に特に制限はないが、 例えば、 加熱による蒸発乾燥 (このときには必要に応じ て減圧状態にしてもよい。 ) 、 含フッ素高分子物質を溶解せず希釈剤を溶解する 溶剤での洗浄などの方法が挙げられる。  After the homogeneous mixture is contained in the inorganic porous material particles, the diluent is removed. There is no particular limitation on the method of removal, but for example, evaporative drying by heating (in this case, the pressure may be reduced if necessary), a solvent that does not dissolve the fluoropolymer substance but dissolves the diluent Examples of the method include washing.
次いで、 加熱工程を行う。 この工程の目的は上述のごとく含フッ素高分子物質 を溶融、 結晶化により固定化することであり、 そのための加熱温度は、 含フッ素 高分子物質の融点より 5 0 °C低い温度以上であって、 含フッ素高分子物質の分解 温度以下、 好ましくは含フッ素高分子物質の融点以上から含フッ素高分子物質の 分解温度以下の温度範囲である。 示差走査熱量計での測定によると高分子物質は 比較的ブロードな吸熱カーブを示す。 その吸熱カーブのピークの温度を融点とす ると、 それよりも低い温度でも溶融現象は生じており、 従って、 融点より 5 0 °C 低い温度でも加熱時間を長くすることで融解をひき起こすことができる。 加熱時 間は、 加熱温度に依存するが、 実施する上で効率的なのは 3 0分から 2時間であ る。  Next, a heating step is performed. The purpose of this step is to fix the fluorine-containing polymer substance by melting and crystallization as described above, and the heating temperature for that purpose is not less than 50 ° C lower than the melting point of the fluorine-containing polymer substance. The temperature is not higher than the decomposition temperature of the fluorine-containing polymer substance, preferably from the melting point of the fluorine-containing polymer substance to the decomposition temperature of the fluorine-containing polymer substance. According to the measurement by the differential scanning calorimeter, the polymer substance shows a relatively broad endothermic curve. If the peak temperature of the endothermic curve is defined as the melting point, the melting phenomenon occurs even at a lower temperature.Therefore, even if the temperature is 50 ° C lower than the melting point, the melting time may be prolonged by prolonging the heating time. Can be. The heating time depends on the heating temperature, but it is 30 minutes to 2 hours to perform it efficiently.
次いで冷却を行う。 冷却の目的は溶融した高分子物質の分子鎖の絡まりを保持 することと該高分子物質を結晶化させることである。 これにより担体に含有させ た含フッ素有機物質が担体に固定化されるものと考えられる。 冷却方法は、 この 目的を達成する方法であれば特に制限されない。 例えば、 加熱炉中から室温に取 り出し放冷する方法、 加熱炉の電源を切りそのまま放冷する方法等がある。  Next, cooling is performed. The purpose of cooling is to maintain the entanglement of the molecular chains of the molten polymer and to crystallize the polymer. It is considered that the fluorine-containing organic substance contained in the carrier is thereby immobilized on the carrier. The cooling method is not particularly limited as long as it achieves this purpose. For example, there are a method in which the furnace is taken out of the heating furnace to room temperature and allowed to cool, and a method in which the power of the heating furnace is turned off and allowed to cool as is.
複合体を製造する方法の他の一つは、 アルコキシシランの加水分解で多孔性シ リ力を作るゾル一ゲル法である。 これを用いて含フッ素有機物質と無機多孔体と を混合することができる。 例えば、 テトラメ トキシシラン、 水及び塩酸を混合し、 この混合溶液に、 含フッ素有機物質の一つであるナフイオンの溶液と水酸化ナト リウムの混合溶液を加えることでゲル化させ、 その後乾燥し、 塩酸で洗浄する。 これらの方法はすでに公知であり、 例えば W0 9 5 / 1 9 2 2 2に開示されてお り、 実際に S A C— 1 3 R (米国 D u P 0 n t社製) なる商品名でも市販されて いる。 しかし、 ここまでの工程で得られた混合固体は、 単に含フッ素有機物質を 無機多孔体の骨格中に包含せしめただけであり、 上述の固定化処理が行われてい ないため、 メタノール、 ァセトン、 ジメチルスルホキシド等の極 f生溶媒中で加熱 すると、 混合固体中のナフイオンが溶出してくる。 各種条件で固体触媒又は吸着 剤等として使用する場合、 このような溶出は、 反応生成物との分離や触媒等とし ての再使用、 有機溶剤を用いる洗浄処理などの際に問題となる。 従って、 次に上 述の固定化処理を行うことが必要で、 特に加熱処理を行うことが簡単で好ましい。 本発明の複合体を製造する他の方法は、 無機多孔体の孔内に含フッ素高分子物 質となり得る重合性単量体若しくは重合性オリゴマー、 架橋剤、 ラジカル開始剤 及び希釈剤を含む均一混合液、 又は、 含フッ素有機物質、 架橋剤及び希釈剤とを 含む均一混合液を含有させた後、 加熱又は光照射を行うことにより重合及び Z又 は架橋反応を行い、 次いで生成した樹脂の内部から希釈剤を除去するという方法 である。 この製造方法は、 無機多孔体と上述の如き均一混合液との接触による、 混合液の孔への導入によつて開始される。 Another method for producing a composite is a sol-gel method in which a porous silicon force is produced by hydrolysis of an alkoxysilane. Using this, the fluorine-containing organic substance and the inorganic porous material can be mixed. For example, mixing tetramethoxysilane, water and hydrochloric acid, A gel solution is formed by adding a mixed solution of naphion, which is one of the fluorine-containing organic substances, and sodium hydroxide to this mixed solution, and then dried and washed with hydrochloric acid. These methods are already known, for example W0 9 5/1 9 2 2 2 Contact Ri is disclosed in, actually SAC - 1 3 R marketed in (US D u P 0 nt Co.) the trade name I have. However, in the mixed solid obtained in the steps up to this point, the fluorinated organic substance is simply included in the skeleton of the inorganic porous material, and since the above-mentioned immobilization treatment has not been performed, methanol, acetone, When heated in a raw solvent such as dimethyl sulfoxide, naphth ions in the mixed solid elute. When used as a solid catalyst or an adsorbent under various conditions, such elution becomes a problem in the case of separation from reaction products, reuse as a catalyst, etc., and washing treatment using an organic solvent. Therefore, it is necessary to perform the above-described fixing treatment, and it is particularly simple and preferable to perform the heating treatment. Another method for producing the composite of the present invention is a method for producing a composite including a polymerizable monomer or a polymerizable oligomer which can be a fluorine-containing polymer in pores of an inorganic porous material, a crosslinking agent, a radical initiator and a diluent. After containing a mixed liquid or a homogeneous mixed liquid containing a fluorine-containing organic substance, a cross-linking agent and a diluent, polymerization or Z or cross-linking reaction is carried out by heating or light irradiation, and then the resulting resin This is a method of removing diluent from the inside. This production method is started by introducing the mixed liquid into the pores by contacting the inorganic porous material with the homogeneous mixed liquid as described above.
均一混合液に使用される含フッ素高分子物質となり得る重合性単量体としては ビニル基を有するものが好ましい。  As the polymerizable monomer that can be a fluorine-containing polymer substance used in the homogeneous mixed solution, one having a vinyl group is preferable.
希釈剤としては、 単量体、 オリゴマー又は高分子化合物及び架橋剤と共に均一 な混合液を形成し得るものであればよい。 一般に、 単量体、 オリゴマー又は高分 子化合物が親油性のときは、 有機液体が好ましく、 逆にこれらの原料物質が親水 性のときは水又は水溶液が好ましい。 希釈剤は、 単独で用いるだけでなく、 混合 物として用いてもよい。 しかし、 好ましい希釈剤の種類は、 相溶性の他に複合体 を製造する際の各種の条件、 例えば反応系の構成、 温度や圧力、 又は生成される 複合体中の樹脂に付与すべき空間特性等に左右される。 例えば、 均一混合液を無 機多孔体の孔の中に含有させた後、 重合又は架橋反応によって樹脂を形成させる 方法は、 そのまま加熱又は光照射を施す方法、 あるいは分散液中に均一混合液を 含有する無機多孔体粒子を分散させた後加熱又は光照射を施す方法に大別される が、 後者の方法では分散液と希釈剤との相溶性を考慮しなければならない。 即ち、 分散液が親水性のときは希釈剤として親油性有機液体が好ましく、 一方、 分散液 が親油性のときは、 親水性液体が好ましい。 The diluent may be any as long as it can form a uniform mixture with the monomer, oligomer or polymer compound and the crosslinking agent. In general, when the monomer, oligomer or polymer compound is lipophilic, an organic liquid is preferable, and when these raw materials are hydrophilic, water or an aqueous solution is preferable. The diluent may be used not only alone but also as a mixture. However, preferred types of diluents include not only compatibility but also various conditions for producing the complex, such as the configuration of the reaction system, temperature and pressure, or the spatial characteristics to be imparted to the resin in the produced complex. Etc. For example, a method of forming a resin by polymerization or cross-linking reaction after allowing the homogeneous mixed solution to be contained in the pores of the inorganic porous material is performed by directly heating or irradiating light, or by mixing the homogeneous mixed solution in the dispersion. The method is broadly divided into methods in which the inorganic porous material particles are dispersed and then heated or irradiated with light. In the latter method, the compatibility between the dispersion and the diluent must be considered. That is, when the dispersion is hydrophilic, a lipophilic organic liquid is preferable as the diluent. On the other hand, when the dispersion is lipophilic, a hydrophilic liquid is preferable.
希釈剤の具体例としては、 水及びクロルベンゼン、 トルエン、 キシレン、 ォク タン、 デカン、 メタノール、 ブタノール、 ォクタノール、 フタル酸ジェチル、 フ タル酸ジォクチル、 安息香酸ェチル、 メチルイソプチルケトン、 酢酸ェチル、 シ ユウ酸ジェチル、 炭酸ェチル、 ニトロェタン、 シクロへキサノン等の有機液体が 挙げられる。  Specific examples of diluents include water and chlorobenzene, toluene, xylene, octane, decane, methanol, butanol, octanol, getyl phthalate, dioctyl phthalate, ethyl benzoate, methyl isobutyl ketone, ethyl acetate, Organic liquids such as getyl oxalate, ethyl carbonate, nitroethane, and cyclohexanone are exemplified.
本製造法においても、 無機多孔体粒子の外表面に付着する均一混合液をできる 限り少なくすることが好ましい。 すでに上述した方法に加え、 重合反応や架橋反 応を開始する前に可能な限り付着した均一混合液を減少させてもよい。 この方法 として二つの方法が例示できる。  Also in the present production method, it is preferable to minimize the amount of the homogeneous mixture adhering to the outer surface of the inorganic porous material particles. In addition to the methods already described above, the amount of the homogeneous mixture adhering may be reduced as much as possible before starting the polymerization reaction or the crosslinking reaction. Two methods can be exemplified as this method.
第一の方法は濾過法である。 即ち、 混合液を含有する粒子を濾過することによ つてその外部表面に残存する混合液を減じることができる。 この場合、 加圧濾過、 遠心濾過などの濾過法を用いれば、 濾過時間が短縮されて好ましい。  The first method is a filtration method. That is, by filtering the particles containing the mixed liquid, the mixed liquid remaining on the outer surface thereof can be reduced. In this case, it is preferable to use a filtration method such as pressure filtration or centrifugal filtration because the filtration time is reduced.
第二の方法は、 混合液を粒子に含有させた後、 粒子を混合液と反応もしなけれ ば混合液を溶解もしなレ、液体の中で、 強制的に攪拌しながら分散させることであ る。 この場合、 分散剤を含んだ分散液を使うことが好ましい。 分散液は強制攪拌 によって粒子の外部表面から振り切られた混合液を、 安定に分散液体中に保持し、 混合液が粒子表面に再付着することを防止する。 たとえば、 分散液体として水を 用いるに際しては、 分散剤として、 ァラビヤゴム、 ロジン、 ぺクチン、 アルギン 酸塩、 トラガカントゴム、 寒天、 メチルセルロース、 デンプン、 カルボキシメチ ルセルロース、 カラャゴム、 ゼラチン等の粘質物、 ポリアクリノレ酸ナトリウム、 ポリビニルアルコール、 ポリビニルピロリ ドン、 カルボポール、 ジァセトォレイ ン等の合成高分子、 マグネシウム、 アルミニウムシリケ一ト、 ベルマゲル、 水加 マグネシウムシリゲート、 酸化チタン、 酸化亜鉛、 炭酸カルシウム、 タノレク、 硫 酸バリウム、 リン酸カルシウム、 水酸化アルミニウム、 無水硫ケィ酸等の無機物 を用いることができ、 また必要に応じて、 食塩等の塩、 p H調整剤、 界面活性剤 などを添加してもよい。 The second method is to incorporate the mixed solution into the particles and then disperse the particles in the liquid while forcibly agitating them without reacting with the mixed solution or dissolving the mixed solution. . In this case, it is preferable to use a dispersion containing a dispersant. The dispersion stably holds the mixed liquid shaken off from the outer surface of the particles by forced stirring in the dispersed liquid, and prevents the mixed liquid from re-adhering to the particle surface. For example, when water is used as the dispersing liquid, dispersing agents such as gum arabic, rosin, pectin, alginate, tragacanth, agar, methylcellulose, starch, carboxymethylcellulose, karaya gum, gelatin, etc., and sodium polyacrylate , Polyvinyl alcohol, polyvinylpyrrolidone, carbopol, synthetic polymers such as diacetolein, magnesium, aluminum silicate, velmagel, hydrated magnesium silicate, titanium oxide, zinc oxide, calcium carbonate, tanolek, barium sulfate, Inorganic substances such as calcium phosphate, aluminum hydroxide, and anhydrous sulfuric acid can be used.If necessary, salts such as salt, pH adjusters, and surfactants Etc. may be added.
本製造法にお 、ては均一混合液を含有させる処理後の無機多孔体粒子は、 加熱 処理又は光照射処理に付される。 均一混合液が単量体又はオリゴマー、 架橋剤及 び希釈剤からなる場合、 加熱又は光照射によって重合や架橋反応が起こる。 ビニ ル基を含有する単量体を用いたときの重合反応は、 さらに加えられる薬品や反応 系の構成によってラジカル重合又はィォン重合の機構に従つて進むいずれの重合 反応でも利用できる力、 生成される樹脂の特性を制御し易い点でラジカル重合が 好ましい。 ラジカル重合を行う場合、 反応を促進して重合の温度を下げたり、 反 応時間を短縮できるために、 重合開始剤を用いるのが好ましい。  In the present production method, the inorganic porous particles after the treatment for containing the homogeneous mixed solution are subjected to a heat treatment or a light irradiation treatment. When the homogeneous mixture is composed of a monomer or oligomer, a cross-linking agent and a diluent, polymerization or cross-linking reaction occurs by heating or light irradiation. When a monomer containing a vinyl group is used, the polymerization reaction generates a force that can be used in any polymerization reaction that proceeds according to the radical polymerization or ion polymerization mechanism depending on the added chemicals and the configuration of the reaction system. Radical polymerization is preferred because the properties of the resin can be easily controlled. In the case of performing radical polymerization, it is preferable to use a polymerization initiator since the reaction can be accelerated to lower the polymerization temperature or shorten the reaction time.
ラジカル重合のための適当な重合開始剤としては、 過酸化べンゾィル、 過酸化 ラウロイル等の過酸化ァシル類、 ァゾビスィソプチロニトリル、 2, 2, —ァゾ ビス (2, 4ージメチルマレロ二トリル) 等のァゾニトリル類、 過酸化ジ夕一シ ャリ一プチル、 過酸化ジクミル、 メチルェチルケトンパ一ォキシド等の過酸化物、 クメンヒドロペルォキシド、 ターシャリ一ヒドロペルォキシド等のヒドロペルォ キシド類を例示することができる。  Examples of suitable polymerization initiators for radical polymerization include benzoyl peroxide, lauroyl peroxide, and other acyl peroxides, azobisdisoptyronitrile, 2,2, -azobis (2,4-dimethylmalelonitrile). Azonitrile compounds such as tolyl), peroxides such as dibutyl peroxide, dicumyl peroxide, methylethyl ketone peroxide, hydroperoxides such as cumene hydroperoxide and tertiary hydroperoxide. Oxides can be exemplified.
必要な重合開始剤の量は、 重合の反応温度及び単量体の量や種類に依存するが、 通常、 単量体の重量に対して 0 . 0 1〜1 2重量%でぁる。  The amount of the polymerization initiator required depends on the polymerization reaction temperature and the amount and type of the monomer, but is usually 0.01 to 12% by weight based on the weight of the monomer.
重合反応や架橋反応を起こすために行う加熱処理の温度及び時間は、 それぞれ 4 0〜 1 5 0 °C及び 2〜 1 0 0時間である。 この際、 混合液を包含する粒子は、 そのまま加熱してもよいし、 分散液に分散した状態で加熱してもよい。 そのまま 加熱する場合は、 粒子同志が外部表面に生成する樹脂によって付着し合うことを 防止するため、 低速の攪拌を行うことが好ましい。 分散液中に分散した状態で加 熱する場合は、 粒子の孔内に含有された混合液が分散液中に溶出しないような希 釈剤を選択することが必要である。 また、 既述の通り予めシリル化剤で表面処理 した粒子を用いることも好ましい。  The temperature and time of the heat treatment for causing the polymerization reaction and the crosslinking reaction are 40 to 150 ° C. and 2 to 100 hours, respectively. At this time, the particles including the mixed solution may be heated as it is, or may be heated while being dispersed in the dispersion. When heating as it is, it is preferable to perform low-speed stirring in order to prevent the particles from adhering to each other due to the resin generated on the outer surface. When heating in the state of being dispersed in a dispersion, it is necessary to select a diluent that does not elute the mixture contained in the pores of the particles into the dispersion. It is also preferable to use particles which have been surface-treated with a silylating agent as described above.
上記したような条件で製造された多孔性複合体は、 希釈剤を内部に含有してい る。 それ故、 それらを溶解する溶媒中に複合体を浸潰し、 しばらく放置した後濾 別するか、 又は複合体をカラムに入れ、 洗浄溶媒を流下させることにより、 複合 体の内部から希釈剤を効果的に除去することができる。 例えば、 希釈剤として有 機液体を用いる場合、 洗浄溶媒としてメタノール、 アセトン等の水溶性のものを 用い、 その洗浄溶媒をさらに水洗することにより希釈剤を簡単に除去することが できる。 The porous composite manufactured under the above conditions contains a diluent inside. Therefore, the complex is immersed in a solvent that dissolves them and left for a while to be filtered off, or the complex is put into a column, and the washing solvent is allowed to flow down, so that the diluent is effective from inside the complex. Can be removed. For example, as diluent When an organic liquid is used, a water-soluble solvent such as methanol or acetone is used as a washing solvent, and the diluent can be easily removed by further washing the washing solvent with water.
このようにして得られる複合体は、 ィォン交換樹脂ク口マトグラフィ一用充塡 剤、 吸着剤等の用途に、 そのままで使用される力、、 あるいは、 さらに後反応に付 して複合体中の樹脂に官能基を導入して使用してもよい。 官能基を導入する反応 に制限はなく通常の有機反応を行うことができる。  The composite obtained in this manner may be used as it is for a filler for ion-exchange resin chromatography or as an adsorbent, or may be subjected to a post-reaction to be used as it is. A functional group may be introduced into the resin for use. The reaction for introducing a functional group is not limited, and a normal organic reaction can be performed.
本発明の多孔性複合体の一つであるペルフルォロカ一ボンスルホン酸とシリカ 多孔体との複合体粒子は、 その大きな酸性度を利用して固体酸触媒として使用で きる。  The composite particles of perfluorocarbon sulfonic acid and porous silica, which is one of the porous composites of the present invention, can be used as a solid acid catalyst by utilizing its large acidity.
反応触媒として本発明の多孔性複合体の使用形態に特に制限はなく、 例えば、 流動床型、 固定床型、 反応蒸留型等である。 反応終了後に、 反応液と固体触媒と は、 例えば濾過法により簡単に分離できる。 反応生成物が反応液から固体で沈殿 してくる場合は、 例えば、 濾過法により反応液と触媒及び生成物とを分離し、 そ の後生成物を溶解する溶剤にて溶解し、 生成物を触媒から分離できる。 反応系か ら分離した本発明の複合体は必要であれば鉱酸と接触させることにより簡単に再 生 ·精製することができる。  The use form of the porous composite of the present invention as a reaction catalyst is not particularly limited, and examples thereof include a fluidized bed type, a fixed bed type, and a reactive distillation type. After completion of the reaction, the reaction solution and the solid catalyst can be easily separated by, for example, a filtration method. When the reaction product precipitates as a solid from the reaction solution, for example, the reaction solution is separated from the catalyst and the product by a filtration method, then dissolved in a solvent that dissolves the product, and the product is dissolved. Can be separated from catalyst. If necessary, the complex of the present invention separated from the reaction system can be easily regenerated and purified by contact with a mineral acid.
本発明の多孔性複合体を固体酸触媒として用いる有機反応には特に制限はない 力く、 例えばベンゼン、 トルエン等の芳香族化合物のォレフィン、 アルコール、 ァ ルキルハラィド、 アルキルエステル等によるアルキル化;アルキルベンゼンの異 性化、 不均化及びトランスアルキル化; α—メチルスチレンのニ量化;芳香族化 合物の二ト口化、 了シル化、 スルホニル化及びホスホリル化;臭素化芳香族化合 物の異性化及びトランス臭素化;ォレフィンのカチオン重合;エーテル及びエス テル合成反応;ァセタール、 チオアセタール及び g e m—ジァセテ一ト類の合成 反応;エポキシ基やエステル基の加水分解反応; ピナコール/ピナコロンなどの 転移反応; ジォキサン類合成などの縮合反応などである。 さらには、 水銀やクロ ム、 セリウムなどのイオンとの複合固体触媒としても有用である。  The organic reaction using the porous composite of the present invention as a solid acid catalyst is not particularly limited. For example, alkylation of aromatic compounds such as benzene and toluene with olefins, alcohols, alkyl halides, alkyl esters, etc .; Isomerization, disproportionation and transalkylation; dimerization of α-methylstyrene; di-tolization, sulphonation, sulfonylation and phosphorylation of aromatic compounds; isomerization of brominated aromatic compounds Cationic polymerization of olefins; synthesis reaction of ether and ester; synthesis reaction of acetal, thioacetal and gem-diacetate; hydrolysis reaction of epoxy group and ester group; transfer reaction such as pinacol / pinacolone; And condensation reactions such as dioxane synthesis. Furthermore, it is also useful as a composite solid catalyst with ions such as mercury, chromium, and cerium.
本発明の多孔性複合体は、 例えばイオン交換基を持たせた場合には、 その実質 的なィォン交換容量は極めて高く、 ィォン交換体量が少量で済む割に機械的強度 に優れ、 使用中に割れにくい、 粒径を比較的均一にすることができる等という、 極めて優れた特性を有する。 また、 本発明の多孔性複合体を用いたイオン交換体 は、 市販のシリカゲルや多孔性ガラスを担体として用いた場合に比べ、 大きな空 孔率を有し、 かつ柱状絡み合い構造の骨格を有しているため大きな強度を有して いる。 それ故、 多孔性複合体は、 ガスクロマトグラフィ一及び液体クロマトグラ フィー用固定相、 分取クロマトグラフィー用固定相、 細胞培養担体、 吸着剤、 触 媒若しくはその担体、 特に酸触媒等として利用できる。 具体的にはエステル化反 応用酸触媒、 エステル加水分解用酸触媒、 ニトロ化反応用酸触媒、 ォレフィ ン水 和反応用酸触媒、 トリオキサン合成用酸触媒、 又は原子力発電所の冷却水のよう な熱水のイオン交換処理剤が挙げられる。 When the porous composite of the present invention has, for example, an ion-exchange group, its substantial ion exchange capacity is extremely high, and its mechanical strength is relatively small while the amount of ion exchanger is small. It has extremely excellent properties such as excellent resistance to cracking during use, and a relatively uniform particle size. Further, the ion exchanger using the porous composite of the present invention has a larger porosity and a skeleton having a columnar entangled structure as compared with a case where commercially available silica gel or porous glass is used as a carrier. Therefore, it has great strength. Therefore, the porous composite can be used as a stationary phase for gas chromatography and liquid chromatography, a stationary phase for preparative chromatography, a cell culture carrier, an adsorbent, a catalyst or its carrier, particularly an acid catalyst. Specifically, such as an esterification reaction applied acid catalyst, an ester hydrolysis acid catalyst, a nitration reaction acid catalyst, an olefin hydration reaction acid catalyst, a trioxane synthesis acid catalyst, or cooling water of a nuclear power plant. An ion exchange treatment agent of hot water can be used.
以下に実施例により本発明をさらに具体的に説明する。 なお、 各種物性は、 以 下の測定方法により測定した。  Hereinafter, the present invention will be described more specifically with reference to examples. The various physical properties were measured by the following measurement methods.
( a ) 球状化率  (a) Spheroidization rate
走査型電子顕微鏡 (商品名 S— 8 0 0、 日立製作所製) で撮影した各種粒子の 2 0 0倍の写真を用い、 画像解析装置 (商品名 I P 1 0 0 0、 旭化成工業製) を 用いて画像解析法にて粒子面積 Bと粒子面の最小外接円の面積 Cを求め、 下記 (1) 式で球状化率 Aを計算した。  Using a 200x magnification photograph of various particles taken with a scanning electron microscope (trade name: S-800, manufactured by Hitachi, Ltd.), using an image analyzer (trade name: IP100, manufactured by Asahi Kasei Corporation) The particle area B and the area C of the minimum circumscribed circle of the particle surface were determined by image analysis, and the spheroidization ratio A was calculated by the following equation (1).
A = B X 1 0 0/C ( 1 )  A = B X 1 0 0 / C (1)
ここで、 Bは写真中の粒子の面積、 Cは写真中の粒子面の最小外接円の面積で ある。  Here, B is the area of the particle in the photograph, and C is the area of the minimum circumscribed circle of the particle surface in the photograph.
(b) 骨格構造  (b) Skeletal structure
走査型電子顕微鏡 (商品名 S— 8 0 0、 日立製作所製) で観察した。  Observation was made with a scanning electron microscope (trade name: S-800, manufactured by Hitachi, Ltd.).
(c) 平均孔径及び孔径分布  (c) Average pore size and pore size distribution
水銀ポロシメ一夕一 (商品名; PAS CAL— 2 4 0、 CE- I n s t r ume n t社製) を用 、た水銀圧入法で測定した。 測定圧力レンジは 0. 1〜2 0 OMP a、 測定孔半径は 3. 7〜 7 5 0 0 n mで行った。  It was measured by mercury porosimetry using a mercury porosimeter (trade name: PAS CAL-240, manufactured by CE-Instrument). The measurement pressure range was 0.1 to 20 OMPa, and the measurement hole radius was 3.7 to 750 nm.
(d) 空孔率及び空孔量  (d) Porosity and porosity
孔に進入する物質としてヘリウムガスを用いた密度計 (商品名;マルチボリウ ム密度計 1 3 0 5、 マイクロメリテックス社製) を使用して、 無機多孔体粒子及 び複合体の真比重 d (g/m l ) を測定した。 また、 水銀ポロシメータ一 (商品 名; PAS CAL_ 2 4 0、 CE— I n s t r ume n t社製) を用いて単位重 量当たりの空孔量 0 (m l g) を測定した。 Using a densitometer (trade name: Multi-Volume Densitometer 1305, manufactured by Micromeritex Corporation) using helium gas as the substance that enters the pores, the inorganic porous particles and And the specific gravity d (g / ml) of the complex. The amount of pores per unit weight of 0 (mlg) was measured using a mercury porosimeter (trade name: PAS CAL — 240, manufactured by CE-Instrument).
これらの値を用いて空孔率を次式 (4) で算出した。  Using these values, the porosity was calculated by the following equation (4).
空孔率 =d0Z (l +ά φ) (4) Porosity = d0Z (l + ά φ) (4)
(e) 粒子径 (e) Particle size
ハネウエル社製マイクロトラック X— 1 0 0で体積平均粒径を測定した。  The volume average particle diameter was measured using Microtrack X-100 manufactured by Honeywell.
(f ) シリカ多孔体のシリカ組成  (f) Silica composition of porous silica
I CP (誘導結合プラズマ) 発光分析装置 (商品名 I R I S— AP、 サ一モジ ャレルァッシ社製) で分析した。  The analysis was performed using an ICP (inductively coupled plasma) emission spectrometer (trade name: IRIS-AP, manufactured by Samsung Electronics).
(g) 塩の融点  (g) Melting point of salt
示差走査熱量計 (商品名 DS C 2 1 0、 セイコー電子工業製) で測定した。 測 定条件は、 空気中、 昇温速度 5°CZ分、 及び測定温度範囲 2 5〜8 0 0 °Cである。 The measurement was performed with a differential scanning calorimeter (trade name: DSC 210, manufactured by Seiko Instruments Inc.). The measurement conditions are as follows: in air, at a heating rate of 5 ° CZ, and in a measuring temperature range of 25 to 800 ° C.
(h) 強度 (h) Strength
微小圧縮試験機 (商品名 MCTM— 5 0 0型、 島津製作所製) を用い、 室温下、 0. 7 9 g/秒の負荷速度で測定し、 破断点の負荷を求め、 下記 (5) 式で強度 を算出した。  Using a micro compression tester (trade name: MCTM-500 type, manufactured by Shimadzu Corporation), measured at room temperature at a load speed of 0.79 g / sec, the load at the break point was calculated, and the following formula (5) was used. Was used to calculate the strength.
S t = 2. 8 Ρ/π d2 (5) ここで、 S tは強度 (k g f /mm2 ) 、 Pは荷重 (k g) 、 dは粒子径 (mm) である。 S t = 2.8 Ρ / π d 2 (5) where, St is strength (kgf / mm 2 ), P is load (kg), and d is particle diameter (mm).
( i ) 交換容量  (i) Exchange capacity
多孔性複合体を直径 1 0 mm、 長さ 1 0 0 mmのガラス環の底に 3 Gのガラス フィルタ一を付けた専用カラムに入れ、 これに 1 N塩酸を流して、 スルホン酸型 にし、 次いでメタノールを流してボイ ド中の塩酸を除去した。 このとき、 溶離メ タノールが中性を示すことをリ トマス試験紙で確認した。 (酸性を示すときは、 さらにメタノールを流した) 。 次いで、 カラムに 5 w t %塩化ナトリウム水溶液 を流しスルホン酸ナトリウム型にし、 溶離液中に生じた塩酸を 0. 1 Nの水酸化 ナトリウム水溶液で滴定した。 次に、 カラムには 0. 1 N塩酸、 次いでメタノ一 ルを流し、 スルホン酸型にし、 複合体を乾燥した。 得られた乾燥重量 (A: g) と滴定した塩酸量 (B: mmo 1) から、 複合体の交換容量 (EC: ミリ当量 Z g) を (6) 式で計算した。 The porous composite was placed in a special column with a glass filter of 3 G attached to the bottom of a glass ring with a diameter of 100 mm and a length of 100 mm, and 1N hydrochloric acid was passed through the column to make a sulfonic acid type. Subsequently, the hydrochloric acid in the void was removed by flowing methanol. At this time, it was confirmed with litmus paper that the eluted methanol was neutral. (When acidic, methanol was further added.) Next, a 5 wt% aqueous sodium chloride solution was passed through the column to form a sodium sulfonate, and the hydrochloric acid generated in the eluate was titrated with a 0.1 N aqueous sodium hydroxide solution. Next, 0.1 N hydrochloric acid and then methanol were allowed to flow through the column to form a sulfonic acid form, and the complex was dried. Dry weight obtained (A: g) The complex exchange capacity (EC: milliequivalent Zg) was calculated from equation (6) based on the hydrochloric acid amount (B: mmo1) titrated with the above.
EC = B/A (6)  EC = B / A (6)
実施例 1  Example 1
純水 1 5 1. 8 gにスノーテック N— 3 0 (シリカゾル水溶液、 日産化学株式 会社製) 1 0 0. 0 g、 硝酸 (和光純薬製、 特級) 1 5. 8 g、 リン酸ーナトリ ゥム (大平化学工業製、 工業用) 43. 2 g、 及びモリブデン酸アンモニゥム (日本無機化学工業製、 工業用) 8 5. 6 gを加え、 均一溶液とした。 この溶液 に 2 5%アンモニア水 (和光純薬製、 特級) 1 5. 2 g加え、 液の pHを 7. 3 とした。 混合液は白濁して粘度が上昇したので、 さらに純水 1 8 8. 0 gを加え、 粘度を抑えた不均一混合水溶液を調合した。 混合水溶液の固形分率は 2 7重量% であり、 用いた無機塩の融点は 6 5 0 °Cであった。 この混合液を攪拌しながらス プレードライヤ一 (商品名 OC— 1 6型、 大川原化工機株式会社製) に導入し、 造粒を行った。 液滴生成用の回転皿は直径 8 Ommのものを用い、 回転数 2 1 0 0 r pmである。 乾燥塔入り熱風温度は 2 3 0 °C、 熱風量 3 1 0 Nm3 Z時間、 混合液導入量 9 0 LZ時間である。 得られた造粒粉 1 OmLを電気炉にて 3 5 0 °Cで 2時間、 その後 6 9 0 °Cで 2時間焼成した。 このものを 7 0°Cの湯 1 0 OmLに加え、 3 0分攪拌しながら保持し、 その後濾紙で濾別し、 過剰の水で洗 浄後、 4 0 0メッシュ (目開き 3 2〃m) と 2 0 0メッシュ (目開き 7 5 j m) の篩で分級した後、 7 0°Cにて減圧乾燥した。 151.8 g of pure water to Snowtec N-30 (silica sol solution, Nissan Chemical Co., Ltd.) 10.0 g, nitric acid (Wako Pure Chemical, special grade) 15.8 g, sodium phosphate 43.2 g of Pam (manufactured by Ohira Chemical Industry, industrial use) and 85.6 g of ammonium molybdate (manufactured by Nippon Inorganic Chemical Industry, industrial use) were added to make a uniform solution. To this solution, 15.2 g of 25% aqueous ammonia (manufactured by Wako Pure Chemical Industries, Ltd.) was added to adjust the pH of the solution to 7.3. Since the mixture became cloudy and the viscosity increased, 188.0 g of pure water was further added to prepare a heterogeneous mixed aqueous solution having a reduced viscosity. The solid content of the mixed aqueous solution was 27% by weight, and the melting point of the inorganic salt used was 650 ° C. This mixture was introduced into a spray dryer (trade name: OC-16, manufactured by Okawara Kakoki Co., Ltd.) while stirring, and granulated. A rotating dish for generating droplets has a diameter of 8 Omm, and has a rotation speed of 2100 rpm. The temperature of hot air entering the drying tower is 230 ° C, the amount of hot air is 310 Nm 3 Z hours, and the amount of mixed liquid introduced is 90 LZ hours. The obtained granulated powder (1 OmL) was calcined in an electric furnace at 350 ° C for 2 hours, and then at 690 ° C for 2 hours. This is added to 10OmL of hot water at 70 ° C, kept while stirring for 30 minutes, then filtered with a filter paper, washed with excess water, and then meshed with 400 mesh (opening of 32〃m). ) And a sieve having a mesh size of 200 (mesh size: 75 jm), and dried under reduced pressure at 70 ° C.
得られた球状シリカ大孔径多孔体の平均球状化率は 8 6. 5であり、 平均孔径 6 7 5 nm, 空孔率 0. 7 4、 シリカ組成 9 9. 5重量%の柱状絡み合い骨格構 造であった。 また、 強度は 1. 3 k g f /mm 2 であった。 The average spheroidization ratio of the obtained porous silica having a large pore diameter was 86.5, and the columnar entangled skeleton structure having an average pore diameter of 675 nm, a porosity of 0.74, and a silica composition of 99.5% by weight was used. It was built. The strength was 1.3 kgf / mm 2 .
実施例 2  Example 2
純水 1 5 1. 8 gにスノーテック N— 3 0 (シリカゾル水溶液、 日産化学株式 会社製) 1 0 0. 0 g、 硝酸 (和光純薬製、 特級) 1 5. 8 g、 リン酸ーナトリ ゥム (大平化学工業製、 工業用) 43. 2 g、 及びモリブデン酸アンモニゥム (日本無機化学工業製、 工業用) 8 5. 6 gを加え、 均一溶液とした。 この溶液 に 2 5%アンモニア水 (和光純薬製、 特級) 7 3. 4 g加え、 液の pHを 8. 3 とした。 アンモニア水を加えるとすぐに白濁してきた。 さらに純水 2 8 9. 9 g を加え、 不均一混合水溶液を調合した。 混合水溶液の固形分率は 2 2重量%であ る。 この混合液を用いて実施例 1と同様に噴霧乾燥により造粒を行った。 得られ た造粒粉 1 0 m Lを電気炉にて 3 5 0 °Cで 2時間、 その後 6 9 0 °Cで 2時間焼成 した。 このものを 7 0°Cの湯 1 0 OmLに加え、 3 0分攪拌しながら保持し、 そ の後濾紙で濾別し、 過剰の水で洗浄後、 4 0 0メッシュ (目開き 3 2〃m) と 2 0 0メッシュ (目開き 7 5〃m) の篩で分級した後、 7 0°Cにて減圧乾燥した。 得られた球状シリカ大孔径多孔体の平均球状化率は 8 7. 0であり、 平均孔径151.8 g of pure water to Snowtec N-30 (silica sol solution, Nissan Chemical Co., Ltd.) 10.0 g, nitric acid (Wako Pure Chemical, special grade) 15.8 g, sodium phosphate 43.2 g of Pam (manufactured by Ohira Chemical Industry, industrial use) and 85.6 g of ammonium molybdate (manufactured by Nippon Inorganic Chemical Industry, industrial use) were added to make a uniform solution. To this solution, add 73.4 g of 25% aqueous ammonia (manufactured by Wako Pure Chemical Industries, Ltd.), and adjust the pH of the solution to 8.3 And It became cloudy as soon as ammonia water was added. Further, 28.9.9 g of pure water was added to prepare a heterogeneous mixed aqueous solution. The solid content of the mixed aqueous solution is 22% by weight. Using this mixture, granulation was performed by spray drying in the same manner as in Example 1. The obtained granulated powder (10 mL) was calcined in an electric furnace at 350 ° C. for 2 hours and then at 69 ° C. for 2 hours. This is added to 10OmL of hot water at 70 ° C, kept while stirring for 30 minutes, then filtered off with a filter paper, washed with excess water, and then washed with 400 mesh (opening 32〃). m) and a sieve having a mesh size of 200 (mesh size: 75〃m), followed by drying at 70 ° C under reduced pressure. The average spheroidization ratio of the obtained porous silica having a large pore diameter was 87.0, and the average pore diameter was 87.0.
6 7 3 n m、 空孔率 0. 7 4、 シリ力組成 9 9. 6重量%の柱状絡み合い骨格構 造であった。 また、 強度は 1. 3 k g f /mm 2 であった。 It had a columnar entangled skeletal structure with a diameter of 673 nm, a porosity of 0.74, and a composition of 99.6% by weight. The strength was 1.3 kgf / mm 2 .
実施例 3  Example 3
純水 1 5 1. 8 gにスノーテック N— 3 0 (シリカゾル水溶液、 日産化学株式 会社製) 1 0 0. 0 g、 硝酸 (和光純薬製、 特級) 1 5. 8 g、 リン酸ーナトリ ゥム (大平化学工業製、 工業用) 43. 2 g、 及びモリブデン酸アンモニゥム (日本無機化学工業製、 工業用) 8 5. 6 gを加え、 均一溶液とした。 この溶液 に硝酸 (和光純薬、 特級) 5 7. 9 g加え、 液の pHを 0. 1とした。 液は黄色 となり、 沈殿が生じた。 混合水溶液の固形分率は 3 2重量%であった。 この混合 液を用いて実施例 1と同様に噴霧乾燥により造粒を行った。 得られた造粒粉 1 0 m Lを電気炉にて 3 5 0 °Cで 2時間、 その後 6 9 0でで 2時間焼成した。 このも のを 7 0°Cの湯 1 0 OmLに加え、 3 0分攪拌しながら保持し、 その後濾紙で濾 別し、 過剰の水で洗浄後、 4 0 0メッシュ (目開き 3 2〃m) と 2 0 0メッシュ (目開き 7 5〃m) の篩で分級した後、 7 0°Cにて減圧乾燥した。  151.8 g of pure water to Snowtec N-30 (silica sol solution, Nissan Chemical Co., Ltd.) 10.0 g, nitric acid (Wako Pure Chemical, special grade) 15.8 g, sodium phosphate 43.2 g of Pam (manufactured by Ohira Chemical Industry, industrial use) and 85.6 g of ammonium molybdate (manufactured by Nippon Inorganic Chemical Industry, industrial use) were added to make a uniform solution. To this solution was added 57.9 g of nitric acid (Wako Pure Chemical, special grade) to adjust the pH of the solution to 0.1. The solution turned yellow and a precipitate formed. The solid content of the mixed aqueous solution was 32% by weight. Using this mixture, granulation was performed by spray drying in the same manner as in Example 1. The obtained granulated powder (10 mL) was calcined in an electric furnace at 350 ° C. for 2 hours and then at 69 ° C. for 2 hours. This was added to 10OmL of hot water at 70 ° C, kept while stirring for 30 minutes, then filtered with filter paper, washed with excess water, and then meshed with 400 mesh (opening of 32〃m). ) And a sieve having a mesh size of 200 (mesh size: 75 μm), and then dried under reduced pressure at 70 ° C.
得られた球状シリカ大孔径多孔体の平均球状化率は 8 4. 5であり、 平均孔径 The average spheroidization ratio of the obtained porous silica having a large pore diameter was 84.5, and the average pore diameter was 84.5.
7 6 0 n m、 空孔率 0. 7 3、 シリ力組成 9 9. 5重量%の柱状絡み合い骨格構 造であった。 It had a columnar entangled skeletal structure with a diameter of 760 nm, a porosity of 0.73, and a composition of 99.5% by weight.
実施例 4〜 9  Examples 4 to 9
実施例 1で作成した造粒粒子を用いて焼成条件を変更した。 球状化率 8 6. 5、 空孔率 0. 7 4で平均孔径が異なるシリ力大孔径多孔体が得られた。 焼成条件と 得られた多孔体の平均孔径を表 1に示す。 表 1 焼成温度 (°C) 焼成時間 (時間) 得られた平均孔径 (nm) 実施例 4 700 1 820 The firing conditions were changed using the granulated particles prepared in Example 1. A porous material with a large pore diameter and a different average pore diameter having a spheroidization ratio of 86.5 and a porosity of 0.74 was obtained. Table 1 shows the firing conditions and the average pore size of the obtained porous body. Table 1 Firing temperature (° C) Firing time (hour) Average pore size obtained (nm) Example 4 700 1 820
実施例 5 700 2 1 1 00  Example 5 700 2 1 1 00
実施例 6 700 4 1 600  Example 6 700 4 1 600
実施例 7 675 1 500  Example 7 675 1 500
実施例 8 675 5 1 200  Example 8 675 5 1 200
実施例 9 650 1 2 1 1 20  Example 9 650 1 2 1 1 20
実施例 1 0 Example 10
無機多孔体に体積平均粒径 4 5. 8〃m、 空孔率 0. 6 2、 平均孔径 1 0 nm、 シリ力組成 9 8. 1重量%のシリ力ゲル (商品名シリ力ゲル 5 D、 富士シリアル ィ匕学株式会社製) を用いた。  Volume average particle diameter 45.8〃m, porosity 0.62, average pore diameter 10 nm, volume composition 98.1% by weight of inorganic porous material And Fuji Serial Danigaku Co., Ltd.).
純水 2 6 gに硝酸 (和光純薬製、 特級) 1. 6 g、 リン酸ーナトリウム (大平 ィ匕学工業製、 工業用) 4. 3 g、 及びモリブデン酸アンモニゥム (日本無機化学 工業製、 工業用) 8. 6 gを加え、 均一溶液とした。 なお、 混合無機塩の融点は 6 5 0 °Cであった。 5 0 OmLのナス型フラスコにシリカゲル 5 Dを 2 0 g取り、 これに、 上記無機塩水溶液 1 4. 8 m L (シリカゲルの孔体積に対して 9 8. 6 %) を加え、 ロータリ一エバポレーターを用いて 3 0分間回転混合した。 その後、 減圧乾燥機中で減圧下 7 0°Cで 5時間乾燥した。 このシリカゲルに上記無機塩水 溶液 1 l mLを加え、 同じ条件で回転混合及び乾燥を行った。 さらに、 無機塩水 溶液を 9 mL加え、 3回目の回転混合及び乾燥を行った。 得られた無機塩含浸シ リカゲルの孔量は 0. 3 3 2 mL/gであった。  To 26 g of pure water, 1.6 g of nitric acid (manufactured by Wako Pure Chemical, special grade), 4.3 g of sodium phosphate (manufactured by Ohira Iridaku Kogyo, industrial use), and 4.3 g of ammonium molybdate (manufactured by Nippon Inorganic Chemical Industry, 8.6 g was added to make a homogeneous solution. The melting point of the mixed inorganic salt was 65 ° C. Take 20 g of silica gel 5D into a 50 OmL eggplant-shaped flask, add 14.8 mL of the above aqueous solution of the inorganic salt (98.6% based on the pore volume of silica gel) to this, and add a rotary evaporator. The mixture was rotated and mixed for 30 minutes. Then, it was dried in a vacuum dryer at 70 ° C under reduced pressure for 5 hours. 1 l mL of the above inorganic salt solution was added to the silica gel, and the mixture was rotated under the same conditions and dried. Further, 9 mL of an inorganic salt solution was added, and the third rotation mixing and drying were performed. The pore volume of the obtained inorganic salt-impregnated silica gel was 0.332 mL / g.
無機塩含浸シリ力ゲル 1 O mLを電気炉で 3 5 0 °Cで 1時間、 その後 7 0 0 °C で 1時間焼成した。 得られた焼成物を実施例 1と同じ条件で洗浄 ·乾燥を行った c 得られた球状シリカ大孔径多孔体は、 体積平均粒径 4 5. 8 τη, 球状化率 8 1、 空孔率 0. 6 8、 平均孔径 3 5 0 n m、 シリカ組成 9 9. 2重量%であつた。  1 O mL of the inorganic salt-impregnated silica gel was baked in an electric furnace at 350 ° C for 1 hour, and then at 700 ° C for 1 hour. The obtained calcined product was washed and dried under the same conditions as in Example 1.c The resulting large-diameter spherical silica porous material had a volume average particle size of 45.8 τη, a spheroidization ratio of 81, and a porosity. 0.68, average pore size: 350 nm, silica composition: 99.2% by weight.
比較例 1  Comparative Example 1
純水 1 5 1. 8 gにスノーテック N— 3 0 (シリカゾル水溶液、 日産化学株式 会社製) 1 0 0. 0 g、 硝酸 (和光純薬製、 特級) 1 5. 8 g、 リン酸ーナトリ ゥム (大平化学工業製、 工業用) 43. 2 g、 及びモリブデン酸アンモニゥム (日本無機化学工業製、 工業用) 8 5. 6 gを加え、 均一溶液とした。 この溶液 の pHは 4. 2であり、 固形分率は 3 6重量%であった。 この混合液を用いて実 施例 1と同様に噴霧乾燥により造粒を行った。 得られた造粒粉 1 OmLを電気炉 にて 3 5 0 °Cで 2時間、 その後 6 90 °Cで 2時間焼成した。 このものを 7 0 °Cの 湯 1 0 OmLに加え、 3 0分攪拌しながら保持し、 その後濾紙で濾別し、 過剰の 水で洗浄後、 4 0 0メッシュ (目開き 3 2〃m) と 2 0 0メッシュ (目開き 7 5 iim) の篩で分級した後、 7 0°Cにて減圧乾燥した。 11.8 g of pure water to Snowtech N-30 (silica sol solution, Nissan Chemical Co., Ltd.) 10.0 g, nitric acid (manufactured by Wako Pure Chemical, special grade) 15.8 g, sodium phosphate (manufactured by Ohira Chemical Industry, industrial use) 43.2 g, and ammonium molybdate (Japan) 85.6 g was added to make a homogeneous solution. The pH of this solution was 4.2, and the solid content was 36% by weight. Using this mixed solution, granulation was performed by spray drying in the same manner as in Example 1. The obtained granulated powder (1 OmL) was calcined in an electric furnace at 350 ° C for 2 hours and then at 690 ° C for 2 hours. This is added to 10OmL of hot water at 70 ° C, kept while stirring for 30 minutes, then filtered off with a filter paper, washed with excess water, and then meshed with 400 mesh (opening of 32〃m). And classified with a sieve of 200 mesh (mesh size: 75 iim), and dried under reduced pressure at 70 ° C.
得られた球状シリカ大孔径多孔体の平均球状化率は 6 9. 6であり、 平均孔径 8 1 4 n m、 空孔率 0. 7 1、 シリ力組成 9 9. 6重量%の柱状絡み合い骨格構 造であった。 また、 強度は 0. 7 kg fZmm2 であった。 The average spheroidization ratio of the obtained porous silica having a large pore diameter was 69.6, and a columnar entangled skeleton having an average pore diameter of 81.4 nm, a porosity of 0.71, and a sily force composition of 99.6% by weight. It was a structure. The strength was 0.7 kg fZmm 2 .
比較例 2  Comparative Example 2
純水 1 5 1. 8 gにスノーテック N— 3 0 (シリカゾル水溶液、 日産化学株式 会社製) 1 0 0. 0 g、 硝酸 (和光純薬製、 特級) 1 5. 8 g、 リン酸ーナトリ ゥム (大平化学工業製、 工業用) 4 3. 2 g、 及びモリブデン酸アンモニゥム (日本無機化学工業製、 工業用) 8 5. 6 gを加え均一溶液とした。 この溶液に 2 5%アンモニア水 (和光純薬製、 特級) を加え、 液の pHを 6. 9に調整した。 液は透明状態であり、 均一であった。 さらに純水 1 8 8. 0 gを加え、 混合水溶 液を調合した。 この溶液の固形分率は 2 6重量%であった。 この混合液を用いて 実施例 1と同様に噴霧乾燥により造粒を行った。 得られた造粒粉 1 OmLを電気 炉にて 3 5 0 °Cで 2時間、 その後 6 9 0 °Cで 2時間焼成した。 このものを 7 0 °C の湯 1 0 OmLに加え、 3 0分攪拌しながら保持し、 その後濾紙で濾別し、 過剰 の水で洗浄後、 4 0 0メッシュ (目開き 3 2 urn と 2 0 0メッシュ (目開き 7 5 ^m) の篩で分級した後、 7 0°Cにて減圧乾燥した。  151.8 g of pure water to Snowtec N-30 (silica sol solution, Nissan Chemical Co., Ltd.) 10.0 g, nitric acid (Wako Pure Chemical, special grade) 15.8 g, sodium phosphate 43.2 g of Alum (manufactured by Ohira Chemical Industry, industrial use) and 85.6 g of ammonium molybdate (manufactured by Nippon Inorganic Chemical Industry, industrial use) were added to make a uniform solution. To this solution was added 25% aqueous ammonia (manufactured by Wako Pure Chemical Industries, special grade) to adjust the pH of the solution to 6.9. The liquid was transparent and uniform. Further, 188.0 g of pure water was added, and a mixed aqueous solution was prepared. The solid content of this solution was 26% by weight. Using this mixture, granulation was carried out by spray drying in the same manner as in Example 1. The obtained granulated powder (1 OmL) was calcined in an electric furnace at 350 ° C. for 2 hours and then at 69 ° C. for 2 hours. This was added to 10OmL of hot water at 70 ° C, kept while stirring for 30 minutes, then filtered off with filter paper, washed with excess water, and then meshed with 400 mesh (32 urn and 2 mesh). After classifying through a sieve of 00 mesh (opening of 75 ^ m), the mixture was dried under reduced pressure at 70 ° C.
得られた球状シリカ大孔径多孔体の平均球状化率は 7 2. 9であった。  The average spheroidization ratio of the obtained porous silica having a large pore diameter was 72.9.
比較例 3  Comparative Example 3
リン酸ーナトリウム (大平化学工業製、 工業用) 1 8 5. 6 gを純水 2 1 8 g に溶解させた。 また、 一方、 モリブデン酸アンモニゥム (日本無機化学工業製、 工業用) 6 4. 7 gを純水 1 6 1 gに溶解させた。上記二液を、 スノーテック N 一 3 0 (シリカゾル水溶液、 日産化学株式会社製) 2 0 0 gに加え、 均一溶液と した。 液の pHは 5. 2であり、 固形分率は 3 2重量%であった。 この混合液を 用いて実施例 1と同様に噴霧乾燥により造粒を行った。 得られた造粒粉 1 OmL を電気炉にて 3 5 0 °Cで 2時間、 その後 7 0 0 °Cで 2時間焼成した。 このものを 7 0°Cの湯 1 0 OmLに加え、 3 0分攪拌しながら保持し、 その後濾紙で濾別し、 過剰の水で洗浄後、 4 0 0メッシュ (目開き 3 2 rn) と 2 0 0メッシュ (目開 き 7 5〃m) の篩で分級した後、 7 0°Cにて減圧乾燥した。 185.6 g of sodium phosphate sodium (manufactured by Ohira Chemical Industry, industrial) was dissolved in 21.8 g of pure water. On the other hand, ammonium molybdate (Nippon Inorganic Chemical Industry, 64.7 g was dissolved in 16 1 g of pure water. The above two solutions were added to 200 g of Snowtech N130 (aqueous silica sol solution, manufactured by Nissan Chemical Industries, Ltd.) to obtain a uniform solution. The pH of the solution was 5.2, and the solid content was 32% by weight. Using this mixed solution, granulation was performed by spray drying in the same manner as in Example 1. The obtained granulated powder (1 OmL) was calcined in an electric furnace at 350 ° C for 2 hours and then at 700 ° C for 2 hours. This was added to 10OmL of hot water at 70 ° C, kept while stirring for 30 minutes, then filtered off with filter paper, washed with excess water, and reduced to 400 mesh (mesh size 32rn). After classification with a sieve of 200 mesh (opening of 75 μm), drying was performed at 70 ° C. under reduced pressure.
得られた球状シリカ大孔径多孔体の平均球状化率は 7 2. 2であった。 平均孔 径 3 6 6 nm、 空孔率 0. 6 9、 シリカ組成 9 9. 0重量%の柱状絡み合い骨格 構造であった。 また、 強度は 0. 8 k g f /mm2 であった。 The average spheroidization ratio of the obtained spherical silica large pore porous material was 72.2. It had a columnar entangled skeletal structure with an average pore size of 3666 nm, a porosity of 0.69, and a silica composition of 99.0% by weight. The strength was 0.8 kgf / mm 2 .
実施例 1 1  Example 1 1
純水 1 5 1. 8 gにスノーテック N— 3 0 (シリカゾル水溶液、 日産化学株式 会社製) 1 0 0. 0 g、 硝酸 (和光純薬製、 特級) 1 4. 0 g、 リン酸一ナトリ ゥム (大平化学工業製、 工業用) 43. 2 g、 及びモリブデン酸アンモニゥム (日本無機化学工業製、 工業用) 8 5. 6 gを加え均一溶液とした。 この溶液に 2 5%アンモニア水 (和光純薬製、 特級) 1 4. 2 g加え、 液の pHを 7. 3と した。 混合液は白濁して粘度が上昇したので、 さらに純水 1 8 8. 0 gを加え、 粘度を抑えた不均一混合水溶液を調合した。 この混合水溶液を攪拌しながらスプ レードライヤー (商品名 OC— 1 6型、 大川原化工機株式会社製) に導入し、 造 粒を行った。 液滴生成用回転皿は直径 8 cmのものを用い、 回転数 2 1 0 0 r pmであった。 乾燥塔入り口温度は 2 3 0 °C、 熱風量 3 1 0 Nm3 /時間、 混 合液導入量 9 0 LZ時間であった。 得られた造粒品を電気炉で 3 5 0 °Cで 2時間、 その後 7 5 0。Cで 1時間焼成した。 このものを 7 0°Cの湯で洗浄後、 過剰の水で 洗浄し、 4 0 0メッシュ (目開き 3 7〃m) と 2 0 0メッシュ (目開き 7 4 zm) の篩で分級した後、 7 0°Cにて減圧乾燥した。 得られた球状無機多孔体は平均孔 径 7 0 5 n m、 空孔率 0. 7 0の柱状絡み合い構造であつた。 151.8 g of pure water to Snowtec N-30 (silica sol solution, Nissan Chemical Co., Ltd.) 10.0 g, nitric acid (Wako Pure Chemical, special grade) 14.0 g, phosphoric acid 43.2 g of sodium (manufactured by Ohira Chemical Industry, industrial use) and 85.6 g of ammonium molybdate (manufactured by Nippon Inorganic Chemical Industry, industrial use) were added to make a homogeneous solution. To this solution, 14.2 g of 25% aqueous ammonia (manufactured by Wako Pure Chemical Industries, Ltd.) was added to adjust the pH of the solution to 7.3. Since the mixture became cloudy and the viscosity increased, 188.0 g of pure water was further added to prepare a heterogeneous mixed aqueous solution having a reduced viscosity. The mixed aqueous solution was introduced into a spray dryer (trade name: OC-16, manufactured by Okawara Kakoki Co., Ltd.) while stirring, and granulated. The rotating dish for generating droplets used had a diameter of 8 cm, and had a rotation speed of 2100 rpm. The temperature at the inlet of the drying tower was 230 ° C, the amount of hot air was 310 Nm 3 / hour, and the introduced amount of the mixed liquid was 90 LZ hours. The obtained granulated product was heated in an electric furnace at 350 ° C. for 2 hours, and then subjected to 7500. C was fired for 1 hour. This was washed with hot water at 70 ° C, washed with excess water, and classified with a sieve of 400 mesh (mesh size of 37〃m) and 200 mesh (mesh size of 74 zm). And dried under reduced pressure at 70 ° C. The obtained spherical inorganic porous body had a columnar entangled structure with an average pore diameter of 705 nm and a porosity of 0.70.
フラスコにこの球状無機多孔体 2 0 gを秤取し、 フラスコを口一タリエバポレ —ターに装着し、 ァスピレーターにて減圧にした。 2 5分間減圧にした後、 ァス ビレー夕とエバポレーターの間のバルブを閉とし、 その減圧を利用して、 アンプ レックスのメタノール一 τ 溶液 (旭化成工業株式会社製、 ァシプレックスの交換 容量 1 . 1 0 ミリ等量 Zg、 濃度 5 w t %、 メタノ一ル/水 = 5 0 / 5 0 w t %) を 1 9 . 8 g導入した。 その後、 減圧のまま、 口一タリーエバポレータ一にてゆ つくり回転しながら混合含浸を 2 0分行った。 その後、 ウォーターバスにて加熱 しながら減圧にして、 溶媒である水一メタノールを蒸発除去した。 この操作を合 計 5回繰り返してァシプレックス含有無機多孔体を得た。 各操作でフィードした ァシプレックスのメタノール一水溶液は、 二回目 1 4 . 8 g、 三回目 1 4 . 1 g、 四回目 1 3 . 6 g、 5回目 1 3 . 2 gであった。 20 g of this spherical inorganic porous material was weighed into a flask, and the flask was attached to a one-sided vaporizer, and the pressure was reduced using an aspirator. 2 After depressurizing for 5 minutes, Close the valve between the billet and the evaporator, and use the reduced pressure to apply Amplex's methanol-τ solution (Asahi Kasei Kogyo Co., Ltd., Aciplex exchange capacity: 1.10 milliequivalent Zg, concentration: 5 wt% , Methanol / water = 50/50 wt%). Thereafter, the mixed impregnation was performed for 20 minutes while the pressure was reduced and the rotary was slowly rotated by a tally evaporator. Thereafter, the pressure was reduced while heating in a water bath, and water-methanol as a solvent was removed by evaporation. This operation was repeated for a total of 5 times to obtain an inorganic porous material containing an acylplex. The aqueous methanol solution of the acylplex fed in each operation was 14.8 g for the second time, 14.1 g for the third time, 13.6 g for the fourth time, and 13.2 g for the fifth time.
得られたァシプレックス含有無機多孔体の一部を過剰の 5 w t %塩化ナトリゥ ム (和光純薬株式会社製、 特級) 水溶液に浸し、 室温で 2時間保持し、 その後濾 別して乾燥後、 電気炉を用いて空気中 2 5 0 °Cで 1時間熱処理した。 熱処理終了 後に室温中に取り出し放冷して多孔性無機有機複合体を得た。  Part of the obtained inorganic porous material containing a complex is immersed in an excess of 5 wt% aqueous sodium chloride (manufactured by Wako Pure Chemical Industries, Ltd., special grade) aqueous solution, kept at room temperature for 2 hours, and then filtered and dried. And heat-treated in air at 250 ° C. for 1 hour. After the heat treatment was completed, the mixture was taken out to room temperature and allowed to cool to obtain a porous inorganic-organic composite.
次に交換容量を測定した。 その結果、 複合体の交換容量は、 乾燥複合体重量あ たりで 0 . 2 0 ミリ当量 / gであった。  Next, the exchange capacity was measured. As a result, the exchange capacity of the composite was 0.20 meq / g per dry composite weight.
実施例 1 2  Example 1 2
実施例 1 1で液含浸 ·乾燥して得たァシプレックス含有無機多孔体の一部を過 剰の 5 w t %塩化ナトリウム (和光純薬株式会社製、 特級) 水溶液に浸し、 室温 で 2時間保持し、 その後濾別して乾燥後、 電気炉を用いて空気中 2 5 0 °Cで 3 0 分熱処理した。 熱処理終了後に室温中に取り出し放冷した。  Example 11 A portion of the inorganic porous body containing a complex obtained by liquid impregnation and drying in 1 was immersed in an excess 5 wt% aqueous solution of sodium chloride (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and kept at room temperature for 2 hours. Then, the mixture was filtered, dried, and then heat-treated in an air at 250 ° C. for 30 minutes using an electric furnace. After the completion of the heat treatment, it was taken out to room temperature and allowed to cool.
得られた複合体の交換容量を測定したところ、 特に問題なく測定ができ、 その 値は 0 . 2 0 ミリ当量 Z gであつた。 また、 ジメチルスルホキシド加熱処理後の 交換容量は 0 . 1 0 ミリ当量/ g (溶出率 5 0 %) であった。  When the exchange capacity of the obtained composite was measured, it could be measured without any particular problem, and the value was 0.20 meq Zg. The exchange capacity after the heat treatment with dimethyl sulfoxide was 0.10 meq / g (elution rate: 50%).
比較例 4  Comparative Example 4
実施例 1 1で液含浸 ·乾燥して得たァシプレックス含有無機多孔体の一部を熱 処理しなかった。 これを用いて交換容量を測定しょうとしたが、 メタノールを流 そうとしたら流れが非常に遅くなつた。 一晩かけてメタノールを流し終え、 その 後交換容量を測定したが、 その値は 0 . 0 ミリ当量/ で、 全くアンプレックス が保持されていなかった。 溶出率は 1 0 0 %であった。 比較例 5 Part of the aciplex-containing inorganic porous material obtained by impregnating and drying the solution in Example 11 was not heat-treated. I tried to measure the exchange capacity using this, but when I tried to flow methanol, the flow became very slow. The methanol was allowed to flow overnight, after which the exchange capacity was measured and was found to be 0.0 meq / m3, indicating no amplex retention. The elution rate was 100%. Comparative Example 5
実施例 1 1で液含浸 ·乾燥して得たァシプレックス含有無機多孔体の一部を過 剰の 5 w t %塩化ナトリウム (和光純薬株式会社製、 特級) 水溶液に浸し、 室温 で 2時間保持し、 その後濾別して乾燥後、 電気炉を用いて空気中 2 5 0 °Cで 1 0 分熱処理した。 熱処理終了後に室温中に取り出し放冷した。  Example 11 A portion of the inorganic porous body containing a complex obtained by liquid impregnation and drying in 1 was immersed in an excess 5 wt% aqueous solution of sodium chloride (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and kept at room temperature for 2 hours. Then, the resultant was filtered, dried, and then heat-treated in an air at 250 ° C. for 10 minutes using an electric furnace. After the completion of the heat treatment, it was taken out to room temperature and allowed to cool.
得られた複合体の交換容量を測定した。 ところ力 メタノールを流そうとした ら流れ力非常に遅くなつた。 一晩かけてメタノールを流し終え、 測定したところ、 その値は 0. 0 ミリ当量 Zgであった。 溶出率は 1 0 0%であった。  The exchange capacity of the obtained composite was measured. However, when trying to flow methanol, the flow force became very slow. The methanol flow was completed overnight, and the measured value was 0.0 meq Zg. The elution rate was 100%.
実施例 1 3  Example 13
フラスコに実施例 1 1で合成した球状無機多孔体 2 0 gを秤取し、 フラスコを ロータリエバポレーターに装着し、 ァスピレーターにて減圧にした。 2 5分間減 圧にした後、 ァスピレー夕とエバポレーターの間のバルブを閉とし、 その減圧を 利用して、 ナフイオンのメタノール一水溶液 (E. I. d uPo n t d e Nemo u r s an d C o m p a n y社製、 ナフイオンの交換容量 0. 9 1 ミリ等量/ g、 濃度 5wt%、 メタノール Z水 = 5 0 / 5 0 wt%) を 1 9. 8 g導入した。 その後、 減圧のまま、 ロータリ一エバポレー夕一にてゆっくり回転 しながら混合含浸を 2 0分行った。 その後、 ウォータ一バスにて加熱しながら減 圧にして、 溶媒である水一メタノールを蒸発除去した。 この操作を合計 7回繰り 返した。 各操作でフィードしたァシプレックスのメタノール一水溶液は、 2回目 1 4. 8 g、 3回目 1 4. 1 g、 4回目 1 3. 6 g、 5回目 1 3. 2 g、 6回目 1 2. 8 g、 7回目 1 2. 5 gであった。  20 g of the spherical inorganic porous material synthesized in Example 11 was weighed into a flask, and the flask was mounted on a rotary evaporator, and the pressure was reduced with an aspirator. After reducing the pressure for 25 minutes, the valve between the aspirator and the evaporator is closed, and the reduced pressure is used to exchange the naphion in methanol-water solution 19.8 g of 0.91 milliequivalent / g, 5 wt% concentration, 50/50 wt% methanol Z water) were introduced. Thereafter, the mixed impregnation was performed for 20 minutes while rotating slowly on a rotary evaporator under reduced pressure. Thereafter, the pressure was reduced while heating in a water bath, and the solvent water-methanol was removed by evaporation. This operation was repeated a total of seven times. The aqueous methanol solution of the aciplex fed in each operation was 14.8 g for the second run, 14.1 g for the third run, 13.6 g for the fourth run, 13.2 g for the fifth run, and 12.8 for the sixth run. g, 72.5 times, 12.5 g.
得られたァシプレックス含有無機多孔体の一部を過剰の 5 w t %塩化ナトリゥ ム (和光純薬株式会社製、 特級) 水溶液に浸し、 室温で 2時間保持し、 その後濾 別して乾燥後、 電気炉を用いて空気中 2 5 0 °Cで 1時間熱処理した。 熱処理終了 後に室温中に取り出し放冷した。  Part of the obtained inorganic porous material containing a complex is immersed in an excess of 5 wt% aqueous sodium chloride (manufactured by Wako Pure Chemical Industries, Ltd., special grade) aqueous solution, kept at room temperature for 2 hours, and then filtered and dried. And heat-treated in air at 250 ° C. for 1 hour. After the heat treatment, the sample was taken out into room temperature and allowed to cool.
交換容量を測定したところ、 問題なく測定ができ、 その値は 0. 2 2 ミリ当量 /gであった。 ジメチルスルホキシド加熱処理後の交換容量は 0. 2 2 ミリ当量 Zgであり、 溶出率は 9%であった。  When the exchange capacity was measured, it could be measured without any problem, and the value was 0.22 meq / g. The exchange capacity after the heat treatment with dimethyl sulfoxide was 0.22 meq Zg, and the elution rate was 9%.
実施例 1 4 テトラメ トキシシラン (信越シリコーン株式会社製) 2 0 4 gに水 3 3 gと 0. 0 4M塩酸 (和光純薬株式会社製) 3 gを混合した。 一方、 ァシプレックスのメ タノ一ルー水溶液 (旭化成工業株式会社製、 ァシプレックスの交換容量 0. 9 1 ミ リ等量/ g、 濃度 5 w t %、 メタノール 7水= 5 0 / 5 0 w t ) 3 5 0 m 1に 0. 4 M水酸化ナトリウム (和光純薬株式会社製) 1 50m lを加えた。 この液を上記テトラメ トキシシラン混合液に加え攪拌した。 液はすぐにゲルイ匕し、 さらには固体化した。 この固体を 9 5°C、 2 4時間乾燥した。 これを乳鉢で粉砕 し、 その後、 3. 5 M塩酸水溶液に入れて一晩放置した。 その後濾別し、 水洗し て、 洗浄液が中性になったのを確認し、 9 5 °Cで乾燥した。 得られた粉体の交換 容量は 0. 1 9 ミリ当量/ であった。 Example 14 To 204 g of tetramethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd.), 33 g of water and 3 g of 0.04 M hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed. On the other hand, aqueous solution of acylplex in methanol (Asahi Kasei Kogyo Co., Ltd., exchange capacity 0.91 milliequivalents / g, concentration 5 wt%, methanol 7 water = 50/50 wt) 350 To 50 ml of 0.4 M sodium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) was added. This liquid was added to the above tetramethoxysilane mixed liquid and stirred. The liquid immediately gelled and further solidified. This solid was dried at 95 ° C for 24 hours. This was crushed in a mortar and then placed in a 3.5 M aqueous hydrochloric acid solution and left overnight. Thereafter, it was filtered off, washed with water, and it was confirmed that the washing solution became neutral, and dried at 95 ° C. The exchange capacity of the obtained powder was 0.19 meq /.
得られた粉体を 5 g取り、 5重量%塩化ナトリウム水溶液 3 0 0 m lに加え、 室温で一晩放置した。 その後、 粉体を濾別し水洗した後、 1 0 0°Cで 5時間乾燥 し、 次いで 2 5 0 °Cで 1時間熱処理した。 その後、 粉体を 2 N塩酸 2 0 0 m 1に 加え、 5時間保持した後、 水洗し、 洗浄液が中性であることを確認した。 得られ た複合体を 1 0 0°Cで一晩乾燥した。 得られた複合物の交換容量は 0. 1 9 ミリ 当量 Z gであり、 ジメチルスルホキシド加熱処理後の交換容量は 0. 1 2 ミ リ当 量 Zg (溶出率 3 7%) であった。  5 g of the obtained powder was taken, added to 300 ml of a 5% by weight aqueous sodium chloride solution, and allowed to stand at room temperature overnight. Thereafter, the powder was separated by filtration, washed with water, dried at 100 ° C for 5 hours, and then heat-treated at 250 ° C for 1 hour. Thereafter, the powder was added to 200 ml of 2N hydrochloric acid, kept for 5 hours, washed with water, and it was confirmed that the washing solution was neutral. The resulting complex was dried at 100 ° C. overnight. The exchange capacity of the obtained composite was 0.19 milliequivalent Zg, and the exchange capacity after heat treatment with dimethyl sulfoxide was 0.12 milliequivalent Zg (elution rate: 37%).
比較例 6  Comparative Example 6
実施例 1 4で得られた熱処理前の粉体をジメチルスルホキシド加熱処理に付し た。 その後の交換容量は 0. 0 5 ミリ当量 Zg (溶出率 7 4%) であった。  The powder before heat treatment obtained in Example 14 was subjected to a dimethyl sulfoxide heat treatment. The subsequent exchange capacity was 0.05 meq Zg (74% elution).
実施例 1 5  Example 15
SAC— 1 3 (米国 Du Po n t社製、 ゾル—ゲル法によるナフイオンとシリ 力の混合物) を 5 g取り、 5重量%塩化ナトリウム水溶液 3 0 0 m lに加え、 室 温で一晩放置した。 その後、 固形物を濾別し水洗した後、 1 0 0°Cで 5時間乾燥 し、 次いで 2 5 0 °Cで 1時間熱処理した。 その後、 固形物を 2 N塩酸 2 0 0 m l に加え、 5時間保持した後、 水洗し、 洗浄液が中性であることを確認した。 得ら れた複合体を 1 0 0°Cで一晩乾燥した。 得られた複合物の交換容量は 0. 1 6 ミ リ当量 Z gであり、 ジメチルスルホキシド加熱処理後の交換容量は 0. 1 0 ミリ 当量 Zg (溶出率 3 8%) であった。 比較例 7 5 g of SAC-13 (manufactured by DuPont, USA, a mixture of naphion and silicic acid by a sol-gel method) was taken, added to 300 ml of a 5% by weight aqueous sodium chloride solution, and allowed to stand at room temperature overnight. Thereafter, the solid was filtered off, washed with water, dried at 100 ° C. for 5 hours, and then heat-treated at 250 ° C. for 1 hour. Thereafter, the solid was added to 200 ml of 2N hydrochloric acid, and the mixture was kept for 5 hours, washed with water, and it was confirmed that the washing solution was neutral. The obtained complex was dried at 100 ° C. overnight. The exchange capacity of the obtained composite was 0.16 milliequivalent Zg, and the exchange capacity after the dimethyl sulfoxide heat treatment was 0.10 milliequivalent Zg (elution rate: 38%). Comparative Example 7
SAC- 1 3 (米国 D u P o n t社製、 ゾル一ゲル法によるナフイオンとシリ 力の混合物) を交換容量測定用カラムに入れ室温でエタノールを流したら、 すぐ に流れがとまってしまった。 その後、 一晩放置したが、 エタノールは流れなかつ た。  When SAC-13 (a mixture of naphion and silicic acid by the sol-gel method, manufactured by DuPont, USA) was placed in a column for measuring exchange capacity and ethanol was allowed to flow at room temperature, the flow stopped immediately. After that, it was left overnight, but ethanol did not flow.
比較例 8  Comparative Example 8
SAC- 1 3 (米国 DuPon t社製、 ゾル一ゲル法によるナフイオンとシリ 力の混合物) のジメチルスルホキシド加熱処理を行った。 これの交換容量は 0. 04ミリ当量/ g (溶出率 7 5%) であった。  SAC-13 (manufactured by DuPont, USA, a mixture of naphion and silicide by a sol-gel method) was subjected to dimethyl sulfoxide heat treatment. The exchange capacity was 0.04 meq / g (elution rate 75%).
実施例 1 6  Example 16
実施例 1 1で合成した多孔性複合体を固体酸触媒に用いて酢酸ェチルの加水分 解反応を行った。  Using the porous composite synthesized in Example 11 as a solid acid catalyst, a hydrolysis reaction of ethyl acetate was performed.
酢酸ェチル (和光純薬株式会社製、 特級) 2 5 gを水 4 7 5 gに加え 5 w t % 酌酸ェチル水溶液を調合した。 初めは酢酸ェチルと水が分離していた力 室温で 攪拌していると 1 0分ほどで均一液となった。 この酢酸ェチノレ水溶液 2 0 0 g取 り、 これに実施例 1で合成した多孔性複合体 0. 5 0 0 gを加え、 57°Cで攪拌 反応した。 反応開始後、 3 0分、 1時間、 2時間及び 3時間で反応液を 1 0m l サンプリングした。 サンプリング液を水で 1 5 0m lに希釈し、 0. 1 N水酸化 ナトリウム水溶液 (和光純薬株式会社製、 滴定用) で滴定した。 その値から、 反 応液中で生じた酢酸濃度を求めた。 結果は、 3 0分で 2. 2mmo l/L、 1時 間で 4. 0 mmo l ZL、 2時間で 7. 6 mmo l /L、 3時間で 1 1. 2 mmo 1Z であった。  25 g of ethyl acetate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was added to 475 g of water to prepare a 5 wt% aqueous solution of ethyl acetate. Initially, the ethyl acetate and water were separated. When the mixture was stirred at room temperature, it became a homogeneous liquid in about 10 minutes. 200 g of this aqueous solution of ethinole acetate was taken, 0.50 g of the porous composite synthesized in Example 1 was added thereto, and the mixture was stirred and reacted at 57 ° C. After starting the reaction, 10 ml of the reaction solution was sampled at 30 minutes, 1 hour, 2 hours, and 3 hours. The sampling liquid was diluted to 150 ml with water, and titrated with a 0.1 N aqueous sodium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd., for titration). From the value, the concentration of acetic acid generated in the reaction solution was determined. The results were 2.2 mmol / L at 30 minutes, 4.0 mmol ZL at 1 hour, 7.6 mmol / L at 2 hours, and 11.2 mmo1Z at 3 hours.
この加水分解反応は一次反応で解析することができる。 反応速度定数: k ( 1 /m i η) は下記 (7) 式で計算することができる。 This hydrolysis reaction can be analyzed by a primary reaction. The reaction rate constant: k (1 / m i η) can be calculated by the following equation (7).
Figure imgf000038_0001
Figure imgf000038_0001
ここで、 CA は生成酢酸濃度 (mmo 1ZL) 、 CA。は初期酢酸ェチル濃度 (mmo lZL) 、 tは時間 (m i n) である。 Here, C A is the concentration of acetic acid produced (mmo 1ZL), C A. Is the initial ethyl acetate concentration (mmolZL) and t is the time (min).
また、 官能基当たりの反応速度定数: k 1 (1/m i nZ当量) を下記 (8) 式で算出し、 固体酸触媒性能の比較に用いた。
Figure imgf000039_0001
In addition, a reaction rate constant per functional group: k 1 (1 / minZ equivalent) was calculated by the following equation (8) and used for comparison of solid acid catalyst performance.
Figure imgf000039_0001
ここで、 kavは反応速度定数 (lZmi n) 、 Fは用いた触媒の量 (g) 、 ECは交換容量 (当量 Zg) である。 実施例 1で得られた多孔性複合体の酢酸ェ チルの加水分解反応における官能基当たりの反応速度定数は 1. 1 8 Zm i nZ 当量であった。 Where k av is the reaction rate constant (lZmin), F is the amount of catalyst used (g), and EC is the exchange capacity (equivalent Zg). The reaction rate constant per functional group in the hydrolysis reaction of ethyl acetate of the porous composite obtained in Example 1 was 1.18 ZminZ equivalent.
比較例 9  Comparative Example 9
多孔性複合体の代わりに強酸性陽ィォン交換樹脂であるアンバーリスト 1 5 (米国ローム 'アンド ·ハウス社製) 0. 500 gを用いた以外は、 実施例 1 4 と同じ反応を行った。 その結果、 反応で生成した酢酸濃度は 3 0分で 7. 8 mmo lZL、 65分で 1 6. 6mmo l/L、 2時間で 32. Ommo lZL であり、 官能基当たりの反応速度定数は 0. 2/m i nZ当量であり、 実施例 1 4の結果と比較して 1 Z 6倍の性能であつた。  The same reaction as in Example 14 was performed, except that 0.55 g of Amberlyst 15 (manufactured by Rohm and House, USA) was used instead of the porous composite. As a result, the concentration of acetic acid generated in the reaction was 7.8 mmoLZL in 30 minutes, 16.6 mmoL / L in 65 minutes, 32.OmmoLZL in 2 hours, and the reaction rate constant per functional group was 0. 2 / minZ equivalent, which was 6 times higher than the result of Example 14 by 1 Z.
産業上の利用の可能性  Industrial applicability
本発明によれば、 平均孔径と空孔率が大きく、 かつ機械的剛性及び耐薬品性に すぐれた球状の無機大孔径多孔体が得られる。 粒子形が比較的均一の多孔体が得 られやすく、 孔が比較的大きいにもかかわらず、 機械的強度に優れているため、 使用中に粒子が割れたりしにくく、 取り扱いが容易で、 かつカラムに充填して使 用する場合にもカラム圧力の上昇が防止できる。  According to the present invention, it is possible to obtain a spherical inorganic large-pore porous body having a large average pore diameter and a high porosity, and having excellent mechanical rigidity and chemical resistance. It is easy to obtain a porous body with a relatively uniform particle shape, and despite its relatively large pores, it has excellent mechanical strength, so particles are not easily broken during use, handling is easy, and columns The column pressure can be prevented from increasing even when used after filling.
本発明の多孔性複合体は、 含フッ素有機物質が担体に実質的に固定化されてお り、 安定した性能で使用することができる。 例えば、 極性有機溶媒に接触する環 境下でも比較的安定して使用できる。 また含フッ素有機物質の利用効率に優れ、 含フッ素有機物質の担持量の割には含フッ素有機物質の特性、 例えば官能基にお ける反応などが有効利用率が高い。 また、 分離、 吸着等の利用効率に優れる一方 で、 孔量を大きくとることが可能となるので、 分離カラムの運転圧力を低く抑え ることができる。 含フッ素有機物質として、 例えばペルフルォロカ一ボンスルホ ン酸を包含した多孔性無機複合体は、 その超強酸性と優れた耐熱性、 耐溶剤性等 から固体酸触媒として有用である。  The porous composite of the present invention has a fluorine-containing organic substance substantially immobilized on a carrier, and can be used with stable performance. For example, it can be used relatively stably even in an environment where it comes into contact with a polar organic solvent. In addition, the use efficiency of the fluorinated organic substance is excellent, and the effective use rate of the properties of the fluorinated organic substance, for example, the reaction in the functional group, is high for the supported amount of the fluorinated organic substance. In addition, while the use efficiency of separation, adsorption, etc. is excellent, the pore volume can be increased, so that the operating pressure of the separation column can be kept low. A porous inorganic composite containing, for example, perfluorocarbon sulfonic acid as a fluorine-containing organic substance is useful as a solid acid catalyst because of its super-strong acidity, excellent heat resistance and solvent resistance.

Claims

請 求 の 範 囲 The scope of the claims
1. 平均球状化率が 7 5以上で、 骨格が柱状絡み合い構造であり、 平均孔径が 1 0 0〜2 0 0 0 n mで、 空孔率が 0 . 5 0〜 9 0である粒子径 1〃m〜 5 mmの球状無機多孔体。 1. Particles with an average spheroidization ratio of 75 or more, a skeleton having a columnar entangled structure, an average pore size of 100 to 200 nm, and a porosity of 0.50 to 90 1.球状 m to 5 mm spherical inorganic porous material.
2. 実質的に無水ゲイ酸を構成単位とする請求項 1に記載の球状無機多孔体。 2. The spherical inorganic porous material according to claim 1, wherein the structural unit is substantially composed of gay anhydride.
3. シリ力ゾルと融点が 4 0 0〜 8 0 0 °Cの範囲にある無機塩又は無機塩の混 合物との均一 τΚ溶液を、 不均一化し、 次いで造粒を行うことからなる球状無機多 孔体の製造方法。 3. A spherical shape consisting of making the uniform τΚ solution of the silicic acid sol and the inorganic salt or the mixture of inorganic salts whose melting point is in the range of 400 to 800 ° C nonuniform, and then performing granulation A method for producing an inorganic porous material.
4. 前記無機塩が、 モリブデン酸塩、 酸化モリブデン、 モリブデン酸塩又は酸 化モリブデンとリン酸塩との混合物、 リン酸塩、 アル力リ金属塩化物、 アル力リ 金属硫酸塩、 及びこれらのいずれか 1種とアルカリ土類金属塩との混合物、 から なる群から選ばれた少なくとも 1種である請求項 3に記載の球状無機多孔体の製 造方法。  4. The inorganic salt includes molybdate, molybdenum oxide, molybdate or a mixture of molybdenum oxide and phosphate, phosphate, metal chloride, metal sulfate, and the like. 4. The method for producing a spherical inorganic porous material according to claim 3, wherein the method is at least one selected from the group consisting of a mixture of any one of them and an alkaline earth metal salt.
5. 粒子径が 1 m〜 5 mm、 空孔率が 0 . 2 0〜 9 0、 平均孔径が 5〜 5 0 0 0 n mである無機多孔体粒子と、 該無機多孔体粒子に担持された含フッ素 有機物質を含む多孔性複合体。  5. Inorganic porous particles having a particle diameter of 1 m to 5 mm, a porosity of 0.2 to 90, and an average pore diameter of 5 to 500 nm, and supported on the inorganic porous particles. Fluorine-containing porous composite containing organic substances.
6. 前記含フッ素有機物質が官能基を有する含フッ素高分子物質である請求項 5に記載の多孔性複合体。  6. The porous composite according to claim 5, wherein the fluorinated organic substance is a fluorinated polymer substance having a functional group.
7. 前記官能基が力チォン交換基である請求項 6に記載の多孔性複合体。 7. The porous composite according to claim 6, wherein the functional group is a force-exchange group.
8. 無機多孔体粒子に含フッ素有機物質と希釈剤とを含む溶液を含有させ、 次 いで該希釈剤を除去し、 その後、 該含フッ素有機物質の融点より 5 0 °C低い温度 以上でかつ該含フッ素有機物質の分解温度以下の温度で加熱処理を行い、 しかる 後冷却することからなる請求項 5又は 6のいずれか一項に記載の多孔性複合体の 製造方法。 8. Incorporate a solution containing a fluorine-containing organic substance and a diluent into the inorganic porous material particles, then remove the diluent, and then at a temperature not lower than 50 ° C lower than the melting point of the fluorine-containing organic substance and 7. The method for producing a porous composite according to claim 5, wherein a heat treatment is performed at a temperature equal to or lower than a decomposition temperature of the fluorinated organic substance, and then the mixture is cooled.
9. 請求項 7に記載の多孔性複合体を含む酸触媒。  9. An acid catalyst comprising the porous composite according to claim 7.
PCT/JP1998/003681 1997-08-20 1998-08-20 Spherical porous body WO1999008960A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/223795 1997-08-20
JP22379597 1997-08-20
JP29820597 1997-10-30
JP9/298205 1997-10-30

Publications (1)

Publication Number Publication Date
WO1999008960A1 true WO1999008960A1 (en) 1999-02-25

Family

ID=26525692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003681 WO1999008960A1 (en) 1997-08-20 1998-08-20 Spherical porous body

Country Status (1)

Country Link
WO (1) WO1999008960A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211665A (en) * 2014-01-29 2015-11-26 ダイキン工業株式会社 Temperature responsive substrate, manufacturing method of the same, and evaluation method of the same
JP2016044148A (en) * 2014-08-25 2016-04-04 国立研究開発法人物質・材料研究機構 Particle forming method, and particle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615427B2 (en) * 1984-11-15 1994-03-02 旭化成工業株式会社 Inorganic porous body and method for producing the same
JPH07165414A (en) * 1993-08-06 1995-06-27 Eniricerche Spa Silica base material substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615427B2 (en) * 1984-11-15 1994-03-02 旭化成工業株式会社 Inorganic porous body and method for producing the same
JPH07165414A (en) * 1993-08-06 1995-06-27 Eniricerche Spa Silica base material substance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211665A (en) * 2014-01-29 2015-11-26 ダイキン工業株式会社 Temperature responsive substrate, manufacturing method of the same, and evaluation method of the same
US10689615B2 (en) 2014-01-29 2020-06-23 Daikin Industries, Ltd. Temperature-responsive base material, method for producing same, and method for evaluating same
JP2016044148A (en) * 2014-08-25 2016-04-04 国立研究開発法人物質・材料研究機構 Particle forming method, and particle

Similar Documents

Publication Publication Date Title
US4732887A (en) Composite porous material, process for production and separation of metallic element
US7128884B2 (en) Porous silica microsphere scavengers
Yeskendir et al. From metal–organic framework powders to shaped solids: recent developments and challenges
JP3200623B2 (en) Method for producing hollow spherical silicate cluster
US6867275B2 (en) Solid media
JP2875824B2 (en) Porous hard resin and method for producing the same
US6054111A (en) Lyotropic liquid-crystal phases of amphiphilic block copolymers as template for the preparation of mesoporous solids
CN103933911B (en) A kind of preparation method of Polymers hierarchical porous structure interlocking micro-capsule
KR100449372B1 (en) Silica catalysts with controlled titanium distributions
PL239357B1 (en) Method for obtaining mobile magnetic composite adsorbents
JPH11199351A (en) Porous inorganic organic composite material and its production
JP4574215B2 (en) Method for producing polymer-coated particle powder and polymer-coated inorganic particle
JP4712223B2 (en) Solid acid catalyst
WO1999008960A1 (en) Spherical porous body
JPH11171947A (en) Porous inorganic-organic complex
JP2008264732A (en) Porous ion exchanger and manufacturing method thereof
Liu et al. Facile synthesis of hollow mesoporous silica microspheres via surface sol–gel process on functional polymeric microsphere template
JP4146536B2 (en) Process for the preparation of low-bleeding cation exchangers
WO1998016467A1 (en) Porous inorganic composite and method for separating metal elements using the same
JPH11319574A (en) Catalyst for esterification
JPH11216363A (en) Catalyst for hydration reaction of olefin
JP4522105B2 (en) Method for separating substances from liquids
JPH11267499A (en) Adsorbent for treatment of hot water
JP4587376B2 (en) Metal ion-supported inorganic particle powder
JPH11207187A (en) Catalyst for synthesis of trioxane

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA