WO1999004167A1 - Vane pump - Google Patents

Vane pump Download PDF

Info

Publication number
WO1999004167A1
WO1999004167A1 PCT/KR1998/000213 KR9800213W WO9904167A1 WO 1999004167 A1 WO1999004167 A1 WO 1999004167A1 KR 9800213 W KR9800213 W KR 9800213W WO 9904167 A1 WO9904167 A1 WO 9904167A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
vane
air
circular
space
Prior art date
Application number
PCT/KR1998/000213
Other languages
French (fr)
Japanese (ja)
Inventor
Dong Il Hwang
Vin Hwang
Original Assignee
Dong Il Hwang
Vin Hwang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1019970033359A external-priority patent/KR100231475B1/en
Priority claimed from KR1019970045563A external-priority patent/KR100254171B1/en
Priority claimed from KR1019970050116A external-priority patent/KR19990027626A/en
Application filed by Dong Il Hwang, Vin Hwang filed Critical Dong Il Hwang
Priority to AU84640/98A priority Critical patent/AU8464098A/en
Publication of WO1999004167A1 publication Critical patent/WO1999004167A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/40Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member
    • F04C18/44Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member with vanes hinged to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement

Definitions

  • the present invention relates to a vane pump.
  • the circular part of the internal rotor has the circular part on one side.
  • the present invention relates to a vane pump that prevents noise from being generated due to a collision while compressing air in a compression chamber between an inserted vane and an inner wall of an outer rotor.
  • a vane pump is a plurality of vanes that are provided so that at least one vane reciprocates while receiving elasticity by a spring on a rotor that is eccentrically rotated by a cylindrical cylinder and receives an elastic force outward in accordance with the rotation of the rotor. Oil flowing through the suction port while the vane is in contact with the inner peripheral edge of the cylinder, or It is widely known that a fluid such as air is compressed and discharged through a discharge port.
  • the distance between the rotor that rotates about the eccentric rotation axis inside the cylinder and the cylinder is varied while approaching or distant.
  • the rotor is configured to be protruded to the outside by the elastic force of the spring or to be pushed inward while being in contact with the inner wall of the cylinder. It has the disadvantage that it can be damaged due to damage, and the high speed of rotation cannot be achieved, and the material and size of the vane are limited.
  • the applicant has proposed a vane pump in Korean Patent Application No. 199 95 — 42007, which has a helical shaft cavity 2 formed at the center and is rotated by a motor (not shown).
  • the upper and lower air circulation holes 4 and 5 and the inflow air 6 and 7 penetrating through the side face are integrally formed on the outer peripheral surface of the outer rotor 1 with the inner rotor 3 integrally formed on both sides.
  • the outer rotor 11 which is formed so as to protrude in the longitudinal direction from the inflow spaces 6, 7 of the inner rotor 3, and is positioned so as to be eccentric with respect to the bearing portion 1 by being sandwiched between the cylindrical working spaces. Air is supplied to the air circulation holes 4 and 5 through a large axial cavity 12;
  • the closed space formed by the outer surface of the inner rotor 3 and the inner surface of the outer rotor 11 is divided into a compression chamber and a supply chamber on the right and left sides of the vane, and the volume of the compression chamber and the supply chamber varies.
  • the air compressed in the compression chamber is discharged to the outside through the discharge port of the external rotor 11
  • Air is supplied to a large axial space 12 of the external rotor 11 through an air supply path 22, 23 connected to the outside to a housing 21 in which a closed type compressed air storage chamber is formed between the external rotor 11 and the housing 21.
  • An oil circulation groove 28 is provided at a portion of the housing 21 having a small shaft space 25, which is in contact with the oil supply spaces 8 and 9 of the bearing portion 1 and in which the oil immersion portions 26 and 27 are formed in a circumferential shape and which is in contact with the external rotor 11 of the housing 21. And an oil circulation air 15 is formed in a large axial space 12 of the external rotor 11 which is in contact with the bearing 1.
  • the present invention solves the above-mentioned problems, and a vane having one side inserted into a circular hollow of an internal rotor that receives a rotational force through a center eccentric shaft through a transmission section of constant speed rotation.
  • the objective is to obtain high-pressure compressed air without generating noise during compression while the other side is in contact with the inner surface of the outer rotor.
  • noise is generated at the time of compression while the inner rotor rotates together with the inside of the outer rotor while the other side of the vane having one side inserted into the circular hollow of the inner rotor contacts the operating groove of the outer rotor.
  • Another object of the present invention is to obtain high-pressure compressed air.
  • the present invention provides a vane sandwiched through an opening on one side of a clamp inserted into a circular hollow of an internal rotor so that an external rotor rotates at a constant speed, so that noise is not generated during compression. Another object is to obtain high-pressure compressed air.
  • the present invention provides a method in which a thin clamp is inserted into a circular hollow of an inner rotor three times so that an outer rotor rotates at a constant speed in a state where a vane is sandwiched, so that noise is not generated during compression. Another object is to obtain high-pressure compressed air with stable operation.
  • the present invention for achieving the above-mentioned object is to form a ring gear in a space portion of a central bearing portion that receives a rotational force from the outside,
  • a ring gear formed in a space portion of the internal rotor is meshed with a linear gear on the other side of the constant velocity pulling in which one line gear is meshed with the ring gear so as to rotate at a constant speed.
  • a circular portion formed on the side of the vane is inserted into the circular cavity of the internal port
  • the other side of the vane compresses air in accordance with a state where the volumes of the compression chamber and the supply chamber are changed while being in contact with the inner surface of the outer rotor, so that noise due to collision does not occur, and both have a simple configuration. It is designed to obtain high-pressure compressed air with a small volume.
  • FIGS. 2 and 3 are views showing a configuration according to one embodiment of the present invention.
  • a ring gear 33 is provided in a space 32 on one side of a central bearing 31 which receives a rotational force from the outside through a motor (not shown). Formed in one piece,
  • a linear gear 36 is integrally formed and rotates at a constant speed even in an eccentric state.
  • the ring gear 39 of the space 38 is meshed with the line gear 36 on the other side of the constant-speed pulling ring 34 and receives a constant-speed rotating force.
  • the other inclined protrusion 44 on the other side of the vane 42 in which one circular portion 43 is sandwiched between the circular cavities 40 is in contact with the inner surface of the outer rotor 45 or is located in the insertion groove 41, and the inner rotor
  • the bearing cover 46 depends on the state in which the volumes of the compression chamber A and the supply chamber B change while being eccentrically rotated together with the external port 45 while one side of the van 42 is sandwiched by the circular cavity 40 of 37.
  • the air supplied to the compression chamber A through the air supply air 47 is compressed,
  • a compressed air storage chamber 49 is formed between the outer surface of the outer rotor 45 and the housing 48 to maintain a pressure equal to or higher than a predetermined pressure discharged through a discharge air 50 provided with a check valve 51 for preventing backflow of the outer rotor 45. After the compressed air is temporarily stored, it is discharged to an external tank.
  • the air flowing through the air supply air 47 of the bearing cover 46 is After being supplied to the supply chamber B defined by the vane 42 in which the circular portion 43 is inserted into the circular cavity 40 of 7 and the external rotor 45, the inclined protruding portion 44 of the vane 42 in contact with the internal rotor 37 and the external rotor 45 The compression is performed in the compression chamber A whose volume changes.
  • the air enters the supply chamber B, and the rotational force is transmitted and received through the constant-speed coupling 34 according to the rotation of the bearing portion 31, and the circular space 40 of the internal rotor 37 is circular. Since the inner rotor 37 and the outer rotor 45 are in airtight contact with the vane 42 between which the part 43 is sandwiched, the vane 42 on the other side moves rightward with the inclined projection 44 on the other side positioned in the insertion groove 41 of the circular cavity 40 of the inner rotor 37. To rotate.
  • the vane 42 in which the circular portion 43 is inserted into the circular space 40 of the internal rotor 37 by the bearing portion 31 moves 90 to the right together with the internal rotor 37 and the external rotor 45.
  • the volume of the compression chamber A, which was the supply chamber B was closed by the outer rotor 45, the inclined protrusion 44 of the vane 42, and the inner rotor 37, and the supply chamber B was newly secured. Air is introduced from outside.
  • the outer rotor 45 is more than the inner rotor 37 with the inclined protrusion 44 of the vane 42 in a state where the circular portion 43 is inserted into the circular cavity 40 of the inner rotor 37 being in contact with the inner surface of the outer rotor 45.
  • the circular portion 43 of the vane 42 slightly rotates in the circular space 40 of the internal rotor 37, so that the inclined protruding portion 44 of the vane 42 passes through the internal surface and the inclined surface of the external rotor 45.
  • the state of surface contact is maintained, and at this time, the inclined protrusion 44 of the vane 42 is stabilized by the pressure of the compressed air and the pressure of the newly introduced air flowing into the supply chamber B. Keep airtight Will be maintained.
  • the vane 42 in which the circular portion 43 is inserted into the circular cavity 40 of the inner rotor 37 is rotated more than the outer rotor 45, but the compressed air pressure causes the vane 42 to rotate.
  • the inclined protrusion 44 is pushed so as to be in contact with the inner surface of the outer rotor 45, and the circular portion 42 rotates a little more in the circular space 40 of the inner rotor 37, so that stable operation is possible. The airtightness is maintained.
  • FIGS. 4A to 4D show an operation state according to another embodiment of the present invention.
  • the air flowing in from the outside is the same as the vane 33 having the circular portion 62 inserted into the circular space 62 of the internal rotor 61 and the outside.
  • the protruding portion 65 where the inner rotor 61 and the outer rotor 67 are in contact with each other, the vane 63 and the working groove 66 are compressed in the compression chamber A whose volume is changed.
  • the outer rotor 67 rotated more than the inner rotor 61 in a state where the protruding portion 65 of the vane 63 in a state where the circular portion 64 was inserted into the circular hollow 62 of the inner rotor 61 was in contact with the operating groove 68.
  • the protrusion 65 of the vane 63 forms the curved surface 66 in the working groove 68 of the external rotor 67.
  • the state of the surface contact is maintained continuously, and at this time, the airtightness of the compression chamber A is maintained by the Apex seal (Seal) 69 of the circular hollow 62.
  • the pressure of the air compressed by the vane 63 is received in the direction of the arrow, but is offset by the pressure applied between the curved surface 66 of the projection 64 and the operating groove 68, so that a strong pressure is applied to the vane 63. I can't.
  • the inner rotor 61 and the outer rotor 67 rotate by about 180 °. Then, the volumes of the compression chamber A and the supply chamber B become almost equal, and the air in the compression chamber A is further compressed.
  • the vane 63 in which the circular portion 64 is inserted into the circular space 62 of the internal rotor 61 is located at the center of the working groove 68 of the external rotor 67.
  • the vane 63 in which the circular portion 64 is inserted into the circular hollow 62 of the internal rotor 61 is rotated slightly less than the external rotor 67, but due to the compressed air pressure.
  • the protruding part 65 of the vane 63 is pushed so as to be in contact with the insertion groove 68 of the external rotor 67, and the circular part 63 is slightly rotated in the circular hollow 62 of the internal rotor 61, so that stable operation is possible.
  • the airtightness of the compression chamber A is continuously maintained by the Apex seal (Seal) 69.
  • FIG. 5 is a longitudinal sectional view according to another embodiment of the present invention
  • FIG. 6 is a view schematically showing an operation process.
  • a fixed groove 73 is formed in a space 72 of the central bearing 71 which receives the rotational force from the outside through a motor (not shown),
  • a ring-shaped clamp 81 having one side opened is inserted into the circular cavity 80 of the internal rotor 77 so that the hermeticity is maintained by an Apex seal (Seal) 82.
  • the vane 87 of the outer rotor 86 is held in contact with the face 85 of the shoe 83 in which one end of the clamp 81 comes into surface contact with the curved groove 84.
  • the vane 87 of the outer rotor 86 is sandwiched between the clamps 81, and rotates together with the inner rotor 77.
  • the air supplied to the compression chamber A through the air supply air 89 of the bearing cover 88 is compressed by the state in which the volumes of the compression chamber A and the supply chamber B are changed by the
  • a compressed air storage chamber 91 is formed between the outer surface of the outer rotor 86 and the housing 90 to maintain a pressure equal to or higher than a predetermined pressure discharged through a discharge air 92 provided with a check valve 93 for preventing backflow of the outer rotor 86. After the compressed air is temporarily stored, it is discharged to an external tank.
  • the other fixed rod 76 is interposed between the fixing groove 79 of the space 78 and the internal rotor 77 is eccentric with the bearing 71. Compression is performed.
  • the ring-shaped clamp 81 inserted into the circular air space 80 of the internal rotor 77 flowing through the air supply air space 90 of the bearing cover 89 is attached to the Apex seal 82. Therefore, the inner rotor can be rotated while airtightness is maintained, and the vane 87 of the outer port 86 is in contact with the face 85 of the shell 83 where the curved groove 84 is in contact with the clamp 81. After being supplied to the supply chamber B defined by the outer rotor 86 and the van 87, it is compressed in the compression chamber A whose volume is changed by the inner rotor 77, the outer rotor 86 and the van 87. To do.
  • the air enters the supply chamber B, and the ring inserted into the circular hollow 80 of the internal rotor 77 receives the rotational force through the constant-force coupling 74 by the rotation of the bearing 71.
  • the clamp 81 having a shape is stably contacted by the shoe 83 while rotating, so that the vane 87 rotates rightward together with the inserted external rotor 86.
  • the ring-shaped clamp 81 inserted into the circular cavity 80 of the inner rotor 77 by the bearing 71 rotates together with the face 85 of the shoe 83 where the curved groove 84 contacts one end while rotating together.
  • the compression chamber A which was the supply chamber B, is sealed by the outer rotor 86, the vane 87, and the inner rotor 77.
  • the supply volume B is newly secured and air from outside flows in.
  • the airtightness of the clamp 81 inserted in the circular hollow 80 of the internal rotor 77 is maintained by the Apex seal (Seal) 82, and the external rotor 86 is held in a state where the vane 87 is sandwiched by the clamp 81. Is slightly more rotated than the inner rotor 77, but the clamp 81 into which the vane 87 is inserted rotates a little more in the circular hollow 80 of the inner rotor 77, so that the vane 87 of the outer rotor 86 is rotated.
  • the airtightness of the compression chamber is maintained while the one end of the clamp 81 and the vane 87 are in surface contact with the curved groove 84 and the face 85 of the shroud 83.
  • the airtightness of the clamp 81 inserted in the circular hollow 80 of the internal rotor 77 is maintained by the Apex seal (Seal) 82, and the external rotor 86 is held in a state where the vane 87 is sandwiched by the clamp 81.
  • the inner rotor 77 and the inner rotor 77 rotate in the same manner, so that the state in which the vane 87 of the outer rotor 86 is sandwiched can be continuously maintained, and one end of the clamp 81 is formed by the curved groove 84 and the face 85 of the shoe 83.
  • the airtightness of the compression chamber A is maintained while maintaining the state in which the vanes 87 are in surface contact.
  • the airtightness of the clamp 81 inserted in the circular hollow 80 of the internal rotor 77 is maintained by the Apex seal (Seal) 82, and the external rotor 86 is held in a state where the vane 87 is sandwiched by the clamp 81. Is rotated slightly less than the inner rotor 77, but the clamp 81 with the vane 87 inserted rotates slightly more in the circular space 80 of the inner rotor 77, so the vane 87 of the outer rotor 86 is pinched.
  • One end of the clamp 81 and the vane 87 can be maintained by the curved groove 84 and the face 85 of the shoe 83.
  • the airtightness of the compression chamber A is maintained while maintaining the surface contact state.
  • the airtightness is maintained while the face 85 of the shoe 83 sandwiched so that one end of the clamp 81 is in surface contact with the curved groove 84 while rotating together with the vane 87 of the external rotor 86.
  • the airtightness is maintained during rotation.
  • FIG. 7 is a diagram showing a configuration according to another embodiment of the present invention.
  • the circular hollow 93 of the inner rotor 92 has one side protruding portions 95, 97, and 99, and a ring-shaped clamp 94,%, 98.
  • the inner rotor 92 and the outer rotor 101 may be compressed in the compression chamber A whose volume is changed by the clamps 94, 96, 98 and the vane 101.
  • FIG. 8 is a longitudinal sectional view showing a structure according to another embodiment of the present invention
  • FIG. 9 is a transverse sectional view showing the structure of an internal rotor and an external rotor.
  • a space 114 is formed on one side of an inner rotor 111 having an air supply passage 113 provided in a central shaft 112,
  • an operation deviation 121 in which an air circulation passage 122 and an operation air 123 are formed and an operation deviation 126 in which an operation air 127 is formed are provided.
  • a semilunar elastic bias 125 is provided in the concave grooves 124, 129 of the inner peripheral surfaces of the two operating biases 121, 126, and due to this elasticity, the operating biases 121, 126 and the inner peripheral surface of the space 114 are formed. Airtightness is maintained between the inner peripheral surfaces of the space 114 by two Apex seals 117 while maintaining airtightness between
  • a ring gear 118 is formed on the inner surface of the recessed position, and a gear 135 is formed on the inner surface of the inner rotor 111 at a position recessed also at the center of the outer rotor 131.
  • a ring gear 134 that is a body
  • Gears 137 and 138 formed on the outer surface of a spherical linear gear 136 are inserted and eccentric to the gears 119 and 135 of the ring gears 118 and 134 of the inner rotor 111 and the outer rotor 131 so as to mesh with each other.
  • the inner rotor 111 and the outer rotor 131 are rotated at a constant speed.
  • a bearing 144, 145, 146, 147 are provided outside the inner rotor 111 and the outer rotor 131, a bearing 144, 145, 146, 147 are provided and the upper housing 141 and the lower housing 142 are connected,
  • Compressed air is supplied to an external compression tank (not shown) through an air supply path 143 connected to the outside to a lower housing 142 in which a closed compressed air storage chamber C is formed between the external rotor 131 and the external rotor 131.
  • the outer rotor 131 which is hermetically connected to the inner rotor 111, is configured such that the upper outer rotor 131a and the lower outer rotor 131b are connected by a number of bolts 139,
  • An upper housing 141 and a lower housing 142 which are hermetically connected to the outer rotor 131 may be connected by bolts 147 and nuts 148.
  • a ring gear is formed in a space portion of a central bearing portion that receives an external rotational force, and a line gear on one side is meshed with the ring gear.
  • a ring gear formed in a space portion of the internal rotor meshes with a line gear on the other side of the constant velocity pulling so that the ring gear rotates at a constant speed.
  • the other side of the vane compresses air in a state where the volumes of the compression chamber and the supply chamber are changed while being in contact with the operating groove of the external rotor. Therefore, high-pressure compressed air can be obtained in a small volume without generating noise due to collision.
  • FIG. 1 is a diagram showing the overall configuration of a conventional vane pump.
  • FIG. 2 is a diagram showing an overall configuration according to one embodiment of the present invention.
  • FIG. 3a to 3d are schematic diagrams illustrating an operation process according to one embodiment of the present invention.
  • FIG. 4a-d are schematic diagrams illustrating an operation process according to one embodiment of the present invention.
  • FIG. 4A to 4D are schematic views showing an operation process according to another embodiment of the present invention. 0 [Fig. 5]
  • FIG. 5 is a longitudinal sectional view showing an overall configuration according to one embodiment of the present invention. [Fig. 6a-d]
  • FIG. 6A to 6D are schematic views showing an operation process according to another embodiment of the present invention. [Fig. 7]
  • FIG. 7 is a cross-sectional view showing a configuration according to another embodiment of the present invention.
  • FIG. 8 is a longitudinal sectional view showing an overall configuration according to another embodiment of the present invention. [Fig. 9]
  • FIG. 9 is a cross-sectional view showing a configuration of an internal rotor and an external rotor according to another embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

A vane pump comprising a central shaft adapted to receive a rotational force from the outside, a ring gear formed in a hollow portion provided in the shaft, a linear gear formed on one end of a constant velocity coupling and meshed with the ring gear, and a ring gear formed in a hollow portion of an inner rotor and meshed with a linear gear formed on the other end of the constant velocity coupling, whereby it is rendered possible to rotate the shaft and inner rotor at an equal speed, insert a circular portion formed at one end of a vane into a circular hollow space of the inner rotor, bring the other end of the vane into contact with an inner surface of an outer rotor, and vary the volumes of a compression chamber and a supply chamber, the air being thereby compressed, so that high-pressure compressed air can be obtained by a small-volume vane pump without encountering the collision of parts causative of noise.

Description

 Light
発明の名称 Title of invention
ーンポンプ 糸  Pump yarn
田 技術分匿  Field Technology secrecy
本発明は、 ベーンポンプに関する。 特に、 本発明は、 中央の偏心された 軸で等速回転の伝達部を通して伝達される回転力によって内部ロータが外部 ロータと等速で回転しながら内部ロータの円形空に一側の円形部が挿入され たべ一ンと外部ロータとの内壁間の圧縮室で空気を圧縮させる中に、 衝突に よってノイズが発生しないようにしたベーンポンプに関する。 The present invention relates to a vane pump. In particular, according to the present invention, while the internal rotor is rotated at a constant speed with the external rotor by the rotational force transmitted through the transmission part of the constant speed rotation at the center eccentric shaft, the circular part of the internal rotor has the circular part on one side. The present invention relates to a vane pump that prevents noise from being generated due to a collision while compressing air in a compression chamber between an inserted vane and an inner wall of an outer rotor.
背景技術 Background art
一般にべーンポンプとは、 円筒形のシリンダ一で偏心回転をするロータ に少なくとも一つ以上のベーンがスプリングによる弾性を受けつつ往復移動 するように設けてロータの回転に従って外側方に弾性力を受ける複数のベー ンがシリンダ一の内周縁と接しながら吸入口を通して流入されるオイル、 又 は空気のような流体を圧縮させて吐出口を通して排出することは広く知られ ている。 In general, a vane pump is a plurality of vanes that are provided so that at least one vane reciprocates while receiving elasticity by a spring on a rotor that is eccentrically rotated by a cylindrical cylinder and receives an elastic force outward in accordance with the rotation of the rotor. Oil flowing through the suction port while the vane is in contact with the inner peripheral edge of the cylinder, or It is widely known that a fluid such as air is compressed and discharged through a discharge port.
前述した従来のベーンポンプは、 シリンダ一の内部で偏心回転軸を中心 で回転するロータとシリンダ一間の距離が近づいか、 又は遠いかをしながら 可変され、 その距離が可変されるだけにべーンがスプリングの弾性力によつ て外部に突出され、 又はシリンダーの内壁と接しながら内側に押されるよう に構成されたので、 ロータの回転速度が早くなると外部に突出されたベーン が内壁に接して損傷を受けるという欠点があり、 又早い回転速度が出来なく、 ベーンの材質と大きさが制限される等という欠点がある。  In the conventional vane pump described above, the distance between the rotor that rotates about the eccentric rotation axis inside the cylinder and the cylinder is varied while approaching or distant. The rotor is configured to be protruded to the outside by the elastic force of the spring or to be pushed inward while being in contact with the inner wall of the cylinder. It has the disadvantage that it can be damaged due to damage, and the high speed of rotation cannot be achieved, and the material and size of the vane are limited.
従って、 本出願人は、 韓国出願第 1 9 9 5 — 4 2 0 0 7号にベーンポン プを提案し、 これは中央に螺旋型軸空 2が形成されて図示略のモータによって 回転する軸受部 1の外周面には円周状に上、 下部の空気循環ホール 4、 5と側面 に貫通した流入空 6、 7が両側に形成された内部ロータ 3を一体に形成し、  Accordingly, the applicant has proposed a vane pump in Korean Patent Application No. 199 95 — 42007, which has a helical shaft cavity 2 formed at the center and is rotated by a motor (not shown). The upper and lower air circulation holes 4 and 5 and the inflow air 6 and 7 penetrating through the side face are integrally formed on the outer peripheral surface of the outer rotor 1 with the inner rotor 3 integrally formed on both sides.
前記内部ロータ 3の流入空 6、 7に長さ方向に突出形成しだべーンが円筒形 の作動空に挟まれて軸受部 1に対して偏心されるように位置する外部ロータ 1 1の大きな軸空 12を通して前記空気の循環ホール 4、 5に空気を供給するように し、  The outer rotor 11, which is formed so as to protrude in the longitudinal direction from the inflow spaces 6, 7 of the inner rotor 3, and is positioned so as to be eccentric with respect to the bearing portion 1 by being sandwiched between the cylindrical working spaces. Air is supplied to the air circulation holes 4 and 5 through a large axial cavity 12;
前記内部ロータ 3の外面と外部ロータ 11の内面によって形成され、 密閉さ れた空間は、 ベーンの右側と左側が圧縮室及び供給室に区分され、 これらの 圧縮室及び供給室の体積の変化する状態によって圧縮室で圧縮された空気を 外部ロータ 11の吐出口を通して外部に吐出されるようにし、 前記外部ロータ 11との間に密閉型の圧縮空気の貯蔵室が形成されたハゥ ジング 21には外部と連結された空気供給経路 22、 23を通して前記外部ロータ 1 1の大きな軸空 12に空気を供給すると共に圧縮空気貯蔵室の圧縮空気を外部の 圧縮タンクに供給するようにし、 The closed space formed by the outer surface of the inner rotor 3 and the inner surface of the outer rotor 11 is divided into a compression chamber and a supply chamber on the right and left sides of the vane, and the volume of the compression chamber and the supply chamber varies. Depending on the state, the air compressed in the compression chamber is discharged to the outside through the discharge port of the external rotor 11, Air is supplied to a large axial space 12 of the external rotor 11 through an air supply path 22, 23 connected to the outside to a housing 21 in which a closed type compressed air storage chamber is formed between the external rotor 11 and the housing 21. Supply the compressed air in the compressed air storage room to an external compression tank,
前記軸受部 1のオイル供給空 8、 9と各々接する位置の小さな軸空 25に円周 状でオイル浸け部 26、 27が形成されたハウジング 21の外部ロータ 11と接する 部位にはオイル循環溝 28を形成すると共に前記軸受部 1と接する外部ロータ 11 の大きな軸空 12にはオイル循環空 15を形成し、  An oil circulation groove 28 is provided at a portion of the housing 21 having a small shaft space 25, which is in contact with the oil supply spaces 8 and 9 of the bearing portion 1 and in which the oil immersion portions 26 and 27 are formed in a circumferential shape and which is in contact with the external rotor 11 of the housing 21. And an oil circulation air 15 is formed in a large axial space 12 of the external rotor 11 which is in contact with the bearing 1.
前記オイル循環溝 28及びオイル循環空 15をオイル循環経路 16に相互連結 させることで、 密閉された状態の小さい空間で高圧の圧縮空気を生成するこ とが出来、 小型軽量化してエアコン等の内部に内装させることが出来るよう に構成した。  By interconnecting the oil circulation groove 28 and the oil circulation air 15 with the oil circulation path 16, high-pressure compressed air can be generated in a small space in a closed state. It was designed so that it could be installed inside.
しかし、 前記のような従来のベーンポンプにおいて、 内部ロータ 3と外部 ロータ 11との軸が違う状態でベーンが作動空に挟まれたままで回転しながら 圧縮させた空気をハウジング 21との間の圧縮空気貯蔵室に一時貯蔵した後、 外部に吐出させるようにしたので、 外部ロータ 11のべーンが作動空に挟まれ た内部ロータ 3が偏心されるように回転する中にベーンと衝突する現象が続け て発生すると共にベーンが作動空の両側と接しながら衝突音が発生し、 この ために摩耗現象が発生する問題がある。 発明の開示 本発明は、 前記のような問題点を解決するもので、 中央の偏心された軸 に等速回転の伝達部を通して回転力を受け取る内部ロータの円形空に一側が 揷入されたベーンの他側が外部ロータの内面と接しながら圧縮時にノィズが 発生されなく、 高圧の圧縮空気を得ることを目的とする。 However, in the conventional vane pump as described above, the compressed air between the housing 21 and the compressed air while rotating while the vane is sandwiched by the working air in a state where the axes of the inner rotor 3 and the outer rotor 11 are different from each other. After the temporary storage in the storage room, the outer rotor is discharged to the outside.Therefore, the phenomenon that the vanes of the outer rotor 11 collide with the vanes while the inner rotor 3 sandwiched by the working air rotates eccentrically. There is also a problem that the collision sound is generated while the vane is in contact with both sides of the working air and the abrasion phenomenon occurs. DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and a vane having one side inserted into a circular hollow of an internal rotor that receives a rotational force through a center eccentric shaft through a transmission section of constant speed rotation. The objective is to obtain high-pressure compressed air without generating noise during compression while the other side is in contact with the inner surface of the outer rotor.
又、 本発明は内部ロータが外部ロータの内部で共に回転しながら内部口 ータの円形空に一側が挿入されたべーンの他側が外部ロータの作動凹溝に接 しながら圧縮時にノイズが発生されなく、 高圧の圧縮空気を得ることができ るようにすることを他の目的とする。  Also, according to the present invention, noise is generated at the time of compression while the inner rotor rotates together with the inside of the outer rotor while the other side of the vane having one side inserted into the circular hollow of the inner rotor contacts the operating groove of the outer rotor. Another object of the present invention is to obtain high-pressure compressed air.
又、 本発明は、 内部ロータの円形空に挿入されたクランプの一側の開口 部にシユーを通して挟まれたベーンによって外部ロータが等速に回転するよ うにして、 圧縮時にノイズが発生されなく、 又高圧の圧縮空気を得ることを 他の目的とする。  In addition, the present invention provides a vane sandwiched through an opening on one side of a clamp inserted into a circular hollow of an internal rotor so that an external rotor rotates at a constant speed, so that noise is not generated during compression. Another object is to obtain high-pressure compressed air.
又、 本発明は、 内部ロータの円形空に薄いクランプを三重に挿入してベ ーンが挟まれた状態で外部ロータが等速に回転するようにして、 圧縮時にノ ィズが発生されなく、 又安定された動作で高圧の圧縮空気を得ることを他の 目的とする。  In addition, the present invention provides a method in which a thin clamp is inserted into a circular hollow of an inner rotor three times so that an outer rotor rotates at a constant speed in a state where a vane is sandwiched, so that noise is not generated during compression. Another object is to obtain high-pressure compressed air with stable operation.
又、 本発明は、 内部ロータと外部ロータが相互に一定の等速回転しなが ら、 内部ロータのベーンが外部ロータの作動空に挟まれた状態で回転中に衝 突音が発生しないにようにすることを他の目的とする。 前述した目的を達成するための本発明は、 外部からの回転力を受け取る 中央の軸受部の空間部にはリングギアを形成し、 Further, according to the present invention, while the inner rotor and the outer rotor rotate at a constant constant speed relative to each other, collision noise is not generated during rotation while the vanes of the inner rotor are sandwiched by the working air of the outer rotor. To do so for another purpose. The present invention for achieving the above-mentioned object is to form a ring gear in a space portion of a central bearing portion that receives a rotational force from the outside,
前記のリングギアに一側の線ギアが歯合された等速力ップリングの他側 の線ギアには、 内部ロータの空間部に形成されたリングギアが歯合されて等 速に回転するようにし、  A ring gear formed in a space portion of the internal rotor is meshed with a linear gear on the other side of the constant velocity pulling in which one line gear is meshed with the ring gear so as to rotate at a constant speed. ,
前記内部口ータの円形空には、 ベーンのー側に形成された円形部が挿入 されるようにし、  A circular portion formed on the side of the vane is inserted into the circular cavity of the internal port,
前記べ一ンの他側は、 外部ロータの内面と接しながら圧縮室及び供給室 の体積が変化される状態に従って空気を圧縮させることで、 衝突によるノィ ズが発生しなく、 共に簡単な構成の小さい体積で高圧の圧縮空気を得ること が出来るようにしたものである。 発明を実施するための最良の形態 本発明を図面を参照しながら以下に詳細に説明する。  The other side of the vane compresses air in accordance with a state where the volumes of the compression chamber and the supply chamber are changed while being in contact with the inner surface of the outer rotor, so that noise due to collision does not occur, and both have a simple configuration. It is designed to obtain high-pressure compressed air with a small volume. BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail with reference to the drawings.
図 2及び図 3は、 本発明の一つの実施例による構成を示す図であり、 外部から図示略のモータを通して回転力を受け取る中央の軸受部 31の一 側の空間部 32にはリングギァ 33を一体で形成し、  FIGS. 2 and 3 are views showing a configuration according to one embodiment of the present invention. A ring gear 33 is provided in a space 32 on one side of a central bearing 31 which receives a rotational force from the outside through a motor (not shown). Formed in one piece,
前記空間部 32のリングギア 33に一側の線ギア 35が歯合された等速力ップ リング 34の他側には、 線ギア 36を一体で形成して偏心された状態でも等速回 転ができるようにし、 前記等速力ップリング 34の他側の線ギア 36に空間部 38のリングギア 39が 歯合されて等速回転力を受け取った内部ロータ 37の外周面には挿入凹溝 41と 一体である円形空 40を形成し、 On the other side of the constant-speed coupling 34 in which a linear gear 35 is meshed with the ring gear 33 of the space 32, a linear gear 36 is integrally formed and rotates at a constant speed even in an eccentric state. To be able to The ring gear 39 of the space 38 is meshed with the line gear 36 on the other side of the constant-speed pulling ring 34 and receives a constant-speed rotating force. Form 40,
前記円形空 40に一側の円形部 43が挟まれるベーン 42の他側の傾斜突出部 4 4は、 外部ロータ 45の内面に接し、 又は前記挿入凹溝 41に位置するようにし、 前記内部ロータ 37の円形空 40にべ一ン 42の一側が挟まれた状態で外部口 ータ 45と共に偏心されて回転する中に圧縮室 A及び供給室 Bの体積が変化さ れる状態によって軸受部カバー 46の空気供給空 47を通して圧縮室 Aに供給さ れた空気を圧縮させるようにし、  The other inclined protrusion 44 on the other side of the vane 42 in which one circular portion 43 is sandwiched between the circular cavities 40 is in contact with the inner surface of the outer rotor 45 or is located in the insertion groove 41, and the inner rotor The bearing cover 46 depends on the state in which the volumes of the compression chamber A and the supply chamber B change while being eccentrically rotated together with the external port 45 while one side of the van 42 is sandwiched by the circular cavity 40 of 37. The air supplied to the compression chamber A through the air supply air 47 is compressed,
前記外部ロータ 45の外面とハウジング 48との間には圧縮空気貯蔵室 49を 形成して外部ロータ 45の逆流防止用のチェックバルブ 51が具備された吐出空 5 0を通して吐出された一定圧の以上の圧縮空気が一時貯蔵された後、 外部のタ ンクに吐出されるように構成したものである。  A compressed air storage chamber 49 is formed between the outer surface of the outer rotor 45 and the housing 48 to maintain a pressure equal to or higher than a predetermined pressure discharged through a discharge air 50 provided with a check valve 51 for preventing backflow of the outer rotor 45. After the compressed air is temporarily stored, it is discharged to an external tank.
このように構成した本発明のベーンポンプは、 図示略のモータを動作さ せて軸受部 31を回転させると、 この空間部 32に形成されたリングギア 33に一 側の線ギア 35が歯合された等速力ップリング 34が共に回転し、  In the vane pump of the present invention configured as described above, when a bearing (not shown) is rotated by operating a motor (not shown), a line gear 35 on one side meshes with a ring gear 33 formed in the space 32. The constant velocity pull ring 34 rotates together,
前記等速力ップリング 34の回転によってこの他側の線ギァ 36に空間部 38 のリングギア 39が歯合された内部ロータ 37が軸受部 31と偏心された状態でも 等速に回転する中に空気の圧縮が行われるもので、 以下にその動作過程につ いて説明する。  Due to the rotation of the constant-speed pulling ring 34, even when the internal rotor 37, in which the ring gear 39 of the space 38 is meshed with the line gear 36 on the other side, is eccentric with the bearing 31, rotation of air occurs while rotating at a constant speed. The compression process is performed, and the operation process will be described below.
軸受部カバー 46の空気供給空 47を通して流入される空気は、 内部ロータ 3 7の円形空 40に円形部 43が挿入されたベーン 42と外部ロータ 45によって区画さ れた供給室 Bに供給された後、 内部ロータ 37と外部ロータ 45に接するベーン 4 2の傾斜突出部 44によって体積が変化される圧縮室 Aで圧縮されるようにす る。 The air flowing through the air supply air 47 of the bearing cover 46 is After being supplied to the supply chamber B defined by the vane 42 in which the circular portion 43 is inserted into the circular cavity 40 of 7 and the external rotor 45, the inclined protruding portion 44 of the vane 42 in contact with the internal rotor 37 and the external rotor 45 The compression is performed in the compression chamber A whose volume changes.
即ち、 図 3 aに示したように、 空気が供給室 Bに流入された状態になり、 軸受部 31の回転に従って等速力ップリング 34を通して回転力を伝達し受ける 内部ロータ 37の円形空 40に円形部 43が挟まれたベーン 42は、 内部ロータ 37と 外部ロータ 45が気密に接する状態なので他側の傾斜突出部 44が内部ロータ 37 の円形空 40の挿入凹溝 41に位置した状態で右方向に回転するようになる。  That is, as shown in FIG. 3A, the air enters the supply chamber B, and the rotational force is transmitted and received through the constant-speed coupling 34 according to the rotation of the bearing portion 31, and the circular space 40 of the internal rotor 37 is circular. Since the inner rotor 37 and the outer rotor 45 are in airtight contact with the vane 42 between which the part 43 is sandwiched, the vane 42 on the other side moves rightward with the inclined projection 44 on the other side positioned in the insertion groove 41 of the circular cavity 40 of the inner rotor 37. To rotate.
図 3 bに示したように、 軸受部 31によって内部ロータ 37の円形空 40に円形 部 43が挿入されたベーン 42が内部ロータ 37及び外部ロータ 45と共に右方向に 9 0。 〖まど回転すると、 供給室 Bであった圧縮室 Aが外部ロータ 45とべーン 42の 傾斜突出部 44及び内部ロータ 37によって密閉された体積が小さくなり、 供給 室 Bが新たに確保され、 外部からの空気ガ流入される。  As shown in FIG. 3B, the vane 42 in which the circular portion 43 is inserted into the circular space 40 of the internal rotor 37 by the bearing portion 31 moves 90 to the right together with the internal rotor 37 and the external rotor 45. 〖When rotating, the volume of the compression chamber A, which was the supply chamber B, was closed by the outer rotor 45, the inclined protrusion 44 of the vane 42, and the inner rotor 37, and the supply chamber B was newly secured. Air is introduced from outside.
この際には、 内部ロータ 37の円形空 40に円形部 43が挿入された状態のベ 一ン 42の傾斜突出部 44が外部ロータ 45の内面と接する状態で外部ロータ 45が 内部ロータ 37よりもっと回転したような状態になるが、 ベーン 42の円形部 43 が内部ロータ 37の円形空 40で若干回転するのでべ一ン 42の傾斜突出部 44が外 部ロータ 45の内面と傾斜面を通した面接触の状態が維持され、 この時には圧 縮される空気が押す圧力と新たに確保される供給室 Bに流入される空気の圧 力によってべーン 42の傾斜突出部 44が安定された状態を維持しながら気密が 維持される。 In this case, the outer rotor 45 is more than the inner rotor 37 with the inclined protrusion 44 of the vane 42 in a state where the circular portion 43 is inserted into the circular cavity 40 of the inner rotor 37 being in contact with the inner surface of the outer rotor 45. Although it appears to be rotating, the circular portion 43 of the vane 42 slightly rotates in the circular space 40 of the internal rotor 37, so that the inclined protruding portion 44 of the vane 42 passes through the internal surface and the inclined surface of the external rotor 45. The state of surface contact is maintained, and at this time, the inclined protrusion 44 of the vane 42 is stabilized by the pressure of the compressed air and the pressure of the newly introduced air flowing into the supply chamber B. Keep airtight Will be maintained.
図 3 cに示したように、 内部ロータ 37及び外部ロータ 45が 180° ほど回転 すると、 圧縮室 Aと供給室 Bの体積が殆ど等しくなり、 圧縮室 A内の空気は、 一層圧縮される。  As shown in FIG. 3C, when the inner rotor 37 and the outer rotor 45 rotate by about 180 °, the volumes of the compression chamber A and the supply chamber B become almost equal, and the air in the compression chamber A is further compressed.
この際には、 内部ロータ 37の円形空 40に円形部 43が挿入されたべーン 42 が外部ロータ 45の内面と接する状態になる。  At this time, the vane 42 in which the circular portion 43 is inserted into the circular cavity 40 of the internal rotor 37 comes into contact with the inner surface of the external rotor 45.
図 3 dに示したように、 内部ロータ 37及び外部ロータ 45が 270° ほど回転 すると、 圧縮室 Aから圧縮された圧縮空気の一部が逆流防止用のチェックバ ルブ 51を押しながら吐出空 50を通して圧縮空気貯蔵室 49に一時貯蔵された後、 外部の圧縮タンクから吐出される。  As shown in FIG. 3d, when the inner rotor 37 and the outer rotor 45 rotate by about 270 °, a part of the compressed air compressed from the compression chamber A discharges air while pressing the check valve 51 for preventing backflow. After being temporarily stored in the compressed air storage chamber 49 through the air, it is discharged from an external compressed tank.
この際には、 内部ロータ 37の円形空 40に円形部 43が挿入されたべーン 42 が外部ロータ 45よりもっと回転したような状態になるが、 圧縮された状態の 空気圧によりべーン 42の傾斜突出部 44が外部ロータ 45の内面と接するように 押されて円形部 42が内部ロータ 37の円形空 40で少し程度もっと回転するので、 安定された作動が可能し、 この時にも圧縮室 Aの気密は維持される。  At this time, the vane 42 in which the circular portion 43 is inserted into the circular cavity 40 of the inner rotor 37 is rotated more than the outer rotor 45, but the compressed air pressure causes the vane 42 to rotate. The inclined protrusion 44 is pushed so as to be in contact with the inner surface of the outer rotor 45, and the circular portion 42 rotates a little more in the circular space 40 of the inner rotor 37, so that stable operation is possible. The airtightness is maintained.
又、 内部ロータ 37及び外部ロータ 45が図 3 aに示すように揺れる中に 360 ° 回転すると、 圧縮空気の吐出が完全に行われると同時に新たな空気が供給 室 Bに流入された状態になる。  When the inner rotor 37 and the outer rotor 45 rotate 360 ° while swinging as shown in FIG. 3A, the compressed air is completely discharged, and at the same time, new air flows into the supply chamber B. .
図 4 a〜dは、 本発明の他の実施例による作動状態を示すものであり、 外部から流入される空気は、 内部ロータ 61の円形空 62に円形部 34が挿入 されたベーン 33と外部ロータ 67により区画された供給室 Bに供給された後、 内部ロータ 61と外部ロータ 67が接する突出部 65とベーン 63及び作動凹溝 66に より体積が変化される圧縮室 Aで圧縮されるようにする。 FIGS. 4A to 4D show an operation state according to another embodiment of the present invention. The air flowing in from the outside is the same as the vane 33 having the circular portion 62 inserted into the circular space 62 of the internal rotor 61 and the outside. After being supplied to the supply chamber B partitioned by the rotor 67, The protruding portion 65 where the inner rotor 61 and the outer rotor 67 are in contact with each other, the vane 63 and the working groove 66 are compressed in the compression chamber A whose volume is changed.
即ち、 図 4 aに示したように、 空気が供給室 Bに流入され、 軸受部 60が続 いて回転することによって共に回転する内部ロータ 61の円形空 62にべーン 63 の円形部 64が挟まれた状態で他側の突出部 65の曲面 66が外部ロータ 67の作動 凹溝 68に接する状態で右方向に回転するようになる。  That is, as shown in FIG. 4A, air flows into the supply chamber B, and the circular portion 64 of the vane 63 is formed in the circular space 62 of the internal rotor 61 that rotates together with the rotation of the bearing portion 60. In the sandwiched state, the curved surface 66 of the other side protrusion 65 rotates rightward while being in contact with the operating groove 68 of the external rotor 67.
図 4 bに示したように、 軸受部 60によって内部ロータ 61の円形空 62に円形 部 64が挿入されたベーン 63が内部ロータ 61及び外部ロータ 67と共に右方向に 9 0° ほど回転すると、 供給室 Bであった圧縮室 Aが外部ロータ 67とべーン 63の 突出部 65及び内部ロータ 61によって密閉された体積が少なくなり、 供給室 B が新たに確保され、 外部からの空気が流入される。  As shown in FIG. 4b, when the vane 63 in which the circular portion 64 is inserted into the circular space 62 of the internal rotor 61 by the bearing portion 60 rotates rightward by 90 ° together with the internal rotor 61 and the external rotor 67, the supply is performed. The volume of the compression chamber A, which was the chamber B, was closed by the outer rotor 67, the protruding portion 65 of the vane 63, and the inner rotor 61, so that the supply chamber B was newly secured and air from the outside was introduced. .
この際には、 内部ロータ 61の円形空 62に円形部 64が挿入された状態のベ ーン 63の突出部 65が作動凹溝 68と接する状態で外部ロータ 67が内部ロータ 61 よりもっと回転したような状態になるが、 ベーン 63の円形部 64が内部ロータ 6 1の円形空 62で少し程度もっと回転するので、 ベーン 63の突出部 65が外部ロー タ 67の作動凹溝 68に曲面 66を通した面接触の状態が続けて維持され、 この時 には円形空 62の Apexシール(Seal) 69によって圧縮室 Aの気密が維持される。  At this time, the outer rotor 67 rotated more than the inner rotor 61 in a state where the protruding portion 65 of the vane 63 in a state where the circular portion 64 was inserted into the circular hollow 62 of the inner rotor 61 was in contact with the operating groove 68. However, since the circular portion 64 of the vane 63 rotates a little more in the circular space 62 of the internal rotor 61, the protrusion 65 of the vane 63 forms the curved surface 66 in the working groove 68 of the external rotor 67. The state of the surface contact is maintained continuously, and at this time, the airtightness of the compression chamber A is maintained by the Apex seal (Seal) 69 of the circular hollow 62.
前記べーン 63に圧縮される空気の圧力は矢印方向に受けられるが、 突出 部 64の曲面 66と作動凹溝 68の間で加えられる圧力によって相殺されるので、 ベーン 63に強い圧力は加えられない。  The pressure of the air compressed by the vane 63 is received in the direction of the arrow, but is offset by the pressure applied between the curved surface 66 of the projection 64 and the operating groove 68, so that a strong pressure is applied to the vane 63. I can't.
図 4 cに示したように、 内部ロータ 61及ぴ外部ロータ 67が 180° ほど回転 すると、 圧縮室 Aと供給室 Bの体積が殆ど等しくなり、 圧縮室 A内の空気は 一層圧縮される。 As shown in FIG. 4c, the inner rotor 61 and the outer rotor 67 rotate by about 180 °. Then, the volumes of the compression chamber A and the supply chamber B become almost equal, and the air in the compression chamber A is further compressed.
この際には、 内部ロータ 61の円形空 62に円形部 64が挿入されたべーン 63 が外部ロータ 67の作動凹溝 68の中央に位置する状態になる。  At this time, the vane 63 in which the circular portion 64 is inserted into the circular space 62 of the internal rotor 61 is located at the center of the working groove 68 of the external rotor 67.
図 4 dに示したように、 内部ロータ 61及び外部ロータ 67が 270° ほど回転 すると、 圧縮室 Aから圧縮された圧縮空気の一部が逆流されなく圧縮空気貯 蔵室 49に一時貯蔵された後、 外部の圧縮タンクに吐出される。  As shown in Fig. 4d, when the inner rotor 61 and the outer rotor 67 rotated about 270 °, part of the compressed air compressed from the compression chamber A was temporarily stored in the compressed air storage chamber 49 without backflow. Later, it is discharged to an external compression tank.
この際には、 内部ロータ 61の円形空 62に円形部 64が揷入されたべーン 63 が外部ロータ 67よりも少し程度少なく回転したような状態になるが、 圧縮さ れた状態の空気圧によりべーン 63の突出部 65が外部ロータ 67の挿入凹溝 68と 接するように押されて円形部 63が内部ロータ 61の円形空 62で少し程度逆回転 するので、 安定された作動が可能し、 この時にも Apexシール(Seal) 69によつ て圧縮室 Aの気密は続けて維持される。  At this time, the vane 63 in which the circular portion 64 is inserted into the circular hollow 62 of the internal rotor 61 is rotated slightly less than the external rotor 67, but due to the compressed air pressure. The protruding part 65 of the vane 63 is pushed so as to be in contact with the insertion groove 68 of the external rotor 67, and the circular part 63 is slightly rotated in the circular hollow 62 of the internal rotor 61, so that stable operation is possible. At this time, the airtightness of the compression chamber A is continuously maintained by the Apex seal (Seal) 69.
又、 内部ロータ及び外部ロータ 67が図 4 aに示すように揺れる中に 360° 回転すると、 圧縮空気の吐出が完全に行われると共に新たな空気が供給室 B に流入された状態になる。  Further, when the inner rotor and the outer rotor 67 rotate 360 ° while swinging as shown in FIG. 4A, the compressed air is completely discharged and new air flows into the supply chamber B.
図 5は、 本発明の他の実施例による縦断面図であり、 図 6は、 動作過程 を大略に示した図であり、  FIG. 5 is a longitudinal sectional view according to another embodiment of the present invention, and FIG. 6 is a view schematically showing an operation process.
外部から図示略のモータを通して回転力を受け取った中央の軸受部 71の の空間部 72には固定溝 73を形成し、  A fixed groove 73 is formed in a space 72 of the central bearing 71 which receives the rotational force from the outside through a motor (not shown),
前記固定溝 73に一側の固定棒 75が挿入された等速力ップリング 74の他側 の固定棒 76には内部ロータ 77の空間部 78に形成された固定溝 79が挿入されて 等速に回転するようにし、 The other side of the constant velocity pulling 74 in which one fixing rod 75 is inserted into the fixing groove 73 A fixing groove 79 formed in the space 78 of the internal rotor 77 is inserted into the fixing rod 76 of the inner rotor 77 so that it rotates at a constant speed.
前記内部ロータ 77の円形空 80には一側が開口されたリング形状のクラン プ 81を Apexシール(Seal) 82によって気密が維持されるように挿入し、  A ring-shaped clamp 81 having one side opened is inserted into the circular cavity 80 of the internal rotor 77 so that the hermeticity is maintained by an Apex seal (Seal) 82.
前記クランプ 81の一端が曲面溝 84に面接触するシユー 83の直面 85には外 部ロータ 86のべーン 87が接しながらクランプ 81に挟まれて、 共に回転する中 に内部ロータ 7 7とべ一ン 87及び外部ロータ 86によって圧縮室 A及び供給室 Bの体積が変化される状態によって軸受部カバー 88の空気供給空 89を通して 圧縮室 Aに供給された空気が圧縮されるようにし、  The vane 87 of the outer rotor 86 is held in contact with the face 85 of the shoe 83 in which one end of the clamp 81 comes into surface contact with the curved groove 84. The vane 87 of the outer rotor 86 is sandwiched between the clamps 81, and rotates together with the inner rotor 77. The air supplied to the compression chamber A through the air supply air 89 of the bearing cover 88 is compressed by the state in which the volumes of the compression chamber A and the supply chamber B are changed by the
前記外部ロータ 86の外面とハウジング 9 0の間には圧縮空気貯蔵室 91を 形成して外部ロータ 86の逆流防止用のチェックバルブ 93が具備れされた吐出 空 92を通して吐出された一定圧の以上の圧縮空気が一時貯蔵された後、 外部 のタンクに吐出されるように構成する。  A compressed air storage chamber 91 is formed between the outer surface of the outer rotor 86 and the housing 90 to maintain a pressure equal to or higher than a predetermined pressure discharged through a discharge air 92 provided with a check valve 93 for preventing backflow of the outer rotor 86. After the compressed air is temporarily stored, it is discharged to an external tank.
従って、 図示略のモータを動作させて軸受部 71が回転するようにすると、 ― この空間部 72に形成された固定溝 73に一側の固定棒 75が挟まれた等速カップ リング 74が共に回転し、  Therefore, when the bearing 71 is rotated by operating the motor (not shown), the constant velocity coupling 74 in which the fixing rod 75 on one side is sandwiched in the fixing groove 73 formed in the space 72 is formed. Rotate,
前記等速カップリング 74の回転に従ってこの他側の固定棒 76が空間部 78 の固定溝 79に挟まれた内部ロータ 77が軸受部 71と偏心された状態でも等速に 回転する中に空気の圧縮が行われる。  In accordance with the rotation of the constant velocity coupling 74, the other fixed rod 76 is interposed between the fixing groove 79 of the space 78 and the internal rotor 77 is eccentric with the bearing 71. Compression is performed.
即ち、 軸受部カバー 89の空気供給空 90を通して流入される内部ロータ 77 の円形空 80に挿入されたリング形状のクランプ 81は、 Apexシール(Seal) 82に よって気密が維持される中に回転が可能であり、 前記クランプ 81に曲面溝 84 が接するシュ一 83の直面 85には外部口一タ 86のべ一ン 87が接するようにして、 この内部ロータ 77と外部ロータ 86及びべ一ン 87によって区画された供給室 B に供給された後、 内部ロータ 77と外部ロータ 86及びべ一ン 87によつて体積が 変化される圧縮室 Aで圧縮されるようにする。 That is, the ring-shaped clamp 81 inserted into the circular air space 80 of the internal rotor 77 flowing through the air supply air space 90 of the bearing cover 89 is attached to the Apex seal 82. Therefore, the inner rotor can be rotated while airtightness is maintained, and the vane 87 of the outer port 86 is in contact with the face 85 of the shell 83 where the curved groove 84 is in contact with the clamp 81. After being supplied to the supply chamber B defined by the outer rotor 86 and the van 87, it is compressed in the compression chamber A whose volume is changed by the inner rotor 77, the outer rotor 86 and the van 87. To do.
図 6 aに示したように、 空気が供給室 Bに流入された状態になり、 軸受部 71の回転によって等速力ップリング 74を通して回転力を受け取る内部ロータ 7 7の円形空 80に挿入されたリング形状のクランプ 81が回転しながらシユー 83に よつて安定的に接し、 ベーン 87が挿入された外部ロータ 86と共に右方向に回 転するようになる。  As shown in FIG. 6 a, the air enters the supply chamber B, and the ring inserted into the circular hollow 80 of the internal rotor 77 receives the rotational force through the constant-force coupling 74 by the rotation of the bearing 71. The clamp 81 having a shape is stably contacted by the shoe 83 while rotating, so that the vane 87 rotates rightward together with the inserted external rotor 86.
図 6 bに示したように、 軸受部 71によって内部ロータ 77の円形空 80に揷入 されたリング形状のクランプ 81が共に回転しながらこの一端に曲面溝 84が接 するシユー 83の直面 85に接し、 気密が維持される外部ロータ 86のべーン 87と 共に右方向に 90° ほど回転すると、 供給室 Bであった圧縮室 Aが外部ロータ 8 6とべーン 87及び内部ロータ 77によって密閉された体積が少なくなり、 供給室 Bが新たに確保されて外部からの空気が流入される。  As shown in FIG. 6b, the ring-shaped clamp 81 inserted into the circular cavity 80 of the inner rotor 77 by the bearing 71 rotates together with the face 85 of the shoe 83 where the curved groove 84 contacts one end while rotating together. When it rotates 90 ° clockwise together with the vane 87 of the outer rotor 86, which is in contact with and maintains airtightness, the compression chamber A, which was the supply chamber B, is sealed by the outer rotor 86, the vane 87, and the inner rotor 77. The supply volume B is newly secured and air from outside flows in.
この際には、 内部ロータ 77の円形空 80に挿入されたクランプ 81が Apexシ ール(Seal) 82によって気密が維持され、 前記クランプ 81にべーン 87が挟まれ た状態で外部ロータ 86が内部ロータ 77より少し程度もっと回転したような状 態になるが、 ベーン 87が挿入されたクランプ 81が内部ロータ 77の円形空 80で 少し程度もっと回転するので外部ロータ 86のべ一ン 87が挟まれた状態を続け て維持することが出来、 シユー 83の曲面溝 84と直面 85によってクランプ 81の 一端とベーン 87が面接触された状態を維持しながら圧縮室の気密を維持する。 At this time, the airtightness of the clamp 81 inserted in the circular hollow 80 of the internal rotor 77 is maintained by the Apex seal (Seal) 82, and the external rotor 86 is held in a state where the vane 87 is sandwiched by the clamp 81. Is slightly more rotated than the inner rotor 77, but the clamp 81 into which the vane 87 is inserted rotates a little more in the circular hollow 80 of the inner rotor 77, so that the vane 87 of the outer rotor 86 is rotated. Continue to be sandwiched The airtightness of the compression chamber is maintained while the one end of the clamp 81 and the vane 87 are in surface contact with the curved groove 84 and the face 85 of the shroud 83.
図 6 cに示したように、 内部ロータ 77及び外部ロータ 85が 180° ほど回転 すると、 圧縮室 Aと供給室 Bの体積が殆ど等しくなり、 圧縮室 A内の空気は 一層圧縮される。  As shown in FIG. 6C, when the inner rotor 77 and the outer rotor 85 rotate about 180 °, the volumes of the compression chamber A and the supply chamber B become almost equal, and the air in the compression chamber A is further compressed.
この際には、 内部ロータ 77の円形空 80に挿入されたクランプ 81が Apexシ ール(Seal) 82によって気密が維持され、 前記クランプ 81にべーン 87が挟まれ た状態で外部ロータ 86と内部ロータ 77が同一に回転した状態になるので外部 ロータ 86のべーン 87が挟まれた状態を続けて維持することができ、 シユー 83 の曲面溝 84と直面 85によってクランプ 81の一端とベーン 87が面接触された状 態を維持しながら圧縮室 Aの気密を維持する。  At this time, the airtightness of the clamp 81 inserted in the circular hollow 80 of the internal rotor 77 is maintained by the Apex seal (Seal) 82, and the external rotor 86 is held in a state where the vane 87 is sandwiched by the clamp 81. The inner rotor 77 and the inner rotor 77 rotate in the same manner, so that the state in which the vane 87 of the outer rotor 86 is sandwiched can be continuously maintained, and one end of the clamp 81 is formed by the curved groove 84 and the face 85 of the shoe 83. The airtightness of the compression chamber A is maintained while maintaining the state in which the vanes 87 are in surface contact.
図 6 dに示したように、 内部ロータ 77及び外部ロータ 85が 270° ほど回転 すると、 圧縮室 Aから圧縮された圧縮空気の一部が逆流防止用のチエックバ ルブ 93を押しながら吐出空 92を通して圧縮空気貯蔵室 91に一時貯蔵された後、 外部の圧縮タンクに吐出される。  As shown in Fig. 6d, when the inner rotor 77 and the outer rotor 85 rotate about 270 °, a part of the compressed air compressed from the compression chamber A passes through the discharge air 92 while pushing the check valve 93 for preventing backflow. After being temporarily stored in the compressed air storage room 91, it is discharged to an external compression tank.
この際には、 内部ロータ 77の円形空 80に挿入されたクランプ 81が Apexシ ール(Seal) 82によって気密が維持され、 前記クランプ 81にべーン 87が挟まれ た状態で外部ロータ 86が内部ロータ 77より少し程度少なく回転した状態にな るがベーン 87が挿入されたクランプ 81が内部ロータ 77の円形空 80で少し程度 もっと回転するので外部ロータ 86のべ一ン 87が挟まれた状態を維持すること が出来、 シユー 83の曲面溝 84と直面 85によってクランプ 81の一端とベーン 87 が面接触された状態を続けて維持しながら圧縮室 Aの気密が維持される。 At this time, the airtightness of the clamp 81 inserted in the circular hollow 80 of the internal rotor 77 is maintained by the Apex seal (Seal) 82, and the external rotor 86 is held in a state where the vane 87 is sandwiched by the clamp 81. Is rotated slightly less than the inner rotor 77, but the clamp 81 with the vane 87 inserted rotates slightly more in the circular space 80 of the inner rotor 77, so the vane 87 of the outer rotor 86 is pinched. One end of the clamp 81 and the vane 87 can be maintained by the curved groove 84 and the face 85 of the shoe 83. The airtightness of the compression chamber A is maintained while maintaining the surface contact state.
又、 内部ロータ 37及び外部ロータ 45が図 6 aに示すように、 回転する中に 360° 回転すると、 圧縮空気の吐出が完全に行われる同時に新たな空気が供給 室 Bに流入された状態になる。  When the inner rotor 37 and the outer rotor 45 rotate 360 ° while rotating, as shown in Fig. 6a, the compressed air is completely discharged, and at the same time, new air flows into the supply chamber B. Become.
前記の実施例でクランプ 81の一端が曲面溝 84に面接触するように挟まれ たシユー 83の直面 85が外部ロータ 86のべーン 87と接しながら共に回転する中 に気密が維持されるように構成したが、 クランプ 81の一端が直接に外部ロー タ 86のべーン 87と接するようにしても回転中に気密が維持される。  In the above embodiment, the airtightness is maintained while the face 85 of the shoe 83 sandwiched so that one end of the clamp 81 is in surface contact with the curved groove 84 while rotating together with the vane 87 of the external rotor 86. However, even if one end of the clamp 81 directly contacts the vane 87 of the external rotor 86, airtightness is maintained during rotation.
図 7は、 本発明の他の実施例による構成を示す図であり、  FIG. 7 is a diagram showing a configuration according to another embodiment of the present invention.
図示略のモータによって軸受部 91が回転することによって内部ロータ 92 の円形空 93には一側の突出部 95、 97、 99がー体であり、 又リング形状である クランプ 94、 %、 98を多数挿入して自体単性と一側の突出部 95、 97、 99によ る屈伸力で外部ロータ 100のべーン 101との間に気密が維持されながら回転が 可能にし、  When the bearing 91 is rotated by a motor (not shown), the circular hollow 93 of the inner rotor 92 has one side protruding portions 95, 97, and 99, and a ring-shaped clamp 94,%, 98. By inserting a large number of them, it is possible to rotate while maintaining airtightness between the vane 101 of the external rotor 100 and the unity itself and the bending and stretching force of the protrusions 95, 97, 99 on one side,
前記クランプ 94、 %、 98の両側が外部ロータ 100のべーン 101と気密が維 持されながら接するようにして内部ロータ 92と外部ロータ 100及びべーン 101 によって区画された供給室 Bの内部に空気が供給された後、 内部ロータ 92と 外部ロータ 101が接するクランプ 94、 96、 98とべーン 101によって体積が変化 される圧縮室 Aで圧縮されるようにしても良い。  The inside of the supply chamber B partitioned by the inner rotor 92, the outer rotor 100, and the vane 101 so that both sides of the clamps 94,%, and 98 are in airtight contact with the vane 101 of the outer rotor 100. After the air is supplied to the inner rotor 92, the inner rotor 92 and the outer rotor 101 may be compressed in the compression chamber A whose volume is changed by the clamps 94, 96, 98 and the vane 101.
図 8は、 本発明の他の実施例による構成を示す縦断面図であり、 図 9は、 内部ロータと外部ロータとの構成を示す横断面図である。 中央の軸 112に空気供給通路 113が具備された内部ロータ 111の一側には、 空間部 114を形成し、 FIG. 8 is a longitudinal sectional view showing a structure according to another embodiment of the present invention, and FIG. 9 is a transverse sectional view showing the structure of an internal rotor and an external rotor. A space 114 is formed on one side of an inner rotor 111 having an air supply passage 113 provided in a central shaft 112,
前記供給空 115及び空気循環通路 116が形成された内部ロータ 111の空間部 114には空気循環通路 122と作動空 123が形成された作動偏 121と作動空 127が形 成された作動偏 126を並びに内設して往復移動するようにし、  In the space 114 of the internal rotor 111 in which the supply air 115 and the air circulation passage 116 are formed, an operation deviation 121 in which an air circulation passage 122 and an operation air 123 are formed and an operation deviation 126 in which an operation air 127 is formed are provided. As well as reciprocating inside,
前記二つの作動偏 121、 126の内周面の凹溝部 124、 129には、 半月型の弾 性偏 125を内設し、 この弾性によって作動偏 121、 126と空間部 114の内周面と の間で気密が維持されるようにしながら、 二つの Apexシール(Seal) 117によつ て空間部 114の内周面間で気密が維持されるようにし、  In the concave grooves 124, 129 of the inner peripheral surfaces of the two operating biases 121, 126, a semilunar elastic bias 125 is provided, and due to this elasticity, the operating biases 121, 126 and the inner peripheral surface of the space 114 are formed. Airtightness is maintained between the inner peripheral surfaces of the space 114 by two Apex seals 117 while maintaining airtightness between
前記内部ロータ 111の作動偏 121、 126による作動空 123、 127に外面に突出 形成したベーン 132が挟まれたままで図示略のモータの回転力が伝達される回 転軸 133を中心で回転する外部ロータ 131は、 前記内部ロータ 111を偏心された 状態で回転するようにし、  An external rotation that rotates about a rotation shaft 133 to which the rotational force of a motor (not shown) is transmitted while a vane 132 projecting from the outer surface is sandwiched between the operating cavities 123 and 127 by the operating deviations 121 and 126 of the internal rotor 111. The rotor 131 rotates the internal rotor 111 in an eccentric state,
記内部ロータ 111の中心部には、 凹んでいる位置の内面に歯車 1 19が- 体であるリングギア 118を形成すると共に前記外部ロータ 131の中心にも凹ん でいる位置の内面に歯車 135がー体であるリングギア 134を形成し、  At the center of the inner rotor 111, a ring gear 118 is formed on the inner surface of the recessed position, and a gear 135 is formed on the inner surface of the inner rotor 111 at a position recessed also at the center of the outer rotor 131. -Form a ring gear 134 that is a body,
前記内部ロータ 111及び外部ロータ 131のリングギア 118、 134の歯車 119、 135には球形状の線ギア 136の外面に形成した歯車 137、 138が互いに歯合され るように挿入して偏心された状態である内部ロータ 111と外部ロータ 131が等 速回転するようにし、  Gears 137 and 138 formed on the outer surface of a spherical linear gear 136 are inserted and eccentric to the gears 119 and 135 of the ring gears 118 and 134 of the inner rotor 111 and the outer rotor 131 so as to mesh with each other. The inner rotor 111 and the outer rotor 131 are rotated at a constant speed.
前記内部ロータ 111及び外部ロータ 131の外部には、 間にベアリング 144、 145、 146、 147を設けると共に上部ハウジング 141と下部ハウジング 142とを結 合し、 Outside the inner rotor 111 and the outer rotor 131, a bearing 144, 145, 146, 147 are provided and the upper housing 141 and the lower housing 142 are connected,
前記外部ロータ 131との間に密閉形の圧縮空気貯蔵室 Cが形成された下部 ハウジング 142には外部と連結された空気供給経路 143を通して圧縮空気を外 部の圧縮タンク (図示略) で供給するように構成し、  Compressed air is supplied to an external compression tank (not shown) through an air supply path 143 connected to the outside to a lower housing 142 in which a closed compressed air storage chamber C is formed between the external rotor 131 and the external rotor 131. Configured as
前記内部ロータ 111に密閉形に結合される外部ロータ 131は、 上段の外部 ロータ 131aと下段の外部ロータ 131bが多数のボルト 139によって結合されるよ うにし、  The outer rotor 131, which is hermetically connected to the inner rotor 111, is configured such that the upper outer rotor 131a and the lower outer rotor 131b are connected by a number of bolts 139,
前記外部ロータ 131に密閉形で結合される上段ハウジング 141と下段ハウ ジング 142がボルト 147とナツト 148とによって結合されるようにしても良い。  An upper housing 141 and a lower housing 142 which are hermetically connected to the outer rotor 131 may be connected by bolts 147 and nuts 148.
産業上の利用可能性 本発明のベーンポンプによると、 外部からの回転力を受け取る中央の軸 受部の空間部にはリングギアを形成し、 前記リングギアに一側の線ギアが歯 合された等速力ップリングの他側の線ギアには内部ロータの空間部に形成さ れたリングギアが歯合されて等速に回転するようにし、 前記内部ロータの円 形空にはべ一ンのー側に形成された円形部が挿入されるようにし、 前記べ一 ンの他側は外部ロータの作動凹溝と接しながら圧縮室及び供給室の体積が変 化される状態によって空気を圧縮することで、 衝突によるノイズの発生がな く、 小さい体積で高圧の圧縮空気を得ることが出来る。 図面の簡単な説明 INDUSTRIAL APPLICABILITY According to the vane pump of the present invention, a ring gear is formed in a space portion of a central bearing portion that receives an external rotational force, and a line gear on one side is meshed with the ring gear. A ring gear formed in a space portion of the internal rotor meshes with a line gear on the other side of the constant velocity pulling so that the ring gear rotates at a constant speed. The other side of the vane compresses air in a state where the volumes of the compression chamber and the supply chamber are changed while being in contact with the operating groove of the external rotor. Therefore, high-pressure compressed air can be obtained in a small volume without generating noise due to collision. BRIEF DESCRIPTION OF THE FIGURES
【図 1】  【Figure 1】
図 1は、 従来のベーンポンプの全体的の構成を示す図。  FIG. 1 is a diagram showing the overall configuration of a conventional vane pump.
【図 2】  【Figure 2】
図 2は、 本発明の一つの実施例による全体的の構成を示す図。  FIG. 2 is a diagram showing an overall configuration according to one embodiment of the present invention.
【図 3 a〜d】  [Fig. 3a-d]
図 3 a〜dは、 本発明の一つの実施例による動作過程を示す大略図。 【図 4 a〜 d】  3a to 3d are schematic diagrams illustrating an operation process according to one embodiment of the present invention. [Fig. 4a-d]
図 4 a〜dは、 本発明の他の実施例による動作過程を示す大略図。 0 【図 5】  4A to 4D are schematic views showing an operation process according to another embodiment of the present invention. 0 [Fig. 5]
図 5は、 本発明の一つの実施例による全体的の構成を示す縦断面図。 【図 6 a〜 d】  FIG. 5 is a longitudinal sectional view showing an overall configuration according to one embodiment of the present invention. [Fig. 6a-d]
図 6 a〜dは、 本発明の他の実施例による動作過程を示す大略図。 【図 7】  6A to 6D are schematic views showing an operation process according to another embodiment of the present invention. [Fig. 7]
I ff 図 7は、 本発明の他の実施例による構成を示す断面図。  FIG. 7 is a cross-sectional view showing a configuration according to another embodiment of the present invention.
【図 8】  [Fig. 8]
図 8は、 本発明の他の実施例による全体的の構成を示す縦断面図。 【図 9】  FIG. 8 is a longitudinal sectional view showing an overall configuration according to another embodiment of the present invention. [Fig. 9]
図 9は、 本発明の他の実施例による内部ロータと外部ロータとの構成を 20 示す横断面図。  FIG. 9 is a cross-sectional view showing a configuration of an internal rotor and an external rotor according to another embodiment of the present invention.
【符号の説明】 内部ロータ 37 円形空 40 揷入凹溝 41 ベ一ン 42 傾斜吐出部 44 外咅 |5ロータ 45 [Explanation of symbols] Inner rotor 37 Circular hollow 40 Input groove 41 Vane 42 Inclined discharge section 44 Outer | 5 Rotor 45

Claims

請求の範囲 The scope of the claims
【請求項 1】 [Claim 1]
外部から回転力を受け取る中央の軸受部 31の一側の空間部 32にはリング ギア 33を一体で形成し、  A ring gear 33 is formed integrally with the space 32 on one side of the central bearing 31 that receives rotational force from the outside,
前記空間部 32のリングギア 33に一側の線ギア 35が歯合された等速力ップ リング 34の他側には線ギア 36を一体で形成して偏心された状態でも等速回転 ができるようにし、  A linear gear 36 is integrally formed on the other side of the constant-speed ring 34 in which a linear gear 35 is meshed with a ring gear 33 of the space 32, and can be rotated at a constant speed even in an eccentric state. So that
前記等速力ップリング 34の他側線ギア 36に空間部 38のリングギア 39が歯 合されて等速回転力を受け取る内部ロータ 37の外周面には揷入凹溝 41と一体 0 の円形空 40を形成し、  On the outer peripheral surface of the inner rotor 37 that receives the constant-speed rotation force by engaging the ring gear 39 of the space portion 38 with the other-side line gear 36 of the constant-speed pulling ring 34, a circular cavity 40 integrated with the insertion groove 41 is formed. Forming
前記円形空 40に一側の円形部 43が挟まれるベーン 42の他側の傾斜突出部 4 4は、 外部ロータ 45の内面に接し、 又は前記挿入凹溝 41に位置するようにし、 前記内部ロータ 37の円形空 40にべ一ン 42の一側が挟まれた状態で外部口 ータ 45と共に偏心されて回転する中に圧縮室 A及び供給室 Bの体積に変化す 5 る状態によって軸受部カバー 46の空気供給空 47を通して圧縮室 Aに供給され た空気を圧縮するようにし、  The other inclined protrusion 44 on the other side of the vane 42 in which one circular portion 43 is sandwiched between the circular cavities 40 is in contact with the inner surface of the outer rotor 45 or is located in the insertion groove 41, and the inner rotor While one side of the vane 42 is sandwiched between the 37 circular cavities 40 and the eccentric rotation with the external port 45, the volume of the compression chamber A and the supply chamber B changes during rotation. The air supplied to the compression chamber A through the air supply air 47 of 46 is compressed,
前記外部ロータ 45の外面とハウジング 48の間には圧縮空気貯蔵室 49を形 成して外部ロータ 45の逆流防止用チェックバルブ 51が具備された吐出空 50を 通して吐出された一定圧以上の圧縮空気が一時貯蔵された後に外部のタンク 20 に吐出されるように構成されることを特性とするベーンポンプ。 A compressed air storage chamber 49 is formed between the outer surface of the outer rotor 45 and the housing 48 and has a pressure equal to or higher than a predetermined pressure discharged through a discharge air 50 provided with a check valve 51 for preventing backflow of the outer rotor 45. A vane pump characterized in that compressed air is temporarily stored and then discharged to an external tank 20.
【請求項 2】 [Claim 2]
前記内部ロータ 61の外周面には、 円形空 62を形成し、  A circular hollow 62 is formed on the outer peripheral surface of the internal rotor 61,
前記内部ロータ 61の円形空 62に一側の円形部 64が Apexシール(Seal) 69に よって気密が維持されながら挟まれるベーン 63の他側の突出部 65には曲面 66 を一体に形成して外部ロータ 67の作動凹溝 68に面接触するように構成したこ とを特性とする、 請求項 1記載のベーンポンプ。  A circular surface 64 is integrally formed with a protruding portion 65 on the other side of the vane 63 in which a circular portion 64 on one side is sandwiched while maintaining airtightness by an Apex seal 69 in a circular space 62 of the internal rotor 61. The vane pump according to claim 1, characterized in that the vane pump is configured so as to be in surface contact with the operating groove (68) of the external rotor (67).
【請求項 3】  [Claim 3]
外部から回転力を受け取る中央の軸受部 71の空間部 72には固定溝 73を形 成し、  A fixed groove 73 is formed in the space 72 of the central bearing 71 that receives rotational force from the outside,
前記固定溝 73に一側の固定棒 75が挿入された等速力ップリング 74の他側 の固定棒 76には内部ロータ 77の空間部 78に形成された固定溝 79が挿入されて 等速に回転するように構成したベーンポンプにおいて、  A fixed groove 79 formed in the space 78 of the internal rotor 77 is inserted into the fixed rod 76 on the other side, in which the fixed rod 75 on one side is inserted into the fixed groove 73, and rotates at a constant speed. In the vane pump configured to
前記内部ロータ 77の円形空 80には一側が開口されたリング形状のクラン プ 81を Apexシール(Seal) 82によって気密が維持されるように挿入し、  A ring-shaped clamp 81 having one side opened is inserted into the circular cavity 80 of the internal rotor 77 so that the hermeticity is maintained by an Apex seal (Seal) 82.
前記クランプ 81の一端が曲面溝 84に面接触するシユー 83の直面 85には外 部ロータ 86のべーン 87が接し、 クランプ 81に挟まれて共に回転するように構 成したことを特徴とするベーンポンプ。  The vane 87 of the outer rotor 86 is in contact with the face 85 of the shoe 83 in which one end of the clamp 81 is in surface contact with the curved groove 84, and the clamp 81 is sandwiched by the clamp 81 and rotates together. Vane pump.
【請求項 4】  [Claim 4]
前記内部ロータ 77の円形空 80に挿入されて、 一側が開口されたリング形 状のクランプ 81の一端が外部ロータ 86のべーン 87が接しながら共に回転する ように構成したことを特性とする、 請求項 3記載のベーンポンプ。 One end of a ring-shaped clamp 81 that is inserted into the circular hollow 80 of the inner rotor 77 and has an open side is configured to rotate together with the vane 87 of the outer rotor 86 while being in contact therewith. The vane pump according to claim 3.
【請求項 5】 [Claim 5]
前記内部ロータ 92の円形空 93には供給室側に一部を切取した突出部 95、 9 7、 99を一体に形成すると共に一側が開口された薄いリング形状のクランプ 94、 96、 98を三重に挿入して前記外部ロータ 100のべーン 101が挟まれるように構 成したとを特性とする、 請求項 3記載のベーンポンプ。  The circular hollow 93 of the internal rotor 92 is integrally formed with projections 95, 97, and 99 partially cut off on the supply chamber side, and is provided with three thin ring-shaped clamps 94, 96, and 98 having one side opened. The vane pump according to claim 3, characterized in that the vane pump is inserted into the vane so as to sandwich the vane 101 of the external rotor 100.
【請求項 6】  [Claim 6]
中央の軸 112に空気供給通路 113が具備された内部ロータ 111の一側には空 間部 114を形成し、  A space 114 is formed on one side of an inner rotor 111 having an air supply passage 113 provided in a central shaft 112,
空気供給空 115及ぴ空気循環通路 116が形成された内部ロータ 111の空間部 114には空気循環通路 122と作動空 123が形成された作動偏 121と作動空 127が形 成された作動偏 126を気密を維持するように内設し、  In the space 114 of the internal rotor 111 in which the air supply air 115 and the air circulation passage 116 are formed, the operating bias 121 in which the air circulation passage 122 and the working air 123 are formed and the operating bias 126 in which the working air 127 is formed 126 Is installed internally to maintain airtightness,
前記内部ロータ 111の作動偏 121、 126による作動空 123、 127に外面に突出 形成したベーン 132が挟まれたままで回転軸 133を中心で回転する外部ロータ 1 31は前記の内部ロータ 111を偏心された状態で回転するようにし、  The outer rotor 131 that rotates about the rotation shaft 133 while the vane 132 formed on the outer surface is sandwiched between the operating cavities 123 and 127 by the operating biases 121 and 126 of the inner rotor 111 is eccentric to the inner rotor 111. So that it rotates
前記内部ロータ 111と外部ロータ 131の中心部の凹んでいる位置の内面に 歯車 119と一体であるリングギア 118を形成すると共に前記外部ロータ 131の中 心にも凹んでる位置の内面に歯車 135と一体であるリングギア 134を形成し、 前記歯車 119、 135に歯車 137、 138が歯合するように球形状の線ギア 136を 挿入して偏心された状態の内部ロータ 111と外部ロータ 131が等速回転をする ようにし、  A ring gear 118 integral with the gear 119 is formed on the inner surface of the inner rotor 111 and the outer rotor 131 at the concave portion at the center, and a gear 135 is formed on the inner surface of the outer rotor 131 at the concave position. An integral ring gear 134 is formed, and an inner rotor 111 and an outer rotor 131 that are eccentric by inserting a spherical line gear 136 into the gears 119 and 135 so that the gears 137 and 138 mesh with each other are equal. Make it spin faster,
前記内部ロータ 111の空間部 114に並びに内設される作動偏 121、 126の内 周面の凹溝部 124、 129には半月形の弾性偏 125を設けて弾性によって作動偏 12 1、 126と空間部 114の外周面間の気密が維持されるようにすると共に二つの Ap exシール(Seal) 117により空間部 114の内周面間に気密を維持するように構成 したことを特性とするベーンポンプ。 Of the operating deviations 121 and 126 provided inside the space 114 of the internal rotor 111, A semi-lunar elastic bias 125 is provided in the concave grooves 124 and 129 on the peripheral surface to maintain airtightness between the operating bias 121 and 126 and the outer peripheral surface of the space 114 by elasticity, and two Ap ex seals. (Seal) A vane pump characterized in that it is configured to maintain airtightness between the inner peripheral surfaces of the space 114 by means of 117.
PCT/KR1998/000213 1997-07-16 1998-07-15 Vane pump WO1999004167A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU84640/98A AU8464098A (en) 1997-07-16 1998-07-15 Vane pump

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1019970033359A KR100231475B1 (en) 1997-07-16 1997-07-16 Vane pump
KR1997/33359 1997-07-16
KR1019970045563A KR100254171B1 (en) 1997-09-02 1997-09-02 Vane pump
KR1997/45563 1997-09-02
KR1019970050116A KR19990027626A (en) 1997-09-30 1997-09-30 Vane pump
KR1997/50116 1997-09-30

Publications (1)

Publication Number Publication Date
WO1999004167A1 true WO1999004167A1 (en) 1999-01-28

Family

ID=27349575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR1998/000213 WO1999004167A1 (en) 1997-07-16 1998-07-15 Vane pump

Country Status (2)

Country Link
AU (1) AU8464098A (en)
WO (1) WO1999004167A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1177383A1 (en) * 1999-04-23 2002-02-06 Dong Il Hwang Small-sized compressor
CN102678555A (en) * 2011-03-18 2012-09-19 乐金电子(天津)电器有限公司 Rotary compressor
JP2019038527A (en) * 2017-07-26 2019-03-14 カンパニョーロ・ソシエタ・ア・レスポンサビリタ・リミタータCampagnolo Societa A Responsabilita Limitata Device for actuating front derailleur of bicycle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2246277A (en) * 1936-10-16 1941-06-17 Davidson William Ward Rotary pump
DE835121C (en) * 1949-11-05 1952-03-27 Fritz Schultheis Rotary piston machine
DE2650320A1 (en) * 1976-11-02 1978-05-03 Alois Theisen ROTARY LISTON PUMP
JPS56159506A (en) * 1980-04-16 1981-12-08 Skf Kugellagerfabriken Gmbh Rotary piston machine
JPS6226393A (en) * 1985-07-26 1987-02-04 Haradakuni:Kk Rotary vane compressor
JPS63112626U (en) * 1987-01-14 1988-07-20
JPH01106985A (en) * 1987-10-21 1989-04-24 Nippon Denso Co Ltd Compressor
JPH02169882A (en) * 1988-12-21 1990-06-29 Mitsuo Okamoto Sliding support seat type vane pump motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2246277A (en) * 1936-10-16 1941-06-17 Davidson William Ward Rotary pump
DE835121C (en) * 1949-11-05 1952-03-27 Fritz Schultheis Rotary piston machine
DE2650320A1 (en) * 1976-11-02 1978-05-03 Alois Theisen ROTARY LISTON PUMP
JPS56159506A (en) * 1980-04-16 1981-12-08 Skf Kugellagerfabriken Gmbh Rotary piston machine
JPS6226393A (en) * 1985-07-26 1987-02-04 Haradakuni:Kk Rotary vane compressor
JPS63112626U (en) * 1987-01-14 1988-07-20
JPH01106985A (en) * 1987-10-21 1989-04-24 Nippon Denso Co Ltd Compressor
JPH02169882A (en) * 1988-12-21 1990-06-29 Mitsuo Okamoto Sliding support seat type vane pump motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1177383A1 (en) * 1999-04-23 2002-02-06 Dong Il Hwang Small-sized compressor
EP1177383A4 (en) * 1999-04-23 2004-08-04 Technol Co Ltd Dovicom Small-sized compressor
CN102678555A (en) * 2011-03-18 2012-09-19 乐金电子(天津)电器有限公司 Rotary compressor
JP2019038527A (en) * 2017-07-26 2019-03-14 カンパニョーロ・ソシエタ・ア・レスポンサビリタ・リミタータCampagnolo Societa A Responsabilita Limitata Device for actuating front derailleur of bicycle

Also Published As

Publication number Publication date
AU8464098A (en) 1999-02-10

Similar Documents

Publication Publication Date Title
CN210715092U (en) Electric compressor device
JP3933395B2 (en) Small compressor
KR100436864B1 (en) Vane compressor
KR100519341B1 (en) Rotary compressor
WO1999004167A1 (en) Vane pump
JP2008088854A (en) Scroll expander
KR20140038562A (en) Compressor
KR100531287B1 (en) Rotary compressor
KR100531285B1 (en) Rotary compressor
KR100408152B1 (en) Cylinder structure of vacuum pump
KR100323064B1 (en) Compact compressor
KR100323063B1 (en) Aaaaa
KR100231475B1 (en) Vane pump
KR100407741B1 (en) Aaaaa
KR20060098105A (en) A rotary pump capable of rotation and reverse rotation
JPH0267490A (en) Fluid compressor
WO1995031645A1 (en) Vane pump
KR100254171B1 (en) Vane pump
KR19990003112A (en) Vane pump
KR200239970Y1 (en) Airtight Compressor for Air Conditioning
KR19990027626A (en) Vane pump
KR100459515B1 (en) Vane air compressor
KR100339580B1 (en) Muffler for hermetic rotary compressor
KR100531284B1 (en) Rotary compressor
KR200203908Y1 (en) Structure for reducing noise of rotary compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BR CA CN DE DK ES GB JP MX NO PT RU SE SG TR US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase