WO1999003069A1 - Audiovisual data decoding method - Google Patents
Audiovisual data decoding method Download PDFInfo
- Publication number
- WO1999003069A1 WO1999003069A1 PCT/IB1998/001036 IB9801036W WO9903069A1 WO 1999003069 A1 WO1999003069 A1 WO 1999003069A1 IB 9801036 W IB9801036 W IB 9801036W WO 9903069 A1 WO9903069 A1 WO 9903069A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scene
- objects
- tridimensional
- nodes
- bidimensional
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000003993 interaction Effects 0.000 claims abstract description 22
- 238000009877 rendering Methods 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims description 14
- 230000007246 mechanism Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 4
- 230000009471 action Effects 0.000 abstract description 5
- 239000002131 composite material Substances 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 230000006399 behavior Effects 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/597—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/30—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
Definitions
- Audiovisual data decoding method
- the present invention relates to a method of decoding coded digital signals representative of audiovisual data and available in the form of a continuous bitstream in view of the binary description of a scene to be rendered on a displaying device, said method comprising a processing operation based on an evolutive syntactic language and provided for extracting from said bitstream, in a first step, distinct elements called objects according to the structure of said scene, defining in a second step an individual animation of said elements of the scene, defining in a third step particular interactions between a user and said elements, and organizing in a fourth step specific relations between said scene elements and corresponding individual animations and/or user interactions according to various classes of applications.
- This invention will be mainly used in the future MPEG-4 decoders.
- the future new MPEG-4 decoding standard will be fundamentally different, as it will represent the audiovisual scenes as a composition of objects rather than pixels only.
- Each scene is defined as a coded representation of audiovisual objects that have given relations in space and time, whatever the manner in which said given scene has been previously organized in these objects (or segmented).
- the MPEG-4 standard considers jointly the natural materials (video, audio, speech) and the synthetic ones (2D and 3D graphics and synthetic sound) and tries to combine them in a standardized bitstream, in view of the presentation of such a multimedia content on a terminal screen. In order to compose this audiovisual information within the scene, their spatio- temporal relationship needs to be transmitted to the terminal.
- the MPEG-4 standard defines a syntactic description language to describe the binary syntax of an audiovisual object's bitstream representation as well as that of the scene
- the MPEG-4 system Verification Model 4 0 proposes for the description of the scenes a binary format called the Binary Format for Scenes (BIFS)
- BIFS Binary Format for Scenes
- This description constructed as a coded hierarchy of nodes with attributes and other information such as event sources and targets, is based on the assumption that the scene structure is transmitted as a parametric description (or a script) rather than as a computer program
- the scene description can then evolve over time by using coded scene description updates
- the node descriptions which are conveyed in a BIFS syntax may also be represented, for the purpose of clarity, in a textual form
- Some MPEG-4 nodes and concepts are direct analogues of the VRML 2 0 nodes Others are modified VRML 2 0, still others are added for specific MPEG-4 requirements
- the BIFS has provisions for describing simple behaviors and interaction with the user through an event passing mechanism Howe ⁇ er some problems, explained hereunder, are not solved by this format
- the first of these addressed problems concerns an unified description of a mixed 2D
- these two schemes may be mixed recursively, for example for embedding 3D objects in a 2D scene and using the resulting composition as a texture map on 3D objects (this may be used to simulate the reflection of a mirror) , (4) a last possibility is to view simultaneously the same 3D scene from different view points.
- a scene graph is a tree that represents a scene by means of a hierarchy of objects called nodes.
- the scene is composed of grouping nodes and children nodes.
- the role of grouping nodes is to define the hierarchy and the spatial organization of the scene.
- Children nodes are the leaves of the tree. These nodes are used to define geometric objects, light sources as well as various types of sensors (objects that are sensitive to user interaction).
- Grouping nodes have children nodes. These children may be children nodes or other grouping nodes.
- All nodes may have attributes which are called fields.
- the fields may be of any type.
- sphere is a geometry node. It has a field that defines its radius. It is a single value field of type float (SFFloat). Children nodes of a grouping node are specified in a special field. This field is a multiple value field (a list of nodes), and each value is of type node (MFNode).
- Routing a field A to a field B means that whenever field A changes, field B will take the same value as field A. Only fields of the same type (or the same kind) may be connected. Fields may be specialized : some may only be the destination of a route, they are called eventin, others may only be at the origin of a route, they are called eventOut, others may be both the origin and destination of routes, they are called exposedField and, at last, others may not be connected, they are simply called field.
- nodes In VRML, four nodes (Viewpoint, Background, Fog and Navigationlnfo) play a special role in the sense that only one of each may be active at a given time. These nodes are said to be bindable nodes.
- the representation of content can be more compact ;
- the implementation can be optimized because 2D and 3D specifications have been designed to work together.
- 2D and 3D specifications have been designed to work together.
- Other problems, not still solved, have also to be considered, especially the following ones :
- interactivity with the 2D objects it may be necessary to be able to interact with the objects, change the layering, add or remove objects, which is not possible without a method to set the depth of a 2D object that is compatible with the event passing mechanism of VRML 2.0 ;
- This enhancement allows a unified representation of the complete scene and its layout, as well as event passing not only within the 3D scene (as in VRML 2.0) but also between 2D and 3D nodes, and also allows the definition of specific user interfaces that may be transmitted with the scene, rather than the use of a default user interface provided by the terminal.
- the invention relates to a method as described in the preamble of the description and which is further characterized in that said processing operation also includes an additional step for describing a complex scene, built from any kind of bidimensional and tridimensional objects, according to a framework integrating both bidimensional and tridimensional features and unifying the composition and representation mechanisms of the scene structure.
- said framework may be characterized in that said additional description step comprises a first main sub-step for defining a hierarchical representation of said scene according to a tree structure organized both in grouping nodes, that indicate the hierarchical connections giving the spatial composition of the concerned scene, and in children nodes, that constitute the leaves of the tree, and a second auxiliary sub-step for defining possible transversal connections between any kind of nodes.
- the nodes of the tree structure comprise at least bidimensional and tridimensional objects
- the auxiliary definition sub-step comprises a first operation for embedding at least one of said bidimensional objects within at least one of said tridimensional objects, an optional second operation for defining transversal connections between said tridimensional and bidimensional objects, and an optional third operation for controlling the definition step of at least one individual animation and/or at least one particular interaction both in the embedded bidimensional object(s) and in the corresponding original one(s).
- the nodes of the tree structure comprise at least bidimensional and tridimensional objects
- the auxiliary definition sub-step comprises a first operation for embedding at least one of said tridimensional objects within at least one of said bidimensional objects, an optional second operation for defining transversal connections between said bidimensional and tridimensional objects, and an optional third operation for controlling the definition step of a least one individual animation and/or at least one particular interaction both in the embedded tridimensional object(s) and in the corresponding original one(s).
- the nodes of the tree structure comprise at least tridimensional objects
- the auxiliary definition sub-step comprises a first operation for embedding at least one of said tridimensional objects within at least one of anyone of said tridimensional objects, an optional second operation for defining transversal connections between said tridimensional objects, and an optional third operation for controlling the definition step of at least one individual animation and/or at least one particular interaction both in the embedded tridimensional object(s) and in the corresponding original one(s).
- auxiliary definition sub-step may also comprise an additional operation for controlling the simultaneous rendering of at least one single tridimensional scene from various viewpoints while maintaining the third operation for controlling the definition step of the individual animation(s) and/or the particular interaction(s).
- the invention relates not only to the previously described method, with or without the optional operations, but also to any signal obtained by implementing such method in anyone of its variants. It is clear for instance that the invention relates to a signal obtained after having extracted from the input bitstream, in a first step, distinct elements called objects according to the structure of a scene, defined in a second step an individual animation of said elements of the scene, defined in a third step particular interactions between a user and said elements, organized in a fourth step specific relations between said scene elements and corresponding individual animations and/or user interactions according to various classes of applications, and carried out an additional step for describing a complex scene, built from any kind of bidimensional and tridimensional objects, according to a framework integrating both bidimensional and tridimensional features and unifying the composition and representation mechanisms of the scene structure.
- Such a signal allows to describe together bidimensional and tridimensional objects, and to organize a hierarchical representation of a scene according to a tree structure, itself organized in grouping nodes defining the hierarchical connections and in children nodes, said nodes allowing to form together a single scene graph constituted of a 2D scene graph, a 3D scene graph, a layers scene graph, and transversal connections between nodes of this scene graph.
- Such a signal also allows to define 2D or 3D scenes already composed or that have to be composed on a screen, with a representation of their depth, or to define 3D scenes in which will be embedded other scenes already composed of 2D or 3D objects, or also to define textures for 3D objects themselves composed of other 3D or 2D objects.
- a signal allows to interact with any 2D or 3D object of the scene and to organize any kind of transmission of data between all these objects of the scene.
- the invention also relates to a storage medium for memorizing said signal, whatever its type or its composition.
- the invention also relates to a device for displaying or delivering in any other manner graphic scenes on the basis of signals such as described above, in order to reconstruct any kind of scene including bidimensional and tridimensional objects.
- Fig.1 is a complete scene graph example.
- the scene graph of Fig.1 shows a hierarchical representation of said scene, according to a tree structure.
- This structure is a hierarchy of layers that represent rectangular areas of the screen of a displaying device, and said hierarchy is organized in nodes (either in grouping nodes GN defining the hierarchical connections or in children nodes CN that are the leaves of the tree), with, according to the invention, possible transversal connections between these nodes (in Fig.1, for example between the child node 3D Object-2 and the grouping node 2D Scene- 1, for illustrating the situation where a 3D object includes a 2D scene, or between the grouping nodes 3D Scene-2 and 3D Scene-1, for illustrating the situation where two "Layer3D" include the same 3D scene seen from different viewpoints).
- the 2D graphics scene graph In said illustrated scene graph, three different scene graphs are in fact provided : the 2D graphics scene graph, the 3D graphics scene graph, and the layers scene graphs.
- the 3D layer-2 views the same scene as 3D-layer-l, but the viewpoint may be different.
- the 3D object-3 is an appearance node that uses the 2D-Scene 1 as a texture node.
- the principle of the invention is to propose new nodes that unify the description of the 2D/3D composition as a single graph.
- First two new nodes are defined in order to describe the hierarchy of 2D and 3D layers.
- the 2D an 3D layers are composited as a hierarchical set of rendering areas that are 2D planes : - Layer2D : children nodes of layer 2D can be a Layer2D, Layer3D, and all nodes acceptable for a 2D scene description ;
- children nodes of layer 3D can be a 2D or a 3D Layer and a scenegraph describing a 3D scene.
- Two new nodes are also defined in order to be able to use 2D and 3D composited scenes as input for a texture in a 3D world, to be mapped on a 3D object :
- this is a texture map containing as children nodes a 2D scene, and the composited 2D scene is used as the texture map ;
- this is a texture map containing children nodes defining a 3D scene.
- the composited 3D scene is used as the texture map. It is in particular possible to use this node to map the result of the rendering of an existing 3D scene viewed from another view point. This node is useful to simulate reflection effects for instance.
- a useful special case of the above is when a composited 2D scene is mapped on a rectangle in the 3D space. This can be seen as an "active map" inserted in the 3D space. Because the implementation of such a node can be very different from the implementation of the Composite Texture2D node, it is meaningful to design a specific node for this case.
- An ActiveMap node is thus proposed in the following of the description.
- Valuator node In order to route pre-defined values of the viewpoint or other bindable children nodes to one of the above quoted nodes, a specific Valuator node is defined. This node can be used in a broader scope in the BIFS specification, or could be defined as a compliant VRML 2.0 prototype.
- the layer2D node is defined as a grouping node. It defines an area on the screen where 2D objects will be rendered. Three fields (or attributes) describe how this node will be rendered with respect to other objects : its size, its position and its depth. These fields may be the origin or the destination of routes. They are thus exposedFields.
- This Layer2D node may be the parent of other nodes of the same type (i.e. also Layer2D) or of a similar type defined below (Layer3D). This may be described by a multiple value field of type node (MFNode). Besides, this node may be the parent of nodes representing 2D objects. This also may be described by a multiple value field of type node (MFNode).
- the Layer2D node is described as follows : Layer2D ⁇ exposedField MFNode children2D [] exposedField MFNode childrenLayer [] exposedField SFVec2i size -1 -1 exposedField SFVec2i translation 0 0 exposedField SFFloat depth 0 ⁇
- the children2D field can have as value any 2D grouping or children nodes that defines a 2D scene.
- the childrenLayer field can take either a 2D or 3D layer node as value.
- the ordering (layering) of the children of a Layer2D node is explicitly given by the use of transform2D nodes. If two 2D nodes are the children of a same Transform2D, the layering of 2D nodes is done in the order of the children in the children field of the Transform2D.
- the layering of the 2D and 3D layers is specified by the translation and depth fields.
- the size parameter is given in floating point number, and may be expressed in pixels, or between 0.0 and 1.0 in "graphics meters", according to the context. The same goes for the translation parameter.
- a size of -1 in one direction means that the Layer2D node is not specified in size in that direction, and that the viewer would decide the size of the rendering area.
- All the 2D objects under a same Layer2D node form a single composed object.
- This composed object is viewed by other objects as a single object.
- a Layer2D node A is the parent of two objects B and C layered one on top of the other, it will not be possible to insert a new object D between B and C unless D is added as a children of A.
- the Layer3D node is defined as a grouping node. It defines an area on the screen where 3D objects will be rendered. Three fields (or attributes) describe how this node will be rendered with respect to other objects : its size, its position and its depth. These fields may be the origin or the destination of routes. They are thus exposedFields.
- This node may be the parent of other nodes of the same type (i.e. Layer3D) or of a similar type
- Layer2D This may be described by a multiple value field of type node (MFNode). Besides, this node may be the parent of nodes representing 3D objects. This also may be described by a multiple value field of type node (MFNode).
- bindable nodes pose a problem because it is no longer possible to say that only one of each may be active at the same time in the whole application. However, only one of each may be active in each Layer3D. This behavior requires that the Layer3D node has an exposed Field for each of the bindable node.
- the Layer 3D node is described as follows :
- the children3D field can have as value any 3D grouping or children nodes that define a 3D scene.
- the childrenLayer field can have either a 2D or 3D layer as values.
- the layering of the 2D and 3D layers is specified by the translation and depth fields.
- the translation field is expressed, as in the case of the Layer2D either in pixels or in "graphics meters", between 0.0 and 1.0.
- the size parameter has the same semantic and units as in the Layer2D.
- a size of-1 in one direction means that the Layer3D node is not specified in size in that direction, and that the viewer would decide the size of the rendering area. All bindable children nodes are used as exposedFields of the Layer3D node.
- these fields take the value of the currently bound bindable children nodes for the 3D scene that is a child of the Layer3D node. This will allow to set a current viewpoint for instance to a Layer3D, in response to some event, which cannot be achieved by a direct use of the set_bind eventin of the Viewpoint nodes, since scenes can be shared between different layers.
- a sensor triggers an event whenever the sensor is triggered in any of the Layer3D that contains it.
- the composite2DTexture is a texture node as the VRML 2.0 Image Texture node However, it is defined as a grouping node. It may be the parent of any 2D node. The texture represented by this node results from the composition of a 2D scene described in the children field.
- Composite2DTexture node is described as follows : Composite2DTexture ( exposedField MFNode children2D [] exposedField SFVec2f size -1 -1 ⁇
- the children2D field of type MFNode is the list of 2D grouping and children nodes that define the 2D scene to be mapped onto the 3D object.
- the size field specifies the size of this map.
- the unis are the same as in the case of the Layer2D/3D. If left as default value, an undefined size will be used.
- This composite2DTexture node can only be used as a texture field of an Appearance node.
- the composite3DTexture is a texture node as the VRML 2.0 ImageTexture node. However, it is defined as a grouping node. It may be the parent of any 3D node. The texture represented by this node results from the composition of a 3D scene described in the children field. As for the Layer3D node, the issue of bindable nodes is solved using exposed fields.
- Composite3DTexture node is described as follows : Composite3DTexture ( exposedField MFNode children3D [] exposedField SFVec2f size -1 -1 exposedln SFNode background NULL exposedln SFNode fog NULL exposedln SFNode navigationlnfo NULL exposedln SFNode viewpoint NULL
- the children3D field of type MFNode is the list of 3D grouping and children nodes that define the 3D scene to be mapped onto the 3D object.
- the size field specifies the size in pixels of this map (if left as default value, an undefined size will be used).
- the four following fields represent the current values of the bindable children nodes used in the 3D scene.
- This Composite3DTexture node can only be used as a texture field of an Appearance node. (E) CompositeMap definition and semantic.
- the ActiveMap node is described as follows :
- the children2D field of type MFNode is the list of 2D grouping and children nodes that define the 2D scene to be mapped onto the 3D object.
- the sceneSize field specifies the size in pixels of the 2D composited scene (if left as default value, an undefined size will be used).
- the center field specifies the coordinate of the center of the Composite Map in the xOy coordinate system.
- the mapSize field specifies the size in the 3D space measure of the rectangle area where the 2D scene is to be mapped. This node can be used as any 3D children node.
- Valuator node is a node used to route a pre-defined value to a field of another node. It has an exposedField of each existing type. The Valuator is triggered whenever one of its exposedField is modified or may be triggered through an eventin.
- Valuator node is described as follows : Valuator ⁇ eventin SFBool set_Active exposedField SFBool boolValue TRUE exposedField SFColor colorValue 0 0 0 exposedField SFFloat floatValue 0.0 exposedField SFImage imageValue NULL exposedField SFInt32 int Value 0 exposedField SFNode nodeValue NULL exposedField SFRotation rotationValue 1 0 0 0 exposedField SFVec2f vec2fValue 0.0 0.0 exposedField SFVec3f vec3FValue 0.0 0.0 0.0 0.0 0.0
- the semantic of the parameter is simply a constant value holder. This value can be routed to another field of the same type to be able to set values to fields explicity. The routing can be activated with the eventin set_Active field.
- the two nodes Layer2D and Layer3D have been designed to organize the scene in a single global hierarchy. It must also be indicated that 2D composited scenes as texture maps and 2D Composite maps are conceptually very similar.
- the Composite map defines a rectangular facet texture mapped with a 2D composited scene.
- the 2D composited scene as texture map is a texture that may be mapped on any geometry.
- the annex B gives an example of a Composite map.
- one has at the origin of the world a 2.0 x 4.0 rectangular region on the ground composed of 2 images.
- the user may touch any of the 2 images to trigger an action (the actions are not specified in the example).
- the annex C gives, for 3D composited scenes as texture maps, another example of a Composite map.
- one has a cube in a Layer3D
- This cube has a texture map that is composed of the rendering of a cylinder viewed from a specified viewpoint
- the user may touch the cylinder to trigger an action (the action is not specified in the example).
- Concerning multiple views of a same scene the proposed solution allows a same scene to be displayed in several Layer3D from different viewpoints. Besides, the viewpoint of this scene may be modified by touching some 2D image. This functionality is shown in the example given in the last annex D.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Computer Graphics (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Processing Or Creating Images (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU79272/98A AU7927298A (en) | 1997-07-11 | 1998-07-06 | Audiovisual data decoding method |
DE69818621T DE69818621T2 (en) | 1997-07-11 | 1998-07-06 | METHOD FOR DECODING AUDIOVISUAL DATA |
US09/254,103 US6445740B1 (en) | 1997-07-11 | 1998-07-06 | Audiovisual data decoding method |
BRPI9806025-2A BR9806025B1 (en) | 1997-07-11 | 1998-07-06 | process for decoding encoded digital signals representative of audiovisual data. |
JP50836899A JP4237270B2 (en) | 1997-07-11 | 1998-07-06 | Audio image data decoding method |
EP98929568A EP0925557B1 (en) | 1997-07-11 | 1998-07-06 | Audiovisual data decoding method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97401690 | 1997-07-11 | ||
EP97401690.9 | 1997-07-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999003069A1 true WO1999003069A1 (en) | 1999-01-21 |
Family
ID=8229808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB1998/001036 WO1999003069A1 (en) | 1997-07-11 | 1998-07-06 | Audiovisual data decoding method |
Country Status (11)
Country | Link |
---|---|
US (2) | US6445740B1 (en) |
EP (1) | EP0925557B1 (en) |
JP (1) | JP4237270B2 (en) |
KR (1) | KR20010029494A (en) |
CN (1) | CN1202500C (en) |
AU (1) | AU7927298A (en) |
BR (1) | BR9806025B1 (en) |
DE (1) | DE69818621T2 (en) |
ES (1) | ES2207839T3 (en) |
MY (1) | MY121352A (en) |
WO (1) | WO1999003069A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003067591A1 (en) * | 2002-02-07 | 2003-08-14 | Samsung Electronics Co., Ltd. | Information storage medium containing display mode information, and reproducing apparatus and method therefor |
EP1743303A1 (en) * | 2004-05-03 | 2007-01-17 | Microsoft Corporation | Integration of three dimensional scene hierarchy into two dimensional compositing system |
CN117934785A (en) * | 2023-12-22 | 2024-04-26 | 北京威驰克国际数码科技有限公司 | Automatic skin optimization method for 3D model generation process |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6850946B1 (en) * | 1999-05-26 | 2005-02-01 | Wireless Valley Communications, Inc. | Method and system for a building database manipulator |
US6934906B1 (en) * | 1999-07-08 | 2005-08-23 | At&T Corp. | Methods and apparatus for integrating external applications into an MPEG-4 scene |
US6751655B1 (en) * | 2000-04-18 | 2004-06-15 | Sun Microsystems, Inc. | Method and apparatus for transport of scenegraph information across a network |
US6625454B1 (en) | 2000-08-04 | 2003-09-23 | Wireless Valley Communications, Inc. | Method and system for designing or deploying a communications network which considers frequency dependent effects |
US6973622B1 (en) | 2000-09-25 | 2005-12-06 | Wireless Valley Communications, Inc. | System and method for design, tracking, measurement, prediction and optimization of data communication networks |
US20060129933A1 (en) * | 2000-12-19 | 2006-06-15 | Sparkpoint Software, Inc. | System and method for multimedia authoring and playback |
DE10108888A1 (en) * | 2001-02-17 | 2002-08-29 | Manfred Rennings | Parking disk for displaying the parking time of a vehicle with electronic control for displaying the remaining paid parking time |
EP1260914A1 (en) * | 2001-05-23 | 2002-11-27 | Mediabricks Ab | A method for optimizing utilization of client capacity |
US7216288B2 (en) * | 2001-06-27 | 2007-05-08 | International Business Machines Corporation | Dynamic scene description emulation for playback of audio/visual streams on a scene description based playback system |
FR2839176A1 (en) * | 2002-04-30 | 2003-10-31 | Koninkl Philips Electronics Nv | ROBOT ANIMATION SYSTEM COMPRISING A SET OF MOVING PARTS |
US7439982B2 (en) * | 2002-05-31 | 2008-10-21 | Envivio, Inc. | Optimized scene graph change-based mixed media rendering |
AU2003251879A1 (en) * | 2002-07-12 | 2004-02-02 | Raytheon Company | Scene graph based display for desktop applications |
FR2849980B1 (en) * | 2003-01-15 | 2005-04-08 | Medialive | METHOD FOR THE DISTRIBUTION OF VIDEO SEQUENCES, DECODER AND SYSTEM FOR THE IMPLEMENTATION OF THIS PRODUCT |
FR2853786B1 (en) * | 2003-04-11 | 2005-08-05 | Medialive | METHOD AND EQUIPMENT FOR DISTRIBUTING DIGITAL VIDEO PRODUCTS WITH A RESTRICTION OF CERTAIN AT LEAST REPRESENTATION AND REPRODUCTION RIGHTS |
FR2854531B1 (en) * | 2003-05-02 | 2007-01-05 | Medialive | METHOD AND SYSTEM FOR SECURING SCRAMBLING, UNLOCKING AND DISTRIBUTION OF VECTORIAL VISUAL SEQUENCES |
US8031190B2 (en) * | 2004-05-03 | 2011-10-04 | Microsoft Corporation | Translating two-dimensional user input on three-dimensional scene |
KR100679740B1 (en) * | 2004-06-25 | 2007-02-07 | 학교법인연세대학교 | Method for Coding/Decoding for Multiview Sequence where View Selection is Possible |
CN1331359C (en) * | 2005-06-28 | 2007-08-08 | 清华大学 | Transmission method for video flow in interactive multi-viewpoint video system |
US20070008566A1 (en) * | 2005-07-07 | 2007-01-11 | Xerox Corporation | 3-D view and edit method and apparatus for document make-ready preparation for book production |
ZA200805337B (en) | 2006-01-09 | 2009-11-25 | Thomson Licensing | Method and apparatus for providing reduced resolution update mode for multiview video coding |
US7913157B1 (en) * | 2006-04-18 | 2011-03-22 | Overcast Media Incorporated | Method and system for the authoring and playback of independent, synchronized media through the use of a relative virtual time code |
CN100446039C (en) * | 2006-09-13 | 2008-12-24 | 浙江大学 | Layering view point correlated model based computer assisted two-dimensional cartoon drawing method by hand |
KR20080089119A (en) * | 2007-03-30 | 2008-10-06 | 삼성전자주식회사 | Apparatus providing user interface(ui) based on mpeg and method to control function using the same |
US20090315980A1 (en) * | 2008-06-24 | 2009-12-24 | Samsung Electronics Co., | Image processing method and apparatus |
CN102339473B (en) * | 2010-07-22 | 2014-03-26 | 山东师范大学 | Genetic algorithm-based method for design of cartoon model |
US10176644B2 (en) * | 2015-06-07 | 2019-01-08 | Apple Inc. | Automatic rendering of 3D sound |
US10743070B2 (en) * | 2017-12-01 | 2020-08-11 | At&T Intellectual Property I, L.P. | Fast channel change for a set top box based on channel viewing behaviors |
US20210105451A1 (en) * | 2019-12-23 | 2021-04-08 | Intel Corporation | Scene construction using object-based immersive media |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996023280A1 (en) * | 1995-01-25 | 1996-08-01 | University College Of London | Modelling and analysis of systems of three-dimensional object entities |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2144253C (en) * | 1994-04-01 | 1999-09-21 | Bruce F. Naylor | System and method of generating compressed video graphics images |
US5838830A (en) * | 1996-09-18 | 1998-11-17 | Sharp Laboratories Of America, Inc. | Vertex-based hierarchical shape representation and coding method and apparatus |
US6801575B1 (en) * | 1997-06-09 | 2004-10-05 | Sharp Laboratories Of America, Inc. | Audio/video system with auxiliary data |
-
1998
- 1998-07-06 BR BRPI9806025-2A patent/BR9806025B1/en not_active IP Right Cessation
- 1998-07-06 AU AU79272/98A patent/AU7927298A/en not_active Abandoned
- 1998-07-06 ES ES98929568T patent/ES2207839T3/en not_active Expired - Lifetime
- 1998-07-06 WO PCT/IB1998/001036 patent/WO1999003069A1/en not_active Application Discontinuation
- 1998-07-06 JP JP50836899A patent/JP4237270B2/en not_active Expired - Lifetime
- 1998-07-06 KR KR1019997002047A patent/KR20010029494A/en active Search and Examination
- 1998-07-06 CN CNB988013134A patent/CN1202500C/en not_active Expired - Lifetime
- 1998-07-06 US US09/254,103 patent/US6445740B1/en not_active Expired - Lifetime
- 1998-07-06 EP EP98929568A patent/EP0925557B1/en not_active Expired - Lifetime
- 1998-07-06 DE DE69818621T patent/DE69818621T2/en not_active Expired - Lifetime
- 1998-07-10 MY MYPI98003174A patent/MY121352A/en unknown
-
2002
- 2002-05-14 US US10/145,072 patent/US7965769B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996023280A1 (en) * | 1995-01-25 | 1996-08-01 | University College Of London | Modelling and analysis of systems of three-dimensional object entities |
Non-Patent Citations (8)
Title |
---|
ARIKAWA M ET AL: "DYNAMIC LOD FOR QOS MANAGEMENT IN THE NEXT GENERATION VRML", PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS, 17 June 1996 (1996-06-17), pages 24 - 27, XP002060163 * |
AVARO O ET AL: "The MPEG-4 systems and description languages: A way ahead in audio visual information representation", SIGNAL PROCESSING. IMAGE COMMUNICATION, vol. 9, no. 4, May 1997 (1997-05-01), pages 385-431, XP004075337 * |
BROLL W ET AL: "VRML: Today and tomorrow", COMPUTERS AND GRAPHICS, vol. 20, no. 3, May 1996 (1996-05-01), pages 427-434, XP004018620 * |
DOENGES P K ET AL: "Audio/video and synthetic graphics/audio for mixed media", SIGNAL PROCESSING. IMAGE COMMUNICATION, vol. 9, no. 4, May 1997 (1997-05-01), pages 433-463, XP004075338 * |
GUITTON P ET AL: "RRIFF: A PROPOSAL FOR THE INTERCHANGE OF REALISTIC SCENE DESCRIPTIONS", COMPUTER AIDED DESIGN, vol. 26, no. 12, 1 December 1994 (1994-12-01), pages 891 - 898, XP000500988 * |
ISO/IEC JTC1/SC29/WG11: "Generic Coding of Audio-Visual Objects; Part 1: Systems; Section 9: Scene Description", FINAL COMMITTEE DRAFT OF INTERNATIONAL STANDARD ISO/IEC 14496-1, 18 May 1998 (1998-05-18), International Organisation for standardisation, Genève, CH;, pages 40 - 150, XP002080753 * |
MULROY P: ""VRML GETS REAL THE MPEG-4 WAY"", IEE COLLOQUIUM ON TELECONFERENCING FUTURES, 17 June 1997 (1997-06-17), pages 4.01 - 4.04, XP002060164 * |
RIEGEL T: "CODING OF COMBINED NATURAL AND COMPUTER RENDERED IMAGE SEQUENCES", PROCEEDINGS OF THE SPIE, vol. 2451, 1995, pages 207 - 211, XP000600748 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003067591A1 (en) * | 2002-02-07 | 2003-08-14 | Samsung Electronics Co., Ltd. | Information storage medium containing display mode information, and reproducing apparatus and method therefor |
EP1743303A1 (en) * | 2004-05-03 | 2007-01-17 | Microsoft Corporation | Integration of three dimensional scene hierarchy into two dimensional compositing system |
EP1743303A4 (en) * | 2004-05-03 | 2011-07-13 | Microsoft Corp | Integration of three dimensional scene hierarchy into two dimensional compositing system |
CN117934785A (en) * | 2023-12-22 | 2024-04-26 | 北京威驰克国际数码科技有限公司 | Automatic skin optimization method for 3D model generation process |
CN117934785B (en) * | 2023-12-22 | 2024-06-11 | 北京威驰克国际数码科技有限公司 | Automatic skin optimization method for 3D model generation process |
Also Published As
Publication number | Publication date |
---|---|
EP0925557A1 (en) | 1999-06-30 |
JP4237270B2 (en) | 2009-03-11 |
BR9806025B1 (en) | 2009-05-05 |
ES2207839T3 (en) | 2004-06-01 |
JP2001502097A (en) | 2001-02-13 |
US20030048844A1 (en) | 2003-03-13 |
US6445740B1 (en) | 2002-09-03 |
DE69818621T2 (en) | 2004-09-30 |
CN1202500C (en) | 2005-05-18 |
BR9806025A (en) | 1999-10-13 |
DE69818621D1 (en) | 2003-11-06 |
US7965769B2 (en) | 2011-06-21 |
MY121352A (en) | 2006-01-28 |
EP0925557B1 (en) | 2003-10-01 |
KR20010029494A (en) | 2001-04-06 |
AU7927298A (en) | 1999-02-08 |
CN1239566A (en) | 1999-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0925557B1 (en) | Audiovisual data decoding method | |
US6266053B1 (en) | Time inheritance scene graph for representation of media content | |
US9641897B2 (en) | Systems and methods for playing, browsing and interacting with MPEG-4 coded audio-visual objects | |
US6856322B1 (en) | Unified surface model for image based and geometric scene composition | |
JP4260747B2 (en) | Moving picture composition method and scene composition method | |
Bove | Multimedia based on object models: Some whys and hows | |
Bove | Object-oriented television | |
KR100316752B1 (en) | Method for data type casting and algebraic manipulation in a scene description of audio-visual objects | |
Swanson | The cartographic possibilities of VRML | |
Daras et al. | An MPEG-4 tool for composing 3D scenes | |
Walsh | Understanding scene graphs | |
Cha et al. | MPEG-4 studio: An object-based authoring system for MPEG-4 contents | |
JP2004295917A (en) | Method and device for originating data for animation of graphic scene | |
Azevedo et al. | Embedding 3d objects into ncl multimedia presentations | |
Signès et al. | MPEG-4: Scene Representation and Interactivity | |
Cha et al. | Interactive Authoring Tool for Extensible MPEG-4 Textual Format (XMT). | |
Fairchild | Explorations of 3D virtual spaces: applications of VR | |
JP2006523337A (en) | Method for managing the depiction of graphics animation for display, and receiver and system for implementing the method | |
Zhou et al. | X3d-based web 3d resources integration and reediting | |
CN118764674A (en) | Subtitle rendering method, subtitle rendering device, electronic device, storage medium, and program product | |
Behr et al. | Class notes: don't be a WIMP: (http://www. not-for-wimps. org) | |
Nishimura et al. | Augmented Real World (ARW) Framework and Augmented Reality Modeling Language (ARML) | |
Behr et al. | SIGGRAPH 2008 Class Notes: Don’t be a WIMP | |
Lee et al. | An augmented reality toolkit based on SEDRIS | |
Raptis et al. | MPEG-4 AUTHORING TOOL FOR THE COMPOSITION OF 3D AUDIOVISUAL SCENES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 98801313.4 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998929568 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09254103 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 1999 508368 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019997002047 Country of ref document: KR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: 1998929568 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWP | Wipo information: published in national office |
Ref document number: 1019997002047 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1998929568 Country of ref document: EP |
|
WWR | Wipo information: refused in national office |
Ref document number: 1019997002047 Country of ref document: KR |