WO1998059031A1 - Compositions nettoyantes liquides universelles et en microemulsion - Google Patents

Compositions nettoyantes liquides universelles et en microemulsion Download PDF

Info

Publication number
WO1998059031A1
WO1998059031A1 PCT/US1998/012651 US9812651W WO9859031A1 WO 1998059031 A1 WO1998059031 A1 WO 1998059031A1 US 9812651 W US9812651 W US 9812651W WO 9859031 A1 WO9859031 A1 WO 9859031A1
Authority
WO
WIPO (PCT)
Prior art keywords
microemulsion
oil
water
group
cleaning composition
Prior art date
Application number
PCT/US1998/012651
Other languages
English (en)
Inventor
Myriam Mondin
Nicole Andries
Jean Massaux
Original Assignee
Colgate-Palmolive Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate-Palmolive Company filed Critical Colgate-Palmolive Company
Priority to AU79755/98A priority Critical patent/AU7975598A/en
Publication of WO1998059031A1 publication Critical patent/WO1998059031A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • C11D17/0021Aqueous microemulsions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0026Low foaming or foam regulating compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/162Organic compounds containing Si
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/18Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/373Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/143Sulfonic acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/74Carboxylates or sulfonates esters of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces

Definitions

  • the present invention relates to a quick drying surface liquid cleaning composition.
  • This invention relates to an improved all-purpose liquid cleaning composition or a microemulsion composition having improved drying times designed in particular for cleaning hard surfaces and which is effective in removing grease soil and/or bath soil and in leaving unrinsed surfaces with a shiny appearance.
  • all-purpose liquid detergents have become widely accepted for cleaning hard surfaces, e.g., painted woodwork and panels, tiled walls, wash bowls, bathtubs, linoleum or tile floors, washable wall paper, etc.
  • Such all-purpose liquids comprise clear and opaque aqueous mixtures of water-soluble synthetic organic detergents and water-soluble detergent builder salts.
  • use of water-soluble inorganic phosphate builder salts was favored in the prior art all-purpose liquids.
  • such early phosphate-containing compositions are described in U.S. Patent Nos. 2,560,839; 3,234,138; 3,350,319; and British Patent No.
  • U.S. Patent No. 4,017,409 teaches that a mixture of paraffin sulfonate and a reduced concentration of inorganic phosphate builder salt should be employed.
  • such compositions are not completely acceptable from an environmental point of view based upon the phosphate content.
  • another alternative to achieving phosphate-free all-purpose liquids has been to use a major proportion of a mixture of anionic and nonionic detergents with minor amounts of glycol ether solvent and organic amine as shown in U.S. Patent No. 3,935,130. Again, this approach has not been completely satisfactory and the high levels of organic detergents necessary to achieve cleaning cause foaming which, in turn, leads to the need for thorough rinsing which has been found to be undesirable to today's consumers.
  • an o/w microemulsion is a spontaneously forming colloidal dispersion of "oil” phase particles having a particle size in the range of 25 to 800 A in a continuous aqueous phase.
  • microemulsions are transparent to light and are clear and usually highly stable against phase separation.
  • Patent disclosures relating to use of grease-removal solvents in o/w microemulsions include, for example, European Patent Applications EP 0137615 and EP 0137616 - Herbots et al; European Patent Application EP 0160762 - Johnston et al; and U.S. Patent No. 4,561 ,991 - Herbots et al. Each of these patent disclosures also teaches using at least 5% by weight of grease-removal solvent.
  • compositions of this invention described by Herbots et al. require at least 5% of the mixture of grease- removal solvent and magnesium salt and preferably at least 5% of solvent (which may be a mixture of water-immiscible non-polar solvent with a sparingly soluble slightly polar solvent) and at least 0.1 % magnesium salt.
  • Liquid detergent compositions which include terpenes, such as d-limonene, or other grease-removal solvent, although not disclosed to be in the form of o/w microemulsions, are the subject matter of the following representative patent documents: European Patent Application 0080749; British Patent Specification
  • U.S. Patent No. 4,414,128 broadly discloses an aqueous liquid detergent composition characterized by, by weight:
  • (c ) from 0.5% 10% of a polar solvent having a solubility in water at 15°C in the range of from 0.2% to 10%.
  • Other ingredients present in the formulations disclosed in this patent include from 0.05% to 2% by weight of an alkali metal, ammonium or alkanolammonium soap of a Ci 3-C24 fatty acid; a calcium sequestrant from 0.5% to
  • non-aqueous solvent e.g., alcohols and glycol ethers, up to 10% by weight
  • hydrotropes e.g., urea, ethanolamines, salts of lower alkylaryl sulfonates, up to 10% by weight. All of the formulations shown in the Examples of this patent include relatively large amounts of detergent builder salts which are detrimental to surface shine.
  • the present invention provides an improved, quick drying surface, liquid cleaning composition having improved interfacial tension which improves cleaning hard surface in the form of a microemulsion which is suitable for cleaning hard surfaces such as plastic, vitreous and metal surfaces having a shiny finish, oil stained floors, automotive engines and other engines.
  • the improved cleaning compositions improved drying times and exhibit good grease soil removal properties due to the improved interfacial tensions, when used in undiluted (neat) form and leave the cleaned surfaces shiny without the need of or requiring only minimal additional rinsing or wiping.
  • the latter characteristic is evidenced by little or no visible residues on the unrinsed cleaned surfaces and, accordingly, overcomes one of the disadvantages of prior art products.
  • these desirable results are accomplished even in the absence of polyphosphate or other inorganic or organic detergent builder salts and also in the complete absence or substantially complete absence of grease-removal solvent.
  • the invention generally provides a stable, optically clear microemulsion, hard surface cleaning composition especially effective in the removal of oily and greasy oil, which is in the form of a substantially dilute oil-in-water microemulsion having an aqueous phase and an oil phase;
  • the dilute microemulsion composition includes, on a weight basis:
  • the invention comprises an all purpose hard surface cleaning composition comprising by weight: 0.1 % to 20% of an anionic surfactant; 0.1 % to 15% of a cosurfactant; 0.1 % to 10% of an ethoxylated nonionic surfactant; 0.1 % to 10% of an ethoxylated polyhydric alcohol type compound and/or an ethoxylated nonionic surfactant;
  • Figure 1 illustrates a graph of the drying times of Formulas A, B and C.
  • Figure 2 illustrates a graph of the drying times of Formula D, E, F, G and H.
  • the present invention relates to a stable optically clear microemulsion composition
  • a stable optically clear microemulsion composition comprising by weight: 0.1 % to 20% of an anionic surfactant, 0.1 % to 15% of a cosurfactant; 0.1 % to 10% of an ethoxylated polyhydric alcohol type compound, 0.1 % to 10% of an ethoxylated nonionic surfactant; 0.01 % to 0.2% of a silicone antifoam agent; 0.4% to 10% of a water insoluble hydrocarbon, essential oil or a perfume and the balance being water.
  • the role of the water insoluble hydrocarbon can be provided by a non-water-soluble perfume.
  • a solubilizers such as alkali metal lower alkyl aryl sulfonate hydrotrope, triethanolamine, urea, etc.
  • perfume dissolution especially at perfume levels of 1 % and higher, since perfumes are generally a mixture of fragrant essential oils and aromatic compounds which are generally not water- soluble. Therefore, by incorporating the perfume into the aqueous cleaning composition as the oil (hydrocarbon) phase of the ultimate o/w microemulsion composition, several different important advantages are achieved.
  • perfume is used in its ordinary sense to refer to and include any non-water soluble fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flower, herb, blossom or plant), artificial (i.e., mixture of natural oils or oil constituents) and synthetically produced substance) odoriferous substances.
  • perfumes are complex mixtures of blends of various organic compounds such as alcohols, aldehydes, ethers, aromatic compounds and varying amounts of essential oils (e.g., terpenes) such as from 0% to 80%, usually from 10% to 70% by weight, the essential oils themselves being volatile odoriferous compounds and also serving to dissolve the other components of the perfume.
  • the precise composition of the perfume is of no particular consequence to cleaning performance so long as it meets the criteria of water immiscibility and having a pleasing odor.
  • the perfume, as well as all other ingredients should be cosmetically acceptable, i.e., non-toxic, hypoallergenic, etc..
  • the instant compositions show a marked improvement in ecotoxocity as compared to existing commercial products.
  • the hydrocarbon such as a perfume is present in the dilute o/w microemulsion in an amount of from 0 to 10% by weight, preferably from 0.4% to 10% by weight, especially preferably from 0.5% to 6% by weight.
  • the concentration of the perfume is 0 to 10 wt. %, more preferably 0.1 wt. % to 10 wt. %
  • Suitable essential oils are selected from the group consisting of: Anethole 20/21 natural, Aniseed oil china star, Aniseed oil globe brand, Balsam (Peru), Basil oil (India), Black pepper oil, Black pepper oleoresin 40/20, Bois de Rose (Brazil) FOB, Borneol Flakes (China), Camphor oil, White, Camphor powder synthetic technical, Cananga oil (Java), Cardamom oil, Cassia oil (China), Cedarwood oil (China) BP,
  • anionic surfactant present in the o/w microemulsions any of the conventionally used water-soluble anionic surfactants or mixtures of said anionic surfactants and anionic surfactants can be used in this invention.
  • anionic surfactant is intended to refer to the class of anionic and mixed anionic- nonionic detergents providing detersive action.
  • the water-soluble organic surfactant materials which are used in forming the ultimate o/w microemulsion compositions of this invention may be selected from the group consisting of water-soluble, non-soap, anionic surfactants mixed with a fatty acid and a partially esterfied ethoxylated glycerol.
  • Suitable water-soluble non-soap, anionic surfactants include those surface- active or detergent compounds which contain an organic hydrophobic group containing generally 8 to 26 carbon atoms and preferably 10 to 18 carbon atoms in their molecular structure and at least one water-solubilizing group selected from the group of sulfonate, sulfate and carboxylate so as to form a water-soluble detergent.
  • the hydrophobic group will include or comprise a C8-C22 alkyl, alkyl or acyl group.
  • Such surfactants are employed in the form of water-soluble salts and the salt-forming cation usually is selected from the group consisting of sodium, potassium, ammonium, magnesium and mono-, di- or tri-C2-C3 alkanolammonium, with the sodium, magnesium and ammonium cations again being preferred.
  • Suitable sulfonated anionic surfactants are the well known higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 10 to 16 carbon atoms in the higher alkyl group in a straight or branched chain, C8-C15 alkyl toluene sulfonates and C8-C15 alkyl phenol sulfonates.
  • One preferred sulfonate surfactant is a linear alkyl benzene sulfonate having a high content of 3- (or higher) phenyl isomers and a correspondingly low content (well below 50%) of 2- (or lower) phenyl isomers, that is, wherein the benzene ring is preferably attached in large part at the 3 or higher (for example, 4, 5, 6 or 7) position of the alkyl group and the content of the isomers in which the benzene ring is attached in the 2 or 1 position is correspondingly low.
  • Particularly preferred materials are set forth in U.S. Patent 3,320,174.
  • Suitable anionic surfactants are the olefin sulfonates, including long-chain alkene sulfonates, long-chain hydroxyalkane sulfonates or mixtures of alkene sulfonates and hydroxyalkane sulfonates.
  • Preferred olefin sulfonates contain from 14 to 16 carbon atoms in the R alkyl group and are obtained by sulfonating an a-olefin.
  • operative anionic surfactants includes sodium dioctyl sulfosuccinate [di-(2 ethylhexyl) sodium sulfosuccinate being one ] and corresponding dihexyl and dioctyl esters.
  • the preferred sulfosuccinic acid ester salts are esters of aliphitic alcohols such as saturated alkanols of 4 to 12 carbon atoms and are normally diesters of such alkanols.
  • alkali metal salts of the diesters of alcohols of 6 to 10 carbons atoms and more preferably the diesters will be from octanol, such as 2 -ethyl hexanol, and the sulfonic acid salt will be the sodium salt.
  • Especially preferred anionic sulfonate surfactants are paraffin sulfonates containing 10 to 20, preferably 13 to 17, carbon atoms.
  • Primary paraffin sulfonates are made by reacting long-chain alpha olefins and bisulfites and paraffin sulfonates having the sulfonate group distributed along the paraffin chain are shown in U.S. Patents Nos. 2,503,280; 2,507,088; 3,260,744; 3,372,188; and German Patent 735,096.
  • anionic sulfate surfactants are the C8-C18 alkyl sulfate salts and the ethoxylated C8-C 8 alkyl ether sulfate salts having the formula R(OC2H4)n OSO3M wherein n is 1 to 12, preferably 1 to 5, and M is a solubilizing cation selected from the group consisting of sodium, potassium, ammonium, magnesium and mono-, di- and triethanol ammonium ions.
  • the alkyl sulfates may be obtained by sulfating the alcohols obtained by reducing glycerides of coconut oil or tallow or mixtures thereof and neutralizing the resultant product.
  • the ethoxylated alkyl ether sulfates are obtained by sulfating the condensation product of ethylene oxide with a C8-C18 alkanol and neutralizing the resultant product.
  • the alkyl sulfates may be obtained by sulfating the alcohols obtained by reducing glycerides of coconut oil or tallow or mixtures thereof and neutralizing the resultant product.
  • the alkyl ether polyethenoxy sulfates are obtained by sulfating the condensation product of ethylene oxide with a C8-C18 alkanol and neutralizing the resultant product.
  • the alkyl ether polyethenoxy sulfates differ from one another in the number of moles of ethylene oxide reacted with one mole of alkanol.
  • Preferred alkyl sulfates and preferred alkyl ether polyethenoxy sulfates contain 10 to 16 carbon atoms in the alkyl group.
  • the ethoxylated C8-C12 alkylphenyl ether sulfates containing from 2 to 6 moles of ethylene oxide in the molecule also are suitable for use in the inventive compositions.
  • These surfactants can be prepared by reacting an alkyl phenol with 2 to 6 moles of ethylene oxide and sulfating and neutralizing the resultant ethoxylated alkylphenol.
  • C9-C15 alkyl ether polyethenoxyl carboxylates having the structural formula R(OC2H4) n OX COOH wherein n is a number from 4 to 12, preferably 5 to 10 and X is selected from the group consisting of CH2, C(0)R ⁇ and wherein Ri is a C1-C3 alkylene gro -up 8 .
  • P-ref Q erred compounds include C9-C11 alkyl ether polyethenoxy (7-9) C(O) CH2CH2COOH, C13-C15 alkyl ether polyethenoxy (7-9)
  • anionic surfactants will be present either in acid form or salt form depending upon the pH of the final composition, with the salt forming cation being the same as for the other anionic detergents.
  • the preferred surfactants are the magnesium salt of the C13-C17 paraffin or alkane sulfonates.
  • the proportion of the nonsoap-anionic surfactant will be in the range of 0.1 % to 20.0%, preferably from 1 % to 15%, by weight of the dilute o/w microemulsion composition or the all purpose hard surface cleaning composition.
  • the instant composition contains a composition (herein after refered to as an ethoxylated polyhydric alcohol type compound such as an ethoxylated glycerol type compound) which is a mixture of a fully esterified ethoxylated polyhydric alcohol, a partially esterified ethoxylated polyhydric alcohol and a nonesterified ethoxylated polyhydric alcohol, wherein the preferred polyhydric alcohol is glycerol, and the compound is ula composition (herein after refered to as an ethoxylated polyhydric alcohol type compound such as an ethoxylated glycerol type compound) which is a mixture of a fully esterified ethoxylated polyhydric alcohol, a partially esterified ethoxylated polyhydric alcohol and a nonesterified ethoxylated polyhydric alcohol, wherein the preferred polyhydric alcohol is glycerol, and the compound is ula
  • w equals one to four, most preferably one, and B is selected from the group consisting of hydrogen or a group represented by:
  • R is selected from the group consisting of alkyl group having 6 to 22 carbon atoms, more preferably 11 to 15 carbon atoms and alkenyl groups having 6 to 22 carbon atoms, more preferably 1 1 to 15 carbon atoms, wherein a hydrogenated tallow alkyl chain or a coco alkyl chain is most preferred, wherein at least one of the B groups is represented by said
  • R' is selected from the group consisting of hydrogen and methyl groups;
  • x, y and z have a value between 0 and 60, more preferably 0 to 40, provided that (x+y+z) equals 2 to 100, preferably 4 to 24 and most preferably 4 to 19, wherein in Formula (I) the weight ratio of monoester / diester / triester is 40 to 90 / 5 to 35 / 1 to 20, more preferably 50 to 90 / 9 to 32 / 1 to 12, wherein the weight ratio of Formula (I) to Formula (II) is a value between 3 to 0.02, preferably 3 to 0.1 , most preferably 1.5 to 0.2, wherein it is most preferred that there is more of Formula (II) than Formula (I) in the mixture that forms the compound.
  • the ethoxylated glycerol type compound used in the instant composition is manufactured by the Kao Corporation and sold under the trade name Levenol such as Levenol F-200 which has an average EO of 6 and a molar ratio of coco fatty acid to glycerol of 0.55 or Levenol V501/2 which has an average EO of 17 and a molar ratio of tallow fatty acid to glycerol of 1.0. It is preferred that the molar ratio of the fatty acid to glycerol is less than 1.7, more preferably less than 1.5 and most preferably less than 1.0.
  • the ethoxylated glycerol type compound has a molecular weight of 400 to 1600, and a pH (50 grams / liter of water) of 5-7.
  • the Levenol compounds are substantially non irritant to human skin and have a primary biodegradabillity higher than 90% as measured by the Wickbold method Bias-7d.
  • Levenol V-501/2 Two examples of the Levenol compounds are Levenol V-501/2 which has 17 ethoxylated groups and is derived from tallow fatty acid with a fatty acid to glycerol ratio of 1.0 and a molecular weight of 1465 and Levenol F-200 has 6 ethoxylated groups and is derived from coco fatty acid with a fatty acid to glycerol ratio of 0.55.
  • Both Levenol F-200 and Levenol V-501/2 are composed of a mixture of Formula (I) and Formula (II).
  • the Levenol compounds has ecoxicity values of algae growth inhibition > 100 mg/liter; acute toxicity for Daphniae > 100 mg/liter and acute fish toxicity > 100 mg/liter.
  • the Levenol compounds have a ready biodegradability higher than 60% which is the minimum required value according to OECD 301 B measurement to be acceptably biodegradable.
  • Polyesterified nonionic compounds also useful in the instant compositions are Crovol PK-40 and Crovol PK-70 manufactured by Croda GMBH of the Netherlands.
  • Crovol PK-40 is a polyoxyethylene (12) Palm Kernel Glyceride which has 12 EO groups.
  • Crovol PK-70 which is preferred is a polyoxyethylene (45) Palm Kernel Glyceride have 45 EO groups.
  • the water soluble ethoxylated nonionic surfactants which can be utilized in this invention are commercially well known and include the primary aliphatic alcohol ethoxylates, secondary aliphatic alcohol ethoxylates, alkylphenol ethoxylates and ethylene-oxide-propylene oxide condensates on primary alkanols, such a Plurafacs (BASF) and condensates of ethylene oxide with sorbitan fatty acid esters such as the Tweens (ICI).
  • the nonionic synthetic organic detergents generally are the condensation products of an organic aliphatic or alkyl aromatic hydrophobic compound and hydrophilic ethylene oxide groups.
  • any hydrophobic compound having a carboxy, hydroxy, amido, or amino group with a free hydrogen attached to the nitrogen can be condensed with ethylene oxide or with the polyhydration product thereof, polyethylene glycol, to form a water soluble nonionic detergent.
  • the nonionic detergent class includes the condensation products of a higher alcohol (e.g., an alkanol containing 8 to 18 carbon atoms in a straight or branched chain configuration) condensed with 5 to 30 moles of ethylene oxide, for example, lauryl or myristyl alcohol condensed with 16 moles of ethylene oxide (EO), tridecanol condensed with 6 to moles of EO, myristyl alcohol condensed with 10 moles of EO per mole of myristyl alcohol, the condensation product of EO with a cut of coconut fatty alcohol containing a mixture of fatty alcohols with alkyl chains varying from 10 to 14 carbon atoms in length and wherein the condensate contains either 6 moles of EO per mole of total alcohol or 9 moles of EO per mole of alcohol and tallow alcohol ethoxylates containing 6 EO to 11 EO per mole of alcohol.
  • a higher alcohol e.g., an alkanol containing 8 to
  • Neodol ethoxylates which are higher aliphatic, primary alcohol containing 9-15 carbon atoms, such as Cg-C-
  • ethoxamers have an HLB (hydrophobic lipophilic balance) value of 8 to 15 and give good O/W emulsification, whereas ethoxamers with HLB values below 8 contain less than 5 ethyleneoxide groups and tend to be poor emulsifiers and poor detergents.
  • HLB hydrophobic lipophilic balance
  • Additional satisfactory water soluble alcohol ethylene oxide condensates are the condensation products of a secondary aliphatic alcohol containing 8 to 18 carbon atoms in a straight or branched chain configuration condensed with 5 to 30 moles of ethylene oxide.
  • Examples of commercially available nonionic detergents of the foregoing type are C-
  • nonionic detergents include the polyethylene oxide condensates of one mole of alkyl phenol containing from 8 to 18 carbon atoms in a straight- or branched chain alkyl group with 5 to 30 moles of ethylene oxide.
  • alkyl phenol ethoxylates include nonyl condensed with 9.5 moles of EO per mole of nonyl phenol, dinonyl phenol condensed with 12 moles of EO per mole of dinonyl phenol, dinonyl phenol condensed with 15 moles of EO per mole of phenol and di- isoctylphenol condensed with 15 moles of EO per mole of phenol.
  • nonionic surfactants of this type include Igepal CO-630 (nonyl phenol ethoxylate) marketed by GAF Corporation.
  • Condensates of 2 to 30 moles of ethylene oxide with sorbitan mono- and tri- C10- 20 alkanoic acid esters having a HLB of 8 to 15 also may be employed as the nonionic detergent ingredient in the described shampoo.
  • These surfactants are well known and are available from Imperial Chemical Industries under the Tween trade name. Suitable surfactants include polyoxyethylene (4) sorbitan monolaurate, polyoxyethylene (4) sorbitan monostearate, polyoxyethylene (20) sorbitan t oleate and polyoxyethylene (20) sorbitan tristearate.
  • the silicone antifoam agents which are used at a concentration of 0.01 wt. % to 0.2 wt. %, more preferably 0.025 wt.
  • siloxanes such as polydimethyl siloxane (TP305 manufactured by OSI Specialties), polyaclkylene oxide methyl siloxane and a mixture of polyglycol and siloxane.
  • the major class of compounds found to provide highly suitable cosurfactants for the microemulsion over temperature ranges extending from 5°C to 43°C for instance are water-soluble polyethylene glycols having a molecular weight of 150 to 1000, polypropylene glycol of the formula HO(CH3CHCH2 ⁇ )nH wherein n is a number from 2 to 18, mixtures of polyethylene glycol and polypropylene glycol (Synalox) and mono and di C1 -C6 alkyl ethers and esters of ethylene glycol and propylene glycol having the structural formulas R(X) n OH, R ⁇ (X) n OH, R(X) n OR and R ⁇ (X) n OR ⁇ wherein R is Ci - C6 alkyl group, Ri is C2-C4 acyl group, X is (OCH2CH2) or (OCH2(CH3)CH) and n is a number from 1 to 4, diethylene glycol, triethylene glycol, an alkyl lactate,
  • Representative members of the polypropylene glycol include dipropylene glycol and polypropylene glycol having a molecular weight of 150 to 1000, e.g., polypropylene glycol 400.
  • Other satisfactory glycol ethers are ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monobutyl ether (butyl carbitol), triethylene glycol monobutyl ether, mono, di, tri propylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, mono, di, tripropylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, propylene glycol tertiary butyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monopropyl ether, ethylene glycol monopentyl ether, diethylene glycol mono
  • glycol type cosurfactants When these glycol type cosurfactants are at a concentartion of 1.0 to 14 weight %, more preferably 2.0 weight % to 10 weight % in combination with a water insoluble hydrocarbon which is at a concentration of at least 0.5 weight %, more preferably 1.5 weight % one can form a microemulsion composition. While all of the aforementioned glycol ether compounds provide the described stability, the most preferred cosurfactant compounds of each type, on the basis of cost and cosmetic appearance (particularly odor), are dipropylene glycol monomethyl ether and diethylene glycol monobutyl ether. Other suitable water soluble cosurfactants are water soluble esters such as ethyl lactate and water soluble carbohydrates such as butyl glycosides.
  • the amount of cosurfactant required to stabilize the microemulsion compositions will, of course, depend on such factors as the surface tension characteristics of the cosurfactant, the type and amounts of the primary surfactants and water insoluble hydrocarbon, and the type and amounts of any other additional ingredients which may be present in the composition and which have an influence on the thermodynamic factors enumerated above.
  • amounts of cosurfactant in the range of from 0.1 % to 15%, preferably from 1 wt. % to 10 wt. % provide stable dilute o/w microemulsions for the above-described levels of primary surfactants and water insoluble hydrocarbon and any other additional ingredients as described below.
  • the amount of secondary alcohol cosurfactant required to stabilize the microemulsion compositions will, of course, depend on such factors as the surface tension characteristics of the cosurfactant, the type and amounts of the primary surfactants and perfumes, and the type and amounts of any other additional ingredients which may be present in the composition and which have an influence on the thermodynamic factors enumerated above.
  • the amounts of the secondary alcohol cosurfactant used in the microemulsion is in the range of from 0.1 % to 10%, preferably from 0.5% to 8%, by weight provide stable dilute o/w microemulsions for the above-described levels of primary surfactants and perfume and any other additional ingredients as described below.
  • the amount of cosurfactant in the all purpose hard surface cleaning composition will be in the range of 0 to 10%, more preferably 0.1 % to 8% by weight.
  • the ability to formulate neutral and acidic products without builders which have grease removal capacities is a feature of the present invention because the prior art o/w microemulsion formulations most usually are highly alkaline or highly built or both.
  • the final essential ingredient in the inventive microemulsion compositions having improved interfacial tension properties is water.
  • the proportion of water in the microemulsion or all purpose hard surface cleaning composition compositions generally is in the range of 20% to 97%, preferably 70% to 97% by weight.
  • the dilute o/w microemulsion liquid all-purpose cleaning compositions of this invention are especially effective when used as is, that is, without further dilution in water, since the properties of the composition as an o/w microemulsion are best manifested in the neat (undiluted) form.
  • the properties of the composition as an o/w microemulsion are best manifested in the neat (undiluted) form.
  • surfactants, cosurfactants, perfume and other ingredients some degree of dilution without disrupting the microemulsion, per se, is possible.
  • compositions of this invention may often and preferably do contain one or more additional ingredients which serve to improve overall product performance.
  • One such ingredient is an inorganic or organic salt of oxide of a multivalent metal cation, particularly Mg ++ .
  • the metal salt or oxide provides several benefits including improved cleaning performance in dilute usage, particularly in soft water areas, and minimized amounts of perfume required to obtain the microemulsion state.
  • Magnesium sulfate either anhydrous or hydrated (e.g., heptahydrate), is especially preferred as the magnesium salt.
  • Good results also have been obtained with magnesium oxide, magnesium chloride, magnesium acetate, magnesium propionate and magnesium hydroxide.
  • These magnesium salts can be used with formulations at neutral or acidic pH since magnesium hydroxide will not precipitate at these pH levels.
  • magnesium is the preferred multivalent metal from which the salts (inclusive of the oxide and hydroxide) are formed
  • other polyvalent metal ions also can be used provided that their salts are nontoxic and are soluble in the aqueous phase of the system at the desired pH level.
  • polyvalent metal ions include aluminum, copper, nickel, iron, calcium, etc. It should be noted, for example, that with the preferred paraffin sulfonate anionic detergent calcium salts will precipitate and should not be used. It has also been found that the aluminum salts work best at pH below 5 or when a low level, for example 1 weight percent, of citric acid is added to the composition which is designed to have a neutral pH. Alternatively, the aluminum salt can be directly added as the citrate in such case.
  • the same general classes of anions as mentioned for the magnesium salts can be used, such as halide (e.g., bromide, chloride), sulfate, nitrate, hydroxide, oxide, acetate, propionate, etc.
  • the metal compound is added to the composition in an amount sufficient to provide at least a stoichiometric equivalent between the anionic surfactant and the multivalent metal cation.
  • a stoichiometric equivalent between the anionic surfactant and the multivalent metal cation For example, for each gram-ion of Mg++ there will be 2 gram moles of paraffin sulfonate, alkylbenzene sulfonate, etc., while for each gram-ion of A1 3+ there will be 3 gram moles of anionic surfactant.
  • the proportion of the multivalent salt generally will be selected so that one equivalent of compound will neutralize from 0.1 to 1.5 equivalents, preferably 0.9 to 1.4 equivalents, of the acid form of the anionic surfactant.
  • the amount of multivalent salt will be in range of 0.5 to 1 equivalents per equivalent of anionic surfactant.
  • the all-purpose liquid cleaning composition of this invention may, if desired, also contain other components either to provide additional effect or to make the product more attractive to the consumer.
  • Colors or dyes in amounts up to 0.5% by weight; bactericides in amounts up to 1 % by weight; preservatives or antioxidizing agents, such as formalin, 5-bromo-5-nitro-dioxan- 1 ,3; 5-chloro-2-methyl-4-isothaliazolin-3-one, 2,6-di-tert.butyl-p-cresol, etc., in amounts up to 2% by weight; and pH adjusting agents, such as sulfuric acid or sodium hydroxide, as needed. Furthermore, if opaque compositions are desired, up to 4% by weight of an opacifier may be added.
  • the all-purpose hard surface liquid cleaning compositions and clear microemulsions exhibit stability at reduced and increased temperatures. More specifically, such compositions remain clear and stable in the range of 5°C to 50°C, especially 10°C to 43°C.
  • Such compositions exhibit a pH in the acid or neutral range depending on intended end use.
  • the liquids are readily pourable and exhibit a viscosity in the range of 6 to 60 milliPascal second (mPas.) as measured at 25°C with a Brookfield RVT Viscometer using a #1 spindle rotating at 20 RPM.
  • the viscosity is maintained in the range of 10 to 40 mPas.
  • compositions are directly ready for use or can be diluted as desired and in either case no or only minimal rinsing is required and substantially no residue or streaks are left behind. Furthermore, because the compositions are free of detergent builders such as alkali metal polyphosphates they are environmentally acceptable and provide a better "shine" on cleaned hard surfaces.
  • liquid compositions When intended for use in the neat form, the liquid compositions can be packaged under pressure in an aerosol container or in a pump-type sprayer for the so- called spray-and-wipe type of application.
  • compositions as prepared are aqueous liquid formulations and since no particular mixing is required to form the microemulsion, the compositions are easily prepared simply by combining all the ingredients in a suitable vessel or container.
  • the order of mixing the ingredients is not particularly important and generally the various ingredients can be added sequentially or all at once or in the form of aqueous solutions of each or all of the primary detergents and cosurfactants can be separately prepared and combined with each other and with the perfume.
  • the magnesium salt, or other multivalent metal compound when present, can be added as an aqueous solution thereof or can be added directly. It is not necessary to use elevated temperatures in the formation step and room temperature is sufficient.
  • the instant microemulsion formulas explicitly exclude alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates because these materials, if used in the instant composition, would cause the composition to have a high pH as well as leaving residue on the surface being cleaned.
  • alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates because these materials, if used in the instant composition, would cause the composition to have a high pH as well as leaving residue on the surface being cleaned.
  • the instant partially esterified ethoxylated polyhydric alcohol compound can be employed in hard surface cleaning compositions such as wood cleaners, window cleaners and light duty liquid cleaners.
  • Example 1 The following compositions in wt. % were prepared by simple mixing at 25°C:
  • (a) contains 25% by weight of terpenes.
  • the instant compositions are tested in dilute condition (recommended dosage- tap water).
  • the selected support is black brilliant PMMA tile used also to visualize residues.
  • a piece of cotton (polyester-cotton) floor-cloth is immersed in the solution of cleaning product (recommended use concentration).
  • the floor cloth are desized 10 times in the solution of cleaning product.
  • the excess of product is squeezed out.
  • the floor-cloth as well as the black brilliant PMMA tile is placed in a machine .
  • the pressure at the interface (cloth/tile) is adjusted at ca. 1 kg.
  • the machine operates for 15 sec.
  • the tiles (5 - 15 replicates per product) are dried in open air and the drying time per tile is recorded.
  • the drying time means are reported on the above table.
  • the drying time of the compositions are set forth in Figure 1.
  • Example 2 The following composition in wt. % was prepared by simple mixing at 25°C:
  • (a) contains 25% by weight of terpenes.
  • the described invention broadly relates to an improvement in microemulsion and all purpose hard surface cleaning compositions containing an anionic surfactant, and/or a partially esterified ethoxylated polyhydric alcohol and/or an ethoxylated nonionic surfactant, a secondary alcohol cosurfactant, a hydrocarbon ingredient and water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention concerne une amélioration concernant une composition nettoyante liquide universelle et une composition en microémulsion qui sont particulièrement efficaces pour enlever les salissures huileuses et graisseuses et qui contiennent un détergent anionique, un tensioactif non ionique ou un composé du type polyol éthoxylé, un deuxième cosurfactant alcoolisé, un ingrédient hydrocarburé et de l'eau.
PCT/US1998/012651 1997-06-23 1998-06-17 Compositions nettoyantes liquides universelles et en microemulsion WO1998059031A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU79755/98A AU7975598A (en) 1997-06-23 1998-06-17 Microemulsion all purpose liquid cleaning compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US99967497A 1997-06-23 1997-06-23
US08/999,674 1997-06-23

Publications (1)

Publication Number Publication Date
WO1998059031A1 true WO1998059031A1 (fr) 1998-12-30

Family

ID=25546589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/012651 WO1998059031A1 (fr) 1997-06-23 1998-06-17 Compositions nettoyantes liquides universelles et en microemulsion

Country Status (2)

Country Link
AU (1) AU7975598A (fr)
WO (1) WO1998059031A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059050A1 (fr) * 2000-02-11 2001-08-16 Colgate-Palmolive Company Compositions de nettoyage liquides acides a usages multiples
US7098388B2 (en) 2000-09-26 2006-08-29 Pioneer Hi-Bred International, Inc. Nucleotide sequences affecting plant male fertility and methods of using same
WO2009112974A2 (fr) * 2008-03-14 2009-09-17 The Procter & Gamble Company Détergent à lessive liquide pour lavage à la main à faible pouvoir moussant
WO2011133371A1 (fr) * 2010-04-19 2011-10-27 The Procter & Gamble Company Procédé de blanchissage de tissu utilisant une composition liquide concentrée de détergent à lessive

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586323A1 (fr) * 1992-07-20 1994-03-09 Kao Corporation, S.A. Composition détergente et méthode pour sa fabrication
WO1995014765A1 (fr) * 1993-11-22 1995-06-01 Colgate-Palmolive Company Compositions nettoyantes liquides polyvalentes en microemulsion
WO1995021238A1 (fr) * 1994-02-02 1995-08-10 Colgate-Palmolive Company Compositions liquides de nettoyage
EP0672747A2 (fr) * 1994-03-14 1995-09-20 Colgate-Palmolive Company Compositions de nettoyage liquides d'usage général en micro-émulsion
US5561106A (en) * 1994-02-07 1996-10-01 Erilli; Rita High foaming light duty liquid detergent composition comprising partially esterified ethoxylated polyhydric alcohol solubilizing agent
WO1998006819A2 (fr) * 1996-08-16 1998-02-19 Colgate-Palmolive Company Compositions detergentes liquides a usages multiples en micro-emulsion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586323A1 (fr) * 1992-07-20 1994-03-09 Kao Corporation, S.A. Composition détergente et méthode pour sa fabrication
WO1995014765A1 (fr) * 1993-11-22 1995-06-01 Colgate-Palmolive Company Compositions nettoyantes liquides polyvalentes en microemulsion
WO1995021238A1 (fr) * 1994-02-02 1995-08-10 Colgate-Palmolive Company Compositions liquides de nettoyage
US5561106A (en) * 1994-02-07 1996-10-01 Erilli; Rita High foaming light duty liquid detergent composition comprising partially esterified ethoxylated polyhydric alcohol solubilizing agent
EP0672747A2 (fr) * 1994-03-14 1995-09-20 Colgate-Palmolive Company Compositions de nettoyage liquides d'usage général en micro-émulsion
WO1998006819A2 (fr) * 1996-08-16 1998-02-19 Colgate-Palmolive Company Compositions detergentes liquides a usages multiples en micro-emulsion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059050A1 (fr) * 2000-02-11 2001-08-16 Colgate-Palmolive Company Compositions de nettoyage liquides acides a usages multiples
EP1466961A1 (fr) * 2000-02-11 2004-10-13 Colgate-Palmolive Company Compositions acides, liquides de nettoyage pour tout usage
US7098388B2 (en) 2000-09-26 2006-08-29 Pioneer Hi-Bred International, Inc. Nucleotide sequences affecting plant male fertility and methods of using same
WO2009112974A2 (fr) * 2008-03-14 2009-09-17 The Procter & Gamble Company Détergent à lessive liquide pour lavage à la main à faible pouvoir moussant
WO2009112974A3 (fr) * 2008-03-14 2009-11-05 The Procter & Gamble Company Détergent à lessive liquide pour lavage à la main à faible pouvoir moussant
WO2011133371A1 (fr) * 2010-04-19 2011-10-27 The Procter & Gamble Company Procédé de blanchissage de tissu utilisant une composition liquide concentrée de détergent à lessive

Also Published As

Publication number Publication date
AU7975598A (en) 1999-01-04

Similar Documents

Publication Publication Date Title
US6191090B1 (en) Microemulsion all purpose liquid cleaning composition based on EO-PO nonionic surfactant
EP0934399B1 (fr) Compositions nettoyantes liquides en microemulsion pour tous usages
US5759983A (en) Aqueous cleaning composition which may be in microemulsion form comprising polyalkylene oxide -polydimethyl siloxane and ethoxylated secondary alcohol
EP1000134B1 (fr) Compositions de nettoyage liquides a usages multiples
AU727094B2 (en) Microemulsion all purpose liquid cleaning compositions
US5952281A (en) Aqueous cleaning composition which may be in microemulsion form containing a silicone antifoam agent
US5776880A (en) Aqueous cleaning compositions which may be in microemulsion form comprising ethoxylated secondary alcohol cosurfactant
US5851976A (en) Microemulsion all purpose liquid cleaning compositions
US6017868A (en) Microemulsion all purpose liquid cleaning composition based on EO-PO nonionic surfactant
US6025318A (en) Microemulsion liquid cleaning composition containing a short chain amphiphile
AU762731B2 (en) Microemulsion liquid cleaning composition containing a short chain amphiphile
US6136773A (en) Microemulsion liquid cleaning composition containing a short chain amphiphile and mixtures of partially esterified fully esterified and non-esterified polyhydric alcohols
AU758056B2 (en) Microemulsion all purpose liquid cleaning compositions
US5858956A (en) All purpose liquid cleaning compositions comprising anionic, EO nonionic and EO-BO nonionic surfactants
WO1998059031A1 (fr) Compositions nettoyantes liquides universelles et en microemulsion
US5981462A (en) Microemulsion liquid cleaning composition containing a short chain amphiphile
US5994287A (en) Microemulsion liquid cleaning composition containing a short chain amphiphile
AU738847B2 (en) All purpose liquid cleaning compositions
AU2003227278A1 (en) Microemulsion liquid cleaning composition containing a short chain amphiphile I

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1999504770

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA