WO1998055727A1 - Ensemble a bras deployable a utiliser dans des puits de forage - Google Patents

Ensemble a bras deployable a utiliser dans des puits de forage Download PDF

Info

Publication number
WO1998055727A1
WO1998055727A1 PCT/AU1998/000422 AU9800422W WO9855727A1 WO 1998055727 A1 WO1998055727 A1 WO 1998055727A1 AU 9800422 W AU9800422 W AU 9800422W WO 9855727 A1 WO9855727 A1 WO 9855727A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
arm member
borehole
arm
cutting device
Prior art date
Application number
PCT/AU1998/000422
Other languages
English (en)
Inventor
Robert Trueman
Timothy Gregory Hamilton Meyer
Matthew Stockwell
Original Assignee
The University Of Queensland
Commonwealth Scientific And Industrial Research Organisation
Bhp Coal Pty. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Queensland, Commonwealth Scientific And Industrial Research Organisation, Bhp Coal Pty. Ltd. filed Critical The University Of Queensland
Priority to PL98337328A priority Critical patent/PL189235B1/pl
Priority to AU77508/98A priority patent/AU7750898A/en
Priority to CA002292639A priority patent/CA2292639C/fr
Priority to GB9928618A priority patent/GB2342373B/en
Publication of WO1998055727A1 publication Critical patent/WO1998055727A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/09Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/061Deflecting the direction of boreholes the tool shaft advancing relative to a guide, e.g. a curved tube or a whipstock
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/18Drilling by liquid or gas jets, with or without entrained pellets

Definitions

  • This invention relates to an erectable arm assembly for use in boreholes, and particularly relates to an assembly which can direct a fluid cutter into the borehole wall
  • Whipstocks are well known in the mining and petroleum industries and are used to change the direction of a drill hole (directional drilling) Since the earliest times, boreholes were made to deviate by placing tapered wedges or "whipstocks" in the borehole to force the bit sideways into a new direction, and it is well known that different bottom-hole assemblies had a tendency either to increase or decrease the inclination of the hole No one drilling method is satisfactory for all radii of curvature It is therefore customary to distinguish among these as long-, medium-, short-, and ultra-short-radius methods
  • the invention relates to ultra-short-radius methods which are typically defined to have a radius of 2ft (0 6m) or less
  • the second category consists of wells in which part of the well that lies in a particular oil or gas reservoir is given a particular orientation so as to increase productivity
  • An example of this second category is a vertically thin reservoir where a horizontal hole can contact a greater part of the reservoir than a vertical one, increasing the drainage contact area It is this second category to which the invention primarily relates
  • Ultra-short-radius whipstocks have been developed that are applicable to the second category of directional drilling
  • a common feature of existing ultra-short-radius whipstocks is a requirement to incorporate a device in the bottom-hole assembly that either pushes the drill string around the ultra-short-radius and into the deposit which is to be drilled, or uses a complicated hydraulic piston drive arrangement
  • Drill strings for use with these whipstocks are either segmented or coiled tubing
  • More elaborate devices are also known to turn a drill string and/or cutter into the borehole wall.
  • U.S. patent 5,197,783 describes a cavity forming device for use in boreholes and which has an erectable arm member provided with a fluid cutting jet to cut a large cavity in the borehole.
  • U.S. patent 4,497,381 describes a drill string bending assembly which has an extending arm portion to direct the drill string into the sidewall.
  • a disadvantage with existing whipstocks and other similar assemblies is in correctly determining various parameters in the down hole and drilling process. For instance it is necessary to determine the distance travelled by the fluid cutter, whether the segmented or coiled tubing drill string is feeding properly through the bore, when the fluid cutter is properly retracted so that the arm member can be retracted, the orientation of the arm member, the degree of inclination of the arm member, and so on.
  • the assembly of the invention can be used with a drilling system that uses a high pressure hose as a flexible hose drill string and a self-advancing fluid jet cutting nozzle.
  • a drilling system that uses a high pressure hose as a flexible hose drill string and a self-advancing fluid jet cutting nozzle.
  • a nozzle has been described in International Application No. PCT/AU96/00783.
  • the present invention is directed to a method for directional drilling of lateral boreholes from an existing borehole, and to an assembly which can be lowered down the existing borehole and where the assembly has an arm member which can be erected to position a cutter and/or drill string into a side wall of the borehole.
  • the assembly can cut a slot into the side wall of the borehole as the arm is erected.
  • an erectable arm assembly for use in a borehole, the erectable arm assembly comprising a main body and an arm member, the arm member movable between a collapsed position in which the assembly can be removed from the borehole and an erected position, the arm assembly being adapted to house a fluid drilling assembly comprising a fluid cutting device and a flexible hose drill string such that during erection the arm member can contain at least part of the fluid drilling assembly, and when in the erected position the arm member is able to guide the fluid cutting device towards the borehole wall, the assembly further including at least one sensor for monitoring the arm member or the fluid drilling assembly
  • the invention resides in a method for forming at least one lateral borehole from an existing borehole, the method comprising lowering an erectable arm assembly into the borehole to a desired position, the assembly having a main body and an erectable arm member, positioning a self-advanceable fluid cutting device to be supported by the arm member at least as the arm member is erected, operating the fluid cutting device to self advance the fluid cutting device from the arm member and into the side wall of the borehole to form a lateral bore in a direction dictated by the position of the arm member in the borehole
  • the invention resides in an erectable arm assembly for use in a borehole, the assembly comprising a main body and an arm member which can move between a collapsed position where the assembly can be installed and removed from the borehole, and an erected position where the arm member can guide a fluid drilling assembly towards the borehole wall
  • the invention resides in a method for forming at least one lateral borehole of known distance from an existing borehole, comprising lowering an assembly in the borehole to a desired position, the assembly having a main body and an erectable arm member, positioning a self- advanceable fluid cutting device to be supported by the arm member at least as the arm member is erected, operating the fluid cutting device to self-advance the fluid cutting device from the arm and into the side wall of the borehole to form a lateral bore in a direction dictated by the position of the arm member in the borehole
  • the method comprises monitoring the length of the lateral bore by at least one sensor on the assembly
  • the method can be used to form several lateral bores approximately in the same plane but in different directions, and this can be achieved by turning the assembly in the existing borehole before launching the fluid cutter
  • the method may also be used to form several lateral bores in different planes
  • the method can include an assembly as described above and having various sensors as described above
  • the method and assembly can be used as a tight radius drilling system (TRD) by which is meant that the flexible hose drill string can be turned through 90 degrees within a short radius, typically less than 300mm
  • TRD tight radius drilling system
  • the method and assembly can be used to drill multiple lateral boreholes from a single existing borehole in the same horizon and/or at multiple horizons, for instance to extract methane from coal seams
  • the existing boreholes are typically vertical or near vertical
  • the lateral boreholes generally follow the direction of a coal seam and are typically horizontal
  • production of gas from the well is started by lowering the water level in the existing borehole with a simple foot pump or the like.
  • the current method and assembly can form horizontal lateral boreholes in excess of 200 metres almost directly from the existing borehole well.
  • the borehole may extend to a depth of at least 400 metres and in some cases may exceed 600 metres
  • the tight radius bend helps eliminate a lot of the problems encountered with dewate ⁇ ng larger radius deviated wells by requiring only a basic foot pump inserted into the existing borehole to dram all of the lateral boreholes branching from that well
  • one form of the invention is a method and assembly for recovering methane from underground deposits which incorporate the above described method for directional drilling and the assembly.
  • the main body of the assembly is elongate and has a prismatic configuration or tubular configuration.
  • the main body may have a channel like cross section.
  • the arm member may be pivotally attached to the main body such that it can move about a pivot axis between its retracted position and its extended position. It is preferred that the arm member, in the retracted position, sits entirely within or substantially entirely within the main body.
  • the main body may have an open front through which the arm member can extend.
  • the main body may be provided with a recessed portion in which the arm member lies when the arm member is in the retracted position.
  • the arm member may comprise a single member, or a number of members coupled together. For instance, if the flexible hose drill string, when guided through the assembly, requires a larger degree of curvature, the arm member may be formed from two linked members.
  • the arm member may comprise a single member, or a number of separate members which can be hinged together, telescoped together, and the like.
  • the arm member may be moved between its retracted and extended position by an actuator.
  • the actuator may be located within the main body.
  • the actuator may comprise a hydraulic or pneumatic ram, one end of which is attached relative to the main body, and the other end of which is attached relative to the arm member.
  • the arm member may comprise a sliding link arrangement.
  • the arm member may be hingedly coupled relative to the body.
  • a link member may be pivotally coupled to the arm member and to a slide.
  • the slide can move along a track and is coupled to an actuator.
  • the actuator can cause the slide to move along its track which in turn can cause the arm member to move between its retracted and extended positions.
  • the arm member is configured to allow it to support a flexible hose drill string.
  • the arm member can be maintained in its extended position and a flexible hose drill string can be passed down the existing borehole through an upper portion of the tubular body and along the arm member thereby positioning the drill string for lateral borehole formation.
  • the arm member may be tubular in configuration to allow the flexible hose drill string to pass therethrough.
  • other methods of supporting the flexible hose drill string are envisaged such as struts, guides, and the like.
  • the assembly houses a self- advancing fluid cutting device.
  • the fluid powered cutting device may be self- propelled and may be steerable.
  • the cutting device may be connected to a flexible hose drill string in the form of a tube or hose or combination thereof, through which high pressure fluid can pass to provide the required propulsion of the cutting device, and optionally also to provide high pressure fluid to the forward nozzles.
  • the cutting device may be held by the arm member, and if the arm member is tubular, may be positioned within the arm member.
  • the cutting device in an embodiment, has a substantially tubular steel body with at least one forwardly directing high pressure water jet cutting nozzle, and at least one rearwardly facing thrusting jet to propel the device in a forward direction.
  • the assembly can be positioned at a desired elevation in the existing borehole and used to launch the cutting device to cut a series of lateral boreholes
  • the assembly can be turned in the borehole before the cutting device is again launched
  • a clamping means can be provided to clamp the assembly in the borehole at the desired azimuth
  • the clamping means may be provided on the assembly below the arm member and may comprise an extendible member which can be actuated to clamp the assembly against the borehole wall or casing
  • At least one flushing jet may be provided to flush away any cuttings which may settle on the assembly and especially around the arm member as the cutting device is operative
  • the assembly has no self slotting capability, a cavity is required in the existing borehole to allow the arm member to be erected
  • Conventional cavity formers are well known, but these devices are not generally able to form cavities of a precise size and shape If the assembly is lowered into a cavity which is too large, and the arm member erected, the free end of the arm member may be some distance from the cavity wall If the fluid cutting device is launched, it can become jammed between the end of the arm member and the cavity wall, or can lose its desired orientation
  • the cavity reamer may comprise a rotatable main body which can be lowered down an existing borehole and a plurality of erectable arm members which can be moved between a collapsed position substantially in line with the main body, and an extending position where the arm members contact the side wall of the borehole, the arm members being provided with cutting means to cut a cavity in the borehole as the reamer is rotated in the borehole, and means to urge the arm members into the extended position
  • the arm member can have cutting means to cut a slot into the wall of the borehole as the arm member moves towards its extended position
  • the assembly can cut a slot as the arm member extends from the main body and therefore the need for a cavity may be eliminated or an undersized cavity may be used
  • the cutting means may comprise any type of cutting means which can cut into the side wall of the borehole as the arm member is extended.
  • the cutting means comprises high pressure fluid which may pass through one or more nozzles.
  • a number of cutting means are provided and these may be spaced along the arm member.
  • the one or more cutting means are located on a leading edge of the arm member, that is, the edge or portion of the arm member that is proximal to the side wall of the borehole which is to be cut.
  • the cutting means comprises high pressure fluid passing though nozzles
  • the nozzles are spaced along the arm member such that the spacing between a first nozzle and a second nozzle is about that of the working distance of the high pressure fluid. That is, if the high pressure fluid is able to efficiently cut a certain distance, the second nozzle is preferably positioned at that distance such that high pressure fluid passing through the second nozzle extends the cutting distance of the combined working fluids.
  • a number of sensors and/or instrumentation components can be included in order to control the drilling system. Excess feed of high pressure hose from the surface can cause bunching at the assembly entry.
  • a hinge joint on one of the rollers may have a strain gauge to measure force on the roller. This gives an indication of tension on the high pressure hose through the assembly.
  • a position transducer in the hydraulic ram and a tilt transducer in the arm member can measure the arm member inclination.
  • a contact or inductive sensor can be located in the arm member to indicate the positive retraction of the drilling assembly from the lateral borehole.
  • Pressure transducers and temperature gauges may be located in the assembly to measure existing borehole hydrostatic pressure and temperature.
  • An optical sensor may be located in the assembly to pick up reflected light from cuttings as they exit the lateral boreholes enabling colour change to be assessed. An assessment of the strata in which drilling is carried out can therefore be made.
  • location of the cutting device in the arm member can be detected by an electro-magnetic sensor which detects the presence of the steel body of the cutting device
  • the sensor can be positioned in the arm member
  • an electric sensor can be provided which detects the steel body of the cutting device by using the steel body to complete an electric circuit
  • the erection angle of the arm member is important to determine the launch angle of the cutting device within the arm member
  • a sensor to determine the extension of the ram can be used which will determine the erection angle of the arm member relative to the main body of the assembly
  • an arm member inclination sensor can be used This sensor can comprise a tilt transducer
  • a compass can be used to determine the azimuth
  • the assembly may therefore include a sensor to detect the speed and the direction of hose travel through the assembly
  • the sensor may comprise an encoder wheel in the assembly which is biased against the hose
  • a surface sensor may be provided to determine the amount of tension in the hose feeding down the existing borehole, and this sensor can comprise a load cell
  • the hose may be wound around a hose drum which may include a load cell to determine the tension in the hose
  • Figure 1 is a diagrammatic view showing a vertical borehole and a coal seam
  • Figures 2, 2A and 2B are views of an assembly according to an embodiment of the invention with the arm member in a retracted position
  • Figures 3, 3A and 3B are views of the assembly of Figure 2 with the arm in an extended position
  • Figure 4 is a view of an alternative assembly having a single linked arm member and without cutters, and in the extended position
  • Figure 5 is a view of another assembly in the retracted position, with fluid cutters, and with no provision for a flexible hose drill string to pass through the arm member (le a pure cutter)
  • Figure 6 is a view of the assembly of Figure 5 in the extended position
  • Figure 7 is a view of an assembly according to a further embodiment of the invention and which contains a number of sensors
  • Figure 8 is a close up view of the arm member of figure 7
  • Figure 1 shows a vertical bore 11 pre-d ⁇ lled into the ground and extending through a coal seam 10
  • An assembly 14 is shown in Figure 1 and which is positioned in a pre-formed slot or cavity 60 in one side of vertical borehole 11
  • a self-advancing steerable fluid cutting device 16 has been positioned substantially horizontally into coal seam 10 by virtue of the assembly 14
  • the self-advancing cutting device 16 has a tubular steel body about 40 - 80cm long and 5 - 15cm in diameter
  • the body has a number of rearwardly facing high pressure retro jet thrusters which propel the cutting apparatus in a forward direction
  • the front face of the cutting device is provided with one or more high pressure water jet cutters to cut the bore.
  • High pressure water is supplied to the cutting device by a surface pump 61 and through a high pressure flexible hose 62 which is attached to the rear of cutting device 16.
  • the flexible hose drill string 62 which extends to the surface and to a high pressure pump 61 and hose winch 18. High pressure fluid is passed through hose 62 to power the forward water jet cutters of the device 16 and also the retro-thrusters which propels the device forwardly and against the coal face to be cut by the water jets.
  • the cutting device 16 in the retracted "at home” position is initially within erectable arm member 22 which can move from a collapsed position where it is inside main body 20 of assembly 14 to an erect position as illustrated in Figure 1.
  • the arm member can adopt a partially erect position, with the position of the arm member determining the point of entry of the fluid cutting device 16 into the cavity side wall.
  • Cutting device 16 can be lowered down the vertical borehole and fed into arm member 22 when the arm member is in the collapsed position, or can be prepositioned in arm member before the assembly is lowered into the vertical bore. In both instances, the cutting device 16 is in the arm member as it is raised.
  • various sensors detect that the cutting device has been released from the arm member 22 and track the distance of travel of the cutting device.
  • the sensors also ensure that the cutting device is fully retracted into arm member 22 before the assembly is collapsed for withdrawal from the borehole, or for repositioning in the cavity to allow a further lateral bore to be cut by the cutting device.
  • Assembly 14 is releasably locked into position by a clamping means in the form of a borehole clamp 70.
  • Clamp 70 is positioned on a the centralising tail piece 64 of assembly 14 and below the cavity 60.
  • the clamp 70 consists of an hydraulically operated ram, a number of link members, and an expanding mechanism which pushes against the borehole casing thereby securing the assembly against twisting in the vertical borehole.
  • Hydraulic power can comprise pressurised water.
  • Borehole clamp 70 prevents assembly 14 from undesired twisting in the vertical bore as the cutting device is in operation. As the cutting device leaves arm member 22, the high pressure retro jets thrust against the sides of the arm member. Should the assembly twist, the arm member will twist away from the borehole entrance formed by the cutting device, and this can cause a sharp bend to form in the high pressure hose which can prevent advancement of the cutting device.
  • An instrument housing 19 is provided above arm member 22 to process the data from the various sensors.
  • Cavity 60 should be formed with good control of the cavity diameter to ensure that the end of arm member 22, when erect, is against, or spaced sufficiently close to the cavity wall, to ensure that the cutting device 16 in arm member 22 is launched correctly.
  • the free gap between the end of arm member 22 and the cavity side wall should be less that half the length of the cutting device.
  • FIG. 1 The assembly of Figure 1 is supported by a tubular steel drill rods 17 which consists of rigid steel rods coupled together as is known in the art. Alternatively, the assembly can be lowered down by coiled tubing as is also known in the art.
  • a control umbilical bundle 65 which incorporates cables and hoses for electric, hydraulic and water control, is strapped to tubular steel drill rods 17 and sends sensor information from the sensors and instruments within instrument housing 19 to the surface com ⁇ uter(s).
  • the assembly therefore allows accurate tracking of the position of the fluid cutter relative to the assembly.
  • a surface skid 9 can be provided to contain the necessary equipment to lower and raise the assembly and to control the cutting device 16, and the skid can contain the computers to decode the sensor readings.
  • FIG. 1 is merely illustrative of the general parts and features of the invention.
  • FIGS 7 and 8 illustrate an assembly 80 provided with various sensors and instrument packages. Like numbers have been used to identify like parts.
  • Assembly 80 has an arm member 22 in which a cutting device 16 is located when the cutting device is in the retracted position.
  • arm member 22 is substantially enclosed to define a cage.
  • an electro-magnetic sensor 81 which detects the presence of the steel bodied cutting device 16 using an alternating magnetic field.
  • Sensor 81 is used to detect when the cutting device 16 is fully retracted into the arm of the assembly. It should be realised that failure to fully retract cutting device 16 before collapsing assembly 80 can result to jamming the assembly in the vertical borehole.
  • Sensor 81 is positioned such that it detects the steel body of cutting device 16 only when the cutting device is fully retracted into arm member 22.
  • a second electric sensor 82 is provided. This sensor is also positioned on arm member 22 and detects full retraction of cutting device 16 into the arm member by using the steel body of the cutting device to complete an electric circuit which in turn causes the resistivity of the circuit to drop significantly when the cutting device makes contact with the sensor.
  • Assembly 80 has an hydraulic ram 84 which extends and collapses arm member 22.
  • a ram position sensor 83 comprising a linear transducer is incorporated into the ram rod. The signal from the transducer relates directly to the extension of the ram which can be related back to the angle of elevation of arm member 22.
  • an arm inclination sensor 85 is provided on arm member 22.
  • Sensor 85 is a tilt transducer whereby electrical resistance can be related directly to the relative orientation of the transducer around its central axis.
  • Sensor 85 in combination with ram position sensor 83 allows for a redundancy in determining the arm inclination, and in the event of mechanical failure of arm member 22, the sensors in combination will provide some diagnostic information.
  • Assembly 80 further includes a compass 86.
  • Compass 86 is a flux- gate magnetic compass which is used to indicate the azimuth of the front of assembly 80.
  • Sensor 86 is electronic and is mounted at the toe of the assembly away from magnetic material.
  • Sensor 86 is necessary for correctly positioning the radial lateral boreholes around the central existing borehole. Sensor 86 will work in combination with fibreglass casing, as steel casing will cause false readings. A gyroscopic compass will be used in applications with steel casing.
  • Assembly 80 further includes a flexible hose travel sensor 87.
  • Sensor 87 includes an encoder wheel which is used to detect the speed and direction of hose travel through assembly 80.
  • sensor 87 is a roller wheel which is spring loaded against the flexible hose. As the hose moves through the assembly, the roller wheel rotates. A series of magnets are placed circumferentially around both sides of the roller. Additional sensors are situated such that the magnets pass these sensors as the roller turns. A signal from the additional sensors can be interpreted for speed and direction of travel of the hose.
  • the hose travel sensor 87 gives a good indication of whether the cutting device 16 is penetrating into the coal seam and helps prevent feeding too much hose from the surface hose winch 18. (Too high a feed rate can cause bunching of the hose and risk hose damage and jamming of the assembly in the existing borehole).
  • Instrument housing 19 includes circuit boards, provides a power supply to the various sensors, receives signals from the sensors and sends data to the surface.
  • Instruments housing 19 contains a temperature transducer 88 to monitor the temperature inside instrument housing 19.
  • a pressure gauge 90 is provided to measure hydrostatic pressure.
  • load cells may be positioned on winch drums and supporting structures to record loads indicative of hose tension, to ensure that the hose is not overtensioned.
  • An additional related sensor can be provided on the hose winch drum and can consist of a load cell which indicates the torque provided by the hose drum motor. This data helps determine the tension in the hose at the surface and it compliments the load cell situated in the foot of the goose neck
  • a surface computer can be used to interpret the signals coming from the instrumentation on the assembly and at various places around the surface skid
  • Assembly 14 comprises a prismatic main body 20 which is elongate and hollow throughout its length Body 20 is half hexagonal and open at the front in cross- section Body 20 is sized to allow it to be lowered down borehole 11 to a desired position, for instance, adjacent a coal seam
  • Body 20 is fully open at the front, except for some structural stiffening members 21 This opening allows an internal arm member 22 to extend from body 20 Arm member 22 in Figure 2 is positioned entirely within body 20 thereby allowing the assembly 14 to easily move along bore 11
  • Arm member 22 is formed from two separate members being a first shorter arm member 23, and a second longer arm member 22 Arm members 23, 22 are hingedly coupled together at 24 to form a linked arm member system
  • the arm members are tubular or channel- shaped to allow a flexible hose drill string to pass therealong
  • the pair of linked arm members 22, 23 provide a larger degree of curvature to a flexible hose drill string passing down the borehole, into body 20, along first arm member 23 and along second arm member 22 This provides a minimum friction path and also reduces the possibility of the flexible hose drill string kinking, becoming caught, or being damaged as the flexible hose drill string passes from a vertical direction to a substantially horizontal direction
  • Guides in the form of rollers and the like 36 are located within arm members 22, 23 to assist in guiding the flexible hose drill string along the arm members
  • Arm member 22 is hingedly coupled to one end of an opposed pair of plate members 27, the plate members being hingedly attached at 28 to body 20, thereby allowing the arm member to move between its extended position and its retracted position
  • an actuator 29 which is in the form of a fluid ram having a ram body and a ram rod 29A, the ram rod being able to move into and out of ram body in the usual manner.
  • ram rod 29A is attached to a slide block 50.
  • Slide block 50 is mounted for sliding movement within body 20 and can slide between an upper position shown in Figure 3 and a lower position shown in Figure 2. Slide block 50 is moved between its upper and lower positions by ram 29. This is better illustrated in the embodiment of figure 4.
  • Link member 51 is formed from two spaced apart link bars which nest around arm member 22 when in the retracted position illustrated in Figure 2. This allows the assembly to be formed in a compact manner. Link member 51 is pivotally attached to arm member 22 at a position approximately mid-way along arm member 22.
  • Arm member 22 in the embodiment is a hollow steel member of substantially rectangular cross section.
  • a cutting means which comprises pairs, or an array of spaced nozzles 31 - 34.
  • Nozzles 31 - 34 are attached to a high pressure fluid hose (not shown) and high pressure cutting fluid can pass through the nozzles to cut a slot or cavity in the coal seam.
  • Nozzles 31 - 34 are spaced from each other by a distance approximating the working distance of the high pressure fluid passing through the nozzles. In this manner, efficient cutting of a slot in the coal seam occurs as arm member 22 is raised from the inside of main body 20.
  • rollers 36 function to guide the high pressure hose which powers the self- propelled steerable jet nozzle 16 illustrated in Figure 1. That is, rollers 36 prevent the hose from kinking as the hose passes from the inside of main body 20 to along the inside of arm member 22. Further guides in the form of rollers 37 are positioned inside main body 20 and on a pair of spaced apart plates between which the high pressure hose which powers the self-propelled steerable jet nozzle passes.
  • assembly 14 is passed down bore 11 until it reaches the desired position (within a coal seam). Water under high pressure is then supplied to nozzles 31 - 34 and at the same time ram 29 is actuated to begin movement of arm member 22. Initially, the forward portion of arm member 22 (that is, adjacent nozzles 31 ) will contact the side wall of the bore and these nozzles will begin to cut into the coal seam. High pressure water passing through nozzles 31 - 34 will also begin to cut into the coal seam as arm member 22 is further raised.
  • arm member 22 can be controlled by the degree of actuation of ram 29 and thus arm member 22 can be raised to 90° or over, but can also be raised partially, for instance, depending on the relative dip of the coal seam if the coal seam is not horizontal.
  • a flexible hose drill string can be lowered down existing borehole 10 and into arm member 22.
  • the end of the drill string is provided with a cutter, such as a fluid cutter, to then cut the passageway into the coal seam.
  • a self-advancing steerable jet nozzle can be prepositioned within arm member 22 before the assembly is lowered into the borehole.
  • the high pressure hose which supplies the self- propelled steerable jet nozzle is guided by rollers 36 and 37 and passes up bore 11 to the high pressure pump and hose winch 18.
  • the hose forms the drill string to the self-propelled steerable jet nozzle.
  • Water from the high pressure water pump 61 is supplied via the high pressure hose to the jet nozzle 16 at up to full pressure of 1150 bar at 234 litres per minute, thereby operating the cutting jet or jets and propelling the retrojet or jets.
  • the self-advancing nozzle penetrates the coal seam, the continuous flexible hose drill string (that is, the high pressure hose) is pulled behind it
  • the self-propelled nozzle can penetrate into the seam for a distance of up to 200 metres or more with typical drilling times of less than two hours.
  • the nozzle can then be retracted by winding the high pressure hose.
  • Ram 29 can then be actuated to return arm member 22 back into its retracted position as shown in Figure 2.
  • the assembly 14 can then be pulled up the hole, or alternatively, can be rotated about its longitudinal axis and the arm member extended to cut another passageway into the coal.
  • the assembly 14 can be attached to the surface by means of a conventional tubular steel drill rods or some other system such as coiled tubing.
  • the tubular steel drill rods or tubing supports the assembly 14 within the borehole.
  • the drill string or tubing provides the conduit to allow high pressure fluid to pass through the drill string or tubing and into cutting nozzles 31 - 34a.
  • a flexible high pressure hose can be used to supply water to these cutters
  • Rollers 36 - 37 provide a suitable bend radius for the flexible hose drill string which is connected to the self-propelled drilling nozzle 16, thereby allowing the flexible hose drill string to feed smoothly through the assembly as the nozzle penetrates laterally away from the assembly.
  • Figure 4 illustrates an assembly 40 according to another embodiment.
  • the assembly does not have any self slotting capability, but does house a self-propelled fluid cutting device in the extendible arm member
  • the assembly is lowered down a borehole which has an already formed cavity in it.
  • Assembly 40 is similar to that described with reference to Figures 2 and 3 in that it has an main elongate body 41 which is substantially hollow throughout its length.
  • body member 41 In body member 41 is an arm member 42 which can be moved between a retracted position (not shown) and an extended position illustrated in Figure 4. In the retracted position, arm member 42 is entirely within or essentially within body member 41 to allow the assembly 40 to be lowered into a borehole.
  • Guides in the form of rollers and the like 46 are located within arm member 42 and a small mostly internal arm member 43 to assist in guiding the flexible hose drill string along main body 40 and along arm member 42 and to minimise kinking of the drill string.
  • an actuator 47 which is in the form of a fluid ram having a ram body 48 and a ram rod 49, ram rod 49 being able to move into and out of ram body 48 in the usual manner.
  • Ram rod 49 is attached to a slide block 50.
  • Slide block 50 is mounted for sliding movement within body member 41 and can slide between an upper position shown in Figure 4 and a lower position (not shown). Slide block 50 is moved between its upper and lower positions by operation of actuator 47.
  • Link member 51 is formed from two spaced apart link bars which can nest around arm member 42 when arm member 42 is in its retracted position. This allows the assembly to be formed in a compact manner. Link member 51 is pivotally attached to arm member 42 at a position approximately mid-way along arm member 42.
  • Figures 5 and 6 illustrate an assembly similar to the assembly illustrated in Figure 4 but now including fluid cutters 52 - 54. These cutters are similar to the cutters and arrangement illustrated and described with reference to Figures 2 and 3 except that they are rigidly linked to a tramming hydraulic cylinder (not illustrated). This enables nozzles 52 - 54 to oscillate during cutting.
  • the assembly excludes the provision of a drill string passing through the main body and the arm member. This assembly simply creates the required slots and can then be removed from the borehole after which the assembly of Figure 4 can be inserted to allow drilling.
  • An air supply to an air lift device in the foot of the assembly may be provided to assist in removal of cuttings from the borehole as lateral penetration of the drilling nozzle occurs, and as the assembly forms the required slot.
  • a borehole which is usually vertical is conventionally drilled from surface (14%" diameter), intersecting the targeted seams for drainage.
  • a sump of sufficient capacity to take the cuttings from both the reaming/slotting operation and horizontal turnouts, and to house the foot pump once the production phase of the well commences is included.
  • the well is lined with 9 k" casing.
  • the casing material over the seam intersections is fibreglass. Alternatively, other casing materials such as steel, fibreglass, aluminium or PVC may be used.
  • the casing is cemented into position.
  • a conventional oilfields hole opener is lowered down to the bottom seam intersection and the casing and cement removed.
  • the hole opener is retrieved and a modified marine casing cutter is lowered down the hole and a cavity reamed to a diameter suitable to allow full erection of the assembly such as over the full interval of the seam. Some coal may be left in the roof of the cavity if this improves the stability of the cavity. This procedure is repeated for all seams to be drained.
  • the TRD skid is moved into position adjacent to the collar of the well.
  • the assembly is attached to 2 3 /V' EUE tubing and the flexible hose drill string is threaded through the assembly such that the water jet nozzle is housed in the erectable arm.
  • the control bundle is attached to the assembly and a check made on the functionality of the assembly and its associated instrumentation.
  • the assembly is then lowered down the hole by means of the tubular steel drill rods.
  • the high pressure hose and control bundle are fed down at the appropriate speed.
  • the control bundle is strapped to the drill rods at regular intervals such that its weight is fully supported.
  • Centralisers are added every 10m to provide a low friction path for the passage of the flexible hose drill string once horizontal drilling commences.
  • the assembly Upon reaching the seam to be drained the assembly is orientated to the correct azimuth by means of the onboard compass and is clamped against the borehole wall and the arm is erected. This brings the water jet nozzle in close proximity to the wall of the cavity.
  • the preferred sequence of horizontal drilling is from bottom to top of the existing borehole.
  • the high pressure pump Before commencing drilling, the high pressure pump is brought up to full pressure (e.g. 1150 bar at 234 litres per minute).
  • the high pressure spinning jets emanating from the front of the nozzle commence to create a horizontal borehole. Forward thrust is generated from the rearward facing high pressure jets. This thrust causes the drilling assembly to move forward into the cavity wall as high pressure hose is fed from the drum on the surface.
  • the assembly and the combination of the assembly with a self-advancing steerable drilling assembly within arm member 22 provides a number of distinct advantages over conventional devices.
  • the assembly contains an extensive range of instrumentation to monitor the borehole conditions and the operation of the lateral borehole formation in the self-advancing drilling system. This leads to effective formation of lateral boreholes to a typical distance of 200 metres and in drilling times of less than two hours.
  • the assembly allows rapid repositioning to allow multiple lateral borehole creation. This array of multiple lateral boreholes at one or more horizons is particularly suitable for the extraction of fluids such as water and methane through a single existing borehole.
  • the assembly can position the resultant cutting device more accurately than conventional devices.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Earth Drilling (AREA)

Abstract

L'invention concerne un ensemble à bras déployable (14) à utiliser dans un trou de forage, et comprenant un corps principal (20) et un élément bras (22) capable de se mouvoir entre une position repliée dans laquelle ledit ensemble peut être enlevé du trou de forage et une position déployée, ledit ensemble étant conçu pour recevoir un ensemble de forage par fluide comprenant un dispositif de coupe par fluide (16) et un train de tiges de forage à flexible de sorte que l'élément bras puisse, pendant le déploiement, contenir au moins une partie de l'ensemble de forage par fluide, et lorsqu'il est en position déployée qu'il soit capable de guider le dispositif de coupe par fluide vers la paroi du trou de forage. Ledit ensemble comprend de plus au moins un capteur pour le contrôle de l'élément bras ou de l'ensemble de forage par fluide.
PCT/AU1998/000422 1997-06-06 1998-06-05 Ensemble a bras deployable a utiliser dans des puits de forage WO1998055727A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL98337328A PL189235B1 (pl) 1997-06-06 1998-06-05 Sposób tworzenia co najmniej jednego odwiertu bocznego w istniejącym odwiercie oraz zespół wznoszonego ramienia do zastosowania przy odwiertach
AU77508/98A AU7750898A (en) 1997-06-06 1998-06-05 An erectable arm assembly for use in boreholes
CA002292639A CA2292639C (fr) 1997-06-06 1998-06-05 Ensemble a bras deployable a utiliser dans des puits de forage
GB9928618A GB2342373B (en) 1997-06-06 1998-06-05 An erectable arm assembly for use in boreholes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPO7264A AUPO726497A0 (en) 1997-06-06 1997-06-06 An erectable arm assembly for use in boreholes
AUPO7264 1997-06-06

Publications (1)

Publication Number Publication Date
WO1998055727A1 true WO1998055727A1 (fr) 1998-12-10

Family

ID=3801556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU1998/000422 WO1998055727A1 (fr) 1997-06-06 1998-06-05 Ensemble a bras deployable a utiliser dans des puits de forage

Country Status (7)

Country Link
CN (1) CN1325746C (fr)
AU (1) AUPO726497A0 (fr)
CA (1) CA2292639C (fr)
GB (1) GB2342373B (fr)
PL (1) PL189235B1 (fr)
WO (1) WO1998055727A1 (fr)
ZA (1) ZA984906B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015066802A1 (fr) * 2013-11-06 2015-05-14 Chung Bernard C Découpeuse de formation de subsurface

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101956530B (zh) * 2009-07-15 2012-08-29 中国科学院沈阳自动化研究所 石油钻井井下水平开孔钻具
CN101956531B (zh) * 2009-07-15 2012-10-24 中国科学院沈阳自动化研究所 石油钻井平台井下水平钻孔组合钻具
CN107725025B (zh) * 2016-08-10 2023-10-20 中国石油化工股份有限公司 多功能井筒检测装置及检测方法
CN106401477B (zh) * 2016-12-08 2019-07-02 中国地质大学(北京) 导向钻具用推靠执行机构和钻具
CN108468518B (zh) * 2018-03-08 2020-06-12 泉州台商投资区双艺商贸有限公司 自排浆的高效打桩机
CN109884276B (zh) * 2019-03-27 2024-05-10 中国科学院地理科学与资源研究所 分层土壤湿度同步测量装置
CN112392405B (zh) * 2020-12-28 2022-06-21 西南石油大学 一种反循环钻井专用钻头
CN113482535A (zh) * 2021-07-27 2021-10-08 中煤科工集团西安研究院有限公司 一种自适应井下转向装置及施工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1865853A (en) * 1923-07-21 1932-07-05 Granville Holding Corp Apparatus for drilling
US2516421A (en) * 1945-08-06 1950-07-25 Jerry B Robertson Drilling tool
US3191697A (en) * 1953-11-30 1965-06-29 Mcgaffey Taylor Corp Subsurface earth formation treating tool
US4497381A (en) * 1983-03-02 1985-02-05 Bechtel National, Inc. Earth drilling apparatus and method
US4640362A (en) * 1985-04-09 1987-02-03 Schellstede Herman J Well penetration apparatus and method
US5197783A (en) * 1991-04-29 1993-03-30 Esso Resources Canada Ltd. Extendable/erectable arm assembly and method of borehole mining
GB2289298A (en) * 1994-05-13 1995-11-15 Baker Hughes Inc Permanent whipstock

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2282431A (en) * 1939-06-12 1942-05-12 Ray W Smith Orienting device and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1865853A (en) * 1923-07-21 1932-07-05 Granville Holding Corp Apparatus for drilling
US2516421A (en) * 1945-08-06 1950-07-25 Jerry B Robertson Drilling tool
US3191697A (en) * 1953-11-30 1965-06-29 Mcgaffey Taylor Corp Subsurface earth formation treating tool
US4497381A (en) * 1983-03-02 1985-02-05 Bechtel National, Inc. Earth drilling apparatus and method
US4640362A (en) * 1985-04-09 1987-02-03 Schellstede Herman J Well penetration apparatus and method
US5197783A (en) * 1991-04-29 1993-03-30 Esso Resources Canada Ltd. Extendable/erectable arm assembly and method of borehole mining
GB2289298A (en) * 1994-05-13 1995-11-15 Baker Hughes Inc Permanent whipstock

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015066802A1 (fr) * 2013-11-06 2015-05-14 Chung Bernard C Découpeuse de formation de subsurface

Also Published As

Publication number Publication date
PL337328A1 (en) 2000-08-14
CA2292639C (fr) 2006-11-21
GB2342373A (en) 2000-04-12
CN1259188A (zh) 2000-07-05
GB2342373B (en) 2002-01-09
AUPO726497A0 (en) 1997-07-03
PL189235B1 (pl) 2005-07-29
CN1325746C (zh) 2007-07-11
CA2292639A1 (fr) 1998-12-10
ZA984906B (en) 1998-12-29
GB9928618D0 (en) 2000-02-02

Similar Documents

Publication Publication Date Title
US7370710B2 (en) Erectable arm assembly for use in boreholes
US6866106B2 (en) Fluid drilling system with flexible drill string and retro jets
US6536539B2 (en) Shallow depth, coiled tubing horizontal drilling system
CA2614679C (fr) Systeme de forage a tube spirale
US20030070841A1 (en) Shallow depth, coiled tubing horizontal drilling system
NO312112B1 (no) Styreanordning
US7195082B2 (en) Drill head steering
AU2017394777B2 (en) Rotary drill head for coiled tubing drilling apparatus
CA2292639C (fr) Ensemble a bras deployable a utiliser dans des puits de forage
US20050161261A1 (en) Steerable soil penetration system
AU2004201696B2 (en) An erectable arm assembly for use in boreholes
WO2018132862A1 (fr) Tête de forage rotative pour appareil de forage à tube spiralé
US20020062993A1 (en) Method apparatus for horizontal drilling and oil recovery
AU7750898A (en) An erectable arm assembly for use in boreholes
US12000226B2 (en) Method and apparatus for milling a window in casing
US20050167160A1 (en) Method and apparatus for horizontal drilling and oil recovery
EP3421712B1 (fr) Système de forage pour forage de roches
EP1092077B1 (fr) Systeme de fraisage permettant de former une fenetre dans la paroi d'un tubulaire
AU2006272370A1 (en) Coiled tubing drilling system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98805857.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 77508/98

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2292639

Country of ref document: CA

Ref document number: 2292639

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 9928618

Country of ref document: GB

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09445161

Country of ref document: US

NENP Non-entry into the national phase

Ref document number: 1999501125

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase