WO1998048429A1 - Solid polymer electrolyte and its use - Google Patents

Solid polymer electrolyte and its use Download PDF

Info

Publication number
WO1998048429A1
WO1998048429A1 PCT/JP1998/001069 JP9801069W WO9848429A1 WO 1998048429 A1 WO1998048429 A1 WO 1998048429A1 JP 9801069 W JP9801069 W JP 9801069W WO 9848429 A1 WO9848429 A1 WO 9848429A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
electrolyte
compound
solid electrolyte
lithium
Prior art date
Application number
PCT/JP1998/001069
Other languages
French (fr)
Japanese (ja)
Inventor
Masataka Takeuchi
Shuichi Naijo
Koji Tokita
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9101927A external-priority patent/JPH10294015A/en
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Publication of WO1998048429A1 publication Critical patent/WO1998048429A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention uses a mixed solvent of ethylene carbonate and ethyl methyl carbonate, has a high ionic conductivity in a wide temperature range, and has a high electrochemical stability and a high polymer solid electrolyte, particularly a low temperature of 11 ° C. or less. It relates to solid polymer electrolytes that can be used in the field.
  • the present invention relates to a lithium secondary battery using the polymer solid electrolyte, which is excellent in safety and reliability, has high performance, and particularly has good low-temperature characteristics.
  • Lithium primary batteries and lithium (ion) secondary batteries which are typical electrochemical devices, have recently been rapidly mounted on small portable devices due to their high energy density, and have shown rapid growth.
  • Organic solvents used in non-aqueous electrolytes include high dielectric constant, high boiling point cyclic Carbonates (propylene carbonate, ethylene carbonate, butylene carbonate, etc.) and ratatones (two-butyl lactone, etc.), low-viscosity linear carbonates (dimethyl carbonate, getyl carbonate, ethyl methyl carbonate), low-viscosity ether compounds (glyme , Diglyme, THF, dioxolane, etc.) have been studied mainly, and high ionic conductivity has been achieved by increasing the dissociation of the electrolyte salt and making it less viscous.
  • carbonates are widely used because of their wide electrochemical stability range and low reactivity with positive and negative electrode materials (for example, JP-A Nos. 2-10666 and 5-283104). Further, among them, ethylene carbonate is effective for improving the reversibility of a carbon anode such as a graphite anode, and is regarded as an essential solvent for lithium ion batteries currently on the market.
  • a porous film such as a polyolefin nonwoven fabric or a polyolefin microporous film is used as a separator, which is important as a constituent element other than the positive and negative electrodes and the electrolyte in these lithium primary batteries and lithium (ion) secondary batteries.
  • the function of the separator is required to be such that the positive and negative electrodes are electronically isolated from each other so as not to cause a short circuit, and that the ion transfer in the electrolyte between the positive and negative electrodes is not hindered.
  • the battery has the above-described function, it is preferable that the battery be as thin as possible because the energy density of the entire battery is increased.
  • porous thin films are currently used as separators, and film manufacturing and processing costs are high, which is a factor of high cost.
  • Ion conductivity of the solid polymer electrolyte that is generally considered, despite improved to 1 0 _ 4 ⁇ 1 0 _ 5 SZ cm position at that value put in room temperature, when compared to a liquid ion conductive material It is a level lower by two digits or more. Also 0. At low temperatures below C, the ionic conductivity is further reduced. Furthermore, when these solid electrolytes are incorporated into a battery in the form of a thin film, processing techniques such as compounding with electrodes and ensuring contactability were difficult, and there were problems with the manufacturing method.
  • U.S. Pat.No. 4,357,401 states that a polymer solid electrolyte consisting of a crosslinked polymer containing a heteroatom and an ionizable salt reduces the crystallinity of the polymer, lowers the glass transition point, and improves ionic conductivity. However, it was about 10-5 Scm at room temperature, which was still insufficient.
  • US Pat. No. 4,792,504 proposes a solid polymer electrolyte in which an electrolyte comprising a metal salt and a non-protonic solvent is impregnated in a crosslinked network of polyethylene oxide.
  • Japanese Patent Publication No. 3-73081 U.S. Pat. No. 4,908,283 discloses that a polymer comprising an acryloyl-modified polyalkylene oxydono electrolyte salt such as polyethylene glycol diacrylate and an organic solvent is irradiated with an actinic ray such as ultraviolet light to polymer. Methods for forming a solid electrolyte have been disclosed and attempts have been made to reduce the polymerization time. Also, US Pat. No. 4,830,939 and Japanese Patent Application Laid-Open No. 5-109310 (US Pat. No.
  • 5,037,712 disclose a composition comprising a crosslinkable polyethylene unsaturated compound, an electrolyte, an actinic ray inactive solvent, an ultraviolet ray, an electron beam or the like.
  • a similar method for forming a polymer solid electrolyte containing an electrolytic solution by irradiating the same is disclosed. In these systems, the ionic conductivity is improved because the amount of electrolyte in the solid polymer electrolyte is increased, but it is still insufficient, and the membrane strength tends to deteriorate.
  • Japanese Patent Publication No. 6-140052 (W094 / 06165) proposes a solid electrolyte in which a polyalkylene oxide isocyanate crosslinked polymer inorganic oxide composite is impregnated with a non-aqueous electrolytic solution. The strength of the polymer solid electrolyte has been increased.
  • the present inventors have proposed an ionic conduction using a composite comprising a polymer obtained from a (meth) acrylate prepolymer containing an oxyalkylene group having a urethane bond and an electrolyte.
  • a novel solid polymer electrolyte Japanese Patent Publication No. 6-187822 (US Pat. No. 5,597,661) was proposed.
  • the ionic conductivity of this polymer solid electrolyte is at a high level of 10 4 SZ cm (room temperature) without adding a solvent, but becomes 10 3 S / cm or more when a solvent is further added.
  • the film quality was good and improved to the extent that it could be obtained as a self-supporting film.
  • this prepolymer has good polymerizability, and when applied to batteries, there is also a processing merit that it can be polymerized after being assembled into batteries in a prepolymer state and solidified.
  • the present invention provides a solid polymer electrolyte that has good molding process, good strength, easy handling, high ion conductivity over a wide temperature range, stability, low cost, and excellent safety and reliability.
  • the purpose is to do.
  • FIG. 1 is a schematic sectional view of an embodiment of a thin solid state battery according to the present invention. Disclosure of the invention
  • the present inventors have conducted intensive studies in view of the above problems, and as a result, have found that the above problems can be improved by adding a mixed solvent of ethylene carbonate and ethyl methyl carbonate to a polymer solid electrolyte.
  • the low-temperature characteristics can be significantly improved by controlling the amount of ethylene carbonate and ethyl methyl carbonate added in a specific range.
  • the present inventors have developed a lithium secondary battery using the above polymer solid electrolyte, which has a wide operating temperature range, good current characteristics, good cycleability, excellent safety and reliability, and a high processability with shape flexibility. It has been found that it becomes a single-density energy battery.
  • oxyalkylene includes oligooxyalkylenes and polyoxyalkylenes each containing at least one oxyalkylene group.
  • the present invention has achieved the above object by developing the following.
  • a polymer solid electrolyte comprising a polymer, an electrolyte salt, and an organic solvent containing ethylene carbonate and ethyl methyl carbonate.
  • a polymer solid electrolyte comprising a polymer, an electrolyte salt, an organic solvent containing ethylene carbonate and ethyl methyl carbonate, and inorganic fine particles.
  • the total weight of ethylene carbonate and ethyl methyl carbonate is 100% by weight of the polymer. /.
  • the polymer has the general formula (1) or the general formula (2)
  • R 1 and R 2 represent a hydrogen atom or an alkyl group
  • R 3 represents a divalent group having 10 or less carbon atoms.
  • the divalent group may contain a hetero atom, and may have any of a linear, branched, or cyclic structure.
  • X represents 0 or a numerical value from 1 to 10; However, the values of R 2 , R 3 and x in the polymerizable functional group represented by the formula (1) or (2) which are present in plurals in the same molecule are independent of each other and may be the same or different.
  • the negative electrode active material is lithium, a lithium alloy, a carbon material capable of storing and releasing lithium ions, an inorganic oxide capable of storing and releasing lithium ions, and lithium ion.
  • the solid polymer electrolyte of the present invention is characterized in that an organic solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) is added.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the mixing ratio (weight) of EC and EMC is usually 3: 1 to 1:15 for EC: EMC. Can be used. If the amount of EC is too large, the deposition temperature of EC at a low temperature becomes high, and particularly in a solid polymer electrolyte, the deposition temperature tends to be even higher. On the other hand, if the amount is too small, the ionic conductivity is reduced and the life of the battery is shortened. Therefore, the preferable mixture ratio (weight) of EC and EMC is EC: EMC is 2: 1 to: 1: 10, 5: 5 to: L: 10 is more preferable, and 4: 6 to 1: 9. Is particularly preferred.
  • the preferable addition amount is in the range of 100% to 1500% by weight of the polymer weight in the polymer solid electrolyte of the present invention, more preferably 200% to 1200% by weight, and more preferably 300% to 1200% by weight. 1000% by weight is particularly preferred.
  • the polymer used in the solid polymer electrolyte of the present invention has good compatibility with EC and EMC, has a high boiling point, has high solubility of the electrolyte salt, and is suitable for the electrochemical element used.
  • a stable one that does not adversely affect is good. That is, a compound having a large dielectric constant, a boiling point of 60 ° C or more, and a wide electrochemical stability range is suitable.
  • Examples of such a solvent include carbonates such as propylene carbonate, dimethyl carbonate, and getyl carbonate; ethers such as 1,2-dimethoxetane, dioxolan, and 2-methyltetrahydrofuran; triethylene dalicol dimethyl ether; Oligoethers, esters such as methyl propionate and methyl methoxypropionate, aromatic nitriles such as benzonitrinole and tolunitrile, dimethylformamide, N-methylpyrrolidone, N-butylpyrrolidone and dimethyl Examples thereof include sulfur compounds such as sulfoxide and sulfolane, and phosphoric esters. Among them, ethers, oligoethers, esters and carbonates are preferable, and esters, Carbonates are particularly preferred.
  • the polymer which is a main component of the polymer solid electrolyte of the present invention must be non-electroconductive and capable of absorbing and retaining various organic polar solvents.
  • high molecules include heteroatoms such as polyalkylene oxide, polyalkyl imine, polyacrylonitrile, poly (meth) acrylate, polyphosphazene, polyfutsudani vinylidene, polyurethane, polyamide, polyester, and polysiloxane.
  • Polar thermoplastic polymer or cross-linked polymer is suitable as the polymer used in the present invention because it has a high strength after absorbing the solvent, has a high solvent retentivity, and is a viscoelastic material.
  • the crosslinks shown here include not only those in which the crosslinks are formed by covalent bonds, those in which the side chains are crosslinked by ionic bonds or hydrogen bonds, and those in which the crosslinks are physically crosslinked via various additives. included.
  • those containing an oxyalkylene perethane structure such as polyalkylene oxide or polyurethane in the molecular structure are preferable because of their good compatibility with various polar solvents and good electrochemical stability.
  • those having a fluorocarbon group such as vinylidene fluoride in the molecular structure are also preferable.
  • R 1 and R 2 represent a hydrogen atom or an alkyl group
  • R 3 represents a divalent group having 10 or less carbon atoms.
  • the divalent group may contain a hetero atom, and may have any of a linear, branched, or cyclic structure.
  • X is 0 or 1-10 Shows the numerical value of.
  • R l in the polymerizable functional group represented by a plurality of the above general formula in the same molecule (1) or (2), the value of R 2, R 3 and x are each independently either the same or different May be.
  • a polymer obtained by curing at least one type of polymerizable compound having the following formulas by heating and irradiating with Z or actinic rays is preferable because it easily forms a film in a state containing a solvent and has good film strength.
  • R 1, R 2 , R 3 and x have the same meaning as in the general formula (1) or (2), and R 4 and R 5 represent an oxyalkylene group and Z or fluorocarbon, It is a divalent group containing oxyfluorocarbon.
  • a polymer obtained by curing at least one polymerizable compound having a polymerizable functional group represented by the formula (1) by heating and / or irradiating with active light is particularly preferable.
  • the method for synthesizing the compound having a functional group represented by the general formula (1) used in the polymer solid electrolyte of the present invention is not particularly limited.
  • an acid chloride and a compound having a hydroxyl group at a terminal For example, it can be easily obtained by reacting with oligooxyalkyleneol.
  • a compound having one functional group represented by the general formula (1) is obtained by reacting an acid chloride with a monoalkyl oligoalkylenedarilicol in a molar ratio of 1: 1 according to the following reaction formula. By doing so, it is easily obtained.
  • CH 2 C (R 1 ) COCI + HO (CH 2 CH (R 6 ) 0) m R 7 ⁇
  • CH 2 C (R 1 ) COO (CH 2 CH (R 6 ) O) m R 7
  • R1 has the same meaning as in the general formula (1)
  • R 6 is H or an alkyl group having 10 or less carbon atoms
  • R 7 is an alkyl group having 10 or less carbon atoms.
  • a compound having two functional groups represented by the general formula (1) can be easily prepared by reacting an acid chloride with an oligoalkylene glycol at a molar ratio of 2: 1 according to the following reaction formula. Is obtained.
  • R1 represents the same meaning as the general formula (1), R 6 is H or an alkyl group having 1 0 carbon atoms. ]
  • the method for synthesizing the compound having a polymerizable functional group represented by the general formula (2) used in the polymer solid electrolyte of the present invention is not particularly limited.
  • CH 2 C (R2) CO [OR 3 ] It can be obtained by reacting xNCO with an oligooxyalkyleneol (wherein, R 2 , R 3 and X each have the same meaning as in the general formula (2)).
  • a compound having one ethylenically unsaturated group is, for example, a methacryloyl isocyanate compound (hereinafter abbreviated as Ml) or an acryloyl isocyanate compound (hereinafter abbreviated as AI).
  • Ml methacryloyl isocyanate compound
  • AI acryloyl isocyanate compound
  • a monoalkyl oligoalkylene glycol in a molar ratio of 1: 1 according to the following reaction formula.
  • R 2 , R 3 and x have the same meaning as in the general formula (2), R 6 is H or an alkyl group having 10 or less carbon atoms, and R 7 is an alkyl group having 10 or less carbon atoms. It is. ]
  • a compound having two ethylenically unsaturated groups can be easily obtained, for example, by reacting Ml or AIs with an oligoalkylene glycol in a molar ratio of 2: 1.
  • Compounds having three ethylenically unsaturated groups include, for example, Ml and / or AIs and a triol obtained by addition-polymerizing a trihydric alcohol such as glycerin with an alkylene oxide. It can be easily obtained by reacting at a molar ratio of
  • the compound having four ethylenically unsaturated groups is, for example, a compound having a molar ratio of 4: 1 between Ml and / or AI and a tetraol obtained by addition-polymerizing an alkylene oxide to a tetrahydric alcohol such as pentaerythritol. It is easily obtained by reacting in a ratio.
  • Compounds having five ethylenically unsaturated groups include, for example, Ml and / or AIs and pentaol obtained by addition polymerization of ⁇ -D-dalcoviranose with alkylene oxide, in a ratio of 5: 1. It can be easily obtained by reacting at a molar ratio of
  • the compound having six ethylenically unsaturated groups is, for example, a compound of the formulas I and ⁇ ⁇ or an AI and a hexanol obtained by addition-polymerizing an alkylene oxide to mannitol in a molar ratio of 6: 1. It is easily obtained by reacting.
  • a method for synthesizing a compound having a polymerizable functional group represented by the general formula (1) or (2) having a fluorocarbon group and a Z or oxyfluorocarbon group is not particularly limited.
  • Has one polymerizable functional group as Compounds are prepared by reacting MIs or AIs with monools such as 2,2,3,3,4,4,4-heptafluoro-1-butanol in a molar ratio of 1: 1 according to the following reaction formula. Can be easily obtained.
  • ⁇ I or AIs and diols such as 2,2,3,3-tetrafluoro-1,4-butanediol. It can be easily obtained by reacting at a molar ratio of 2: 1 according to the following reaction formula.
  • the number of polymerizable functional groups represented by the general formula (1) or (2) contained in one molecule is more preferably three or more.
  • the polymer obtained from the compound having a polymerizable functional group represented by the general formula (2) contains a urethane group, Good properties and high film strength when thinned It is preferred.
  • the polymer which is preferable as a component of the polymer solid electrolyte of the present invention is obtained by polymerizing at least one kind of a compound having a polymerizable functional group represented by the general formula (1) or (2), or It is obtained by polymerization as a polymerization component.
  • the polymer used for the polymer solid electrolyte of the present invention even if it is a homopolymer of a compound having a polymerizable functional group represented by the general formula (1) or the general formula (2), belongs to this category. It may be a copolymer of at least one kind, or a copolymer of at least one kind of the compound and another polymerizable compound.
  • the other polymerizable compound copolymerizable with the compound having a polymerizable functional group represented by the general formula (1) or (2) is not particularly limited.
  • (Meth) acrylamide-based compounds styrene-based compounds such as styrene and para-methylstyrene, N-vinylamide-based compounds such as N-vinylacetamide and N-vinylformamide, and alkyl vinyl ethers such as ethyl-butyl ether Can be mentioned.
  • a general method utilizing the polymerizability of an acryloyl group or a methallyl group in the polymerizable compound can be employed. That is, a radical polymerization catalyst such as azobisisobutyronitrile, benzoyl peroxyside, a CF 3 COOH or the like is added to these monomers alone or a mixture of these monomers and the above-mentioned copolymerizable polymerizable compound.
  • a radical polymerization catalyst such as azobisisobutyronitrile, benzoyl peroxyside, a CF 3 COOH or the like is added to these monomers alone or a mixture of these monomers and the above-mentioned copolymerizable polymerizable compound.
  • Pro Tonsan using BF 3, cationic polymerization catalysts such as Lewis acids a, etc.
  • the polymer used for the polymer solid electrolyte of the present invention preferably contains an oxyalkylene structure.
  • the number of oxyalkylene chains, that is, in R 4 in the general formula (3), or The number of repetitions n of the oxyalkylene group contained in R 5 in the general formula (4) is preferably in the range of 1 to 1,000, particularly preferably in the range of 5 to 100.
  • the polymer used in the polymer solid electrolyte of the present invention may be a homopolymer of a compound having a functional group represented by the general formula (1) or (2) as described above,
  • the copolymer described above may be used, or a copolymer of at least one of these compounds and another polymerizable compound may be used.
  • the polymer used for the polymer solid electrolyte of the present invention is a polymer obtained from at least one compound having a functional group represented by the general formula (1) or (2) and a polymer obtained by combining the polymer and the compound. It may be a mixture of a copolymer as a polymerization component and another polymer.
  • a polymer obtained from at least one compound having a functional group represented by the general formula (1) or (2) and Z or a copolymer having the compound as a copolymer component, polyethylene oxide, and polypropylene oxide The mixture of the present invention with a polymer such as polyacrylonitrile, polybutadiene, polymethacrylic acid (or acrylic) ester, polystyrene, polyphosphazenes, polysiloxane or polysilane, polyvinylidene fluoride, or polytetrafluoroethylene. It may be used for a molecular solid electrolyte.
  • inorganic fine particles to the solid polymer electrolyte of the present invention. This not only improves strength and film thickness uniformity, but also causes fine pores to be formed between the inorganic fine particles and the polymer, and when immersed in an electrolyte solution, the polymer solid electrolyte The free electrolyte is dispersed inside, and the ionic conductivity and mobility can be increased without impairing the strength gap.
  • the addition of the inorganic fine particles increases the viscosity of the polymerizable composition, and has an effect of suppressing the separation even when the compatibility between the polymer and the solvent is insufficient.
  • the inorganic fine particles to be used non-electroconductive and electrochemically stable ones are selected.
  • the inorganic fine particles preferably have a secondary particle structure in which primary particles are aggregated, from the viewpoint of increasing the strength of the polymer solid electrolyte and increasing the amount of retained electrolyte.
  • the inorganic fine particles having such a structure include silica ultrafine particles such as AEROSIL (manufactured by Nippon AEROSIL) and alumina ultrafine particles, and particularly preferred are alumina ultrafine particles in terms of stability and composite efficiency.
  • the specific surface area of the inorganic fine particles is preferably as large as possible.
  • 50 m2 / g or more is more preferable.
  • the crystal particle size of such inorganic fine particles is not particularly limited as long as it can be mixed with the polymerizable composition, but the average particle size is preferably 0.001 / Zm to 10 ⁇ m, and more preferably 0.01 ⁇ m to 1 ⁇ m. m is particularly preferred.
  • various shapes such as a sphere, an egg, a cube, a rectangular parallelepiped, a cylinder or a rod can be used.
  • the amount of addition is preferably 5 Owt% or less, more preferably 0.1 to 30 wt%, based on the solid polymer electrolyte.
  • the (meth) acryloyl-based compound is polymerized and cured by heating and irradiating with Z or actinic light. , Can be recommended.
  • the temperature for the polymerization depends on the type of the polymerizable compound having a polymerizable functional group represented by the general formula (1) or (2) and the type of the initiator, but may be any temperature at which the polymerization occurs. The temperature may be in the range of ° C to 200 ° C.
  • an actinic ray initiator such as benzylmethylketanol or benzophenone may be used, depending on the type of polymerizable compound having a polymerizable functional group represented by the general formula (1) or (2).
  • polymerization can be carried out by irradiating ultraviolet light of several mW or more or an electron beam, a beam or the like.
  • the strength can be improved.
  • the porous film used include a porous polyolefin film such as a mesh-like polyolefin sheet such as a polypropylene nonwoven fabric or a polyethylene net, a polyolefin microporous film such as Celgard (trade name), a nylon nonwoven fabric, and a polyester net.
  • a polyolefin porous film is preferable in terms of stability.
  • the porosity may be about 10 to 90%, but it is preferable that the porosity is as large as possible as long as the strength permits, and the preferable porosity is in the range of 40 to 90%.
  • the method of compounding is not particularly limited, but includes, for example, at least one kind of (meth) atalyloyl-based compound having a polymerizable functional group represented by the general formula (1) or (2), at least one kind of electrolyte salt, and EC and EMC.
  • a porous polymer film After impregnating a porous polymer film with a polymerizable composition comprising a solvent, or a polymerizable composition obtained by adding at least one type of inorganic fine particles thereto, or a polymerizable composition further obtained by adding at least one type of polymerization initiator thereto Polymerizing the (meth) acryloyl compound This method is recommended because the method can be uniformly combined and the film thickness control is simple.
  • the solid polymer electrolyte of the present invention When the solid polymer electrolyte of the present invention is applied to a battery, the solid polymer electrolyte of the present invention has a high electrolytic solution retention property and has no pores, so that liquid leakage and short circuit hardly occur, and the operating temperature range is wide. A non-aqueous battery with high current, long cycle life, and high safety and reliability can be obtained. In addition, since liquid leakage and short circuit hardly occur, the battery can be made thin and a battery with a simple package can be obtained.
  • FIG. 1 shows a schematic cross-sectional view of an example of a thin-film battery as a nonaqueous battery manufactured in this manner.
  • 1 is a positive electrode
  • 2 is a polymer solid electrolyte of the present invention
  • 3 is a negative electrode
  • 4 is a current collector
  • 5 is an insulating resin sealant.
  • the negative electrode active material used in the non-aqueous battery of the present invention one having a low oxidation-reduction potential with an alkali metal ion such as an alkali metal, an alkali metal alloy, a carbon material, a metal oxide or a metal chalcogenide as a carrier is used. It is preferable to use it because a high-voltage, high-capacity battery can be obtained.
  • an alkali metal ion such as an alkali metal, an alkali metal alloy, a carbon material, a metal oxide or a metal chalcogenide as a carrier
  • lithium metal or lithium alloys such as lithium / aluminum alloy, lithium Z lead alloy, and lithium Z antimony alloy are particularly preferable because they have the lowest redox potential.
  • carbon materials are particularly preferable in that they have a low oxidation-reduction potential when they occlude lithium ions, and are stable and safe.
  • the carbon material for lithium ion can occluding and releasing, natural graphite, artificial graphite, vapor grown graphite, petroleum coke, coal co one task, pitch carbon, polyacene, C 6 o, hula etc. c 70; one alkylene ethers And the like.
  • alkali metal salt is required as an electrolyte.
  • the type of alkali metal Shokushio for example, L i CF 3 S 0 3 , L i PF 6, L i C 10 4, L i BF 4, L i SCN, L i A s F 6, L i N (CF 3 SO 2) 2, N a CF 3 S 0 3, L i I, N a PF 6, N a C 10 4, N a I, N a BF 4, Na As F 6, KCF 3 S0 3, KPF 6 and KI can be mentioned.
  • a carbon material negative electrode not only alkali metal ions but also quaternary ammonium Nidium salts, quaternary phosphonium salts, transition metal salts, and various protonic acids can also be used.
  • Such electrolytes (CH 3) 4 NBF 4 , (CH 3 CH 2) 4 NC 10 4 4 Grade Anmoniumu salts such as, transition metal salts such as A g CI 0 4, (CH 3) 4 P BF quaternary Hosuhoniumu salt 4 such as salts of organic San ⁇ Piso such as p-toluenesulfonic acid, hydrochloric acid, and the like inorganic acids such as sulfuric acid.
  • quaternary ammonium salts quaternary phosphonium salts, and metal salts of alkali metal are preferred because of their high output voltage and large dissociation constant.
  • quaternary ammonium salts those having different substituents on the nitrogen of the ammonium ion such as (CH 3 CH 2 ) (CH 3 CH 2 CH 2 CH 2 ) 3 NBF 4 Is preferred because it has a large dissociation constant.
  • a high-voltage, high-capacity battery is obtained by using a positive electrode active material having a high oxidation-reduction potential such as a metal oxide, a metal sulfide, a conductive polymer, or a carbon material for the positive electrode.
  • a positive electrode active material having a high oxidation-reduction potential such as a metal oxide, a metal sulfide, a conductive polymer, or a carbon material for the positive electrode.
  • metal oxides such as dicobalt oxide, manganese oxide, vanadium oxide, nickel oxide, and molybdenum oxide, molybdenum sulfide, and the like have a high packing density and a high volume capacity density.
  • Metal sulfides such as titanium sulfide and vanadium sulfide are preferable, and manganese oxide, nickel oxide, cobalt oxide and the like are particularly preferable in terms of high capacity and high voltage.
  • the method for producing metal oxides and metal sulfides in this case is not particularly limited, and examples thereof include a general electrolytic method and a general electrolytic method described in “Electrochemistry, Vol. 22, p. 574, 1954”. It is manufactured by a heating method. Further, when used in lithium batteries by these positive electrode active material, during the production of the battery, examples Ebashi 1 ⁇ 0 0 2 Ya L i x Mn0 metal oxide lithium element in the form of 2 like, or metal sulfide It is preferable to use it in a state where it is inserted (composite) into the device.
  • the method for introducing the lithium element is not particularly limited, for example, a method for electrochemically introducing lithium ions, or a method for introducing Li 2 C 3 as described in US Pat. No. 4,357,215. It can be carried out by mixing a metal oxide or the like with a salt and heating the mixture.
  • a conductive polymer is preferable because it is flexible and easily formed into a thin film. Examples of the conductive polymer include polyaniline, polyacetylene and its derivatives, polyparaphenylene and its derivatives, polypyrrole and its derivatives, polychenylene and its derivatives, polypyridinediyl and its derivatives, and polyisothianaphthenile.
  • Polyarylene vinylenes such as polyphenylene vinylene and derivatives thereof, polyfurylene and derivatives thereof, polyselenophene and derivatives thereof, polyparaphenylenevinylene, polychenylenevinylene, polyfurylenevinylene, polynaphthenylenevinylene, polyselenophenvinylene, polypyridinylvinylene and the like And the like.
  • a polymer of an aniline derivative soluble in an organic solvent is particularly preferable.
  • carbon materials include natural graphite, artificial graphite, vapor-grown graphite, petroleum coke, coal coke, fluorinated graphite, pitch-based carbon, and polyacene. No. BEST MODE FOR CARRYING OUT THE INVENTION
  • [X 1 ] is [CH (CH 3 ) CH 20 ] x H, or
  • This photopolymerizable composition was coated on a PET film under an argon atmosphere, and then irradiated with a chemical fluorescent lamp (FL20S.BL, manufactured by Sankyo Electric Co., Ltd.) for 10 minutes.
  • ZUA5805 composite film was obtained as a freestanding film of about 30 ⁇ m. 25 ° C for this film, one 20.
  • the photopolymerizable composition was applied and irradiated with light in the same manner as in Example 3, whereby a polymer Z-aluminum oxide C composite film of compound 3 impregnated with an EC / EMC electrolytic solution was converted into a free-standing film of about 30 ⁇ . Obtained. 25 ° C of the film was measured for ionic conductivity in one 20 ° C by an impedance method, respectively, 5.5 X 10- 3, was 1.0 X 10_3SZcm.
  • thermopolymerizable composition was obtained in the same manner as in Example 4 except that benzoyl peroxide (BPO) (0.04 g) was added instead of lucirin T PO (0.005 g) as an initiator.
  • BPO benzoyl peroxide
  • lucirin T PO 0.005 g
  • thermopolymerizable composition was coated on a PET film under an argon atmosphere, coated with a PP film, and heated on a hot plate at 80 ° C for 1 hour.
  • a polymer / aluminum oxide C composite film of compound 3 impregnated with EC / EMC electrolyte was obtained as a free-standing film of about 30 / xm.
  • the ionic conductivity of this film at 25 ° C. and at 20 ° C. was measured by an impedance method to be 5.3 ⁇ 10-3 and 0.8 ⁇ 10-3 sZcm, respectively.
  • a photopolymerizable composition was obtained in the same manner as in Example 4 except that 0.50 g of battery grade Li BF 4 manufactured by Hashimoto Kasei was used instead of Li PF 6 .
  • the water content of this composition (Carno Reisher method) was 50 ppm.
  • the photopolymerizable composition was applied and irradiated with light in the same manner as in Example 4 to obtain an electrolyte-impregnated polymer of compound 3 / aluminum moxide C composite film as a self-supporting film of about 30 / xm.
  • the ionic conductivity of this solid electrolyte at 25 ° C. and 20 ° C. was measured by an impedance method and found to be 4.0 ⁇ 10 3 and 0.3 ⁇ 10 3 SZcm.
  • This photopolymerizable composition was coated on a PET film under an argon atmosphere, and then irradiated with a chemical fluorescent lamp for 10 minutes.
  • the copolymer UA5805 composite film of a compound 3 and 5 impregnated with an ECZEMC-based electrolyte solution was obtained as a free-standing film of about 30 ⁇ . 25 ° C of the film was measured for ionic conductivity in one 20 ° C at I impedance method respectively, 6.0 X 1 0- 3, was 0.8 X 1 0-3 S / cm.
  • Compound 8 (0.7 g), Compound 10 (0.3 g), silica heat-treated at 1000 ° C (Aerosil 200, Aerozil Japan, crystal particle size 0.012 / 2 m, average secondary particle size approx.
  • the water content (Karl Fischer method) of this composition was 6 Oppm.
  • This photopolymerizable composition was coated on a PET film under an argon atmosphere, and then irradiated with a chemical fluorescent lamp for 10 minutes.
  • the copolymer, a copolymer of Compounds 8 and 10, impregnated with an EC / EMC ZDEC-based electrolyte, 200 composite films were obtained as about 30 zm free standing finolems.
  • 25 ° C of the Fi beam was measured ion Den Shirubedo of one 20 ° C by an impedance method, respectively, 2.0X 1 0- 3, was 0.4 X 1 0-3S / cm.
  • a photopolymerizable composition was obtained in the same manner as in Example 3 except that 0.33 g of magnesium oxide (Micromag 3-150 manufactured by Kyowa Chemical Co., Ltd.) heat-treated at 1000 ° C was added instead of UA5805 as inorganic fine particles. .
  • the water content (Karl Fischer method) of this composition was 35 ppm.
  • the photopolymerizable composition was applied and irradiated with light in the same manner as in Example 3 to obtain a compound 3 polymer / micromag 3-150 composite film impregnated with ECZEMC electrolyte solution as a self-supporting film of about 30 ⁇ m.
  • ECZEMC electrolyte solution as a self-supporting film of about 30 ⁇ m.
  • 25 ° C of this film - was measured ionic conductivity at 20 ° C by an impedance method was respectively 4.3X 10-3, 0.5X 1 0_ 3 SZ cm.
  • Example 3 Example 3 was repeated except that 0.33 g of titanium oxide (Super Titania F-4 manufactured by Showa Denko, crystal particle size 0.028 / m, BET specific surface area 56 m 2 Zg) heat-treated at 1000 ° C was added instead of UA 5805 as inorganic fine particles. In the same manner as in the above, a photopolymerizable composition was obtained. The water content (Karl Fischer method) of this composition was 60 ppm.
  • titanium oxide Super Titania F-4 manufactured by Showa Denko, crystal particle size 0.028 / m, BET specific surface area 56 m 2 Zg
  • MCMB graphite manufactured by Osaka Gas
  • vapor-grown graphite fiber manufactured by Showa Denko KK: average fiber diameter 0.3 ⁇ m, average fiber length 2.0 m, heat treated at 2700 ° C
  • polyvinylidene fluoride An excess N-methylpyrrolidone solution was added to the mixture having a weight ratio of 8.6: 0.4: 1.0 to obtain a gel composition.
  • This composition was applied and molded on a copper foil of about 15 ⁇ m to a thickness of 10 mm ⁇ 10 mm and a thickness of about 250 ⁇ m. Furthermore, it was heated and vacuum-dried at about 100 ° C. for 24 hours to obtain a graphite negative electrode (35 mg).
  • Example 19 Production of lithium ion secondary battery
  • the graphite negative electrode (10 mm x 10 mm) produced in Example 17 was impregnated with electrolyte (1 ML i PF 6 / EC + EMC (3: 7)). Then, the polymer solid electrolyte Z-aluminum oxide C composite film (12 mm ⁇ 12 mm) prepared in Example 4 was laminated on a graphite negative electrode, and the lithium cobaltate positive electrode (lOmmX l O mm) and an electrolyte impregnated with electrolyte (1M Li PF 6 / EC + EMC (3: 7)), seal the battery end with epoxy resin, and use graphite / cobalt oxide lithium ion. A secondary battery was obtained.
  • FIG. 1 shows a cross-sectional view of the obtained battery.
  • This battery was charged and discharged at an operating voltage of 2.75 to 4.1 V and a current of 0.5 mA at 60 ° C, 25 ° C, and 20 ° C.
  • the maximum discharge capacity was 7.2 mAh, 7.2 mAh, and 6.5 mA, respectively. h.
  • Example 20 Production of lithium ion secondary battery
  • Example 1 was repeated except that the [Compound 3 + 5-based polymer solid electrolyte] / UA5805 film produced in Example 10 was used instead of the compound 3-based polymer solid electrolyte / aluminum oxide C composite film.
  • Example 19 The same procedure as in Example 19 was performed except that the compound 3-based thermopolymerized polymer solid electrolyte Z-aluminum oxide C film prepared in Example 5 was used instead of the compound 3-based polymer solid electrolyte aluminum oxide C film.
  • a lithium ion secondary battery having the cross-sectional view shown in FIG. 1 was manufactured.
  • the graphite anode (10 mm X 10 mm) produced in Example 18 was impregnated with an electrolyte solution (1 ML i PF 6 / EC + EMC (3: 7)).
  • the compound 3 / aluminum oxide C-based photopolymerizable compound prepared in Example 4 was applied to a thickness of 30 / zm, and irradiated with a chemical fluorescent lamp for 10 minutes under an argon atmosphere.
  • a polymer Z-impregnated Z3 aluminum oxide C composite film was formed directly on the graphite negative electrode.
  • Example 1 lithium cobaltate positive electrode prepared in 7 (1 OmmX 1 0 mm) to the electrolytic solution (1M L i PF 6 / EC + EMC (3: 7)) was also impregnated with The end of the battery was sealed with an epoxy resin to obtain a graphite / cobalt oxide lithium ion secondary battery as shown in FIG.
  • the polymer solid electrolyte of the present invention has high ionic conductivity over a wide temperature range and electrochemical stability because it contains EC and an organic solvent containing EMC that is effective in lowering the crystallization temperature of EC as a plasticizer. It can improve current characteristics, temperature characteristics, and life when applied to electrochemical devices such as batteries. In particular, it can be used without problems even at temperatures as low as ⁇ 20 ° C or less.
  • the strength is improved, the handling is facilitated, the diffusion of the electrolyte salt is facilitated, and the current characteristics and cycle characteristics of the electrochemical element are improved. be able to.
  • the fact that a polymerizable compound having a (meth) acrylic group and / or a urethane (meth.,) Acrylic group has excellent curing properties is used, and these compounds and an electrolyte salt are used.
  • the polymerizable composition containing the organic organic solvent or / and the inorganic fine particles is placed on the substrate, the polymer solid electrolyte containing the EC / EMC solvent is applied to the substrate by heating or irradiation with actinic rays such as ultraviolet rays. It became possible to manufacture easily.
  • the solid polymer electrolyte and the negative electrode capable of occluding and releasing lithium ions by using the solid polymer electrolyte and the negative electrode capable of occluding and releasing lithium ions, a high energy density, a large extraction current, a wide operating temperature range, a long cycle life, and a high Leakage, short circuit is less likely to occur, A lithium (ion) secondary battery with excellent safety, long-term reliability, and processability can be obtained.
  • liquid leakage and short-circuiting do not easily occur, a thin lithium ion (ion) secondary battery with a simple package can be obtained.

Abstract

A solid polymer electrolyte comprising an organic solvent containing a polymer, an electrolytic salt, ethylene carbonate and ethyl methyl carbonate, and, when desired, inorganic particles; and a lithium secondary battery made by using the electrolyte. The solid electrolyte has good moldability and strength, can be handled easily, and has a high ionic conductivity, a good stability, a long service life, excellent current characteristics, and excellent temperature characteristics over a wide temperature range including a low temperature range of -10 °C or below. The lithium secondary battery is excellent in safety, long-period reliability, and workability in addition to the above-mentioned characteristics.

Description

明 細 書 高分子固体電解質及びその用途 この出願は米国出願番号 60/056060号 (出願日 1997年 9月 2日) に基づく出 願の利益を主張する。 技術分野  Description Solid Polymer Electrolyte and Its Use This application claims the benefit of an application based on US Application No. 60/056060 (filing date: September 2, 1997). Technical field
本発明は、 エチレンカーボネートとェチルメチルカーボネートの混合溶媒 を使用した、 広い温度領域でイオン伝導度が高く、 電気化学的安定性の良好な 高分子固体電解質、 特に一 1 o °c以下の低温領域でも使用可能な高分子固体電 解質に関する。  The present invention uses a mixed solvent of ethylene carbonate and ethyl methyl carbonate, has a high ionic conductivity in a wide temperature range, and has a high electrochemical stability and a high polymer solid electrolyte, particularly a low temperature of 11 ° C. or less. It relates to solid polymer electrolytes that can be used in the field.
また、 本発明は前記高分子固体電解質を用いた、 安全性、 信頼性にすぐれ、 高性能で、 特に低温特性の良好なリチウムニ次電池に関する。 背景技術  Further, the present invention relates to a lithium secondary battery using the polymer solid electrolyte, which is excellent in safety and reliability, has high performance, and particularly has good low-temperature characteristics. Background art
電気化学素子として代表的なリチウム一次電池やリチウム (イオン) 二次 電池はその高エネルギー密度という特徴から最近急速に小型携帯機器に搭載さ れ、 急激な伸びを示している。  Lithium primary batteries and lithium (ion) secondary batteries, which are typical electrochemical devices, have recently been rapidly mounted on small portable devices due to their high energy density, and have shown rapid growth.
例えば、 L i C o〇2、 L i N i 02、 L i M n 02、 M o S 2等の金属酸化 物、 金属硫化物を正極に用い、 リチウム、 リチウム合金、 リチウムイオンを吸 蔵放出できる炭素材料や無機化合物を負極に用い、 有機溶媒とリチウム塩から なる非水電解液を用いたリチウム (イオン) 二次電池が多く研究されている。 「ジャーナル ·ォブ 'エレク ト口ケミカル ' ソサイェティ(Journal of the Electrochemical Society), 第 1 3 8卷 (N o . 3 ) , 6 6 5頁, 1991 年」 には、 M n〇2あるいは N i 02を正極とする電池が報告されている。 非水電解液に使用されている有機溶媒としては、 高誘電率、 高沸点の環状 カーボネート類 (プロピレンカーボネート、 エチレンカーボネート、 ブチレン カーボネート等) やラタ トン類 (ツープチルラク トン等) と低粘性の鎖状カー ボネート (ジメチルカーボネート、 ジェチルカーボネート、 ェチルメチルカ一 ボネート) 、 低粘性のエーテル化合物 (グライム、 ジグライム、 T H F、 ジォ キソラン等) との混合溶媒が主に検討され、 電解質塩の解離性を増し、 低粘性 とすることで高イオン伝導度を達成している。 この中でカーボネート類が電気 化学的安定範囲が広く、 正負極材料との反応性も小さく、 好んで用いられてい る (例えば、 特開平 2-10666号、 特開平 5 - 283104号) 。 さらに、 この中でェ チレンカーボネートは黒鉛負極等の炭素負極の可逆性向上に効果的で、 現在巿 販されているリチウムイオン電池には必須の溶媒とされている。 Intake example, L i C O_〇 2, L i N i 0 2 , L i M n 0 2, M o S metal oxides such as 2, with a metal sulfide in the positive electrode, lithium, lithium alloy, lithium ions Many studies have been made on lithium (ion) secondary batteries using non-aqueous electrolytes composed of organic solvents and lithium salts, using carbon materials and inorganic compounds that can be stored and released for the negative electrode. "Journal O Breakfast 'elect opening Chemical' Sosaieti (Journal of the Electrochemical Society), the first 3 8 Certificates (N o. 3), 6 6 5 pages, 1991," The, M N_〇 2 or N i 0 2 the battery to the positive electrode has been reported. Organic solvents used in non-aqueous electrolytes include high dielectric constant, high boiling point cyclic Carbonates (propylene carbonate, ethylene carbonate, butylene carbonate, etc.) and ratatones (two-butyl lactone, etc.), low-viscosity linear carbonates (dimethyl carbonate, getyl carbonate, ethyl methyl carbonate), low-viscosity ether compounds (glyme , Diglyme, THF, dioxolane, etc.) have been studied mainly, and high ionic conductivity has been achieved by increasing the dissociation of the electrolyte salt and making it less viscous. Among them, carbonates are widely used because of their wide electrochemical stability range and low reactivity with positive and negative electrode materials (for example, JP-A Nos. 2-10666 and 5-283104). Further, among them, ethylene carbonate is effective for improving the reversibility of a carbon anode such as a graphite anode, and is regarded as an essential solvent for lithium ion batteries currently on the market.
これらリチウム一次電池やリチウム (イオン) 二次電池の正負極、 電解液 以外の構成要素として重要であるセパレータにはポリオレフイン不織布やポリ ォレフィン製マイクロポーラスフイルムという多孔性フィルムが用いられてい る。 セパレーターの機能としては正極、 負極を電子的に隔離し短絡させないこ とと、 正、 負極間に介在する電解液中のイオン移動を妨げないことが要求され ている。 また前述した機能を有していれば、 できるだけ薄い方が電池全体のェ ネルギー密度が大きくなり好ましい。 これら機能を持たせるため、 現在のセパ レーターとしては多孔性の薄膜フィルムが用いられており、 フィルム製造費や 加工費が高く、 コス ト高の要因になっている。 また電解液を担持する能力がな く、 電池から部品外部への液漏れあるいは電極物質の溶出などが発生しやすい ために、 電池として長期信頼性、 安全性に問題があった。  A porous film such as a polyolefin nonwoven fabric or a polyolefin microporous film is used as a separator, which is important as a constituent element other than the positive and negative electrodes and the electrolyte in these lithium primary batteries and lithium (ion) secondary batteries. The function of the separator is required to be such that the positive and negative electrodes are electronically isolated from each other so as not to cause a short circuit, and that the ion transfer in the electrolyte between the positive and negative electrodes is not hindered. In addition, if the battery has the above-described function, it is preferable that the battery be as thin as possible because the energy density of the entire battery is increased. To provide these functions, porous thin films are currently used as separators, and film manufacturing and processing costs are high, which is a factor of high cost. In addition, there was no ability to carry the electrolyte, and the battery easily leaked from the battery to the outside of the component or the elution of the electrode material. This caused long-term reliability and safety problems for the battery.
最近、 ポリエチレンォキサイ ド系重合体とアルカリ金属塩を複合したいわ ゆる高分子固体電解質が注目されている。 これら高分子固体電解質の例として、 Recently, a so-called solid polymer electrolyte, which is a combination of a polyethylene oxide polymer and an alkali metal salt, has been receiving attention. Examples of these polymer solid electrolytes,
「プリティッシュ ·ポリマー · ジャーナノレ (British Polymer Journal) , 第 3 1 9卷, 1 3 7頁, 1975 年」 には、 ポリエチレンオキサイ ドと無機アル力 リ金属塩との複合物がイオン伝導性を示すことが記載されている。 また、 オリ ゴォキシエチレンを側鎖に導入した櫛型高分子が、 イオン伝導性を担っている ォキシエチレン鎖の熱運動性を高め、 イオン伝導性が改良されることも多数報 告されている。 例えば、 「ジャーナル · ォブ . フィジカル ' ケミス トリイ (The Journal of Physical Chemistry) , 第 8 9卷, 9 8 7頁, 1984年」 に は、 ポリメタクリル酸の側鎖にオリゴォキシエチレンを付加したものにアル力 リ金属塩を複合化した例が記載されている。 さらに、 「ジャーナル .ォブ .ァ メリカン 'ケミカル · ソサエティ (The Journal of the American Chemical Society) , 第 1 0 6卷, 6854頁, 1984年」 には、 オリゴォキシエチレン側鎖 を有するポリホスファゼンにアルカリ金属塩を複合化した例が記載されている。 これらは重合体自身が電解質であるリチウム塩と錯形成し、 重合体鎖の熱運動 によりイオン伝導を発現できると言われている。 従って、 現在のセパレータの ような電解液を通す孔は基本的には必要ない。 しかしながらこれらは膜強度、 イオン伝導度の点で実用的に満足できるのものではない。 "British Polymer Journal, Vol. 319, p. 137, 1975" states that a composite of polyethylene oxide and an inorganic metal salt of an alkali metal has an ionic conductivity. Is indicated. In addition, a comb-shaped polymer with oligooxyethylene introduced into the side chain is responsible for ionic conductivity. It has been reported that the thermal mobility of oxyethylene chains can be increased to improve ionic conductivity. For example, "The Journal of Physical Chemistry", Vol. 89, pp. 87, 1984, added oligooxyethylene to the side chain of polymethacrylic acid. An example is described in which an alkali metal salt is compounded. In addition, the Journal of the American Chemical Society, Vol. 106, p. 6854, 1984, describes a polyphosphazene having an oligooxyethylene side chain. An example of complexing an alkali metal salt is described. It is said that the polymer itself forms a complex with the lithium salt, which is the electrolyte, and can exhibit ionic conduction by thermal motion of the polymer chain. Therefore, there is basically no need for a hole through which the electrolyte passes, as in the current separator. However, these are not practically satisfactory in terms of membrane strength and ionic conductivity.
一般的に検討されている高分子固体電解質のイオン伝導度は、 室温におけ る値で 1 0 _4〜1 0 _5 S Z c m位まで改善されたものの、 液体系イオン伝導性 物質に比較するとなお二桁以上低いレベルである。 また、 0。C以下の低温にな ると、 一層極端にイオン伝導性が低下する。 更にこれらの固体電解質を薄膜に して電池に組み込む場合、 電極との複合化や接触性確保等の加工技術が難しく 製造法でも問題点があつた。 Ion conductivity of the solid polymer electrolyte that is generally considered, despite improved to 1 0 _ 4 ~1 0 _ 5 SZ cm position at that value put in room temperature, when compared to a liquid ion conductive material It is a level lower by two digits or more. Also 0. At low temperatures below C, the ionic conductivity is further reduced. Furthermore, when these solid electrolytes are incorporated into a battery in the form of a thin film, processing techniques such as compounding with electrodes and ensuring contactability were difficult, and there were problems with the manufacturing method.
「ジャーナル ·ォブ ·アプライ ド 'エレク トロケミストリイ(Journal of Applied Electrochemistry) , 第 5卷, 6 3〜 6 9頁, 1975 年」 に記載されて いるように、 ポリアクリロニトリルやポリフッ化ビニリデンゲル等の熱可塑性 高分子または架橋高分子に溶媒及び電解質を加えたいわゆる高分子ゲル電解質 は高イオン伝導度となることが報告されている。 また、 特公昭 58 - 36828 号に はポリメタクリル酸アルキルエステルに溶媒及び電解質を加えた同様の高分子 ゲル電解質は高イオン伝導度となることが報告されている。 しかしながら、 こ れら高分子ゲル電解質は高イオン伝導度であるが、 流動性を付与することとな るため、 完全な固体としては取り扱えず、 膜強度や成膜性に劣り、 電池に応用 すると短絡が起こり易いうえ、 液体系イオン伝導性物質同様に封止上の問題が 発生する。 As described in "Journal of Applied Electrochemistry", Vol. 5, pp. 63-69, 1975, polyacrylonitrile, polyvinylidene fluoride gel, etc. It has been reported that a so-called polymer gel electrolyte obtained by adding a solvent and an electrolyte to a thermoplastic polymer or a crosslinked polymer has high ionic conductivity. In addition, Japanese Patent Publication No. 58-36828 reports that a similar polymer gel electrolyte obtained by adding a solvent and an electrolyte to a polyalkyl methacrylate ester has a high ionic conductivity. However, although these polymer gel electrolytes have high ionic conductivity, they impart fluidity, so they cannot be handled as completely solid, have poor film strength and film forming properties, and are applied to batteries. Then, a short circuit is likely to occur, and a sealing problem occurs as in the case of the liquid ion conductive material.
米国特許第 4357401号には、 ヘテロ原子を含有する架橋ポリマーとイオン化 可能な塩からなる高分子固体電解質では、 高分子の結晶性が低下し、 ガラス転 移点が低く、 イオン伝導度が改善されることが記載されているが、 室温で 1 0 -5 S c m程度であり、 まだ不十分であつた。  U.S. Pat.No. 4,357,401 states that a polymer solid electrolyte consisting of a crosslinked polymer containing a heteroatom and an ionizable salt reduces the crystallinity of the polymer, lowers the glass transition point, and improves ionic conductivity. However, it was about 10-5 Scm at room temperature, which was still insufficient.
さらに米国特許第 4792504 号においては、 ポリ酸化エチレンの架橋ネット ワーク中に金属塩及び非プ口トン性溶剤からなる電解液が含浸された高分子固 体電解質が提案されている。 これらはォキシェチレン鎖がリチウム塩だけでな く、 非プロ トン性溶剤を含浸できることを示しており、 リチウム電池のセパレ ータとして使用可能な電解液を含浸した孔のない均一な高分子固体電解質が提 供できることを示している。 しかしながら、 この系でもイオン伝導度は 1 0 ·4 S c mとまだ不十分であつた。 また溶剤が添加されたため膜強度が低下し、 製造時や電池等に使用する場合に取扱いにくいという問題が生じた。 Further, US Pat. No. 4,792,504 proposes a solid polymer electrolyte in which an electrolyte comprising a metal salt and a non-protonic solvent is impregnated in a crosslinked network of polyethylene oxide. These indicate that the oxetylene chain can impregnate not only the lithium salt but also a non-protonic solvent, and that a uniform solid polymer electrolyte without pores impregnated with an electrolyte that can be used as a separator for lithium batteries can be obtained. It can be provided. However, even in this system, the ionic conductivity was still insufficient at 10 · 4 S cm. In addition, the addition of the solvent reduced the film strength, which caused a problem in that it was difficult to handle during production or when used in batteries and the like.
特公平 3-73081号 (米国特許第 4908283号) にはポリエチレングリコールジ ァクリレート等のァクリロイル変性ポリアルキレンォキシドノ電解質塩 有機 溶媒からなる組成物に紫外線等の活性光線を照射することにより、 高分子固体 電解質を形成する方法が開示され、 重合時間を短縮する試みがなされている。 また、 米国特許第 4830939号、 特開平 5-109310号 (米国特許第 5037712号) にも架橋性のポリエチレン性不飽和化合物ノ電解質塩 活性光線不活性溶媒か らなる組成物を紫外線や電子線等の放射線照射することにより、 電解液を含ん だ高分子固体電解質を形成する同様の方法が開示されている。 これらの系では 高分子固体電解質中の電解液を増量したため、 イオン伝導度は向上しているが、 まだ不十分であり、 また膜強度は悪化する傾向にある。  Japanese Patent Publication No. 3-73081 (U.S. Pat. No. 4,908,283) discloses that a polymer comprising an acryloyl-modified polyalkylene oxydono electrolyte salt such as polyethylene glycol diacrylate and an organic solvent is irradiated with an actinic ray such as ultraviolet light to polymer. Methods for forming a solid electrolyte have been disclosed and attempts have been made to reduce the polymerization time. Also, US Pat. No. 4,830,939 and Japanese Patent Application Laid-Open No. 5-109310 (US Pat. No. 5,037,712) disclose a composition comprising a crosslinkable polyethylene unsaturated compound, an electrolyte, an actinic ray inactive solvent, an ultraviolet ray, an electron beam or the like. A similar method for forming a polymer solid electrolyte containing an electrolytic solution by irradiating the same is disclosed. In these systems, the ionic conductivity is improved because the amount of electrolyte in the solid polymer electrolyte is increased, but it is still insufficient, and the membrane strength tends to deteriorate.
「ソリ ッ ド ' ステート ' アイォニタス(Sol id State Ionics), 7号, 7 5頁, “Solid 'State' Ionicas, 7, 7, 75,
1982年」 に高分子固体電解質である L i C 1 04/ポリエチレンォキサイド複 合体にさらにアルミナ粒子を複合させることにより、 イオン伝導度が低下する ことなく高分子固体電解質の強度改善が達成できることが報告されている。 特 開平 6-140052号 (W094/06165号) には、 ポリアルキレンォキサイド イソシ ァネート架橋ポリマー 無機酸化物複合体に非水電解液を含浸させた固体電解 質が提案されており、 電解液含有高分子固体電解質の強度アップが図られてい る。 In 1982 "by combining L i C 1 0 4 / polyethylene O key further alumina particles to the side double coalesce a polymer solid electrolyte, ion conductivity is lowered It has been reported that the strength of a solid polymer electrolyte can be improved without such a problem. Japanese Patent Publication No. 6-140052 (W094 / 06165) proposes a solid electrolyte in which a polyalkylene oxide isocyanate crosslinked polymer inorganic oxide composite is impregnated with a non-aqueous electrolytic solution. The strength of the polymer solid electrolyte has been increased.
これらの問題を解決するために、 本発明者らはウレタン結合を有するォキ シアルキレン基を含有する (メタ) ァクリレートプレボリマーから得られる重 合体及び電解質からなる複合体を用いたイオン伝導性の高分子固体電解質 (特 開平 6-187822号 (米国特許第 5597661号) ) を提案した。 この高分子固体電 解質のイオン伝導度は、 溶媒未添加で 1 0 _4 S Z c m (室温) という高いレべ ルにあるが、 さらに溶媒を添加すると 1 0 _3 S / c m以上となり、 また膜質も 良好で自立膜として得られる程度に改善された。 また、 このプレボリマーは重 合性が良好で、 電池に応用する場合、 プレボリマー状態で電池に組込んだ後に 重合し、 固体化できるという加工上のメリットもあった。 In order to solve these problems, the present inventors have proposed an ionic conduction using a composite comprising a polymer obtained from a (meth) acrylate prepolymer containing an oxyalkylene group having a urethane bond and an electrolyte. A novel solid polymer electrolyte (Japanese Patent Publication No. 6-187822 (US Pat. No. 5,597,661)) was proposed. The ionic conductivity of this polymer solid electrolyte is at a high level of 10 4 SZ cm (room temperature) without adding a solvent, but becomes 10 3 S / cm or more when a solvent is further added. In addition, the film quality was good and improved to the extent that it could be obtained as a self-supporting film. In addition, this prepolymer has good polymerizability, and when applied to batteries, there is also a processing merit that it can be polymerized after being assembled into batteries in a prepolymer state and solidified.
しかしながら、 溶媒として特に有効なエチレンカーボネートを添加した高 分子固体電解質では、 エチレンカーボネートが結晶化しやすいために、 0 °C以 下での低温でィオン伝導度や電流特性が極端に低下するという問題があった。 発明の目的  However, in a high molecular solid electrolyte to which ethylene carbonate, which is particularly effective as a solvent, is added, there is a problem that the ion conductivity and current characteristics are extremely reduced at a low temperature of 0 ° C or lower because ethylene carbonate is easily crystallized. there were. Purpose of the invention
本発明は、 成型加工、 強度が良好で、 取扱いが容易で、 広い温度領域でィ オン伝導度が高く、 安定、 低コストで、 安全性、 信頼性に優れた高分子固体電 解質を提供することを目的とする。 また、 安全性、 信頼性に優れ、 高性能、 特 に一 1 0 °C以下でも容量低下の少ない、 形状自由性のあるリチウム二次電池を 提供することを目的とする。 図面の簡単な説明  The present invention provides a solid polymer electrolyte that has good molding process, good strength, easy handling, high ion conductivity over a wide temperature range, stability, low cost, and excellent safety and reliability. The purpose is to do. It is another object of the present invention to provide a lithium secondary battery which is excellent in safety and reliability, has high performance, and has a small capacity reduction even at a temperature of 10 ° C or less, and has a shape-free shape. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による薄型の固体電池の実施例の概略断面図である。 発明の開示 FIG. 1 is a schematic sectional view of an embodiment of a thin solid state battery according to the present invention. Disclosure of the invention
本発明者らは上記課題に鑑み鋭意検討した結果、 高分子固体電解質にェチ レンカーボネートとェチルメチルカーボネートの混合溶媒を添加することで、 上記課題が改善されることを見出した。 特に、 エチレンカーボネートとェチル メチルカーボネートの添力卩量を特定の範囲とすることにより、 低温特性が大幅 に改善できることを見出した。  The present inventors have conducted intensive studies in view of the above problems, and as a result, have found that the above problems can be improved by adding a mixed solvent of ethylene carbonate and ethyl methyl carbonate to a polymer solid electrolyte. In particular, it has been found that the low-temperature characteristics can be significantly improved by controlling the amount of ethylene carbonate and ethyl methyl carbonate added in a specific range.
さらに本発明者らは上記高分子固体電解質を用いたリチウム二次電池が、 使用温度範囲が広く、 電流特性、 サイクル性が良好で、 安全性、 信頼性に優れ、 形状自由性のある高工ネルギ一密度電池となることを見出した。  Furthermore, the present inventors have developed a lithium secondary battery using the above polymer solid electrolyte, which has a wide operating temperature range, good current characteristics, good cycleability, excellent safety and reliability, and a high processability with shape flexibility. It has been found that it becomes a single-density energy battery.
なお、 本明細書の記載において、 『ォキシアルキレン』 という表現にはォ キシアルキレン基を少なくとも 1個以上含むオリゴォキシアルキレン及ぴポリ ォキシアルキレンも含まれる。  In the description of the present specification, the expression “oxyalkylene” includes oligooxyalkylenes and polyoxyalkylenes each containing at least one oxyalkylene group.
すなわち、 本発明は以下のものを開発することにより上記目的を達成した。  That is, the present invention has achieved the above object by developing the following.
[1] 高分子、 電解質塩及びエチレンカーボネートとェチルメチルカーボネ 一トとを含む有機溶媒からなる高分子固体電解質。  [1] A polymer solid electrolyte comprising a polymer, an electrolyte salt, and an organic solvent containing ethylene carbonate and ethyl methyl carbonate.
[2] 高分子、 電解質塩、 エチレンカーボネートとェチルメチルカーボネー トとを含む有機溶媒及び無機微粒子からなる高分子固体電解質。  [2] A polymer solid electrolyte comprising a polymer, an electrolyte salt, an organic solvent containing ethylene carbonate and ethyl methyl carbonate, and inorganic fine particles.
[3] 高分子に対して、 エチレンカーボネートとェチルメチルカーボネート の総重量が 1 00重量。 /。以上であり、 エチレンカーボネートとェチルメチルカ ーボネートの重量比が 2 : 1〜1 : 10である前記 [1] または [2] 記載の 高分子固体電解質。  [3] The total weight of ethylene carbonate and ethyl methyl carbonate is 100% by weight of the polymer. /. The polymer solid electrolyte according to the above [1] or [2], wherein the weight ratio between ethylene carbonate and ethyl methyl carbonate is 2: 1 to 1:10.
[4 ] 高分子がォキシアルキレン及び/またはゥレタン構造を含む 前記 [1] 乃至 [3] のいずれかに記載の高分子固体電解質。  [4] The polymer solid electrolyte according to any of [1] to [3], wherein the polymer has an oxyalkylene and / or urethane structure.
[5] 高分子が一般式 (1) または一般式 (2)  [5] The polymer has the general formula (1) or the general formula (2)
CH2=C(R1)CO— (1) CH 2 = C (R 1 ) CO— (1)
0  0
CH2=CiR2)C[OR3]xNHCO— (2) CH 2 = CiR 2 ) C [OR 3 ] x NHCO— (2)
II II O O [式中、 R1及び R2は水素原子またはアルキル基を表わし、 R3は炭素数 10 以下の 2価の基を表わす。 該 2価の基はへテロ原子を含んでいてもよく、 直鎖 状、 分岐状、 環状構造のいずれからなるものでもよい。 Xは 0または 1〜1 0 の数値を示す。 但し、 同一分子中に複数存在の式 (1) または (2) で表わさ れる重合性官能基中の R2、 R3及び xの値は、 それぞれ独立し、 同一で も異なっていてもよレヽ。 ] II II OO [Wherein, R 1 and R 2 represent a hydrogen atom or an alkyl group, and R 3 represents a divalent group having 10 or less carbon atoms. The divalent group may contain a hetero atom, and may have any of a linear, branched, or cyclic structure. X represents 0 or a numerical value from 1 to 10; However, the values of R 2 , R 3 and x in the polymerizable functional group represented by the formula (1) or (2) which are present in plurals in the same molecule are independent of each other and may be the same or different. ]
で表わされる重合性官能基を有する熱及び Zまたは活性光線重合性化合物を重 合することによって得られる少なく とも一種の高分子である前記 [ 1 ] 乃至 [4] のいずれかに記載の高分子固体電解質。 The polymer according to any one of the above [1] to [4], which is at least one kind of polymer obtained by polymerizing a heat and Z or actinic ray polymerizable compound having a polymerizable functional group represented by Solid electrolyte.
[6] 無機微粒子が結晶粒子径 0.1 /zm以下で、 BET比表面積 5 Om2/g であるアルミナ系微粒子である前記 [2] 乃至 [5] のいずれかに記載の高分 子固体電解質。 [6] The polymer solid electrolyte according to any of [2] to [5], wherein the inorganic fine particles are alumina-based fine particles having a crystal particle diameter of 0.1 / zm or less and a BET specific surface area of 5 Om 2 / g.
[7] 少なくとも一種の電解質塩がリチウム塩である前記 [1] 乃至 [6] のいずれかに記載の高分子固体電解質。  [7] The polymer solid electrolyte according to any one of the above [1] to [6], wherein the at least one electrolyte salt is a lithium salt.
[8] 少なくとも一種の電解質塩が L i PF6、 L i BF4及び Zまたは L i N (CF3SO2) 2である前記 [7] 記載の高分子固体電解質。 [8] At least one electrolyte salt L i PF 6, L i BF 4 and Z or L i N (CF 3 SO 2 ) 2 in which said [7] a polymer solid electrolyte according.
[9] 前記 [7] または [8] 記載の高分子固体電解質を用い、 負極活物質 としてリチウム、 リチウム合金、 リチウムイオンを吸蔵放出できる炭素材料、 リチウムイオンを吸蔵放出できる無機酸化物、 リチウムイオンを吸蔵放出.でき る無機カルコゲナイド、 リチウムイオンを吸蔵放出できる高分子から選ばれる 少なくとも一つの材料を用いるリチウム二次電池。  [9] The polymer solid electrolyte according to the above [7] or [8], wherein the negative electrode active material is lithium, a lithium alloy, a carbon material capable of storing and releasing lithium ions, an inorganic oxide capable of storing and releasing lithium ions, and lithium ion. A lithium secondary battery using at least one material selected from inorganic chalcogenides that can store and release lithium ions and polymers that can store and release lithium ions.
以下に本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の高分子固体電解質はエチレンカーボネート (EC) とェチルメチ ルカーボネート (EMC) を含む有機溶媒が添加されていることを特徴とする。 これにより、 広い温度領域で高イオン伝導度となり、 電池等の電気化学素子に 応用した場合の電流特性、 温度特性が向上する。  The solid polymer electrolyte of the present invention is characterized in that an organic solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) is added. As a result, high ionic conductivity is obtained in a wide temperature range, and current characteristics and temperature characteristics when applied to electrochemical devices such as batteries are improved.
ECと EMCの混合比 (重量) は通常、 EC : EMCが 3 : 1〜: 1 : 1 5 の範囲で用いることができる。 E C量が多すぎると低温での E Cの析出温度が 高くなり、 特に、 高分子固体電解質中では、 析出温度がさらに高くなる傾向に ある。 また少なすぎると、 イオン伝導度の低下や電池に用いた場合の寿命低下 を招く。 従って、 好ましい ECと EMCの混合比 (重量) は、 EC : EMCが 2 : 1〜: 1 : 10であり、 5 : 5〜: L : 10の範囲がさらに好ましく、 4 : 6 〜1 : 9が特に好ましい。 The mixing ratio (weight) of EC and EMC is usually 3: 1 to 1:15 for EC: EMC. Can be used. If the amount of EC is too large, the deposition temperature of EC at a low temperature becomes high, and particularly in a solid polymer electrolyte, the deposition temperature tends to be even higher. On the other hand, if the amount is too small, the ionic conductivity is reduced and the life of the battery is shortened. Therefore, the preferable mixture ratio (weight) of EC and EMC is EC: EMC is 2: 1 to: 1: 10, 5: 5 to: L: 10 is more preferable, and 4: 6 to 1: 9. Is particularly preferred.
高分子固体電解質中の溶媒 (ECと EMCとを含む。 ) の含有量が多いほ ど、 電解質塩またはイオンの拡散が容易で、 またその場合のイオン伝導度は高 くなるが、 高分子固体電解質の機械的強度が低下する。 従って、 好ましい添加 量としては、 本発明の高分子固体電解質中の高分子重量の 1 00重量%から 1500重量%の範囲であって、 200重量%から 1200重量%がさらに好ましく、 300重量%から 1000重量%が特に好ましい。  The higher the content of the solvent (including EC and EMC) in the polymer solid electrolyte, the easier the diffusion of electrolyte salts or ions, and the higher the ionic conductivity in that case. The mechanical strength of the electrolyte decreases. Therefore, the preferable addition amount is in the range of 100% to 1500% by weight of the polymer weight in the polymer solid electrolyte of the present invention, more preferably 200% to 1200% by weight, and more preferably 300% to 1200% by weight. 1000% by weight is particularly preferred.
本発明の高分子固体電解質には上記好ましい範囲で添加された ECZEM C以外にさらに他の有機溶媒が添加されていてもよい。 使用できる有機溶媒と しては、 本発明の高分子固体電解質に用いる高分子、 EC、 EMCとの相溶性 が良好で、 沸点が高く、 電解質塩の溶解性が高く、 使用する電気化学素子に悪 影響を与えない安定なものが良い。 すなわち、 誘電率が大きく、 沸点が 60°C 以上であり、 電気化学的安定範囲が広い化合物が適している。 そのような溶媒 としては、 プロピレンカーボネート、 ジメチルカーボネート、 ジェチルカーボ ネート等のカーボネート類、 1, 2—ジメ トキシェタン、 ジォキソラン、 2— メチルテトラヒ ドロフラン等のエーテル類、 トリエチレンダリコールジメチル エーテル、 テトラエチレングリコールジメチルエーテル等のオリゴエーテル類、 プロピオン酸メチル、 メ トキシプロピオン酸メチル等のエステル類、 ベンゾニ トリノレ、 トル二トリル等の芳香族二トリル類、 ジメチルホルムアミ ド、 N—メ チルピロリ ドン、 N—ビュルピロリ ドン、 ジメチルスルホキシド、 スルホラン 等の硫黄化合物、 リン酸エステル類等が挙げられる。 この中で、 エーテル類、 オリゴエーテル類、 エステル類及びカーボネート類が好ましく、 エステル類、 カーボネート類が特に好ましい。 In addition to ECZEM C added in the above preferred range, other organic solvents may be added to the polymer solid electrolyte of the present invention. As the organic solvent that can be used, the polymer used in the solid polymer electrolyte of the present invention, has good compatibility with EC and EMC, has a high boiling point, has high solubility of the electrolyte salt, and is suitable for the electrochemical element used. A stable one that does not adversely affect is good. That is, a compound having a large dielectric constant, a boiling point of 60 ° C or more, and a wide electrochemical stability range is suitable. Examples of such a solvent include carbonates such as propylene carbonate, dimethyl carbonate, and getyl carbonate; ethers such as 1,2-dimethoxetane, dioxolan, and 2-methyltetrahydrofuran; triethylene dalicol dimethyl ether; Oligoethers, esters such as methyl propionate and methyl methoxypropionate, aromatic nitriles such as benzonitrinole and tolunitrile, dimethylformamide, N-methylpyrrolidone, N-butylpyrrolidone and dimethyl Examples thereof include sulfur compounds such as sulfoxide and sulfolane, and phosphoric esters. Among them, ethers, oligoethers, esters and carbonates are preferable, and esters, Carbonates are particularly preferred.
本発明の高分子固体電解質の主要構成成分である高分子は非電子伝導性で 各種有機極性溶媒を吸液、 保持できるものでなければならない。 そのような高 分子としては、 ポリアルキレンォキシド、 ポリアルキルイミン、 ポリアクリロ 二トリル、 ポリ (メタ) アクリル酸エステル、 ポリホスファゼン、 ポリフツイ匕 ビニリデン、 ポリウレタン、 ポリアミ ド、 ポリエステル、 ポリシロキサン等の ヘテロ原子を有する極性の熱可塑性高分子や架橋高分子が挙げられる。 特に架 橋高分子が溶媒吸液後の強度が高く、 溶媒の保持力も高く、 さらに粘弾性体で あることから、 本発明で用いる高分子として適している。 ここで表わす架橋に は、 架橋鎖が共有結合で形成されているもの以外に、 側鎖がイオン結合や水素 結合等で架橋されているもの、 各種添加物を介して物理架橋されているものも 含まれる。  The polymer which is a main component of the polymer solid electrolyte of the present invention must be non-electroconductive and capable of absorbing and retaining various organic polar solvents. Examples of such high molecules include heteroatoms such as polyalkylene oxide, polyalkyl imine, polyacrylonitrile, poly (meth) acrylate, polyphosphazene, polyfutsudani vinylidene, polyurethane, polyamide, polyester, and polysiloxane. Polar thermoplastic polymer or cross-linked polymer. In particular, the crosslinked polymer is suitable as the polymer used in the present invention because it has a high strength after absorbing the solvent, has a high solvent retentivity, and is a viscoelastic material. The crosslinks shown here include not only those in which the crosslinks are formed by covalent bonds, those in which the side chains are crosslinked by ionic bonds or hydrogen bonds, and those in which the crosslinks are physically crosslinked via various additives. included.
上記高分子の中ではポリアルキレンォキシド、 ポリウレタン等のォキシアル キレンゃゥレタン構造を分子構造内に含むものが、 各種極性溶媒との相溶性が 良好で, 電気化学的安定性が良好であり好ましい。 また、 安定性の面から、 ポ リフッ化ビニリデン等のフルォロカーボン基を分子構造内に有するものも好ま しい。  Among the above polymers, those containing an oxyalkylene perethane structure such as polyalkylene oxide or polyurethane in the molecular structure are preferable because of their good compatibility with various polar solvents and good electrochemical stability. From the viewpoint of stability, those having a fluorocarbon group such as vinylidene fluoride in the molecular structure are also preferable.
また、 上記高分子の中で一般式 (1 ) または (2 ) で表わされる重合性官  Further, among the above polymers, a polymerizable agent represented by the general formula (1) or (2)
〇Η2=0(^)〇0— ( 1 ) 〇Η 2 = 0 (^) 〇0— (1)
0  0
CH2=C(R2)C[OR3]xNHCO— ( 2 ) CH 2 = C (R 2 ) C [OR 3 ] x NHCO— (2)
0 0  0 0
[式中、 R 1及び R2は水素原子またはアルキル基を表わし、 R3は炭素数 1 0 以下の 2価の基を表わす。 該 2価の基はへテロ原子を含んでいてもよく、 直鎖 状、 分岐状、 環状構造のいずれからなるものでもよい。 Xは 0または 1〜1 0 の数値を示す。 但し、 同一分子中の複数個の上記一般式 (1 ) または (2 ) で 表わされる重合性官能基中の R l、 R2、 R 3及び xの値は、 それぞれ独立し、 同一でも異なっていても良い。 ] [Wherein, R 1 and R 2 represent a hydrogen atom or an alkyl group, and R 3 represents a divalent group having 10 or less carbon atoms. The divalent group may contain a hetero atom, and may have any of a linear, branched, or cyclic structure. X is 0 or 1-10 Shows the numerical value of. However, R l in the polymerizable functional group represented by a plurality of the above general formula in the same molecule (1) or (2), the value of R 2, R 3 and x are each independently either the same or different May be. ]
を有する少なくとも一種の重合性化合物を加熱及び Zまたは活性光線照射によ り硬化させて得られる高分子が、 溶媒を含んだ状態で成膜しやすく、 膜強度が 良好であり好ましい。 A polymer obtained by curing at least one type of polymerizable compound having the following formulas by heating and irradiating with Z or actinic rays is preferable because it easily forms a film in a state containing a solvent and has good film strength.
その中でも、 下記一般式 (3 ) または (4 )  Among them, the following general formula (3) or (4)
CH2=C(R1)CO— R4— ( 3 ) CH 2 = C (R 1 ) CO— R 4 — (3)
II  II
0  0
CH2= ( 4 ) CH 2 = (4)
0 0 [式中、 R l、 R2、 R3及び xは一般式 (1 ) または (2 ) と同じ意味を表わ し、 R4及び R5 は、 ォキシアルキレン基及び Zまたはフルォロカーボン、 ォ キシフルォロカーボンを含む 2価の基である。 ] 0 [wherein, R 1, R 2 , R 3 and x have the same meaning as in the general formula (1) or (2), and R 4 and R 5 represent an oxyalkylene group and Z or fluorocarbon, It is a divalent group containing oxyfluorocarbon. ]
で表わされる重合性官能基を有する少なくとも一種の重合性化合物を加熱及び または活性光線照射により硬化させて得られる高分子が特に好ましい。 本発明の高分子固体電解質に用いられる一般式 (1 ) で表わされる宵能基 を有する化合物を合成する方法に特に限定はないが、 例えば、 酸クロライ ドと 末端にヒ ドロキシル基を有する化合物、 例えばオリゴォキシアルキレンオール とを反応させることにより容易に得られる。 A polymer obtained by curing at least one polymerizable compound having a polymerizable functional group represented by the formula (1) by heating and / or irradiating with active light is particularly preferable. The method for synthesizing the compound having a functional group represented by the general formula (1) used in the polymer solid electrolyte of the present invention is not particularly limited. For example, an acid chloride and a compound having a hydroxyl group at a terminal, For example, it can be easily obtained by reacting with oligooxyalkyleneol.
例えば、 一般式 (1 ) で表わされる官能基を 1つ有する化合物は、 酸クロ ライ ドとモノアルキルオリゴアルキレンダリコールとを以下の様な反応式に従 つて、 1 : 1のモル比で反応させることにより、 容易に得られる。 CH2=C(R1)COCI + HO(CH2CH(R6)0)mR7 ► CH2=C(R1)COO(CH2CH(R6)O)mR7 For example, a compound having one functional group represented by the general formula (1) is obtained by reacting an acid chloride with a monoalkyl oligoalkylenedarilicol in a molar ratio of 1: 1 according to the following reaction formula. By doing so, it is easily obtained. CH 2 = C (R 1 ) COCI + HO (CH 2 CH (R 6 ) 0) m R 7 ► CH 2 = C (R 1 ) COO (CH 2 CH (R 6 ) O) m R 7
[式中、 Rl は一般式 ( 1) と同じ意味を表わし、 R6 は Hまたは炭素数 1 0以下のアルキル基であり、 R7は炭素数 1 0以下のアルキル基である。 ] 例えば、 一般式 (1) で表わされる官能基を 2つ有する化合物は、 酸クロ ライ ドとオリゴアルキレングリコールとを以下の反応式に従って、 2 : 1のモ ル比で反応させることにより、 容易に得られる。 [Wherein, R1 has the same meaning as in the general formula (1), R 6 is H or an alkyl group having 10 or less carbon atoms, and R 7 is an alkyl group having 10 or less carbon atoms. For example, a compound having two functional groups represented by the general formula (1) can be easily prepared by reacting an acid chloride with an oligoalkylene glycol at a molar ratio of 2: 1 according to the following reaction formula. Is obtained.
2CH2=C(R,)COCI + HO(CH2CH(R6)0)mH ► CH2=C(R1)COO(CH2CH(R6)0)mCO(R1)C=CH2 2CH 2 = C (R,) COCI + HO (CH 2 CH (R 6 ) 0) m H ► CH 2 = C (R 1 ) COO (CH 2 CH (R 6 ) 0) m CO (R 1 ) C = CH 2
[式中、 R1 は一般式 (1) と同じ意味を表わし、 R6 は Hまたは炭素数 1 0 以下のアルキル基である。 ] Wherein, R1 represents the same meaning as the general formula (1), R 6 is H or an alkyl group having 1 0 carbon atoms. ]
本発明の高分子固体電解質に用いられる一般式 (2) で表わされる重合性 官能基を有する化合物を合成する方法には特に限定はないが、 例えば CH2=C (R2) CO [OR3] xNCOとオリゴォキシアルキレンオールとの 反応により得ることができる (式中、 R2、 R3 及び Xはそれぞれ一般式 (2) と同じ意味を表わす。 ) 。 The method for synthesizing the compound having a polymerizable functional group represented by the general formula (2) used in the polymer solid electrolyte of the present invention is not particularly limited. For example, CH 2 = C (R2) CO [OR 3 ] It can be obtained by reacting xNCO with an oligooxyalkyleneol (wherein, R 2 , R 3 and X each have the same meaning as in the general formula (2)).
具体的方法として 1個のエチレン性不飽和基を有する化合物は、 例えば メタクリロイルイソシアナート系化合物 (以下、 Ml類と略記する。 ) あるい はァクリロイルイソシアナート系化合物 (以下、 A I類と略記する。 ) とモノ アルキルオリ ゴアルキレングリコールとを、 以下の反応式に従って、 1 : 1の モル比で反応させることにより、 容易に得られる。 CH2=C(R2)CO[OR3]xNCO + HO(CH2CH(R6)0)mR7 ► CH2=C(R2)CO[OR3]xNHCOO(CH2CH(R6)O)mR7 As a specific method, a compound having one ethylenically unsaturated group is, for example, a methacryloyl isocyanate compound (hereinafter abbreviated as Ml) or an acryloyl isocyanate compound (hereinafter abbreviated as AI). ) And a monoalkyl oligoalkylene glycol in a molar ratio of 1: 1 according to the following reaction formula. CH 2 = C (R 2 ) CO [OR 3 ] x NCO + HO (CH 2 CH (R 6 ) 0) m R 7 ► CH 2 = C (R 2 ) CO [OR 3 ] x NHCOO (CH 2 CH (R 6 ) O) m R 7
[式中、 R2、 R3及び xは一般式 (2 ) と同じ意味を表わし、 R6は Hまたは 炭素数 1 0以下のアルキル基であり、 R7 は炭素数 1 0以下のアルキル基であ る。 ] [Wherein, R 2 , R 3 and x have the same meaning as in the general formula (2), R 6 is H or an alkyl group having 10 or less carbon atoms, and R 7 is an alkyl group having 10 or less carbon atoms. It is. ]
また 2個のエチレン性不飽和基を有する化合物は、 例えば、 M l類あるい は A I類とオリゴアルキレングリコールとを、 2 : 1のモル比で反応させるこ とにより、 容易に得られる。  A compound having two ethylenically unsaturated groups can be easily obtained, for example, by reacting Ml or AIs with an oligoalkylene glycol in a molar ratio of 2: 1.
また、 3個のエチレン性不飽和基を有する化合物は、 例えば M l類及び/ または A I類と、 グリセリン等の 3価アルコールにアルキレンォキサイ ドを付 加重合させたトリオールとを、 3 : 1のモル比で反応させることにより、 容易 に得られる。  Compounds having three ethylenically unsaturated groups include, for example, Ml and / or AIs and a triol obtained by addition-polymerizing a trihydric alcohol such as glycerin with an alkylene oxide. It can be easily obtained by reacting at a molar ratio of
また、 4個のエチレン性不飽和基を有する化合物は、 例えば M l類及び または A I類と、 ペンタエリスリ トール等の 4価アルコールにアルキレンォキ サイ ドを付加重合させたテトラオールとを 4 : 1のモル比で反応させることに より、 容易に得られる。  The compound having four ethylenically unsaturated groups is, for example, a compound having a molar ratio of 4: 1 between Ml and / or AI and a tetraol obtained by addition-polymerizing an alkylene oxide to a tetrahydric alcohol such as pentaerythritol. It is easily obtained by reacting in a ratio.
また、 5個のエチレン性不飽和基を有する化合物は、 例えば M l類及び/ または A I類と、 α— D—ダルコビラノースにアルキレンォキシドを付加重合 させたペンタオールとを、 5 : 1のモル比で反応させることにより、 容易に得 られる。  Compounds having five ethylenically unsaturated groups include, for example, Ml and / or AIs and pentaol obtained by addition polymerization of α-D-dalcoviranose with alkylene oxide, in a ratio of 5: 1. It can be easily obtained by reacting at a molar ratio of
また、 6個のエチレン性不飽和基を有する化合物は、 例えば Μ I類及び Ζ または A I類と、 マンニットにアルキレンォキシドを付加重合させたへキサォ 一ルとを 6 : 1のモル比で反応させることにより、 容易に得られる。  The compound having six ethylenically unsaturated groups is, for example, a compound of the formulas I and 及 び or an AI and a hexanol obtained by addition-polymerizing an alkylene oxide to mannitol in a molar ratio of 6: 1. It is easily obtained by reacting.
フルォロカーボン基及び Zまたはォキシフルォロカーボン基を有する一般 式 (1 ) または (2 ) で表わされる重合性官能基を有する化合物を合成する方 法に特に限定はないが、 例えば、 具体的方法として重合性官能基を一つ有する 化合物は、 M I類あるいは A I類と 2, 2 , 3, 3, 4, 4, 4—ヘプタフル オロー 1ーブタノールのようなモノオールとを以下の反応式に従って、 1 : 1 のモル比で反応させることにより、 容易に得られる。 A method for synthesizing a compound having a polymerizable functional group represented by the general formula (1) or (2) having a fluorocarbon group and a Z or oxyfluorocarbon group is not particularly limited. Has one polymerizable functional group as Compounds are prepared by reacting MIs or AIs with monools such as 2,2,3,3,4,4,4-heptafluoro-1-butanol in a molar ratio of 1: 1 according to the following reaction formula. Can be easily obtained.
ΟΗ2=0(ΡΊ)ΟΟΟ(ΟΗ2)2ΝΟΟ + CF3(CF2)2CH2OH ► 〇Η2=〇(^)〇ΟΟ(0Η2)2ΝΗ〇ΟΟ〇Η2(〇Ε2)2〇Ρ3 また重合性官能基を 2個有する化合物は、 例えば Μ I類あるいは A I類と 2 , 2 , 3, 3—テトラフルオロー 1, 4—ブタンジオールのようなジオール とを以下の反応式に従って、 2 : 1のモル比で反応させることにより、 容易に 得られる。 ΟΗ 2 = 0 (Ρ Ί ) ΟΟΟ (ΟΗ 2 ) 2 ΝΟΟ + CF 3 (CF 2 ) 2 CH 2 OH ► 〇Η 2 = 〇 (^) 〇ΟΟ (0Η 2 ) 2 ΝΗ〇ΟΟ〇Η 2 (〇 Ε 2 ) 2 〇Ρ 3 Compounds having two polymerizable functional groups are, for example, ΜI or AIs and diols such as 2,2,3,3-tetrafluoro-1,4-butanediol. It can be easily obtained by reacting at a molar ratio of 2: 1 according to the following reaction formula.
2CH2=C (R1) COO(CH2)2NCO + HOCH2 (CF2)2CH 2OH {CH2=C (R1) COO(CH2)2NHCOOCHゥ CF2— }2 一般式 (1 ) あるいは (2 ) で表わされる重合性官能基を 1個しか有さな い化合物を重合して得られる高分子は、 架橋構造を有しておらず、 膜強度不足 のため、 薄膜にすると短絡する危険が大きく、 単独では用いない方がよい。 従 つて、 一般式 (1 ) あるいは (2 ) で表わされる重合性官能基を 2個以上有す る化合物と共重合し、 架橋させる必要がある。 2CH 2 = C (R 1 ) COO (CH 2 ) 2 NCO + HOCH 2 (CF 2 ) 2 CH 2 OH {CH 2 = C (R 1 ) COO (CH 2 ) 2 NHCOOCH ゥ CF 2 —} 2 General formula The polymer obtained by polymerizing a compound having only one polymerizable functional group represented by (1) or (2) does not have a cross-linked structure, and has insufficient film strength. The danger of a short circuit is great, and it is better not to use it alone. Therefore, it is necessary to copolymerize and crosslink with a compound having two or more polymerizable functional groups represented by the general formula (1) or (2).
高分子固体電解質の薄膜強度を考慮すると、 1分子中に含まれる一般式 ( 1 ) あるいは (2 ) で表わされる重合性官能基の数は、 3個以上がより好ま しい。  Considering the strength of the thin film of the polymer solid electrolyte, the number of polymerizable functional groups represented by the general formula (1) or (2) contained in one molecule is more preferably three or more.
また前記一般式 (1 ) で表わされる重合性官能基を有する化合物の中で、 一般式 (2 ) で表わされる重合性官能基を有する化合物から得られる高分子が ウレタン基を含んでおり、 重合性が良好で、 薄膜にしたときの膜強度も大きい ので好ましい。 Further, among the compounds having a polymerizable functional group represented by the general formula (1), the polymer obtained from the compound having a polymerizable functional group represented by the general formula (2) contains a urethane group, Good properties and high film strength when thinned It is preferred.
本発明の高分子固体電解質の構成成分として好ましい高分子は、 一般式 ( 1 ) または一般式 (2 ) で表わされる重合性官能基を有する化合物の少なく とも一種を重合し、 あるいは該化合物を共重合成分として重合することにより 得られる。  The polymer which is preferable as a component of the polymer solid electrolyte of the present invention is obtained by polymerizing at least one kind of a compound having a polymerizable functional group represented by the general formula (1) or (2), or It is obtained by polymerization as a polymerization component.
本発明の高分子固体電解質に用いる高分子は、 前記一般式 (1 ) または一 般式 (2 ) で表わされる重合性官能基を有する化合物の単独重合体であっても、 該カテゴリーに属する 2種以上の共重合体であっても、 あるいは該化合物の少 なくとも一種と他の重合性化合物との共重合体であってもよい。  The polymer used for the polymer solid electrolyte of the present invention, even if it is a homopolymer of a compound having a polymerizable functional group represented by the general formula (1) or the general formula (2), belongs to this category. It may be a copolymer of at least one kind, or a copolymer of at least one kind of the compound and another polymerizable compound.
前記一般式 (1 ) または一般式 (2 ) で表わされる重合性官能基を有する 化合物と共重合可能な他の重合性化合物としては、 特に制限はない。 例えば、 アタリルァミ ド、 メタタリルァミ ド、 N, N—ジメチルァクリルァミ ド、 N , N—ジメチルメタクリルアミ ド、 アタリロイルモルホリン、 メタタリロイ ルモルホリン、 N, N—ジメチルァミノプロピル (メタ) アクリルアミ ド等の (メタ) アクリルアミ ド系化合物、 スチレン、 ひーメチルスチレン等のスチレ ン系化合物、 N—ビュルァセトアミ ド、 N—ビニルホルムアミ ド等の N—ビニ ルアミ ド系化合物、 ェチルビュルエーテル等のアルキルビニルエーテルを挙げ ることができる。  The other polymerizable compound copolymerizable with the compound having a polymerizable functional group represented by the general formula (1) or (2) is not particularly limited. For example, atarylamide, metharylamide, N, N-dimethylacrylamide, N, N-dimethylmethacrylamide, atariloylmorpholine, metharylylmorpholine, N, N-dimethylaminopropyl (meth) acrylamide, etc. (Meth) acrylamide-based compounds, styrene-based compounds such as styrene and para-methylstyrene, N-vinylamide-based compounds such as N-vinylacetamide and N-vinylformamide, and alkyl vinyl ethers such as ethyl-butyl ether Can be mentioned.
重合方法としては、 重合性化合物中のァクリロイル基もしくはメタタリ口 ィル基の重合性を利用した一般的な方法を採用することができる。 すなわち、 これらモノマー単独、 あるいはこれらモノマーと他の前記の共重合可能な重合 性化合物の混合物に、 ァゾビスイソブチロニトリル、 ベンゾィルパーォキサイ ド等のラジカル重合触媒、 C F 3 C O O H等のプロ トン酸、 B F 3、 A 1 C 1 3 等のルイス酸等のカチオン重合触媒、 あるいはブチルリチウム、 ナトリウムナ フタレン、 リチウムアルコキシド等のァニオン重合触媒を用いて、 ラジカル重 合、 カチオン重合あるいはァニオン重合させることができる。 また、 重合性化 合物によっては無酸素状態で、 加熱のみでラジカル重合することもできる。 本発明の高分子固体電解質に用いられる高分子は、 ォキシアルキレン構造 を含んでいるものが好ましいが、 その場合のォキシアルキレン鎖数、 すなわち 前記一般式 (3 ) における R4中、 あるいは前記一般式 (4 ) における R5 中 に含まれるォキシアルキレン基の繰返し数 nは 1〜1000 の範囲が好ましく、 5〜 1 0 0の範囲が特に好ましい。 As the polymerization method, a general method utilizing the polymerizability of an acryloyl group or a methallyl group in the polymerizable compound can be employed. That is, a radical polymerization catalyst such as azobisisobutyronitrile, benzoyl peroxyside, a CF 3 COOH or the like is added to these monomers alone or a mixture of these monomers and the above-mentioned copolymerizable polymerizable compound. Pro Tonsan, using BF 3, cationic polymerization catalysts such as Lewis acids a, etc. 1 C 1 3 or butyl lithium, sodium Na Futaren, the Anion polymerization catalyst such as lithium alkoxide, radical polymerization, cationic polymerization or Anion polymerization Can be done. Further, depending on the polymerizable compound, radical polymerization can be performed only by heating in an oxygen-free state. The polymer used for the polymer solid electrolyte of the present invention preferably contains an oxyalkylene structure. In that case, the number of oxyalkylene chains, that is, in R 4 in the general formula (3), or The number of repetitions n of the oxyalkylene group contained in R 5 in the general formula (4) is preferably in the range of 1 to 1,000, particularly preferably in the range of 5 to 100.
本発明の高分子固体電解質に用いられる高分子は、 前記のように一般式 ( 1 ) または (2 ) で表わされる官能基を有する化合物の単独重合体であって も、 該カテゴリーに属する 2種以上の共重合体であっても、 あるいは該化合物 の少なくとも一種と他の重合性化合物との共重合体であってもよい。  The polymer used in the polymer solid electrolyte of the present invention may be a homopolymer of a compound having a functional group represented by the general formula (1) or (2) as described above, The copolymer described above may be used, or a copolymer of at least one of these compounds and another polymerizable compound may be used.
また、 本発明の高分子固体電解質に用いられる高分子は、 前記一般式 (1 ) または (2 ) で表わされる官能基を有する化合物の少なくとも一種から得られ る重合体及びノまたは該化合物を共重合成分とする共重合体と他の高分子との 混合物であってもよい。  Further, the polymer used for the polymer solid electrolyte of the present invention is a polymer obtained from at least one compound having a functional group represented by the general formula (1) or (2) and a polymer obtained by combining the polymer and the compound. It may be a mixture of a copolymer as a polymerization component and another polymer.
例えば、 前記一般式 (1 ) または (2 ) で表わされる官能基を有する化合物 の少なくとも一種から得られる重合体及び Zまたは該化合物を共重合成分とす る共重合体と、 ポリエチレンオキサイド、 ポリプロピレンオキサイド、 ポリア タリロニトリル、 ポリブタジエン、 ポリメタクリル (またはアクリル) 酸エス テル類、 ポリスチレン、 ポリホスファゼン類、 ポリシロキサンあるいはポリシ ラン、 ポリフッ化ビニリデン、 ポリテトラフルォロエチレン等のポリマ との 混合物を本発明の高分子固体電解質に用いてもよい。  For example, a polymer obtained from at least one compound having a functional group represented by the general formula (1) or (2) and Z or a copolymer having the compound as a copolymer component, polyethylene oxide, and polypropylene oxide The mixture of the present invention with a polymer such as polyacrylonitrile, polybutadiene, polymethacrylic acid (or acrylic) ester, polystyrene, polyphosphazenes, polysiloxane or polysilane, polyvinylidene fluoride, or polytetrafluoroethylene. It may be used for a molecular solid electrolyte.
本発明の高分子固体電解質には各種無機微粒子を添加することが好ましい。 これにより強度、 膜厚均一性が改善されるばかりでなく、 無機微粒子と高分子 間に微細な空孔が生じることになり、 電解液中に浸漬した場合には空孔を通じ て高分子固体電解質内にフリ一の電解液が分散することになり、 強度ァップを 損ねることなく、 イオン伝導度、 移動度を増加させることもできる。 また、 無 機微粒子を添加することにより、 重合性組成物の粘度が上昇し、 高分子と溶媒 の相溶性が不十分な場合にもその分離を抑える効果も現れる。 使用する無機微粒子としては非電子伝導性、 電気化学的に安定なものが選 ばれる。 さらに、 イオン伝導性のものが好ましい。 具体的には ct、 ]3、 γ—ァ ルミナ、 シリカ、 チタニア、 マグネシア、 及びこれら 2種以上の複合酸化物、 ゼォライト等のイオン伝導性または非電導性セラミックス微粒子が挙げられる。 高分子固体電解質の強度アップ、 電解液保液量増加の観点から、 無機微粒 子は一次粒子が凝集した二次粒子構造をもつものが好ましい。 このような構造 を持つ無機微粒子の具体例としてはァエロジル (日本ァエロジル製) のような シリカ超微粒子、 アルミナ超微粒子が挙げられ、 安定性、 複合効率からアルミ ナ超微粒子が特に好ましい。 It is preferable to add various inorganic fine particles to the solid polymer electrolyte of the present invention. This not only improves strength and film thickness uniformity, but also causes fine pores to be formed between the inorganic fine particles and the polymer, and when immersed in an electrolyte solution, the polymer solid electrolyte The free electrolyte is dispersed inside, and the ionic conductivity and mobility can be increased without impairing the strength gap. In addition, the addition of the inorganic fine particles increases the viscosity of the polymerizable composition, and has an effect of suppressing the separation even when the compatibility between the polymer and the solvent is insufficient. As the inorganic fine particles to be used, non-electroconductive and electrochemically stable ones are selected. Further, those having ion conductivity are preferred. Specific examples include ct,] 3, γ-alumina, silica, titania, magnesia, and composite oxides of two or more of these, and ion-conductive or non-conductive ceramic fine particles such as zeolite. The inorganic fine particles preferably have a secondary particle structure in which primary particles are aggregated, from the viewpoint of increasing the strength of the polymer solid electrolyte and increasing the amount of retained electrolyte. Specific examples of the inorganic fine particles having such a structure include silica ultrafine particles such as AEROSIL (manufactured by Nippon AEROSIL) and alumina ultrafine particles, and particularly preferred are alumina ultrafine particles in terms of stability and composite efficiency.
セパレータ中の電解液の保有量を多くし、 イオン伝導性、 移動度を増加さ せるという目的では、 無機微粒子の比表面積はできるだけ大きいことが好まし く、 B E T法で 1 O m2/ g以上が好ましく、 5 0 m2/ g以上がさらに好まし レ、。  For the purpose of increasing the amount of electrolyte in the separator and increasing ionic conductivity and mobility, the specific surface area of the inorganic fine particles is preferably as large as possible. Preferably, 50 m2 / g or more is more preferable.
このような無機微粒子の結晶粒子径としては、 重合性組成物と混合できる 範囲であれば特に制限はないが、 平均粒径 0.001 /Z m〜 1 0 μ mが好ましく、 0.01 μ m〜 1 μ mが特に好ましい。  The crystal particle size of such inorganic fine particles is not particularly limited as long as it can be mixed with the polymerizable composition, but the average particle size is preferably 0.001 / Zm to 10 μm, and more preferably 0.01 μm to 1 μm. m is particularly preferred.
また、 形状としては球形、 卵形、 立方体状、 直方体状、 円筒ないし棒状等 の種々の形状のものを用いることができる。  In addition, various shapes such as a sphere, an egg, a cube, a rectangular parallelepiped, a cylinder or a rod can be used.
無機微粒子の添加量は多すぎると、 高分子固体電解質の強度やイオン伝導 性を低下させたり、 成膜がしづらくなるという問題を生じる。 従って添加量と しては、 高分子固体電解質に対して 5 O w t %以下が好ましく、 0.1 から 3 0 w t %の範囲が特に好ましい。  If the added amount of the inorganic fine particles is too large, there arises a problem that the strength and ionic conductivity of the polymer solid electrolyte are reduced and that the film is difficult to be formed. Therefore, the amount of addition is preferably 5 Owt% or less, more preferably 0.1 to 30 wt%, based on the solid polymer electrolyte.
本発明の高分子固体電解質を製造する場合には、 一般式 ( 1 ) または ( 2 ) で表わされる重合性官能基を有する (メタ) ァクリロイル系化合物の少 なくとも一種、 少なくとも一種の電解質塩、 E Cと E M Cを含む溶媒からなる 重合性組成物、 またはこれに少なくとも一種の無機微粒子を添加した重合性組 成物を、 あるいはさらに少なくとも一種の重合開始剤を添加した重合性糸且成物 を各種基材上に成膜、 塗布後、 かかる (メタ) ァクリロイル系化合物を、 加熱 及び Zまたは活性光線照射により重合し、 硬化する方法が、 均一に成膜でき、 膜厚制御が簡便であり、 推奨できる。 When producing the solid polymer electrolyte of the present invention, at least one kind of (meth) acryloyl-based compound having a polymerizable functional group represented by the general formula (1) or (2), at least one kind of electrolyte salt, A polymerizable composition comprising a solvent containing EC and EMC, or a polymerizable composition obtained by adding at least one kind of inorganic fine particles thereto, or a polymerizable composition obtained by further adding at least one kind of polymerization initiator After coating and coating on various substrates, the (meth) acryloyl-based compound is polymerized and cured by heating and irradiating with Z or actinic light. , Can be recommended.
重合させる温度は、 前記一般式 (1 ) または (2 ) で表わされる重合性官 能基を有する重合性化合物の種類、 開始剤の種類によるが、 重合が起こる温度 であれば良く、 通常は 0 °Cから 2 0 0 °Cの範囲で行なえばよい。 活性光線照射 により重合させる場合には、 前記一般式 (1 ) または (2 ) で表わされる重合 性官能基を有する重合性化合物の種類による力 例えばべンジルメチルケタ一 ル、 ベンゾフヱノン等の活性光線開始剤を使用して、 数 mW以上の紫外光また は電子線、 線等を照射して重合させることができる。  The temperature for the polymerization depends on the type of the polymerizable compound having a polymerizable functional group represented by the general formula (1) or (2) and the type of the initiator, but may be any temperature at which the polymerization occurs. The temperature may be in the range of ° C to 200 ° C. In the case of polymerizing by irradiation with actinic rays, an actinic ray initiator such as benzylmethylketanol or benzophenone may be used, depending on the type of polymerizable compound having a polymerizable functional group represented by the general formula (1) or (2). When used, polymerization can be carried out by irradiating ultraviolet light of several mW or more or an electron beam, a beam or the like.
本発明の高分子固体電解質は他の多孔性高分子フィルムと複合して使用す ることにより強度改善等を行うことも可能である。 ただし、 使用する高分子の 種類、 フィルム形状、 複合割合によつては電解液吸液後のセパレータとしての イオン伝導度の低下や安定性の悪化を招くので、 適当なものを選ぶ必要がある。 使用する多孔性フィルムとしては、 ポリプロピレン製不織布やポリエチレン製 ネットのような網状ポリオレフインシート等の多孔性ポリオレフインフィルム、 セルガード (商品名) 等のポリオレフイン製マイクロポーラスフイルム、 ナイ ロン不織布、 ポリエステル製ネッ ト等が挙げられるが、 ポリオレフイン製多孔 性フィルムが安定性の面で好ましい。 また、 その空孔率は 1 0〜9 0 %程度あ ればよいが、 強度の許す限りできるだけ空孔率の大きいものが良く、 好ましい 空孔率は 4 0〜9 0 %の範囲である。  By using the solid polymer electrolyte of the present invention in combination with another porous polymer film, the strength can be improved. However, depending on the type of polymer used, the shape of the film, and the composite ratio, the ion conductivity of the separator after absorbing the electrolyte may be lowered and the stability may be deteriorated. Examples of the porous film used include a porous polyolefin film such as a mesh-like polyolefin sheet such as a polypropylene nonwoven fabric or a polyethylene net, a polyolefin microporous film such as Celgard (trade name), a nylon nonwoven fabric, and a polyester net. However, a polyolefin porous film is preferable in terms of stability. The porosity may be about 10 to 90%, but it is preferable that the porosity is as large as possible as long as the strength permits, and the preferable porosity is in the range of 40 to 90%.
複合方法としては特に制限はないが、 例えば一般式 (1 ) または (2 ) で 表わされる重合性官能基を有する (メタ) アタリロイル系化合物の少なくとも 一種、 少なくとも一種の電解質塩、 E Cと E M Cを含む溶媒からなる重合性組 成物、 またはこれに少なくとも一種の無機微粒子を添加した重合性組成物を、 あるいはさらに少なくとも一種の重合開始剤を添加した重合性組成物を、 多孔 性ポリマーフィルムに含浸後、 かかる (メタ) ァクリロイル系化合物を重合す る方法が、 均一に複合でき膜厚制御も簡便であるので推奨できる。 The method of compounding is not particularly limited, but includes, for example, at least one kind of (meth) atalyloyl-based compound having a polymerizable functional group represented by the general formula (1) or (2), at least one kind of electrolyte salt, and EC and EMC. After impregnating a porous polymer film with a polymerizable composition comprising a solvent, or a polymerizable composition obtained by adding at least one type of inorganic fine particles thereto, or a polymerizable composition further obtained by adding at least one type of polymerization initiator thereto Polymerizing the (meth) acryloyl compound This method is recommended because the method can be uniformly combined and the film thickness control is simple.
本発明の高分子固体電解質を電池に応用した場合、 本高分子固体電解質の 電解液保持性が高く、 また孔が無いため、 液もれ、 短絡が起りにくく、 使用温 度範囲が広く、 取り出し電流が大きく、 サイクル寿命が長く、 安全性及び信頼 性の高い非水電池が得られる。 また、 液もれや短絡が起りにくいことから、 薄 型にでき、 パッケージの簡単な電池が得られる。  When the solid polymer electrolyte of the present invention is applied to a battery, the solid polymer electrolyte of the present invention has a high electrolytic solution retention property and has no pores, so that liquid leakage and short circuit hardly occur, and the operating temperature range is wide. A non-aqueous battery with high current, long cycle life, and high safety and reliability can be obtained. In addition, since liquid leakage and short circuit hardly occur, the battery can be made thin and a battery with a simple package can be obtained.
このようにして製造される非水電池として、 薄膜電池の一例の概略断面図 を図 1に示す。 図中、 1は正極、 2は本発明の高分子固体電^質、 3は負極、 4は集電体、 5は絶縁性樹脂封止剤である。  FIG. 1 shows a schematic cross-sectional view of an example of a thin-film battery as a nonaqueous battery manufactured in this manner. In the figure, 1 is a positive electrode, 2 is a polymer solid electrolyte of the present invention, 3 is a negative electrode, 4 is a current collector, and 5 is an insulating resin sealant.
本発明の非水電池に用いる負極活物質として、 アルカリ金属、 アルカリ金 属合金、 炭素材料、 金属酸化物や金属カルコゲナイ ドのようなアルカリ金属ィ オンをキヤリァ一とする低酸化還元電位のものを用いることにより、 高電圧、 高容量の電池が得られるので好ましい。 このような負極活物質の中では、 リチ ゥム金属あるいはリチウム/アルミニウム合金、 リチウム Z鉛合金、 リチウム Zァンチモン合金等のリチウム合金類が最も低酸化還元電位であるため特に好 ましい。 また、 炭素材料もリチウムイオンを吸蔵した場合低酸化還元電位とな り、 しかも安定、 安全であるという点で特に好ましい。 リチウムイオンを吸蔵 放出できる炭素材料としては、 天然黒鉛、 人造黒鉛、 気相法黒鉛、 石油コーク ス、 石炭コ一タス、 ピッチ系炭素、 ポリアセン、 C6o、 c70等のフラ;一レン類 等が挙げられる。 As the negative electrode active material used in the non-aqueous battery of the present invention, one having a low oxidation-reduction potential with an alkali metal ion such as an alkali metal, an alkali metal alloy, a carbon material, a metal oxide or a metal chalcogenide as a carrier is used. It is preferable to use it because a high-voltage, high-capacity battery can be obtained. Among such negative electrode active materials, lithium metal or lithium alloys such as lithium / aluminum alloy, lithium Z lead alloy, and lithium Z antimony alloy are particularly preferable because they have the lowest redox potential. In addition, carbon materials are particularly preferable in that they have a low oxidation-reduction potential when they occlude lithium ions, and are stable and safe. The carbon material for lithium ion can occluding and releasing, natural graphite, artificial graphite, vapor grown graphite, petroleum coke, coal co one task, pitch carbon, polyacene, C 6 o, hula etc. c 70; one alkylene ethers And the like.
従って、 かかる負極を用い、 アルカリ金属イオンをキャリアーとする電池 に用いる場合の電解質としてはアルカリ金属塩が必要となる。 このアルカリ金 属塩の種類としては、 例えば、 L i C F3S 03、 L i P F6、 L i C 104, L i B F 4、 L i S C N、 L i A s F 6、 L i N ( C F 3 S O 2) 2、 N a C F3S 03 、 L i I、 N a P F6、 N a C 104、 N a I、 N a B F4、 Na As F6、 KCF3S03、 KPF6、 K I等を挙げることができる。 Therefore, when such a negative electrode is used in a battery using an alkali metal ion as a carrier, an alkali metal salt is required as an electrolyte. The type of alkali metal Shokushio, for example, L i CF 3 S 0 3 , L i PF 6, L i C 10 4, L i BF 4, L i SCN, L i A s F 6, L i N (CF 3 SO 2) 2, N a CF 3 S 0 3, L i I, N a PF 6, N a C 10 4, N a I, N a BF 4, Na As F 6, KCF 3 S0 3, KPF 6 and KI can be mentioned.
また、 炭素材負極の場合には、 アルカリ金属イオンだけでなく、 4級アンモ ニゥム塩、 4級ホスホニゥム塩、 遷移金属塩、 各種プロトン酸も使用できる。 このような電解質としては、 (CH3) 4NBF4、 (CH3CH2) 4NC 104 等の 4級アンモニゥム塩、 A g C I 04等の遷移金属塩、 (CH3) 4P BF4 等の 4級ホスホニゥム塩、 パラトルエンスルホン酸等の有機酸及ぴその塩、 塩 酸、 硫酸等の無機酸等が挙げられる。 この中で、 出力電圧が高く取れ、 解離定 数が大きいという点から、 4級アンモニゥム塩、 4級ホスホニゥム塩、 アル力 リ 金属 塩が 好 ま し い。 4 級 ア ン モ ニ ゥ ム 塩の 中 で は 、 (CH3CH2) (CH3CH2CH2CH2) 3N B F4のようなアンモニゥムイオン の窒素上の置換基が異なつているものが溶解性あるレ、は解離定数が大きいとい う点で好ましい。 In the case of a carbon material negative electrode, not only alkali metal ions but also quaternary ammonium Nidium salts, quaternary phosphonium salts, transition metal salts, and various protonic acids can also be used. Such electrolytes, (CH 3) 4 NBF 4 , (CH 3 CH 2) 4 NC 10 4 4 Grade Anmoniumu salts such as, transition metal salts such as A g CI 0 4, (CH 3) 4 P BF quaternary Hosuhoniumu salt 4 such as salts of organic San及Piso such as p-toluenesulfonic acid, hydrochloric acid, and the like inorganic acids such as sulfuric acid. Of these, quaternary ammonium salts, quaternary phosphonium salts, and metal salts of alkali metal are preferred because of their high output voltage and large dissociation constant. Among the quaternary ammonium salts, those having different substituents on the nitrogen of the ammonium ion such as (CH 3 CH 2 ) (CH 3 CH 2 CH 2 CH 2 ) 3 NBF 4 Is preferred because it has a large dissociation constant.
本発明の非水電池の構成において、 正極に金属酸化物、 金属硫化物、 導電 性高分子あるいは炭素材料のような高酸化還元電位の正極活物質を用いること により、 高電圧、 高容量の電池が得られるので好ましい。 このような正極活物 質の中では、 充填密度が高くなり、 体積容量密度が高くなるという点から、 酸 ィヒコバルト、 酸化マンガン、 酸化バナジウム、 酸化ニッケル、 酸化モリブデン 等の金属酸化物、 硫化モリブデン、 硫化チタン、 硫化バナジウム等の金属硫化 物が好ましく、 特に酸化マンガン、 酸化ニッケル、 酸化コバルト等が高容量、 高電圧という点から好ましい。  In the configuration of the non-aqueous battery of the present invention, a high-voltage, high-capacity battery is obtained by using a positive electrode active material having a high oxidation-reduction potential such as a metal oxide, a metal sulfide, a conductive polymer, or a carbon material for the positive electrode. Is preferred. Among such positive electrode active materials, metal oxides such as dicobalt oxide, manganese oxide, vanadium oxide, nickel oxide, and molybdenum oxide, molybdenum sulfide, and the like have a high packing density and a high volume capacity density. Metal sulfides such as titanium sulfide and vanadium sulfide are preferable, and manganese oxide, nickel oxide, cobalt oxide and the like are particularly preferable in terms of high capacity and high voltage.
この場合の金属酸化物や金属硫化物を製造する方法は特に限定されず、 例 えば 「電気化学, 第 22卷, 574頁, 1954年」 に記載されているような、 一般的な電解法や加熱法によって製造される。 また、 これらを正極活物質とし てリチウム電池に使用する場合、 電池の製造時に、 例ぇばし 1 〇 002ゃ L i xMn02等の形でリチウム元素を金属酸化物あるいは金属硫化物に挿入 (複合) した状態で用いるのが好ましい。 このようにリチウム元素を揷入する 方法は特に限定されず、 例えば、 電気化学的にリチウムイオンを揷入する方法 や、 米国特許第 4357215 号に記載されているように、 L i 2C〇3等の塩と金 属酸化物を混合、 加熱処理することによって実施できる。 また、 柔軟で薄膜にし易いという点で導電性高分子が好ましい。 導電性高 分子の例としては、 ポリア二リン、 ポリアセチレン及びその誘導体、 ポリパラ フエ二レン及ぴその誘導体、 ポリピロール及びその誘導体、 ポリチェ二レン及 びその誘導体、 ポリピリジンジィル及びその誘導体、 ポリイソチアナフテニレ ン及びその誘導体、 ポリフリレン及びその誘導体、 ポリセレノフェン及びその 誘導体、 ポリパラフエ二レンビニレン、 ポリチェ二レンビニレン、 ポリフリ レ ンビニレン、 ポリナフテニレンビニレン、 ポリセレノフェンビニレン、 ポリピ リジンジィルビ二レン等のポリアリーレンビニレン及びそれらの誘導体等が挙 げられる。 中でも有機溶媒に可溶性のァニリン誘導体の重合体が特に好ましい また、 炭素材料としては、 天然黒鉛、 人造黒鉛、 気相法黒鉛、 石油コーク ス、 石炭コークス、 フッ化黒鉛、 ピッチ系炭素、 ポリアセン等が挙げられる。 発明を実施するための最良の形態 The method for producing metal oxides and metal sulfides in this case is not particularly limited, and examples thereof include a general electrolytic method and a general electrolytic method described in “Electrochemistry, Vol. 22, p. 574, 1954”. It is manufactured by a heating method. Further, when used in lithium batteries by these positive electrode active material, during the production of the battery, examples Ebashi 1 〇 0 0 2 Ya L i x Mn0 metal oxide lithium element in the form of 2 like, or metal sulfide It is preferable to use it in a state where it is inserted (composite) into the device. The method for introducing the lithium element is not particularly limited, for example, a method for electrochemically introducing lithium ions, or a method for introducing Li 2 C 3 as described in US Pat. No. 4,357,215. It can be carried out by mixing a metal oxide or the like with a salt and heating the mixture. In addition, a conductive polymer is preferable because it is flexible and easily formed into a thin film. Examples of the conductive polymer include polyaniline, polyacetylene and its derivatives, polyparaphenylene and its derivatives, polypyrrole and its derivatives, polychenylene and its derivatives, polypyridinediyl and its derivatives, and polyisothianaphthenile. Polyarylene vinylenes such as polyphenylene vinylene and derivatives thereof, polyfurylene and derivatives thereof, polyselenophene and derivatives thereof, polyparaphenylenevinylene, polychenylenevinylene, polyfurylenevinylene, polynaphthenylenevinylene, polyselenophenvinylene, polypyridinylvinylene and the like And the like. Above all, a polymer of an aniline derivative soluble in an organic solvent is particularly preferable.Examples of carbon materials include natural graphite, artificial graphite, vapor-grown graphite, petroleum coke, coal coke, fluorinated graphite, pitch-based carbon, and polyacene. No. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明について代表的な例を示しさらに具体的に説明する。 なお、 これらは説明のための単なる例示であって、 本発明はこれらに何等制限される ものではない。  Hereinafter, the present invention will be described more specifically by showing typical examples. These are merely examples for explanation, and the present invention is not limited to these.
実施例 1 :化合物 3の合成 Example 1: Synthesis of compound 3
Figure imgf000022_0001
Figure imgf000022_0001
(化合物 1) (化合物 2) (化合物 3) (Compound 1) (Compound 2) (Compound 3)
[式中、 [X1]は [CH(CH3)CH20】xH、 または [Wherein [X 1 ] is [CH (CH 3 ) CH 20 ] x H, or
[X ]は [CH(CH3)CH20]xCNHCH2CH2OCC(CH3)=CH2を示す。 ] [X] indicates [CH (CH 3 ) CH 2 0] × CNHCH 2 CH 2 OCC (CH 3 ) = CH 2 . ]
0 0 化合物 1 (KOP^SI34.0mgZg) (50.0 g) 及び化合物 2 (4.6 g) を窒 素雰囲気中でよく精製した THF (100ml) に溶解した後、 ジブチルチン ジラウレート (0.44g) を添加する。 その後、 25 °Cで約 1 5時間反応させる ことにより、 無色の粘稠液体を得た。 その 1 H— NMR、 I R及び元素分析の 結果から、 化合物 1と化合物 2は 1対 3で反応し、 さらに、 化合物 2のイソシ アナート基が消失し、 ウレタン結合が生成しており、 化合物 3が生成している ことがわかった。 実施例 2 0 0 Compound 1 (KOP ^ SI 34.0 mgZg) (50.0 g) and compound 2 (4.6 g) are dissolved in well-purified THF (100 ml) in a nitrogen atmosphere, and then dibutyltin dilaurate (0.44 g) is added. Thereafter, the mixture was reacted at 25 ° C. for about 15 hours to obtain a colorless viscous liquid. From the results of 1 H-NMR, IR, and elemental analysis, compound 1 and compound 2 reacted one to three, and further, the isocyanate group of compound 2 disappeared, and urethane bond was formed. It turned out that it was generated. Example 2
化合物 3 (1.0 g) 、 エチレンカーボネート (EC) (1.8 g) 、 ェチルメチ ルカーボネート (EMC) (4.2 g ) 、 L i P F6 (橋本化成製電池グレード)Compound 3 (1.0 g), ethylene carbonate (EC) (1.8 g), Echirumechi Le carbonate (EMC) (4.2 g), L i PF 6 ( Hashimoto Kasei battery grade)
(0.60 g) 、 及び 2, 4, 6— トリメチルベンゾィルジフエ二ノレホスフィンォ キサイ ド (商品名ルシリン TPO、 BAS F社製) (0.005g) をアルゴン雰 囲気中でよく混合し、 光重合性組成物を得た。 この組成物の含水量 (カールフ ィッシヤー) は 30 p pmであった。 この光重合性組成物をアルゴン雰囲気下、 P ETフィルム上に塗布後、 ケミカル蛍光ランプ (三共電気社製 FL20S.BL) を 10分照射したところ、 ECZEMC系電解液を含浸した化合物 3の重合体 フイノレムが約 30 μ mの自立フィルムとして得られた。 このフィルムの 25°C、 一 20°Cでのイオン伝導度をインピーダンス法にて測定したところ、 それぞれ、 5.0X 10-3、 0.8X 1 0_3S/ c mであった。 実施例 3 (0.60 g) and 2,4,6-trimethylbenzoyldipheninolephosphinoxide (trade name Lucylin TPO, manufactured by BASF) (0.005 g) are mixed well in an argon atmosphere, and photopolymerized. The composition was obtained. The water content (curl fisher) of this composition was 30 ppm. This photopolymerizable composition was applied on a PET film under an argon atmosphere, and then irradiated with a chemical fluorescent lamp (FL20S.BL, manufactured by Sankyo Electric Co., Ltd.) for 10 minutes to obtain a polymer of compound 3 impregnated with an ECZEMC-based electrolyte. The finolem was obtained as a free standing film of about 30 μm. The ionic conductivity of this film at 25 ° C. and 120 ° C. was measured by an impedance method and found to be 5.0 × 10 −3 and 0.8 × 10 −3 S / cm, respectively. Example 3
化合物 3 (1.0 g) 、 1000°Cで熱処理した高純度 γアルミナ (昭和電工製; UA5805 ;結晶粒子径 0.03 /zm、 平均二次粒子径 1.8μπι、 BET比表面 積 8 0m2Zg) (0.33 g ) 、 EC (1.8g) 、 EMC (4.2 g ) 、 L i P F6 (橋本化成製電池グレード) (0.60 g) 、 及びルシリ ン T P O (BAS F社 製) (0.005 g) をアルゴン雰囲気中でよく混合し、 光重合性組成物を得た。 この組成物の含水量 (カールフィッシャー法) は 3 O p pmであった。 Compound 3 (1.0 g), high-purity γ-alumina heat-treated at 1000 ° C (manufactured by Showa Denko; UA5805; crystal particle diameter 0.03 / zm, average secondary particle diameter 1.8 μπι, BET specific surface area 80 m 2 Zg) (0.33 g), EC (1.8g), EMC (4.2 g), L i PF 6 ( Hashimoto Kasei battery grade) (0.60 g), and Rushiri emissions TPO (manufactured by BAS F Corporation) (0.005 g) in an argon atmosphere By mixing well, a photopolymerizable composition was obtained. The water content (Karl Fischer method) of this composition was 3 Oppm.
この光重合性組成物をアルゴン雰囲気下、 P ETフィルム上に塗布後、 ケミカル蛍光ランプ (三共電気社製 FL20S.BL) を 1 0分照射したところ、 ECZEMC電解液を含浸した化合物 3の重合体 ZUA5805複合フィルム が約 3 0 μ mの自立フィルムとして得られた。 このフィルムの 2 5°C、 一 20。Cでのイオン伝導度をインピーダンス法にて測定したところ、 それぞれ、 5.0 X 10-3、 0.8 X 10-3SZ c mであった。 実施例 4 This photopolymerizable composition was coated on a PET film under an argon atmosphere, and then irradiated with a chemical fluorescent lamp (FL20S.BL, manufactured by Sankyo Electric Co., Ltd.) for 10 minutes. ZUA5805 composite film was obtained as a freestanding film of about 30 μm. 25 ° C for this film, one 20. Measurement of the ionic conductivity at C by an impedance method, respectively, 5.0 X 10- 3, was 0.8 X 10-3SZ cm. Example 4
アルミナ系微粒子として UA5805の代りに 1000°Cで熱処理したアルミ ニゥムォキサイド C (日本ァエロジル製;結晶粒子径 0.013 μπι、 平均二次粒 子径約 0.1 /xm (SEM観察) 、 BET比表面積 10 Om2g) を 0.33 g添カロし た以外は実施例 3と同様にして、 光重合性組成物を得た。 この組成物の含水量 (カーノレフィッシャー法) は 35 p pmであった。 Aluminum Numoxide C heat-treated at 1000 ° C instead of UA5805 as alumina-based fine particles (manufactured by Nippon Aerosil; crystal particle diameter 0.013 μπι, average secondary particle diameter about 0.1 / xm (SEM observation), BET specific surface area 10 Om 2 g ) Was added in the same manner as in Example 3 except that 0.33 g of the photopolymerizable composition was obtained. The water content (Carno-Fischer method) of this composition was 35 ppm.
この光重合性組成物を実施例 3と同様に塗布、 光照射することにより、 EC/EMC電解液を含浸した化合物 3の重合体 Zアルミ二ゥムォキサイド C 複合フィルムが約 30 μπιの自立フィルムと して得られた。 このフィルムの 25°C、 一 20°Cでのイオン伝導度をインピーダンス法にて測定したところ、 それぞれ、 5.5 X 10-3、 1.0 X 10_3SZcmであった。 実施例 5 The photopolymerizable composition was applied and irradiated with light in the same manner as in Example 3, whereby a polymer Z-aluminum oxide C composite film of compound 3 impregnated with an EC / EMC electrolytic solution was converted into a free-standing film of about 30 μπι. Obtained. 25 ° C of the film was measured for ionic conductivity in one 20 ° C by an impedance method, respectively, 5.5 X 10- 3, was 1.0 X 10_3SZcm. Example 5
開始剤としてルシリン T PO (0.005 g ) の代りに、 ベンゾィルパーォキサ イド (BPO) (0.04 g ) を添加した以外は実施例 4と同様にして、 熱重合性 組成物を得た。 この組成物の含水量 (カールフィッシャ一法) は 35 p pmで あった。  A thermopolymerizable composition was obtained in the same manner as in Example 4 except that benzoyl peroxide (BPO) (0.04 g) was added instead of lucirin T PO (0.005 g) as an initiator. The water content (Karl Fischer method) of this composition was 35 ppm.
この熱重合性組成物をアルゴン雰囲気下、 P ETフィルム上に塗布後、 PPフィルムを被覆して、 ホットプレート上で 80°C、 1時間加熱したところ、 EC/EMC電解液を含浸した化合物 3の重合体/アルミニゥムオキサイド C 複合フィルムが約 30 /xmの自立フィルムと して得られた。 このフィルムの 25°C、 一20°Cでのイオン伝導度をインピーダンス法にて測定したところ、 それぞれ、 5.3 X 10-3、 0.8 X 10-3sZcmであった。 実施例 6 This thermopolymerizable composition was coated on a PET film under an argon atmosphere, coated with a PP film, and heated on a hot plate at 80 ° C for 1 hour. A polymer / aluminum oxide C composite film of compound 3 impregnated with EC / EMC electrolyte was obtained as a free-standing film of about 30 / xm. The ionic conductivity of this film at 25 ° C. and at 20 ° C. was measured by an impedance method to be 5.3 × 10-3 and 0.8 × 10-3 sZcm, respectively. Example 6
L i PF6に代えて橋本化成製電池グレード L i BF4 を 0.50 g用いた以外 は実施例 4と同様にして、 光重合性組成物を得た。 この組成物の含水量 (カー ノレフィッシャ一法) は 50 ρ p mであった。 A photopolymerizable composition was obtained in the same manner as in Example 4 except that 0.50 g of battery grade Li BF 4 manufactured by Hashimoto Kasei was used instead of Li PF 6 . The water content of this composition (Carno Reisher method) was 50 ppm.
この光重合性組成物を実施例 4と同様に塗布、 光照射することにより、 電 解液を含浸した化合物 3の重合体/アルミ二ゥムォキサイ ド C複合フィルムを 約 30 /xmの自立フィルムとして得た。 この固体電解質の 25 °C、 一 20°Cで のイオン伝導度をインピーダンス法にて測定したところ、 4.0X 10_3、 0.3 X 10_3SZc mであった。 実施例 7 The photopolymerizable composition was applied and irradiated with light in the same manner as in Example 4 to obtain an electrolyte-impregnated polymer of compound 3 / aluminum moxide C composite film as a self-supporting film of about 30 / xm. Was. The ionic conductivity of this solid electrolyte at 25 ° C. and 20 ° C. was measured by an impedance method and found to be 4.0 × 10 3 and 0.3 × 10 3 SZcm. Example 7
化合物 3 (1.0 g) 、 プロピレンカーボネート (P C) (0.4 g) 、 EC (1.4 g ) 、 EMC (4.2 g ) 、 L i P F6 (橋本化成製電池グレー ド)Compound 3 (1.0 g), propylene carbonate (PC) (0.4 g), EC (1.4 g), EMC (4.2 g), Li PF 6 (Hashimoto Chemical Battery Grade)
(0.60 g) 、 1000°Cで熱処理したアルミニウムオキサイ ド C (0.33 g) 、 及び ルシリン TPO (0.005 g ) をアルゴン雰囲気中でよく混合し、 光重合性組成 物を得た。 この組成物の含水量 (カールフィ ッシャー法) は 35 p pmで あった。 この光重合性組成物をアルゴン雰囲気下、 P ETフィルム上に塗布後、 ケミカル蛍光ランプを 10分照射したところ、 PCZECZEMC系電解液を 含浸した化合物 3の重合体 Zアルミニウムォキサイ ド C複合フィルムが約 30 μπιの自立フィルムと して得られた。 このフィルムの 25 °C、 一 20°Cでの イオン伝導度をインピーダンス法にて測定したところ、 それぞれ、 6.0 X 10-3, 1.0 X 10_3SZcmであった。 実施例 8 (0.60 g), aluminum oxide C (0.33 g) heat-treated at 1000 ° C., and lucirin TPO (0.005 g) were mixed well in an argon atmosphere to obtain a photopolymerizable composition. The water content (Karl Fischer method) of this composition was 35 ppm. This photopolymerizable composition was coated on a PET film under an argon atmosphere, and then irradiated with a chemical fluorescent lamp for 10 minutes.As a result, a polymer Z aluminum oxide C composite film impregnated with a PCZECZEMC-based electrolyte was obtained. Obtained as a free-standing film of about 30 μπι. The ionic conductivity of this film measured at 25 ° C and 20 ° C by an impedance method was 6.0 X 10-3 and 1.0 X 10_3 SZcm, respectively. Example 8
化合物 3 (1.0 g) 、 EC (1.5 g) 、 EMC (3.0 g ) 、 ジェチルカ一ボネー ト (DEC) (1.5 g) 、 L i PF6 (橋本化成製電池グレード) (0.60g) 、Compound 3 (1.0 g), EC (1.5 g), EMC (3.0 g), Jetilka Carbonate (DEC) (1.5 g), Li PF 6 (Hashimoto Chemical Battery Grade) (0.60 g),
1000°Cで熱処理したアルミニウムオキサイ ド C (0.33 g ) 、 及ぴルシリン TPO (0.005 g) をアルゴン雰囲気中でよく混合し、 光重合性組成物を得た。 この組成物の含水量 (カールフィッシヤー法) は 35 p pmであった。 この光 重合性組成物をアルゴン雰囲気下、 PETフィルム上に塗布後、 ケミカル蛍光 ランプを 1 0分照射したところ、 EC/EMC/DEC系電解液を含浸した化 合物 3の重合体/アルミニウムォキサイ ド C複合フィルムが約 30 μιηの自立 フィルムとして得られた。 このフィルムの 25。C、 一 20。Cでのイオン伝導度 をインピーダンス法にて測定したところ、 それぞれ、 5.0X 1 0-3, 0.7 X 1 0-3 S/ c mであった。 実施例 9 :化合物 5の合成 Aluminum oxide C (0.33 g) heat-treated at 1000 ° C. and lucirin TPO (0.005 g) were mixed well in an argon atmosphere to obtain a photopolymerizable composition. The water content (Karl Fischer method) of this composition was 35 ppm. This photopolymerizable composition was applied on a PET film under an argon atmosphere, and then irradiated with a chemical fluorescent lamp for 10 minutes. The polymer / aluminum alloy of compound 3 impregnated with an EC / EMC / DEC electrolyte solution The xyside C composite film was obtained as a free-standing film of about 30 μιη. 25 of this film. C, one twenty. When the ionic conductivity at C was measured by an impedance method, they were 5.0 × 10-3 and 0.7 × 10-3 S / cm, respectively. Example 9: Synthesis of compound 5
CH3(OCH2CH(CH3))mOH + CH2=C(CH3)COOCH2CH2NCO CH 3 (OCH 2 CH (CH 3 )) m OH + CH 2 = C (CH 3 ) COOCH 2 CH 2 NCO
(化合物 4) (化合物 2)  (Compound 4) (Compound 2)
——► CH3(OCH2CH(CH3))mOCONHCH2CH2OCOC(CH3)=CH2 ——► CH 3 (OCH 2 CH (CH 3 )) m OCONHCH 2 CH 2 OCOC (CH 3 ) = CH 2
(化合物 5) 化合物 4 (平均分子量 Mn = 550) (55 g) 、 化合物 2 (15.5 g) を窒 素雰囲気中でよく精製した THF (1 00m l ) に溶解した後、 ジブチルチン ジラウレート (0.66g) を添加した。 その後、 25 °Cで約 1 5時間反応させる ことにより、 無色の粘稠液体を得た。 その 1H— NMR、 I R及び元素分析の 結果から、 化合物 4と化合物 2は 1対 1で反応し、 さらに化合物 2のイソシァ ナート基が消失し、 ウレタン結合が生成しており、 化合物 5が生成しているこ と力 sわ力 つた。 実施例 1 0 (Compound 5) Compound 4 (average molecular weight Mn = 550) (55 g) and compound 2 (15.5 g) were dissolved in well-purified THF (100 ml) in a nitrogen atmosphere, and then dibutyltin dilaurate (0.66 g) Was added. Thereafter, the mixture was reacted at 25 ° C. for about 15 hours to obtain a colorless viscous liquid. According to the results of 1H-NMR, IR and elemental analysis, compound 4 and compound 2 reacted one-to-one, the isocyanate group of compound 2 disappeared, urethane bond was formed, and compound 5 was formed. and that this and the force s I force ivy. Example 10
化合物 5 (0.5 g) 、 実施例 1で合成した化合物 3 (0.5 g) 、 1000°Cで熱処 理した UA 5805 (0.66 g) 、 EC (1.8 g) 、 EMC (4.2 g ) 、 L i PF6 Compound 5 (0.5 g), Compound 3 (0.5 g) synthesized in Example 1, UA 5805 (0.66 g) heat-treated at 1000 ° C, EC (1.8 g), EMC (4.2 g), LiPF 6
(橋本化成製電池グレード) (0.60 g) 及びルシリン TP O (0.005 g) をァ ルゴン雰囲気中でよく混合し、 光重合性組成物を得た。 この組成物の含水量(Hashimoto Chemical Battery Grade) (0.60 g) and Lucirin TPO (0.005 g) were mixed well in an argon atmosphere to obtain a photopolymerizable composition. Water content of this composition
(カールフィッシャー法) は 3 O p pmであった。 (Karl Fischer method) was 3 Oppm.
この光重合性組成物をアルゴン雰囲気下、 P ETフィルム上に塗布後、 ケ ミカル蛍光ランプを 1 0分照射したところ、 ECZEMC系電解液を含浸した 化合物 3と 5の共重合体 U A 5805複合フィルムが約 30 μπιの自立フィ ルムとして得られた。 このフィルムの 25°C、 一 20°Cでのイオン伝導度をィ ンピーダンス法にて測定したところ、 それぞれ、 6.0 X 1 0-3、 0.8 X 1 0-3 S/ c mであった。 This photopolymerizable composition was coated on a PET film under an argon atmosphere, and then irradiated with a chemical fluorescent lamp for 10 minutes.The copolymer UA5805 composite film of a compound 3 and 5 impregnated with an ECZEMC-based electrolyte solution Was obtained as a free-standing film of about 30 μπι. 25 ° C of the film was measured for ionic conductivity in one 20 ° C at I impedance method respectively, 6.0 X 1 0- 3, was 0.8 X 1 0-3 S / cm.
実施例 Example
化合物 6 : CH3 (0CH2CH2) m0C0C (CH3) =CH2 (日本油脂、 ブレンマー A E— 400, Mw 400) (0.3 g) 、 実施例 1で合成した化合物 3 (0.5 g) 、 1000°Cで熱処理した U A 5 8 05 (0.66 g ) 、 E C (1.8 g) 、 EMC (4.2 g) 、 L i P F6 (橋本化成製電池グレード) (0.60g) 及びルシリン TPO (0.005 g) をアルゴン雰囲気中でよく混合し、 光重合性組成物を得た。 この 組成物の含水量 (カールフィッシャー法) は 3 O p pmであった。 Compound 6: CH 3 (0CH 2 CH 2 ) m 0C0C (CH 3 ) = CH 2 (NOF, Blemmer AE-400, Mw 400) (0.3 g), compound 3 (0.5 g) synthesized in Example 1, UA 5 8 05 heat treated at 1000 ° C (0.66 g), EC (1.8 g), EMC (4.2 g), L i PF 6 and (Hashimoto Kasei battery grade) (0.60 g) and Lucirin TPO (0.005 g) The mixture was mixed well in an argon atmosphere to obtain a photopolymerizable composition. The water content (Karl Fischer method) of this composition was 3 Oppm.
この光重合性組成物をアルゴン雰囲気下、 P ETフィルム上に塗布後、 ケ ミカル蛍光ランプを 1 0分照射したところ、 ECZEMC系電解液を含浸した 化合物 3と 6の共重合体 ZU A 5805複合フィルムが約 30 μπιの自立フィ ルムとして得られた。 このフィルムの 25 °C、 一 20°Cでのイオン伝導度をィ ンピーダンス法にて測定したところ、 それぞれ、 4.5 X 1 0-3, 0.6 X 1 0-3 S/ c mであった。 実施例 1 2 :化合物 8の合成 This photopolymerizable composition was applied on a PET film under an argon atmosphere, and then irradiated with a chemical fluorescent lamp for 10 minutes.The copolymer ZUA5805 composite of compounds 3 and 6 impregnated with an ECZEMC-based electrolyte solution The film was obtained as a free standing film of about 30 μπι. The ionic conductivity of this film measured at 25 ° C. and 120 ° C. by an impedance method was 4.5 × 10-3 and 0.6 × 10-3 S / cm, respectively. Example 12 Synthesis of Compound 8
CF3(CF2)2CH2OH CH2=C(CH3)COOCH2CH2NCO CF 3 (CF 2 ) 2 CH 2 OH CH 2 = C (CH 3 ) COOCH 2 CH 2 NCO
(化合物 7) (化合物 2)  (Compound 7) (Compound 2)
CF3(CF2)2CH2OCONHCH2CH2OCOC(CH3)=CH2 CF 3 (CF 2 ) 2 CH 2 OCONHCH 2 CH 2 OCOC (CH 3 ) = CH 2
(化合物 8) 化合物 7 (2, 2 , 3, 3, 4, 4, 4一ヘプタフルォ口一 1ーブタノ一 ル、 アルドリッチ製) (20 g) 、 化合物 2 (15.5 g) を窒素雰囲気中でよく 精製した THF ( 1 0 0m l ) に混合した後、 ジブチルチンジラウレート (0.66 g) を添加する。 その後、 25°Cで約 1 5時間反応させることにより、 無色の粘稠液体として化合物 8を得た。 その 1H— NMR、 I R及び元素分析 の結果から、 化合物 7と化合物 2は 1対 1で反応し、 さらに、 化合物 2のイソ シアナ一ト基が消失し、 ウレタン結合が生成してしていることがわかった。 実施例 1 3 :化合物 1 0の合成  (Compound 8) Compound 7 (2,2,3,3,4,4,4-heptafluo-1-butanol, manufactured by Aldrich) (20 g) and Compound 2 (15.5 g) are thoroughly purified in a nitrogen atmosphere. After mixing with THF (100 ml), dibutyltin dilaurate (0.66 g) is added. Thereafter, the mixture was reacted at 25 ° C. for about 15 hours to obtain Compound 8 as a colorless viscous liquid. From the results of 1H-NMR, IR and elemental analysis, compound 7 and compound 2 reacted one to one, and furthermore, the isocyanate group of compound 2 disappeared, and urethane bonds were formed. I understood. Example 13 Synthesis of Compound 10
HOCH2CF2(OCF2CF2)n(OCF2)mCH2OH 2CH2=C(CH3)CO(CH 2)2NCO ——► HOCH 2 CF 2 (OCF 2 CF 2 ) n (OCF 2 ) m CH 2 OH 2 CH 2 = C (CH 3 ) CO (CH 2 ) 2 NCO ——►
O  O
(化合物 9) (化合物 2)  (Compound 9) (Compound 2)
CH2=C(CH3)CO(CH2)2NH OCH2CF2(OCF2CF2)n(OCF2)mCH2OCNH(CH2)2OCC(CH3)=CH2 CH 2 = C (CH 3 ) CO (CH 2 ) 2 NH OCH 2 CF 2 (OCF 2 CF 2 ) n (OCF 2 ) m CH 2 OCNH (CH 2 ) 2 OCC (CH 3 ) = CH 2
O O 0 0  O O 0 0
(化合物 10) 化合物 9 (日本アオジムント製、 Z d o 1平均分子量 2000) ( 1 00 g) 、 化合物 2 (15.5 g) を窒素雰囲気中でよく精製した THF (1 00m l ) に混 合した後、 ジブチルチンジラウレート (0.66g) を添加する。 その後、 25°C で約 1 5時間反応させることにより、 無色の粘稠液体として化合物 1 0を得た c その 1H— NMR、 I R及び元素分析の結果から、 化合物 9と化合物 2は 1対 2で反応し、 さらに、 化合物 2のイソシアナート基が消失し、 ウレタン結合が 生成していることがわかった。 実施例 14 (Compound 10) Compound 9 (manufactured by Nippon Aodimund Co., Ltd., Zdo 1 average molecular weight 2000) (100 g) and compound 2 (15.5 g) were mixed with well-purified THF (100 ml) in a nitrogen atmosphere. Add dibutyltin dilaurate (0.66 g). Thereafter, by reacting about 1 5 hours at 25 ° C, to afford compound 1 0 as a colorless viscous liquid c From the results of 1H-NMR, IR and elemental analysis, it was found that Compound 9 and Compound 2 reacted in a ratio of 1: 2, and further, the isocyanate group of Compound 2 disappeared, and a urethane bond was formed. Example 14
化合物 8 (0.7 g) 、 化合物 10 (0.3g) 、 1000°Cで熱処理したシリカ (日 本ァエロジル製ァエロジル 200、 結晶粒子径 0.012/2 m、 平均二次粒子径約 Compound 8 (0.7 g), Compound 10 (0.3 g), silica heat-treated at 1000 ° C (Aerosil 200, Aerozil Japan, crystal particle size 0.012 / 2 m, average secondary particle size approx.
0.1 /z m (SEM観察) 、 B ET比表面積 200m2Zg) (0.33 g) 、 EC 0.1 / z m (SEM observation), BET specific surface area 200m2Zg) (0.33 g), EC
(1.0 g) 、 EMC (2.0 g) 、 DEC (1.0 g) 、 L i PF6 (橋本化成製電池 グレード) (0.60 g) 、 及ぴルシリン TP O (0.005 g) をアルゴン雰囲気中 でよく混合し、 光重合性組成物を得た。 (1.0 g), EMC (2.0 g), DEC (1.0 g), L i PF 6 ( Hashimoto Kasei battery grade) (0.60 g),及Pi Lucirin TP O a (0.005 g) were mixed well under an argon atmosphere A photopolymerizable composition was obtained.
この組成物の含水量 (カールフィ ッシャー法) は 6 O p pmであった。 こ の光重合性組成物をアルゴン雰囲気下、 PETフィルム上に塗布後、 ケミカル 蛍光ランプを 10分照射したところ、 EC/EMCZDEC系電解液を含浸し た化合物 8と 1 0の共重合体 Zァエロジル 200複合フィルムが約 30 z mの 自立フイノレムとして得られた。 このフィ ムの 25°C、 一 20°Cでのイオン伝 導度をインピーダンス法にて測定したところ、 それぞれ、 2.0X 1 0-3、 0.4 X 1 0-3S/cmであった。 実施例 1 5 The water content (Karl Fischer method) of this composition was 6 Oppm. This photopolymerizable composition was coated on a PET film under an argon atmosphere, and then irradiated with a chemical fluorescent lamp for 10 minutes.The copolymer, a copolymer of Compounds 8 and 10, impregnated with an EC / EMC ZDEC-based electrolyte, 200 composite films were obtained as about 30 zm free standing finolems. 25 ° C of the Fi beam was measured ion Den Shirubedo of one 20 ° C by an impedance method, respectively, 2.0X 1 0- 3, was 0.4 X 1 0-3S / cm. Example 15
無機微粒子として UA5805の代りに 1000°Cで熱処理した酸化マグネシ ゥム (ミクロマグ 3— 1 50協和化学製) を 0.33 g添加した以外は実施例 3 と同様にして、 光重合性組成物を得た。 この組成物の含水量 (カール フィッシャー法) は 35 p pmであった。  A photopolymerizable composition was obtained in the same manner as in Example 3 except that 0.33 g of magnesium oxide (Micromag 3-150 manufactured by Kyowa Chemical Co., Ltd.) heat-treated at 1000 ° C was added instead of UA5805 as inorganic fine particles. . The water content (Karl Fischer method) of this composition was 35 ppm.
この光重合性組成物を実施例 3と同様に塗布、 光照射することにより、 ECZEMC電解液を含浸した化合物 3重合体/ミクロマグ 3— 1 50複合 フィルムが約 30; umの自立フィルムとして得られた。 このフィルムの 25°C、 - 20°Cでのイオン伝導度をインピーダンス法にて測定したところ、 それぞれ 4.3X 10-3、 0.5X 1 0_3SZ c mであった。 実施例 1 6 The photopolymerizable composition was applied and irradiated with light in the same manner as in Example 3 to obtain a compound 3 polymer / micromag 3-150 composite film impregnated with ECZEMC electrolyte solution as a self-supporting film of about 30 μm. Was. 25 ° C of this film, - was measured ionic conductivity at 20 ° C by an impedance method was respectively 4.3X 10-3, 0.5X 1 0_ 3 SZ cm. Example 16
無機微粒子として UA 5805の代りに 1000°Cで熱処理した酸化チタン (スーパータイタニア F— 4 昭和電工製、 結晶粒子径 0.028 / m、 BET比 表面積 56m2Zg) を 0.33 g添加した以外は実施例 3と同様にして、 光重合 性組成物を得た。 この組成物の含水量 (カールフィッシャー法) は 60 p pm であった。 Example 3 Example 3 was repeated except that 0.33 g of titanium oxide (Super Titania F-4 manufactured by Showa Denko, crystal particle size 0.028 / m, BET specific surface area 56 m 2 Zg) heat-treated at 1000 ° C was added instead of UA 5805 as inorganic fine particles. In the same manner as in the above, a photopolymerizable composition was obtained. The water content (Karl Fischer method) of this composition was 60 ppm.
この光重合性組成物を実施例 3と同様に塗布、 光照射することにより、 ECノ EMC電解液を含浸した化合物 3重合体/スーパータイタニア F— 4 複合フィルムが約 30 μ πιの自立フィルムと して得られた。 このフィルムの 25°C、 一 20。Cでのイオン伝導度をインピーダンス法にて測定したところ、 それぞれ、 4.5 X 10-3、 0.7 X 10-3S/cmであった。 実施例 1 7 : コバルト酸リチウム正極の製造  This photopolymerizable composition was coated and irradiated with light in the same manner as in Example 3, whereby a compound 3 polymer / super titania F-4 composite film impregnated with an EC electrolyte was converted into a self-supporting film of about 30 μπι. Was obtained. 25 ° C for this film, 20 times. When the ionic conductivity at C was measured by the impedance method, it was 4.5 X 10-3 and 0.7 X 10-3 S / cm, respectively. Example 17: Production of lithium cobaltate positive electrode
L i 2C03 (1 1 g) と C o304 (24 g) を良く混合し、 酸素雰囲気下、 800 °Cで 24時間加熱後、 粉砕することにより L i C o〇2粉末を得た。 こ の L i C o02粉末とアセチレンブラック、 ポリフッ化ビニリデンを,重量比 8 : 1 : 1で混合し、 さらに過剰の N—メチルピロリ ドン溶液を加え、 ゲル状 組成物を得た。 この組成物を約 25 μπιのアルミ箔上に 1 c mX l c m、 約 1 80 μ mの厚さに塗布成型した。 さらに、 約 1 00 °Cで 24時間加熱真空乾 燥することにより、 コバルト酸リチウム正極 (75mg) を得た。 実施例 1 8 :黒鉛負極の製造 L i 2 C0 3 (1 1 g) and C o 3 0 4 (24 g ) were mixed well under an oxygen atmosphere, heated at 800 ° C 24 hours, the L i C O_〇 2 powder by grinding Obtained. This L i C o0 2 powder, acetylene black and polyvinylidene fluoride, the weight ratio of 8: 1: 1 mixture, further excess of N- Mechirupirori Don solution was added to obtain a gel composition. This composition was applied and molded on an aluminum foil of about 25 μπι to a thickness of 1 cmXlcm and a thickness of about 180 μm. Furthermore, by heating and drying under vacuum at about 100 ° C for 24 hours, a lithium cobaltate positive electrode (75 mg) was obtained. Example 18: Production of graphite negative electrode
MCMB黒鉛 (大阪ガス製) 、 気相法黒鉛繊維 (昭和電工 (株) 製:平均 繊維径 0.3 μ m、 平均繊維長 2.0 m、 2700°C熱処理品) 、 ポリフッ化ビニリデ ンの重量比 8.6: 0.4: 1.0の混合物に過剰の N—メチルピロリ ドン溶液を加え、 ゲル状組成物を得た。 この組成物を約 1 5 μ mの銅箔上に 1 0 mm X 1 0 mm, 約 250 μ mの厚さに塗布成型した。 さらに、 約 1 00 °Cで 24時間加熱真空 乾燥することにより、 黒鉛負極 (35mg) を得た。 実施例 1 9 : リチウムイオン二次電池の製造 MCMB graphite (manufactured by Osaka Gas), vapor-grown graphite fiber (manufactured by Showa Denko KK: average fiber diameter 0.3 μm, average fiber length 2.0 m, heat treated at 2700 ° C), polyvinylidene fluoride An excess N-methylpyrrolidone solution was added to the mixture having a weight ratio of 8.6: 0.4: 1.0 to obtain a gel composition. This composition was applied and molded on a copper foil of about 15 μm to a thickness of 10 mm × 10 mm and a thickness of about 250 μm. Furthermore, it was heated and vacuum-dried at about 100 ° C. for 24 hours to obtain a graphite negative electrode (35 mg). Example 19: Production of lithium ion secondary battery
アルゴン雰囲気グローブボックス内で、 実施例 1 7で製造した黒鉛負極 ( 1 0 mm X 1 0 mm) に電解液 (1 M L i P F6/E C + EMC (3 : 7) ) を含浸させたものに、 実施例 4で調製した高分子固体電解質 Zアルミ二 ゥムォキサイド C複合フィルム (1 2mm X 1 2 mm) を黒鉛負極上に貼り合 わせ、 さらに実施例 1 7で製造したコバルト酸リチウム正極 (l OmmX l O mm) に電解液 (1M L i P F6/EC + EMC (3 : 7) ) を含浸させたも のを貼り合わせ、 電池端部をエポキシ樹脂で封印し、 黒鉛/酸化コバルト系 リチウムイオン二次電池を得た。 得られた電池の断面図を図 1に示す。 In the argon atmosphere glove box, the graphite negative electrode (10 mm x 10 mm) produced in Example 17 was impregnated with electrolyte (1 ML i PF 6 / EC + EMC (3: 7)). Then, the polymer solid electrolyte Z-aluminum oxide C composite film (12 mm × 12 mm) prepared in Example 4 was laminated on a graphite negative electrode, and the lithium cobaltate positive electrode (lOmmX l O mm) and an electrolyte impregnated with electrolyte (1M Li PF 6 / EC + EMC (3: 7)), seal the battery end with epoxy resin, and use graphite / cobalt oxide lithium ion. A secondary battery was obtained. FIG. 1 shows a cross-sectional view of the obtained battery.
この電池を、 60°C、 25°C、 一 20°Cで作動電圧 2.75〜4.1V、 電流 0.5 mAで充放電を行ったところ、 最大放電容量は各々 7.2mA h、 7.2mA h、 6.5mA hであった。  This battery was charged and discharged at an operating voltage of 2.75 to 4.1 V and a current of 0.5 mA at 60 ° C, 25 ° C, and 20 ° C. The maximum discharge capacity was 7.2 mAh, 7.2 mAh, and 6.5 mA, respectively. h.
また、 25°C、 作動電圧 2J5〜4.1V、 充電 0.5mA、 放電 2.5mAで充放電 を繰返したところ、 最大放電容量は 6.8mAhで、 容量が 50%に減少するま でのサイクル寿命は 560回であった。 実施例 20 : リチウムイオン二次電池の製造  When charge and discharge were repeated at 25 ° C, operating voltage 2J5 to 4.1V, charge 0.5mA, and discharge 2.5mA, the maximum discharge capacity was 6.8mAh, and the cycle life until the capacity was reduced to 50% was 560. It was times. Example 20: Production of lithium ion secondary battery
化合物 3系高分子固体電解質/アルミニゥムオキサイ ド C複合フィルムの 代りに、 実施例 1 0で製造した [化合物 3 + 5系高分子固体電解質] /UA5 805フィルムを用いた以外は実施例 1 9と同様にして図 1に示す断面図のリ チウムイオン二次電池を製造した。  Example 1 was repeated except that the [Compound 3 + 5-based polymer solid electrolyte] / UA5805 film produced in Example 10 was used instead of the compound 3-based polymer solid electrolyte / aluminum oxide C composite film. A lithium ion secondary battery having the cross-sectional view shown in FIG.
この電池を、 60°C、 25°C、 — 20°Cで作動電圧 2.75〜4.1 V、 電流 0.5 m Aで充放電を行ったところ、 最大放電容量は各々 7.2mA h、 7.2mA h、 6.8mA hであった。 Operate the battery at 60 ° C, 25 ° C, --20 ° C, operating voltage 2.75 ~ 4.1 V, current 0.5 When the battery was charged and discharged at mA, the maximum discharge capacities were 7.2 mAh, 7.2 mAh, and 6.8 mAh, respectively.
また、 25°C、 作動電圧 2.75〜4.1V、 充電 0.5mA、 放電 2.5mAで充放電 を繰返したところ、 最大放電容量は 7.0mAhで、 容量が 50%に減少するま でのサイクル寿命は 480回であった。 実施例 21 : リチウムイオン二次電池の製造  When charge and discharge were repeated at 25 ° C, operating voltage 2.75 to 4.1 V, charge 0.5 mA, and discharge 2.5 mA, the maximum discharge capacity was 7.0 mAh, and the cycle life until the capacity was reduced to 50% was 480. It was times. Example 21: Production of lithium ion secondary battery
化合物 3系高分子固体電解質 アルミニウムォキサイド Cフィルムの代り に、 実施例 5で製造した化合物 3系熱重合高分子固体電解質 Zアルミニゥムォ キサイド Cフィルムを用いた以外は実施例 1 9と同様にして図 1に示す断面図 のリチウムイオン二次電池を製造した。  The same procedure as in Example 19 was performed except that the compound 3-based thermopolymerized polymer solid electrolyte Z-aluminum oxide C film prepared in Example 5 was used instead of the compound 3-based polymer solid electrolyte aluminum oxide C film. A lithium ion secondary battery having the cross-sectional view shown in FIG. 1 was manufactured.
この電池を、 60°C、 25°C、 一 20。Cで作動電圧 2.75〜4.1V、 電流 0.5 mAで充放電を行ったところ、 最大放電容量は各々 7.2mAh、 7.2mA h、 6.4mA hであった。  Use this battery at 60 ° C, 25 ° C, and 20 ° C. When the battery was charged and discharged with an operating voltage of 2.75 to 4.1 V and a current of 0.5 mA at C, the maximum discharge capacity was 7.2 mAh, 7.2 mAh, and 6.4 mAh, respectively.
また、 25°C、 作動電圧 2.75〜4.1V、 充電 0.5m A、 放電 2.5m Aで充放電 を繰返したところ、 最大放電容量は 6.6mAhで、 容量が 50%に減少するま でのサイクル寿命は 5 1 0回であった。 実施例 22 : リチウムイオン二次電池の製造  When charge and discharge were repeated at 25 ° C, operating voltage 2.75 to 4.1 V, charge 0.5 mA, and discharge 2.5 mA, the maximum discharge capacity was 6.6 mAh, and the cycle life until the capacity was reduced to 50% Was 5 10 times. Example 22: Production of lithium ion secondary battery
アルゴン雰囲気グローブボックス内で、 実施例 1 8で製造した黒鉛負極 ( 1 0 mm X 1 0 mm) に電解液 (1 M L i P F6/E C + EMC ( 3 : 7) ) を含浸させた上に、 実施例 4で調製した化合物 3/アルミニウムォキサ ィ ド C系光重合性 成物を厚み 30 /zmとなるように塗布し、 アルゴン雰囲気 下、 ケミカル蛍光ランプを 10分照射したところ、 電解液を含浸した化合物 3 の重合体 Zアルミ二ゥムォキサイド C複合フィルムを黒鉛負極上に直接形成し た。 さらに実施例 1 7で製造したコバルト酸リチウム正極 ( 1 OmmX 1 0 mm) に電解液 (1M L i PF6/EC + EMC (3 : 7) ) を含浸させたも のを貼り合わせ、 電池端部をエポキシ樹脂で封印し、 図 1に示す黒鉛/酸化コ バルト系リチウムイオン二次電池を得た。 In a argon atmosphere glove box, the graphite anode (10 mm X 10 mm) produced in Example 18 was impregnated with an electrolyte solution (1 ML i PF 6 / EC + EMC (3: 7)). The compound 3 / aluminum oxide C-based photopolymerizable compound prepared in Example 4 was applied to a thickness of 30 / zm, and irradiated with a chemical fluorescent lamp for 10 minutes under an argon atmosphere. A polymer Z-impregnated Z3 aluminum oxide C composite film was formed directly on the graphite negative electrode. Further Example 1 lithium cobaltate positive electrode prepared in 7 (1 OmmX 1 0 mm) to the electrolytic solution (1M L i PF 6 / EC + EMC (3: 7)) was also impregnated with The end of the battery was sealed with an epoxy resin to obtain a graphite / cobalt oxide lithium ion secondary battery as shown in FIG.
この電池を、 6 0 °C、 2 5 °C、 一 2 0。Cで作動電圧 2.75〜4.1 V、 電流 0.5 mAで充放電を行ったところ、 最大放電容量は各々 7.2m A h、 7.2m A h、 6.6mA hであった。  Use this battery at 60 ° C, 25 ° C, and 20 ° C. When the battery was charged and discharged with an operating voltage of 2.75 to 4.1 V and a current of 0.5 mA at C, the maximum discharge capacities were 7.2 mAh, 7.2 mAh, and 6.6 mAh, respectively.
また、 2 5 °C、 作動電圧 2.75〜4.1 V、 充電 0.5mA、 放電 2.5mAで充放電 を繰返したところ、 最大放電容量は 7.2mA hで、 容量が 5 0 %に減少するま でのサイクル寿命は 6 8 0回であった。 産業上の利用可能性  When charge and discharge were repeated at 25 ° C, operating voltage 2.75 to 4.1 V, charge 0.5 mA, and discharge 2.5 mA, the maximum discharge capacity was 7.2 mAh, and the cycle until the capacity was reduced to 50% The life was 680 times. Industrial applicability
本発明の高分子固体電解質は、 可塑剤として E Cと E Cの結晶化温度低下 に有効な E M Cを含む有機溶媒が添加されているため、 広い温度領域でイオン 伝導度が高く、 電気化学的安定性に優れており、 電池等の電気化学素子に応用 した場合の電流特性、 温度特性、 寿命を向上させることができる。 特に — 2 0 °C以下の低温でも問題なく使用することができる。  The polymer solid electrolyte of the present invention has high ionic conductivity over a wide temperature range and electrochemical stability because it contains EC and an organic solvent containing EMC that is effective in lowering the crystallization temperature of EC as a plasticizer. It can improve current characteristics, temperature characteristics, and life when applied to electrochemical devices such as batteries. In particular, it can be used without problems even at temperatures as low as −20 ° C or less.
本発明では、 上記高分子固体電解質に無機微粒子を添加することにより、 強度が向上し、 取扱いやすくなり、 また、 電解質塩の拡散が容易になり、 電気 化学素子の電流特性やサイクル特性を向上させることができる。  In the present invention, by adding inorganic fine particles to the polymer solid electrolyte, the strength is improved, the handling is facilitated, the diffusion of the electrolyte salt is facilitated, and the current characteristics and cycle characteristics of the electrochemical element are improved. be able to.
本発明によれば、 (メタ) アクリル基及び/またはウレタン (メタ.,) ァク リル基を有する重合性化合物が硬化特性に優れていることを利用し、 これら化 合物と電解質塩、 E C Z E M C系有機溶媒または/さらに無機微粒子を混合し た重合性組成物を基材上に配置後、 加熱や紫外線等の活性光線照射により、 E C / E M C系溶媒を含んだ高分子固体電解質を基材上に容易に製造すること が可能となった。  According to the present invention, the fact that a polymerizable compound having a (meth) acrylic group and / or a urethane (meth.,) Acrylic group has excellent curing properties is used, and these compounds and an electrolyte salt are used. After the polymerizable composition containing the organic organic solvent or / and the inorganic fine particles is placed on the substrate, the polymer solid electrolyte containing the EC / EMC solvent is applied to the substrate by heating or irradiation with actinic rays such as ultraviolet rays. It became possible to manufacture easily.
さらに本発明によれば、 上記高分子固体電解質とリチウムイオン吸蔵、 放 出可能な負極を用いることにより、 高エネルギー密度で、 取り出し電流が大き く、 使用温度範囲が広く、 サイクル寿命が長く、 液もれ、 短絡が起りにくく、 安全性及び長期信頼性、 加工性に優れたリチウム (イオン) 二次電池が得られ る。 また、 液もれや短絡が起りにくいことから、 薄型にでき、 パッケージの簡 単なリチウム (イオン) 二次電池が得られる。 Further, according to the present invention, by using the solid polymer electrolyte and the negative electrode capable of occluding and releasing lithium ions, a high energy density, a large extraction current, a wide operating temperature range, a long cycle life, and a high Leakage, short circuit is less likely to occur, A lithium (ion) secondary battery with excellent safety, long-term reliability, and processability can be obtained. In addition, since liquid leakage and short-circuiting do not easily occur, a thin lithium ion (ion) secondary battery with a simple package can be obtained.

Claims

請求の範囲 The scope of the claims
1. 高分子、 電解質塩及びエチレンカーボネートとェチルメチルカーボネ ートとを含む有機溶媒からなる高分子固体電解質。 1. A polymer solid electrolyte comprising a polymer, an electrolyte salt, and an organic solvent containing ethylene carbonate and ethyl methyl carbonate.
2. 高分子、 電解質塩、 エチレンカーボネートとェチルメチルカーボネー トとを含む有機溶媒及び無機微粒子からなる高分子固体電解質。 2. A polymer solid electrolyte comprising a polymer, an electrolyte salt, an organic solvent containing ethylene carbonate and ethyl methyl carbonate, and inorganic fine particles.
3. 高分子に対して、 エチレンカーボネートとェチルメチルカーボネート の総重量が 1 00重量%以上でぁり、 エチレンカーボネートとェチルメチルカ ーボネートの重量比が 2 : 1〜1 : 10である請求の範囲 1または 2記載の高 分子固体電解質。 3. The total weight of ethylene carbonate and ethyl methyl carbonate is at least 100% by weight with respect to the polymer, and the weight ratio of ethylene carbonate and ethyl methyl carbonate is 2: 1 to 1:10. Or the high molecular solid electrolyte according to 2.
4. 高: 構造を含む請求の範 囲 1乃至 3のいずれかに記載の高分子固体電解質。 4. High: The solid polymer electrolyte according to any one of claims 1 to 3, including a structure.
5. 高分子が一般式 (1) または一般式 (2) 5. The polymer has the general formula (1) or the general formula (2)
CH2=C(R )CO— (1) CH 2 = C (R) CO— (1)
0  0
CH2=C(R2)CrOR3]xNHCO— (2) CH 2 = C (R 2 ) CrOR 3 ] x NHCO— (2)
O o  O o
[式中、 Rl及ぴ R2は水素原子またはアルキル基を表わし、 R3は炭素数 1 0 以下の 2価の基を表わす。 該 2価の基はへテロ原子を含んでいてもよく、 直鎖 状、 分岐状、 環状構造のいずれからなるものでもよい。 Xは 0または 1〜1 0 の数値を示す。 但し、 同一分子中に複数存在の式 (1) または (2) で表わさ れる重合性官能基中の R R2、 R3及び xの値は、 それぞれ独立し、 同一で も異なっていてもよい。 ] Wherein, Rl及Pi R 2 represents a hydrogen atom or an alkyl group, R 3 represents a divalent group having 1 0 carbon atoms. The divalent group may contain a hetero atom, and may have any of a linear, branched, or cyclic structure. X represents 0 or a numerical value from 1 to 10; However, if there are multiple occurrences of the same molecule in the formula (1) or (2) The values of RR 2 , R 3 and x in the polymerizable functional groups to be obtained are each independent and may be the same or different. ]
で表わされる重合性官能基を有する熱及び/または活性光線重合性化合物を重 合することによって得られる少なくとも一種の高分子である請求の範囲 1乃至 : 4のいずれかに記載の高分子固体電解質。  The solid polymer electrolyte according to any one of claims 1 to 4, which is at least one kind of polymer obtained by polymerizing a heat and / or actinic ray polymerizable compound having a polymerizable functional group represented by .
6. 無機微粒子が結晶粒子径 0.1 μ m以下で、 B E T比表面積 50 m2Z g 以上であるアルミナ系微粒子である請求の範囲 2乃至 5のいずれかに記載の高 分子固体電解質。 6. The high molecular solid electrolyte according to any one of claims 2 to 5, wherein the inorganic fine particles are alumina-based fine particles having a crystal particle diameter of 0.1 µm or less and a BET specific surface area of 50 m 2 Zg or more.
7. 少なく とも一種の電解質塩がリチウム塩である請求の範囲 1乃至 6の いずれかに記載の高分子固体電解質。 7. The polymer solid electrolyte according to any one of claims 1 to 6, wherein at least one kind of electrolyte salt is a lithium salt.
8. 少なく とも一種の電解質塩が L i P F6、 L i B F4 及び/または L i N (CF3S02) 2である請求の範囲 7記載の高分子固体電解質。 8. at least one electrolyte salt L i PF 6, L i BF 4 and / or L i N (CF 3 S0 2 ) 2 a polymer solid electrolyte in the range 7 according claims is.
9. 請求の範囲 7または 8記載の高分子固体電解質を用い、 負極活物質と してリチウム、 リチウム合金、 リチウムイオンを吸蔵放出できる炭素材料、 リ チウムイオンを吸蔵放出できる無機酸化物、 リチウムイオンを吸蔵放出できる 無機カルコゲナイド、 リチウムイオンを吸蔵放出できる高分子から選ばれる少 なくとも一つの材料を用いるリチウムニ次電池。 9. Lithium, lithium alloy, carbon material capable of occluding and releasing lithium ions, inorganic oxide capable of occluding and releasing lithium ions, and lithium ion as the negative electrode active material, using the polymer solid electrolyte according to claim 7 or 8. A lithium secondary battery that uses at least one material selected from inorganic chalcogenides that can store and release, and polymers that can store and release lithium ions.
PCT/JP1998/001069 1997-04-18 1998-03-13 Solid polymer electrolyte and its use WO1998048429A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9101927A JPH10294015A (en) 1997-04-18 1997-04-18 Polymeric solid electrolyte and usage thereof
JP9/101927 1997-04-18
US5606097P 1997-09-02 1997-09-02
US60/056,060 1997-09-02

Publications (1)

Publication Number Publication Date
WO1998048429A1 true WO1998048429A1 (en) 1998-10-29

Family

ID=26442696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001069 WO1998048429A1 (en) 1997-04-18 1998-03-13 Solid polymer electrolyte and its use

Country Status (1)

Country Link
WO (1) WO1998048429A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417196A (en) * 2017-01-12 2019-03-01 株式会社Lg化学 Nonaqueous electrolytic solution and lithium secondary battery including the nonaqueous electrolytic solution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172163A (en) * 1988-12-23 1990-07-03 Bridgestone Corp Nonaqueous electrolyte battery
JPH03129603A (en) * 1989-10-13 1991-06-03 Matsushita Electric Ind Co Ltd Solid electrolyte
JPH07109321A (en) * 1993-08-18 1995-04-25 Shin Etsu Chem Co Ltd Composite solid electrolyte
JPH0963643A (en) * 1995-06-14 1997-03-07 Furukawa Battery Co Ltd:The Lithium secondary battery
JPH0973907A (en) * 1995-02-21 1997-03-18 Showa Denko Kk Polymer solid electrolyte, battery and solid electrical double later capacitor using the same, and manufacture of them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172163A (en) * 1988-12-23 1990-07-03 Bridgestone Corp Nonaqueous electrolyte battery
JPH03129603A (en) * 1989-10-13 1991-06-03 Matsushita Electric Ind Co Ltd Solid electrolyte
JPH07109321A (en) * 1993-08-18 1995-04-25 Shin Etsu Chem Co Ltd Composite solid electrolyte
JPH0973907A (en) * 1995-02-21 1997-03-18 Showa Denko Kk Polymer solid electrolyte, battery and solid electrical double later capacitor using the same, and manufacture of them
JPH0963643A (en) * 1995-06-14 1997-03-07 Furukawa Battery Co Ltd:The Lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417196A (en) * 2017-01-12 2019-03-01 株式会社Lg化学 Nonaqueous electrolytic solution and lithium secondary battery including the nonaqueous electrolytic solution
CN109417196B (en) * 2017-01-12 2021-08-20 株式会社Lg化学 Nonaqueous electrolyte solution and lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
US6190805B1 (en) Polymerizable compound, solid polymer electrolyte using the same and use thereof
US6316563B2 (en) Thermopolymerizable composition and use thereof
JP4404322B2 (en) Secondary battery and electrolyte and electrode active material used for the secondary battery
JP3848435B2 (en) Electric double layer capacitor and manufacturing method thereof
JP4060899B2 (en) Film for separator of electrochemical device, its production method and use
JP3907282B2 (en) Composite electrolyte and its use
JP4169134B2 (en) Electrochemical element separator and its use
JPH10294015A (en) Polymeric solid electrolyte and usage thereof
JP3685296B2 (en) Electrode for lithium secondary battery, polarizable electrode for electric double layer capacitor, and binder for these electrodes
JP3129961B2 (en) Polymer solid electrolyte, battery and solid electric double layer capacitor using the same, and methods for producing them
JP3748995B2 (en) Polymer solid electrolyte and use thereof
JP4017091B2 (en) Polymerizable compound, polymer solid electrolyte using the same, and use thereof
JPH1131415A (en) Polymer solid electrolyte and use thereof
JP2001229730A (en) Electrolyte material and its use
JP4117528B2 (en) Electrolyte composition, electrolyte, method for producing the same, and battery
JPH10116513A (en) Polymeric solid electrolyte for combining eletrode and its usage
JP3734258B2 (en) Ion conductive electrolyte and battery using the same
JP3984359B2 (en) Polymerizable compound, polymer solid electrolyte using the same, and use thereof
JP3614658B2 (en) Polymerizable compound, polymer solid electrolyte using the same, and use thereof
JPH107759A (en) Monomer compound for solid polyelectrolyte, solid polyelectrolyte, and their use
JPH1036657A (en) Polymerizable monomer, solid polyelectrolyte comprising the same, and its use
JPH1131414A (en) Polymerizable composition and use thereof
KR102488679B1 (en) Aqueous binder for a lithium-ion secondary battery, anode comprising the same, lithium-ion secondary battery comprising the anode, and method for polymerizing copolymer comprised in the binder
WO1998048429A1 (en) Solid polymer electrolyte and its use
EP0852819B1 (en) Film for separator of electrochemical apparatus, and production method and use thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA