WO1998044038A1 - Oil-resistant rubber composition and composite of said composition with fibers - Google Patents

Oil-resistant rubber composition and composite of said composition with fibers Download PDF

Info

Publication number
WO1998044038A1
WO1998044038A1 PCT/JP1998/001424 JP9801424W WO9844038A1 WO 1998044038 A1 WO1998044038 A1 WO 1998044038A1 JP 9801424 W JP9801424 W JP 9801424W WO 9844038 A1 WO9844038 A1 WO 9844038A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
oil
highly saturated
rubber composition
copolymer rubber
Prior art date
Application number
PCT/JP1998/001424
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinori Fujii
Original Assignee
Nippon Zeon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co., Ltd. filed Critical Nippon Zeon Co., Ltd.
Publication of WO1998044038A1 publication Critical patent/WO1998044038A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride

Definitions

  • the present invention relates to a rubber composition obtained by blending a vinyl chloride resin with a carboxylated nitrile group-containing highly saturated copolymer rubber. More specifically, the present invention has improved kneading and dispersing properties of the nitrile group-containing highly saturated copolymer rubber and a vinyl chloride resin and excellent extrudability, and further comprises gasoline, sour gasoline and engine oil.
  • the present invention relates to a rubber composition which provides a crosslinked rubber product having excellent heat resistance, ozone resistance, compression distortion resistance and oil resistance.
  • a rubber composition obtained by mixing an acrylonitrile-butadiene copolymer rubber (NBR) and a vinyl chloride resin has been known as a rubber composition for providing a crosslinked rubber product having oil resistance and ozone resistance.
  • the mixture of partially hydrogenated acrylonitrile-butadiene copolymer rubber (HNBR) and vinyl chloride resin has an excellent balance of oil resistance and cold resistance, and has a conventional level of ozone resistance and sour gasoline resistance. It has also been reported that crosslinked rubber products that surpass the standard are given (Japanese Patent Publication No. 60-49218).
  • An object of the present invention is to provide a rubber composition comprising a nitrile group-containing highly saturated copolymer rubber and a vinyl chloride resin, wherein the crosslinked rubber has improved strength properties and the like by being crosslinked with a crosslinking agent or the like.
  • a rubber composition, which can provide the product, will be provided.
  • the carboxylated nitrile group-containing highly saturated copolymer rubber used in the present invention is a copolymer having a nitrile group in the molecule, having few carbon-carbon unsaturated bonds, and exhibiting rubber elasticity. Thus, it further has a carboxyl group in the molecule.
  • the amount of carbon-carbon unsaturated bonds is alternatively expressed by the iodine value.
  • the carboxylated nitrile group-containing highly saturated copolymer rubber used in the present invention has an iodine value of 80 or less, preferably 60 or less. High iodine value If a crosslinker is used, the oil resistance and heat resistance of the crosslinked product decrease.
  • the content of the binding nitrile unit of the rubber is not particularly limited, but is usually
  • the content of the bound nitrile unit is a value determined by the Geldar method. Oil content and heat resistance increase as the content of the binding nitrile unit increases, and the rubber elasticity increases as the content of the binding nitrile unit decreases. Therefore, it is appropriately selected according to the application.
  • Acid equivalent of your rubbers 2 xl 0- 3 ephr or more, preferably 2 x 10 one 3 ⁇ 5 x 10- 2 ephr, more preferably 5 x 10- 3 ⁇ 3 xl 0- 2 ephr. If the acid equivalent is too small, the compatibility with the vinyl chloride resin is not improved, which is not preferable.
  • the acid equivalent is determined by dissolving the rubber in acetone, reprecipitating and refining with n-hexane, and re-dissolving the resulting reprecipitated purified rubber in acetone. This value was obtained by titration using ethanol solution of thymol with thymolphthalein as an indicator.
  • the rubber has a methylethylketone insoluble content of usually 3% by weight or less, preferably 2% by weight or less, more preferably 1% by weight or less (ie, substantially gel-free). . If the methylethyl ketone insolubles increase, the dispersibility of the vinyl chloride resin in the rubber becomes difficult.
  • the content of the insoluble matter in methyl ethyl ketone was determined by chopping the rubber finely, placing it in an 80 mesh wire mesh basket, immersing this basket in methyl ethyl ketone at room temperature for 48 hours, and remaining in the basket. The solid content is dried, the weight of the dried product is measured, and the weight of the dried product is expressed as a percentage of the weight of the rubber initially placed in the basket.
  • the method for producing the carboxylated nitrile group-containing highly saturated copolymer rubber used in the present invention is not particularly limited, but is usually a radical addition method in the presence of a radical generator, or an enzymatic method at a high temperature.
  • a type addition method there is a type addition method.
  • a nitrile group-containing highly saturated copolymer rubber and an ethylenically unsaturated carboxylic acid or an anhydride thereof are mixed at a rubber temperature of 200 to 280 ° C. And a method of performing an enzymatic addition reaction.
  • the nitrile group-containing highly saturated copolymer rubber used in the ene-type addition reaction is obtained by hydrogenating a conjugated gen unit of an ethylenically unsaturated nitrile-conjugated gen-based copolymer rubber.
  • the nitrile group-containing highly saturated copolymer rubber has a bound nitrile unit content of usually 10 to 60% by weight, preferably 15 to 40% by weight, and an iodine value of usually It is 80 or less, preferably 60 or less, and its viscosity (ML! +4 , 100 ° C) is usually 30 to 300, preferably 50 to 200, More preferably, it is 60 to 150.
  • the lower limit of the iodine value is not particularly limited. However, if the iodine value is excessively low, crosslinking may be difficult. Therefore, generally, an iodine value of at least 1 is used. If the Mooney viscosity is too low, the durability under high pressure will be insufficient, and the compression set and Blur (compression relaxation) is not improved. Also, when the Mooney viscosity increases, the processability during kneading deteriorates.
  • the ethylenically unsaturated nitrile-1 conjugated gen-based copolymer used for producing the nitrile group-containing highly saturated copolymer rubber usually contains ethylenically unsaturated nitrile and conjugated gen. It is obtained by polymerizing a monomer mixture.
  • ethylenically unsaturated nitriles include ethylenically unsaturated nitriles such as acrylonitrile, methacrylonitrile, black acrylonitrile, and methacrylonitrile. And saturated nitrile. Of these, acrylonitrile is preferably used.
  • the amount of ethylenically unsaturated nitrile is usually from 10 to 60% by weight in the monomer mixture.
  • the conjugated diene examples include 1,3-butadiene, 2,3-dimethylbutadiene, isoprene, 1,3-pentadiene, and chloroprene. Of these, 1,3-butadiene is preferably used.
  • the amount of synergist is usually between 40 and 90% by weight in the monomer mixture.
  • 1,3-butadiene and isoprene are used in combination as the conjugated gen (ie, in the case of isoprene-butadiene-acrylonitrile copolymer rubber)
  • the bond 1,3-butadiene in the conjugated gen unit is usually used.
  • the unit content is 30 to 70% by weight, and the bound isoprene unit content is 70 to 30% by weight.
  • the nitrile group-containing highly saturated copolymer rubber contains, in its structure, an ethylenically unsaturated nitrile and an ethylenically unsaturated monomer unit copolymerizable with a conjugated diene in a range of 0 to 50% by weight. It may be.
  • polymers include vinyl aromatic compounds such as styrene and monomethylstyrene;
  • Ethylenically unsaturated carboxylic acid alkoxyalkyl esters such as methoxyacrylate, ethoxychelaterate, methoxyethoxylate;
  • 2-ethylenoxyunsaturated carboxylate such as 2-hydroxypropyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, or hydroxypropyl methacrylate Group-substituted alkyl esters;
  • Ethylenic unsaturated amides such as rilamide and N-ethoxymethyl methacrylamide;-Non-conjugated gens such as vinylnorbornene, dicyclopentene, 1,4-hexadiene: ethylenically unsaturated carboxylic acid fluoroalkyl esters;
  • ethylenically unsaturated nitrile-conjugated gen-based copolymer rubber examples include acrylonitrile-butadiene copolymer rubber (NBR), acrylonitrile-butadiene-isoprene copolymer rubber (NBIR), and Lilo nitrile / isoprene copolymer rubber (NIR), acrylonitrile / butadiene / butadiene copolymer rubber, acrylonitrile / butadiene / acrylic acid copolymer rubber, acrylonitrile / butadiene / methacrylic acid copolymer rubber Rubber and the like.
  • NBR is preferably used.
  • Such an ethylenically unsaturated nitrile-conjugated copolymer rubber is usually prepared by adding an ethylenically unsaturated nitrile and a conjugated diene in the presence of a radical polymerization initiator, if necessary, using a molecular weight modifier as necessary. It is prepared by copolymerizing with other ethylenically unsaturated monomers as required.
  • a radical polymerization initiator to be used,
  • Persulfates such as potassium persulfate, ammonium persulfate, etc .
  • the amount of the polymerization initiator is usually 0.05 to 3 parts by weight based on 100 parts by weight of the monomer mixture.
  • the polymerization temperature varies depending on the type of the initiator, but is usually from 0 to 100 ° C.
  • molecular weight regulator examples include 2,2 ', 4,6,6'-pentamethylheptane-1-thiol, 2,4,4-trimethylpentane-12-thiol, dodecane-12-thiol, 2,2, Alkylthiol compounds such as 6,6-tetramethylheptane-14-methanethiol, 2,4,6-trimethylnonane-14-thiol; dimethylxanthogen disulfide, getylxanthogen disulfide, diisopropylxanthogen disulfide Xanthogen disulfides such as thiuram disulfides such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide; halogenated compounds such as carbon tetrachloride and brominated titanium; Hydrocarbons; hydrocarbons such as pentaf X-nitroethane; And acrole
  • the method of polymerization is not particularly limited, and bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, or the like can be appropriately selected as needed. Among them, emulsion polymerization is preferred.
  • the polymerization is carried out by a known emulsion polymerization technique, and when a predetermined conversion is reached, the polymerization is stopped by adding hydroxyamine, sodium dihydrocarbamate, and the like.
  • the remaining monomer is removed by heating, steam distillation, etc., and the obtained polymer latex is further coagulated by a usual emulsion polymerization such as an inorganic coagulant, a polymer coagulant or a thermosensitive coagulant.
  • a usual emulsion polymerization such as an inorganic coagulant, a polymer coagulant or a thermosensitive coagulant.
  • the method for hydrogenating the conjugated gen unit of the ethylenically unsaturated nitrile conjugated gen-based copolymer rubber is not particularly limited, and is carried out by using a usual hydrogenation method.
  • reaction is carried out by blowing hydrogen in the presence of a hydrogenation catalyst in a state where the ethylenically unsaturated nitrile conjugated gen-based copolymer rubber is dissolved in a solvent.
  • the solvent is capable of dissolving the ethylenically unsaturated nitrile-one conjugated diene copolymer rubber.
  • aromatic compounds such as benzene, toluene, xylene, and chlorobenzene; cyclohexanone, acetone, methyl Ketones such as luethyl ketone and getyl ketone; tetrahydrofuran; ethyl acetate: dimethylformamide;
  • the hydrogenation catalyst include palladium silica and a palladium complex (JP-A-3-252405). Further, Japanese Patent Application Laid-Open Nos. Sho 62-125258, Sho-62-42937, Hei 114-540
  • Rhodium or ruthenium compounds such as those described in No. 45405, etc., can also be used.
  • the hydrogenation reaction temperature is usually 5 to 150 ° C, preferably 10 to 100 ° C. At high temperatures, the hydrogenation catalyst is deactivated or side reactions are more likely to occur. Examples of the side reaction include a reaction in which a nitrile group is hydrogenated.
  • the ethylenically unsaturated carboxylic acid or its anhydride used in the ene-type addition reaction is not particularly limited, but the ethylenically unsaturated dicarboxylic acid having 4 to 10 carbon atoms or its anhydride, particularly maleic anhydride Acids are preferred.
  • Ethylenically unsaturated carboxylic acids include ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; ethylenically unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid and citraconic acid; maleic anhydride Ethylenic unsaturated dicarboxylic anhydrides such as acid, itaconic anhydride and citraconic anhydride; monomethyl maleate, monoethyl maleate, monopropyl maleate, mono-n-butyl maleate, maleic acid Monoisobutyl, mono-n-pentyl maleate, mono-n-hexyl maleate, mono-2-ethylhexyl maleate, monomethyl fumarate, monoethyl fumarate, monopropyl fumarate, monopropyl fumarate One n-buchi Monoisobutyl fumarate, mono-n-pentyl fumarate, mono
  • heating is usually performed without using a radical generator in an inert solvent that dissolves the nitrile group-containing highly saturated copolymer rubber and the ethylenically unsaturated carboxylic acid or its anhydride.
  • this is accomplished by kneading the nitrile group-containing highly saturated copolymer rubber and an ethylenically unsaturated carboxylic acid or an anhydride thereof in a heated closed kneader.
  • the amounts of the nitrile group-containing highly saturated copolymer rubber and the ethylenically unsaturated carboxylic acid or its anhydride are not particularly limited, but are usually 100 parts by weight of the nitrile group-containing highly saturated copolymer rubber. On the other hand, the amount is 0.05 to 10 parts by weight, preferably 0.2 to 6 parts by weight for the ethylenically unsaturated carboxylic acid or its anhydride.
  • the heat-sealing kneader suitably used in the heat-type addition reaction can be arbitrarily selected from among batch-type heat-sealing kneaders such as a pressure soda, a Banbury mixer, a Brabender, etc. Of these, a pressure kneader is preferred. If an open-type kneader such as a roll-type kneader is used without using a heated closed kneader, the molten ethylenically unsaturated carboxylic acid such as maleic anhydride or its anhydride is scattered. However, it is not preferable because a sufficient addition reaction cannot be performed.
  • the rubber remaining at the outlet of the extruder is gelled to form a die head.
  • the addition reaction cannot be performed efficiently due to clogging of the metal.
  • a large amount of unreacted ethylenically unsaturated carboxylic acid or its anhydride remains in the rubber.
  • Carboxylic acid anhydride groups can be present in a high proportion.
  • the reaction rate with the compounding agent such as zinc oxide is accelerated, so that scorch is likely to occur at the time of crosslinking, and wear resistance is also increased. This is not preferred because the properties and compression set resistance tend to decrease.
  • the method by which carboxylic anhydride groups can be present in a high proportion in rubber molecules is as follows.
  • the ethylenically unsaturated carboxylic acid or its anhydride and the nitrile group-containing highly saturated copolymer rubber are pre-kneaded, and the ethylenically unsaturated carboxylic acid or its anhydride is subjected to the nitrile group-containing highly saturated copolymer. Disperse evenly in it. If the rubber temperature of this pre-kneading is excessively low, the rubber slips in the kneading machine and the mixing of the ethylenically unsaturated carboxylic acid or its anhydride with the nitrile group-containing highly saturated copolymer rubber occurs. Not enough.
  • the temperature of the mixture of the rubber being kneaded and the ethylenically unsaturated carboxylic acid or its anhydride (hereinafter, sometimes referred to as the rubber temperature) is set at 200 to 2 in order to carry out an ene-type addition reaction. 80 ° C, preferably 220-260 ° C One.
  • the method for keeping the rubber temperature within this range is not particularly limited, but is usually achieved by flowing hot water or steam into the kneader jacket, or by using shear heat.
  • the jacket temperature is generally maintained at 70 to 250 ° C, preferably 130 to 200 ° C.
  • the kneading is preferably continued by a kneader at a shear rate of 30 to: L 000 S—preferably 300 to 700 S— 1 .
  • L 000 S—preferably 300 to 700 S— 1 it is preferable to use the heat generated by shearing because the rubber temperature can be easily controlled.
  • the kneading time in the heated closed kneader is not particularly limited, but is usually 120 seconds to 120 minutes, preferably 180 seconds to 60 minutes.
  • the ene-type addition reaction does not proceed sufficiently.
  • the content is excessively high, gelation or burning occurs, and as a result, gel is mixed into the product, which is not preferable.
  • the shear rate is excessively high, it is difficult to control the rubber temperature due to the heat generated by shearing, and the rubber temperature becomes too high, causing gels and burns, which is not preferable as an industrial production method.
  • the shear rate is excessively low, the rubber temperature becomes too low, so that a sufficient ene-type addition reaction cannot be expected.
  • an antioxidant may be added to prevent gelation of rubber and increase in Mooney viscosity.
  • the type of anti-aging agent is not particularly limited, but an aging-based, amine-ketone-based, phenol-based, benzimidazole-based, or other rubber-based anti-aging agent can be used.
  • amide-based antioxidants include phenyl-1-naphthylamine, Alkylated diphenylamine, octylated diphenylamine, 4,4-bis ( ⁇ , didimethylbenzyl) diphenylamine, ⁇ - ( ⁇ -tonolenesulfonylamide) diphenylamine, ⁇ , ⁇ -di-2-naphthine Nore _ ⁇ -phenylenediamine, ⁇ , ⁇ -diphenyl ⁇ -phenylenediamine, ⁇ -phenylone-isopropyl- ⁇ -phenylenediamine, ⁇ -phenylenediamine, (1, 3-dimethylbutyl) 1- ⁇ -phenylenediamine, ⁇ -phenyl- (3-methacryloyloxy 2-hydroxypropyl) -1 ⁇ -phenylenediamine and the like.
  • aminketone antioxidants examples include 2,2,4-trimethyl-1,2-dihydroquinoline, 6-ethokin-1,2-dihydro2,2,4_trimethylquino. And the like.
  • phenolic anti-aging agents examples include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,2-methylenebis (4-ethyl-6- tert-butylphenol), 2,2-methylenebis (4-methyl-6-tert-butylphenol), 4,4-butylidenebis (3-methyl-6-tert-butylphenol), 4,4-thiobis (3-methyl-1-phenol) tert-butylphenol), 2.5-di-tert-butylhydroquinone, 2,5-ditert-amylhydroquinone, and the like.
  • the benzimidazole antioxidants include metal salts of 2-mercaptobenzylazomidazole, 2-mercaptomethylbenzomidazole, and 2-mercaptomethylbenzoimidazole.
  • the amount of the antioxidant used is preferably 0.01 to 5 parts by weight, more preferably 100 parts by weight of the nitrile group-containing highly saturated copolymer rubber. Is 0.1 to 2 parts by weight.
  • the acid equivalent is 2 ⁇ 10 3 ephr or more and the peak height of the carboxylic acid anhydride group is measured by infrared absorption spectroscopy. ] + [The peak height of the carboxyl group]) is 0.50 or more, preferably 0.85 or more, and more preferably 0.9 or more. If this value is too small, scorch is likely to occur in the crosslinking reaction.
  • the value of [peak height of carboxylic acid anhydride group] Z ([peak height of carboxylic acid anhydride group] + [peak height of carboxyl group]) is determined by the measurement using an infrared absorption spectrometer.
  • the peak height of the absorption peak observed at around 1785 cm- 1 and for the carboxyl group, the peak height of the absorption peak observed at around 1170 to 1740 cm- 1 It is determined based on.
  • the polyvinyl chloride resin used in the present invention is not particularly limited.
  • a vinyl chloride homopolymer and a known vinyl chloride copolymer comprising not less than 60% by weight of a vinyl chloride unit and not more than 40% by weight of a unit of another monomer capable of being radically copolymerized with vinyl chloride are exemplified.
  • Such copolymers include, for example, bifunctional polymers such as vinyl chloride-vinyl acetate copolymers, graft copolymers of vinyl chloride with ethylene monoacetate polymers, and small amounts of divinylbenzene, diarylphthalate, etc. And partially cross-linked vinyl chloride resins obtained by copolymerizing monomers.
  • the polyvinyl chloride resin used in the present invention is not particularly limited in its molecular weight, but usually has an average degree of polymerization of 600 to 2,000. It is.
  • the mixing ratio of the carboxylated nitrile group-containing highly saturated copolymer rubber to the polyvinyl chloride resin is generally 95 to 50 parts by weight, preferably 80 to 50 parts by weight, for the carboxylated nitrile group-containing highly saturated copolymer rubber.
  • the amount is 5 to 50 parts by weight, preferably 20 to 40 parts by weight, based on 60 parts by weight of the polyvinyl chloride resin.
  • a mixture of about 70 parts by weight of a highly saturated copolymer rubber containing a propyloxylated nitrile group and about 30 parts by weight of a polyvinyl chloride resin obtained from a hydride of an acrylonitrile-loop copolymer rubber. is optimal.
  • the method of blending the carboxylated nitrile group-containing highly saturated copolymer rubber and the polyvinyl chloride resin is not particularly limited, but usually, the carboxylated nitrile group-containing highly saturated copolymer rubber and the polyvinyl chloride resin powder are blended.
  • a dry blending method is used in which and are mixed at a high temperature using a Banbury mixer.
  • the solvent is removed after mixing the copolymer rubber solution and the polyvinyl chloride resin solution, or the dissolution is performed after dissolving the copolymer rubber and the polyvinyl chloride resin in a common solvent.
  • a solution method comprising:
  • the rubber composition of the present invention may contain, if necessary, other ordinary compounding agents used in the rubber field, for example, a crosslinking agent such as a sulfur-based crosslinking agent or an organic peroxide-based crosslinking agent, and a reinforcing agent.
  • a crosslinking agent such as a sulfur-based crosslinking agent or an organic peroxide-based crosslinking agent
  • a reinforcing agent such as a sulfur-based crosslinking agent or an organic peroxide-based crosslinking agent
  • a reinforcing agent Carbon black, silica, talc, etc.
  • fillers calcium carbonate, clay, etc.
  • processing aids process oils
  • antioxidants antioxidants, antiozonants
  • crosslinking aids coloring aid rubbers, etc.
  • the method of compounding is not particularly limited, but usually, it can be performed using an extruder, a roll, or a mixer such as a Banbury mixer.
  • Sulfur-based cross-linking agents used include powdered sulfur, sulfur white, precipitated sulfur, Sulfur, such as sulfur, surface-treated sulfur, insoluble sulfur; sulfur chloride, sulfur dichloride, morpholine 'disulfide, alkylphenol' disulfide, N, N '-dithio-bis (hexahydro 2H- Sulfur compounds such as azepinone 1 2), phosphorus-containing polysulfides, and high molecular polysulfides; in addition, tetramethylthiuram disulfinolate, dimethyldiethyl selenium rubinate, 2 _ (4 '— (Morpholinoditio) Sulfur-containing crosslinking accelerators such as benzotyfazole.
  • cross-linking accelerators such as zinc oxide, zinc peroxide, active zinc, and stearic acid; guanidine, aldehyde amide, aldehyde-ammonia, Other crosslinking accelerators such as thiazole, sulfenamide, thiourea, and xanthate can be used.
  • the amount of the sulfur-based crosslinking accelerator used is not particularly limited, but is usually 0.1 to 10 parts by weight, preferably 0.1 to 100 parts by weight of the highly saturated copolymer rubber containing a carboxylated nitrile group. ⁇ 5 parts by weight.
  • organic peroxide crosslinking agents examples include t-butyl hydroperoxide, cumene hydroperoxide, di-t-butylperoxide, t-butylcumylperoxide, 2,5-dimethyl-t-butylperoxyhexane, 2,5_ Dimethyl-t-butylperoxyhexine, 1,3-bis (t-butylperoxyisopropyl) benzene, p-chlorobenzoyl peroxide, t-butylperoxybenzoate, t-butylperoxyisopropylcarbonate And t-butyl benzoate.
  • the amount of the organic peroxide-based cross-linking agent to be used is usually 0.1% by weight per 100 parts by weight of rubber. It is 0.1 to 30 parts by weight, preferably 0.1 to 10 parts by weight.
  • cross-linking agents examples include polyfunctional compounds such as tri-methylolpropane trimethacrylate, divinylbenzene, ethylene dimethyl acrylate, and triallyl isocyanurate.
  • metal soaps such as sulfur, triazine Z-dithiophosphate, polycarboxylate nonium salt, and polyamines (hexamethylene diamine, triethylenetetramine, hexamethylene diamine carbamate, Crosslinking agents such as ethylenediamine carbamate and triethylenediamine) and ammonium benzoate can be used in combination, if necessary.
  • crosslinking agents can be used alone or in combination of two or more.
  • an acrylic rubber if necessary, an acrylic rubber, a fluoro rubber, a styrene-butadiene copolymer rubber, an ethylene-propylene-one gen ternary, together with a carboxylated nitrile group-containing highly saturated copolymer.
  • Other rubbers such as copolymer rubber (EPDM), natural rubber, and polyisoprene rubber can be used in combination.
  • the rubber composition of the present invention has good processability and shows improved adhesion to various fibers such as nylon. Therefore, a product excellent in adhesive strength and mechanical strength can be obtained by cross-linking the composite of the rubber composition and the fiber.
  • This composite is useful for belts, hoses and the like.
  • the fibers used include natural fibers such as cotton, recycled fibers such as rayon, nylon, polyester, vinylon, and aromatic polyamide fibers. Such synthetic fibers, steel fibers, glass fibers, and carbon fibers are included. These fibers may be used alone or in combination of two or more. These fibers are used in the form of staple, filament, or woven fabric such as cord, rope, canvas, or bamboo and embedded in the rubber composition as a tensile member.
  • the type and form of the product can be determined as appropriate according to the type (use) of the intended rubber product.
  • each fiber Prior to compounding with the rubber composition, each fiber is subjected to a pre-bonding treatment by a method usually applied to each fiber, but does not require any other special treatment.
  • the bonding treatment is usually performed using a mixture of an aqueous solution of a precondensate of resorcinol-formalin (hereinafter abbreviated as R F) and rubber latex (hereinafter abbreviated as R F L).
  • fibers such as polyesters and aromatic polyamides have poor adhesiveness to rubber due to their molecular structure, so that sufficient adhesive force may not be obtained by the above-described bonding treatment using RFL. Therefore, prior to treatment with RFL, the fibers are treated with a compound such as isocyanates, ethylene thioureas, epoxies, or a treatment liquid that appropriately combines these compounds, and then heat-treated, followed by treatment with RFL. Done. It is generally effective for glass fibers to be treated with a silane coupling agent such as epoxysilane or aminosilane (for example, aminopropyltriethoxysilane) prior to treatment with RFL.
  • a silane coupling agent such as epoxysilane or aminosilane (for example, aminopropyltriethoxysilane) prior to treatment with RFL.
  • the rubber latex used in the RFL treatment is not particularly limited.
  • the use of the carboxylated nitrile group-containing highly saturated copolymerized aqueous emulsion as the latex used in the treatment with RFL is preferred because the adhesive force between the rubber composition and the fibers is further enhanced.
  • These rubber latexes can be used alone or in combination of two or more.
  • Rubber latex produced by emulsion polymerization can be used as it is.
  • Rubber which can be obtained as a solid polymer, can be in the form of a latex by, for example, dissolving in a solvent, adding water and an emulsifier, stirring and emulsifying, and then evaporating and removing the solvent.
  • the method for producing latex is not particularly limited.
  • the RFL solution for treating the fibers is a mixture of the rubber latex and RF.
  • the composition ratio of the liquid mixture is not particularly limited, but is usually It is desirable that the ratio of RF to RF be in the range of 10: 1 to 2: 1 in terms of the solid content weight ratio.
  • the molar ratio of resorcinol to formalin in the RF solution is not particularly limited, but it is usually desirable that the ratio be 1: 3 to 3: 1. More preferably, the ratio is in the range of 1: 1 to 1.5: 1.
  • the RF liquid those commonly used for cross-linking adhesion between the rubber composition and the fibers can be used, and are not particularly limited.
  • the method for treating fibers with the RFL treatment solution is not particularly limited in the present invention, but it is common practice to immerse the fibers according to an immersion method, and then to perform a heat treatment.
  • the conditions of the heat treatment are not particularly limited in the present invention, and there are some variations depending on the type of the fiber, but it is sufficient that the temperature and time are sufficient to react and fix the RFL adhered by immersion. This is performed at about 140 to 210 ° C for about 1 to 10 minutes.
  • the fiber subjected to the RFL treatment as described above is cross-linked with a carboxylated nitrile group-containing highly saturated copolymer rubber composition
  • the fiber is treated with a carboxylated nitrile group-containing highly saturated copolymer.
  • crosslinking is carried out according to the usual crosslinking conditions of the rubber composition.
  • the crosslinking conditions are not particularly limited, but are usually from 130 to 200 ° C. under a pressure of 0.5 to 10 MPa for 1 to 120 minutes.
  • a belt can be manufactured by compounding a rubber composition and a fiber that has been pre-bonded according to a normal belt manufacturing method, forming the composite into a shape suitable for the purpose, and then performing a crosslinking process. .
  • a hose manufactured using the rubber composition of the present invention is not particularly limited in its structure and manufacturing method.
  • the rubber composition of the present invention is particularly suitable as a material for the innermost layer of a multi-layer hose (generally, a two-layer or three-layer hose), but may be used as a material for other layers. Is also good.
  • Each layer of the hose is formed by crosslinking a crosslinkable rubber composition according to the purpose.
  • the crosslinkable rubber composition constituting each layer is obtained by mixing a crosslinker, an auxiliary agent, a filler, an antioxidant, a plasticizer, a processing aid, and the like, with each rubber, if necessary.
  • a braided reinforcing yarn layer may be provided between the crosslinked rubber layers in order to impart strength.
  • the type of yarn of the braided reinforcing yarn layer is not particularly limited, but polyester fibers, nylon fibers, and aramide fibers are usually used because of its excellent heat resistance.
  • the two-layer hose is formed, for example, by forming an inner layer with the crosslinkable rubber composition of the present invention, forming a braided reinforcing yarn layer on the outer periphery thereof, applying an adhesive, and then forming the inner layer from the crosslinkable rubber composition. It is manufactured by forming an outer layer comprising the above, and crosslinking the inner layer and the outer layer in a crosslinking step.
  • a hose having a three-layer structure is formed by forming an inner layer with the crosslinkable rubber composition of the present invention, forming a braided reinforcing yarn layer on the outer periphery of the inner layer, and applying an adhesive to the outer periphery of the braided reinforcing yarn layer.
  • An intermediate layer made of a crosslinkable rubber composition is formed on the outer periphery, an adhesive is applied to the outer periphery of the intermediate layer, and the outer periphery is formed from the crosslinkable rubber composition. It is manufactured by forming an outer layer made of W and cross-linking the inner layer, the intermediate layer and the outer layer in a cross-linking step.
  • the method for producing the rubber roll is not particularly limited in the present invention.
  • the rubber roll can be prepared according to the same method as employed in General 5. For example, a roll-shaped base material such as a metal rotary shaft is put into a roll mold as a core metal, a rubber composition is put there, and a roll is formed around the core metal. And a method of heating to 100 to 250 ° C. for crosslinking.
  • the rubber roll obtained by cross-linking molding is preferably subjected to a surface treatment, if necessary, to reduce the surface frictional resistance or to reduce the adhesive force.
  • the manufacturing method of the diaphragm is not particularly limited in the present invention.
  • a rubber roll is topped (top coated) on a base cloth made of nylon fiber, polyester 5-tel fiber, cotton, etc. using a calender roll, and then punched to a predetermined shape and size.
  • the diaphragm can be manufactured by press molding.
  • the molding conditions are a mold temperature of 150 to 190 ° C., a crosslinking time of 3 to 30 minutes, and a molding pressure of 50 to 150 kgf / cm 2 .
  • at least a topping layer on the liquid contact surface side is formed using the rubber composition of the present invention.
  • a test piece was punched out from a 2 mm thick sheet obtained by crosslinking the uncrosslinked rubber composition prepared according to the formulation in Table 1 at 160 ° C for 20 minutes.
  • this test piece in accordance with JISK 6301, tensile strength (unit: kg ⁇ Zcm 2), 100 % tensile stress (unit: kgf Z cm 2) and elongation (unit:%) was measured.
  • the hardness was measured using a JIS spring type A hardness tester. Further, the compression set was measured after keeping at 100 ° C. for 22 hours in accordance with JISK 6301 (unit:%).
  • a rubber test piece is immersed in JIS NO.3 oil and JIS fuel oil C (when JIS NO.3 oil is used, immersed at 120 ° C for 70 hours; when JIS fuel oil C is used, it is 60 ° C) for 72 hours, volume change rate (unit:%), tensile strength change rate (%), elongation change rate (%), and hardness change rate (point).
  • Rubber specimens were immersed (72 hours) in JIS fuel oil B containing 1% by weight of lauryl baroxide at 40 ° C, and the volume change rate (%), tensile strength change rate (%), elongation change rate (% ) And hardness change rate (point) were measured.
  • test pieces after being kept at 120 ° C for 72 hours were measured for tensile strength, elongation, and rate of change in hardness (unit: ⁇ %).
  • the nitrogen content in the copolymer was measured by the Geldar method, and the bound nitrile unit content was determined by calculation (unit: wt%).
  • Nylon code (6-nylon, structure 1260 DZ2) is composed of an RFL solution containing latex of hydrogenated NBR (iodine value 15, average particle size 0.10, solid content 40% by weight, pH 10.5)
  • RFL solution containing latex of hydrogenated NBR (iodine value 15, average particle size 0.10, solid content 40% by weight, pH 10.5)
  • Mouth 4- 1 5 8 6.5 parts
  • Each fiber was immersed in a single code dip machine for testing using the adhesive composition to prepare a treatment code.
  • the obtained treatment code was embedded in the rubber composition at an embedded length of 8 mm, and crosslinked at a press pressure of 5 MPa and a temperature of 150 ° C. for 30 minutes to obtain a composite of fiber and rubber.
  • the obtained composite was subjected to a code pull-out test in accordance with ASTM D2138-72, the initial adhesive strength was measured, and the adhesive state was observed. Those with good adhesion are marked with ⁇ , and those with poor adhesion are marked with ⁇ .
  • Infrared absorption analyzer ST Japan Co., Ltd., iris scanning
  • Type infrared microscopy system Carboxylic acid anhydride group in the vicinity of 1 78 5 cm 1, carboxyl group peak appears in the vicinity of 1 710 ⁇ 1740 cm 1.
  • plunger 1.8 parts of maleic anhydride and 0.5 part of 2,6-di-tert-butyl-4-methylphenol (BHT) melted by heating at 65 ° C It was put into a pressurized molder using a pump and kneaded (pre-kneaded) continuously.
  • the rubber temperature is adjusted to 250 ° C, and further kneading is performed at that temperature to carry out the ene-type addition reaction. I let it.
  • the rubber temperature was controlled by flowing water at 35 ° C through the jacket of the pressurized mixer.
  • the mixing tank of the pressure kneader is lowered, and the mixture is kneaded for about 30 seconds, and the rubber composition is dropped and taken out of the pressure kneader to obtain a carboxylated nitrile group-containing highly saturated copolymer rubber.
  • the reaction product obtained has an acid equivalent of 18.3 X 10-3ep hr, value of [peak height of carboxylic anhydride group] / ([peak height of carboxylic anhydride group] + [peak height of carboxyl group]) by infrared absorption analysis
  • the maleic anhydride-added hydrogenated acrylonitrile-butadiene copolymer rubber (maleic acid-modified ZP-1 and maleic acid-modified ZP-2) prepared above was used, and this was combined with a polyvinyl chloride resin.
  • a composition containing rubber and polyvinyl chloride resin was prepared by mixing according to the following method. Thereafter, the compounding ingredients shown in Table 2 were blended and kneaded at 40 ° C. using a 6-inch jar to prepare a rubber composition.
  • the rubber composition was cross-linked under pressure at 160 ° C. for 20 minutes by a press molding machine, and the cross-linked properties of the obtained cross-linked product were measured.
  • a composition containing a maleic anhydride-added hydrogenated acrylonitrile butadiene copolymer rubber and a polyvinyl chloride resin It is possible to obtain a crosslinked rubber having improved strength characteristics, resistance to compression set, resistance to gasoline and adhesion to fibers.
  • the rubber composition of the present invention has excellent processability, and the crosslinked product has excellent mechanical strength and good oil resistance, heat resistance, weather resistance, etc., so that various sealing materials, belts, hoses, etc. It is useful as a diaphragm, diaphragm or other automotive rubber material.
  • various sealing materials such as 0-rings, gaskets, oil seals, freon seals, etc .; belts such as automotive V-belts, poly-ribbed belts, toothed conductive belts, etc .; automotive power steering Nguho Hoses, such as high-pressure oil-resistant hoses for various machines (for example, construction machinery), fuel hoses for automobiles, etc .; rolls; rubber products used in oil and gas wells [Packers, blow-out preventers (BOPs)] , Various types of diaphragms; automotive clutch plates and brakes (these are molded by blending a thermosetting resin such as phenolic resin or epoxy resin with other compounding agents). In addition, it can be widely used for various applications such as various types of vibration-proof rubber, electrical products, automotive parts, industrial supplies, footwear and so on.
  • BOPs blow-out preventers

Abstract

An oil-resistant rubber composition characterized by comprising a carboxylated, highly saturated nitrile copolymer rubber having an acid equivalent of 2x10-3 ephr or higher, a Mooney viscosity of 15 to 200, and an iodine value of 80 or lower and a polyvinyl chloride resin. A rubber product obtained by cross-linking this rubber composition has improved strength properties.

Description

明 細 書  Specification
耐油性ゴム組成物及び該組成物と繊維との複合体  Oil-resistant rubber composition and composite of the composition and fiber
技術分野 Technical field
本発明は、 カルボキシル化二トリル基含有高飽和共重合体ゴムに塩化 ビニル樹脂をブレンドしてなるゴム組成物に関する。 さらに詳しくは、 本発明は、 該ニトリル基含有高飽和共重合体ゴムと塩化ビニル樹脂との 向上した混練分散性を有し且つ押出し成形性に優れ、 さらに、 ガソ リ ン、 サワーガソリ ン及びエンジンオイルに対し耐性があり且つ耐熱性、 耐ォ ゾン性、 耐圧縮歪性及び耐油性に優れた架橋ゴム製品を与えるゴム組成 物に関する。  The present invention relates to a rubber composition obtained by blending a vinyl chloride resin with a carboxylated nitrile group-containing highly saturated copolymer rubber. More specifically, the present invention has improved kneading and dispersing properties of the nitrile group-containing highly saturated copolymer rubber and a vinyl chloride resin and excellent extrudability, and further comprises gasoline, sour gasoline and engine oil. The present invention relates to a rubber composition which provides a crosslinked rubber product having excellent heat resistance, ozone resistance, compression distortion resistance and oil resistance.
背景技術 Background art
従来から、 耐油性及び耐オゾン性を有する架橋ゴム製品を与えるゴム 組成物として、 アクリロニトリルーブタジェン共重合体ゴム ( N B R ) と塩化ビニル樹脂とを混合してなるゴム組成物が知られている。  Conventionally, a rubber composition obtained by mixing an acrylonitrile-butadiene copolymer rubber (NBR) and a vinyl chloride resin has been known as a rubber composition for providing a crosslinked rubber product having oil resistance and ozone resistance. .
また、 部分水素化アク リ ロニ ト リル一ブタジエン共重合体ゴム (H N B R ) と塩化ビニル樹脂との混合物が耐油性及び耐寒性のバランスに優 れ且つ耐オゾン性及び耐サワーガソリ ン性において従来の水準を上回る 架橋ゴム製品を与えることも報告 (特公昭 6 0 - 4 9 2 1 8号公報) 。  In addition, the mixture of partially hydrogenated acrylonitrile-butadiene copolymer rubber (HNBR) and vinyl chloride resin has an excellent balance of oil resistance and cold resistance, and has a conventional level of ozone resistance and sour gasoline resistance. It has also been reported that crosslinked rubber products that surpass the standard are given (Japanese Patent Publication No. 60-49218).
しかしながら、 近年のゴム製品に対する要求性能は益々高度になり、 とくにベルト、 ホースあるいはダイヤフラム等の分野においては、 強度 特性に加えて耐熱性、 耐油性等のような他の物性、 さらにナイロンコ一 ド等のような繊維との接着性をこれまで以上に向上させることが望まれ るようになっている。 従来の技術は、 これらの要求に応えるには不十分 であって、 さらに改良する必要が生じている。 本発明の目的は、 二トリル基含有高飽和共重合体ゴムと塩化ビニル樹 脂とからなるゴム組成物であって、 架橋剤等によって架橋させることに より、 向上した強度特性等を有する架橋ゴム製品を与えることができる ゴム組成物、 を提供することになる。 However, the performance requirements of rubber products in recent years have become increasingly sophisticated, especially in the fields of belts, hoses and diaphragms, in addition to strength properties, other physical properties such as heat resistance, oil resistance, and nylon cord. It has been desired to further improve the adhesion to fibers such as described above. Conventional techniques are not sufficient to meet these demands, and need to be further improved. An object of the present invention is to provide a rubber composition comprising a nitrile group-containing highly saturated copolymer rubber and a vinyl chloride resin, wherein the crosslinked rubber has improved strength properties and the like by being crosslinked with a crosslinking agent or the like. A rubber composition, which can provide the product, will be provided.
本発明者は鋭意検討を重ねた結果、 カルボキシル化二トリル基含有高 飽和共重合体ゴムと塩化ビニル樹脂とからなるゴム組成物が、 従来技術 と比較して向上された引張強さを有する架橋ゴム製品を与えることを見 いだし、 この知見に基づき本発明を完成した。  As a result of intensive studies, the present inventor has found that a rubber composition comprising a carboxylated nitrile group-containing highly saturated copolymer rubber and a vinyl chloride resin has a crosslinked structure having improved tensile strength as compared with the prior art. We found that we provided rubber products and completed the present invention based on this finding.
発明の開示 Disclosure of the invention
かく して本発明によれば、  Thus, according to the present invention,
( 1 ) 酸当量が 2 X 1 0 -3 e p h r以上、 ムーニー粘度が 1 5〜2 0 0、 ヨウ素価が 8 0以下のカルボキシル化二トリル基含有高飽和共重合体ゴ ムにポリ塩化ビニル樹脂を配合してなる耐油性ゴム組成物。  (1) Polyvinyl chloride resin on carboxylated nitrile group-containing highly saturated copolymer rubber with acid equivalent of 2 X 10-3 ephr or more, Mooney viscosity of 15 to 200, and iodine value of 80 or less An oil-resistant rubber composition comprising:
( 2 ) 上記 ( 1 ) の耐油性ゴム組成物と繊維との複合体。  (2) A composite of the oil-resistant rubber composition of (1) and a fiber.
( 3 ) ホース用である上記 (2 ) の複合体。  (3) The composite according to the above (2), which is used for a hose.
( 4 ) ダイヤフラム用である上記 (2 ) の複合体。  (4) The composite according to (2) above, which is used for a diaphragm.
が提供される。 Is provided.
本発明で使用するカルボキシル化二トリル基含有高飽和共重合体ゴム とは、 分子中に二トリル基を有し、 炭素一炭素不飽和結合が少なく、 且 つゴム弾性を示す共重合体であって、 さらにカルボキシル基を分子内に 有するものである。  The carboxylated nitrile group-containing highly saturated copolymer rubber used in the present invention is a copolymer having a nitrile group in the molecule, having few carbon-carbon unsaturated bonds, and exhibiting rubber elasticity. Thus, it further has a carboxyl group in the molecule.
炭素一炭素不飽和結合の量は、 ヨウ素価で代用的に表される。 本発明 で使用するカルボキシル化二トリル基含有高飽和共重合体ゴムは、 ヨウ 素価が 8 0以下、 好ましくは 6 0以下のものである。 ヨウ素価が大きす ぎるものを使用した場合には、 架橋物の耐油性及び耐熱性が低下する。 このゴムの結合二トリル単位の含有量は、 特に限定されないが、 通常、The amount of carbon-carbon unsaturated bonds is alternatively expressed by the iodine value. The carboxylated nitrile group-containing highly saturated copolymer rubber used in the present invention has an iodine value of 80 or less, preferably 60 or less. High iodine value If a crosslinker is used, the oil resistance and heat resistance of the crosslinked product decrease. The content of the binding nitrile unit of the rubber is not particularly limited, but is usually
10〜60重量%、 好ましくは 15~40重量%である。 なお、 結合二 トリル単位の含有量は、 ゲルダール法によって求めた値である。 結合二 トリル単位の含有量が多くなると耐油性及び耐熱性が高くなり、 結合二 トリル単位の含有量が少なくなるとゴム弾性が大きくなるので、 用途に 応じて適宜選択する。 It is 10 to 60% by weight, preferably 15 to 40% by weight. In addition, the content of the bound nitrile unit is a value determined by the Geldar method. Oil content and heat resistance increase as the content of the binding nitrile unit increases, and the rubber elasticity increases as the content of the binding nitrile unit decreases. Therefore, it is appropriately selected according to the application.
ごのゴムの酸当量は、 2 x l 0—3e p h r以上、 好ましくは 2 x 10 一3〜 5 x 10— 2e p h r、 さらに好ましくは 5 x 10— 3〜3 x l 0—2e p h rである。 酸当量が少なすぎると、 塩化ビニル樹脂との相溶性が改 良されないので好ましくない。 Acid equivalent of your rubbers, 2 xl 0- 3 ephr or more, preferably 2 x 10 one 3 ~ 5 x 10- 2 ephr, more preferably 5 x 10- 3 ~3 xl 0- 2 ephr. If the acid equivalent is too small, the compatibility with the vinyl chloride resin is not improved, which is not preferable.
なお、 酸当量は、 ゴムをアセ ト ンに溶解し、 n—へキサンで再沈精製 し、 得られた再沈精製ゴムをアセ ト ンに再溶解し、 このゴム溶液を、 水 酸化力リウムのェタノール溶液を用いて、 チモールフタレインを指示薬 として、 滴定することによって測定して求めた値である。  The acid equivalent is determined by dissolving the rubber in acetone, reprecipitating and refining with n-hexane, and re-dissolving the resulting reprecipitated purified rubber in acetone. This value was obtained by titration using ethanol solution of thymol with thymolphthalein as an indicator.
また、 このゴムは、 ムーニー粘度 (MLい 4, 100°C) が 15〜2 00、 好ましくは 30~150のものである。 ムーニー粘度が高すぎる と練り加工性が悪くなり、 一方、 低すぎると、 高圧下での耐久性が不充 分で、 圧縮永久歪み及びつぶれ (圧縮緩和) が不十分になる。 The rubber has a Mooney viscosity (ML = 4 , 100 ° C.) of 15 to 200, preferably 30 to 150. If the Mooney viscosity is too high, the kneading processability deteriorates, while if it is too low, the durability under high pressure is insufficient, and the compression set and crushing (compression relaxation) become insufficient.
さらに、 このゴムは、 メチルェチルケ卜ン不溶解分含有量が通常 3重 量%以下、 好ましくは 2重量%以下、 さらに好ましくは 1重量%以下の ものである (すなわち、 実質的にゲルフリーである) 。 メチルェチルケ トン不溶解分が大きくなると、 ゴム中での塩化ビニル樹脂の分散性が困 難になる。 なお、 メチルェチルケトン不溶解分含有量は、 ゴムを細かく切り刻み、 これを 8 0メ ッシュの金網製のかごに入れ、 このかごを常温のメチルェ チルケトンに 4 8時間浸漬し、 かごに残った固形分を乾燥し、 乾燥物の 重量を測定し、 かごに最初に入れたゴムの重量に対する乾燥物の重量を 百分率で表した値である。 Further, the rubber has a methylethylketone insoluble content of usually 3% by weight or less, preferably 2% by weight or less, more preferably 1% by weight or less (ie, substantially gel-free). . If the methylethyl ketone insolubles increase, the dispersibility of the vinyl chloride resin in the rubber becomes difficult. The content of the insoluble matter in methyl ethyl ketone was determined by chopping the rubber finely, placing it in an 80 mesh wire mesh basket, immersing this basket in methyl ethyl ketone at room temperature for 48 hours, and remaining in the basket. The solid content is dried, the weight of the dried product is measured, and the weight of the dried product is expressed as a percentage of the weight of the rubber initially placed in the basket.
本発明で使用するカルボキシル化二トリル基含有高飽和共重合体ゴム の製造方法は、 特に限定されないが、 通常は、 ラジカル発生剤の存在下 でのラジカル付加法、 または、 高温下でのェン型付加法が挙げられる。 好適な方法としては、 加熱密閉式混練機において、 ゴム温度 2 0 0〜 2 8 0 °Cの範囲で二トリル基含有高飽和共重合体ゴムとエチレン性不飽和 カルボン酸またはその無水物とをェン型付加反応させる方法が挙げられ る。  The method for producing the carboxylated nitrile group-containing highly saturated copolymer rubber used in the present invention is not particularly limited, but is usually a radical addition method in the presence of a radical generator, or an enzymatic method at a high temperature. There is a type addition method. As a preferred method, in a heated closed kneader, a nitrile group-containing highly saturated copolymer rubber and an ethylenically unsaturated carboxylic acid or an anhydride thereof are mixed at a rubber temperature of 200 to 280 ° C. And a method of performing an enzymatic addition reaction.
ェン型付加反応で使用する二トリル基含有高飽和共重合体ゴムは、 ェ チレン性不飽和二トリルー共役ジェン系共重合体ゴムの共役ジェン単位 を水素化したものである。 この二トリル基含有高飽和共重合体ゴムは、 その結合二トリル単位含有量が、 通常、 1 0〜6 0重量%、 好ましくは 1 5 - 4 0重量%であり、 ヨウ素価が、 通常、 8 0以下、 好ましくは、 6 0以下であり、 ム一二一粘度 (M L ! + 4, 1 0 0 °C ) が、 通常、 3 0 〜3 0 0、 好ましくは 5 0〜 2 0 0、 さらに好ましくは 6 0〜: 1 5 0の ものである。 The nitrile group-containing highly saturated copolymer rubber used in the ene-type addition reaction is obtained by hydrogenating a conjugated gen unit of an ethylenically unsaturated nitrile-conjugated gen-based copolymer rubber. The nitrile group-containing highly saturated copolymer rubber has a bound nitrile unit content of usually 10 to 60% by weight, preferably 15 to 40% by weight, and an iodine value of usually It is 80 or less, preferably 60 or less, and its viscosity (ML! +4 , 100 ° C) is usually 30 to 300, preferably 50 to 200, More preferably, it is 60 to 150.
ヨウ素価が大きくなると、 耐熱性および強度が低下する。 ヨウ素価の 下限は格別限定されないが、 過度に低いと架橋が困難になる場合がある ので、 概して、 ヨウ素価が少く とも 1のものが用いられる。 ム一ニー粘 度が低すぎると、 高圧下での耐久性が不充分で、 圧縮永久ひずみ及びつ ぶれ (圧縮緩和) が改善されない。 またムーニー粘度が大きくなると混 練時の加工性が悪くなる。 - 上記の二トリル基含有高飽和共重合体ゴムを製造するために使用する エチレン性不飽和二 ト リル一共役ジェン系共重合体は、 通常、 エチレン 性不飽和二トリルと共役ジェンとを含有する単量体混合物を重合するこ とによって得る。 As the iodine value increases, heat resistance and strength decrease. The lower limit of the iodine value is not particularly limited. However, if the iodine value is excessively low, crosslinking may be difficult. Therefore, generally, an iodine value of at least 1 is used. If the Mooney viscosity is too low, the durability under high pressure will be insufficient, and the compression set and Blur (compression relaxation) is not improved. Also, when the Mooney viscosity increases, the processability during kneading deteriorates. -The ethylenically unsaturated nitrile-1 conjugated gen-based copolymer used for producing the nitrile group-containing highly saturated copolymer rubber usually contains ethylenically unsaturated nitrile and conjugated gen. It is obtained by polymerizing a monomer mixture.
エチレン性不飽和二 ト リルの具体例としては、 アク リ ロニ ト リル、 メ タク リ ロ二 ト リル、 クロ口アク リ ロニ ト リル、 メ トキシァク リ ロ二 ト リ ル等のようなェチレン性不飽和二卜リル等が挙げられる。 これらのうち アクリロニトリルが好適に用いられる。 エチレン性不飽和二ト リルの量 は、 単量体混合物中に、 通常、 1 0〜 6 0重量%である。  Specific examples of ethylenically unsaturated nitriles include ethylenically unsaturated nitriles such as acrylonitrile, methacrylonitrile, black acrylonitrile, and methacrylonitrile. And saturated nitrile. Of these, acrylonitrile is preferably used. The amount of ethylenically unsaturated nitrile is usually from 10 to 60% by weight in the monomer mixture.
共役ジェンの具体例としては、 1 , 3—ブタジエン、 2 , 3—ジメチ ルブタジエン、 イソプレン、 1 , 3—ペンタジェン、 クロ口プレン等が 挙げられる。 これらのうち 1 , 3—ブタジエンが好適に用いられる。 共 役ジェンの量は、 単量体混合物中に、 通常、 4 0〜 9 0重量%である。 共役ジェンとして、 1 , 3—ブタジエンおよびイソプレンを併用した 場合 (すなわち、 イソプレン一ブタジエン一アク リ ロニ ト リル共重合体 ゴムの場合) は、 通常、 結合共役ジェン単位中の結合 1 , 3—ブタジェ ン単位含有量は 3 0〜 7 0重量%、 結合ィソプレン単位含有量は 7 0〜 3 0重量%でぁる。  Specific examples of the conjugated diene include 1,3-butadiene, 2,3-dimethylbutadiene, isoprene, 1,3-pentadiene, and chloroprene. Of these, 1,3-butadiene is preferably used. The amount of synergist is usually between 40 and 90% by weight in the monomer mixture. When 1,3-butadiene and isoprene are used in combination as the conjugated gen (ie, in the case of isoprene-butadiene-acrylonitrile copolymer rubber), the bond 1,3-butadiene in the conjugated gen unit is usually used. The unit content is 30 to 70% by weight, and the bound isoprene unit content is 70 to 30% by weight.
二トリル基含有高飽和共重合体ゴムは、 その構造中にェチレン性不飽 和二トリル及び共役ジェンと共重可能なエチレン性不飽和モノマー単位 を 0〜 5 0重量%の範囲で含んだものであってもよい。  The nitrile group-containing highly saturated copolymer rubber contains, in its structure, an ethylenically unsaturated nitrile and an ethylenically unsaturated monomer unit copolymerizable with a conjugated diene in a range of 0 to 50% by weight. It may be.
不飽和二トリル及び共役ジェンと共重合可能なエチレン性不飽和モノ 98/44038 マ一の例と しては、 スチレン、 ひ一メチルスチレンのごときビニル芳香 族化合物 ; Ethylenic unsaturated mono copolymerizable with unsaturated nitriles and conjugated gens. 98/44038 Examples of polymers include vinyl aromatic compounds such as styrene and monomethylstyrene;
アク リル酸メチル、 アク リル酸ェチル、 アク リル酸ブチル、 アク リル 酸プロピル、 メ タァク リル酸メチル、 メ タァク リル酸ェチル、 メ タァク リル酸ブチル、 メ タアク リル酸プロピル、 マレイ ン酸ジメチル、 マレイ ン酸ジェチル、 マレイ ン酸ジプロピル、 マレイ ン酸ジ _ n—ブチル、 マ レイ ン酸ジイソブチル、 マレイ ン酸ジー n—ペンチル、 マレイ ン酸ジ一 n—へキシル、 マレイ ン酸ジ一 2—ェチルへキシル、 フマル酸ジメチル、 フマル酸ジェチル、 フマル酸ジプロピル、 フマル酸ジー n—ブチル、 フ マル酸ジイソブチル、 フマル酸ジー n—ペンチル、 フマル酸ジ一 n—へ キシル、 フマル酸ジ一 2—ェチルへキシル、 ィタコン酸ジメチル、 イタ コン酸ジェチル、 ィタコン酸ジプロピル、 ィタコン酸ジー n—プチル、 ィタコン酸ジイソブチル、 ィタコン酸ジ一 n—ペンチル、 ィタコン酸ジ — n—へキシル、 ィタコン酸ジー 2—ェチルへキシル、 シ トラコン酸ジ メチル、 シ トラコン酸ジェチル、 シ トラコン酸ジプロピル、 シ トラコン 酸ジ一 n—ブチル、 シ トラコン酸ジイソブチル、 シ トラコン酸ジー n— ペンチル、 シ トラコン酸ジ一 n—へキシル、 シ トラコン酸ジ一 2—ェチ ルへキシル、 メサコン酸ジメチル、 メサコン酸ジェチル、 メサコン酸ジ プロピル、 メサコン酸ジ一 n—ブチル、 メサコン酸ジイソブチル、 メサ コン酸ジー n—ペンチル、 メサコン酸ジ一 n—へキシル、 メサコン酸ジ — 2—ェチルへキシル、 グルタコン酸ジメチル、 グルタコン酸ジェチル, グルタコン酸ジプロピル、 グルタコン酸ジー n—ブチル、 グルタコン酸 ジイソブチル、 グルタコン酸ジ一 n—ペンチル、 グルタコン酸ジー n— へキシル、 グルタコン酸ジ一 2—ェチルへキシル、 ァリルマロン酸ジメ チル、 ァリルマロン酸ジェチル、 ァリルマロン酸ジプロピル、 ァリルマ ロン酸ジ一 n—ブチル、 ァリルマロン酸ジイソブチル、 ァリルマロン酸 ジー n —ペンチル、 ァリルマロン酸ジ一 n—へキシル、 ァリルマロン酸 ジー 2—ェチルへキンル、 テラコン酸ジメチル、 テラコン酸ジェチル、 テラコン酸ジプロピル、 テラコン酸ジ一 n—プチル、 テラコン酸ジイソ ブチル、 テラコン酸ジ _ n —ペンチル、 テラコン酸ジ一 n —へキシル、 テラコン酸ジ一 2—ェチルへキシルのごときエチレン性不飽和カルボン 酸アルキルエステル ; Methyl acrylate, ethyl acrylate, butyl acrylate, propyl acrylate, methyl methacrylate, methyl methacrylate, butyl methacrylate, methacrylate propyl, dimethyl maleate, maleate Getyl phosphate, dipropyl maleate, di-n-butyl maleate, diisobutyl maleate, di-n-pentyl maleate, di-n-hexyl maleate, di-2-ethyl ethyl maleate Hexyl, dimethyl fumarate, getyl fumarate, dipropyl fumarate, di-n-butyl fumarate, diisobutyl fumarate, di-n-pentyl fumarate, di-n-hexyl fumarate, hexyl, di-1-ethyl fumarate Hexyl, dimethyl itaconate, getyl itaconate, dipropyl itaconate, di-n-butyl itaconate Diisobutyl itaconate, di-n-pentyl itaconate, di-n-hexyl itaconate, di-2-ethyl hexyl itaconate, dimethyl citrate, dimethyl citrate, dipropyl citrate, dipropyl citrate, dipropyl citrate N-butyl, diisobutyl citraconic acid, di-n-pentyl citraconic acid, di-n-hexyl citraconic acid, di-2-ethylhexyl citraconic acid, dimethyl mesaconate, getyl mesaconate, mesacon Dipropyl methacrylate, di-n-butyl mesaconic acid, diisobutyl mesaconic acid, di-n-pentyl mesaconic acid, di-n-hexyl mesaconic acid, di-2-ethyl mesaconic acid, dimethyl glutaconate, dimethyl glutaconate , Dipropyl glutaconate, di-n-butyl glutaconate, di glutaconate Sobuchiru, glutaconic Sanjiichi n- pentyl, hexyl glutaconic di n- hexyl, into glutaconic Sanjiichi 2 Echiru, Arirumaron acid dimethyl Tyl, geryl arylmalonate, dipropyl arylmalonate, di-n-butyl arylmalonate, diisobutyl arylmalonate, di-n-hexyl arylmalonate —pentyl, di-n-hexyl arylmalonate, di-2-ethylarylmalonate, di-2-ethylhexyl hexyl, terraconic acid Dimethyl, teraconic acid getyl, teraconic acid dipropyl, teraconic acid di-n-butyl, teraconic acid di_n-pentyl, teraconic acid di-n-hexyl, teraconic acid di-2-ethyl hexyl Ethylenically unsaturated carboxylic acid alkyl esters such as;
メ トキシァク リ レー 卜、 エ トキシェチルァク リ レー ト、 メ トキシエ ト キシェチルァク リ レー 卜のごときエチレン性不飽和カルボン酸アルコキ シアルキルエステル ;  Ethylenically unsaturated carboxylic acid alkoxyalkyl esters such as methoxyacrylate, ethoxychelaterate, methoxyethoxylate;
α—および /3—シァノエチルアタ リ レー ト、 <¾ _ , ;3—およびアーシ ァノプロピルァク リ レー ト、 シァノブチルァク リ レー ト、 シァノォクチ ルァク リ レー ト、 <¾一および^ーシァノエチルメ タク リ レー ト、 α—, /3 —およびアーシァノプロピルメ タク リ レー ト、 シァノブチルメ タク リ レー ト、 シァノォクチルメ タク リ レー 卜のごときエチレン性不飽和カル ボン酸シァノ置換アルキルエステル ;  α— and / 3—cyanoethyl acrylate, <¾ _,; 3— and arcyanopropyl acrylate, cyanobutyl acrylate, cyanoethyl acrylate, <¾ and ^ cyanoethyl methacrylate, α—, / 3—and ethyl cyano-unsaturated carboxylic acid cyano-substituted alkyl esters such as and cyanopropyl methacrylate, cyanobutyl methacrylate, and cyanooctyl methacrylate;
2—ヒ ドロキシェチルァク リ レー ト、 ヒ ドロキシプロピルァク リ レー ト、 2—ヒ ドロキシェチルメ タク リ レー ト、 ヒ ドロキシプロピルメ タク リ レー 卜のごときェチレン性不飽和カルボン酸ヒ ドロキシル基置換アル キルエステル ;  2-ethylenoxyunsaturated carboxylate, such as 2-hydroxypropyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, or hydroxypropyl methacrylate Group-substituted alkyl esters;
ァク リルァ ミ ド、 メ タク リルァ ミ ド、 Ν—メチロールァク リルァミ ド. Ν , Ν—ジメチロールァク リルァミ ド、 Ν—エトキシメチルァク リルァ ミ ド、 Ν—メチロールメ タク リルアミ ド、 Ν, Ν—ジメチロールメ タク リルァミ ド、 N—エトキシメチルメタク リルァミ ドのごときェチレン性 不飽和ァミ ド; - ビニルノルボルネン、 ジシクロペン夕ジェン、 1, 4一へキサジェン のごとき非共役ジェン : エチレン性不飽和カルボン酸フルォロアルキル エステル; Acrylamide, methylacrylamide, Ν—methylolacrylamide.., Ν—dimethylolacrylamide, Ν—ethoxymethylacrylamide, Ν—methylolmethacrylamide, Ν, Ν—dimethylolmethacrylate Ethylenic unsaturated amides such as rilamide and N-ethoxymethyl methacrylamide;-Non-conjugated gens such as vinylnorbornene, dicyclopentene, 1,4-hexadiene: ethylenically unsaturated carboxylic acid fluoroalkyl esters;
等を挙げることができる。 And the like.
エチレン性不飽和二トリルー共役ジェン系共重合体ゴムの具体例とし ては、 ァク リロニトリル一ブタジエン共重合ゴム (N B R ) 、 ァク リロ 二トリル一ブタジエン一イソプレン共重合ゴム ( N B I R ) 、 ァク リロ 二トリル一イソプレン共重合ゴム ( N I R ) 、 アク リロニトリルーブタ ジェン一ブトキシァク リ レ一ト共重合ゴム、 アクリロニトリル一ブタジ ェン一ァクリル酸共重合ゴム、 ァクリロニトリル一ブタジエンーメタク リル酸共重合ゴム等が挙げられる。 これらのうち N B Rが好適に用いら れる。  Specific examples of the ethylenically unsaturated nitrile-conjugated gen-based copolymer rubber include acrylonitrile-butadiene copolymer rubber (NBR), acrylonitrile-butadiene-isoprene copolymer rubber (NBIR), and Lilo nitrile / isoprene copolymer rubber (NIR), acrylonitrile / butadiene / butadiene copolymer rubber, acrylonitrile / butadiene / acrylic acid copolymer rubber, acrylonitrile / butadiene / methacrylic acid copolymer rubber Rubber and the like. Of these, NBR is preferably used.
かかるエチレン性不飽和二ト リル一共役ジェン系共重合体ゴムは、 通 常、 ラジカル重合開始剤の存在下、 必要に応じて分子量調整剤を用い、 ェチレン性不飽和二トリルと共役ジェン、 さらに必要に応じてその他の エチレン性不飽和モノマーとを共重合することによって調製される。 使用するラジカル重合開始剤としては、  Such an ethylenically unsaturated nitrile-conjugated copolymer rubber is usually prepared by adding an ethylenically unsaturated nitrile and a conjugated diene in the presence of a radical polymerization initiator, if necessary, using a molecular weight modifier as necessary. It is prepared by copolymerizing with other ethylenically unsaturated monomers as required. As the radical polymerization initiator to be used,
過硫酸カリウム、 過硫酸アンモニゥム等のような過硫酸塩;  Persulfates such as potassium persulfate, ammonium persulfate, etc .;
4, 4—ァゾビス (4ーシァノ吉草酸) 、 2, 2—ァゾビス (2—ァ ミ ジノプロパン) 二塩酸塩、 2, 2—ァゾビス一 2—メチルー N— 1 , 1—ビス (ヒ ドロキシメチル) 一 2—ヒ ドロキシェチルプロピオアミ ド、 2, 2 ' —ァゾビス (2, 4ージメチルバレロニトリル) 、 2, 2 ' — ァゾビスイソブチロニトリル、 1, 1 ' ーァゾビス ( 1ーシクロへキサ ン力ルポ二トリル) 等のようなァゾ化合物 ; - メチルェチルパーォキシド、 クメンバーォキシド、 ジ一 t—ブチルバ —ォキシド、 ァセチルバ一ォキシ ド、 ジク ミルバ一ォキシ ド、 ラウロイ ルパーォキシド、 ベンゾィルパーォキシド、 t 一ブチルパーォキシ一 2 一ェチルへキサノェ一ト、 ジ一イソプロピルパ一ォキシジカーボネート、 ジ一 t—ブチルバ一才キシィソフタレート等のような過酸化物類; などを例示することができる。 また、 これら重合開始剤と還元剤とを組 み合わせたレドックス開始剤も使用することができる。 4,4-azobis (4-cyanovaleric acid), 2,2-azobis (2-amidinopropane) dihydrochloride, 2,2-azobis-l-methyl-N-l, l-bis (hydroxymethyl) 1-2 —Hydroxitytyl propioamide, 2, 2 '—azobis (2,4-dimethylvaleronitrile), 2, 2' — Azo compounds such as azobisisobutyronitrile, 1,1'-azobis (1-cyclohexanyl propylonitrile), etc .;-methylethyl peroxide, cupramoxide, di-t-butyl va- Oxide, acetyl peroxide, dicumyl peroxide, lauroyl peroxide, benzoyl peroxide, t-butyl peroxide 2-ethyl hexanoate, di-isopropyl alcohol peroxide, di-t-butyl peroxide Peroxides such as xysisophthalate; and the like. Also, a redox initiator obtained by combining these polymerization initiators and a reducing agent can be used.
重合開始剤の量は、 単量体混合物 1 0 0重量部に対して、 通常、 0 . 0 0 5〜3重量部である。 また、 重合温度は開始剤の種類によって異な るが、 通常、 0〜 1 0 0 °Cである。  The amount of the polymerization initiator is usually 0.05 to 3 parts by weight based on 100 parts by weight of the monomer mixture. The polymerization temperature varies depending on the type of the initiator, but is usually from 0 to 100 ° C.
分子量調整剤としては、 2, 2 ' , 4 , 6, 6 ' 一ペンタメチルヘプ タン一 4ーチオール、 2, 4, 4 — トリメチルペンタン一 2—チオール、 ドデカン一 1 2—チオール、 2 , 2, 6, 6—テトラメチルヘプタン一 4一メタンチオール、 2 , 4 , 6— トリメチルノナン一 4ーチオール等 のようなアルキルチオール化合物類; ジメチルキサントゲンジスルフィ ド、 ジェチルキサントゲンジスルフィ ド、 ジイソプロピルキサントゲン ジスルフィ ド等のようなキサントゲンジスルフィ ド類; テトラメチルチ ウラムジスルフィ ド、 テトラエチルチウラムジスルフィ ド、 テトラプチ ルチウラムジスルフィ ド等のようなチウラムジスルフィ ド類; 四塩化炭 素、 臭化工チレン等のようなハロゲン化炭化水素類; ペンタフ Xニルェ タン等のような炭化水素類; およびァクロ レイ ン、 メタクロレイン、 ァ リルアルコール、 2—ェチルへキシルチオグリコレート、 ターピノーレ ン、 α —テルビネン、 ァーテルビネン、 ジペンテン、 α —メチルスチレ ンダイマ一 ( 2— 4 —ジフヱ二ルー 4 —メチルー 1 一ペンテンが 5 0重 量%以上のものが好ましい) 、 2 , 5 —ジヒ ドロフラン、 3, 6 —ジヒ ドロ一 2 Η—ピン、 フタラン、 1 , 2—ブタジエン、 1 , 4一へキサジ ェン等を挙げることができる。 分子量調整剤の量は、 単量体混合物 1 0 0重量部に対し、 通常、 0 . 0 0 5〜3重量部である。 Examples of the molecular weight regulator include 2,2 ', 4,6,6'-pentamethylheptane-1-thiol, 2,4,4-trimethylpentane-12-thiol, dodecane-12-thiol, 2,2, Alkylthiol compounds such as 6,6-tetramethylheptane-14-methanethiol, 2,4,6-trimethylnonane-14-thiol; dimethylxanthogen disulfide, getylxanthogen disulfide, diisopropylxanthogen disulfide Xanthogen disulfides such as thiuram disulfides such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide; halogenated compounds such as carbon tetrachloride and brominated titanium; Hydrocarbons; hydrocarbons such as pentaf X-nitroethane; And acrolein, methacrolein, aryl alcohol, 2-ethylhexylthioglycolate, terpinole Α, terbinene, water terbinene, dipentene, α—methylstyrene dimer (2-4—diphenyl 4-methyl-1-pentene is preferably 50% by weight or more), 2,5—dihydrofuran, 3 , 6-dihydro-12-pin, phthalane, 1, 2-butadiene, 1, 4-hexadiene and the like. The amount of the molecular weight modifier is usually 0.005 to 3 parts by weight based on 100 parts by weight of the monomer mixture.
重合の方法は特に限定されず、 バルク重合、 溶液重合、 懸濁重合ある いは乳化重合等を、 必要に応じて適宜選択することができる。 なかでも、 乳化重合が好適である。 乳化重合によって製造する場合には、 たとえば、 公知の乳化重合の手法により重合を行い、 所定の転化率に達した時にヒ ドロキシルァミ ン、 力ルバミ ン酸ナト リゥム等を加えて重合を停止し、 次いで、 残存単量体を加熱、 水蒸気蒸留等によって除去し、 さらに、 得 られた重合体ラテツクスに無機の凝固剤、 高分子凝集剤または感熱凝固 剤等のような通常の乳化重合で使用される凝固剤を加え、 共重合体を凝 固、 回収することができる。  The method of polymerization is not particularly limited, and bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, or the like can be appropriately selected as needed. Among them, emulsion polymerization is preferred. In the case of production by emulsion polymerization, for example, the polymerization is carried out by a known emulsion polymerization technique, and when a predetermined conversion is reached, the polymerization is stopped by adding hydroxyamine, sodium dihydrocarbamate, and the like. The remaining monomer is removed by heating, steam distillation, etc., and the obtained polymer latex is further coagulated by a usual emulsion polymerization such as an inorganic coagulant, a polymer coagulant or a thermosensitive coagulant. By adding an agent, the copolymer can be coagulated and recovered.
ェチレン性不飽和二トリルー共役ジェン系共重合体ゴムの共役ジェン 単位を水素化する方法はとくに限定されず、 通常の水素化方法を用いる ことにより行なわれる。  The method for hydrogenating the conjugated gen unit of the ethylenically unsaturated nitrile conjugated gen-based copolymer rubber is not particularly limited, and is carried out by using a usual hydrogenation method.
具体的には、 ェチレン性不飽和二トリルー共役ジェン系共重合体ゴム を溶媒に溶解した状態で、 水素化触媒の存在下で、 水素を吹き込んで行 ラ α  Specifically, the reaction is carried out by blowing hydrogen in the presence of a hydrogenation catalyst in a state where the ethylenically unsaturated nitrile conjugated gen-based copolymer rubber is dissolved in a solvent.
溶媒は、 エチレン性不飽和二トリル一共役ジェン系共重合体ゴムを溶 解可能なものである。 具体的にはベンゼン、 トルエン、 キシレン、 クロ ルベンゼンのごとき芳香族化合物; シクロへキサノ ン、 アセ トン、 メチ ルェチルケ ト ン、 ジェチルケ トンのごときケ トン ; テ トラヒ ドロフラン ; 酢酸ェチル : ジメチルホルムアミ ド、 などを挙げることができる。 水素化触媒としては、 例えば、 パラジウム シリカおよびパラジウム 錯体 (特開平 3— 2 5 2 4 0 5号) 等が挙げられる。 さらに、 特開昭 6 2— 1 2 5 8 5 8号、 特開昭 6 2— 4 2 9 3 7号、 特開平 1 一 4 5 4 0The solvent is capable of dissolving the ethylenically unsaturated nitrile-one conjugated diene copolymer rubber. Specifically, aromatic compounds such as benzene, toluene, xylene, and chlorobenzene; cyclohexanone, acetone, methyl Ketones such as luethyl ketone and getyl ketone; tetrahydrofuran; ethyl acetate: dimethylformamide; Examples of the hydrogenation catalyst include palladium silica and a palladium complex (JP-A-3-252405). Further, Japanese Patent Application Laid-Open Nos. Sho 62-125258, Sho-62-42937, Hei 114-540
2号、 特開平 1 一 4 5 4 0 3号、 特開平 1 一 4 5 4 0 4号、 特開平 1 一No. 2, Japanese Patent Application Laid-Open No. Hei 1-445403, Japanese Patent Application Laid-Open No. Hei 1-445404, Japanese Patent Laid-open No. Hei 11
4 5 4 0 5号等に記載されているようなロジウムまたはルテニウム化合 物を使用することもできる。 Rhodium or ruthenium compounds, such as those described in No. 45405, etc., can also be used.
水素化反応温度は、 通常、 5〜1 5 0 °C、 好ましくは 1 0〜1 0 0 °C である。 高温では、 水素化触媒が失活したり、 又は副反応が起こりやす くなる。 副反応としては、 二トリル基が水素化されたりする反応等が挙 げられる。  The hydrogenation reaction temperature is usually 5 to 150 ° C, preferably 10 to 100 ° C. At high temperatures, the hydrogenation catalyst is deactivated or side reactions are more likely to occur. Examples of the side reaction include a reaction in which a nitrile group is hydrogenated.
ェン型付加反応で使用するエチレン性不飽和カルボン酸またはその無 水物は、 特に限定されないが、 その炭素数が 4〜1 0のエチレン性不飽 和ジカルボン酸またはその無水物、 特に無水マレイン酸が好適である。 エチレン性不飽和カルボン酸としては、 アク リル酸、 メタクリル酸の ごときエチレン性不飽和モノカルボン酸 ; マレイン酸、 フマル酸、 イタ コン酸、 シ トラコン酸のごときェチレン性不飽和ジカルボン酸; 無水マ レイン酸、 無水ィタコン酸、 無水シ トラコン酸のごときエチレン性不飽 和ジカルボン酸無水物 ; マレイ ン酸モノメチル、 マレイ ン酸モノエチル、 マレイ ン酸モノプロピル、 マレイ ン酸モノ一 n—ブチル、 マレイ ン酸モ ノイソプチル、 マレイ ン酸モノ一 n—ペンチル、 マレイ ン酸モノ ー n— へキシル、 マレイ ン酸モノ一 2—ェチルへキシル、 フマル酸モノ メチル、 フマル酸モノェチル、 フマル酸モノプロピル、 フマル酸モノ一 n—ブチ ル、 フマル酸モノイソブチル、 フマル酸モノー n—ペンチル、 フマル酸 モノー n—へキシル、 フマル酸モノ一 2—ェチルへキシル、 ィタコン酸 モノメチル、 ィタコン酸モノエチル、 ィタコン酸モノプロピル、 イタコ ン酸モノー n—ブチル、 ィタコン酸モノイソブチル、 ィタコン酸モノ一 n—ペンチル、 ィタコン酸モノ一 n—へキシル、 ィタコン酸モノ一 2— ェチルへキシル、 シ トラコン酸モノメチル、 シ トラコン酸モノエチル、 シ トラコン酸モノプロピル、 シ トラコン酸モノ 一 n—ブチル、 シ トラコ ン酸モノイソブチル、 シ トラコン酸モノー n—ペンチル、 シ トラコン酸 モノー n—へキンル、 シ トラコン酸モノー 2—ェチルへキシル、 メサコ ン酸モノメチル、 メサコン酸モノエチル、 メサコン酸モノプロピル、 メ サコン酸モノ一 n—ブチル、 メサコン酸モノイソブチル、 メサコン酸モ ノ一 n—ペンチル、 メサコン酸モノ一 n—へキンル、 メサコン酸モノ一 2—ェチルへキシル、 グルタコン酸モノメチル、 グルタコン酸モノェチ ル、 グルタコン酸モノプロピル、 グルタコン酸モノー n—ブチル、 グル タコン酸モノイソブチル、 グノレタコン酸モノー n—ペンチル、 グルタコ ン酸モノ 一 n—へキシル、 グルタコン酸モノ _ 2—ェチルへキシル、 ァ リルマロン酸モノ メチル、 ァリルマロン酸モノエチル、 ァリルマロン酸 モノプロピル、 ァリルマロン酸モノ一 n—ブチル、 ァリルマロン酸モノ イソブチル、 ァリルマロン酸モノー n—ペンチル、 ァリルマロン酸モノ — n—へキシル、 ァリルマロン酸モノ一 2—ェチルへキンル、 テラコン 酸モノメチル、 テラコン酸モノエチル、 テラコン酸モノプロピル、 テラ コン酸モノー n—ブチル、 テラコン酸モノイソブチル、 テラコン酸モノ 一 n—ペンチル、 テラコン酸モノー n—へキンル、 テラコン酸モノ _ 2 —ェチルへキシル等のごとき不飽和ジカルボン酸モノアルキルエステル- 等が挙げられる。 The ethylenically unsaturated carboxylic acid or its anhydride used in the ene-type addition reaction is not particularly limited, but the ethylenically unsaturated dicarboxylic acid having 4 to 10 carbon atoms or its anhydride, particularly maleic anhydride Acids are preferred. Ethylenically unsaturated carboxylic acids include ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; ethylenically unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid and citraconic acid; maleic anhydride Ethylenic unsaturated dicarboxylic anhydrides such as acid, itaconic anhydride and citraconic anhydride; monomethyl maleate, monoethyl maleate, monopropyl maleate, mono-n-butyl maleate, maleic acid Monoisobutyl, mono-n-pentyl maleate, mono-n-hexyl maleate, mono-2-ethylhexyl maleate, monomethyl fumarate, monoethyl fumarate, monopropyl fumarate, monopropyl fumarate One n-buchi Monoisobutyl fumarate, mono-n-pentyl fumarate, mono-n-hexyl fumarate, mono-1-ethylhexyl fumarate, monomethyl itaconate, monoethyl itaconate, monoethyl itaconate, monopropyl itaconate —Butyl, monoisobutyl itaconate, mono-n-itaconate-pentyl, mono-n-hexa itaconate, mono-l-ethyl hexyl itaconate, monomethyl citrate, monoethyl citrate, monopropyl citrate Mono-n-butyl citraconic acid, monoisobutyl citraconic acid, mono-n-pentyl citraconic acid, mono-n-hexyl citraconic acid, mono-2-ethyl citraconic acid, monomethyl hexyl citraconic acid, monomethyl mesaconic acid, mesacone Monoethyl acid, monopropyl mesaconate, mesacon Mono-n-butyl mono-iso-mesaconate, Mono-n-pentyl mesaconic acid, Mono-n-hexyl mesaconic acid, Mono-1-ethyl mesaconic hexyl, Monomethyl glutaconate, Monoethyl glutaconate, Glutaconate Monopropyl, mono-n-butyl glutaconate, monoisobutyl glutaconate, mono-n-pentyl gunoretaconate, mono-n-hexyl glutaconate, mono-n-hexyl glutaconate, monomethyl arylmalonate, monomethyl arylmalonate, arylmalone Monoethyl acrylate, monopropyl arylmalonate, mono-n-butyl arylmalonate, monoisobutyl arylmalonate, mono-n-pentyl arylmalonate, mono-n-hexyl arylmalonate, mono-1-ethyl arylmalonate, monomethyl terraconate, monomethyl terraconate The terra Monoethyl conate, monopropyl terraconate, mono-n-butyl terraconate, monoisobutyl terraconate, mono-n-pentyl terraconate, mono-n-hexyl terraconate, mono-2-ethyl terraconate-2-ethylhexyl, etc. Unsaturated dicarboxylic acid monoalkyl ester- And the like.
ェン型付加反応は、 通常、 ラジカル発生剤を使用することなく、 ニト リル基含有高飽和共重合体ゴムとエチレン性不飽和カルボン酸またはそ の無水物を溶解する不活性溶剤中で加熱することにより、 あるいは、 加 熱密閉式混練機において、 前記二トリル基含有高飽和共重合体ゴムとェ チレン性不飽和カルボン酸またはその無水物とを混練することにより、 亍なわれる。  In the addition-type addition reaction, heating is usually performed without using a radical generator in an inert solvent that dissolves the nitrile group-containing highly saturated copolymer rubber and the ethylenically unsaturated carboxylic acid or its anhydride. Alternatively, this is accomplished by kneading the nitrile group-containing highly saturated copolymer rubber and an ethylenically unsaturated carboxylic acid or an anhydride thereof in a heated closed kneader.
二トリル基含有高飽和共重合体ゴムとェチレン性不飽和カルボン酸ま たはその無水物の量は特に限定されないが、 通常、 二トリル基含有高飽 和共重合体ゴム 1 0 0重量部に対して、 エチレン性不飽和カルボン酸ま たはその無水物 0 . 0 5〜 1 0重量部、 好ましくは、 0 . 2〜6重量部 である。  The amounts of the nitrile group-containing highly saturated copolymer rubber and the ethylenically unsaturated carboxylic acid or its anhydride are not particularly limited, but are usually 100 parts by weight of the nitrile group-containing highly saturated copolymer rubber. On the other hand, the amount is 0.05 to 10 parts by weight, preferably 0.2 to 6 parts by weight for the ethylenically unsaturated carboxylic acid or its anhydride.
ェン型付加反応で好適に使用される加熱密閉混練機は、 加圧二一ダー、 バンバリ一ミキサ一、 ブラベンダー等のようなバッチ式加熱密閉混練機 の中から任意に選ぶことができ、 なかでも、 加圧ニーダ一が好ましい。 加熱密閉混練機を使用せずに、 例えばロール型混練機のような開放型混 練機を用いた場合は、 融解した無水マレイン酸等のようなエチレン性不 飽和カルボン酸またはその無水物が飛散し、 十分な付加反応を行なうこ とが出来ないので好ましくない。  The heat-sealing kneader suitably used in the heat-type addition reaction can be arbitrarily selected from among batch-type heat-sealing kneaders such as a pressure soda, a Banbury mixer, a Brabender, etc. Of these, a pressure kneader is preferred. If an open-type kneader such as a roll-type kneader is used without using a heated closed kneader, the molten ethylenically unsaturated carboxylic acid such as maleic anhydride or its anhydride is scattered. However, it is not preferable because a sufficient addition reaction cannot be performed.
また、 単軸押出機、 同方向二軸押出機、 異方向回転二軸押出機等のよ うな連続式混練機の場合は、 押出機出口に滞留するゴムがゲル化するこ とによりダイへッ ドの詰まりが発生する等、 効率よく付加反応を行なう ことが出来ない場合がある。 また、 ゴム中に多量に未反応のエチレン性 不飽和カルボン酸またはその無水物が残存する。 ェン型付加反応を加熱密閉式混練機を用いて行い、 カルボキシル化二 トリル基含有高飽和共重合体ゴムの製造を行う際に、 下記するような方 法を採用することにより、 ゴム分子中に高い割合でカルボン酸無水物基 を存在させることができる。 一般に、 ゴム分子中のカルボン酸無水物基 が分解してカルボキシル基の含有量が増大すると、 配合剤の酸化亜鉛等 との反応速度が促進されるために架橋時にスコーチしやすく、 また、 耐 摩耗性や耐圧縮永久歪性が低下する傾向がみられるので好ましくない。 ゴム分子中に高い割合でカルボン酸無水物基を存在させることができ る方法とは、 次のような方法である。 In the case of a continuous kneader such as a single-screw extruder, a co-rotating twin-screw extruder, and a counter-rotating twin-screw extruder, the rubber remaining at the outlet of the extruder is gelled to form a die head. In some cases, the addition reaction cannot be performed efficiently due to clogging of the metal. In addition, a large amount of unreacted ethylenically unsaturated carboxylic acid or its anhydride remains in the rubber. When a carboxylated nitrile group-containing highly saturated copolymer rubber is produced by carrying out an enzymatic addition reaction using a heat-sealing kneader, the following method is used to obtain Carboxylic acid anhydride groups can be present in a high proportion. In general, when the carboxylic anhydride group in the rubber molecule is decomposed and the carboxyl group content is increased, the reaction rate with the compounding agent such as zinc oxide is accelerated, so that scorch is likely to occur at the time of crosslinking, and wear resistance is also increased. This is not preferred because the properties and compression set resistance tend to decrease. The method by which carboxylic anhydride groups can be present in a high proportion in rubber molecules is as follows.
まず、 エチレン性不飽和カルボン酸またはその無水物を二トリル基含 有高飽和共重合体ゴムにェン型付加反応により付加させる前に、 実質的 にェン型付加反応が起こらないゴム温度において、 具体的には、 6 0〜 First, before adding an ethylenically unsaturated carboxylic acid or an anhydride thereof to a nitrile group-containing highly saturated copolymer rubber by an ene-type addition reaction, at a rubber temperature at which substantially no ene-type addition reaction occurs. , Specifically, 60-
1 7 0 °C、 好ましくは、 1 0 0〜1 5 0。Cにおいて、 エチレン性不飽和 カルボン酸またはその無水物と二トリル基含有高飽和共重合体ゴムとを 予混練し、 エチレン性不飽和カルボン酸またはその無水物を二トリル基 含有高飽和共重合体中に均一に分散させる。 この予混練のゴム温度が過 度に低いと、 ゴムが混練機内でスリ ップして、 エチレン性不飽和カルボ ン酸またはその無水物と二トリル基含有高飽和共重合体ゴムとの混合が 十分に行えない。 また、 予混練のゴム温度が過度に高いと、 混練機中に 投入するェチレン性不飽和カルボン酸またはその無水物が大量に飛散す ることがあり、 ェン型付加反応率が低下する。 170 ° C, preferably 100-150. In C, the ethylenically unsaturated carboxylic acid or its anhydride and the nitrile group-containing highly saturated copolymer rubber are pre-kneaded, and the ethylenically unsaturated carboxylic acid or its anhydride is subjected to the nitrile group-containing highly saturated copolymer. Disperse evenly in it. If the rubber temperature of this pre-kneading is excessively low, the rubber slips in the kneading machine and the mixing of the ethylenically unsaturated carboxylic acid or its anhydride with the nitrile group-containing highly saturated copolymer rubber occurs. Not enough. If the rubber temperature of the pre-kneading is excessively high, a large amount of the ethylenically unsaturated carboxylic acid or its anhydride to be charged into the kneader may be scattered, thereby lowering the rate of the ene-type addition reaction.
次に、 ェン型付加反応を行うべく、 混練中のゴムとエチレン性不飽和 カルボン酸またはその無水物との混合物の温度 (以下、 ゴム温度と記す ことがある。 ) を 2 0 0〜2 8 0 °C、 好ましくは 2 2 0〜 2 6 0 °Cに保 つ。 ゴム温度をこの範囲に保つ方法は、 特に限定されないが、 通常は、 混練機のジャケッ 卜に温水やスチームを流す方法、 または、 せん断発熱 を利用することにより達せられる。 Next, the temperature of the mixture of the rubber being kneaded and the ethylenically unsaturated carboxylic acid or its anhydride (hereinafter, sometimes referred to as the rubber temperature) is set at 200 to 2 in order to carry out an ene-type addition reaction. 80 ° C, preferably 220-260 ° C One. The method for keeping the rubber temperature within this range is not particularly limited, but is usually achieved by flowing hot water or steam into the kneader jacket, or by using shear heat.
加熱密閉混練機のジャケッ 卜に温水やスチームを流す場合は、 ジャケッ ト温度を、 通常、 70〜250°C、 好ましくは 130〜 200°Cに維持 する。 また、 せん断発熱を利用する場合は、 混練機により、 せん断速度 30〜: L 000 S— 好ましくは 300〜 700 S—1で混練を続けるこ とが好ましい。 特に、 せん断発熱を利用する場合は、 ゴム温度の制御を 容易に行なうことが出来るので好ましい。 加熱密閉混練機中の混練時間 は、 とくに限定されないが、 通常、 120秒〜 120分、 好ましくは 1 80秒〜 60分である。 When hot water or steam is allowed to flow through the jacket of the heat-sealing kneader, the jacket temperature is generally maintained at 70 to 250 ° C, preferably 130 to 200 ° C. When utilizing the heat generated by shearing, the kneading is preferably continued by a kneader at a shear rate of 30 to: L 000 S—preferably 300 to 700 S— 1 . In particular, it is preferable to use the heat generated by shearing because the rubber temperature can be easily controlled. The kneading time in the heated closed kneader is not particularly limited, but is usually 120 seconds to 120 minutes, preferably 180 seconds to 60 minutes.
混練中のゴム温度が過度に低いと、 ェン型付加反応が十分に進行しな い。 また、 過度に高い場合は、 ゲル化や焼け物の発生等が起こりその結 果、 製品にゲルが混入し好ましくない。 また、 せん断速度が過度に大き いと、 せん断発熱によるゴム温度の制御が難しく、 ゴム温度が高くなり すぎてゲルや焼け物の発生等が起こるため、 工業的な製造方法として好 ましくない。 また、 せん断速度が過度に小さいと、 ゴム温度が低くなり すぎるため、 充分なェン型付加反応が期待できない。  If the rubber temperature during kneading is excessively low, the ene-type addition reaction does not proceed sufficiently. On the other hand, if the content is excessively high, gelation or burning occurs, and as a result, gel is mixed into the product, which is not preferable. On the other hand, if the shear rate is excessively high, it is difficult to control the rubber temperature due to the heat generated by shearing, and the rubber temperature becomes too high, causing gels and burns, which is not preferable as an industrial production method. On the other hand, if the shear rate is excessively low, the rubber temperature becomes too low, so that a sufficient ene-type addition reaction cannot be expected.
かかる加熱密閉式混練機中で混練するに際して、 老化防止剤を添加す ることにより、 ゴムのゲル化及びムーニー粘度の上昇を防止してもよい。 老化防止剤の種類は、 特に限定されないが、 ァミ ン系、 アミ ンケトン系、 フエノール系、 ベンゾイ ミダゾ一ル系、 その他ゴム用の老化防止剤を使 用することができる。  At the time of kneading in such a heat-sealing kneader, an antioxidant may be added to prevent gelation of rubber and increase in Mooney viscosity. The type of anti-aging agent is not particularly limited, but an aging-based, amine-ketone-based, phenol-based, benzimidazole-based, or other rubber-based anti-aging agent can be used.
ァミ ン系老化防止剤の例としては、 フヱニルー 1一ナフチルァミ ン、 アルキル化ジフヱニルァミ ン、 ォクチル化ジフヱニルァ ミ ン、 4, 4— ビス (α, ひージメチルベンジル) ジフヱニルアミ ン、 ρ— (ρ— トノレ エンスルフォニルアミ ド) ジフエニルァミ ン、 Ν, Ν—ジ一 2—ナフチ ノレ _ ρ—フヱニレンジァ ミ ン、 Ν, Ν—ジフ エ二ルー ρ—フエ二レンジ ァミ ン、 Ν—フヱニル一Ν—イソプロピル一 ρ—フエ二レンジァミ ン、 Ν—フエ二ルー Ν— ( 1, 3—ジメチルブチル) 一 ρ—フヱニレンジァ ミ ン、 Ν—フヱ二ルー Ν— (3—メテク リ ロイルォキシー 2—ヒ ドロキ シプロピル) 一 ρ—フヱニレンジアミ ン等が挙げられる。 Examples of amide-based antioxidants include phenyl-1-naphthylamine, Alkylated diphenylamine, octylated diphenylamine, 4,4-bis (α, didimethylbenzyl) diphenylamine, ρ- (ρ-tonolenesulfonylamide) diphenylamine, Ν, Ν-di-2-naphthine Nore _ ρ-phenylenediamine, Ν, Ν-diphenyl ρ-phenylenediamine, Ν-phenylone-isopropyl-ρ-phenylenediamine, Ν-phenylenediamine, (1, 3-dimethylbutyl) 1-ρ-phenylenediamine, Ν-phenyl- (3-methacryloyloxy 2-hydroxypropyl) -1ρ-phenylenediamine and the like.
アミ ンケ ト ン系老化防止剤の例としては、 2, 2, 4— ト リメチルー 1, 2—ジヒ ドロキノ リ ン、 6—エ トキン一 1, 2—ジヒ ドロー 2, 2, 4 _ ト リ メチルキノ リ ン等が挙げられる。  Examples of aminketone antioxidants include 2,2,4-trimethyl-1,2-dihydroquinoline, 6-ethokin-1,2-dihydro2,2,4_trimethylquino. And the like.
フエノール系老化防止剤の例としては、 2, 6—ジ一 t e r t—プチ ノレ一 4—メチルフヱノール、 2, 6—ジ一 t e r t—ブチルー 4ーェチ ルフェノール、 2, 2—メチレンビス ( 4—ェチルー 6— t e r t—ブ チルフヱノール) 、 2, 2—メチレンビス (4—メチルー 6— t e r t ーブチルフヱノ一ル) 、 4, 4ーブチリデンビス ( 3—メチルー 6— t e r t—ブチルフヱノール) 、 4, 4—チォビス (3—メチル一 6— t e r t—ブチルフヱノール) 、 2. 5—ジ一 t e r t—ブチルハイ ドロ キノ ン、 2, 5—ジー t e r t—ァミルハイ ドロキノ ン等が挙げられる。 ベンゾイ ミ ダゾ一ル系老化防止剤の例としては、 2—メルカプ トベン ゾィ ミ ダゾール、 2メルカプ 卜メチルべンゾィ ミダゾ一ル、 2メルカプ トメチルベンゾィ ミ ダゾールの金属塩等が挙げられる。  Examples of phenolic anti-aging agents include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,2-methylenebis (4-ethyl-6- tert-butylphenol), 2,2-methylenebis (4-methyl-6-tert-butylphenol), 4,4-butylidenebis (3-methyl-6-tert-butylphenol), 4,4-thiobis (3-methyl-1-phenol) tert-butylphenol), 2.5-di-tert-butylhydroquinone, 2,5-ditert-amylhydroquinone, and the like. Examples of the benzimidazole antioxidants include metal salts of 2-mercaptobenzylazomidazole, 2-mercaptomethylbenzomidazole, and 2-mercaptomethylbenzoimidazole.
これら、 老化防止剤の使用量は、 二 ト リル基含有高飽和共重合体ゴム 100重量部に対して、 好ま しく は 0. 01〜5重量部、 より好ま しく は 0 . 1〜2重量部である。 The amount of the antioxidant used is preferably 0.01 to 5 parts by weight, more preferably 100 parts by weight of the nitrile group-containing highly saturated copolymer rubber. Is 0.1 to 2 parts by weight.
かかる製造方法を採用することにより、 酸当量が 2 X 1 0 " 3 e p h r 以上、 赤外線吸光分析によって測定される [カルボン酸無水物基のピー ク高] ノ ( [カルボン酸無水物基のピーク高] + [カルボキシル基のピ —ク高] ) の値が 0 . 5 0以上、 好ましくは 0 . 8 5以上、 さらに好ま しくは 0 . 9以上であるようなカルボキシル化二トリル基含有高飽和共 重合体ゴムを製造することができる。 この値が小さすぎる場合には、 架 橋反応においてスコーチが起きやすい。 By adopting such a production method, the acid equivalent is 2 × 10 3 ephr or more and the peak height of the carboxylic acid anhydride group is measured by infrared absorption spectroscopy. ] + [The peak height of the carboxyl group]) is 0.50 or more, preferably 0.85 or more, and more preferably 0.9 or more. If this value is too small, scorch is likely to occur in the crosslinking reaction.
ここで、 [カルボン酸無水物基のピーク高] Z ( [カルボン酸無水物 基のピーク高] + [カルボキシル基のピーク高] ) の値は、 赤外線吸光 分析機を用いた測定において、 カルボン酸無水物基について 1 7 8 5 c m - 1付近に観測される吸収ピークのピーク高およびカルボキシル基につ いて 1 7 1 0〜 1 7 4 0 c m — 1付近に観測される吸収ピークのピーク高、 に基づいて定めたものである。 Here, the value of [peak height of carboxylic acid anhydride group] Z ([peak height of carboxylic acid anhydride group] + [peak height of carboxyl group]) is determined by the measurement using an infrared absorption spectrometer. For the anhydride group, the peak height of the absorption peak observed at around 1785 cm- 1 and for the carboxyl group, the peak height of the absorption peak observed at around 1170 to 1740 cm- 1 It is determined based on.
本発明で使用するポリ塩化ビニル樹脂は、 特に限定されるものではな い。 例えば、 塩化ビニルホモポリマー及び塩化ビニル単位 6 0重量%以 上と塩化ビニルとラジカル共重合し得る他の単量体の単位 4 0重量%以 下とからなる公知の塩化ビニル共重合体が挙げられる。 このような共重 合体としては、 例えば、 塩化ビニルー酢酸ビニル共重合体、 エチレン一 酢酸ビニルポリマーへの塩化ビニルのグラフ ト共重合体、 少量のジビニ ルベンゼン、 ジァリルフタレ一ト等のような 2官能性単量体を共重合し た部分架橋塩化ビニル樹脂、 等を挙げることができる。  The polyvinyl chloride resin used in the present invention is not particularly limited. For example, a vinyl chloride homopolymer and a known vinyl chloride copolymer comprising not less than 60% by weight of a vinyl chloride unit and not more than 40% by weight of a unit of another monomer capable of being radically copolymerized with vinyl chloride are exemplified. Can be Such copolymers include, for example, bifunctional polymers such as vinyl chloride-vinyl acetate copolymers, graft copolymers of vinyl chloride with ethylene monoacetate polymers, and small amounts of divinylbenzene, diarylphthalate, etc. And partially cross-linked vinyl chloride resins obtained by copolymerizing monomers.
本発明で使用するポリ塩化ビニル樹脂は、 その分子量に格別限定され るものではないが、 通常平均重合度 6 0 0〜2 , 0 0 0のものが使用さ れる。 The polyvinyl chloride resin used in the present invention is not particularly limited in its molecular weight, but usually has an average degree of polymerization of 600 to 2,000. It is.
カルボキシル化二トリル基含有高飽和共重合体ゴムとポリ塩化ビニル 樹脂との混合比は、 通常、 カルボキシル化二トリル基含有高飽和共重合 体ゴム 9 5〜5 0重量部、 好ましくは 8 0〜 6 0重量部に対しポリ塩化 ビニル樹脂 5〜5 0重量部、 好ましくは 2 0〜 4 0重量部である。 特に、 ァクリロ二トリループ夕ジェン共重合体ゴムの水素化物から得られる力 ルポキシル化二卜リル基含有高飽和共重合体ゴム約 7 0重量部とポリ塩 化ビニル樹脂約 3 0重量部との混合物が最適である。  The mixing ratio of the carboxylated nitrile group-containing highly saturated copolymer rubber to the polyvinyl chloride resin is generally 95 to 50 parts by weight, preferably 80 to 50 parts by weight, for the carboxylated nitrile group-containing highly saturated copolymer rubber. The amount is 5 to 50 parts by weight, preferably 20 to 40 parts by weight, based on 60 parts by weight of the polyvinyl chloride resin. In particular, a mixture of about 70 parts by weight of a highly saturated copolymer rubber containing a propyloxylated nitrile group and about 30 parts by weight of a polyvinyl chloride resin obtained from a hydride of an acrylonitrile-loop copolymer rubber. Is optimal.
カルボキシル化二トリル基含有高飽和共重合体ゴムとポリ塩化ビニル 樹脂とをブレンドする方法はとくに限定されないが、 通常は、 カルボキ シル化二トリル基含有高飽和共重合体ゴムとポリ塩化ビニル樹脂粉末と をバンバリ一ミキサ一などを用い高温で混合する ドライブレンド法など が採られる。 なお、 また、 共重合体ゴムの溶液とポリ塩化ビニル樹脂の 溶液とを混合したのち溶媒を除去すること、 或いは、 共重合体ゴム及び ポリ塩化ビニル樹脂を共通の溶媒に溶解したのち該溶解を除去すること、 からなる溶液法も採用することができる。  The method of blending the carboxylated nitrile group-containing highly saturated copolymer rubber and the polyvinyl chloride resin is not particularly limited, but usually, the carboxylated nitrile group-containing highly saturated copolymer rubber and the polyvinyl chloride resin powder are blended. A dry blending method is used in which and are mixed at a high temperature using a Banbury mixer. In addition, the solvent is removed after mixing the copolymer rubber solution and the polyvinyl chloride resin solution, or the dissolution is performed after dissolving the copolymer rubber and the polyvinyl chloride resin in a common solvent. A solution method comprising:
本発明のゴム組成物には、 必要に応じて、 ゴム分野において使用され る通常の他の配合剤、 例えば、 硫黄系架橋剤又は有機過酸化物系架橋剤 等のような架橋剤、 補強剤 (カーボンブラック、 シリカ、 タルクなど) 、 充填剤 (炭酸カルシウム、 クレーなど) 、 加工助剤、 プロセス油、 酸化 防止剤、 オゾン劣化防止剤、 架橋助剤、 着色助剤ゴムなどを配合するこ とができる。 配合方法は特に限定されないが、 通常は、 押出機やロール、 バンバリ一ミキサ一などの混合機を用いて行なうことができる。  The rubber composition of the present invention may contain, if necessary, other ordinary compounding agents used in the rubber field, for example, a crosslinking agent such as a sulfur-based crosslinking agent or an organic peroxide-based crosslinking agent, and a reinforcing agent. (Carbon black, silica, talc, etc.), fillers (calcium carbonate, clay, etc.), processing aids, process oils, antioxidants, antiozonants, crosslinking aids, coloring aid rubbers, etc. Can be. The method of compounding is not particularly limited, but usually, it can be performed using an extruder, a roll, or a mixer such as a Banbury mixer.
使用する硫黄系架橋剤としては、 粉末硫黄、 硫黄華、 沈降硫黄、 コロ ィ ド硫黄、 表面処理硫黄、 不溶性硫黄などのような硫黄;塩化硫黄、 二 塩化硫黄、 モルホリ ン ' ジスルフイ ド、 アルキルフヱノール ' ジスルフィ ド、 N , N ' —ジチオービス (へキサヒ ドロー 2 H—ァゼピノ ン一 2 ) 、 含りんポリスルフィ ド、 高分子多硫化物などのような硫黄化合物 ; さら に、 テ トラメチルチウラムジスルフィノレド、 ジメチルジチ才力ルバミ ン 酸セレン、 2 _ ( 4 ' —モルホリ ノ ジチォ) ベンゾチフゾールなどのよ うな硫黄を含む架橋促進剤を挙げることができる。 Sulfur-based cross-linking agents used include powdered sulfur, sulfur white, precipitated sulfur, Sulfur, such as sulfur, surface-treated sulfur, insoluble sulfur; sulfur chloride, sulfur dichloride, morpholine 'disulfide, alkylphenol' disulfide, N, N '-dithio-bis (hexahydro 2H- Sulfur compounds such as azepinone 1 2), phosphorus-containing polysulfides, and high molecular polysulfides; in addition, tetramethylthiuram disulfinolate, dimethyldiethyl selenium rubinate, 2 _ (4 '— (Morpholinoditio) Sulfur-containing crosslinking accelerators such as benzotyfazole.
さらに、 これらの硫黄系架橋剤に加えて、 酸化亜鉛、 過酸化亜鉛、 活 性亜鉛、 ステアリ ン酸などのような架橋促進剤; グァニジン系、 アルデ ヒ ドーア ミ ン系、 アルデヒ ド一アンモニア系、 チアゾール系、 スルフエ ンアミ ド系、 チォ尿素系、 ザンテート系などの他の架橋促進剤を使用す ることができる。  Further, in addition to these sulfur-based cross-linking agents, cross-linking accelerators such as zinc oxide, zinc peroxide, active zinc, and stearic acid; guanidine, aldehyde amide, aldehyde-ammonia, Other crosslinking accelerators such as thiazole, sulfenamide, thiourea, and xanthate can be used.
硫黄系架橋促進剤の使用量は特に限定されないが、 通常、 カルボキシ ル化ニトリル基含有高飽和共重合体ゴム 1 0 0重量部当り、 0 . 1 0〜 1 0重量部、 好ましくは 0 . 1〜5重量部である。  The amount of the sulfur-based crosslinking accelerator used is not particularly limited, but is usually 0.1 to 10 parts by weight, preferably 0.1 to 100 parts by weight of the highly saturated copolymer rubber containing a carboxylated nitrile group. ~ 5 parts by weight.
有機過酸化物系架橋剤の例としては、 t 一プチルヒ ドロペルォキシ ド、 クメ ンヒ ドロペルォキ ド、 ジ一 t 一ブチルペルォキシ ド、 t ーブチルク ミルペルォキシ ド、 2 , 5—ジメチルー t _ブチルペルォキシへキサン、 2 , 5 _ジメチルー t 一ブチルペルォキシへキシン、 1 , 3—ビス ( t —ブチルペルォキシイソプロピル) ベンゼン、 p—クロ口べンゾィルぺ ルォキシ ド、 t 一ブチルペルォキシベンゾエー 卜、 t 一ブチルペルォキ シイソプロピルカルボナート、 t 一ブチルベンゾェ一トなどが挙げられ る。  Examples of organic peroxide crosslinking agents include t-butyl hydroperoxide, cumene hydroperoxide, di-t-butylperoxide, t-butylcumylperoxide, 2,5-dimethyl-t-butylperoxyhexane, 2,5_ Dimethyl-t-butylperoxyhexine, 1,3-bis (t-butylperoxyisopropyl) benzene, p-chlorobenzoyl peroxide, t-butylperoxybenzoate, t-butylperoxyisopropylcarbonate And t-butyl benzoate.
有機過酸化物系架橋剤の使用量は、 通常、 ゴム 1 0 0重量部当り 0 . 0 1〜3 0重量部、 好ましくは 0 . 1 ~ 1 0重量部である。 The amount of the organic peroxide-based cross-linking agent to be used is usually 0.1% by weight per 100 parts by weight of rubber. It is 0.1 to 30 parts by weight, preferably 0.1 to 10 parts by weight.
また、 他の併用可能な架橋剤の例としては、 卜-リメチロールプロパン トリメタクリ レート、 ジビニルベンゼン、 エチレンジメ夕クリ レート、 トリアリルイソシァヌレー卜などのような多官能性化合物が挙げられる。 さらに、 金属せつけん 硫黄系、 トリアジン Zジチォ力ルバミ ン酸塩系、 ポリカルボン酸ノォニゥム塩系、 ポリアミ ン系 (へキサメ ト レンジアミ ン、 トリエチレンテトラミ ン、 へキサメチレンジアミ ンカルバメ一ト、 エチレンジァミ ンカルバメート、 トリエチレンジァミ ンなど) 、 安息香 酸ァンモニゥム塩系などの架橋剤も必要に応じて併用できる。 これらの 架橋剤は、 それぞれ単独で使用することも、 複数種を併用することもで きる。  Examples of other cross-linking agents that can be used in combination include polyfunctional compounds such as tri-methylolpropane trimethacrylate, divinylbenzene, ethylene dimethyl acrylate, and triallyl isocyanurate. In addition, metal soaps such as sulfur, triazine Z-dithiophosphate, polycarboxylate nonium salt, and polyamines (hexamethylene diamine, triethylenetetramine, hexamethylene diamine carbamate, Crosslinking agents such as ethylenediamine carbamate and triethylenediamine) and ammonium benzoate can be used in combination, if necessary. These crosslinking agents can be used alone or in combination of two or more.
なお、 本発明のゴム組成物においては、 必要に応じて、 カルボキシル 化二トリル基含有高飽和共重合体と共に、 アクリルゴム、 フッ素ゴム、 スチレン一ブタジェン共重合体ゴム、 エチレン一プロピレン一ジェン三 元共重合体ゴム (E P D M ) 、 天然ゴム、 ポリイソプレンゴムなどのよ うな他のゴムを併用することができる。  In the rubber composition of the present invention, if necessary, an acrylic rubber, a fluoro rubber, a styrene-butadiene copolymer rubber, an ethylene-propylene-one gen ternary, together with a carboxylated nitrile group-containing highly saturated copolymer. Other rubbers such as copolymer rubber (EPDM), natural rubber, and polyisoprene rubber can be used in combination.
産業上の利用可能性 Industrial applicability
耐油性ゴム組成物と繊維との複合体 Composite of oil-resistant rubber composition and fiber
本発明のゴム組成物は、 良好な加工性を有し、 ナイロン等のような各 種繊維との改良された接着性を示す。 それ故、 該ゴム組成物と繊維との 複合体を架橋接着することによって、 接着強度及び機械的強度に優れた 製品を得ることができる。 この複合体は、 ベルト、 ホース等に有用であ る。 使用される繊維には、 木綿のような天然繊維、 レーヨンのような再 生繊維、 ナイロン、 ポリエステル、 ビニロン、 芳香族ポリアミ ド繊維の ような合成繊維、 スチール繊維、 ガラス繊維、 カーボン繊維などが含ま れる。 これらの繊維は単独でも、 または、 二種以上組合せて用いてもよ い。 これらの繊維はステ一プル、 フィラメ ント、 またはコード状、 ロー プ状、 帆布状、 すだれ状などのような織布の形態で、 抗張体としてゴム 組成物に埋設して用いられるが、 繊維の種類および形態は目的とするゴ ム製品の種類 (用途) に応じて適宜決定することができる。 The rubber composition of the present invention has good processability and shows improved adhesion to various fibers such as nylon. Therefore, a product excellent in adhesive strength and mechanical strength can be obtained by cross-linking the composite of the rubber composition and the fiber. This composite is useful for belts, hoses and the like. The fibers used include natural fibers such as cotton, recycled fibers such as rayon, nylon, polyester, vinylon, and aromatic polyamide fibers. Such synthetic fibers, steel fibers, glass fibers, and carbon fibers are included. These fibers may be used alone or in combination of two or more. These fibers are used in the form of staple, filament, or woven fabric such as cord, rope, canvas, or bamboo and embedded in the rubber composition as a tensile member. The type and form of the product can be determined as appropriate according to the type (use) of the intended rubber product.
繊維はゴム組成物と複合化するに先立って、 それぞれの繊維に通常実 施されている方法で接着前処理を行なうが、 それ以外の特別な処理は必 要としない。 例えば、 レーヨン及びナイロンの場合は通常レゾルシン一 ホルマリ ンの初期縮合物の水溶液 (以下、 R Fと略記する) とゴムラテツ クスとの混合物 (以下、 R F Lと略記する) によって接着処理が施され る。  Prior to compounding with the rubber composition, each fiber is subjected to a pre-bonding treatment by a method usually applied to each fiber, but does not require any other special treatment. For example, in the case of rayon and nylon, the bonding treatment is usually performed using a mixture of an aqueous solution of a precondensate of resorcinol-formalin (hereinafter abbreviated as R F) and rubber latex (hereinafter abbreviated as R F L).
一方、 ポリエステル、 芳香族ポリアミ ドなどのような繊維は、 分子構 造上、 ゴムとの接着性が劣るため、 前記 R F Lによる接着処理では充分 な接着力が得られない場合がある。 そのため、 R F Lによる処理に先立つ て、 イソシァネー ト類、 エチレンチォ尿素類、 エポキシ類などのような 化合物またはこれらの化合物を適当に組合せた処理液で繊維を処理し、 次いで熱処理したのち、 R F Lによる処理が行なわれる。 ガラス繊維は、 R F Lによる処理に先立ってエポキシシラン、 ァミ ノシラン (例えば、 ァミ ノプロピルト リエ トキシシラン) などのようなシランカップリ ング 剤による処理が一般的に有効である。  On the other hand, fibers such as polyesters and aromatic polyamides have poor adhesiveness to rubber due to their molecular structure, so that sufficient adhesive force may not be obtained by the above-described bonding treatment using RFL. Therefore, prior to treatment with RFL, the fibers are treated with a compound such as isocyanates, ethylene thioureas, epoxies, or a treatment liquid that appropriately combines these compounds, and then heat-treated, followed by treatment with RFL. Done. It is generally effective for glass fibers to be treated with a silane coupling agent such as epoxysilane or aminosilane (for example, aminopropyltriethoxysilane) prior to treatment with RFL.
R F Lによる処理で使用されるゴムラテツクスは、 特に限定されない。 例えば、 アク リ ロニ ト リル一ブタジエン共重合体ラテックス、 ァク リ ロ 二トリル一ブタジエン一メタァクリル酸共重合体ラテックス、 ァクリロ 二トリル一ブタジエン一ァクリル酸共重合体ラテツクス、 ァクリロニト リル一ブタジェン一ビニルビリ ジン酸共重合体ラテックスおよびこれら の共重合体のブタジェン部分を水素化したものなどのような二トリル系 共重合体ラテックス ; ェピクロロヒ ドリ ン重合体、 ェピクロロヒ ドリン と一種以上の他のエポキシ ドまたはォキセタンとの共重合体、 クロロプ レンゴム、 クロロスルホン化ポリエチレン、 塩素化ポリエチレン、 架橋 用モノマーとして塩素含有モノマ一を共重合した塩素含有ァクリルゴム、 臭素化ブチルゴム、 ポリ塩化ビニリデン ;塩素化または臭素化ジェン系 ゴム (アク リロニトリル一ブタジエン共重合体ゴム、 スチレン一ブタジ ェン共重合体ゴム、 ポリブタジエンゴムなど) 、 塩素化または臭素化工 チレン一プロピレン一ジェンモノマー一三元共重合体ゴムなどのような ハロゲン含有重合体のラテツクスが; などが挙げられる。 The rubber latex used in the RFL treatment is not particularly limited. For example, acrylonitrile-butadiene copolymer latex, acrylonitrile-butadiene-methacrylic acid copolymer latex, acryloyl Nitrile copolymer latex such as nitrile-butadiene-acrylic acid copolymer latex, acrylonitrile-butadiene-vinylpyridine acid copolymer latex, and hydrogenated butadiene portion of these copolymers; Epichlorohydrin polymer, copolymer of epichlorohydrin and one or more other epoxides or oxetane, chloroprene rubber, chlorosulfonated polyethylene, chlorinated polyethylene, chlorine-containing monomer copolymerized with chlorine-containing monomer as crosslinking monomer Acryl rubber, brominated butyl rubber, polyvinylidene chloride; chlorinated or brominated gen-based rubber (acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, etc.), chlorinated or brominated rubber Latex of halogen-containing polymers such as propylene-one-monomer-terpolymer rubber.
R F Lによる処理に使用されるラテツクスとして、 前記カルボキシル 化二トリル基含有高飽和共重合の水性ェマルジョンを用いた場合には、 ゴム組成物と繊維との接着力がさらに強固なものとなるので好ましい。 これらのゴムラテツクスは単独であるいは 2種以上を混合して使用する ことができる。  The use of the carboxylated nitrile group-containing highly saturated copolymerized aqueous emulsion as the latex used in the treatment with RFL is preferred because the adhesive force between the rubber composition and the fibers is further enhanced. These rubber latexes can be used alone or in combination of two or more.
乳化重合で製造されるゴムラテツクスはそのまま使用できる。 固形の 重合体として入手できるゴムは、 例えば、 溶剤に溶解し、 水と乳化剤と を加えて撹拌して乳化させたのち、 溶媒を蒸発除去することによって、 ラテツクスの形態とすることができる。 本発明においてはラテックスの 製造方法は特に制限されない。  Rubber latex produced by emulsion polymerization can be used as it is. Rubber, which can be obtained as a solid polymer, can be in the form of a latex by, for example, dissolving in a solvent, adding water and an emulsifier, stirring and emulsifying, and then evaporating and removing the solvent. In the present invention, the method for producing latex is not particularly limited.
繊維を処理するための R F L液は、 前記のゴムラテツクスと R Fとの 混合液である。 該混合液の構成割合は特に限定されないが、 通常該ラテツ クス対 R Fはそれぞれの固形分重量割合で 1 0 : 1〜2 : 1の範囲にあ ることが望ましい。 また、 R F液におけるレゾルシン対ホルマリ ンのモ ル比も特に限定されないが、 通常 1 : 3〜3 : 1の割合であることが望 ましい。 さらに望ましくは 1 : 1〜 1 . 5 : 1の範囲である。 また、 R F液としては、 ゴム組成物と繊維の架橋接着用に常用されているものが 使用でき、 特に制限されない。 The RFL solution for treating the fibers is a mixture of the rubber latex and RF. The composition ratio of the liquid mixture is not particularly limited, but is usually It is desirable that the ratio of RF to RF be in the range of 10: 1 to 2: 1 in terms of the solid content weight ratio. In addition, the molar ratio of resorcinol to formalin in the RF solution is not particularly limited, but it is usually desirable that the ratio be 1: 3 to 3: 1. More preferably, the ratio is in the range of 1: 1 to 1.5: 1. As the RF liquid, those commonly used for cross-linking adhesion between the rubber composition and the fibers can be used, and are not particularly limited.
かかる R F L処理液による繊維の処理方法は本発明においては特に限 定されないが、 浸漬法に従って前記繊維を浸潰し、 しかる後、 熱処理を 行なうのが一般的である。 熱処理の条件も本発明においては特に限定さ れるものではなく、 繊維の種類に従って多少の変動はあるが、 浸漬によ り付着した R F Lを反応定着させるに十分な温度と時間であればよく、 通常約 1 4 0 ~ 2 1 0 °Cで約 1〜 1 0分間行なわれる。 なお、 通常、 繊 維の種類によっては前記熱処理液への浸漬に先立って繊維を予めィソシ ァネート溶液、 エポキシ溶液またはそれらの混合液に浸漬し、 乾燥処理 しておくことも可能である。 この場合、 乾燥温度は、 後続の熱処理温度 以下が望ましい。  The method for treating fibers with the RFL treatment solution is not particularly limited in the present invention, but it is common practice to immerse the fibers according to an immersion method, and then to perform a heat treatment. The conditions of the heat treatment are not particularly limited in the present invention, and there are some variations depending on the type of the fiber, but it is sufficient that the temperature and time are sufficient to react and fix the RFL adhered by immersion. This is performed at about 140 to 210 ° C for about 1 to 10 minutes. In general, depending on the type of fiber, it is also possible to preliminarily immerse the fiber in an isocyanate solution, an epoxy solution, or a mixed solution thereof prior to immersion in the heat treatment solution, followed by drying treatment. In this case, the drying temperature is desirably equal to or lower than the subsequent heat treatment temperature.
上述のような R F L処理を行なった繊維とカルボキシル化二トリル基 含有高飽和共重合体ゴム組成物との架橋接着に際しては、 例えば、 該繊 維をカルボキシル化二卜リル基含有高飽和共重合体ゴム組成物に混合す るか、 または該ゴム組成物と積層した後、 該ゴム組成物の通常の架橋条 件に従って架橋が行なわれる。 架橋の条件はとくに限定されないが、 通 常は 0 . 5 ~ 1 0 M P aの加圧下、 1 3 0〜2 0 0 °Cで 1 ~ 1 2 0分間 である。  When the fiber subjected to the RFL treatment as described above is cross-linked with a carboxylated nitrile group-containing highly saturated copolymer rubber composition, for example, the fiber is treated with a carboxylated nitrile group-containing highly saturated copolymer. After mixing with the rubber composition or laminating with the rubber composition, crosslinking is carried out according to the usual crosslinking conditions of the rubber composition. The crosslinking conditions are not particularly limited, but are usually from 130 to 200 ° C. under a pressure of 0.5 to 10 MPa for 1 to 120 minutes.
ベノレ ト ベルトの製造方法は、 本発明においてはとくに限定されない。 例えば、 ゴム組成物と接着前処理した繊維とを通常のベルトの製造方法に従って 複合化し、 目的に応じた形状に成形したのち、 架橋工程を経ることによつ て、 ベルトを製造することができる。 Benolet The manufacturing method of the belt is not particularly limited in the present invention. For example, a belt can be manufactured by compounding a rubber composition and a fiber that has been pre-bonded according to a normal belt manufacturing method, forming the composite into a shape suitable for the purpose, and then performing a crosslinking process. .
ホース Hose
本発明のゴム組成物を用いて製造されるホースは、 その構造及び製造 方法に格別の制限はない。 本発明のゴム組成物は、 多層構造のホース (通 常、 2層構造または 3層構造のホース) の最も内側の層の材料として特 に適しているが、 それ以外の層の材料として用いてもよい。 ホースの各 層はその目的に応じた架橋性ゴム組成物を架橋させて構成される。 この 各層を構成する架橋性ゴム組成物は、 それぞれのゴムに、 必要に応じて、 架橋剤、 補助剤、 充填剤、 老化防止剤、 可塑剤、 加工助剤などを配合し たものである。 また、 強度を持たせるために、 架橋ゴム層間に編組補強 糸層を設けてもよい。 編組補強糸層の糸の種類も、 特に限定されないが、 耐熱性に優れていることから、 通常、 ポリエステル繊維、 ナイロン繊維、 ァラミ ド繊維などが用いられる。  A hose manufactured using the rubber composition of the present invention is not particularly limited in its structure and manufacturing method. The rubber composition of the present invention is particularly suitable as a material for the innermost layer of a multi-layer hose (generally, a two-layer or three-layer hose), but may be used as a material for other layers. Is also good. Each layer of the hose is formed by crosslinking a crosslinkable rubber composition according to the purpose. The crosslinkable rubber composition constituting each layer is obtained by mixing a crosslinker, an auxiliary agent, a filler, an antioxidant, a plasticizer, a processing aid, and the like, with each rubber, if necessary. Further, a braided reinforcing yarn layer may be provided between the crosslinked rubber layers in order to impart strength. The type of yarn of the braided reinforcing yarn layer is not particularly limited, but polyester fibers, nylon fibers, and aramide fibers are usually used because of its excellent heat resistance.
2層構造のホースは、 例えば、 本発明の架橋性ゴム組成物によって内 層を形成し、 その外周に編組補強糸層を形成し、 接着剤を塗布し、 その 上に架橋性ゴム組成物から成る外層を形成し、 架橋工程において内層と 外層を架橋させることによって製造される。  The two-layer hose is formed, for example, by forming an inner layer with the crosslinkable rubber composition of the present invention, forming a braided reinforcing yarn layer on the outer periphery thereof, applying an adhesive, and then forming the inner layer from the crosslinkable rubber composition. It is manufactured by forming an outer layer comprising the above, and crosslinking the inner layer and the outer layer in a crosslinking step.
3層構造のホースは、 例えば、 本発明の架橋性ゴム組成物によって内 層を形成し、 内層の外周に編組補強糸層を形成し、 編組補強糸層の外周 に接着剤を塗布し、 その外周に架橋性ゴム組成物から成る中間層を形成 し、 中間層の外周に接着剤を塗布し、 その外周に架橋性ゴム組成物から W 成る外層を形成し、 架橋工程において内層、 中間層及び外層を架橋させ ることによって製造される。 For example, a hose having a three-layer structure is formed by forming an inner layer with the crosslinkable rubber composition of the present invention, forming a braided reinforcing yarn layer on the outer periphery of the inner layer, and applying an adhesive to the outer periphery of the braided reinforcing yarn layer. An intermediate layer made of a crosslinkable rubber composition is formed on the outer periphery, an adhesive is applied to the outer periphery of the intermediate layer, and the outer periphery is formed from the crosslinkable rubber composition. It is manufactured by forming an outer layer made of W and cross-linking the inner layer, the intermediate layer and the outer layer in a cross-linking step.
ゴムローノレ  Gomronore
ゴムロールの製造方法は、 本発明においてとくに限定されない。 一般 5 に採られているのと同様な手法に従って、 ゴムロールを作成することが できる。 例えば、 金属製の回転軸などのようなロール状基材を芯金とし てロール金型内に入れ、 そこにゴム組成物を入れて、 芯金の周囲にロー ル状に賦形し、 次いで、 1 0 0〜2 5 0 °Cに加熱して架橋させる方法を 採ることができる。 The method for producing the rubber roll is not particularly limited in the present invention. The rubber roll can be prepared according to the same method as employed in General 5. For example, a roll-shaped base material such as a metal rotary shaft is put into a roll mold as a core metal, a rubber composition is put there, and a roll is formed around the core metal. And a method of heating to 100 to 250 ° C. for crosslinking.
0 架橋成形して得られたゴムロールは、 必要に応じて表面の摩擦抵抗を 下げたり、 粘着力を低減するために、 表面処理を行うことが好ましい。 ダイヤフラム 0 The rubber roll obtained by cross-linking molding is preferably subjected to a surface treatment, if necessary, to reduce the surface frictional resistance or to reduce the adhesive force. Diaphragm
ダイヤフラムの製造方法は、 本発明においてとくに限定されない。 通 常はカレンダーロールを用いて、 ゴム組成物をナイロン繊維、 ポリエス5 テル繊維、 木綿等で形成された基布の上にトッピング (トップ . コーティ ング) し、 続いて所定形状寸法に打ち抜きしたものをプレス成型するこ とによって、 ダイヤフラムを製造することができる。 この成型条件は、 金型温度 1 5 0〜 1 9 0 °C、 架橋時間 3〜 3 0分、 成型圧力 5 0〜 1 5 0 k g f / c m 2 である。 このとき、 少なく とも液接触面側のトツピン0 グ層を本発明のゴム組成物を用いて形成する。 The manufacturing method of the diaphragm is not particularly limited in the present invention. Usually, a rubber roll is topped (top coated) on a base cloth made of nylon fiber, polyester 5-tel fiber, cotton, etc. using a calender roll, and then punched to a predetermined shape and size. The diaphragm can be manufactured by press molding. The molding conditions are a mold temperature of 150 to 190 ° C., a crosslinking time of 3 to 30 minutes, and a molding pressure of 50 to 150 kgf / cm 2 . At this time, at least a topping layer on the liquid contact surface side is formed using the rubber composition of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例を挙げて本発明をさらに具体的に説明する。 なお、 参考 例、 実施例及び比較例中の部及び%は特に断りのないかぎり重量基準で ある。 各例に記載の特性はそれぞれ以下のように測定した。 Hereinafter, the present invention will be described more specifically with reference to examples. Parts and% in Reference Examples, Examples and Comparative Examples are based on weight unless otherwise specified. The characteristics described in each example were measured as follows.
(1) 常態物性評価試験  (1) Evaluation test for physical properties under normal conditions
表 1の配合処方によって調製した未架橋ゴム組成物を 160°C、 20 分の条件で架橋して得られた厚さ 2 mmのシ一卜から 3号形ダンベルを 用いて試験片を打ち抜き、 この試験片について、 J I S K 6301 に従って、 引張強さ (単位: k g ί Zcm2 ) 、 100%引張り応力 (単 位: k g f Z c m2 ) および伸び (単位 : %) を測定した。 また、 硬さ は J I Sスプリ ング式 A形硬さ試験機を用いて測定した。 さらに、 圧縮 永久歪は J I S K 6301に従って、 100°Cにて 22時間保持し たのちに測定した (単位: %) 。 Using a No. 3 type dumbbell, a test piece was punched out from a 2 mm thick sheet obtained by crosslinking the uncrosslinked rubber composition prepared according to the formulation in Table 1 at 160 ° C for 20 minutes. this test piece, in accordance with JISK 6301, tensile strength (unit: kg ί Zcm 2), 100 % tensile stress (unit: kgf Z cm 2) and elongation (unit:%) was measured. The hardness was measured using a JIS spring type A hardness tester. Further, the compression set was measured after keeping at 100 ° C. for 22 hours in accordance with JISK 6301 (unit:%).
(2) 耐油性試験  (2) Oil resistance test
J I S K 630 1に従い、 J I S NO. 3オイルおよび J I S 燃料油 Cにゴム試験片を浸漬し (J I S NO. 3オイルを用いる場合 は 120°Cで 70時間浸漬し、 J I S燃料油 Cを用いる場合は 60°Cで 72時間浸漬する) 、 体積変化率 (単位: %) 、 引張強さ変化率 (%) 、 伸び変化率 (%) 及び硬さ変化率 (ポイント) を測定した。  In accordance with JISK6301, a rubber test piece is immersed in JIS NO.3 oil and JIS fuel oil C (when JIS NO.3 oil is used, immersed at 120 ° C for 70 hours; when JIS fuel oil C is used, it is 60 ° C) for 72 hours, volume change rate (unit:%), tensile strength change rate (%), elongation change rate (%), and hardness change rate (point).
(3) 耐サワーガソリ ン性試験  (3) Sour gasoline resistance test
40°Cでラウリルバーオキシドを 1重量%添加した J I S燃料油 Bに ゴム試験片を浸漬 (72時間) し、 体積変化率 (%) 、 引張強さ変化率 (%) 、 伸び変化率 (%) 及び硬さ変化率 (ポイント) を測定した。 Rubber specimens were immersed (72 hours) in JIS fuel oil B containing 1% by weight of lauryl baroxide at 40 ° C, and the volume change rate (%), tensile strength change rate (%), elongation change rate (% ) And hardness change rate (point) were measured.
(4) 耐オゾン性 (耐候性) 試験 (4) Ozone resistance (weather resistance) test
J I S K 6301に従い、 フューエル Cに 40°Cで 168時間浸 漬したのち室温で 1週間風乾した試験片について、 オゾン濃度 40 p p hm、 温度 40°Cにて 20%伸長下に静的オゾン試験を行った。 300 時間放置した後、 亀裂発生状況を観察した。 観察の結果、 亀裂の発生が 認められないものを N Cで表示した。 In accordance with JISK 6301, a static ozone test was performed on a test piece immersed in fuel C at 40 ° C for 168 hours and air-dried at room temperature for 1 week at an ozone concentration of 40 pp hm and a temperature increase of 20% at a temperature of 40 ° C. Was. 300 After standing for a time, the state of crack generation was observed. As a result of observation, those for which no cracks were observed were indicated by NC.
(5) 熱老化試験  (5) Heat aging test
J I S K 6301に従い、 120°Cx 72時間保持したのちの試 験片について、 引張強さ、 伸びおよび硬さの変化率 (単位 : ±%) を測 定した。  According to JIS K 6301, the test pieces after being kept at 120 ° C for 72 hours were measured for tensile strength, elongation, and rate of change in hardness (unit: ±%).
( 6 ) 結合二トリル単位含有量の測定  (6) Measurement of bound nitrile unit content
J I S K 6384に従い、 ゲルダール法によって共重合体中の窒 素含量を測定し、 計算により結合二トリル単位含有量を求めた (単位: 重量%) 。  According to JIS K 6384, the nitrogen content in the copolymer was measured by the Geldar method, and the bound nitrile unit content was determined by calculation (unit: wt%).
(7) 繊維接着試験  (7) Fiber adhesion test
無水マレイン酸変性ゴム 100重量部に表 1の配合剤を配合し、 ロー ル上で混練の後、 約 2. 5 mm厚のゴム組成物シートを調製した。 ナイ ロンコー ド (6—ナイロン、 構造 1260 DZ2) を、 水素化 N B Rの ラテックス (ヨウ素価 15、 平均粒径 0. 10 、 固形分 40重量%、 p H 10. 5 ) を含有する R F L液からなる接着剤組成物で処理した後、 上記のゴム組成物シー トと積層し、 架橋接着させることによってゴム組 成物と繊維との複合体を調製した。 R F L液からなる接着剤組成物は表 1の処方に従って調製した。 100 parts by weight of the maleic anhydride-modified rubber was blended with the compounding ingredients shown in Table 1 and kneaded on a roll to prepare a rubber composition sheet having a thickness of about 2.5 mm. Nylon code (6-nylon, structure 1260 DZ2) is composed of an RFL solution containing latex of hydrogenated NBR (iodine value 15, average particle size 0.10, solid content 40% by weight, pH 10.5) After the treatment with the adhesive composition, the composite was laminated with the above rubber composition sheet and crosslinked to prepare a composite of the rubber composition and the fibers. An adhesive composition composed of the RFL solution was prepared according to the formulation in Table 1.
表 1 table 1
(R i F i i^ix)ノ  (R i F i i ^ ix) ノ
Iノ /ノレシン 丄 1丄 . n ¾R  I no / noresin 丄 1 丄. N ¾R
ホノレマリ ン v. /υ 丄 u . o  Honore Marine v. / Υ 丄 u. O
カセイソータ" 1 Π Q  Case sorter "1 Π Q
.  .
フ 0 Q C:  0 Q C:
J k、 . O m πμ  J k,. O m πμ
=4 Ϊ- Z a c  = 4 Ϊ- Z a c
Ό Ό . u邵  Usha
(R F L液  (R FL liquid
ラテックス 2 5 0. 0部  Latex 2 50.0 parts
R F液 2 6 6. 0部  R F liquid 2 66.0 parts
ァンモニァ水 ( 1 4 %) 2 2. 6部  Ammonia Water (14%) 22.6 parts
水 4 7. 9部  47.9 parts of water
口 =4- 1 5 8 6. 5部 接着剤組成物を用いて試験用シングルコー ドディ ップマシーンで各繊 維を浸漬処理して処理コードを調製した。 得られた処理コー ドを、 ゴム 組成物に埋め込み長さ 8 mmで埋め込み、 プレス圧 5MP a、 温度 1 5 0°Cで 3 0分間架橋して繊維とゴムとの複合体を得た。 得られた複合体 について A S TM D 2 1 3 8 - 7 2に準拠してコ一ド引抜き試験を行 なって初期接着力を測定し、 接着状態を観察した。 接着状態が良好なも のは〇、 やや不良なものは△で表示した。  Mouth = 4- 1 5 8 6.5 parts Each fiber was immersed in a single code dip machine for testing using the adhesive composition to prepare a treatment code. The obtained treatment code was embedded in the rubber composition at an embedded length of 8 mm, and crosslinked at a press pressure of 5 MPa and a temperature of 150 ° C. for 30 minutes to obtain a composite of fiber and rubber. The obtained composite was subjected to a code pull-out test in accordance with ASTM D2138-72, the initial adhesive strength was measured, and the adhesive state was observed. Those with good adhesion are marked with 〇, and those with poor adhesion are marked with △.
( 8) 酸当量の測定 ゴムをアセトンに溶解し、 n—へキサンで再沈精製し、 得られた再沈 精製ゴムをアセ トンに再溶解し、 このゴム溶液を、 水酸化カ リウムのェ タノール溶液を用いて、 チモ一ルフ夕レイ ンを指示薬として、 滴定する ことによって酸当量を求めた。 (8) Measurement of acid equivalent The rubber was dissolved in acetone, reprecipitated and purified with n-hexane, and the resulting reprecipitated purified rubber was redissolved in acetone. The acid equivalent was determined by titration with a tanol solution using Timolfen Rain as an indicator.
(9) 赤外線吸光分析 (9) Infrared absorption analysis
赤外線吸光分析機 ( (株) エス · ティ · ジャパン社製、 ァイリス走査 型赤外顕微システム) を用いて測定した。 カルボン酸無水物基は 1 78 5 c m 1付近に、 カルボキシル基は 1 710〜 1740 c m 1付近にピ ークが出現する。 Infrared absorption analyzer (ST Japan Co., Ltd., iris scanning) Type infrared microscopy system). Carboxylic acid anhydride group in the vicinity of 1 78 5 cm 1, carboxyl group peak appears in the vicinity of 1 710~ 1740 cm 1.
( 10) ME K不溶解分の測定  (10) Measurement of MEK insoluble content
ゴムを細かく切り刻み、 これを 80メ ッシュの金網製のかごに入れ、 このかごを常温のメチルェチルケトンに 48時間浸漬し、 かごに残った 固形分を乾燥し、 乾燥物の重量を測定し、 かごに最初に入れたゴムの重 量に対する乾燥物の重量の百分率を求めた。  Finely chop the rubber, place it in an 80 mesh wire mesh basket, immerse the basket in methyl ethyl ketone at room temperature for 48 hours, dry the solids remaining in the basket, and weigh the dried material. The percentage of the weight of the dry matter relative to the weight of the rubber initially placed in the basket was determined.
参考例 1 (カルボキシル化二卜リル基含有高飽和共重合体ゴムの調製) 二 ト リル基含有高飽和重合体ゴム (水素化アク リ ロニ ト リル ブ夕ジ ェン共重合体ゴム、 ヨウ素価 28、 結合二トリル単位含量 36重量%、 ム一二一粘度 58) 100部を、 加熱密閉式混練機である加圧ニーダー (森山製作所製、 混合量 75リ ッ トル、 MS式) を用いて素練りした。 このとき、 加圧ニーダ一は、 その混合槽、 側板、 加圧蓋及びブレード 軸のジャケッ トに蒸気圧 3 k g f Z c m2 の圧力でスチームを流してジャ ケッ トを 130°Cに加熱しながら、 ブレード回転数 30Z25 r pm、 せん断速度 500 S 1の条件で運転した。 加圧ニーダ一内の充填率は、 二一ダ一の全容量に対し約 89. 5体積%であった。 Reference Example 1 (Preparation of highly saturated copolymer rubber containing carboxylated ditolyl group) Highly saturated polymer rubber containing ditolyl group (acrylonitrile hydrogenated copolymer rubber, iodine value 28, Combined nitrile unit content: 36% by weight, viscosity: 58 parts 100) Using a pressurized kneader (Moriyama Seisakusho, mixing amount: 75 liters, MS type), 100 parts of heated and kneaded kneader It was mastic. At this time, a pressure kneader scratch, the mixing tank, the side plates, while heating the vapor pressure 3 kgf Z cm Ja Kek preparative flowing steam at 2 pressure to 130 ° C in the jacket of the pressurizing lid and blade shaft blade rotation speed 30Z25 r pm, was operated under conditions of shear rate 500 S 1. The filling rate in the pressure kneader was about 89.5% by volume based on the total capacity of the kneader.
ゴム温度が 130°Cまで上昇した後、 65 °Cで加熱溶融した無水マレ イン酸 1. 8部及び 2, 6—ジー t e r t—ブチルー 4 _メチルフヱノ ール (BHT) 0. 5部をプランジャーポンプを用いて加圧二一ダ一内 に投入し、 引き続き混練 (予混練) した。  After the rubber temperature rose to 130 ° C, plunger 1.8 parts of maleic anhydride and 0.5 part of 2,6-di-tert-butyl-4-methylphenol (BHT) melted by heating at 65 ° C It was put into a pressurized molder using a pump and kneaded (pre-kneaded) continuously.
混練によって発生するせん断発熱を利用してゴム温度が 250°Cにな るように調整し、 その温度で、 さらに混練を行ない、 ェン型付加反応を させた。 ゴム温度の制御は、 加圧二一ダ一のジャケッ 卜に 35°Cの水を 流して ί亍つた。 Using the shear heat generated by kneading, the rubber temperature is adjusted to 250 ° C, and further kneading is performed at that temperature to carry out the ene-type addition reaction. I let it. The rubber temperature was controlled by flowing water at 35 ° C through the jacket of the pressurized mixer.
最後に、 加圧ニーダ一の混合槽を倒し、 約 30秒間空練りして、 ゴム 組成物を落下させ、 加圧ニーダ一から取り出し、 カルボキシル化二トリ ル基含有高飽和共重合体ゴムを得た。 加圧二一ダ一のブレードの汚れは 全く認められなかった。 なお、 二トリル基含有高飽和重合体ゴムを加圧 ニーダ一に投入し、 素練りを開始したのち最後にゴム組成物を落下させ て加圧ニーグーから取り出すまでの操作には、 33分間を要した。  Finally, the mixing tank of the pressure kneader is lowered, and the mixture is kneaded for about 30 seconds, and the rubber composition is dropped and taken out of the pressure kneader to obtain a carboxylated nitrile group-containing highly saturated copolymer rubber. Was. No dirt was found on the blades of the pressurized duster. It should be noted that the operation from charging the nitrile group-containing highly saturated polymer rubber to the pressure kneader, starting the mastication, and finally dropping the rubber composition to take it out of the pressure niger takes 33 minutes. did.
得られたカルボキシル化二トリル基含有高飽和共重合体ゴムは、 酸当 量 16. 3 x 10— 3e p h r、 赤外線吸光分析による [カルボン酸無水 物基のピーク高] / ( [カルボン酸無水物基のピーク高] + [カルボキ シル基のピーク高] ) の値 0. 96、 MEK不溶解分 0. 2%の無水マ レイン酸付加水素化ァクリロニトリル一ブタジエン共重合体ゴム (マレ ィン酸変性 Z P - 1 ) である。 The resulting carboxylated nitrile group-containing highly saturated copolymer rubber, acid equivalent weight 16. 3 x 10- 3 ephr, [peak height of a carboxylic acid anhydride Monomoto] Infrared absorption analysis / ([carboxylic acid anhydride Group peak height] + [Carboxyl group peak height]) value 0.96, MEK insoluble content 0.2% maleic anhydride-added hydrogenated acrylonitrile-butadiene copolymer rubber (modified with maleic acid) ZP-1).
参考例 2 (ォ一 トクレーブによるカルボキシル化二トリル基含有高飽和 共重合体ゴムの調製) Reference Example 2 (Preparation of carboxylated nitrile group-containing highly saturated copolymer rubber by autoclave)
オートクレープ中に、 二トリル基含有高飽和重合体ゴム (水素化ァク リロ二トリルーブタジェン共重合体、 ヨウ素価 28、 結合ァク リロニト リル単位含量 36重量%、 ムーニー粘度 58) のメチルェチルケトン溶 液 (濃度 1 1%) を仕込み、 該ゴム 100部に対して無水マレイン酸 3 0部を添加した後、 不活性ガス雰囲気下でベンゾィルパーォキサイ ド 7 部を溶解したメチルェチルケトン溶液を連続添加しつつ、 95°Cで 4時 間反応させた。 反応生成物は n—へキサンノジェチルエーテル混合溶剤 で再沈精製した。 得られた反応生成物は、 酸当量 18. 3 X 10-3e p h r、 赤外線吸光分析による [カルボン酸無水物基のピーク高] / ( [力 ルボン酸無水物基のピーク高] + [カルボキシル基のピーク高] ) の値In the autoclave, the methyl of nitrile group-containing highly saturated polymer rubber (hydrogenated acrylonitrile butadiene copolymer, iodine value 28, bound acrylonitrile unit content 36% by weight, Mooney viscosity 58) An ethyl ketone solution (concentration: 11%) was charged, 30 parts of maleic anhydride was added to 100 parts of the rubber, and then 7 parts of methyl benzoyl peroxide was dissolved under an inert gas atmosphere. The reaction was carried out at 95 ° C for 4 hours while continuously adding the ethyl ketone solution. The reaction product was purified by reprecipitation with a mixed solvent of n-hexanenoethyl ether. The reaction product obtained has an acid equivalent of 18.3 X 10-3ep hr, value of [peak height of carboxylic anhydride group] / ([peak height of carboxylic anhydride group] + [peak height of carboxyl group]) by infrared absorption analysis
0. 45、 MEK不溶解分 7. 1%の無水マレイ ン酸付加水素化ァクリ ロニトリル一ブタジエン共重合ゴム (マレイン酸変性 Z P— 2) である。 参考例 3 (ゴム一ポリ塩化ビニル樹脂混合物の調製) 0.45, MEK insoluble content 7.1% maleic anhydride-added hydrogenated acrylonitrile-butadiene copolymer rubber (maleic acid-modified ZP-2). Reference Example 3 (Preparation of rubber-polyvinyl chloride resin mixture)
約 160°Cに加熱した 1. Ίリ ッ トルバンバリ一 (堺重工株式会社製) を用い、 回転数 100 r pm、 ロータ一の回転数比 1. 12に設定して、 塩化ビニル樹脂とカルボキシル化二トリル基含有高飽和共重合体ゴムと を混合した。 まず、 該ゴムを投入し、 1分間ゴムの素練りを行い、 その 後、 ポリ塩化ビニル樹脂の粉末に可塑剤を 10 : 3の割合で含浸させた ポリ塩化ビニル樹脂を投入し、 5分間混練を行った。 残りの可塑剤は、 その他の配合剤を混合する際、 カーボンブラックに含浸させて使用した。 実施例 1〜3及び比較例 1~2  Heated to approx. 160 ° C 1. Using a Little Banbari (manufactured by Sakai Heavy Industries, Ltd.), set the rotation speed to 100 rpm and the rotation speed ratio of the rotor to 1.12, and carboxylated with vinyl chloride resin. Was mixed with a nitrile group-containing highly saturated copolymer rubber. First, the rubber is charged, the rubber is masticated for 1 minute, and then the polyvinyl chloride resin impregnated with a plasticizer in a ratio of 10: 3 to the powder of the polyvinyl chloride resin is charged and kneaded for 5 minutes. Was done. The remaining plasticizer was used by impregnating carbon black when mixing other compounding agents. Examples 1-3 and Comparative Examples 1-2
前記で調製した無水マレイン酸付加水素化ァクリロニトリルーブタジ ェン共重合体ゴム (マレイ ン酸変性 Z P— 1及びマレイ ン酸変性 Z P— 2) を使用し、 これとポリ塩化ビニル樹脂とを、 表 2の割合に従い、 下 記の方法で混合してゴムとポリ塩化ビニル樹脂とを含有する組成物を調 製した。 その後、 表 2に示した配合剤を配合し、 40°Cにて 6インチ口 ールを用いて混練してゴム組成物を調製した。 ゴム組成物は、 160°C で 20分間、 プレス成形機にて加圧架橋をおこない、 得られた架橋物に ついて架橋物性を測定した。 また、 比較として、 市販の水素化 NB R (Z P 2020 L、 結合ァクリロニトリル単位含量 36重量%、 ヨウ素価 2 8、 ム一二一粘度 60、 日本ゼオン株式会社製) を使用した。 結果を表 2に示す。 表 2 The maleic anhydride-added hydrogenated acrylonitrile-butadiene copolymer rubber (maleic acid-modified ZP-1 and maleic acid-modified ZP-2) prepared above was used, and this was combined with a polyvinyl chloride resin. According to the ratios shown in Table 2, a composition containing rubber and polyvinyl chloride resin was prepared by mixing according to the following method. Thereafter, the compounding ingredients shown in Table 2 were blended and kneaded at 40 ° C. using a 6-inch jar to prepare a rubber composition. The rubber composition was cross-linked under pressure at 160 ° C. for 20 minutes by a press molding machine, and the cross-linked properties of the obtained cross-linked product were measured. As a comparison, a commercially available hydrogenated NBR (ZP2020L, bound acrylonitrile unit content 36% by weight, iodine value 28, mu-212 viscosity 60, manufactured by Zeon Corporation) was used. Table 2 shows the results. Table 2
実施例 比較例 Example Comparative example
1 2- 3 1 配 合 1 2- 3 1 Combination
マレイ ン酸変性 Z P - 1 80 70  Maleic acid modified Z P-1 80 70
マレイ ン酸変性 Z P— 2 80  Maleic acid-modified ZP—280
Z p 2020し 70 塩化ビュル樹脂 20 30 20 30 酸化亜鉛 5 5 5 5 ステアリ ン酸 1 1 1 1  Zp 2020 then 70 chloride resin 20 30 20 30 zinc oxide 5 5 5 5 stearate 1 1 1 1
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
S R Fカーボンブラック 50 50 50 50 チュウラム系加硫促進剤 1.0 1.0 1.0 1.0 チアゾ一ル系加硫促進剤 1.5 1.5 1.5 1.5 ァ ミ ン系老化防止剤 2.0 2.0 2.0 2.0 可塑剤 20 20 20 20 引張試験 S R F carbon black 50 50 50 50 Cheuram vulcanization accelerator 1.0 1.0 1.0 1.0 Thiazole vulcanization accelerator 1.5 1.5 1.5 1.5 Ammine antiaging agent 2.0 2.0 2.0 2.0 Plasticizer 20 20 20 20 Tensile test
引張強さ (kgf/cm2) 328 315 311 292 伸び (%) 470 450 460 470Tensile strength (kgf / cm 2 ) 328 315 311 292 Elongation (%) 470 450 460 470
100%引張応力 68 59 50 38 硬さ Shore A 67 65 65 66 空気加熱老化試験 100% tensile stress 68 59 50 38 Hardness Shore A 67 65 65 66 Air aging test
(120°Cx 72時間)  (72 hours at 120 ° C)
引張強さ変化率 (%) - 3 -4 -7 -11 伸び変化率 (%) -8 -13 -15 - 24 硬さ変化 (ボイン ト) 2 3 4 6 圧縮永久歪み (%) 62 64 67 78 耐油試験  Change in tensile strength (%)-3 -4 -7 -11 Change in elongation (%) -8 -13 -15-24 Change in hardness (point) 2 3 4 6 Compression set (%) 62 64 67 78 Oil resistance test
J I S N o. 3 ( 120 °C x 70時間)  J I S No. 3 (120 ° C x 70 hours)
体積変化率 (%) 6 6 7 6 引張強さ変化率 (%) -12 -15 -13 -18 伸び変化率 (%) -34 - 26 -54 - 76 硬さ変化 (ボイン ト) 7 6 5 7 Volume change rate (%) 6 6 7 6 Tensile strength change rate (%) -12 -15 -13 -18 Elongation change rate (%) -34-26 -54-76 Hardness change (point) 7 6 5 7
J I S燃料油 C ( 60 °C X 72時間) JIS fuel oil C (60 ° C X 72 hours)
体積変化率 22 20 25 26 引張強さ変化率 -41 -38 -52 -48 伸び変化率 -28 - 24 -35 -29 硬さ変化 (ボイント) -13 - 13 -12 -14 耐サワーガソリン性試験  Volume change 22 20 25 26 Tensile strength change -41 -38 -52 -48 Elongation change -28-24 -35 -29 Hardness change (point) -13-13 -12 -14 Sour gasoline resistance test
体積変化率 (%) 27 24 30 33 引張強さ変化率 (%) -52 - 48 - 62 - 52 伸び変化率 (%) - 29 -25 -38 - 38 硬さ変化 (ボイン ト) -15 -14 -17 -15 静的オゾン複合試験  Volume change rate (%) 27 24 30 33 Tensile strength change rate (%) -52-48-62-52 Elongation change rate (%)-29 -25 -38-38 Hardness change (point) -15- 14 -17 -15 Static ozone combined test
耐オゾン性 (300時間) NC NC NC NC 繊維接着試験  Ozone resistance (300 hours) NC NC NC NC Fiber adhesion test
剥離接着力 (kgf/1ィンチ) 13.5 13.5 10.0 8.1 接着伏態 ◎ ◎ 〇 X 表 2の結果から、 本発明によれば、 無水マレイ ン酸付加水素化ァクリ ロニ卜リルーブタジェン共重合体ゴムとポリ塩化ビニル樹脂とを含有す る組成物により、 従来技術と比較して、 強度特性、 耐圧縮永久歪性、 耐 サワーガソリ ン性及び繊維との接着性が改良された架橋ゴムが得られる ことが分かる。 この架橋ゴムは、 自動車用燃料と接触する用途に好適に 使用することができ、 とくに、 燃料ホース及びダイヤフラムとして有用 である。 Peel adhesive strength (kgf / 1 inch) 13.5 13.5 10.0 8.1 Adhesive state ◎ ◎ 〇 X From the results in Table 2, it can be seen that, according to the present invention, the strength properties of the composition containing the maleic anhydride-added hydrogenated acrylonitrile-butadiene copolymer rubber and the polyvinyl chloride resin were higher than those of the prior art. It can be seen that a crosslinked rubber having improved compression set resistance, sour gasoline resistance and adhesion to fibers was obtained. This crosslinked rubber can be suitably used for applications that come into contact with automotive fuel, and is particularly useful as a fuel hose and diaphragm.
とくに、 赤外線吸光分析における [カルボン酸無水物基のピーク高] / ( [カルボン酸無水物基のピーク高] + [カルボキシル基のピーク高] ) の値が大きいカルボキシル化二トリル基含有高飽和共重合体ゴムを用 いた場合には、 架橋ゴムの上記諸物性がさらに改良される傾向を示す。 発明の効果  In particular, in the infrared absorption spectroscopy, the value of [peak height of carboxylic anhydride group] / ([peak height of carboxylic anhydride group] + [peak height of carboxyl group]) is large. When a polymer rubber is used, the above properties of the crosslinked rubber tend to be further improved. The invention's effect
このように、 本発明によれば、 無水マレイ ン酸付加水素化ァク リロ二 トリルーブタジェン共重合体ゴムとポリ塩化ビニル樹脂とを含有する組 成物により、 従来技術と比較して、 強度特性、 耐圧縮永久歪性、 耐サヮ —ガソリ ン性及び繊維との接着性が改良された架橋ゴムを得ることがで さる。  Thus, according to the present invention, a composition containing a maleic anhydride-added hydrogenated acrylonitrile butadiene copolymer rubber and a polyvinyl chloride resin, It is possible to obtain a crosslinked rubber having improved strength characteristics, resistance to compression set, resistance to gasoline and adhesion to fibers.
本発明のゴム組成物は、 優れた加工性を有し、 その架橋物は機械的強 度に優れ、 良好な耐油性、 耐熱性、 耐候性などを有するので各種シール 材、 ベルト類、 ホース類、 ダイヤフラム、 その他の自動車用ゴム材料と して有用である。  The rubber composition of the present invention has excellent processability, and the crosslinked product has excellent mechanical strength and good oil resistance, heat resistance, weather resistance, etc., so that various sealing materials, belts, hoses, etc. It is useful as a diaphragm, diaphragm or other automotive rubber material.
具体的には、 0 _リ ング、 ガスケッ ト、 オイルシール、 フレオンシー ルなどのような各種シール材 ; 自動車用 Vベルト、 ポリ · リブベルト、 歯付伝導ベルトなどのようなベルト類; 自動車用パワーステアリ ングホ ース、 各種機械 (例えば建設機械) 用の高圧耐油ホース、 自動車用燃料 ホースなどのようなホース類; ロール類; 油井及びガス井で使用される ゴム製品 〔パッカ一、 ブローアウ トプリベンター (B O P ) 、 バイププ ロテクターなど〕 ;各種ダイアフラム ; 自動車用クラツチ板およびブレ 一キシュ一 (これらはフヱノール樹脂またはエポキシ樹脂などのような 熱硬化性樹脂とその他の配合剤をプレンドし成型される) などの用途の ほか、 各種の防振ゴム、 電気製品、 自動車部品、 工業用品、 はきものな どの用途にも広範囲に利用することができる。 Specifically, various sealing materials such as 0-rings, gaskets, oil seals, freon seals, etc .; belts such as automotive V-belts, poly-ribbed belts, toothed conductive belts, etc .; automotive power steering Nguho Hoses, such as high-pressure oil-resistant hoses for various machines (for example, construction machinery), fuel hoses for automobiles, etc .; rolls; rubber products used in oil and gas wells [Packers, blow-out preventers (BOPs)] , Various types of diaphragms; automotive clutch plates and brakes (these are molded by blending a thermosetting resin such as phenolic resin or epoxy resin with other compounding agents). In addition, it can be widely used for various applications such as various types of vibration-proof rubber, electrical products, automotive parts, industrial supplies, footwear and so on.

Claims

請 求 の 範 囲 The scope of the claims
1. 酸当量が 2 X 10 "3 e p h r以上、 ム一二一粘度が 15〜200、 ヨウ素価が 80以下のカルボキシル化二トリル基含有高飽和共重合体ゴ ムにポリ塩化ビニル樹脂を配合してなることを特徴とする耐油性ゴム組 成物。 1. Polyvinyl chloride resin is blended with a carboxylated nitrile group-containing highly saturated copolymer rubber having an acid equivalent of 2 x 10 " 3 ephr or more, a viscosity of 15 to 200, and an iodine value of 80 or less. An oil-resistant rubber composition comprising:
2. カルボキシル化二トリル基含有高飽和共重合体ゴムが、 加熱密閉 式混練機において、 ゴム温度 200〜280°Cの範囲で二トリル基含有 高飽和共重合体ゴムとェチレン性不飽和カルボン酸またはその無水物と をェン型付加反応させて得られるものである請求の範囲 1の耐油性ゴム 組成物。  2. The carboxylated nitrile group-containing highly saturated copolymer rubber is heated in a heat-sealing kneader at a rubber temperature of 200 to 280 ° C and the nitrile group-containing highly saturated copolymer rubber and the ethylenically unsaturated carboxylic acid. 2. The oil-resistant rubber composition according to claim 1, which is obtained by subjecting an anhydride thereof to an ene-type addition reaction.
3. エチレン性不飽和カルボン酸またはその無水物が、 炭素数が 4〜 10のものである請求の範囲 2の耐油性ゴム組成物。  3. The oil-resistant rubber composition according to claim 2, wherein the ethylenically unsaturated carboxylic acid or anhydride thereof has 4 to 10 carbon atoms.
4. 二トリル基含有高飽和共重合体ゴムが、 エチレン性不飽和二トリ ルー共役ジェン系共重合体ゴムの共役ジェン単位を水素化したものであ る請求の範囲 1〜 3のいずれかの耐油性ゴム組成物。  4. The nitrile group-containing highly saturated copolymer rubber according to any one of claims 1 to 3, wherein the conjugated gen unit of the ethylenically unsaturated nitrile conjugated conjugated copolymer rubber is hydrogenated. Oil resistant rubber composition.
5. ニトリル基含有高飽和共重合体ゴムが、 結合二トリル量が 10〜 60重量%のものである請求の範囲 1〜 4のいずれかの耐油性ゴム組成 物。  5. The oil-resistant rubber composition according to any one of claims 1 to 4, wherein the nitrile group-containing highly saturated copolymer rubber has an amount of bound nitrile of 10 to 60% by weight.
6. 二トリル基含有高飽和共重合体ゴムが、 ヨウ素価が 80以下のも のである請求の範囲 1 ~5のいずれかの耐油性ゴム組成物。  6. The oil-resistant rubber composition according to any one of claims 1 to 5, wherein the nitrile group-containing highly saturated copolymer rubber has an iodine value of 80 or less.
7. 二 ト リル基含有高飽和共重合体ゴムが、 ムーニー粘度 (ML1 + 4, 100 °C ) が 30〜 300のものである請求の範囲 1〜6のいずれかの 耐油性ゴム組成物。 7. The oil-resistant rubber composition according to any one of claims 1 to 6, wherein the highly saturated copolymer rubber containing two tolyl groups has a Mooney viscosity (ML1 + 4 , 100 ° C) of 30 to 300. .
8. 二卜 リル基含有高飽和共重合体ゴムが、 赤外線吸光分析において [カルボン酸無水物基のピーク高] / ( [カルボン酸無水物基のピーク ] + [カルボキシル基のピーク高] ) の値が 0 . 5 0以上のものであ る請求の範囲 1〜 7のいずれかの耐油性ゴム組成物。 8. Highly saturated copolymer rubber containing nitrile group The value of [peak height of carboxylic acid anhydride group] / ([peak height of carboxylic acid anhydride group] + [peak height of carboxyl group]) is not less than 0.50. Any of the oil-resistant rubber compositions.
9 . ポリ塩化ビニル樹脂の分子量が、 平均重合度 6 0 0〜 2, 0 0 0 のものである請求の範囲 1〜8のいずれかの耐油性ゴム組成物。  9. The oil-resistant rubber composition according to any one of claims 1 to 8, wherein the polyvinyl chloride resin has an average degree of polymerization of 600 to 2,000.
1 0 . カルボキシル化二トリル基含有高飽和共重合体ゴムとポリ塩化 ビニル樹脂との混合比が、 カルボキシル化二トリル基含有高飽和共重合 体ゴム 9 5〜5 0重量部に対しポリ塩化ビニル樹脂 5〜5 0重量部であ る請求の範囲 1〜9のいずれかの耐油性ゴム組成物。  10. The mixing ratio of the carboxylated nitrile group-containing highly saturated copolymer rubber to the polyvinyl chloride resin is such that the carboxylated nitrile group-containing highly saturated copolymer rubber has a mixing ratio of 95 to 50 parts by weight of polyvinyl chloride. The oil-resistant rubber composition according to any one of claims 1 to 9, wherein the resin is 5 to 50 parts by weight.
1 1 . 請求の範囲 1の耐油性ゴム組成物と繊維との複合体。  1 1. A composite of the oil-resistant rubber composition of claim 1 and a fiber.
1 2 . 繊維が、 レゾルシン一ホルマリ ンの初期縮合物の水溶液とゴム ラテツクスとの混合物によって接着処理が施されたものである請求の範 囲 1 1の複合体。  12. The composite of claim 11 wherein the fibers have been adhesively treated with a mixture of an aqueous solution of a resorcinol-formalin precondensate and rubber latex.
1 3 . ホース用である請求の範囲 1 1または 1 2の複合体。  13. The composite of claim 11 or 12 for hoses.
1 4 . ダイヤフラム用である請求の範囲 1 1または 1 2の複合体。  14. The composite of claim 11 or 12 for diaphragms.
PCT/JP1998/001424 1997-03-31 1998-03-30 Oil-resistant rubber composition and composite of said composition with fibers WO1998044038A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9805197 1997-03-31
JP9/98051 1997-03-31

Publications (1)

Publication Number Publication Date
WO1998044038A1 true WO1998044038A1 (en) 1998-10-08

Family

ID=14209434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001424 WO1998044038A1 (en) 1997-03-31 1998-03-30 Oil-resistant rubber composition and composite of said composition with fibers

Country Status (1)

Country Link
WO (1) WO1998044038A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040105A (en) * 1999-08-02 2001-02-13 Bando Chem Ind Ltd Treating process for bonding rubber composition and textile material
JP2005281498A (en) * 2004-03-30 2005-10-13 Nippon Zeon Co Ltd Nitrile group-containing copolymer rubber composition and vulcanized rubber
JP2006131918A (en) * 2006-02-16 2006-05-25 Nippon Zeon Co Ltd Vulcanizable rubber composition including ethylenically unsaturated carboxylic metal salt
KR20160140626A (en) * 2014-03-28 2016-12-07 제온 코포레이션 Composition for dip molding and dip-molded article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646039A (en) * 1987-06-29 1989-01-10 Nippon Zeon Co Rubber composition
JPH02133430A (en) * 1988-11-14 1990-05-22 Yokohama Rubber Co Ltd:The Composite material of rubber composition with fiber and hose
JPH06263924A (en) * 1993-03-16 1994-09-20 Nippon Zeon Co Ltd Rubber composition
JPH08100083A (en) * 1994-09-30 1996-04-16 Nippon Zeon Co Ltd Rubber composition comprising highly saturated nitrile copolymer rubber and vinyl chloride resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646039A (en) * 1987-06-29 1989-01-10 Nippon Zeon Co Rubber composition
JPH02133430A (en) * 1988-11-14 1990-05-22 Yokohama Rubber Co Ltd:The Composite material of rubber composition with fiber and hose
JPH06263924A (en) * 1993-03-16 1994-09-20 Nippon Zeon Co Ltd Rubber composition
JPH08100083A (en) * 1994-09-30 1996-04-16 Nippon Zeon Co Ltd Rubber composition comprising highly saturated nitrile copolymer rubber and vinyl chloride resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040105A (en) * 1999-08-02 2001-02-13 Bando Chem Ind Ltd Treating process for bonding rubber composition and textile material
JP2005281498A (en) * 2004-03-30 2005-10-13 Nippon Zeon Co Ltd Nitrile group-containing copolymer rubber composition and vulcanized rubber
JP4552478B2 (en) * 2004-03-30 2010-09-29 日本ゼオン株式会社 Nitrile group-containing copolymer rubber composition and rubber vulcanizate
JP2006131918A (en) * 2006-02-16 2006-05-25 Nippon Zeon Co Ltd Vulcanizable rubber composition including ethylenically unsaturated carboxylic metal salt
KR20160140626A (en) * 2014-03-28 2016-12-07 제온 코포레이션 Composition for dip molding and dip-molded article

Similar Documents

Publication Publication Date Title
EP0704459B1 (en) Highly saturated nitrile rubber, process for producing same, vulcanizable rubber composition, aqueous emulsion and adhesive composition
CN101003648B (en) Microgel-containing vulcanizable composition based on hydrogenated nitrile rubber
EP1276773B1 (en) Process for hydrogenating carboxylated nitrile rubber, the hydrogenated rubber and its uses
JP3770285B2 (en) Highly saturated copolymer rubber containing carboxylated nitrile groups
JP3477849B2 (en) Rubber composition comprising a nitrile group-containing highly saturated copolymer rubber and an ethylene-based saturated copolymer rubber
CN103703073B (en) The high saturated copolymer rubber composition of nitrile group-containing
EP0704508B1 (en) Adhesive composition and composite of rubber with fiber
JP3496292B2 (en) Composites of nitrile group-containing highly saturated copolymer rubber and fiber
JP2011038119A (en) Rubber composition, method for producing the same, and vulcanized composite material obtained therefrom
JP3391116B2 (en) Nitrile group-containing highly saturated copolymer rubber, method for producing the same, and vulcanizable rubber composition
JP2008038059A (en) Rubber composition, its composite, and pneumatic tire using the same
US6828385B2 (en) Process for crosslinking carboxylated nitrile rubber, hydrogenating carboxylated nitrile rubber, the crosslinked rubber and its&#39; uses
JPH0742448B2 (en) Method of bonding rubber compound and fiber
WO1998044038A1 (en) Oil-resistant rubber composition and composite of said composition with fibers
WO1998044039A1 (en) Composition comprising mixture of synthetic resin and highly saturated carboxylated nitrile copolymer rubber
JPH10279734A (en) Vulcanizable rubber composition containing metallic salt of ethylenically unsaturated carboxylic acid
WO1998044035A1 (en) Rubber composition
JP3513938B2 (en) Aqueous emulsion of nitrile group-containing highly saturated copolymer rubber and adhesive composition thereof
JP2006131918A (en) Vulcanizable rubber composition including ethylenically unsaturated carboxylic metal salt
EP2977420A1 (en) Adhesive agent composition
JPH10279733A (en) Oil-resistant rubber composition and composite of the same composition and fiber
WO1998044036A1 (en) Rubber composition containing metal salt of ethylenically unsaturated carboxylic acid
JP4837817B2 (en) Composite of rubber composition and fiber material, and method for producing the same
JPH09316414A (en) Rubber adhesive composition and production of rubber composite
WO2005037914A1 (en) Polymer alloy, crosslinked object, and industrial part

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase