WO1998043347A1 - Device and method for controlling induction motor - Google Patents

Device and method for controlling induction motor Download PDF

Info

Publication number
WO1998043347A1
WO1998043347A1 PCT/JP1997/000952 JP9700952W WO9843347A1 WO 1998043347 A1 WO1998043347 A1 WO 1998043347A1 JP 9700952 W JP9700952 W JP 9700952W WO 9843347 A1 WO9843347 A1 WO 9843347A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
induction motor
value
winding
operation cycle
Prior art date
Application number
PCT/JP1997/000952
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Imanaka
Toshiyuki Kaitani
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP54539998A priority Critical patent/JP3320073B2/en
Priority to PCT/JP1997/000952 priority patent/WO1998043347A1/en
Publication of WO1998043347A1 publication Critical patent/WO1998043347A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a control device for an induction motor and a control method for an induction motor, which estimate a change in a winding resistance value due to a temperature change during operation of the induction motor and control the induction motor based on the estimated winding resistance value.
  • a vector control method and a sensorless vector control that performs control by estimating the speed are performed. These controls control the equivalent circuit constants of the induction motor, such as primary winding, secondary winding primary and secondary resistance, mutual inductance, primary and secondary leakage inductance, etc. It must be set accurately as a constant, and is measured and set before operation.
  • the primary and secondary resistances change depending on the temperature of the conductor of the induction motor, even if they are set accurately in advance, there is an error with respect to the true value due to the temperature change of the induction motor.
  • the control accuracy of the actual torque in response to the command deteriorates, and the speed control accuracy of sensorless vector control deteriorates.
  • the sensorless vector control if the primary resistance set value has an error with respect to its actual value, not only the control accuracy deteriorates, but also the control itself becomes unstable, and an overcurrent trip may occur. .
  • Japanese Patent Application Laid-Open No. 7-213001 discloses that in a sensorless inverter device, the secondary resistance of an induction motor at a cold temperature is measured and set as an initial value in a night. During operation, the current and operating time There is disclosed a sensorless integrated circuit device with resistance fluctuation compensation for estimating a secondary resistance fluctuation due to a degree rise and correcting a secondary resistance used for speed calculation.
  • FIG. 12 is a block diagram of the sensorless receiver with resistance fluctuation compensation described in Japanese Patent Application Laid-Open No. Hei 7-213100, in order to facilitate comparison with the control device of the present invention. It has been rewritten.
  • 1 is an induction motor
  • 2 is an inverter
  • 3 is a current detector
  • 4 is a speed command generator
  • 6 is a sensorless vector controller
  • 9 b is a resistance fluctuation estimator
  • 10 is a switch
  • 2 0 is a voltage detector
  • 21 is an initial value measuring device
  • 22 is an initial measurement setting device.
  • the sensor 2 receives a switching signal output from the sensorless vector controller 6 and outputs a voltage corresponding to the switching signal to the induction motor 1 via the current detector 3 and the voltage detector 20. I do.
  • the switch 10 closes to the initial value measuring device 21 only at the start of operation immediately after the control power is turned on, and outputs the switching signal output from the initial value measuring device 21 to the inverter 2.
  • a DC voltage is averagely applied to the induction motor 1 from the inverter 2.
  • the current ⁇ of the induction motor 1 is measured by the current detector 3, an initial value S 0 of the temperature rise of the induction motor 1 is obtained from the equation (1), and output to the resistance fluctuation estimator 9b.
  • 1x0 is a measured current value of the secondary resistor R2n by the same method when the temperature of the induction motor 1 is the same as the ambient temperature
  • K1 is a conversion coefficient between temperature and current.
  • the resistance fluctuation estimator 9b inputs the current I, which is the output of the current detector 3, and estimates the temperature rise 0 of the induction motor 1 by the equation (2), and further sets the initial measurement.
  • the secondary resistance fluctuation is estimated by the equation (3), and the corrected secondary resistance R2x is output to the sensorless vector controller 6.
  • K is the conversion gain and T is the time constant.
  • Sensorless vector controller 6 is the speed command value ⁇ m *, which is the output of speed command generator 4, and the output of current detector 3. Input the current I, the voltage V output from the voltage detector 20 and the modified secondary resistance R2x output from the resistance fluctuation estimator 9b. The secondary of the induction motor 1 set internally is also input. The speed of the induction motor 1 is controlled using the set value other than the resistance and the control gain so as to follow the command value ⁇ m *.
  • thermocouple inside the motor to measure the temperature of the induction motor. Had a special specification.
  • the present invention has been made to solve the above-described problems.
  • the present invention estimates the resistance change while calculating the resistance change characteristic of an induction motor in an actual use state, and estimates the speed based on the result and facilitates the calculation.
  • An object of the present invention is to provide an induction motor control device and an induction motor control method capable of favorably controlling an induction motor without previously setting a thermal resistance, a thermal time constant, and the like of the induction motor in order to perform the correction. Disclosure of the invention
  • the resistance measuring means measures a winding resistance value of the induction motor
  • the resistance change coefficient calculating means calculates a difference between a winding resistance value measured before and after the first operation cycle. Based on the value related to the amount of heat generated by the induction motor during the first operation cycle, the resistance change coefficient of the winding resistance per unit amount of this value is calculated. It was estimated based on the starting winding resistance measured at the start of the second operation cycle following the first operation cycle, the value related to the calorific value of the induction motor during the second operation cycle, and the resistance change coefficient.
  • the control means controls the chamber for driving the induction motor using the estimated winding resistance value, even if the heating value of the induction motor changes, the installation condition may be different, Even for induction motors with different thermal time constants It becomes possible to estimate the resistance fluctuation that changes with the operation cycle, and it is possible to accurately control the speed of the induction motor using the estimated resistance.
  • the resistance change coefficient calculation means calculates a value related to a calorific value of the induction motor generated during the first operation cycle based on a current value supplied to the induction motor. Since the resistance fluctuation estimating means calculates a value related to the calorific value of the induction motor generated during the second operation cycle based on the current value supplied to the induction motor, the induction motor changes due to a change in the current value in the operation cycle. Even if the calorific value of the motor changes, the resistance fluctuation can be estimated, and the speed of the induction motor can be controlled accurately using the estimated resistance value.
  • the resistance change coefficient calculating means calculates a value related to a calorific value of the induction motor generated during the first operation cycle based on a torque command value instructed to the induction motor. Then, since the resistance fluctuation estimating means calculates a value related to the heat generation amount of the induction motor generated during the second operation cycle based on the torque command value instructed to the induction motor, the change of the command torque in the operation cycle is calculated. Even if the amount of heat generated by the induction motor changes due to the development, the resistance fluctuation can be estimated, and the speed of the induction motor can be accurately controlled using the estimated resistance value.
  • the resistance fluctuation estimating means may be configured to start up by measuring the stop-time winding resistance measured by the resistance measuring means at the time of stopping the first operation cycle at the time of starting the second operation cycle. Since the estimated winding resistance value in the second operation cycle is output as the time winding resistance, the resistance measuring means does not need to measure the winding resistance at startup in the second operation cycle. The time required is shorter.
  • the resistance measuring means measures a winding resistance value of the induction motor
  • the resistance change coefficient calculating means calculates a difference between the winding resistance values measured before and after the first operation cycle. From this value and the value related to the heat value of the induction motor generated during the first operation cycle, the resistance change coefficient of the winding resistance per unit amount is calculated from this value, and the resistance characteristic storage means changes the resistance change.
  • the relationship between the coefficient and the winding resistance is stored, and the resistance measuring means refers to the relationship stored based on the starting winding resistance measured at the start of the second operation cycle following the first operation cycle.
  • the resistance change estimation means outputs the resistance change coefficient output from the resistance characteristic storage means on the basis of the winding resistance value at start-up, and the value related to the heat generation amount of the induction motor during the second operation cycle. From the estimated winding resistance value and output Since the means controls the induction motor driving the induction motor using the estimated winding resistance value, the resistance fluctuation estimating means uses the resistance change coefficient output from the resistance characteristic storage means and the start-up time measured at the start of the operation cycle. The resistance fluctuation can be estimated based on the winding resistance, and the thermal resistance and thermal time constant are not set beforehand. Even if there is a large difference, the winding resistance can be estimated well.
  • the resistance characteristic storage means stores the current value during the first operation cycle as a parameter and calculates a resistance change coefficient and a winding resistance value. Since the resistance measuring means outputs the resistance change coefficient corresponding to the starting winding resistance measured at the start of the second operation cycle with reference to the current value of the second operation cycle, the resistance measurement means outputs the resistance.
  • the characteristic storage means uses the resistance change coefficient characteristic data stored corresponding to the current value closest to the current value of the operation cycle out of the stored winding resistance value and resistance change coefficient, and A resistance change coefficient is output based on the winding resistance measured at startup, and a resistance change coefficient suitable for resistance fluctuation due to multiple load states of the induction motor can be set. Regardless, the winding resistance can be estimated with high accuracy.
  • the resistance characteristic storage means stores the resistance change coefficient calculated by the resistance change coefficient calculation means in the first operation cycle and the winding resistance measured by the resistance measurement means at that time. Is stored as a function approximation, a resistance change coefficient closer to the actual change can be obtained by referring to the resistance change coefficient from the winding resistance at the start of the operation cycle.
  • the resistance change coefficient calculating means may include an estimated winding resistance estimated at the time of stopping the second operation cycle and a resistance at the time of stoppage measured by the resistance measuring means at the time of stopping the second operation cycle.
  • the relationship between the winding resistance and the resistance change coefficient stored in the resistance characteristic storage means is corrected when these differences exceed a predetermined value. Even if a temperature difference between the induction motor temperature and the ambient temperature or a change in the flow rate of the surrounding air, etc., due to the environmental change of the winding, etc., occur, the winding resistance value and the resistance change coefficient stored in the resistance characteristic storage means. Can be corrected to match the actual state, and the resistance fluctuation can be estimated well.
  • the temperature estimating means stores in advance the relationship between the winding temperature and the winding resistance of the induction motor, and the estimated winding resistance outputted by the resistance change coefficient calculating means. From the relationship between the winding temperature and the winding resistance based on Since the temperature of the line is estimated, the temperature of the induction motor can be estimated without setting the thermal resistance and the thermal time constant of the induction motor in advance.
  • the temperature estimating means stores the resistance value of the wiring from the inverter to the induction motor in advance, and the wiring of the wiring is determined from the primary winding resistance value output from the resistance measuring means. Since the temperature of the primary winding is estimated based on the value obtained by subtracting the resistance value, the primary winding resistance value is regarded as the wiring resistance value even if the wiring length from the inverter to the induction motor is relatively long. The temperature of the primary winding of the induction motor can be estimated separately.
  • the temperature estimating means outputs a stop signal for stopping the operation of the induction motor to the control means when the temperature of the winding exceeds a predetermined value, and the control means Since the operation is stopped in the evening, it is possible to prevent the induction motor from overheating without installing a thermocouple inside the motor.
  • the operation mode setting means may be configured such that, before the first and second operation cycles, each of the predetermined operation cycles in which the resistance change coefficient calculation means repeats the set number of times. From the difference between the winding resistance measured by the resistance measuring means at the start and stop of the operation cycle and the value related to the calorific value of the induction motor generated in each operation cycle, the resistance of the winding resistance per unit quantity The change coefficient is calculated for each operation cycle, and the relationship between the resistance change coefficient and the winding resistance value for each operation cycle is stored in the resistance characteristic storage means. The relationship between the change coefficients is stored in the resistance characteristic storage means in advance, and in the second operation cycle, the more appropriate relationship between the winding resistance value and the resistance change coefficient is stored, so that the resistance variation can be estimated well. Become so.
  • control method of the induction motor of the present invention is based on the difference between the winding resistance measured before and after the operation cycle and the value related to the calorific value of the induction motor generated during the operation cycle. Calculates the resistance change coefficient of winding resistance per unit quantity Then, at the start of the next operation cycle, the winding resistance at startup is measured, and based on the winding resistance at startup, an estimation is made from the resistance change coefficient and the value related to the calorific value of the induction motor during the operation cycle. Since the winding resistance is output and the induction motor is controlled based on the estimated winding resistance, the winding resistance is measured when the operation cycle is stopped. Even if the calorific value changes, it is possible to estimate the resistance fluctuation that changes with the operating cycle even for induction motors with different installation conditions and different thermal time constants. Speed can be controlled.
  • control method of the induction motor of the present invention is based on the difference between the winding resistance measured before and after the operation cycle and the value related to the calorific value of the induction motor generated during the operation cycle.
  • Calculates the resistance change coefficient of the winding resistance per unit amount of stores the relationship between the winding resistance and the resistance change coefficient, measures the winding resistance at startup at the start of the next operation cycle, and calculates the winding resistance at startup.
  • the resistance change coefficient corresponding to the wire resistance is obtained with reference to the relationship between the winding resistance and the resistance change coefficient, and based on the starting winding resistance, the resistance change coefficient corresponding to the starting winding resistance is calculated based on the starting winding resistance.
  • the estimated winding resistance estimated from the value related to the calorific value of the induction motor is output, and the induction motor that drives the induction motor is controlled based on the estimated winding resistance. Since the winding resistance value at stop is measured, Based on the start-up winding resistance measured at the start of the operation, the resistance change coefficient corresponding to the start-up winding resistance of the operation cycle is determined with reference to the relationship between the winding resistance and the resistance change coefficient.
  • the resistance fluctuation can be estimated using the value related to the heat value during the cycle, without setting the thermal resistance, thermal time constant, etc. in advance, and the resistance at the time of start-up Even if there is a large difference from the resistance at startup, the winding resistance can be estimated well.
  • FIG. 1 is a block diagram showing a control device for an induction motor according to a first embodiment of the present invention.
  • FIG. 3 is a flowchart showing a control method of the induction motor control device shown in FIG. 1
  • FIG. 3 is a block diagram of the induction motor control device according to the second embodiment of the present invention
  • FIG. 5 is an explanatory diagram showing the winding resistance value and the resistance change coefficient of the motor.
  • FIG. 5 is an explanatory diagram showing the relationship between the winding resistance value and the resistance change coefficient stored in the resistance characteristic storage unit 11 shown in FIG. 3, and FIG. Fig.
  • FIG. 3 is a flowchart showing a control method of the induction motor control device shown in Fig. 3, and Fig. 7 shows a winding resistance value and a resistance change coefficient when a current value of a general induction motor is a parameter.
  • Fig. 8 shows the winding resistance and resistance stored in the resistance characteristic storage 11a shown in Fig. 9.
  • FIG. 9 is a block diagram of an induction motor control device of another embodiment according to the second embodiment of the present invention, and FIG. 10 is a control of the induction motor according to the third embodiment of the present invention.
  • FIG. 11 is a block diagram showing a device
  • FIG. 11 is a block diagram showing a control device for an induction motor according to a fourth embodiment of the present invention
  • FIG. 12 is a block diagram showing a control device for a conventional induction motor.
  • FIG. 1 is a block diagram showing one embodiment of a control device for an induction motor according to the present invention.
  • 1 is an induction motor
  • 2 is an inverter that supplies voltage to the induction motor
  • 3 is a current detector that detects the current of the induction motor
  • 4 is a speed command generator that generates a speed command
  • 5a Is a tuning controller that controls the tuning by inputting a speed command output from the speed command generator 4
  • 6 is a sensorless vector controller that controls the induction motor
  • 7 is an induction motor when starting and stopping.
  • This is a resistance measuring instrument that measures the primary and secondary resistance of the primary and secondary windings.
  • the secondary winding includes the cage winding Shall be.
  • a resistance change coefficient calculator for calculating the resistance change coefficient of the induction motor 1 based on the outputs of the current detector 3 and the resistance measurement device 7, and 9a is the current detection device 3, the resistance measurement device 7, and the resistance.
  • a resistance fluctuation estimator that estimates the resistance fluctuation of the induction motor 1 based on the output of the change coefficient calculator 8, and 10 is a circuit closed to the resistance measuring device 7 when starting and stopping, and a sensorless vector controller during operation. This is a control switch that closes to the 6 side, and is controlled by the tuning controller 5a.
  • the tuning controller 5a operates so as to close the control switch 10 to the resistance measuring device 7 side.
  • the switching signal output from 7 enables the voltage to be output from the chamber 2 to the induction motor 1.
  • a resistance measurement start signal from the tuning controller 5a is input to the resistance measurement device 7, and the resistance measurement device 7 starts measuring the primary and secondary resistance values of the induction motor 1.
  • the resistance measurement performed by the resistance measuring device 7 may be performed by a method described in, for example, JP-A-6-79380. That is, a DC current ID is generated in the output of the inverter 2 in a step-like manner, and the final value Vl ( ⁇ ) of the primary voltage VI of the induction motor 1 and the ratio of the DC current Vl ( ⁇ ) / ID to 1
  • the secondary resistance R1 is obtained, and the transient voltage Vl (tl), Vl (t2) and the final value Vl (oo) of the primary voltage VI due to the DC current I D are obtained from the induction motor 1 by the equation (4).
  • the next-time constant is determined as 2
  • the secondary time constant of the ordinary induction motor 1 is several tens to several hundreds of milliseconds, the time is several times as long as that. Even if the value of several hundred msec to several sec is used as the final value Vl ( ⁇ ) of the primary voltage VI, the measurement can be completed in a short time with almost no error.
  • a resistance measurement completion signal is sent to the tuning controller 5a, and at the same time, the resistance change coefficient calculator 8 and the resistance change The measurement result is output to the estimator 9a.
  • the tuning controller 5a operates to close the control switch 10 to the sensorless vector controller 6 side, and the sensorless vector The operation of the induction motor 1 is started by the switching signal output from the torque controller 6.
  • a stop command is input from the speed command generator 4 to the sensorless vector controller 6 via the tuning controller 5a, and when the induction motor 1 decelerates and stops, the sensorless vector controller 6
  • the stop completion signal is output to the tuning controller 5a.
  • the tuning controller 5a outputs a resistance measurement start signal to the resistance measurement device 7 in response to the input of the stop completion signal, and the resistance measurement device 7 receives the resistance measurement start signal again and operates in the same manner as when starting. As a result, measurement of the primary resistance and the secondary resistance of the induction motive 1 is started.
  • the resistance change coefficient calculator 8 includes a control signal output from the tuning controller 5a, the current I of the induction motor 1 output from the current detector 3, and the induction motor input from the resistance measurement device 7. Input the measured values of the primary and secondary resistances at the start and immediately after the stop in Step 1, and integrate the difference between the measured primary and secondary resistances at the start and immediately after the stop during the operation time of the induction motor.
  • the control signal output from the tuning controller 5a, the current I of the induction motor 1 output from the current detector 3, and the input from the resistance measurement device 7 are output by the resistance fluctuation estimator 9a.
  • Rl * KRl ⁇ I 2 t + Rl (at startup)... (8)
  • the sensorless vector controller 6 includes a speed command value ⁇ m * output from the speed command generator 4 via the tuning controller 5a, a current I output from the current detector 3, and a resistance fluctuation estimator. 9 Input the primary resistance and secondary resistance estimated values R1 * and R2 * output from a, and use the constants and control gain of the induction motor 1 set internally to determine the speed of the induction motor 1 Control to follow the value ⁇ m *.
  • step S11 the change coefficients K R1 and K R2 of the primary resistance and the secondary resistance are initialized to appropriate values.
  • K Rl and K R2 may be zero if an error in resistance estimation is allowed only during the first operation.
  • step S12 the tuning controller 5a determines whether or not the operation start signal is given, and waits until the operation start signal is given.
  • step S13 a direct current is supplied to the induction motor 1 by the inverter 2 and the resistance measuring device 7 measures the primary resistance and the secondary resistance.
  • step S14 the operation shifts to the actual operation cycle of the normal operation mode, and the operation of the induction motor 1 is started.
  • step S14 the resistance value measured in step S13 is used as an initial value, and K Rl and K R2 (the initial value set in step S11 only for the first time) and the induction motor determined last time are used. estimating the variation of the primary resistance and secondary resistance during actual operation cycle operation as the current I from the K Rl ⁇ I 2 t, K R2 ⁇ I 2 t flowing in, the primary resistance and the estimated
  • the sensorless vector controller 2 performs control using the secondary resistance.
  • step S15 a stop signal is given to determine whether induction motor 1 has stopped.
  • step S16 the direct current is again supplied to the induction motor 1 by the inverter 2 and the resistance measuring device 7 measures the primary resistance and the secondary resistance.
  • the resistance fluctuation estimator 9a estimates the primary resistance and the secondary resistance, which change every moment during the actual operation cycle, and the sensorless vector controller 6 controls the induction motor 1 The speed is controlled precisely so that the speed follows the command value ⁇ m *.
  • the resistance change coefficient calculation for calculating the resistance change coefficient based on the resistance value measured by the resistance measuring device 7 immediately after the start and immediately after the stop and the current detected by the current detector 3
  • the resistance fluctuation is estimated based on the current detected by the current detector 3, the resistance at start-up measured by the resistance measuring instrument 7, and the resistance change coefficient calculated by the resistance change coefficient calculator 8.
  • a resistance fluctuation estimator 9a is provided to estimate the resistance fluctuation of the induction motor 1 without previously setting the thermal resistance, thermal time constant, and the like.
  • the resistance change coefficient calculator 8 calculates the difference between the resistance value at the start-up measured by the resistance measuring device 7 and the resistance value immediately after the stoppage during the operation time of the induction motor 1. Divide by the time integral of the square of the detected current, calculate the resistance change coefficient as the amount of resistance change per unit heat, and calculate the resistance change
  • the estimator 9a is obtained by multiplying the resistance value at the time of startup measured by the resistance measuring device 7 as an initial value, and multiplying the time integral value of the square of the current detected by the current detector 3 by the resistance change coefficient. Is configured to calculate the resistance value as a resistance variation value, so that even if the value of the current flowing through the induction motor 1 changes, the resistance variation corresponding thereto can be estimated.
  • the stop time is sufficiently smaller than the thermal time constant of the induction motor 1, the difference between the resistance measured immediately after the stop and the resistance at the next start is small. Almost no error occurs.
  • a stop time measuring device that counts the stop time of the induction motor 1 is provided inside the tuning controller 5a, and when the stop time is sufficiently shorter than the thermal time constant of the induction motor 1, the start time is measured by the resistance measurement device 7. May be omitted, and the resistance measured immediately after stopping may be used as the resistance at the next startup.
  • the induction motor 1 when the induction motor 1 is stopped, a timer is provided inside the tuning controller 5a, and the resistance value is measured by the resistance measuring device 7 at an appropriate interval short enough to the thermal time constant of the induction motor 1,
  • the resistance value at the time of the stop measured immediately before may be used instead of the resistance measurement at the start by the resistance measuring device 7.
  • the resistance change coefficient calculator 8 and the resistance change estimator 9a use the current detection to calculate the change coefficient of the primary resistance and the secondary resistance and to calculate the primary resistance and the secondary resistance.
  • the square value of the current of the induction motor 1 detected by the heater 3 was used, but if the current command value and the torque command value were created inside the sensorless vector controller 6, those square values were used. It may be used as a unit amount. Also, a means for estimating or detecting an amount approximately proportional to the output torque of the induction motor is provided inside the sensorless vector controller 6 or on the load side of the induction motor. If provided, the squared values of those outputs may be used as unit quantities.
  • I 2 t current 2 (Time integral value of the power value)
  • the temperature of the standard induction motor 1 does not rise under almost no load condition. Confirmed by experiment. Therefore, when calculating the change coefficients K Rl and K R2 of the primary resistance and the secondary resistance by the resistance fluctuation estimator 9a, the temperature rise of the induction motor 1 is calculated from the square of the current I to the no-load current I 0. The calculation may be performed by equations (10) and (11) as proportional to the amount obtained by subtracting the power.
  • KR1 one R1 (at startup)
  • the resistance fluctuation estimator 9a calculates the primary resistance and the secondary resistance at the time of startup measured by the resistance measurement instrument 7.
  • the primary resistance and the secondary resistance estimation values Rl * and R2 * may be calculated from the equations (12) and (13) and output to the sensorless vector controller 6.
  • R1 * ⁇ ⁇ (I 2 -I0 2 ) t + R1 (at startup) ⁇ (1 2)
  • R2 * KR2 ⁇ (I 2 -I 2 ) t + R2 (at startup)... (1 3)
  • the resistance change coefficient calculator 8 omits the calculation of the time integral value of the square of the current, and starts the induction motor 1 input from the resistance measuring device 7.
  • the resistance fluctuation estimator 9a multiplies the change coefficients K Rl and K R2 of the primary resistance and the secondary resistance calculated as the amount of change per unit time by the elapsed time from the start, and changes the resistance. It may be calculated as a quantity.
  • the resistance fluctuation can be estimated with a small amount of calculation.
  • the primary resistance and the secondary resistance are measured by the resistance measuring device 7, and the resistance change coefficients K R1 and K R1 of the primary resistance and the secondary resistance are measured by the resistance change coefficient calculator 8.
  • R2 is calculated, and the primary and secondary resistance estimation values Rl * and R2 * are calculated by the resistance fluctuation estimator 9.However, the primary and secondary resistances can be calculated independently. It may be configured to estimate only one of them.
  • the sensorless vector controller 6 uses both the primary resistance and the secondary resistance, both are estimated as described above. If only the primary resistance is used, the resistance measurement device 7 and the resistance change coefficient calculation are used. In the case where only the primary resistance is estimated using only the primary resistance in the resistor 8 and the resistance variation estimator 9, only the secondary resistance is estimated when only the secondary resistance is used.
  • the resistance change coefficient calculator 8 may calculate the primary resistance.
  • the resistance change coefficient K R1 of the resistor may be calculated and used as the resistance change coefficient K R2 of the secondary resistor. Further, the reverse may be applied.
  • FIG. 3 is a block diagram showing a control device for an induction motor according to a second embodiment of the present invention.
  • 1 is an induction motor
  • 2 is an inverter that supplies voltage to the induction motor
  • 3 is a current detector that detects the current of the induction motor
  • 4 is a speed command generator that generates a speed command
  • 5 b is a tuning controller that controls the tuning by inputting a speed command output from the speed command generator 4
  • 6 is a sensorless vector controller for controlling the induction motor 1
  • 7 is at startup It is a resistance measuring device that measures the primary and secondary resistance of the induction motor 1 when stopped.
  • a resistance change estimator 10 for estimating the resistance change.10 is a control switch that closes to the resistance measurement device 7 when starting and stopping and closes to the sensorless vector controller 6 during operation. Controlled by tuning controller 5b.
  • the resistance change estimator 9a uses the resistance change coefficient calculator 8 to calculate the resistance change coefficients K R1 and K R2 calculated using the resistance measurement values immediately before the start and immediately after the stop.
  • the resistance change coefficient with respect to the resistance value is stored in the resistance characteristic storage unit 11, and the stored resistance is stored.
  • the resistance fluctuation is estimated by the resistance fluctuation estimator 9a using the resistance change coefficients K Rl and K R2.
  • FIG. 4 (b) illustrates the relationship between the value related to the calorific value of the induction motor and the resistance change coefficient.
  • FIG. 5 shows the characteristics of FIG. 4 as a relationship between the resistance value and the resistance change coefficient. Therefore, the resistance change coefficients of the primary resistance and the secondary resistance are calculated for each actual operation cycle and stored in the resistance characteristic memory 11 according to the same operating principle as in the first embodiment.
  • the tuning controller 5b closes the control switch 10 to the resistance measuring device 7 side, and furthermore, the resistance measuring start signal Is output to the resistance measuring instrument 7.
  • the resistance measurement device 7 receives the resistance measurement start signal from the tuning controller 5b, the resistance measurement device 7 starts measuring the primary and secondary resistance values of the induction motor 1. Note that the resistance measuring device 7 measures the resistance value in the same manner as the method described in the first embodiment.
  • the resistance measurement device 7 When the resistance measurement device 7 completes the measurement of the primary resistance and the secondary resistance, it outputs a resistance measurement completion to the tuning controller 5b, and at the same time, performs the resistance change coefficient operation. The measurement result is output to the calculator 8, the resistance characteristic storage unit 11, and the resistance fluctuation estimator 9a.
  • the tuning controller 5b When the resistance measurement completion signal output from the resistance measurement device 7 is input, the tuning controller 5b operates to close the control switch 10 to the sensorless vector controller 6 side, and the sensorless vector The operation of the induction motor 1 is started by the switching signal output from the controller 6.
  • a stop command is input from the speed command generator 4 to the sensorless vector controller 6 via the tuning controller 5b, and when the induction motor 1 decelerates and stops, the stop completion signal is output to the tuning controller 5 Output to b.
  • the tuning controller 5b outputs a resistance measurement start signal to the resistance measurement device 7 in response to the input of the stop completion signal, and when the resistance measurement start signal is input, the resistance measurement device 7 returns to the same state as when the resistance measurement device 7 is started.
  • the measurement of the primary resistance and secondary resistance of the induction motor 1 is started by the method described in (1).
  • the resistance characteristic storage 11 stores the resistance corresponding to the resistance closest to the resistance measured at startup measured by the resistance measurement device 7 among the resistance values and the resistance change coefficients stored in the resistance characteristic storage ⁇ .
  • the change coefficient is output to the resistance fluctuation estimator 9a.
  • the resistance change estimator 9a inputs the resistance change coefficient output from the resistance characteristic storage 11, and performs the same operation as in the first embodiment to obtain the primary resistance and the secondary resistance.
  • the estimated value is calculated and output to the sensorless vector controller 6.
  • the resistance change memory 11 stores the resistance change coefficients K Rl and K R2 for a plurality of resistance values, and a more detailed relationship between the resistance value and the resistance change coefficient is stored. Stored. Further, the relationship between the accumulated resistance value and the resistance change coefficient is used for the resistance estimation by the resistance variation estimator 9a, so that more accurate resistance estimation can be realized.
  • step s101 the tuning controller 5b determines whether or not the operation start signal is given, and waits until the operation start signal is given.
  • step S102 a direct current is supplied to the induction motor 1 by the inverter 2 and the resistance measurement device 7 measures the primary resistance and the secondary resistance.
  • step S103 the resistance change coefficients K Rl and K R2 stored in the resistance characteristic storage unit 11 are referred to using the resistance value measured in step S102.
  • step S104 the operation shifts to the actual operation cycle, which is the normal operation mode, and the operation of the induction motor 1 is started.
  • step S104 the resistance measured in step S102 is used as an initial value, and KR1 and KR2 referenced in step S103 and the current I flowing through the induction motor are calculated as K Assuming that Rl ⁇ I 2 t and K R2 ⁇ I 2 t, the fluctuations of the primary resistance and the secondary resistance during the operation of the actual operation cycle are estimated, and the sensorless operation is performed using the estimated primary resistance and the secondary resistance.
  • the vector controller 6 controls the room 2.
  • step S105 the tuning controller 5b determines whether the stop signal is given and the induction motor 1 is stopped, and returns to step S104 while the induction motor 1 is operating.
  • the primary resistance and the secondary resistance of the induction motor 1 are measured again by the chamber 2 at step S106.
  • step S107 step S1 02
  • step S108 the latest data calculated in step S107 is added to the relational data of the resistance change coefficient with respect to the resistance value stored in the resistance characteristic storage unit 11, or the latest data is added.
  • step S109 the latest data calculated in step S107 is added to the relational data of the resistance change coefficient with respect to the resistance value stored in the resistance characteristic storage unit 11, or the latest data is added.
  • step S101 returns to step S101 again, and waits until the next operation start signal is given.
  • the resistance is determined based on the resistance value measured by the resistance measuring device 7 immediately after the start and immediately after the stop and the current detected by the current detector 3.
  • the resistance change coefficient calculator 8 for calculating the change coefficient, the resistance value measured by the resistance measuring device 7 and the resistance change coefficient calculated by the resistance change coefficient calculator 8 are input, and the relation between the resistance change coefficient and the resistance value is calculated. And a resistance change at the time of start-up measured by the current measuring device 3 and the resistance measuring device 7 and an output from the resistance characteristic storing device 11.
  • the resistance fluctuation estimator 9a for estimating the resistance fluctuation based on the coefficient Since the resistance fluctuation estimator 9a for estimating the resistance fluctuation based on the coefficient is provided, the resistance at start-up can be changed to the previous resistance without setting the thermal resistance, thermal time constant, etc. in advance. If there is a big difference This also has the effect that the resistance fluctuation of the induction motor 1 can be satisfactorily estimated.
  • the relationship between the resistance change coefficients K Rl and K R2 corresponding to the resistance value is stored and accumulated, and the resistance is estimated using the stored relationship. Further, the current detected by the current detector 3 is stored as a parameter and the relationship between the resistance change coefficients K Rl and K R2 corresponding to the resistance values is stored and accumulated. The resistance is estimated by referring to the relationship between the resistance change coefficients K Rl and K R2 corresponding to the values. May be implemented.
  • the resistance value of the induction motor 1 exhibits a first-order characteristic with respect to ⁇ I 2 t.
  • the final temperature rise value differs.Since the temperature rise of the induction motor 1 and the resistance rise are in a proportional relationship
  • Figure 7 (a) characteristic of the resistance value of the current I of the induction motor 1 for parameter Isseki as sigma iota 2 t as shown in can be obtained and the relationship of the resistance change coefficients are shown in Figure 7 (b)
  • the characteristic is such that the current I is parametric.
  • FIG. 8 shows the characteristic of FIG. 7 (b) as a relationship between the resistance value and the resistance change coefficient. Therefore, the resistance change coefficient of the primary resistance and the secondary resistance is calculated for each actual operation cycle according to the same operating principle as that of the control device for the induction motor shown in Fig. 3, and the current is set as a parameter and the resistance characteristic memory 1 la
  • the resistance change coefficients K Rl and K R2 are called out as a function of the resistance as a function of the resistance during the actual operation cycle, the actual resistance change for multiple load conditions of the induction motor can be obtained.
  • the coefficient can be set according to
  • FIG. 9 is a block diagram showing another embodiment of the control device for the induction motor according to the second embodiment of the present invention, and the same reference numerals as in FIG. 3 denote the same or corresponding parts.
  • 11a is a relation between the resistance change coefficient and the resistance value, with the current detected by the current detector 3 as a parameter after inputting the resistance measurement device 7 and the output of the resistance change coefficient calculator 8 Is stored in the resistance characteristic storage device.
  • the resistance characteristic memory 11a stores the change coefficients K Rl and K R2 of the primary resistance and the secondary resistance output from the resistance change coefficient calculator 8 and the current of the induction motor 1 detected by the current detector 3. An operation is performed to store the relationship between the resistance value and the resistance change coefficient as shown in Fig. 8 with the input current as a parameter.
  • the resistance characteristic storage 11a stores the stored resistance value and the resistance change coefficient. That is, from the data of the resistance change coefficient characteristic stored corresponding to the current value closest to the current detected by the current detector 3, the closest value to the measured resistance value at startup measured by the resistance measuring device 7 The resistance change coefficient corresponding to the resistance value is output to the resistance change estimator 9a.
  • the resistance fluctuation estimator 9a receives the resistance change coefficient output from the resistance characteristic storage 11a, and operates the primary resistance and the secondary resistance by the same operation as the induction motor control device described in FIG. The estimated value is calculated and output to the sensorless vector controller 6.
  • resistance change coefficients K Rl and K R2 for a plurality of resistance values are stored in the resistance characteristic memory 11a, and a more detailed relationship between the resistance value and the resistance change coefficient is accumulated. Is performed. Further, it is used for the resistance estimation by the resistance fluctuation estimator 9a, so that highly accurate resistance estimation can be realized. Furthermore, since the relationship between the resistance change coefficient and the resistance value is stored and stored with the current as a parameter, it is possible to set a coefficient corresponding to the actual resistance change with respect to a plurality of load states of the induction motor 1. There is an effect that a highly accurate resistance value can be estimated regardless of the magnitude of the resistance. In the description of the control device for the induction motor shown in FIG.
  • the resistance change coefficient corresponding to the resistance value closest to the resistance measured value at startup measured by the resistance measurement device 7 is calculated by using the resistance variation estimator 9a.
  • the estimated value of the resistance output from the resistance fluctuation estimator 9a is input to the resistance characteristic memory 11a, and the resistance value corresponding to the resistance value closest to the resistance value is sequentially stored. May be output to the resistance fluctuation estimator 9a.
  • the relationship between the resistance value and the resistance change coefficient is stored while performing the normal operation. Cycle operation at a time interval shorter than the thermal time constant of the induction motor 1 and store in advance the resistance change coefficients for the resistance values at multiple points in the temperature range of the induction motor 1 that can be taken in the normal operation state. Good.
  • FIG. 10 is a block diagram showing a control device for an induction motor according to Embodiment 3 of the present invention, and the same reference numerals as in FIG. 3 denote the same or corresponding parts.
  • reference numeral 12 denotes an operation mode setting device for setting the operation mode of the induction motor 1
  • reference numeral 5c denotes a speed command and an output from the operation mode setting device 12 which are outputs from the speed command generator 4.
  • This is a tuning controller that controls tuning by inputting operation mode commands.
  • the tuning controller 5 c switches so as to have a predetermined test cycle for the test.
  • the tuning controller 5c closes the control switch 10 to the resistance measuring device 7 side, and further outputs a resistance measurement start signal to the resistance measuring device. Output to 7.
  • the resistance measurement device 7 receives the resistance measurement start signal from the tuning controller 5c, the resistance measurement device 7 starts measuring the primary and secondary resistance values of the induction motor 1. Note that the resistance measuring device 7 measures the resistance value in the same manner as the method described in the first embodiment.
  • the resistance measurement device 7 completes the measurement of the primary resistance and the secondary resistance, it outputs the completion of the resistance measurement to the tuning controller 5c, and at the same time, the resistance change coefficient calculator 8 and the resistance characteristic storage device 1 The measurement result is output to 1 and the resistance fluctuation estimator 9a.
  • the tuning controller 5c operates so as to close the control switch 10 to the sensorless vector controller 6 side, and the sensorless vector control is performed.
  • the operation of the induction motor 1 is started by the switching signal output from the heater 6.
  • the induction motor 1 is turned off. Decelerate and stop, and output a stop completion signal from the sensorless vector controller 6 to the tuning controller 5c.
  • the tuning controller 5c outputs a resistance measurement start signal to the resistance measurement device 7 in response to the input of the stop completion signal, and the resistance measurement device 7 receives the resistance measurement start signal again and operates in the same manner as when starting. Starts the measurement of the primary resistance and secondary resistance of induction motor 1 when stopped.
  • the tuning controller 5c outputs a control signal so that the above cycle is repeated until the number of operations, the operation time, or the amount of change in the resistance measurement value reaches a preset value, and as a result,
  • the resistance characteristic storage unit 11 stores resistance change coefficients K R1 and K R2 for a plurality of resistance values.
  • the tuning controller 5c switches from the test operation mode to the normal operation mode. From the next start-up, the same operation as described in the second embodiment is performed, and the resistance characteristic storage 11 stores the resistance value and the resistance change coefficient stored at the start-up, which are measured by the resistance measurement device 7. The resistance change coefficient corresponding to the resistance value closest to the value is output to the resistance change estimator 9a.
  • the resistance change estimator 9a receives the resistance change coefficient output from the resistance characteristic storage 11 and calculates the estimated values of the primary resistance and the secondary resistance by the same operation described in the first embodiment. Output to the sensorless vector controller 6.
  • the resistance characteristic storage 11 performs a function of smoothly interpolating a resistance change coefficient for a plurality of resistance values stored in a predetermined test operation mode by performing a polynomial approximation or a function approximation using a least squares method. May be stored.
  • the resistance change coefficient when referring to the resistance change coefficient from the resistance value, the resistance change coefficient can be referred to as a value closer to the actual change, and there is an effect that the resistance change can be well estimated.
  • the resistance estimation value immediately after the stop estimated by the resistance fluctuation estimator 9a is compared with the resistance measurement value immediately after the stop measured by the resistance measuring instrument 7, and the difference between these values is determined.
  • the resistance characteristic storage unit 11 is configured to correct the relationship between the resistance value and the resistance change coefficient stored in the storage unit. This allows the induction motor temperature to change due to a change in temperature or environmental change around the motor. The characteristics stored in the resistance characteristic storage unit 11 can always be corrected to match the actual characteristics even if the temperature difference between However, there is an effect that the resistance fluctuation can be estimated well.
  • the resistance change estimator 9a is referred to the resistance change coefficient stored in the sequential resistance characteristic storage 11 using the resistance value estimated by the resistance change estimator 9a.
  • the resistance value may be estimated using the referred resistance change coefficient.
  • Embodiment 4 This makes it possible to set a resistance change coefficient that sequentially corresponds to the resistance value that changes due to the temperature rise of the induction motor during operation, and it is possible to estimate the resistance change well even if the resistance change amount from the start is large. There is. Embodiment 4.
  • the resistance value change due to the temperature change of the induction motor 1 is estimated, and the member 2 is controlled using the resistance value estimated by the sensorless vector controller 6.
  • the configuration may be such that the temperature rise of the induction motor 1 is further estimated from the resistance value change.
  • FIG. 11 is a block diagram showing a control device for an induction motor according to Embodiment 4 of the present invention, and the same reference numerals as in FIG. 3 denote the same or corresponding parts.
  • 13 is a temperature estimator that estimates the temperature of the induction motor 1 by inputting the resistance estimation value output from the resistance fluctuation estimator 9a
  • 5d is the output from the speed command generator 4.
  • This is a tuning controller that controls a tuning by inputting a certain speed command and an estimated temperature of the induction motor 1 which is an output from the temperature estimator 13.
  • the temperature estimator 13 stores in advance the resistance values of the primary and secondary resistors in a state where the temperature of the induction motor 1 measured by the resistance measuring device 7 is substantially known. Next, the resistance estimation value output from the resistance fluctuation estimator 9a is input, and the ratio between the resistance value stored in advance and the thermal resistance specific to the material of the primary conductor and the secondary conductor of the induction motor 1 are calculated. The temperature of the primary conductor and the secondary conductor of the induction motor 1 is estimated from the change coefficient. For example, if the material of the primary conductor is copper, and the resistance value measured by the resistance measuring device 7 at the temperature t 0 ° C is Rl (tO), the resistance value output from the resistance fluctuation estimator 9a is Rl (tO).
  • the operation is performed to stop the induction motor 1 to prevent burnout.
  • n'-1 is in the same temperature state as the ambient temperature even if the conductive motor 1 does not have a special detector such as a thermocouple.
  • the resistance value is measured by the resistance measuring device 7, and the measured ambient temperature at that time may be set as the temperature of the induction motor 1.
  • the tuning controller 5 d inputs the above-mentioned temperature estimation value of the induction motor 1 output from the temperature estimator 13, and if the temperature estimation value rises above a preset temperature, the induction controller 1 d Instead of stopping, an alarm signal may be output to the outside. Further, as the temperature display of the induction motor 1, the temperature estimation value estimated by the temperature estimator 13 may be displayed.
  • a resistance change coefficient for calculating a resistance change coefficient based on the resistance value measured by the resistance measuring device 7 immediately after the start and immediately after the stop and the current detected by the current detector 3
  • a resistance calculator that inputs the resistance value measured by the resistance calculator 8 and the resistance change coefficient calculated by the resistance change coefficient calculator 8 and stores the relationship between the resistance change coefficient and the resistance value.
  • the resistance variation is calculated based on the characteristic storage 11, the current detected by the current detector 3, the resistance value at startup measured by the resistance measuring means, and the resistance change coefficient output from the resistance characteristic storage 11.
  • a resistance fluctuation estimator 9a for estimating and a temperature estimator 13 for estimating the temperature of the induction motor 1 from the estimated resistance value output from the resistance fluctuation estimator 9a are provided.
  • the primary resistance value of the induction motor 1 measured by the resistance measuring device 7 is measured including the wiring resistance from the inverter 2 to the induction motor 1.
  • the wiring from Inver 2 to induction motor 1 is usually too hot. Since the wiring is selected and laid so that it does not rise, the temperature change is set in the temperature estimator 13 in advance to the wiring resistance Rh, and assuming that the wiring resistance Rh is constant during operation, the equation (14) is used. Equation (15) may be used instead. l-2345) 1 5 J
  • the resistance value of the wiring from the inverter 2 to the induction motor 1 can be set to a value measured with a low-resistance measuring device such as a pager or a millimeter, or the resistance per unit length of the wiring. If the value is known in advance by the manufacturer's data or the like, the value may be obtained by calculation by multiplying it by the wiring length and set.
  • control device for the induction motor and the control method for the induction motor include, for example, a resistor for temperature change during operation of the winding of the induction motor.
  • a control device for an induction motor that performs vector control and sensorless vector control so that the induction motor follows the command speed based on the estimated winding resistance value based on the estimated winding resistance value, and an induction motor control device. Suitable for control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A device and method for controlling induction motor by which an induction motor (1) is controlled based on the predicted change of resistance value of the winding of the motor with the temperature of the motor (1) changes during operation. A resistance measuring instrument (7) measures and outputs the resistance value of the winding and a resistance changing factor computing element (8) computes the difference between the resistance values of the winding measured before and after a first operation cycle and the resistance change coefficient of the winding per unit quantity of the heat generated from the motor (1) during the first operation cycle. Then a resistance change predicting device (9a) outputs the predicted resistance value of the winding predicted from the initial resistance value of the winding of when the motor (1) is started, measured by means of the measuring instrument (7) when a second operation cycle is started, the quantity of the heat generated from the motor (1) during the second cycle, and the resistance change coefficient. A control means (6) controls the motor (1) through an inverter (2) by using the predicted resistance value of the winding.

Description

明 細 書 誘導電動機の制御装置及び誘導電動機の制御方法 技術分野  Description Induction motor control device and induction motor control method
本発明は、 誘導電動機の運転中の温度変化に伴う卷線抵抗値の変化を推 定し、 推定した巻線抵抗値を基に誘導電動機を制御する誘導電動機の制御 装置及び誘導電動機の制御方法に関する。 背景技術  The present invention relates to a control device for an induction motor and a control method for an induction motor, which estimate a change in a winding resistance value due to a temperature change during operation of the induction motor and control the induction motor based on the estimated winding resistance value. About. Background art
誘導電動機を高性能に制御する方式として、 ベク トル制御方式や、 速度 の推定演算を行って制御するセンサレスべク トル制御が行われている。 こ れらの制御は、 誘導電動機の等価回路定数である 1次卷線、 2次巻線の 1 次、 2次抵抗、 相互インダク夕ンス、 1次、 2次漏れインダク夕ンス等を制 御定数として正確に設定する必要があり、 運転する前に予め測定して設定 されている。  As a method for controlling an induction motor with high performance, a vector control method and a sensorless vector control that performs control by estimating the speed are performed. These controls control the equivalent circuit constants of the induction motor, such as primary winding, secondary winding primary and secondary resistance, mutual inductance, primary and secondary leakage inductance, etc. It must be set accurately as a constant, and is measured and set before operation.
しかし、 1次、 2次抵抗は誘導電動機の導体の温度によって変化するため、 予め正確に設定していても誘導電動機の温度変化によりその真値に対して 誤差を持ち、 べク トル制御ではトルク指令に対する実トルクの制御精度が 悪化し、 また、 センサレスベク トル制御では速度の制御精度が悪化する。 さらに、 センサレスベク トル制御では、 1 次抵抗設定値がその実際値に 対して誤差をもっている場合には、 制御精度の悪化のみならず制御自体が 不安定となり、 過電流トリップ等を生じる場合もある。  However, since the primary and secondary resistances change depending on the temperature of the conductor of the induction motor, even if they are set accurately in advance, there is an error with respect to the true value due to the temperature change of the induction motor. The control accuracy of the actual torque in response to the command deteriorates, and the speed control accuracy of sensorless vector control deteriorates. Furthermore, in the sensorless vector control, if the primary resistance set value has an error with respect to its actual value, not only the control accuracy deteriorates, but also the control itself becomes unstable, and an overcurrent trip may occur. .
この問題を解決するため、 特開平 7 _ 2 1 3 1 0 0号公報には、 センサ レスインバー夕装置において、 冷温時の誘導電動機の 2次抵抗を計測して ィンバ一夕に初期値として設定し、 さらに運転中は電流と運転時間より温 度上昇による 2次抵抗変動を推定し、 速度演算に用いる 2次抵抗を修正す る抵抗変動補償付きセンサレスィンバ一夕装置が開示されている。 In order to solve this problem, Japanese Patent Application Laid-Open No. 7-213001 discloses that in a sensorless inverter device, the secondary resistance of an induction motor at a cold temperature is measured and set as an initial value in a night. During operation, the current and operating time There is disclosed a sensorless integrated circuit device with resistance fluctuation compensation for estimating a secondary resistance fluctuation due to a degree rise and correcting a secondary resistance used for speed calculation.
第 1 2図は特開平 7 — 2 1 3 1 0 0号公報に記載されている抵抗変動補 償付きセンサレスィンバ一夕装置のプロック図であり、 本発明の制御装置 と対比し易くすべく書き改めてある。  FIG. 12 is a block diagram of the sensorless receiver with resistance fluctuation compensation described in Japanese Patent Application Laid-Open No. Hei 7-213100, in order to facilitate comparison with the control device of the present invention. It has been rewritten.
図において、 1は誘導電動機、 2はインバー夕、 3は電流検出器、 4は 速度指令発生器、 6はセンサレスベク トル制御器、 9 bは抵抗変動推定器、 1 0はスィ ッチ、 2 0は電圧検出器、 2 1は初期値計測器、 2 2は初期計 測設定器である。  In the figure, 1 is an induction motor, 2 is an inverter, 3 is a current detector, 4 is a speed command generator, 6 is a sensorless vector controller, 9 b is a resistance fluctuation estimator, 10 is a switch, 2 0 is a voltage detector, 21 is an initial value measuring device, and 22 is an initial measurement setting device.
ィンバ一夕 2はセンサレスべク トル制御器 6の出力であるスィヅチング 信号を入力し、 そのスィ ツチング信号に応じた電圧を電流検出器 3及び電 圧検出器 2 0を介して誘導電動機 1に出力する。  The sensor 2 receives a switching signal output from the sensorless vector controller 6 and outputs a voltage corresponding to the switching signal to the induction motor 1 via the current detector 3 and the voltage detector 20. I do.
スィ ツチ 1 0は、 制御電源がオンした直後の運転開始時にのみ初期値計 測器 2 1側に閉路し、 初期値計測器 2 1の出力であるスイッチング信号を インバ一夕 2に出力する。 この初期値計測器 2 1のスィ ツチング信号によ り、 インバー夕 2から誘導電動機 1に平均的に直流電圧を印加する。 そし て、 一定時間後に誘導電動機 1の電流 Ιχ を電流検出器 3により計測し、 ( 1 ) 式より誘導電動機 1の温度上昇の初期値 S 0 を求めて抵抗変動推定 器 9 bに出力する。但し、 1x0は誘導電動機 1の温度が周囲温度と同じ時の 2次抵抗 R2nに対する同様な方法による電流計測値であり、 K 1は温度と電 流との換算係数である。
Figure imgf000004_0001
抵抗変動推定器 9 bは電流検出器 3の出力である電流 I を入力して ( 2 ) 式により誘導電動機 1の温度上昇 0を推定し、 さらに初期計測設定 器 2 2から入力された R2nを用いて ( 3 ) 式により 2次抵抗変動を推定し、 修正した 2次抵抗 R2xをセンサレスべク トル制御器 6に出力する。 但し、 Kは換算ゲイン、 Tは時定数である。 e = KI2 {l / (l + ST)} . . . ( 2 )
The switch 10 closes to the initial value measuring device 21 only at the start of operation immediately after the control power is turned on, and outputs the switching signal output from the initial value measuring device 21 to the inverter 2. According to the switching signal of the initial value measuring device 21, a DC voltage is averagely applied to the induction motor 1 from the inverter 2. Then, after a certain period of time, the current の of the induction motor 1 is measured by the current detector 3, an initial value S 0 of the temperature rise of the induction motor 1 is obtained from the equation (1), and output to the resistance fluctuation estimator 9b. Here, 1x0 is a measured current value of the secondary resistor R2n by the same method when the temperature of the induction motor 1 is the same as the ambient temperature, and K1 is a conversion coefficient between temperature and current.
Figure imgf000004_0001
The resistance fluctuation estimator 9b inputs the current I, which is the output of the current detector 3, and estimates the temperature rise 0 of the induction motor 1 by the equation (2), and further sets the initial measurement. Using the R2n input from the sensor 22, the secondary resistance fluctuation is estimated by the equation (3), and the corrected secondary resistance R2x is output to the sensorless vector controller 6. Where K is the conversion gain and T is the time constant. e = KI 2 {l / (l + ST)}... (2)
R2x = (l + KW)R2n · · · ( 3 ) センサレスべク トル制御器 6は、 速度指令発生器 4の出力である速度指 令値 ω m*、 電流検出器 3の出力である電流 I、 電圧検出器 2 0の出力であ る電圧 V及び抵抗変動推定器 9 bの出力である修正された 2次抵抗 R2xを 入力し、 また、 内部に設定された誘導電動機 1の 2 次抵抗以外の設定値や 制御ゲインを用いて誘導電動機 1の速度がその指令値 ω m*に追従するよ うに制御される。 R2 x = (l + KW) R2 n (3) Sensorless vector controller 6 is the speed command value ωm *, which is the output of speed command generator 4, and the output of current detector 3. Input the current I, the voltage V output from the voltage detector 20 and the modified secondary resistance R2x output from the resistance fluctuation estimator 9b.The secondary of the induction motor 1 set internally is also input. The speed of the induction motor 1 is controlled using the set value other than the resistance and the control gain so as to follow the command value ωm *.
従来の誘導電動機の制御装置は以上のように構成されていたため、 誘導 電動機の熱抵抗、 熱時定数等を予め設定しておく必要があった。 特に、 こ れらの熱に関する定数は、 駆動される電動機によって変化し、 さらに設置 条件等によっても変化するため、 実使用状態において予め測定及び設定を する必要があり、 ィンバ一夕を異なる種類の電動機に汎用的に適用するこ とが困難であり、 さらに、 誘導電動機の過熱保護を行うためには、 誘導電 動機の温度測定のために電動機内部に熱電対等を装着する必要があり、 電 動機が特殊仕様となるという問題点があつた。  Since the conventional induction motor control device was configured as described above, it was necessary to set the thermal resistance, thermal time constant, and the like of the induction motor in advance. In particular, these heat-related constants vary depending on the motor to be driven, and also vary depending on installation conditions, etc., so it is necessary to measure and set them in advance in actual use conditions. It is difficult to apply it to motors in general, and to protect the induction motor from overheating, it is necessary to install a thermocouple inside the motor to measure the temperature of the induction motor. Had a special specification.
本発明は上記のような問題点を解消するためになされたもので、 実使用 状態で誘導電動機の抵抗変化特性を演算しながら抵抗変動を推定し、 その 結果を基に速度の推定演算やすべり補正を行うために、 予め誘導電動機の 熱抵抗、 熱時定数等設定することなく良好に誘導電動機を制御できる誘導 電動機の制御装置及び誘導電動機の制御方法を提供することを目的とする。 発明の開示 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. The present invention estimates the resistance change while calculating the resistance change characteristic of an induction motor in an actual use state, and estimates the speed based on the result and facilitates the calculation. An object of the present invention is to provide an induction motor control device and an induction motor control method capable of favorably controlling an induction motor without previously setting a thermal resistance, a thermal time constant, and the like of the induction motor in order to perform the correction. Disclosure of the invention
本発明の誘導電動機の制御装置は、 抵抗測定手段が誘導電動機の卷線抵 抗値を測定、 抵抗変化係数演算手段が第 1の運転サイクルの前後に測定さ れた卷線抵抗値の差と第 1の運転サイクル中に発生した誘導電動機の発熱 量に係わる値とを基に、 この値の単位量当たりの卷線抵抗の抵抗変化係数 を演算し、 抵抗変動推定手段が抵抗測定手段により第 1の運転サイクルに 続く第 2の運転サイクルの起動時に測定した起動時卷線抵抗値と第 2の運 転サイクル中の誘導電動機の発熱量に係わる値と抵抗変化係数とを基に推 定した推定卷線抵抗値を出力し、 制御手段が推定卷線抵抗値を用いて誘導 電動機を駆動するィンバ一夕を制御するので、 誘導電動機の発熱量が変化 しても、 設置条件が異なったり、 熱時定数が異なる誘導電動機に対しても 運転サイクルによって変化する抵抗変動を推定できるようになり、 推定し た抵抗値を用いて精度良く誘導電動機の速度を制御できる。  In the control device for an induction motor according to the present invention, the resistance measuring means measures a winding resistance value of the induction motor, and the resistance change coefficient calculating means calculates a difference between a winding resistance value measured before and after the first operation cycle. Based on the value related to the amount of heat generated by the induction motor during the first operation cycle, the resistance change coefficient of the winding resistance per unit amount of this value is calculated. It was estimated based on the starting winding resistance measured at the start of the second operation cycle following the first operation cycle, the value related to the calorific value of the induction motor during the second operation cycle, and the resistance change coefficient. Since the estimated winding resistance value is output, and the control means controls the chamber for driving the induction motor using the estimated winding resistance value, even if the heating value of the induction motor changes, the installation condition may be different, Even for induction motors with different thermal time constants It becomes possible to estimate the resistance fluctuation that changes with the operation cycle, and it is possible to accurately control the speed of the induction motor using the estimated resistance.
また、 本発明の誘導電動機の制御装置は、 抵抗変化係数演算手段が、 第 1の運転サイクル中に発生した誘導電動機の発熱量に係わる値を誘導電動 機に供給した電流値を基に演算し、 抵抗変動推定手段が、 第 2の運転サイ クル中に発生する誘導電動機の発熱量に係わる値を誘導電動機に供給した 電流値を基に演算するので、 運転サイクルの電流値の変化による誘導電動 機の発熱量が変化しても抵抗変動を推定できるようになり、 推定した抵抗 値を用いて精度良く誘導電動機の速度を制御できる。  Further, in the control device for the induction motor of the present invention, the resistance change coefficient calculation means calculates a value related to a calorific value of the induction motor generated during the first operation cycle based on a current value supplied to the induction motor. Since the resistance fluctuation estimating means calculates a value related to the calorific value of the induction motor generated during the second operation cycle based on the current value supplied to the induction motor, the induction motor changes due to a change in the current value in the operation cycle. Even if the calorific value of the motor changes, the resistance fluctuation can be estimated, and the speed of the induction motor can be controlled accurately using the estimated resistance value.
また、 本発明の誘導電動機の制御装置は、 抵抗変化係数演算手段が、 第 1の運転サイクル中に発生した誘導電動機の発熱量に係わる値を誘導電動 機に指令したトルク指令値を基に演算し、 抵抗変動推定手段が、 第 2の運 転サイクル中に発生する誘導電動機の発熱量に係わる値を誘導電動機に指 令したトルク指令値を基に演算するので、 運転サイクルの指令トルクの変 化による誘導電動機の発熱量が変化しても抵抗変動を推定できるようにな り、 推定した抵抗値を用いて精度良く誘導電動機の速度を制御できる。 また、 本発明の誘導電動機の制御装置は、 抵抗変動推定手段が、 第 1の 運転サイクルの停止時に抵抗測定手段が測定した停止時巻線抵抗値を第 2 の運転サイクルの起動時に測定した起動時巻線抵抗として第 2の運転サイ クル中の推定卷線抵抗値を出力するので、 抵抗測定手段は第 2の運転サイ クルで起動時巻線抵抗を測定しなくてもよくなり、 起動に要する時間が短 くなる。 Further, in the induction motor control device according to the present invention, the resistance change coefficient calculating means calculates a value related to a calorific value of the induction motor generated during the first operation cycle based on a torque command value instructed to the induction motor. Then, since the resistance fluctuation estimating means calculates a value related to the heat generation amount of the induction motor generated during the second operation cycle based on the torque command value instructed to the induction motor, the change of the command torque in the operation cycle is calculated. Even if the amount of heat generated by the induction motor changes due to the development, the resistance fluctuation can be estimated, and the speed of the induction motor can be accurately controlled using the estimated resistance value. Further, in the induction motor control device according to the present invention, the resistance fluctuation estimating means may be configured to start up by measuring the stop-time winding resistance measured by the resistance measuring means at the time of stopping the first operation cycle at the time of starting the second operation cycle. Since the estimated winding resistance value in the second operation cycle is output as the time winding resistance, the resistance measuring means does not need to measure the winding resistance at startup in the second operation cycle. The time required is shorter.
また、 本発明の誘導電動機の制御装置は、 抵抗測定手段が誘導電動機の 卷線抵抗値を測定し、 抵抗変化係数演算手段が第 1の運転サイクルの前後 に測定された卷線抵抗値の差と第 1の運転サイクル中に発生した誘導電動 機の発熱量に係わる値とを基に、 この値から単位量当たりの卷線抵抗の抵 抗変化係数を演算し、 抵抗特性記憶手段が抵抗変化係数と巻線抵抗値との 関係を記憶し、 抵抗測定手段が第 1の運転サイクルに続く第 2の運転サイ クルの起動時に測定した起動時巻線抵抗値を基に記憶した前記関係を参照 して抵抗変化係数を出力し、 抵抗変動推定手段が起動時卷線抵抗値を基に 抵抗特性記憶手段が出力した抵抗変化係数と第 2の運転サイクル中の誘導 電動機の発熱量に係わる値とから推定卷線抵抗値を推定して出力し、 制御 手段が推定卷線抵抗値を用いて誘導電動機を駆動するィンバ一夕を制御す るので、 抵抗変動推定手段は抵抗特性記憶手段が出力する抵抗変化係数と 当該運転サイクルの起動時に測定した起動時巻線抵抗とを基に抵抗変動を 推定できるようになり、 予め熱抵抗、 熱時定数等を設定することなく、 さ らに、 起動時の抵抗がその前の運転サイクルの起動時の抵抗と大きく差を 生じている場合でも良好に卷線抵抗を推定できる。  Further, in the induction motor control device of the present invention, the resistance measuring means measures a winding resistance value of the induction motor, and the resistance change coefficient calculating means calculates a difference between the winding resistance values measured before and after the first operation cycle. From this value and the value related to the heat value of the induction motor generated during the first operation cycle, the resistance change coefficient of the winding resistance per unit amount is calculated from this value, and the resistance characteristic storage means changes the resistance change. The relationship between the coefficient and the winding resistance is stored, and the resistance measuring means refers to the relationship stored based on the starting winding resistance measured at the start of the second operation cycle following the first operation cycle. The resistance change estimation means outputs the resistance change coefficient output from the resistance characteristic storage means on the basis of the winding resistance value at start-up, and the value related to the heat generation amount of the induction motor during the second operation cycle. From the estimated winding resistance value and output Since the means controls the induction motor driving the induction motor using the estimated winding resistance value, the resistance fluctuation estimating means uses the resistance change coefficient output from the resistance characteristic storage means and the start-up time measured at the start of the operation cycle. The resistance fluctuation can be estimated based on the winding resistance, and the thermal resistance and thermal time constant are not set beforehand. Even if there is a large difference, the winding resistance can be estimated well.
また、 本発明の誘導電動機の制御装置は、 抵抗特性記憶手段が、 第 1の 運転サイクル中の電流値をパラメ一夕として抵抗変化係数と巻線抵抗値と の関係を記憶し、 抵抗測定手段が第 2の運転サイクルの起動時に測定した 起動時卷線抵抗値に対応する抵抗変化係数を第 2の運転サイクルの電流値 を参照して出力するので、 抵抗特性記憶手段は記憶している卷線抵抗値と 抵抗変化係数のうち、 当該運転サイクルの電流値に最も近い電流値に対応 して記憶されている抵抗変化係数特性のデータから、 当該運転サイクルの 起動時に測定された起動時卷線抵抗を基に抵抗変化係数を出力するように なり、 誘導電動機の複数の負荷状態による抵抗変動に適合した抵抗変化係 数を設定することができ、 負荷の大きさにかかわらず精度の高い卷線抵抗 値の推定ができる。 In the control device for an induction motor according to the present invention, the resistance characteristic storage means stores the current value during the first operation cycle as a parameter and calculates a resistance change coefficient and a winding resistance value. Since the resistance measuring means outputs the resistance change coefficient corresponding to the starting winding resistance measured at the start of the second operation cycle with reference to the current value of the second operation cycle, the resistance measurement means outputs the resistance. The characteristic storage means uses the resistance change coefficient characteristic data stored corresponding to the current value closest to the current value of the operation cycle out of the stored winding resistance value and resistance change coefficient, and A resistance change coefficient is output based on the winding resistance measured at startup, and a resistance change coefficient suitable for resistance fluctuation due to multiple load states of the induction motor can be set. Regardless, the winding resistance can be estimated with high accuracy.
また、 本発明の誘導電動機の制御装置は、 抵抗特性記憶手段が、 第 1の 運転サィクルにより抵抗変化係数演算手段が演算した抵抗変化係数とその 時点で抵抗測定手段が測定した卷線抵抗値との関係を関数近似して記憶す るので、 当該運転サイクルの起動時巻線抵抗から抵抗変化係数を参照する 際により実際の変化に近い抵抗変化係数を求めることができる。  Further, in the induction motor control device of the present invention, the resistance characteristic storage means stores the resistance change coefficient calculated by the resistance change coefficient calculation means in the first operation cycle and the winding resistance measured by the resistance measurement means at that time. Is stored as a function approximation, a resistance change coefficient closer to the actual change can be obtained by referring to the resistance change coefficient from the winding resistance at the start of the operation cycle.
また、 本発明の誘導電動機の制御装置は、 抵抗変化係数演算手段が、 第 2の運転サイクルの停止時に推定した推定卷線抵抗と抵抗測定手段が第 2 の運転サイクルの停止時に測定した停止時卷線抵抗とを比較しこれらの差 異が所定値を超える場合に抵抗特性記憶手段が記憶している卷線抵抗値と 抵抗変化係数との関係を修正するので、 気温の変化や誘導電動機周辺の環 境変化等による、 誘導電動機温度と周囲温度との温度差や周囲の空気の流 量等の変化が生じても、 抵抗特性記憶手段が記憶している巻線抵抗値と抵 抗変化係数との関係を実際の状態に一致するように修正することができ、 良好に抵抗変動を推定することができる。  Also, in the induction motor control device of the present invention, the resistance change coefficient calculating means may include an estimated winding resistance estimated at the time of stopping the second operation cycle and a resistance at the time of stoppage measured by the resistance measuring means at the time of stopping the second operation cycle. The relationship between the winding resistance and the resistance change coefficient stored in the resistance characteristic storage means is corrected when these differences exceed a predetermined value. Even if a temperature difference between the induction motor temperature and the ambient temperature or a change in the flow rate of the surrounding air, etc., due to the environmental change of the winding, etc., occur, the winding resistance value and the resistance change coefficient stored in the resistance characteristic storage means. Can be corrected to match the actual state, and the resistance fluctuation can be estimated well.
また、 本発明の誘導電動機の制御装置は、 温度推定手段が、 誘導電動機 の卷線の温度と卷線抵抗値との関係を予め記憶し、 抵抗変化係数演算手段 が出力する推定卷線抵抗値を基に卷線の温度と卷線抵抗値との関係から卷 線の温度を推定するので、 予め誘導電動機の熱抵抗、 熱時定数を設定する ことなく、 誘導電動機の温度を推定することができる。 Further, in the induction motor control device of the present invention, the temperature estimating means stores in advance the relationship between the winding temperature and the winding resistance of the induction motor, and the estimated winding resistance outputted by the resistance change coefficient calculating means. From the relationship between the winding temperature and the winding resistance based on Since the temperature of the line is estimated, the temperature of the induction motor can be estimated without setting the thermal resistance and the thermal time constant of the induction motor in advance.
また、 本発明の誘導電動機の制御装置は、 温度推定手段が、 予めインバ 一夕から誘導電動機までの配線の抵抗値を記憶し、 抵抗測定手段が出力す る 1次卷線抵抗値から配線の抵抗値を減算した値を基に 1次卷線の温度を 推定するので、 ィンバ一夕から誘導電動機までの配線長さが比較的長い場 合でも、 1次卷線抵抗値を配線抵抗値と分離して誘導電動機の 1次卷線の 温度を推定することができる。  In the induction motor control device according to the present invention, the temperature estimating means stores the resistance value of the wiring from the inverter to the induction motor in advance, and the wiring of the wiring is determined from the primary winding resistance value output from the resistance measuring means. Since the temperature of the primary winding is estimated based on the value obtained by subtracting the resistance value, the primary winding resistance value is regarded as the wiring resistance value even if the wiring length from the inverter to the induction motor is relatively long. The temperature of the primary winding of the induction motor can be estimated separately.
また、 本発明の誘導電動機の制御装置は、 温度推定手段が、 卷線の温度 が所定値を超えた場合に、 誘導電動機の運転を停止する停止信号を制御手 段に出力し、 制御手段がインバー夕の運転を停止するので、 電動機内部に 熱電対等を装着しなくても、 誘導電動機の過熱を防止できる。  Further, in the control device for the induction motor of the present invention, the temperature estimating means outputs a stop signal for stopping the operation of the induction motor to the control means when the temperature of the winding exceeds a predetermined value, and the control means Since the operation is stopped in the evening, it is possible to prevent the induction motor from overheating without installing a thermocouple inside the motor.
また、 本発明の誘導電動機の制御装置は、 運転モード設定手段が、 第 1 と第 2の運転サイクルに先立って、 抵抗変化係数演算手段により、 設定さ れた回数を繰り返す所定の運転サイクルの各々の運転サイクルの起動時と 停止時に抵抗測定手段により測定された卷線抵抗値の差と各々の運転サイ クル中に発生した誘導電動機の発熱量に係わる値から単位量当たりの卷線 抵抗の抵抗変化係数を各々の運転サイクル毎に演算し、 抵抗特性記憶手段 に各々の運転サイクル毎の抵抗変化係数と卷線抵抗値との関係を記憶させ るので、 所定の運転サイクルにおいて卷線抵抗と抵抗変化係数の関係が予 め抵抗特性記憶手段に記憶され、 第 2の運転サイクルでは、 より適切な卷 線抵抗値と抵抗変化係数の関係が記憶され、 良好に抵抗変動を推定できる ようになる。  Further, in the control device for the induction motor of the present invention, the operation mode setting means may be configured such that, before the first and second operation cycles, each of the predetermined operation cycles in which the resistance change coefficient calculation means repeats the set number of times. From the difference between the winding resistance measured by the resistance measuring means at the start and stop of the operation cycle and the value related to the calorific value of the induction motor generated in each operation cycle, the resistance of the winding resistance per unit quantity The change coefficient is calculated for each operation cycle, and the relationship between the resistance change coefficient and the winding resistance value for each operation cycle is stored in the resistance characteristic storage means. The relationship between the change coefficients is stored in the resistance characteristic storage means in advance, and in the second operation cycle, the more appropriate relationship between the winding resistance value and the resistance change coefficient is stored, so that the resistance variation can be estimated well. Become so.
また、 本発明の誘導電動機の制御方法は、 運転サイクルの前後に測定さ れた卷線抵抗値の差と運転サイクル中に発生した誘導電動機の発熱量に係 わる値とを基に、 この値の単位量当たりの卷線抵抗の抵抗変化係数を演算 し、 次の運転サイクルの起動時に起動時卷線抵抗値を測定し、 起動時巻線 抵抗を基に抵抗変化係数と当該運転サイクル中の誘導電動機の発熱量の係 わる値とから推定した推定卷線抵抗値を出力し、 推定卷線抵抗値を基に誘 導電動機を駆動するィンバ一夕を制御し、 当該運転サイクルの停止時に停 止時卷線抵抗値を測定するので、 誘導電動機の発熱量が変化しても、 設置 条件が異なったり、 熱時定数が異なる誘導電動機に対しても運転サイクル によって変化する抵抗変動を推定できるようになり、 推定した抵抗値を用 いて精度良く誘導電動機の速度を制御できる。 In addition, the control method of the induction motor of the present invention is based on the difference between the winding resistance measured before and after the operation cycle and the value related to the calorific value of the induction motor generated during the operation cycle. Calculates the resistance change coefficient of winding resistance per unit quantity Then, at the start of the next operation cycle, the winding resistance at startup is measured, and based on the winding resistance at startup, an estimation is made from the resistance change coefficient and the value related to the calorific value of the induction motor during the operation cycle. Since the winding resistance is output and the induction motor is controlled based on the estimated winding resistance, the winding resistance is measured when the operation cycle is stopped. Even if the calorific value changes, it is possible to estimate the resistance fluctuation that changes with the operating cycle even for induction motors with different installation conditions and different thermal time constants. Speed can be controlled.
また、 本発明の誘導電動機の制御方法は、 運転サイクルの前後に測定さ れた卷線抵抗値の差と運転サイクル中に発生した誘導電動機の発熱量に係 わる値とを基に、 この値の単位量当たりの卷線抵抗の抵抗変化係数を演算 し、 卷線抵抗と抵抗変化係数の関係を記憶し、 次の運転サイクルの起動時 に起動時卷線抵抗値を測定し、 起動時巻線抵抗に対応する抵抗変化係数を 卷線抵抗と抵抗変化係数の関係を参照して求め、 起動時巻線抵抗を基にこ の起動時巻線抵抗に対応する抵抗変化係数と当該運転サイクル中の誘導電 動機の発熱量に係わる値とから推定した推定卷線抵抗値を出力し、 推定巻 線抵抗値を基に誘導電動機を駆動するィンバ一夕を制御し、 当該運転サイ クルの停止時に停止時巻線抵抗値を測定するので、 当該運転サイクルの起 動時に測定した起動時卷線抵抗を基に、 当該運転サイクルの起動時卷線抵 杭に対応する抵抗変化係数を卷線抵抗と抵抗変化係数の関係を参照して求 め、 当該運転サイクル中の発熱量に係わる値を用いて抵抗変動を推定でき るようになり、 予め熱抵抗、 熱時定数等を設定すること.なく、 さらに、 起 動時の抵抗がその前の運転サイクルの起動時の抵抗と大きく差を生じてい る場合でも良好に卷線抵抗を推定できる。 図面の簡単な説明 第 1 図乃至第 1 1 図は、 本発明にかかる好ましいの実施の形態を示す図 であり、 第 1 図は本発明の実施の形態 1による誘導電動機の制御装置を示 すプロック図、 第 2図は第 1 図に示す誘導電動機の制御装置の制御方法を 示すフローチヤ一ト、 第 3図は本発明の実施の形態 2による誘導電動機の 制御装置のブロック図、 第 4図は一般的な誘導電動機の卷線抵抗値と抵抗 変化係数を示す説明図、 第 5図は第 3図に示す抵抗特性記憶器 1 1が記憶 する卷線抵抗値と抵抗変化係数の関係の説明図、 第 6図は第 3図に示す誘 導電動機の制御装置の制御方法を示すフローチヤ一ト、 第 7図は一般的な 誘導電動機の電流値をパラメ一夕とした卷線抵抗値と抵抗変化係数を示す 説明図、 第 8図は第 9図に示す抵抗特性記憶器 1 1 aが記憶する卷線抵抗 値と抵抗変化係数の関係の説明図、 第 9図は本発明の実施の形態 2による 他の態様の誘導電動機の制御装置のブロック図、 第 1 0図は本発明の実施 の形態 3による誘導電動機の制御装置を示すブロック図、 第 1 1 図は本発 明の実施の形態 4による誘導電動機の制御装置を示すブロック図、 第 1 2 図は従来の誘導電動機の制御装置を示すプロック図である。 発明を実施するための最良の形態 In addition, the control method of the induction motor of the present invention is based on the difference between the winding resistance measured before and after the operation cycle and the value related to the calorific value of the induction motor generated during the operation cycle. Calculates the resistance change coefficient of the winding resistance per unit amount of, stores the relationship between the winding resistance and the resistance change coefficient, measures the winding resistance at startup at the start of the next operation cycle, and calculates the winding resistance at startup. The resistance change coefficient corresponding to the wire resistance is obtained with reference to the relationship between the winding resistance and the resistance change coefficient, and based on the starting winding resistance, the resistance change coefficient corresponding to the starting winding resistance is calculated based on the starting winding resistance. The estimated winding resistance estimated from the value related to the calorific value of the induction motor is output, and the induction motor that drives the induction motor is controlled based on the estimated winding resistance. Since the winding resistance value at stop is measured, Based on the start-up winding resistance measured at the start of the operation, the resistance change coefficient corresponding to the start-up winding resistance of the operation cycle is determined with reference to the relationship between the winding resistance and the resistance change coefficient. The resistance fluctuation can be estimated using the value related to the heat value during the cycle, without setting the thermal resistance, thermal time constant, etc. in advance, and the resistance at the time of start-up Even if there is a large difference from the resistance at startup, the winding resistance can be estimated well. BRIEF DESCRIPTION OF THE FIGURES 1 to 11 are diagrams showing a preferred embodiment according to the present invention. FIG. 1 is a block diagram showing a control device for an induction motor according to a first embodiment of the present invention. FIG. 3 is a flowchart showing a control method of the induction motor control device shown in FIG. 1, FIG. 3 is a block diagram of the induction motor control device according to the second embodiment of the present invention, and FIG. FIG. 5 is an explanatory diagram showing the winding resistance value and the resistance change coefficient of the motor. FIG. 5 is an explanatory diagram showing the relationship between the winding resistance value and the resistance change coefficient stored in the resistance characteristic storage unit 11 shown in FIG. 3, and FIG. Fig. 3 is a flowchart showing a control method of the induction motor control device shown in Fig. 3, and Fig. 7 shows a winding resistance value and a resistance change coefficient when a current value of a general induction motor is a parameter. Fig. 8 shows the winding resistance and resistance stored in the resistance characteristic storage 11a shown in Fig. 9. FIG. 9 is a block diagram of an induction motor control device of another embodiment according to the second embodiment of the present invention, and FIG. 10 is a control of the induction motor according to the third embodiment of the present invention. FIG. 11 is a block diagram showing a device, FIG. 11 is a block diagram showing a control device for an induction motor according to a fourth embodiment of the present invention, and FIG. 12 is a block diagram showing a control device for a conventional induction motor. BEST MODE FOR CARRYING OUT THE INVENTION
実施の形態 1 . Embodiment 1
第 1図は本発明に係わる誘導電動機の制御装置の一実施の形態を示すブ ロック図である。 図において、 1は誘導電動機、 2は誘導電動機 1に電圧 を供給するィンバ一夕、 3は誘導電動機 1の電流を検出する電流検出器、 4は速度指令を発生する速度指令発生器、 5 aは速度指令発生器 4からの 出力である速度指令を入力してチューニングを制御するチューニング制御 器、 6は誘導電動機 1を制御するためのセンサレスベク トル制御器、 7は 起動時及び停止時に誘導電動機 1の 1次卷線及び 2次巻線の 1次及び 2次 抵抗を測定する抵抗測定器である。 ここで、 2次卷線とは籠型卷線を含む ものとする。 8は電流検出器 3と抵抗測定器 7の出力とに基づき誘導電動 機 1の抵抗変化係数を演算するための抵抗変化係数演算器、 9 aは電流検 出器 3と抵抗計測器 7 と抵抗変化係数演算器 8の出力とに基づき誘導電動 機 1の抵抗変動を推定する抵抗変動推定器、 1 0は起動時及び停止時には 抵抗測定器 7側に閉路し、 運転時にはセンサレスべク トル制御器 6側に閉 路する制御切替器であり、 チューニング制御器 5 aにより制御される。 次に、 動作を図について説明する。 まず、 速度指令発生器 4から速度指 令 ω m*が入力された起動時において、チューニング制御器 5 aは制御切替 器 1 0を抵抗測定器 7側に閉路するように動作し、 抵抗測定器 7から出力 されたスィ ツチング信号によってィンバ一夕 2から誘導電動機 1に電圧が 出力できるようになる。 さらに、 チューニング制御器 5 aからの抵抗測定 開始信号が抵抗測定器 7に入力され、 抵抗測定器 7は誘導電動機 1の 1次 及び 2次抵抗値の測定を開始する。 FIG. 1 is a block diagram showing one embodiment of a control device for an induction motor according to the present invention. In the figure, 1 is an induction motor, 2 is an inverter that supplies voltage to the induction motor 1, 3 is a current detector that detects the current of the induction motor 1, 4 is a speed command generator that generates a speed command, 5a Is a tuning controller that controls the tuning by inputting a speed command output from the speed command generator 4, 6 is a sensorless vector controller that controls the induction motor 1, and 7 is an induction motor when starting and stopping. This is a resistance measuring instrument that measures the primary and secondary resistance of the primary and secondary windings. Here, the secondary winding includes the cage winding Shall be. 8 is a resistance change coefficient calculator for calculating the resistance change coefficient of the induction motor 1 based on the outputs of the current detector 3 and the resistance measurement device 7, and 9a is the current detection device 3, the resistance measurement device 7, and the resistance. A resistance fluctuation estimator that estimates the resistance fluctuation of the induction motor 1 based on the output of the change coefficient calculator 8, and 10 is a circuit closed to the resistance measuring device 7 when starting and stopping, and a sensorless vector controller during operation. This is a control switch that closes to the 6 side, and is controlled by the tuning controller 5a. Next, the operation will be described with reference to the drawings. First, at start-up when the speed command ω m * is input from the speed command generator 4, the tuning controller 5a operates so as to close the control switch 10 to the resistance measuring device 7 side. The switching signal output from 7 enables the voltage to be output from the chamber 2 to the induction motor 1. Further, a resistance measurement start signal from the tuning controller 5a is input to the resistance measurement device 7, and the resistance measurement device 7 starts measuring the primary and secondary resistance values of the induction motor 1.
ここで、 抵抗測定器 7によって実行される抵抗の測定は、 例えば特開昭 6 2 - 7 9 3 8 0号公報に記載されているような方法を用いるとよい。 つ まり、 インバー夕 2の出力に直流電流 I Dをステツプ状に発生させ、 誘導電 動機 1の 1次電圧 VIの最終値 Vl(∞)と直流電流の比 Vl(∞)/ I Dから 1次 抵抗 R1を求め、 直流電流 I Dによる 1次電圧 VIの時刻 tl、 t2の過渡電圧 Vl(tl)、 Vl(t2)と最終値 Vl(oo)から(4)式によって誘導電動機 1の 2次時定 数て 2を求め、 さらにこの時定数て 2を使って(5)式から 2次抵抗 R 2を求 める。 なお、 て 2 = L 2/ R 2であり、 L 2は温度が変化しても一定値のた め、 予め正確に設定しておくことができる。 t2 - tl Here, the resistance measurement performed by the resistance measuring device 7 may be performed by a method described in, for example, JP-A-6-79380. That is, a DC current ID is generated in the output of the inverter 2 in a step-like manner, and the final value Vl (∞) of the primary voltage VI of the induction motor 1 and the ratio of the DC current Vl (∞) / ID to 1 The secondary resistance R1 is obtained, and the transient voltage Vl (tl), Vl (t2) and the final value Vl (oo) of the primary voltage VI due to the DC current I D are obtained from the induction motor 1 by the equation (4). The next-time constant is determined as 2, and the secondary resistance R2 is determined from equation (5) using the time constant as 2. Note that 2 = L2 / R2, and L2 is a constant value even when the temperature changes, so that L2 can be accurately set in advance. t2-tl
τ2  τ2
( Vl(tl) - Vl(∞) \ ( 4 ) lo ,  (Vl (tl)-Vl (∞) \ (4) lo,
\Vl(t2) - Vl(∞)J Vl{tl) - Vl{∞) = IDR2e Tl . . . ( 5 ) ここで、ィンバ一夕 2の出力に直流電流 I Dをステツプ状に発生させるに は、 通常のべク トル制御等で一般的に用いられている電流制御器を抵抗測 定器 7の内部に設け、 ステップ状の電流指令をィンバ一夕 2に与えればよ い。 \ Vl (t2)-Vl (∞) J Vl {tl)-Vl {∞) = I D R2e Tl ... (5) Here, in order to generate the DC current ID at the output of the inverter 2 in a step-like manner, normal vector control or the like is used. A generally used current controller may be provided inside the resistance measuring device 7 and a step-like current command may be given to the chamber 2.
なお、 1次電圧 VIの最終値 Vl(∞)を求めるにあたり、 通常の誘導電動 機 1では 2次時定数が数十 msec〜数百 msecであることから、 その数倍程 度の時間である数百 msec〜数 sec の時点の値を 1 次電圧 VI の最終値 Vl(∞)としても殆ど誤差は生じることなく、 短時間で測定が終了できる。 次に、 抵抗測定器 7が 1次抵抗及び 2次抵抗の測定を完了すると、 チュ 一二ング制御器 5 aに対して抵抗測定完了信号が送られ、 同時に抵抗変化 係数演算器 8及び抵抗変動推定器 9 aに測定結果が出力される。 チュー二 ング制御器 5 aは、 この抵抗測定器 7から出力された抵抗測定完了信号を 入力すると制御切替器 1 0をセンサレスべク トル制御器 6側に閉路するよ うに動作し、 センサレスべク トル制御器 6から出力されたスィ ツチング信 号によって誘導電動機 1の運転を開始する。  In order to obtain the final value Vl (∞) of the primary voltage VI, since the secondary time constant of the ordinary induction motor 1 is several tens to several hundreds of milliseconds, the time is several times as long as that. Even if the value of several hundred msec to several sec is used as the final value Vl (∞) of the primary voltage VI, the measurement can be completed in a short time with almost no error. Next, when the resistance measurement device 7 completes the measurement of the primary resistance and the secondary resistance, a resistance measurement completion signal is sent to the tuning controller 5a, and at the same time, the resistance change coefficient calculator 8 and the resistance change The measurement result is output to the estimator 9a. When the resistance measurement completion signal output from the resistance measurement device 7 is input, the tuning controller 5a operates to close the control switch 10 to the sensorless vector controller 6 side, and the sensorless vector The operation of the induction motor 1 is started by the switching signal output from the torque controller 6.
その後、 速度指令発生器 4から停止指令がチューニング制御器 5 aを経 由してセンサレスべク トル制御器 6に入力され、 誘導電動機 1が減速して 停止すると、 センサレスべク トル制御器 6から停止完了信号がチューニン グ制御器 5 aに出力される。 チューニング制御器 5 aは、 この停止完了信 号の入力により抵抗測定器 7に抵抗測定開始信号を出力し、 抵抗測定器 7 はこの抵抗測定開始信号が入力されると再び起動時と同様の方法により誘 導電動機 1の 1次抵抗及び 2次抵抗値の測定を開始する。  After that, a stop command is input from the speed command generator 4 to the sensorless vector controller 6 via the tuning controller 5a, and when the induction motor 1 decelerates and stops, the sensorless vector controller 6 The stop completion signal is output to the tuning controller 5a. The tuning controller 5a outputs a resistance measurement start signal to the resistance measurement device 7 in response to the input of the stop completion signal, and the resistance measurement device 7 receives the resistance measurement start signal again and operates in the same manner as when starting. As a result, measurement of the primary resistance and the secondary resistance of the induction motive 1 is started.
さらに、 抵抗測定器 7が 1次抵抗及び 2次抵抗の測定を完了すると、 チ ユーニング制御器 5 aに対して抵抗測定完了信号が送られ、 同時に抵抗変 化係数演算器 8に測定結果が出力される。 抵抗変化係数演算器 8は、 チュ —ニング制御器 5 aから出力された制御信号と、 電流検出器 3から出力さ れた誘導電動機 1の電流 I と、 抵抗測定器 7から入力された誘導電動機 1 の起動時及び停止直後の 1次抵抗及び 2次抵抗の測定値を入力し、 起動時 と停止直後の 1次抵抗及び 2次抵抗測定値の差分を誘導電動機の運転時間 中に積算した∑ I 2 t (電流 2乗値の時間積分値) で除し、 (6)式及び (7)式 で得られる単位量( I 2 t =l)当たりの 1次抵抗及び 2次抵抗の変化係数 K Rl、 K R2 を演算して抵抗変動推定器 9 aに出力する。 これは、 誘導電動 機 1の卷線の温度上昇は誘導電動機 1の卷線抵抗に電流が流れることによ り発生する抵抗損にほぼ比例し、 その発熱量は電流 Iの 2乗に比例するた めである。 When the resistance measuring device 7 completes the measurement of the primary resistance and the secondary resistance, A resistance measurement completion signal is sent to the uning controller 5a, and at the same time, the measurement result is output to the resistance change coefficient calculator 8. The resistance change coefficient calculator 8 includes a control signal output from the tuning controller 5a, the current I of the induction motor 1 output from the current detector 3, and the induction motor input from the resistance measurement device 7. Input the measured values of the primary and secondary resistances at the start and immediately after the stop in Step 1, and integrate the difference between the measured primary and secondary resistances at the start and immediately after the stop during the operation time of the induction motor. Divide by I 2 t (time integral of current squared value), and change coefficient of primary resistance and secondary resistance per unit quantity (I 2 t = l) obtained by equations (6) and (7) K Rl and K R2 are calculated and output to the resistance fluctuation estimator 9a. This is because the temperature rise of the winding of the induction motor 1 is almost proportional to the resistance loss caused by the current flowing through the winding resistance of the induction motor 1, and the calorific value is proportional to the square of the current I. That's why.
^ R1 (停止直後) 一 R1 (起動時) ^ R1 (immediately after stopping) One R1 (when starting)
m2 R2 (停止直後)一 H2 (起動時) … , 7 ) m 2 R2 (immediately after stopping) – H2 (at startup)…, 7 )
 M
次回起動時からは、 抵抗変動推定器 9 aにより、 チューニング制御器 5 aから出力された制御信号と、 電流検出器 3から出力された誘導電動機 1 の電流 I と、 抵抗測定器 7から入力された誘導電動機 1の 1次抵抗及び 2 次抵抗の起動時の測定値と、 抵抗変化係数演算器 8 から出力された単位量 ( I 2 t =1) 当たりの 1次抵抗及び 2次抵抗の変化係数 K Rl、 K R2 を入 力し、 1次抵抗及び 2次抵抗の起動時の測定値を初期値として(8)式及び (9) 式により 1次抵抗及び 2次抵抗推定値 Rl*、 R2*を演算してセンサレスべ ク トル制御器 6に出力する。 Rl* =KRl^I2t+Rl (起動時) . . . (8) From the next startup, the control signal output from the tuning controller 5a, the current I of the induction motor 1 output from the current detector 3, and the input from the resistance measurement device 7 are output by the resistance fluctuation estimator 9a. The measured values of the primary resistance and secondary resistance of the induction motor 1 at startup and the change in primary resistance and secondary resistance per unit quantity (I 2 t = 1) output from the resistance change coefficient calculator 8 Enter the coefficients K Rl and K R2, and use the measured values at startup of the primary and secondary resistors as the initial values, and use the equations (8) and (9) to estimate the primary and secondary resistance Rl *, Calculates R2 * and outputs it to sensorless vector controller 6. Rl * = KRl ^ I 2 t + Rl (at startup)... (8)
R2* + R2 (起動時) · · · (9 )
Figure imgf000015_0001
R2 * + R2 (at startup) · · · (9)
Figure imgf000015_0001
なお、 センサレスベク トル制御器 6は、 チューニング制御器 5 aを経由 した速度指令発生器 4の出力である速度指令値 ω m*、電流検出器 3の出力 である電流 I、 及び抵抗変動推定器 9 aから出力された 1次抵抗及び 2次 抵抗推定値 R1*及び R2*を入力し、 また、 内部に設定された誘導電動機 1 の定数や制御ゲインを用いて誘導電動機 1の速度がその指令値 ω m*に追 従するように制御する。  The sensorless vector controller 6 includes a speed command value ωm * output from the speed command generator 4 via the tuning controller 5a, a current I output from the current detector 3, and a resistance fluctuation estimator. 9 Input the primary resistance and secondary resistance estimated values R1 * and R2 * output from a, and use the constants and control gain of the induction motor 1 set internally to determine the speed of the induction motor 1 Control to follow the value ωm *.
上述の誘導電動機の制御装置の制御方法を第 2図に示すフローチヤ一ト により説明する。 まず、 ステップ S 1 1において、 1次抵抗及び 2次抵抗 の変化係数 K R1、 K R2を適当な値に初期設定する。 最初の 1回目の運転 時のみ抵抗推定の誤差を許容すれば、 K Rl、 K R2はゼロでもよい。  A control method of the above-described induction motor control device will be described with reference to a flowchart shown in FIG. First, in step S11, the change coefficients K R1 and K R2 of the primary resistance and the secondary resistance are initialized to appropriate values. K Rl and K R2 may be zero if an error in resistance estimation is allowed only during the first operation.
次に、 ステップ S 1 2において、 運転開始信号が与えられているかどう かをチューニング制御器 5 aが判別し、 運転開始信号が与えられるまで待 機する。 運転開始信号が与えられれば、 ステップ S 1 3において、 インバ —夕 2により誘導電動機 1に直流電流が供給され抵抗測定器 7が 1次抵抗 及び 2次抵抗を測定する。  Next, in step S12, the tuning controller 5a determines whether or not the operation start signal is given, and waits until the operation start signal is given. When the operation start signal is given, in step S13, a direct current is supplied to the induction motor 1 by the inverter 2 and the resistance measuring device 7 measures the primary resistance and the secondary resistance.
次に、 ステップ S 1 4において、 通常の運転モードの実運転サイクルに 移り、 誘導電動機 1の運転を開始する。 なお、 ステップ S 14では、 ステ ップ S 1 3において計測された抵抗値を初期値として、 前回求められた K Rl、 K R2 (初回のみステップ S 1 1で設定された初期値) と誘導電動機に 流れている電流 Iより K Rl ∑ I 2 t、 K R2 ∑ I 2 tとして実運転サイク ル運転中の 1次抵抗及び 2次抵抗の変動分を推定し、 この推定された 1次 抵抗及び 2次抵抗を用いてセンサレスべク トル制御器 2は制御を行う。 ス テツプ S 1 5では停止信号が与えられて誘導電動機 1が停止したかどうか をチューニング制御器 5 aが判別し、 誘導電動機 1が運転中はステップ S 1 4に戻る。 停止信号が与えられて誘導電動機 1が停止すれば、 ステップ S 1 6において、 再びィンバ一夕 2により誘導電動機 1に直流電流が供給 され抵抗測定器 7が 1次抵抗及び 2次抵抗を測定する。 Next, in step S14, the operation shifts to the actual operation cycle of the normal operation mode, and the operation of the induction motor 1 is started. In step S14, the resistance value measured in step S13 is used as an initial value, and K Rl and K R2 (the initial value set in step S11 only for the first time) and the induction motor determined last time are used. estimating the variation of the primary resistance and secondary resistance during actual operation cycle operation as the current I from the K Rl Σ I 2 t, K R2 Σ I 2 t flowing in, the primary resistance and the estimated The sensorless vector controller 2 performs control using the secondary resistance. In step S15, a stop signal is given to determine whether induction motor 1 has stopped. Is determined by the tuning controller 5a, and the process returns to step S14 while the induction motor 1 is operating. If the stop signal is given and the induction motor 1 stops, in step S16, the direct current is again supplied to the induction motor 1 by the inverter 2 and the resistance measuring device 7 measures the primary resistance and the secondary resistance. .
さらに、 ステヅプ S 1 7において、ステツプ S 1 3で測定した起動時の 1 次抵抗及び 2次抵抗と、ステップ S 1 6で測定した停止時の 1次抵抗及び 2 次抵抗の差分を誘導電動機 1の実運転サイクルの運転時間中に積算した∑ I 2 t (電流 2乗値の時間積分値) で除し、 単位量 ( i 2 t =l) 当たりの 1 次抵抗及び 2次抵抗の変化係数 K Rl、 K R2を求める。 これで一連の動作 が完了し、 再びステップ S 1 2に戻り、 次の運転開始信号が与えられるま で待機する。 * Further, in step S17, the difference between the primary resistance and secondary resistance at startup measured in step S13 and the primary resistance and secondary resistance at shutdown measured in step S16 is calculated by the induction motor 1. Divided by 2I 2 t (time integral of current squared value) integrated during the operation time of the actual operation cycle of, and the change coefficient of primary resistance and secondary resistance per unit quantity (i 2 t = l) Find K Rl and K R2. This completes a series of operations, returns to step S12 again, and waits until the next operation start signal is given. *
上述の方法により誘導電動機 1を制御すると、 実運転サイクル中に時々 刻々変化する 1次抵抗、 2次抵抗を抵抗変動推定器 9 aは推定し、 センサ レスべク トル制御器 6は誘導電動機 1の速度がその指令値 ω m*に追従す るように精度良く制御する。  When the induction motor 1 is controlled by the above-described method, the resistance fluctuation estimator 9a estimates the primary resistance and the secondary resistance, which change every moment during the actual operation cycle, and the sensorless vector controller 6 controls the induction motor 1 The speed is controlled precisely so that the speed follows the command value ωm *.
以上のように、 この発明によれば、 抵抗測定器 7により測定された起動 時及び停止直後の抵抗値と電流検出器 3により検出された電流とに基づき 抵抗変化係数を演算する抵抗変化係数演算器 8と、 電流検出器 3により検 出された電流と抵抗測定器 7により測定された起動時の抵抗値と抵抗変化 係数演算器 8により演算された抵抗変化係数とに基づき抵抗変動を推定す るための抵抗変動推定器 9 aを設けたので、 予め熱抵抗、 熱時定数等設定 することなく誘導電動機 1の抵抗変動を推定できる。  As described above, according to the present invention, the resistance change coefficient calculation for calculating the resistance change coefficient based on the resistance value measured by the resistance measuring device 7 immediately after the start and immediately after the stop and the current detected by the current detector 3 The resistance fluctuation is estimated based on the current detected by the current detector 3, the resistance at start-up measured by the resistance measuring instrument 7, and the resistance change coefficient calculated by the resistance change coefficient calculator 8. A resistance fluctuation estimator 9a is provided to estimate the resistance fluctuation of the induction motor 1 without previously setting the thermal resistance, thermal time constant, and the like.
さらに、 抵抗変化係数演算器 8は、 抵抗測定器 7により測定された起動 時の抵抗値と停止直後の抵抗値との差分を、 誘導電動機 1の運転時間中に 積算した、 電流検出器 3により検出された電流の 2乗値の時間積分値で除 し、 単位熱量当たりの抵抗変化量として抵抗変化係数を演算し、 抵抗変動 推定器 9 aは、 抵抗測定器 7により測定された起動時の抵抗値を初期値と し、 電流検出器 3により検出された電流の 2乗値の時間積分値と抵抗変化 係数を乗算したものを抵抗変動値として抵抗値を推定演算するように構成 したので、 誘導電動機 1に流れる電流値が変化しても、 それに対応した抵 抗変動が推定できる。 Further, the resistance change coefficient calculator 8 calculates the difference between the resistance value at the start-up measured by the resistance measuring device 7 and the resistance value immediately after the stoppage during the operation time of the induction motor 1. Divide by the time integral of the square of the detected current, calculate the resistance change coefficient as the amount of resistance change per unit heat, and calculate the resistance change The estimator 9a is obtained by multiplying the resistance value at the time of startup measured by the resistance measuring device 7 as an initial value, and multiplying the time integral value of the square of the current detected by the current detector 3 by the resistance change coefficient. Is configured to calculate the resistance value as a resistance variation value, so that even if the value of the current flowing through the induction motor 1 changes, the resistance variation corresponding thereto can be estimated.
なお、停止時間が誘導電動機 1の熱時定数に対して十分に小さい場合は、 停止直後に測定した抵抗値と次回起動時の抵抗値の差は小さいため、 停止 直後の値をそのまま用いても殆ど誤差を生じない。 つまり、 チューニング 制御器 5 aの内部に誘導電動機 1の停止時間をカウントする停止時間計測 器を設け、 停止時間が誘導電動機 1の熱時定数に対して十分短い時は抵抗 測定器 7による起動時の抵抗測定を省略し、 停止直後に測定した抵抗値を 次回起動時の抵抗値とみなして用いてもよい。  If the stop time is sufficiently smaller than the thermal time constant of the induction motor 1, the difference between the resistance measured immediately after the stop and the resistance at the next start is small. Almost no error occurs. In other words, a stop time measuring device that counts the stop time of the induction motor 1 is provided inside the tuning controller 5a, and when the stop time is sufficiently shorter than the thermal time constant of the induction motor 1, the start time is measured by the resistance measurement device 7. May be omitted, and the resistance measured immediately after stopping may be used as the resistance at the next startup.
また、 誘導電動機 1の停止時において、 チューニング制御器 5 aの内部 にタイマーを設け、 誘導電動機 1の熱時定数に対して十分短い適当な間隔 で抵抗測定器 7により抵抗値の測定を行い、起動信号が入力された時には、 抵抗測定器 7による起動時の抵抗測定の代りに直前に測定した停止時の抵 抗値を用いてもよい。  In addition, when the induction motor 1 is stopped, a timer is provided inside the tuning controller 5a, and the resistance value is measured by the resistance measuring device 7 at an appropriate interval short enough to the thermal time constant of the induction motor 1, When the start signal is input, the resistance value at the time of the stop measured immediately before may be used instead of the resistance measurement at the start by the resistance measuring device 7.
これにより、 起動時の抵抗測定が省略でき、 速く起動できるという効果 がある。  This has the effect that the resistance measurement at startup can be omitted and the startup can be performed quickly.
さらに、 この実施の形態 1では、 抵抗変化係数演算器 8及び抵抗変動推 定器 9 aにおいて、 1次抵抗、 2次抵抗の変化係数演算及び 1次抵抗、 2次 抵抗の推定演算に電流検出器 3 により検出された誘導電動機 1の電流の 2 乗値を用いたが、 センサレスべク トル制御器 6 内部で電流指令値及びトル ク指令値が作成されている場合はそれらの 2乗値を単位量として用いても よい。 また、 誘導電動機の出力トルクに概略比例した量を推定または検出 する手段がセンサレスべク トル制御器 6 内部または誘導電動機の負荷側に 備えられていれば、 それらの出力の 2乗値を単位量として用いてもよい。 また、 この実施の形態 1では、 抵抗変化係数演算器 8 は、 起動時と停止 直後の 1次抵抗及び 2次抵抗測定値の差分を誘導電動機運転時間中に積算 した∑ I 2 t (電流 2乗値の時間積分値) で除し、 (6)式及び (7)式で得られ る単位量 ( I 2 t=l) 当たりの 1次抵抗及び 2次抵抗の変化係数 K R1、 K R2を演算するように構成した。 これは、 誘導電動機 1から発生する熱は殆 どが誘導電動機 1の卷線抵抗に電流が流れることにより発生し、 その発熱 量は電流 Iの 2乗に比例するためである。 しかし、 誘導電動機 1の軸に装 着されている自冷ファン、強制ファン等の冷却装置が装備されている場合、 標準的な誘導電動機 1においては概略無負荷状態では温度上昇を生じない ことが実験により確認された。 そこで、 抵抗変動推定器 9 aにより 1次抵 抗及び 2次抵抗の変化係数 K Rl、 K R2を演算するに際し、 誘導電動機 1 の温度上昇は電流 Iの 2乗から無負荷電流 I 0の 2乗を差し引いた量に比 例するとして(10)式及び(11)式により演算してもよい。 Further, in the first embodiment, the resistance change coefficient calculator 8 and the resistance change estimator 9a use the current detection to calculate the change coefficient of the primary resistance and the secondary resistance and to calculate the primary resistance and the secondary resistance. The square value of the current of the induction motor 1 detected by the heater 3 was used, but if the current command value and the torque command value were created inside the sensorless vector controller 6, those square values were used. It may be used as a unit amount. Also, a means for estimating or detecting an amount approximately proportional to the output torque of the induction motor is provided inside the sensorless vector controller 6 or on the load side of the induction motor. If provided, the squared values of those outputs may be used as unit quantities. Further, in this first embodiment, the resistance change coefficient calculator 8, startup and stop immediately after the primary resistance and secondary resistance measurement of the difference obtained by integrating into the induction motor operation time sigma I 2 t (current 2 (Time integral value of the power value), and the change coefficients K R1 and K R2 of the primary resistance and the secondary resistance per unit quantity (I 2 t = l) obtained by equations (6) and (7). Was calculated. This is because most of the heat generated from the induction motor 1 is generated by the current flowing through the winding resistance of the induction motor 1, and the amount of heat generated is proportional to the square of the current I. However, when a cooling device such as a self-cooling fan or a forced fan mounted on the shaft of the induction motor 1 is provided, the temperature of the standard induction motor 1 does not rise under almost no load condition. Confirmed by experiment. Therefore, when calculating the change coefficients K Rl and K R2 of the primary resistance and the secondary resistance by the resistance fluctuation estimator 9a, the temperature rise of the induction motor 1 is calculated from the square of the current I to the no-load current I 0. The calculation may be performed by equations (10) and (11) as proportional to the amount obtained by subtracting the power.
R1 (停止直後) R1 (immediately after stopping)
KR1 = 一 R1 (起動時)  KR1 = one R1 (at startup)
S ( 1 0 ) (/2-/o2) S (10) (/ 2- / o 2 )
R2 (停止直後) 一 R2 (起動時) R2 (immediately after stopping) One R2 (when starting)
KR2 ( 1 1 )  KR2 (1 1)
なお、 (10)式及び(11)式で K R1及び K R2を演算した場合、 抵抗変動推 定器 9 aは、 抵抗測定器 7で測定された起動時の 1次抵抗及び 2次抵抗を 初期値として、 (12)式及び(13)式により 1次抵抗及び 2次抵抗推定値 Rl*、 R2*を演算してセンサレスべク トル制御器 6に出力すればよい。 When K R1 and K R2 are calculated by Eqs. (10) and (11), the resistance fluctuation estimator 9a calculates the primary resistance and the secondary resistance at the time of startup measured by the resistance measurement instrument 7. As the initial value, the primary resistance and the secondary resistance estimation values Rl * and R2 * may be calculated from the equations (12) and (13) and output to the sensorless vector controller 6.
R1* = ΚΝΪ^ (I2 - I02)t + R1 (起動時) · · . ( 1 2 ) R2* = KR2^ (I2 - I 2)t + R2 (起動時) . . . ( 1 3 ) R1 * = ΚΝΪ ^ (I 2 -I0 2 ) t + R1 (at startup) ··· (1 2) R2 * = KR2 ^ (I 2 -I 2 ) t + R2 (at startup)... (1 3)
これにより、 より実際の抵抗値に近い値として抵抗変動を推定できると いう効果がある。 Thereby, there is an effect that the resistance fluctuation can be estimated as a value closer to the actual resistance value.
また、 誘導電動機 1の電流がほぼ一定である場合、 抵抗変化係数演算器 8は電流の 2乗値の時間積分値の計算を省略し、 抵抗測定器 7から入力さ れた誘導電動機 1の起動時及び停止直後の 1次抵抗及び 2次抵抗の差分を 起動から停止までの運転時間で除した単位時間当たりの抵抗変化量として 1次抵抗及び 2次抵抗の変化係数 K Rl、 K R2を演算してもよい。 この場 合、 抵抗変動推定器 9 aは、 単位時間当たりの変化量として演算された 1 次抵抗及び 2次抵抗の変化係数 K Rl、 K R2に起動してからの経過時間を 乗じて抵抗変化量として演算すればよい。  When the current of the induction motor 1 is almost constant, the resistance change coefficient calculator 8 omits the calculation of the time integral value of the square of the current, and starts the induction motor 1 input from the resistance measuring device 7. Calculate the primary and secondary resistance change coefficients K Rl and K R2 as the resistance change per unit time by dividing the difference between the primary and secondary resistances at the time and immediately after the stop by the operation time from start to stop. May be. In this case, the resistance fluctuation estimator 9a multiplies the change coefficients K Rl and K R2 of the primary resistance and the secondary resistance calculated as the amount of change per unit time by the elapsed time from the start, and changes the resistance. It may be calculated as a quantity.
これにより、演算量が少なくて抵抗変動を推定できるという効果がある。 さらに、 この実施の形態 1では、 抵抗測定器 7にて 1次抵抗及び 2次抵 抗を測定し、 抵抗変化係数演算器 8にて 1次抵抗及び 2次抵抗の抵抗変化 係数 K R1、 K R2を演算し、 抵抗変動推定器 9にて 1次抵抗及び 2次抵抗 推定値 Rl *、 R2*を演算するように構成したが、 1次抵抗及び 2次抵抗は独 立して演算できるため、 片方のみ推定するように構成してもよい。  Thus, there is an effect that the resistance fluctuation can be estimated with a small amount of calculation. Furthermore, in the first embodiment, the primary resistance and the secondary resistance are measured by the resistance measuring device 7, and the resistance change coefficients K R1 and K R1 of the primary resistance and the secondary resistance are measured by the resistance change coefficient calculator 8. R2 is calculated, and the primary and secondary resistance estimation values Rl * and R2 * are calculated by the resistance fluctuation estimator 9.However, the primary and secondary resistances can be calculated independently. It may be configured to estimate only one of them.
つまり、 センサレスべク トル制御器 6で 1次抵抗及び 2次抵抗の両方使 用する場合は上述のように両方とも推定し、 1 次抵抗のみ使用する場合は 抵抗測定器 7、 抵抗変化係数演算器 8及び抵抗変動推定器 9にて 1次抵抗 のみ対象として 1次抵抗のみ推定し、 2次抵抗のみ使用する場合は 2次抵 抗のみ対象として推定するように構成すればよい。  In other words, if the sensorless vector controller 6 uses both the primary resistance and the secondary resistance, both are estimated as described above.If only the primary resistance is used, the resistance measurement device 7 and the resistance change coefficient calculation are used. In the case where only the primary resistance is estimated using only the primary resistance in the resistor 8 and the resistance variation estimator 9, only the secondary resistance is estimated when only the secondary resistance is used.
上述の構成とすることにより、 誘導電動機 1の制御演算に必要な抵抗値 のみ測定することができ、 抵抗測定器 7 6での抵抗測定の簡素化と、 抵抗 変化係数演算器 8及び抵抗変動推定器 9 aでの演算の簡略化ができるとい う効果がある。 With the above configuration, it is possible to measure only the resistance value necessary for the control calculation of the induction motor 1, simplify the resistance measurement with the resistance measuring device 76, and estimate the resistance change coefficient calculator 8 and the resistance variation estimation. It can be said that the operation in unit 9a can be simplified. Has the effect.
また、 1次抵抗と 2次抵抗は同様に変化するとして、 1次抵抗値のみ抵抗 測定器 7にて測定し、測定された 1次抵抗値を用いて抵抗変化係数演算器 8 にて 1 次抵抗の抵抗変化係数 K R1 を演算し、 2 次抵抗の抵抗変化係数 K R2二 K R1としてもよい。 さらに、 その逆でもよい。  In addition, assuming that the primary resistance and the secondary resistance change in the same way, only the primary resistance value is measured by the resistance measuring instrument 7 and the measured primary resistance value is used by the resistance change coefficient calculator 8 to calculate the primary resistance. The resistance change coefficient K R1 of the resistor may be calculated and used as the resistance change coefficient K R2 of the secondary resistor. Further, the reverse may be applied.
実施の形態 2 . Embodiment 2
第 3図は本発明に係わる実施の形態 2による誘導電動機の制御装置を示 すブロック図である。 第 3図において、 1は誘導電動機、 2は誘導電動機 1に電圧を供給するィンバ一夕、 3は誘導電動機 1の電流を検出する電流 検出器、 4は速度指令を発生する速度指令発生器、 5 bは速度指令発生器 4からの出力である速度指令を入力してチューニングを制御するチュー二 ング制御器、 6は誘導電動機 1を制御するためのセンサレスべク トル制御 器、 7は起動時及び停止時に誘導電動機 1の 1次及び 2次抵抗を測定する 抵抗測定器である。 8は電流検出器 3と抵抗測定器 7の出力とに基づき誘 導電動機 1の抵抗変化係数を演算するための抵抗変化係数演算器、 1 1は 抵抗測定器 7 と抵抗変化係数演算器 8の出力とを入力して抵抗変化係数と 抵抗値の関係を記憶する抵抗特性記憶器、 9 aは電流検出器 3と抵抗計測 器 7と抵抗特性記憶器 1 1の出力とに基づき誘導電動機 1の抵抗変動を推 定するための抵抗変動推定器、 1 0は起動時及び停止時には抵抗測定器 7 側に閉路し、 運転時にはセンサレスべク トル制御器 6側に閉路する制御切 替器であり、 チューニング制御器 5 bにより制御される。  FIG. 3 is a block diagram showing a control device for an induction motor according to a second embodiment of the present invention. In FIG. 3, 1 is an induction motor, 2 is an inverter that supplies voltage to the induction motor 1, 3 is a current detector that detects the current of the induction motor 1, 4 is a speed command generator that generates a speed command, 5 b is a tuning controller that controls the tuning by inputting a speed command output from the speed command generator 4, 6 is a sensorless vector controller for controlling the induction motor 1, and 7 is at startup It is a resistance measuring device that measures the primary and secondary resistance of the induction motor 1 when stopped. 8 is a resistance change coefficient calculator for calculating the resistance change coefficient of the induction motor 1 based on the output of the current detector 3 and the resistance measurement device 7, and 11 is the resistance change coefficient calculator of the resistance measurement device 7. 9a is a resistance characteristic memory which stores the relationship between the resistance change coefficient and the resistance value by inputting the output and the resistance change coefficient, and 9a is a resistance characteristic memory of the induction motor 1 based on the output of the current detector 3, the resistance measuring device 7 and the resistance characteristic memory 11. A resistance change estimator 10 for estimating the resistance change.10 is a control switch that closes to the resistance measurement device 7 when starting and stopping and closes to the sensorless vector controller 6 during operation. Controlled by tuning controller 5b.
次に、 実施の形態 2による誘導電動機の制御装置の動作を説明する。 実 施の形態 1においては、抵抗変動推定器 9 aにより、抵抗変化係数演算器 8 で 1回前の起動時と停止直後の抵抗測定値を用いて演算した抵抗変化係数 K R1、 K R2を用いて抵抗変動を推定したが、 実施の形態 2においては、 抵抗特性記憶器 1 1に抵抗値に対する抵抗変化係数を記憶し、 記憶した抵 抗変化係数 K Rl、 K R2を用いて抵抗変動推定器 9 aにより抵抗変動を推 定する。 Next, the operation of the control device for an induction motor according to the second embodiment will be described. In the first embodiment, the resistance change estimator 9a uses the resistance change coefficient calculator 8 to calculate the resistance change coefficients K R1 and K R2 calculated using the resistance measurement values immediately before the start and immediately after the stop. In the second embodiment, the resistance change coefficient with respect to the resistance value is stored in the resistance characteristic storage unit 11, and the stored resistance is stored. The resistance fluctuation is estimated by the resistance fluctuation estimator 9a using the resistance change coefficients K Rl and K R2.
ここで、 誘導電動機 1に電流 Iが流れているとすると、 誘導電動機 1か らはその抵抗のために単位時間当たり Iの 2乗に比例する熱量が発生する と考えられる。 しかし、 誘導電動機 1から周囲への放熱があるため、 誘導 電動機 1の温度上昇は 1 次遅れ的な特性を示し、 その結果として、 誘導電 動機 1の 1次抵抗及び 2次抵抗、 及び 1次抵抗及び 2次抵抗の変化係数 K Rl、 K R2は第 4図に示したような特性となる。 第 4図(a)は誘導電動機の 発熱量に係わる値と抵抗値の関係を説明し、 第 4図 (b)は誘導電動機の発熱 量に係わる値と抵抗変化係数の関係を説明している。 なお、 誘導電動機 1 の電流が一定の場合、 第 4図の横軸は時間に読み替えることができる。 さらに、 第 4図の特性を抵抗値に対する抵抗変化係数の関係として示し たのが第 5図である。 従って、 実施の形態 1 と同様の動作原理によって 1 次抵抗及び 2次抵抗の抵抗変化係数を実運転サイクル毎に演算して抵抗特 性記憶器 1 1に記憶し、 通常運転中は抵抗値の関数として抵抗変化係数 K Rl、 K R2 を呼び出せば、 より実際の抵抗変化にあった係数を設定するこ とができる。  Here, assuming that the current I is flowing through the induction motor 1, it is considered that the heat generated from the induction motor 1 is proportional to the square of I per unit time due to its resistance. However, since heat is radiated from the induction motor 1 to the surroundings, the temperature rise of the induction motor 1 exhibits a first-order lag characteristic, and as a result, the primary resistance and the secondary resistance of the induction motor 1 and the primary resistance The change coefficients K Rl and K R2 of the resistance and the secondary resistance have characteristics as shown in FIG. Fig. 4 (a) illustrates the relationship between the value related to the calorific value of the induction motor and the resistance value, and Fig. 4 (b) illustrates the relationship between the value related to the calorific value of the induction motor and the resistance change coefficient. . When the current of the induction motor 1 is constant, the horizontal axis in FIG. 4 can be read as time. FIG. 5 shows the characteristics of FIG. 4 as a relationship between the resistance value and the resistance change coefficient. Therefore, the resistance change coefficients of the primary resistance and the secondary resistance are calculated for each actual operation cycle and stored in the resistance characteristic memory 11 according to the same operating principle as in the first embodiment. By calling the resistance change coefficients K Rl and K R2 as functions, it is possible to set a coefficient that is more suitable for the actual resistance change.
まず、速度指令発生器 4から速度指令 ω がチューニング制御器 5 に 入力された起動時において、 チューニング制御器 5 bは制御切替器 1 0を 抵抗測定器 7側に閉路し、 さらに抵抗測定開始信号を抵抗測定器 7に出力 する。 抵抗測定器 7はチューニング制御器 5 bからの抵抗測定開始信号を 入力すると誘導電動機 1の 1次及び 2次抵抗値の測定を開始する。 なお、 抵抗測定器 7は実施の形態 1で述べた方法と同様の方法で抵抗値を測定す る。  First, when the speed command ω is input from the speed command generator 4 to the tuning controller 5, the tuning controller 5b closes the control switch 10 to the resistance measuring device 7 side, and furthermore, the resistance measuring start signal Is output to the resistance measuring instrument 7. When the resistance measurement device 7 receives the resistance measurement start signal from the tuning controller 5b, the resistance measurement device 7 starts measuring the primary and secondary resistance values of the induction motor 1. Note that the resistance measuring device 7 measures the resistance value in the same manner as the method described in the first embodiment.
次に、 抵抗測定器 7は 1次抵抗及び 2次抵抗の測定を完了するとチュー ニング制御器 5 bに対して抵抗測定完了を出力し、 同時に抵抗変化係数演 算器 8、 抵抗特性記憶器 1 1及び抵抗変動推定器 9 aに測定結果を出力す る。 チューニング制御器 5 bは、 この抵抗測定器 7から出力された抵抗測 定完了信号を入力すると制御切替器 1 0をセンサレスべク トル制御器 6側 に閉路するように動作し、 センサレスべク トル制御器 6から出力されたス ィツチング信号によって誘導電動機 1の運転を開始する。 Next, when the resistance measurement device 7 completes the measurement of the primary resistance and the secondary resistance, it outputs a resistance measurement completion to the tuning controller 5b, and at the same time, performs the resistance change coefficient operation. The measurement result is output to the calculator 8, the resistance characteristic storage unit 11, and the resistance fluctuation estimator 9a. When the resistance measurement completion signal output from the resistance measurement device 7 is input, the tuning controller 5b operates to close the control switch 10 to the sensorless vector controller 6 side, and the sensorless vector The operation of the induction motor 1 is started by the switching signal output from the controller 6.
その後、 速度指令発生器 4から停止指令がチューニング制御器 5 bを経 由してセンサレスべク トル制御器 6に入力され、 誘導電動機 1が減速して 停止すると、 停止完了信号がチューニング制御器 5 bに出力される。 チュ —ニング制御器 5 bは、 この停止完了信号の入力により抵抗測定器 7に抵 抗測定開始信号を出力し、 抵抗測定器 7はこの抵抗測定開始信号が入力さ れると再び起動時と同様の方法により誘導電動機 1の 1次抵抗及び 2次抵 抗値の測定を開始する。  After that, a stop command is input from the speed command generator 4 to the sensorless vector controller 6 via the tuning controller 5b, and when the induction motor 1 decelerates and stops, the stop completion signal is output to the tuning controller 5 Output to b. The tuning controller 5b outputs a resistance measurement start signal to the resistance measurement device 7 in response to the input of the stop completion signal, and when the resistance measurement start signal is input, the resistance measurement device 7 returns to the same state as when the resistance measurement device 7 is started. The measurement of the primary resistance and secondary resistance of the induction motor 1 is started by the method described in (1).
さらに、 抵抗測定器 7が 1次抵抗及び 2次抵抗の測定を完了すると、 チ ュ一ニング制御器 5 bに対して抵抗測定完了信号が送られ、 同時に抵抗変 化係数演算器 8に測定結果が出力される。 抵抗変化係数演算器 8は、 チュ 一ニング制御器 5 bから出力された制御信号と、 電流検出器 3から出力さ れた誘導電動機 1の電流 I と、 抵抗測定器 7から入力された誘導電動機 1 の起動時及び停止直後の 1次抵抗及び 2次抵抗の測定値を入力し、 実施の 形態 1で述べた方法と同様の方法で単位量( I 2 t =1 )当たりの 1次抵抗及 び 2次抵抗の変化係数 K Rl、 K R2を演算して抵抗特性記憶器 1 1に出力 する。 Further, when the resistance measuring device 7 completes the measurement of the primary resistance and the secondary resistance, a resistance measurement completion signal is sent to the tuning controller 5b, and the measurement result is simultaneously sent to the resistance change coefficient calculator 8. Is output. The resistance change coefficient calculator 8 includes a control signal output from the tuning controller 5b, a current I of the induction motor 1 output from the current detector 3, and an induction motor input from the resistance measuring device 7. Enter the measured values of the primary resistance and the secondary resistance at the start and immediately after the stop of Step 1 and use the same method as described in Embodiment 1 to determine the primary resistance and the unit resistance (I 2 t = 1). Calculate the secondary resistance change coefficients K Rl and K R2 and output them to the resistance characteristic storage 11.
抵抗特性記憶器 11は、 抵抗特性記憶器 Πが記憶している抵抗値と抵抗 変化係数のうち、 抵抗測定器 7 により測定された起動時の抵抗測定値に最 も近い抵抗値に対応する抵抗変化係数を抵抗変動推定器 9 aに出力する。 抵抗変動推定器 9 aはこの抵抗特性記憶器 11 から出力された抵抗変化係 数を入力して、 実施の形態 1 と同様の動作により 1次抵抗及び 2次抵抗の 推定値を演算してセンサレスべク トル制御器 6 に出力する。 この一連の動 作が繰り返されることにより、 抵抗特性記憶器 1 1には、 複数の抵抗値に 対する抵抗変化係数 K Rl及び K R2が記憶され、 より詳細な抵抗値と抵抗 変化係数の関係が蓄積される。 また、 蓄積された抵抗値と抵抗変化係数の 関係が抵抗変動推定器 9 aにより抵抗推定に用いられるようになり、 より 精度の高い抵抗推定が実現できる。 The resistance characteristic storage 11 stores the resistance corresponding to the resistance closest to the resistance measured at startup measured by the resistance measurement device 7 among the resistance values and the resistance change coefficients stored in the resistance characteristic storage Π. The change coefficient is output to the resistance fluctuation estimator 9a. The resistance change estimator 9a inputs the resistance change coefficient output from the resistance characteristic storage 11, and performs the same operation as in the first embodiment to obtain the primary resistance and the secondary resistance. The estimated value is calculated and output to the sensorless vector controller 6. By repeating this series of operations, the resistance change memory 11 stores the resistance change coefficients K Rl and K R2 for a plurality of resistance values, and a more detailed relationship between the resistance value and the resistance change coefficient is stored. Stored. Further, the relationship between the accumulated resistance value and the resistance change coefficient is used for the resistance estimation by the resistance variation estimator 9a, so that more accurate resistance estimation can be realized.
実施の形態 2による誘導電動機の制御装置の制御方法を第 6図に示すフ ローチャートにより説明する。 まず、 ステップ s 1 0 1において、 運転開 始信号が与えられているかどうかをチューニング制御器 5 bが判別し、 運 転開始信号が与えられるまで待機する。 運転開始信号が与えられれば、 ス テツプ S 1 0 2において、 ィンバ一夕 2により直流電流を誘導電動機 1に 供給し、 1 次抵抗及び 2 次抵抗を抵抗測定器 7が測定する。 次に、 ステツ プ S 1 0 3では、 ステップ S 1 0 2で計測された抵抗値を用いて、 抵抗特 性記憶器 1 1に記憶されている抵抗変化係数 K Rl、 K R2を参照する。 さ らに、ステツプ S 1 0 4で通常の運転モ一ドである実運転サイクルに移り、 誘導電動機 1の運転を開始する。 なお、 ステップ S 1 0 4では、 ステップ S 1 0 2で計測された抵抗値を初期値として、 ステップ S 1 0 3で参照し た K R1、 K R2 と誘導電動機に流れている電流 Iより K Rl ∑ I 2 t、 K R2 ∑ I 2 t として実運転サイクルの運転中の 1次抵抗及び 2次抵抗の変動 分を推定し、 この推定された 1次抵抗及び 2次抵抗を用いてセンサレスべ ク トル制御器 6がィンバ一夕 2の制御を行う。 A control method of the control device for the induction motor according to the second embodiment will be described with reference to a flowchart shown in FIG. First, in step s101, the tuning controller 5b determines whether or not the operation start signal is given, and waits until the operation start signal is given. When the operation start signal is given, in step S102, a direct current is supplied to the induction motor 1 by the inverter 2 and the resistance measurement device 7 measures the primary resistance and the secondary resistance. Next, in step S103, the resistance change coefficients K Rl and K R2 stored in the resistance characteristic storage unit 11 are referred to using the resistance value measured in step S102. Further, in step S104, the operation shifts to the actual operation cycle, which is the normal operation mode, and the operation of the induction motor 1 is started. In step S104, the resistance measured in step S102 is used as an initial value, and KR1 and KR2 referenced in step S103 and the current I flowing through the induction motor are calculated as K Assuming that Rl 、 I 2 t and K R2 ∑ I 2 t, the fluctuations of the primary resistance and the secondary resistance during the operation of the actual operation cycle are estimated, and the sensorless operation is performed using the estimated primary resistance and the secondary resistance. The vector controller 6 controls the room 2.
ステップ S 1 0 5では停止信号が与えられて誘導電動機 1が停止したか どうかをチューニング制御器 5 bが判別し、 誘導電動機 1が運転中はステ ップ S 1 0 4に戻る。 停止信号が与えられて誘導電動機 1が停止すれば、 ステップ S 1 0 6で再びィンバ一夕 2により誘導電動機 1の 1 次抵抗及び 2 次抵抗を測定する。 さらに、 ステップ S 1 0 7において、 ステップ S 1 0 2で測定した起動時の 1次抵抗及び 2次抵抗と、 ステツプ S 1 0 6で測 定した停止時の 1次抵抗及び 2次抵抗の差分を誘導電動機 1の実運転サイ クルの運転時間中に積算した∑ I 2 t (電流 2乗値の時間積分値) で除し、 単位量 ( i 2 t =1 ) 当たりの 1次抵抗及び 2次抵抗の変化係数 K Rl、 K R2 を求める。 次に、 ステップ S 1 0 8において、 抵抗特性記憶器 1 1に記憶 されている抵抗値に対する抵抗変化係数の関係データにステップ S 1 0 7 で演算した最新のデータを追加、 もしくは最新のデータを用いて従来のデ 一夕の補正を行う。 これで一連の動作が完了し、 再びステップ S 1 0 1に 戻り、 次の運転開始信号が与えられるまで待機する。 In step S105, the tuning controller 5b determines whether the stop signal is given and the induction motor 1 is stopped, and returns to step S104 while the induction motor 1 is operating. When the stop signal is given and the induction motor 1 is stopped, the primary resistance and the secondary resistance of the induction motor 1 are measured again by the chamber 2 at step S106. Further, in step S107, step S1 02 The difference between the primary resistance and secondary resistance at startup measured at step 2 and the primary resistance and secondary resistance at stop measured at step S106 is the operating time of the induction motor 1 in the actual operation cycle. Divide by ∑I 2 t (time integral of current squared value) integrated in the equation to find the primary and secondary resistance change coefficients K Rl and K R2 per unit quantity (i 2 t = 1) . Next, in step S108, the latest data calculated in step S107 is added to the relational data of the resistance change coefficient with respect to the resistance value stored in the resistance characteristic storage unit 11, or the latest data is added. To perform the conventional data overnight correction. This completes a series of operations, returns to step S101 again, and waits until the next operation start signal is given.
以上のように、 この実施の形態 2による誘導電動機の制御装置によれば、 抵抗測定器 7により測定された起動時及び停止直後の抵抗値と電流検出器 3により検出された電流とに基づき抵抗変化係数を演算する抵抗変化係数 演算器 8と、 抵抗測定器 7により測定された抵抗値と抵抗変化係数演算器 8により演算された抵抗変化係数とを入力して抵抗変化係数と抵抗値の関 係を記憶する抵抗特性記憶器 1 1 と、 電流検出器 3により検出された電流 と抵抗測定器 7により測定された起動時の抵抗値と抵抗特性記憶器 1 1か らの出力である抵抗変化係数とに基づき抵抗変動を推定するための抵抗変 動推定器 9 aを設けたので、 予め熱抵抗、 熱時定数等設定することなく、 さらに、 起動時の抵抗値がその前の抵抗値に対して大きく差を生じている 場合でも良好に誘導電動機 1の抵抗変動を推定できるという効果がある。  As described above, according to the control device for an induction motor according to the second embodiment, the resistance is determined based on the resistance value measured by the resistance measuring device 7 immediately after the start and immediately after the stop and the current detected by the current detector 3. The resistance change coefficient calculator 8 for calculating the change coefficient, the resistance value measured by the resistance measuring device 7 and the resistance change coefficient calculated by the resistance change coefficient calculator 8 are input, and the relation between the resistance change coefficient and the resistance value is calculated. And a resistance change at the time of start-up measured by the current measuring device 3 and the resistance measuring device 7 and an output from the resistance characteristic storing device 11. Since the resistance fluctuation estimator 9a for estimating the resistance fluctuation based on the coefficient is provided, the resistance at start-up can be changed to the previous resistance without setting the thermal resistance, thermal time constant, etc. in advance. If there is a big difference This also has the effect that the resistance fluctuation of the induction motor 1 can be satisfactorily estimated.
この実施の形態 2による誘導電動機の制御装置においては、 抵抗値に対 応する抵抗変化係数 K Rl、 K R2の関係を記憶して蓄積し、 記憶した関係 を用いて抵抗を推定するようにしたが、 さらに電流検出器 3により検出さ れた電流をパラメ一夕として抵抗値に対応する抵抗変化係数 K Rl、 K R2 の関係を記憶して蓄積し、 実運転サイクルの運転中の電流と抵抗値に対応 する抵抗変化係数 K Rl、 K R2の関係を参照して抵抗を推定するように構 成してもよい。 In the induction motor control device according to the second embodiment, the relationship between the resistance change coefficients K Rl and K R2 corresponding to the resistance value is stored and accumulated, and the resistance is estimated using the stored relationship. Further, the current detected by the current detector 3 is stored as a parameter and the relationship between the resistance change coefficients K Rl and K R2 corresponding to the resistance values is stored and accumulated. The resistance is estimated by referring to the relationship between the resistance change coefficients K Rl and K R2 corresponding to the values. May be implemented.
第 4図に示したように、誘導電動機 1の抵抗値は∑ I 2 tに対して 1次遅 れ的な特性を示す。 但し、 誘導電動機 1の負荷状態によって誘導電動機 1 に流れる電流が異なる場合は最終温度上昇値が異なることが一般に知られ ており、 誘導電動機 1の温度上昇と抵抗値上昇は比例関係にあるため、 第 7図 ( a ) に示すように誘導電動機 1の電流 Iをパラメ一夕として Σ Ι 2 tに対する抵抗値の特性が得られ、 また抵抗変化係数の関係は第 7図 (b ) に示したような電流 Iをパラメ一夕とした特性となる。 As shown in FIG. 4, the resistance value of the induction motor 1 exhibits a first-order characteristic with respect to ΔI 2 t. However, it is generally known that when the current flowing through the induction motor 1 varies depending on the load state of the induction motor 1, the final temperature rise value differs.Since the temperature rise of the induction motor 1 and the resistance rise are in a proportional relationship, Figure 7 (a) characteristic of the resistance value of the current I of the induction motor 1 for parameter Isseki as sigma iota 2 t as shown in can be obtained and the relationship of the resistance change coefficients are shown in Figure 7 (b) The characteristic is such that the current I is parametric.
さらに、 第 7図 (b ) の特性を抵抗値に対する抵抗変化係数の関係とし て示したのが第 8図である。 従って、 第 3図に示す誘導電動機の制御装置 と同様の動作原理によって 1次抵抗及び 2次抵抗の抵抗変化係数を実運転 サイクル毎に演算し、 電流をパラメ一夕として抵抗特性記憶器 1 l aに記 憶して蓄積し、 実運転サイクルの運転中は電流をパラメ一夕として抵抗値 に対する関数として抵抗変化係数 K Rl、 K R2を呼び出せば、 誘導電動機 の複数の負荷状態に対する実際の抵抗変化にあった係数を設定することが できる。  Further, FIG. 8 shows the characteristic of FIG. 7 (b) as a relationship between the resistance value and the resistance change coefficient. Therefore, the resistance change coefficient of the primary resistance and the secondary resistance is calculated for each actual operation cycle according to the same operating principle as that of the control device for the induction motor shown in Fig. 3, and the current is set as a parameter and the resistance characteristic memory 1 la When the resistance change coefficients K Rl and K R2 are called out as a function of the resistance as a function of the resistance during the actual operation cycle, the actual resistance change for multiple load conditions of the induction motor can be obtained. The coefficient can be set according to
第 9図はこの発明の実施の形態 2による誘導電動機の制御装置の他の態 様を示すプロック図であり、第 3図と同一符号は同一又は相当部分を示す。 第 9図において、 1 1 aは抵抗測定器 7 と抵抗変化係数演算器 8の出力と を入力して電流検出器 3で検出された電流をパラメ一夕として抵抗変化係 数と抵抗値の関係を記憶する抵抗特性記憶器である。  FIG. 9 is a block diagram showing another embodiment of the control device for the induction motor according to the second embodiment of the present invention, and the same reference numerals as in FIG. 3 denote the same or corresponding parts. In Fig. 9, 11a is a relation between the resistance change coefficient and the resistance value, with the current detected by the current detector 3 as a parameter after inputting the resistance measurement device 7 and the output of the resistance change coefficient calculator 8 Is stored in the resistance characteristic storage device.
抵抗特性記憶器 11 aは、抵抗変化係数演算器 8から出力された 1次抵抗 及び 2次抵抗の変化係数 K Rl、 K R2と、 電流検出器 3で検出された誘導 電動機 1の電流とを入力し、 入力された電流をパラメ一夕として第 8図に 示すような抵抗値と抵抗変化係数の関係を記憶するように動作する。  The resistance characteristic memory 11a stores the change coefficients K Rl and K R2 of the primary resistance and the secondary resistance output from the resistance change coefficient calculator 8 and the current of the induction motor 1 detected by the current detector 3. An operation is performed to store the relationship between the resistance value and the resistance change coefficient as shown in Fig. 8 with the input current as a parameter.
また、 抵抗特性記憶器 11 aは、 記憶している抵抗値と抵抗変化係数のう ち、 電流検出器 3で検出された電流に最も近い電流値に対応して記憶され ている抵抗変化係数特性のデータから、 抵抗測定器 7 により測定された起 動時の抵抗測定値に最も近い抵抗値に対応する抵抗変化係数を抵抗変動推 定器 9 aに出力する。抵抗変動推定器 9 aはこの抵抗特性記憶器 11 aから 出力された抵抗変化係数を入力して、 第 3図で説明した誘導電動機の制御 装置と同様の動作により 1次抵抗及び 2次抵抗の推定値を演算してセンサ レスべク トル制御器 6 に出力する。 この一連の動作が繰り返されることに より、抵抗特性記憶器 1 1 aには複数の抵抗値に対する抵抗変化係数 K Rl 及び K R2が記憶され、より詳細な抵抗値と抵抗変化係数の関係が蓄積され る。 また、 それが抵抗変動推定器 9 aにより抵抗推定に用いられて精度の 高い抵抗推定が実現できる。 さらには、 電流をパラメ一夕として抵抗変化 係数と抵抗値の関係を記憶して蓄積するため、 誘導電動機 1の複数の負荷 状態に対する実際の抵抗変化にあった係数を設定することができ、 負荷の 大きさにかかわらず精度の高い抵抗値の推定ができるという効果がある。 なお、 第 9図に示す誘導電動機の制御装置の説明においては、 抵抗測定 器 7により測定された起動時の抵抗測定値に最も近い抵抗値に対応する抵 抗変化係数を抵抗変動推定器 9 aに出力するようにしたが、 運転中には抵 抗変動推定器 9 aから出力された抵抗の推定値を抵抗特性記憶器 1 1 aに 入力し、 逐次その抵抗値に最も近い抵抗値に対応する抵抗変化係数を抵抗 変動推定器 9 aに出力してもよい。 これにより、 連続運転状態が長時間続 いて抵抗変化係数が変化していく場合でも、 推定した抵抗値の変化に伴つ て最適な値が用いられるようになり、 より精度の高い抵抗値の推定ができ るという効果がある。 Further, the resistance characteristic storage 11a stores the stored resistance value and the resistance change coefficient. That is, from the data of the resistance change coefficient characteristic stored corresponding to the current value closest to the current detected by the current detector 3, the closest value to the measured resistance value at startup measured by the resistance measuring device 7 The resistance change coefficient corresponding to the resistance value is output to the resistance change estimator 9a. The resistance fluctuation estimator 9a receives the resistance change coefficient output from the resistance characteristic storage 11a, and operates the primary resistance and the secondary resistance by the same operation as the induction motor control device described in FIG. The estimated value is calculated and output to the sensorless vector controller 6. By repeating this series of operations, resistance change coefficients K Rl and K R2 for a plurality of resistance values are stored in the resistance characteristic memory 11a, and a more detailed relationship between the resistance value and the resistance change coefficient is accumulated. Is performed. Further, it is used for the resistance estimation by the resistance fluctuation estimator 9a, so that highly accurate resistance estimation can be realized. Furthermore, since the relationship between the resistance change coefficient and the resistance value is stored and stored with the current as a parameter, it is possible to set a coefficient corresponding to the actual resistance change with respect to a plurality of load states of the induction motor 1. There is an effect that a highly accurate resistance value can be estimated regardless of the magnitude of the resistance. In the description of the control device for the induction motor shown in FIG. 9, the resistance change coefficient corresponding to the resistance value closest to the resistance measured value at startup measured by the resistance measurement device 7 is calculated by using the resistance variation estimator 9a. However, during operation, the estimated value of the resistance output from the resistance fluctuation estimator 9a is input to the resistance characteristic memory 11a, and the resistance value corresponding to the resistance value closest to the resistance value is sequentially stored. May be output to the resistance fluctuation estimator 9a. As a result, even when the resistance change coefficient changes due to continuous operation for a long time, the optimum value is used according to the change in the estimated resistance value, and a more accurate resistance value estimation is performed. There is an effect that can be done.
実施の形態 3 . Embodiment 3.
実施の形態 2においては、 通常の運転を行いながら抵抗値と抵抗変化係 数の関係を記憶していったが、 通常の運転に先立ち、 テス ト運転モードと して誘導電動機 1の熱時定数よりも短い時間間隔でのサイクル運転を行い、 予め通常運転状態にて取りうる誘導電動機 1の温度範囲における複数点の 抵抗値に対する抵抗変化係数を記憶してもよい。 In the second embodiment, the relationship between the resistance value and the resistance change coefficient is stored while performing the normal operation. Cycle operation at a time interval shorter than the thermal time constant of the induction motor 1 and store in advance the resistance change coefficients for the resistance values at multiple points in the temperature range of the induction motor 1 that can be taken in the normal operation state. Good.
第 1 0図はこの発明の実施の形態 3による誘導電動機の制御装置を示す ブロック図であり、 第 3図と同一符号は同一又は相当部分を示す。 第 1 0 図において、 1 2は誘導電動機 1の運転モードを設定する運転モード設定 器、 5 cは速度指令発生器 4からの出力である速度指令と運転モード設定 器 1 2からの出力である運転モード指令を入力してチューニングを制御す るチューニング制御器である。  FIG. 10 is a block diagram showing a control device for an induction motor according to Embodiment 3 of the present invention, and the same reference numerals as in FIG. 3 denote the same or corresponding parts. In FIG. 10, reference numeral 12 denotes an operation mode setting device for setting the operation mode of the induction motor 1, and reference numeral 5c denotes a speed command and an output from the operation mode setting device 12 which are outputs from the speed command generator 4. This is a tuning controller that controls tuning by inputting operation mode commands.
次に、 実施の形態 3による誘導電動機の制御装置の動作を説明する。 ま ず、 運転モード設定器 1 2にテス ト運転モードを設定すると、 チューニン グ制御器 5 cはテス ト用の所定の運転サイクルとなるように切り替わる。 次に、 速度指令発生器 4から速度指令 ω ιη*が入力されると、 チューニング 制御器 5 cは制御切替器 1 0を抵抗測定器 7側に閉路し、 さらに抵抗測定 開始信号を抵抗測定器 7に出力する。 抵抗測定器 7はチューニング制御器 5 cからの抵抗測定開始信号を入力すると誘導電動機 1の 1次及び 2次抵 抗値の測定を開始する。 なお、 抵抗測定器 7は実施の形態 1で述べた方法 と同様の方法で抵抗値を測定する。  Next, the operation of the control device for an induction motor according to the third embodiment will be described. First, when the test operation mode is set in the operation mode setting device 12, the tuning controller 5 c switches so as to have a predetermined test cycle for the test. Next, when the speed command ω ιη * is input from the speed command generator 4, the tuning controller 5c closes the control switch 10 to the resistance measuring device 7 side, and further outputs a resistance measurement start signal to the resistance measuring device. Output to 7. When the resistance measurement device 7 receives the resistance measurement start signal from the tuning controller 5c, the resistance measurement device 7 starts measuring the primary and secondary resistance values of the induction motor 1. Note that the resistance measuring device 7 measures the resistance value in the same manner as the method described in the first embodiment.
次に、 抵抗測定器 7は 1次抵抗及び 2次抵抗の測定を完了するとチュー ニング制御器 5 cに対して抵抗測定完了を出力し、 同時に抵抗変化係数演 算器 8、 抵抗特性記憶器 1 1及び抵抗変動推定器 9 aに測定結果を出力す る。 チューニング制御器 5 cは、 この抵抗測定器 7から出力された抵抗測 定完了信号を入力すると制御切替器 1 0をセンサレスベク トル制御器 6側 に閉路するように動作し、 センサレスべク トル制御器 6から出力されたス ィツチング信号によって誘導電動機 1の運転を開始する。  Next, when the resistance measurement device 7 completes the measurement of the primary resistance and the secondary resistance, it outputs the completion of the resistance measurement to the tuning controller 5c, and at the same time, the resistance change coefficient calculator 8 and the resistance characteristic storage device 1 The measurement result is output to 1 and the resistance fluctuation estimator 9a. When the resistance measurement completion signal output from the resistance measurement device 7 is input, the tuning controller 5c operates so as to close the control switch 10 to the sensorless vector controller 6 side, and the sensorless vector control is performed. The operation of the induction motor 1 is started by the switching signal output from the heater 6.
その後、 誘導電動機の熱時定数よりも短い時間経過後に誘導電動機 1を 減速停止させ、 センサレスべク トル制御器 6から停止完了信号をチュー二 ング制御器 5 cに出力する。 チューニング制御器 5 cは、 この停止完了信 号の入力により抵抗測定器 7に抵抗測定開始信号を出力し、 抵抗測定器 7 はこの抵抗測定開始信号が入力されると再び起動時と同様の方法により停 止時の誘導電動機 1の 1次抵抗及び 2次抵抗値の測定を開始する。 Then, after a lapse of time shorter than the thermal time constant of the induction motor, the induction motor 1 is turned off. Decelerate and stop, and output a stop completion signal from the sensorless vector controller 6 to the tuning controller 5c. The tuning controller 5c outputs a resistance measurement start signal to the resistance measurement device 7 in response to the input of the stop completion signal, and the resistance measurement device 7 receives the resistance measurement start signal again and operates in the same manner as when starting. Starts the measurement of the primary resistance and secondary resistance of induction motor 1 when stopped.
さらに、 抵抗測定器 7が 1次抵抗及び 2次抵抗の測定を完了すると、 チ ユーニング制御器 5 cに対して抵抗測定完了信号が送られ、 同時に抵抗変 化係数演算器 8に測定結果が出力される。 抵抗変化係数演算器 8は、 チュ 一二ング制御器 5 cから出力された制御信号と、 電流検出器 3から出力さ れた誘導電動機 1の電流 I と、 抵抗測定器 7から入力された誘導電動機 1 の起動時及び停止直後の 1次抵抗及び 2次抵抗の測定値を入力し、 実施の 形態 1で述べた方法と同様の方法で単位量( I 2 t =1)当たりの 1次抵抗及 び 2次抵抗の変化係数 K Hl、 K R2を演算して抵抗特性記憶器 1 1に出力 する。 さらに、 チューニング制御器 5 cは上記サイクルを、 運転回数、 運 転時間または抵抗測定値の変化量等が予め設定された値になるまで繰り返 し行うように制御信号を出力し、 その結果として抵抗特性記憶器 1 1には 複数の抵抗値に対する抵抗変化係数 K R1及び K R2が記憶される。 Further, when the resistance measurement device 7 completes the measurement of the primary resistance and the secondary resistance, a resistance measurement completion signal is sent to the tuning controller 5c, and the measurement result is output to the resistance change coefficient calculator 8 at the same time. Is done. The resistance change coefficient calculator 8 includes a control signal output from the tuning controller 5c, a current I of the induction motor 1 output from the current detector 3, and an induction signal input from the resistance measuring device 7. Input the measured values of the primary resistance and secondary resistance at the start and immediately after the stop of motor 1, and use the same method as described in Embodiment 1 for the primary resistance per unit quantity (I 2 t = 1). Calculate the change coefficients K Hl and K R2 of the secondary resistance and output them to the resistance characteristic storage 11. Further, the tuning controller 5c outputs a control signal so that the above cycle is repeated until the number of operations, the operation time, or the amount of change in the resistance measurement value reaches a preset value, and as a result, The resistance characteristic storage unit 11 stores resistance change coefficients K R1 and K R2 for a plurality of resistance values.
次に、 テス ト用の所定の運転サイクルが終了すると、 チューニング制御 器 5 cはテス ト運転モードから通常運転モードに切り替わる。 次回起動時 からは実施の形態 2で述べたと同様の動作により、抵抗特性記憶器 11は記 憶している抵抗値と抵抗変化係数のうち、 抵抗測定器 7 により測定された 起動時の抵抗測定値に最も近い抵抗値に対応する抵抗変化係数を抵抗変動 推定器 9 aに出力する。抵抗変動推定器 9 aはこの抵抗特性記憶器 11から 出力された抵抗変化係数を入力して、 実施の形態 1で述べた同様の動作に より 1次抵抗及び 2次抵抗の推定値を演算してセンサレスべク トル制御器 6 に出力する。 これにより、 通常運転状態の実運転サイクルにおいては、 より適切な抵 抗値と抵抗変化係数の関係が記憶され、 良好に抵抗変動が推定できるとい う効果がある。 また、 起動時及び停止直後の抵抗測定を省略することも可 能であり、 起動を速めることができるという効果がある。 Next, when a predetermined test cycle for testing ends, the tuning controller 5c switches from the test operation mode to the normal operation mode. From the next start-up, the same operation as described in the second embodiment is performed, and the resistance characteristic storage 11 stores the resistance value and the resistance change coefficient stored at the start-up, which are measured by the resistance measurement device 7. The resistance change coefficient corresponding to the resistance value closest to the value is output to the resistance change estimator 9a. The resistance change estimator 9a receives the resistance change coefficient output from the resistance characteristic storage 11 and calculates the estimated values of the primary resistance and the secondary resistance by the same operation described in the first embodiment. Output to the sensorless vector controller 6. As a result, in the actual operation cycle in the normal operation state, there is an effect that the more appropriate relationship between the resistance value and the resistance change coefficient is stored, and the resistance fluctuation can be well estimated. Further, it is possible to omit the resistance measurement at the time of starting and immediately after stopping, which has an effect that the starting can be accelerated.
なお、 抵抗特性記憶器 11は、 テス ト用の所定の運転モードで記憶された 複数の抵抗値に対する抵抗変化係数を、 多項式近似や最小 2乗法による関 数近似等行い、 滑らかに補間された関数として記憶してもよい。  Note that the resistance characteristic storage 11 performs a function of smoothly interpolating a resistance change coefficient for a plurality of resistance values stored in a predetermined test operation mode by performing a polynomial approximation or a function approximation using a least squares method. May be stored.
これにより、 抵抗値から抵抗変化係数を参照する際により実際の変化に 近い値として参照することができ、 良好に抵抗変動が推定できるという効 果がある。  As a result, when referring to the resistance change coefficient from the resistance value, the resistance change coefficient can be referred to as a value closer to the actual change, and there is an effect that the resistance change can be well estimated.
また、 通常の実運転サイクルにおいて抵抗変動推定器 9 aにより推定さ れた停止直後の抵抗推定値と、 抵抗測定器 7 により測定された停止直後の 抵抗測定値を比較し、 これらの差が所定値を超えた場合には抵抗特性記憶 器 1 1が記憶している抵抗値と抵抗変化係数の関係を補正するように構成 これにより、 気温の変化や電動機周辺の環境変化等による、 誘導電動機 温度と雰囲気温度との温度差や周囲の空気の流量等の変化が生じても、 抵 抗特性記憶器 1 1に記憶されている特性を実際の特性に一致するように常 に補正することができ、 良好に抵抗変動が推定できるという効果がある。 さらに、 通常の実運転サイクルの運転中において、 抵抗変動推定器 9 a により推定された抵抗値を用いて逐次抵抗特性記憶器 11 に記憶されてい る抵抗変化係数を参照し、 抵抗変動推定器 9 aでは参照された抵抗変化係 数を用いて抵抗値を推定するように構成してもよい。  Also, in the normal actual operation cycle, the resistance estimation value immediately after the stop estimated by the resistance fluctuation estimator 9a is compared with the resistance measurement value immediately after the stop measured by the resistance measuring instrument 7, and the difference between these values is determined. When the resistance value exceeds the resistance value, the resistance characteristic storage unit 11 is configured to correct the relationship between the resistance value and the resistance change coefficient stored in the storage unit.This allows the induction motor temperature to change due to a change in temperature or environmental change around the motor. The characteristics stored in the resistance characteristic storage unit 11 can always be corrected to match the actual characteristics even if the temperature difference between However, there is an effect that the resistance fluctuation can be estimated well. Further, during the operation of the normal actual operation cycle, the resistance change estimator 9a is referred to the resistance change coefficient stored in the sequential resistance characteristic storage 11 using the resistance value estimated by the resistance change estimator 9a. In a, the resistance value may be estimated using the referred resistance change coefficient.
これにより、 運転中の誘導電動機の温度上昇により変化していく抵抗値 に逐次対応した抵抗変化係数を設定でき、 起動時からの抵抗変化量が大き くても良好に抵抗変動が推定できるという効果がある。 実施の形態 4 . This makes it possible to set a resistance change coefficient that sequentially corresponds to the resistance value that changes due to the temperature rise of the induction motor during operation, and it is possible to estimate the resistance change well even if the resistance change amount from the start is large. There is. Embodiment 4.
上述の実施の形態においては、 誘導電動機 1の温度変動による抵抗値変 化を推定し、 センサレスべク トル制御器 6により推定した抵抗値を用いて ィンバ一夕 2を制御する構成としたが、 抵抗値変化からさらに誘導電動機 1の温度上昇を推定するように構成してもよい。  In the above-described embodiment, the resistance value change due to the temperature change of the induction motor 1 is estimated, and the member 2 is controlled using the resistance value estimated by the sensorless vector controller 6. The configuration may be such that the temperature rise of the induction motor 1 is further estimated from the resistance value change.
第 1 1図はこの発明の実施の形態 4による誘導電動機の制御装置を示す ブロック図であり、 第 3図と同一符号は同一又は相当部分を示す。 第 1 1 図において、 1 3は抵抗変動推定器 9 aから出力された抵抗推定値を入力 して誘導電動機 1の温度を推定する温度推定器、 5 dは速度指令発生器 4 からの出力である速度指令と温度推定器 1 3からの出力である誘導電動機 1の温度推定値を入力してチューニングを制御するチューニング制御器で ある。  FIG. 11 is a block diagram showing a control device for an induction motor according to Embodiment 4 of the present invention, and the same reference numerals as in FIG. 3 denote the same or corresponding parts. In Fig. 11, 13 is a temperature estimator that estimates the temperature of the induction motor 1 by inputting the resistance estimation value output from the resistance fluctuation estimator 9a, and 5d is the output from the speed command generator 4. This is a tuning controller that controls a tuning by inputting a certain speed command and an estimated temperature of the induction motor 1 which is an output from the temperature estimator 13.
温度推定器 1 3は、 抵抗測定器 7 により測定された誘導電動機 1の温度 が概略既知の状態における 1次、 2次抵抗の抵抗値を予め記憶する。 次に、 抵抗変動推定器 9 aから出力された抵抗推定値を入力して、 予め記憶され た抵抗値との比と、 誘導電動機 1の 1次導体及び 2次導体の材質に固有の 熱抵抗変化係数とから誘導電動機 1の 1次導体及び 2次導体の温度を推定 する。 例えば、 1次導体の材質が銅の場合、 温度 t 0°Cにおいて抵抗測定器 7 により測定した抵抗値が Rl(tO)とすると、 抵抗変動推定器 9 aから出力 された抵抗値が Rl(tl)における誘導電動機 1の温度 t 1°Cは(14)式で推定 できる。 tl = (2345 + 1 1 1) - 234.5 r C;〕 ( 1 4 ) 、 ノ i?l( 0) し さらに、 チューニング制御器 5 dは、 温度推定器 1 3から出力された誘 導電動機 1の上記温度推定値を入力して、 予め設定された温度以上に温度 一乃 The temperature estimator 13 stores in advance the resistance values of the primary and secondary resistors in a state where the temperature of the induction motor 1 measured by the resistance measuring device 7 is substantially known. Next, the resistance estimation value output from the resistance fluctuation estimator 9a is input, and the ratio between the resistance value stored in advance and the thermal resistance specific to the material of the primary conductor and the secondary conductor of the induction motor 1 are calculated. The temperature of the primary conductor and the secondary conductor of the induction motor 1 is estimated from the change coefficient. For example, if the material of the primary conductor is copper, and the resistance value measured by the resistance measuring device 7 at the temperature t 0 ° C is Rl (tO), the resistance value output from the resistance fluctuation estimator 9a is Rl (tO). The temperature t 1 ° C of the induction motor 1 at (tl) can be estimated by equation (14). tl = (2345 + 1 1 1 )-234.5 r C;] (1 4), no i? l (0) Further, the tuning controller 5 d outputs the induction motor 1 output from the temperature estimator 13. Enter the above temperature estimate, and set the temperature above the preset temperature. Ichino
推定値が上昇すれば、 焼損防止のために誘導電動機 1を停止させるように 動作する。 When the estimated value increases, the operation is performed to stop the induction motor 1 to prevent burnout.
ここで、 誘導電動機 1の概略既知の温度における抵抗値を測定する時、 導電動機 1に特別に熱電対等の検出器を設けなくても n乃'- 1が 周囲温度とほぼ同じ温度状態にある時に抵抗測定器 7 により抵抗値を測定 し、 その時の周囲温度を測定したものを誘導電動機 1の温度として設定す ればよい。  Here, when measuring the resistance value of the induction motor 1 at a roughly known temperature, n'-1 is in the same temperature state as the ambient temperature even if the conductive motor 1 does not have a special detector such as a thermocouple. Sometimes, the resistance value is measured by the resistance measuring device 7, and the measured ambient temperature at that time may be set as the temperature of the induction motor 1.
なお、 チューニング制御器 5 dは、 温度推定器 1 3から出力された誘導 電動機 1の上記温度推定値を入力して、 予め設定された温度以上に温度推 定値が上昇すれば、 誘導電動機 1を停止させる代りに外部に警報信号を出 力するように構成してもよい。 また、 誘導電動機 1の温度表示として、 温 度推定器 1 3で推定された温度推定値を表示させてもよい。  The tuning controller 5 d inputs the above-mentioned temperature estimation value of the induction motor 1 output from the temperature estimator 13, and if the temperature estimation value rises above a preset temperature, the induction controller 1 d Instead of stopping, an alarm signal may be output to the outside. Further, as the temperature display of the induction motor 1, the temperature estimation value estimated by the temperature estimator 13 may be displayed.
以上のように、 この発明によれば、 抵抗測定器 7により測定された起動 時及び停止直後の抵抗値と前記電流検出器 3により検出された電流とに基 づき抵抗変化係数を演算する抵抗変化係数演算器 8と、 抵抗測定器 7によ り測定された抵抗値と抵抗変化係数演算器 8により演算された抵抗変化係 数とを入力して抵抗変化係数と抵抗値の関係を記憶する抵抗特性記憶器 1 1 と、 電流検出器 3により検出された電流と抵抗測定手段により測定され た起動時の抵抗値と抵抗特性記憶器 1 1からの出力である抵抗変化係数と に基づき抵抗変動を推定するための抵抗変動推定器 9 aと、 抵抗変動推定 器 9 aからの出力である推定抵抗値から誘導電動機 1の温度を推定する温 度推定器 1 3を設けたので、 予め誘導電動機の熱抵抗、 熱時定数等を設定 することなく、 誘導電動機の温度上昇を推定できるという効果がある。 なお、 抵抗測定器 7により測定される誘導電動機 1の 1次抵抗値は、 ィ ンバ一夕 2から誘導電動機 1への配線抵抗分も含めて測定されることにな る。 しかし、 インバー夕 2から誘導電動機 1への配線は通常あまり温度上 昇しないように選定、 布設されているため、 温度変化を温度推定器 1 3に 予め配線抵抗値 Rhを設定しておき、配線抵抗値 Rhは運転中に一定と仮定 して(14)式に代えて(15)式を用いてもよい。 l - 2345 〕 1 5
Figure imgf000032_0001
し し J
As described above, according to the present invention, a resistance change coefficient for calculating a resistance change coefficient based on the resistance value measured by the resistance measuring device 7 immediately after the start and immediately after the stop and the current detected by the current detector 3 A resistance calculator that inputs the resistance value measured by the resistance calculator 8 and the resistance change coefficient calculated by the resistance change coefficient calculator 8 and stores the relationship between the resistance change coefficient and the resistance value. The resistance variation is calculated based on the characteristic storage 11, the current detected by the current detector 3, the resistance value at startup measured by the resistance measuring means, and the resistance change coefficient output from the resistance characteristic storage 11. A resistance fluctuation estimator 9a for estimating and a temperature estimator 13 for estimating the temperature of the induction motor 1 from the estimated resistance value output from the resistance fluctuation estimator 9a are provided. Set thermal resistance, thermal time constant, etc. Ku, there is an effect that it estimates the temperature rise of the induction motor. The primary resistance value of the induction motor 1 measured by the resistance measuring device 7 is measured including the wiring resistance from the inverter 2 to the induction motor 1. However, the wiring from Inver 2 to induction motor 1 is usually too hot. Since the wiring is selected and laid so that it does not rise, the temperature change is set in the temperature estimator 13 in advance to the wiring resistance Rh, and assuming that the wiring resistance Rh is constant during operation, the equation (14) is used. Equation (15) may be used instead. l-2345) 1 5
Figure imgf000032_0001
J
ここで、 インバ一夕 2から誘導電動機 1への配線の抵抗値はプリ ヅジ、 ミ リオーム計等の低抵抗測定器で測定した値を設定しても、 また、 配線の 単位長当たりの抵抗値が製造者のデータ等により予め既知であれば、 それ に配線長さを掛けて計算により求めて設定してもよい。 Here, the resistance value of the wiring from the inverter 2 to the induction motor 1 can be set to a value measured with a low-resistance measuring device such as a pager or a millimeter, or the resistance per unit length of the wiring. If the value is known in advance by the manufacturer's data or the like, the value may be obtained by calculation by multiplying it by the wiring length and set.
これにより、 インバー夕 2から誘導電動機 1への配線抵抗が比較的大き くても、 誘導電動機 1の 1 次抵抗変動をより正確に推定することができ、 それによつて誘導電動機 1の温度上昇を良好に推定できるという効果があ る。  As a result, even if the wiring resistance from the inverter 2 to the induction motor 1 is relatively large, it is possible to more accurately estimate the primary resistance fluctuation of the induction motor 1 and thereby reduce the temperature rise of the induction motor 1. This has the effect of being able to estimate well.
また、 上述の実施の形態全てにおいて、 インバー夕 2を用いた誘導電動 機 1の抵抗測定には、 単相印加、 低電圧三相印加による抵抗測定等、 多く の既知の抵抗測定方法があり、 さらにこれ以外のどのような抵抗測定方法 を用いても本発明の誘導電動機の制御装置が構成できることはいうまでも ない。  In all of the above-described embodiments, there are many known resistance measuring methods for measuring the resistance of the induction motor 1 using the inverter 2 such as single-phase application, low-voltage three-phase application, and the like. Further, it goes without saying that the control device for the induction motor of the present invention can be configured using any other resistance measuring method.
また、 これら実施の形態を適当に組み合わせて実施することができるの はいうまでもない。 産業上の利用可能性  Needless to say, these embodiments can be implemented in an appropriate combination. Industrial applicability
以上のように、 この発明にかかるは誘導電動機の制御装置及び誘導電動 機の制御方法は、 例えば、 誘導電動機の卷線の運転中の温度変化に伴う抵 抗値変化を推定し、 推定した卷線抵抗値を基に誘導電動機を指令速度に追 従するようにべク トル制御及びセンサレスでべク トル制御を行う誘導電動 機の制御装置及び誘導電動機の制御方法に適している。 As described above, according to the present invention, the control device for the induction motor and the control method for the induction motor include, for example, a resistor for temperature change during operation of the winding of the induction motor. A control device for an induction motor that performs vector control and sensorless vector control so that the induction motor follows the command speed based on the estimated winding resistance value based on the estimated winding resistance value, and an induction motor control device. Suitable for control method.

Claims

請 求 の 範 囲 The scope of the claims
1 . 誘導電動機を制御するインバ一夕と、 前記誘導電動機の卷線抵抗値を 測定する抵抗測定手段と、 第 1の運転サイクルの前後に測定された前記卷 線抵抗値の差と前記第 1の運転サイクル中に発生した前記誘導電動機の発 熱量に係わる値とを基に、 この値の単位量当たりの卷線抵抗の抵抗変化係 数を演算する抵抗変化係数演算手段と、 前記抵抗測定手段が前記第 1の運 転サイクルに続く第 2の運転サイクルの起動時に測定した起動時卷線抵抗 値と前記第 2の運転サイクル中の前記誘導電動機の発熱量に係わる値と前 記抵抗変化係数とを基に推定した推定卷線抵抗値を出力する抵抗変動推定 手段と、 前記推定卷線抵抗値を用いて前記ィンバ一夕を制御する制御手段 とを備えた誘導電動機の制御装置。  1. Inverter for controlling the induction motor; resistance measuring means for measuring a winding resistance of the induction motor; and a difference between the winding resistance measured before and after a first operation cycle and the first. Resistance change coefficient calculation means for calculating a resistance change coefficient of the winding resistance per unit amount of the value based on a value related to the amount of heat generated by the induction motor generated during the operation cycle of the above, and the resistance measurement means Is the starting winding resistance measured at the start of the second operation cycle following the first operation cycle, the value related to the calorific value of the induction motor during the second operation cycle, and the resistance change coefficient. A control device for an induction motor, comprising: a resistance fluctuation estimating means for outputting an estimated winding resistance value estimated on the basis of the above, and a control means for controlling the chamber using the estimated winding resistance value.
2 . 抵抗変化係数演算手段は、 第 1の運転サイクル中に発生した誘導電動 機の発熱量に係わる値を前記誘導電動機に供給した電流値を基に演算し、 抵抗変動推定手段は、 第 2の運転サイクル中に発生する誘導電動機の発熱 量に係わる値を前記誘導電動機に供給した電流値を基に演算することを特 徴とする請求の範囲第 1項に記載の誘導電動機の制御装置。  2. The resistance change coefficient calculating means calculates a value related to a heat value of the induction motor generated during the first operation cycle based on a current value supplied to the induction motor, and the resistance fluctuation estimating means calculates 2. The control device for an induction motor according to claim 1, wherein a value related to a calorific value of the induction motor generated during the operation cycle is calculated based on a current value supplied to the induction motor.
3 . 抵抗変化係数演算手段は、 第 1の運転サイクル中に発生した誘導電動 機の発熱量に係わる値を前記誘導電動機に指令した トルク指令値を基に演 算し、 抵抗変動推定手段は、 第 2の運転サイクル中に発生する誘導電動機 の発熱量に係わる値を前記誘導電動機に指令したトルク指令値を基に演算 することを特徴とする請求の範囲第 1項に記載の誘導電動機の制御装置。 3. The resistance change coefficient calculation means calculates a value related to the heat generation amount of the induction motor generated during the first operation cycle based on a torque command value instructed to the induction motor, and the resistance variation estimation means includes: The control of the induction motor according to claim 1, wherein a value related to a calorific value of the induction motor generated during the second operation cycle is calculated based on a torque command value instructed to the induction motor. apparatus.
4 . 抵抗変動推定手段は、 第 1の運転サイクルの停止時に抵抗測定手段が 測定した停止時卷線抵抗値を前記第 2の運転サイクルの起動時に測定した 起動時巻線抵抗として前記第 2の運転サイクル中の推定卷線抵抗値を出力 することを特徴とする請求の範囲第 1項に記載の誘導電動機の制御装置。 4. The resistance fluctuation estimating means calculates the stop-time winding resistance measured by the resistance measuring means at the time of stopping the first operation cycle as the starting-time winding resistance measured at the time of starting the second operation cycle. 2. The control device for an induction motor according to claim 1, wherein an estimated winding resistance value during an operation cycle is output.
5 . 誘導電動機を制御するインバ一夕と、 前記誘導電動機の卷線抵抗値を 測定する抵抗測定手段と、 第 1の運転サイクルの前後に測定された前記卷 線抵抗値の差と前記第 1の運転サイクル中に発生した前記誘導電動機の発 熱量に係わる値とを基に、 この値の単位量当たりの卷線抵抗の抵抗変化係 数を演算する抵抗変化係数演算手段と、 前記抵抗変化係数と前記卷線抵抗 値との関係を記憶し、 前記抵抗測定手段が前記第 1の運転サイクルに続く 第 2の運転サイクルの起動時に測定した起動時卷線抵抗値を基に記憶した 前記関係を参照して抵抗変化係数を出力する抵抗特性記憶手段と、 前記起 動時卷線抵抗値を基に前記抵抗特性記憶手段が出力した抵抗変化係数と前 記第 2の運転サイクルの前記誘導電動機の発熱量に係わる値とから推定卷 線抵抗値を推定して出力する抵抗変動推定手段と、 前記推定巻線抵抗値を 用いて前記ィンバ一夕を制御する制御手段とを備えた誘導電動機の制御装 置。 5. Inverter for controlling the induction motor; resistance measuring means for measuring a winding resistance of the induction motor; and a difference between the winding resistance measured before and after a first operation cycle and the first. A resistance change coefficient calculating means for calculating a resistance change coefficient of the winding resistance per unit amount of the value based on a value related to a heat generation amount of the induction motor generated during the operation cycle of the above; And the relationship between the winding resistance value and the resistance measurement means, and the resistance measurement means stores the relationship based on the starting winding resistance value measured at the start of the second operation cycle following the first operation cycle. Resistance characteristic storage means for outputting a resistance change coefficient with reference to the resistance change coefficient output from the resistance characteristic storage means based on the starting winding resistance value and the resistance change coefficient of the induction motor in the second operation cycle. Estimated from the value related to the calorific value A resistance variation estimating means for outputting the resistance value estimated, the control equipment of the induction motor and a control means for controlling the Inba Isseki using the estimated winding resistance value.
6 . 抵抗特性記憶手段は、 第 1の運転サイクル中の電流値をパラメ一夕と して抵抗変化係数と卷線抵抗値との関係を記憶し、 抵抗測定手段が第 2の 運転サイクルの起動時に測定した起動時卷線抵抗値に対応する抵抗変化係 数を前記第 2の運転サイクルの電流値を参照して出力することを特徴とす る請求の範囲第 5項に記載の誘導電動機の制御装置。  6. The resistance characteristic storage means stores the current value during the first operation cycle as a parameter and stores the relationship between the resistance change coefficient and the winding resistance value, and the resistance measurement means activates the second operation cycle. 6. The induction motor according to claim 5, wherein a resistance change coefficient corresponding to the winding resistance measured at the time of startup is output with reference to the current value of the second operation cycle. Control device.
7 . 抵抗特性記憶手段は、 第 1の運転サイクルにより抵抗変化係数演算手 段が演算した抵抗変化係数とその時点で抵抗測定手段が測定した卷線抵抗 値との関係を関数近似して記憶することを特徴とする請求の範囲第 5項に 記載の誘導電動機の制御装置。  7. The resistance characteristic storage means stores a function approximation of the relationship between the resistance change coefficient calculated by the resistance change coefficient calculation means in the first operation cycle and the winding resistance value measured by the resistance measurement means at that time. The control device for an induction motor according to claim 5, wherein:
8 . 抵抗変化係数演算手段は、 第 2の運転サイクルの停止時に推定した推 定卷線抵抗と抵抗測定手段が前記第 2の運転サイクルの停止時に測定した 停止時卷線抵抗とを比較しこれらの差異が所定値を超える場合に抵抗特性 記憶手段が記憶している卷線抵抗値と抵抗変化係数との関係を修正するこ とを特徴とする請求の範囲第 5項に記載の誘導電動機の制御装置。 8. The resistance change coefficient calculation means compares the estimated winding resistance estimated when the second operation cycle is stopped with the stop winding resistance measured by the resistance measurement means when the second operation cycle is stopped. The difference between the winding resistance value and the resistance change coefficient stored in the resistance characteristic storage means when the difference of the resistance exceeds a predetermined value. 6. The control device for an induction motor according to claim 5, wherein:
9 . 誘導電動機の卷線の温度と卷線抵抗値との関係を予め記憶し、 抵抗変 化係数演算手段が出力する推定卷線抵抗値を基に前記卷線の温度と卷線抵 抗値との関係から前記卷線の温度を推定する温度推定手段を具備したこと を特徴とする請求の範囲第 5項に記載の誘導電動機の制御装置。  9. The relationship between the temperature of the winding of the induction motor and the resistance of the winding is stored in advance, and the temperature of the winding and the resistance of the winding are based on the estimated winding resistance output by the resistance change coefficient calculating means. 6. The control device for an induction motor according to claim 5, further comprising temperature estimating means for estimating the temperature of the winding from the relationship with
1 0 . 温度推定手段は、 予めインバー夕から誘導電動機までの配線の抵抗 値を記憶し、 抵抗測定手段が出力する 1次巻線抵抗値から前記配線の抵抗 値を減算した値を基に前記 1次卷線の温度を推定することを特徴とする請 求の範囲第 9項に記載の誘導電動機の制御装置。  10. The temperature estimating means previously stores the resistance value of the wiring from the inverter to the induction motor, and based on the value obtained by subtracting the resistance value of the wiring from the primary winding resistance value output by the resistance measuring means. 10. The control device for an induction motor according to claim 9, wherein the temperature of the primary winding is estimated.
1 1 . 温度推定手段は、 卷線の温度が所定値を超えた場合に、 誘導電動機 の運転を停止する停止信号を制御手段に出力し、 この制御手段がィンバー 夕の運転を停止することを特徴とする請求の範囲第 9項に記載の誘導電動 機の制御装置。  11. The temperature estimating means outputs a stop signal for stopping the operation of the induction motor to the control means when the temperature of the winding exceeds a predetermined value, so that the control means stops the operation in the evening. 10. The control device for an induction motor according to claim 9, wherein:
1 2 . 第 1 と第 2の運転サイクルに先立って、 抵抗変化係数演算手段によ り、 設定された回数を繰り返す所定の運転サイクルの各々の運転サイクル の起動時と停止時に抵抗測定手段により測定された卷線抵抗値の差と前記 各々の運転サイクル中に発生した誘導電動機の発熱量に係わる値から単位 量当たりの卷線抵抗の抵抗変化係数を前記各々の運転サイクル毎に演算し、 抵抗特性記憶手段に前記各々の運転サイクル毎の前記抵抗変化係数と前記 巻線抵抗値との関係を記憶させる運転モード設定手段を具備したことを特 徴とする請求の範囲第 5項に記載の誘導電動機の制御装置。  1 2. Prior to the first and second operation cycles, measured by the resistance measurement means at the start and stop of each operation cycle of the predetermined operation cycle that repeats the set number of times by the resistance change coefficient calculation means. The resistance change coefficient of the winding resistance per unit quantity is calculated for each of the operation cycles from the difference between the obtained winding resistance values and the value related to the calorific value of the induction motor generated during each of the operation cycles. 6. The guidance according to claim 5, further comprising an operation mode setting unit configured to store a relationship between the resistance change coefficient and the winding resistance value for each of the operation cycles in a characteristic storage unit. Motor control device.
1 3 . 運転サイクルの前後に測定された卷線抵抗値の差と前記運転サイク ル中に発生した誘導電動機の発熱量に係わる値とを基に、 この値の単位量 当たりの巻線抵抗の抵抗変化係数を演算する係数演算ステップと、 次の運 転サイクルの起動時に起動時卷線抵抗値を測定する起動時抵抗測定ステツ プと、 前記起動時巻線抵抗を基に前記抵抗変化係数と当該運転サイクル中 の誘導電動機の発熱量の係わる値とから推定した推定巻線抵抗値を出力す る卷線抵抗値推定ステップと、 前記推定卷線抵抗値を基に前記誘導電動機 を駆動するィンバ一夕を制御する制御ステツプと、 当該運転サイクルの停 止時に停止時卷線抵抗値を測定する停止時抵抗測定ステップとを備えた誘 導電動機の制御方法。 13 3. Based on the difference between the winding resistance measured before and after the operation cycle and the value related to the calorific value of the induction motor generated during the operation cycle, the winding resistance per unit amount of this value is calculated. A coefficient calculation step for calculating a resistance change coefficient; a startup resistance measurement step for measuring a startup winding resistance value at the start of the next driving cycle; and the resistance change coefficient based on the startup winding resistance. During the driving cycle A winding resistance estimating step of outputting an estimated winding resistance value estimated from a value related to a heat generation amount of the induction motor, and controlling an inverter for driving the induction motor based on the estimated winding resistance value. A control method for an induction motor, comprising: a control step for performing a stop; and a resistance measurement step for stopping when the operation cycle is stopped.
1 4 . 運転サイクルの前後に測定された卷線抵抗値の差と前記運転サイク ル中に発生した誘導電動機の発熱量に係わる値とを基に、 この値の単位量 当たりの卷線抵抗の抵抗変化係数を演算する係数演算ステツプと、 前記卷 線抵抗と前記抵抗変化係数の関係を記憶する記憶ステツプと、 次の運転サ ィクルの起動時に起動時卷線抵抗値を測定する起動時抵抗測定ステツプと、 前記起動時巻線抵抗に対応する抵抗変化係数を前記巻線抵抗と前記抵抗変 化係数の関係を参照して求める係数抽出ステツプと、 前記起動時卷線抵抗 を基にこの起動時巻線抵抗に対応する抵抗変化係数と当該運転サイクル中 の誘導電動機の発熱量に係わる値とから推定した推定卷線抵抗値を出力す る巻線抵抗値推定ステップと、 前記推定卷線抵抗値を基に前記誘導電動機 を駆動するィンバ一夕を制御する制御ステップと、 前記当該運転サイクル の停止時に停止時卷線抵抗値を測定する停止時抵抗測定ステツプとを備え た誘導電動機の制御方法。  14. Based on the difference between the winding resistance measured before and after the operation cycle and the value related to the heat generated by the induction motor during the operation cycle, the winding resistance per unit amount of this value is calculated. A coefficient calculation step for calculating a resistance change coefficient; a storage step for storing a relationship between the winding resistance and the resistance change coefficient; and a start-up resistance measurement for measuring a start-up winding resistance value at the start of the next operation cycle. A step for determining a resistance change coefficient corresponding to the winding resistance at the start-up with reference to the relationship between the winding resistance and the resistance change coefficient; and A winding resistance value estimating step of outputting an estimated winding resistance value estimated from a resistance change coefficient corresponding to the winding resistance and a value related to a calorific value of the induction motor during the operation cycle; and the estimated winding resistance value. Based on the induction Inba a control step for controlling the Isseki, control method for an induction motor and a stop-time resistance measurement step of measuring a stop time 卷線 resistance when stopping of the said operation cycle to drive the machine.
PCT/JP1997/000952 1997-03-24 1997-03-24 Device and method for controlling induction motor WO1998043347A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP54539998A JP3320073B2 (en) 1997-03-24 1997-03-24 Induction motor control device and induction motor control method
PCT/JP1997/000952 WO1998043347A1 (en) 1997-03-24 1997-03-24 Device and method for controlling induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000952 WO1998043347A1 (en) 1997-03-24 1997-03-24 Device and method for controlling induction motor

Publications (1)

Publication Number Publication Date
WO1998043347A1 true WO1998043347A1 (en) 1998-10-01

Family

ID=14180275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000952 WO1998043347A1 (en) 1997-03-24 1997-03-24 Device and method for controlling induction motor

Country Status (2)

Country Link
JP (1) JP3320073B2 (en)
WO (1) WO1998043347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021736A (en) * 2000-07-07 2002-01-23 Ebara Corp Pumping device using solar battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055927A (en) * 2015-09-16 2017-03-23 日立アプライアンス株式会社 Washing machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215992A (en) * 1982-06-07 1983-12-15 Toshiba Corp Vector contorller for induction motor
JPS6016184A (en) * 1983-07-06 1985-01-26 Mitsubishi Electric Corp Controller of elevator
JPS6176090A (en) * 1984-09-20 1986-04-18 Hitachi Ltd Controller for elevator
JPS61231890A (en) * 1985-04-05 1986-10-16 Hitachi Ltd Setting method for constant of inverter
JPS63249486A (en) * 1987-04-03 1988-10-17 Mitsubishi Heavy Ind Ltd Induction motor secondary resistance calculator
JPH01117683A (en) * 1987-10-30 1989-05-10 Toyota Motor Corp Operation controller for induction motor
JPH0630587A (en) * 1992-02-05 1994-02-04 Nec Corp Control apparatus for induction motor
JPH06165562A (en) * 1992-11-16 1994-06-10 Japan Steel Works Ltd:The Method and system for controlling torque of induction motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215992A (en) * 1982-06-07 1983-12-15 Toshiba Corp Vector contorller for induction motor
JPS6016184A (en) * 1983-07-06 1985-01-26 Mitsubishi Electric Corp Controller of elevator
JPS6176090A (en) * 1984-09-20 1986-04-18 Hitachi Ltd Controller for elevator
JPS61231890A (en) * 1985-04-05 1986-10-16 Hitachi Ltd Setting method for constant of inverter
JPS63249486A (en) * 1987-04-03 1988-10-17 Mitsubishi Heavy Ind Ltd Induction motor secondary resistance calculator
JPH01117683A (en) * 1987-10-30 1989-05-10 Toyota Motor Corp Operation controller for induction motor
JPH0630587A (en) * 1992-02-05 1994-02-04 Nec Corp Control apparatus for induction motor
JPH06165562A (en) * 1992-11-16 1994-06-10 Japan Steel Works Ltd:The Method and system for controlling torque of induction motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021736A (en) * 2000-07-07 2002-01-23 Ebara Corp Pumping device using solar battery

Also Published As

Publication number Publication date
JP3320073B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
JP4501433B2 (en) DC motor coil temperature estimation method and apparatus
US7288922B2 (en) Control apparatus for automotive alternator having capability to accurately detect temperature of alternator
US4672288A (en) Torque controller for an AC motor drive and AC motor drive embodying the same
US5410230A (en) Variable speed HVAC without controller and responsive to a conventional thermostat
US4741476A (en) Digital electronic thermostat with correction for triac self heating
JP3439764B2 (en) Generator adjustment device
US5374886A (en) Voltage regulator for an alternator and method of regulating voltage generated by an alternator
KR100851905B1 (en) Method and preheating control apparatus of compressor
KR0125096B1 (en) Apparatus for controlling ac generator
EP1106406B1 (en) Motor vehicle automatic HVAC control with open loop transient compensation
JP2005255160A (en) Cooling water flow control device and its method
EP2774011B1 (en) Method for controlling a heat-generating element
CN110676814B (en) Processing device, determination method, and computer-readable storage medium
CN105048408A (en) Method and apparatus for operating electric motor
CN114585890A (en) Processing device and method for determining winding temperature calculation model
JP3147488B2 (en) Drive device for motor for compressor
WO1998043347A1 (en) Device and method for controlling induction motor
JP2003014552A (en) Temperature detector
JP3029734B2 (en) Induction motor control device
KR910007658B1 (en) Modular electronic temperature controller
JP3760871B2 (en) Inverter
JP3821104B2 (en) Air conditioner control device
JP2850091B2 (en) Sensorless inverter device with resistance fluctuation compensation
JP2005185071A (en) Rotational speed controller of single-phase induction motor
JP2020202691A (en) Control device and motor unit for dc shunt winding motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642