WO1998041765A1 - Pressure oil supplying apparatus - Google Patents

Pressure oil supplying apparatus Download PDF

Info

Publication number
WO1998041765A1
WO1998041765A1 PCT/JP1998/001043 JP9801043W WO9841765A1 WO 1998041765 A1 WO1998041765 A1 WO 1998041765A1 JP 9801043 W JP9801043 W JP 9801043W WO 9841765 A1 WO9841765 A1 WO 9841765A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
circuits
hydraulic pump
valve
supply device
Prior art date
Application number
PCT/JP1998/001043
Other languages
French (fr)
Japanese (ja)
Inventor
Nobumi Yoshida
Hiroshi Endo
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO1998041765A1 publication Critical patent/WO1998041765A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/05Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed specially adapted to maintain constant speed, e.g. pressure-compensated, load-responsive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/3054In combination with a pressure compensating valve the pressure compensating valve is arranged between directional control valve and output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41527Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve
    • F15B2211/41545Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve being connected to multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/428Flow control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/465Flow control with pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6054Load sensing circuits having valve means between output member and the load sensing circuit using shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders

Definitions

  • the present invention relates to a pressure oil supply device that distributes and supplies pressure oil discharged from a hydraulic pump to a plurality of actuators.
  • the pressure oil is supplied only to the factories with the smallest load, and the pressure oil is not supplied to other factories.
  • the first operating valve 2 and the second operating valve 3 are connected in parallel to the discharge path 1 a of the hydraulic pump 1, and the first and second operating valves 2 and 3 are connected to the first and second operating valves 2 and 3.
  • the pressure compensating valves 6 and 6 are provided in the circuits connecting the second actuators 4 and 5, respectively, so that the load pressure of the first actuator 4 and the load pressure of the second It is known that the pressure is detected by a shuttle valve 7 and the detected pressure is supplied to a pressure receiving portion 6a of both pressure compensating valves 6,6.
  • both pressure compensating valves 6 and 6 are set at the highest load pressure, so the first and second flow compensating valves 6 and 6 have the first flow rate distribution ratio corresponding to the opening degree of the second operating valves 2 and 3.
  • the opening area of the low-pressure side pressure compensating valve 6 is small, and high-pressure fluid flows through the pressure compensating valve 6. So low Since the high-pressure fluid is throttled by the pressure compensating valve 6 on the pressure side, the loss is large.
  • an object of the present invention is to provide a pressure oil supply device capable of solving the above-mentioned problem. Disclosure of the invention
  • a first aspect of the pressure oil supply device according to the present invention for achieving the above object is as follows.
  • a variable displacement hydraulic pump unit with a common drive shaft and multiple independent discharge ports
  • a plurality of circuits respectively connecting a plurality of factories to the plurality of discharge ports;
  • a pressure compensating valve provided in each of the plurality of circuits and set at the highest load pressure of the plurality of actuators; and a pressure compensating valve provided between the plurality of circuits and provided in the plurality of discharge ports.
  • a pressure oil supply device comprising a plurality of circuits that are shut off when the pressures are equal, and a joining valve that communicates when a difference occurs in the pressures.
  • the pressure of each discharge port is independent and becomes a pressure corresponding to the external load of the actuator.
  • the junction valve communicates.
  • the load compensating valve is set at the highest load pressure
  • the first actuating unit with a low load pressure and a large required flow rate and the load compensating valve are set at the highest load pressure.
  • the fluid supplied to the second Some will be supplied over the first night.
  • the merging valve is placed in the communication position and the shutoff position. They can only be switched alternately.
  • a low-pressure fluid corresponding to the load pressure of the first actuator flows through the pressure compensating valve set at a high load pressure at the required flow rate, so that when operating multiple actuators simultaneously. Loss is reduced.
  • variable displacement hydraulic pump unit is configured such that a plurality of groups of a plurality of cylinder holes are concentrically arranged at positions near the outer circumference and the inner circumference of the cylinder block of the swash plate type hydraulic pump.
  • a plurality of sets of high-pressure ports and low-pressure ports are formed circumferentially concentrically at positions close to the outer circumference and inner circumference of the valve plate. Device.
  • variable displacement hydraulic pump unit mechanically connects the drive shafts of the plurality of variable displacement hydraulic pumps and connects the swash plates of the plurality of hydraulic pumps so that the plurality of hydraulic pumps have the same capacity.
  • This is a pressure oil supply device.
  • the merging valve includes a spring, a first pressure receiving unit connected to one of the plurality of circuits, and a second pressure receiving unit connected to the other of the plurality of circuits, and includes a force of the spring.
  • a pressure oil supply device wherein the pressure oil supply device assumes a shut-off position, a first communication position by the pressure of the first pressure receiving portion, and a second communication position by the pressure of the second pressure receiving portion.
  • the switching operation of the junction valve is reliable, and the responsiveness is excellent.
  • the merging valve has a spring and a solenoid, and becomes a shut-off position by the spring force, and a communication position by an external signal supplied to the solenoid.
  • First and second pressure sensors for respectively detecting one and the other pressures of the plurality of circuits
  • a pressure oil supply device provided with a controller for supplying an external signal to the solenoid when there is a difference between pressures detected by the first and second pressure sensors.
  • the timing for switching the merging valve can be set arbitrarily.
  • FIG. 1 is a hydraulic circuit diagram showing a conventional example.
  • FIG. 2 is a hydraulic circuit diagram showing a first embodiment of the pressure oil supply device according to the present invention.
  • FIG. 3 is a cross-sectional view of the double hydraulic pump according to the first embodiment.
  • FIG. 4 is a hydraulic circuit diagram showing a second embodiment of the pressure oil supply device according to the present invention.
  • the first and second circuits 11 and 12 connected to the first and second discharge ports 1Oa and 1Ob of the double hydraulic pump 10 are the first and second circuits, respectively.
  • the first circuit 11 and the second circuit 12 are connected and disconnected by a merge valve 19.
  • the merging valve 19 is held at the shut-off position a by the spring force.
  • the connection position is switched between the first communication position b and the second communication position c by the pressure difference between the first pressure receiving portion 20 and the second pressure receiving portion 21.
  • the first pressure receiving section 20 is connected to the first circuit 11, and the second pressure receiving section 21 is connected to the second circuit 12.
  • the higher of the load pressure of the first actuator 17 and the second 18 is detected by the shuttle valve 22 and the higher load is detected.
  • the pressure acts on the first displacement control section 23 of the double hydraulic pump 10, and the higher pressure of the first and second discharge ports 10 a, 1 Ob is detected by the shuttle valve 24.
  • the higher pressure acts on the second displacement control section 25 of the double hydraulic pump 10.
  • the capacity of the double hydraulic pump 10 is controlled so that the differential pressure between the pump discharge pressure and the load pressure is kept constant.
  • a third displacement control unit (not shown) is further provided in the double hydraulic pump 10 so that the pressures of the first and second discharge ports 10a and 1Ob are controlled by the second displacement control unit 25 and the third displacement control unit, respectively.
  • the capacity of the double hydraulic pump 10 may be controlled so as to act on the capacity control unit so that the differential pressure between the pump discharge pressure and the load pressure becomes constant.
  • the double hydraulic pump 10 includes a group including a plurality of first cylinder holes 31 at positions near the outer periphery and near the outer periphery of the cylinder block 30 of the swash plate type hydraulic pump.
  • a group consisting of a plurality of second cylinder holes 32 is formed concentrically around each other, and the first high-pressure ports 34 and the first high-pressure ports 34 are located near the outer periphery and the inner periphery of the valve plate 33.
  • a pair consisting of the low-pressure port 35 and a pair consisting of the second high-pressure port 36 and the second low-pressure port 37 are formed concentrically with each other to form an independent first hydraulic pump and a second hydraulic pump.
  • the hydraulic pump is configured in the same block, and is configured as a variable displacement hydraulic pump unit having a common drive shaft and a plurality of discharge ports. And-the discharge part (first high pressure port 34) of the first hydraulic pump is the first discharge port 10a, and the discharge part (second high pressure port 36) of the second hydraulic pump is the second discharge port.
  • the discharge port is 10b.
  • Negative pressurization at 1st factory overnight was low pressure and the required flow rate was large. When the negative pressure of 18 is high and the required flow rate is small.
  • the merging valve 19 Since the pressure P 1 in the first circuit 11 is lower than the pressure P 2 in the second circuit 12, the merging valve 19 is in the second communication position c, and a part of the fluid in the second circuit 12 is Flows into the first circuit 1 1.
  • the load pressure of the second factory 18 acts on the capacity control unit 23, and the capacity of the double hydraulic pump 10 becomes a capacity corresponding to the load pressure of the second factory 18.
  • the pressure P 1 of the first circuit 11 is a low pressure commensurate with the magnitude of the external load of the actuator 17, and the pressure P 2 of the second circuit 12 is the pressure of the second actuator 18.
  • the pressure is high corresponding to the magnitude of the external load, and a part of the fluid in the second circuit 12 is supplied to the first actuator 17 for support. Therefore, it is possible to supply a large amount of fluid to the first actuator 17 and operate it at high speed, and to operate the second actuator 18 at a higher pressure than the first actuator 17. Fluid can be supplied and operated with great power.
  • the opening area of the first pressure compensating valve 15 is small due to the load pressure on the high pressure side, the loss of the fluid is small because the pressure of the flowing fluid is low. It is throttled when flowing through the merging valve 19. Since the flow rate is small, the loss is small.
  • the merging valve 19 is at the second communication position c, the first circuit 11 and the second circuit 12 are in communication, and the first pressure compensating valve 15 is throttled by the high-pressure side load pressure. Therefore, the pressure P 1 of the first circuit 11 and the pressure P 2 of the second circuit 12 are the same, and the junction valve 19 is at the shut-off position a. As a result, the pressure P 1 in the first circuit 11 is low and the pressure P 2 in the second circuit 12 is high. With the pressure, the merger valve 19 is again at the second communication position c. This operation is repeated.
  • FIG. 4 shows a second embodiment
  • the drive shafts of the first hydraulic pump 40 and the second hydraulic pump 41 are mechanically connected, and the swash plate 42 of the first hydraulic pump 40 and the swash plate 4 of the second hydraulic pump 41 are connected.
  • 3 are connected so that both pumps 40 and 41 have the same capacity, and are configured as a variable displacement hydraulic pump unit having a common drive shaft and a plurality of discharge ports ( No. 1
  • the output pressure of the shuttle valve 22 is supplied to the capacity control unit 44 of the hydraulic pump 40 and the capacity control unit 45 of the second hydraulic pump 41.
  • the first circuit 11 connected to the discharge port 40a of the first hydraulic pump 40 and the second circuit 12 connected to the discharge port 41a of the second hydraulic pump 41 connect the merging valve 19. Communication 'blocked.
  • the merging valve 19 is held at the shut-off position a by the spring force, and becomes the communication position d when the solenoid 46 is energized.
  • the pressure of the first circuit 11 is detected by a first pressure sensor 47
  • the pressure of the second circuit 12 is detected by a second pressure sensor 48, and input to the controller 49.
  • the controller 49 energizes the solenoid 46 when there is a difference between the pressure detected by the first pressure sensor 47 and the pressure detected by the second pressure sensor 48.
  • the merging valve 19 becomes the communication position d, and the first and second hydraulic pumps 40, 4 Since the capacity of 1 is controlled to the same capacity, it operates in the same manner as in the first embodiment described above.
  • the merging valve 19 is made of pilot pressure oil supplied to the pressure receiving section. It may be the communication position d. In this case, the pilot pressure oil supply solenoid valve (not shown) is switched by the controller 49 to supply the pilot pressure oil to the pressure receiving portion of the merge valve 19.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

A pressure oil supplying apparatus comprises variable displacement type hydraulic pump units (10) having a common drive shaft and a plurality of independent discharge ports (10a, 10b), a plurality of circuits (11, 12) connecting a plurality of actuators (17, 18), respectively, to the plurality of discharge ports, operating valves (13, 14) respectively provided on the plurality of circuits, pressure compensating valves (15, 16) respectively provided on the plurality of circuits and set at the highest load pressure for the plurality of actuators, and a confluence valve (19) provided between the plurality of circuits for shutting off the plurality of circuits when the plurality of discharge ports are equal in pressure to one another and for providing communication therebetween when pressure differences are produced between the discharge ports.

Description

明細書 圧油供給装置 技術分野  Description Pressure oil supply device Technical field
本発明は、 油圧ポンプの吐出圧油を複数のァクチユエ一夕に分 配して供給する圧油供給装置に関するものである。 背景技術  The present invention relates to a pressure oil supply device that distributes and supplies pressure oil discharged from a hydraulic pump to a plurality of actuators. Background art
油圧ポンプの吐出圧油を負荷の異なる複数のァクチユエ一夕に 同時に供給すると、 最も負荷の小さいァクチユエ一夕にのみ圧油 が供給されて他のァクチユエ一夕には圧油が供給されない。  If the hydraulic pressure discharged from the hydraulic pump is supplied simultaneously to a plurality of factories with different loads, the pressure oil is supplied only to the factories with the smallest load, and the pressure oil is not supplied to other factories.
そこで、 図 1 に示すよう に、 油圧ポンプ 1 の吐出路 1 a に第 1 操作弁 2 と第 2操作弁 3を並列に接続し、 この第 1 · 第 2操作弁 2 , 3 と第 1 · 第 2 ァクチユエ一タ 4 , 5 をそれぞれ接続する回 路に圧力補償弁 6 , 6をそれぞれ設け、 第 1 ァクチユエ一夕 4 の 負荷圧と第 2ァクチユエ一夕 5 の負荷圧の高い方の圧力をシャ ト ル弁 7で検出し、 その検出 した圧力を両圧力補償弁 6 , 6 の受圧 部 6 aに供給するものが知られている。  Therefore, as shown in FIG. 1, the first operating valve 2 and the second operating valve 3 are connected in parallel to the discharge path 1 a of the hydraulic pump 1, and the first and second operating valves 2 and 3 are connected to the first and second operating valves 2 and 3. The pressure compensating valves 6 and 6 are provided in the circuits connecting the second actuators 4 and 5, respectively, so that the load pressure of the first actuator 4 and the load pressure of the second It is known that the pressure is detected by a shuttle valve 7 and the detected pressure is supplied to a pressure receiving portion 6a of both pressure compensating valves 6,6.
図 1 に示すものであれば、 両圧力補償弁 6 , 6が最も高い負荷 圧でセッ 卜されるので、 第 1 ♦ 第 2操作弁 2 , 3 の開度に応じた 流量分配比で第 1 · 第 2 ァクチユエ一夕 4 , 5 に圧油を供給でき かかる圧油供給装置であると、 低圧側の圧力補償弁 6 の開口面 積が小さ く 、 その圧力補償弁 6 を高圧の流体が流通するので、 低 圧側の圧力補償弁 6 によって高圧の流体が絞られるからロスが大 である。 In the case of the one shown in Fig. 1, both pressure compensating valves 6 and 6 are set at the highest load pressure, so the first and second flow compensating valves 6 and 6 have the first flow rate distribution ratio corresponding to the opening degree of the second operating valves 2 and 3. · With such a hydraulic oil supply device that can supply hydraulic oil to the second factories 4 and 5, the opening area of the low-pressure side pressure compensating valve 6 is small, and high-pressure fluid flows through the pressure compensating valve 6. So low Since the high-pressure fluid is throttled by the pressure compensating valve 6 on the pressure side, the loss is large.
そこで、 本発明は前述の課題を解決できるよう に した圧油供給 装置を提供することを目的とする。 発明の開示  Therefore, an object of the present invention is to provide a pressure oil supply device capable of solving the above-mentioned problem. Disclosure of the invention
上記目的を達成するための本発明による圧油供給装置の第 1 の 態様は、  A first aspect of the pressure oil supply device according to the present invention for achieving the above object is as follows.
駆動軸が共通で独立した複数の吐出ポー トを有する可変容量型 油圧ポンプユニッ トと、  A variable displacement hydraulic pump unit with a common drive shaft and multiple independent discharge ports,
前記複数の吐出ポー トに複数のァクチユエ一夕をそれぞれ接続 する複数の回路と、  A plurality of circuits respectively connecting a plurality of factories to the plurality of discharge ports;
前記複数の回路にそれぞれ設けた操作弁と、  Operating valves respectively provided in the plurality of circuits,
前記複数の回路にそれぞれ設け られていいて前記複数のァク チユエ一夕の最も高い負荷圧でセッ 卜される圧力補償弁と、 前記複数の回路間に設けられていて、 前記複数の吐出ポー 卜の 圧力が等しい時には前記複数の回路を遮断し、 該圧力に差が生じ た時に連通する合流弁とで構成した、 圧油供給装置である。  A pressure compensating valve provided in each of the plurality of circuits and set at the highest load pressure of the plurality of actuators; and a pressure compensating valve provided between the plurality of circuits and provided in the plurality of discharge ports. A pressure oil supply device comprising a plurality of circuits that are shut off when the pressures are equal, and a joining valve that communicates when a difference occurs in the pressures.
この第 1 の態様によれば、 各吐出ポー トの圧力は独立していて ァクチユエ一夕の外部負荷に見合う圧力となる し、 複数のァク チユエ一夕の負荷圧が異なる時には合流弁が連通位置となって複 数の回路が連通し、 各圧力補償弁は最も高い負荷圧でセッ ト され るので、 負荷圧が低圧で要求流量が大の第 1 のァクチユエ一夕と 負荷圧が高圧で要求流量が小の第 2のァクチユエータに同時に圧 油を供給する時には、 第 2 のァクチユエ一夕に供給される流体の 一部が第 1 のァクチユエ一夕に供給される。 According to the first aspect, the pressure of each discharge port is independent and becomes a pressure corresponding to the external load of the actuator. When the load pressures of a plurality of actuators are different, the junction valve communicates. When the load compensating valve is set at the highest load pressure, the first actuating unit with a low load pressure and a large required flow rate and the load compensating valve are set at the highest load pressure. When simultaneously supplying hydraulic oil to the second actuator with a small required flow rate, the fluid supplied to the second Some will be supplied over the first night.
したがって、 第 2のァクチユエ一夕に供給される流体の一部が 合流弁を流通する時に絞られるだけであるから、 複数のァクチュ エータを同時作動する時のロスが低減する。  Therefore, since a part of the fluid supplied to the second actuator is only throttled when flowing through the junction valve, a loss when simultaneously operating a plurality of actuators is reduced.
また、 負荷圧が低圧で要求流量が小の第 1 のァクチユエ一夕 と 負荷圧が高圧で要求流量が犬の第 2 のァクチユエータに同時に圧 油を供給する時には、 合流弁が連通位置と遮断位置に交互に切換 えられるだけである。  In addition, when supplying pressure oil to the first actuator with a low load pressure and a small required flow rate and simultaneously supplying hydraulic oil to the second actuator with a high load pressure and a required flow rate of a dog, the merging valve is placed in the communication position and the shutoff position. They can only be switched alternately.
したがって、 高圧の負荷圧でセッ ト された圧力補償弁には第 1 のァクチユエ一夕の負荷圧に見合う低圧の流体が、 その要求流量 だけ流れるから、 複数のァクチユエ一タを同時作動する時のロス が低減する。  Therefore, a low-pressure fluid corresponding to the load pressure of the first actuator flows through the pressure compensating valve set at a high load pressure at the required flow rate, so that when operating multiple actuators simultaneously. Loss is reduced.
本発明の第 2の態様は、 上記構成において、  According to a second aspect of the present invention, in the above configuration,
前記可変容量型油圧ポンプュニッ 卜が、 斜板式油圧ポンプのシ リ ンダーブロ ッ クの外周寄り と内周寄りの位置に、 複数のシ リ ン ダ一孔から成る複数の群を互いに同芯的な円周状にそれぞれ形成 し、 弁板の外周寄り と内周寄り位置に、 高圧ポー ト, 低圧ポー ト とから成る複数の組を互い同芯的な円周状に形成したものである 圧油供給装置である。  The variable displacement hydraulic pump unit is configured such that a plurality of groups of a plurality of cylinder holes are concentrically arranged at positions near the outer circumference and the inner circumference of the cylinder block of the swash plate type hydraulic pump. A plurality of sets of high-pressure ports and low-pressure ports are formed circumferentially concentrically at positions close to the outer circumference and inner circumference of the valve plate. Device.
本発明の第 3の態様は、 上記構成において、  According to a third aspect of the present invention, in the above configuration,
前記可変容量型油圧ポンプュニッ トが、 可変容量型の複数の油 圧ポンプの駆動軸を機械的に連結すると共に、 前記複数の油圧ポ ンプの斜板を連結して前記複数の油圧ポンプが同一容量となるよ うにした、 圧油供給装置である。  The variable displacement hydraulic pump unit mechanically connects the drive shafts of the plurality of variable displacement hydraulic pumps and connects the swash plates of the plurality of hydraulic pumps so that the plurality of hydraulic pumps have the same capacity. This is a pressure oil supply device.
本発明の第 4の態様は、 上記構成において、 前記合流弁が、 スプリ ングと、 前記複数の回路の一方に接続さ れた第 1受圧部と、 前記複数の回路の他方に接続された第 2受圧 部とを有し、 前記スプリ ングの力で遮断位置、 前記第 1 受圧部の 圧力で第 1連通位置、 前記第 2受圧部の圧力で第 2連通位置とな るものと した圧油供給装置である。 According to a fourth aspect of the present invention, in the above configuration, The merging valve includes a spring, a first pressure receiving unit connected to one of the plurality of circuits, and a second pressure receiving unit connected to the other of the plurality of circuits, and includes a force of the spring. A pressure oil supply device wherein the pressure oil supply device assumes a shut-off position, a first communication position by the pressure of the first pressure receiving portion, and a second communication position by the pressure of the second pressure receiving portion.
この第 4の態様によれば、 回路の圧力で合流弁が直接的に切換 え作動するので、 合流弁の切換え作動が確実である し、 応答性が 優れたものとなる。  According to the fourth aspect, since the junction valve is directly switched by the pressure of the circuit, the switching operation of the junction valve is reliable, and the responsiveness is excellent.
本発明の第 5の態様は、 上記構成において、  According to a fifth aspect of the present invention, in the above configuration,
前記合流弁が、 スプリ ングとソ レノ ィ ドを有し、 前記スプリ ン グ力で遮断位置、 前記ソ レノ ィ ドに供給された外部信号で連通位 置となるものと し、  The merging valve has a spring and a solenoid, and becomes a shut-off position by the spring force, and a communication position by an external signal supplied to the solenoid.
前記複数の回路の一方と他方の圧力をそれぞれ検出する第 1及 び第 2圧力センサと、  First and second pressure sensors for respectively detecting one and the other pressures of the plurality of circuits,
前記第 1及び第 2圧力セ ンサによる検出圧力に差がある時に前 記ソ レノィ ドに外部信号を供給する コ ン ト ローラ とを設けた圧油 供給装置である。  A pressure oil supply device provided with a controller for supplying an external signal to the solenoid when there is a difference between pressures detected by the first and second pressure sensors.
この第 5 の態様によれば、 コ ン ト ロ一ラを用いている こ とに よって合流弁を切換えるタイ ミ ングを任意に設定できる。 図面の簡単な説明  According to the fifth aspect, by using the controller, the timing for switching the merging valve can be set arbitrarily. BRIEF DESCRIPTION OF THE FIGURES
本発明は、 以下の詳細な説明及び本発明の実施例を示す添付図 面によ り、 よ り良く理解される ものとなろう。 なお、 添付図面に 示す実施例は、 発明を特定するこ とを意図する ものではな く 、 単 に説明及び理解を容易とするものである。 図中、 The invention will be better understood from the following detailed description and the accompanying drawings illustrating an embodiment of the invention. The embodiments shown in the accompanying drawings are not intended to specify the invention, but merely to facilitate explanation and understanding. In the figure,
図 1 は、 従来例を示す油圧回路図である。  FIG. 1 is a hydraulic circuit diagram showing a conventional example.
図 2 は、 本発明による圧油供給装置の第 1 の実施の形態を示す 油圧回路図である。  FIG. 2 is a hydraulic circuit diagram showing a first embodiment of the pressure oil supply device according to the present invention.
図 3 は、 上記第 1 の実施の形態のダブル油圧ポンプの断面図で める。  FIG. 3 is a cross-sectional view of the double hydraulic pump according to the first embodiment.
図 4 は、 本発明による圧油供給装置の第 2 の実施の形態を示す 油圧回路図である。 発明を実施するための好適な態様  FIG. 4 is a hydraulic circuit diagram showing a second embodiment of the pressure oil supply device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の好適実施の形態による圧油供給装置を添付図 面を参照しながら説明する。  Hereinafter, a pressure oil supply device according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
まず、 第 1 の実施の形態について説明する。  First, a first embodiment will be described.
図 2 に示すよ う に、 ダブル油圧ポ ンプ 1 0 の第 1 · 第 2 吐出 ポー ト 1 O a , 1 O b にそれぞれ接続した第 1 · 第 2 回路 1 1 , 1 2 は第 1 , 第 2操作弁 1 3 , 1 4、 第 1 · 第 2圧力補償弁 1 5 , 1 6をそれぞれ経て第 1 · 第 2ァクチユエ一夕 1 7 , 1 8 にそれ ぞれ接続される。  As shown in FIG. 2, the first and second circuits 11 and 12 connected to the first and second discharge ports 1Oa and 1Ob of the double hydraulic pump 10 are the first and second circuits, respectively. (2) Connected to the first and second factories (17, 18) via the control valves (13, 14) and the first and second pressure compensating valves (15, 16), respectively.
前記第 1 回路 1 1 と第 2 回路 1 2 は合流弁 1 9で連通 · 遮断さ れる。 この合流弁 1 9 はスプリ ング力で遮断位置 a に保持され. 第 1受圧部 2 0 と第 2受圧部 2 1 との圧力差によって第 1連通位 置 b と第 2連通位置 c に切換えられる。 第 1 受圧部 2 0 は第 1 回 路 1 1 に接続し、 第 2受圧部 2 1 は第 2回路 1 2に接続している。 第 1 ァクチユエ一夕 1 7 の負荷圧と第 2 ァクチユエ一夕 1 8 の 負荷圧の高い方がシャ トル弁 2 2で検出され、 その高い方の負荷 圧がダブル油圧ポ ンプ 1 0 の第 1 容量制御部 2 3 に作用 し、 第 1 · 第 2 吐出ポー ト 1 0 a , 1 O bの圧力の高い方がシ ャ トル弁 2 4で検出され、 その高い方の圧力がダブル油圧ポンプ 1 0 の第 2容量制御部 2 5 に作用する。 これによつて、 ダブル油圧ポンプ 1 0の容量がポンプ吐出圧と負荷圧の差圧を一定とするよう に制 御される。 なお、 ダブル油圧ポンプ 1 0 にさ らに図示しない第 3 容量制御部を設け、 第 1 , 第 2 吐出ポー ト 1 0 a , 1 O b の圧力 をそれぞれ第 2容量制御部 2 5及び第 3容量制御部に作用させて ポンプ吐出圧と負荷圧の差圧が一定となるよう にダブル油圧ポン プ 1 0の容量を制御しても良い。 The first circuit 11 and the second circuit 12 are connected and disconnected by a merge valve 19. The merging valve 19 is held at the shut-off position a by the spring force. The connection position is switched between the first communication position b and the second communication position c by the pressure difference between the first pressure receiving portion 20 and the second pressure receiving portion 21. . The first pressure receiving section 20 is connected to the first circuit 11, and the second pressure receiving section 21 is connected to the second circuit 12. The higher of the load pressure of the first actuator 17 and the second 18 is detected by the shuttle valve 22 and the higher load is detected. The pressure acts on the first displacement control section 23 of the double hydraulic pump 10, and the higher pressure of the first and second discharge ports 10 a, 1 Ob is detected by the shuttle valve 24. The higher pressure acts on the second displacement control section 25 of the double hydraulic pump 10. As a result, the capacity of the double hydraulic pump 10 is controlled so that the differential pressure between the pump discharge pressure and the load pressure is kept constant. In addition, a third displacement control unit (not shown) is further provided in the double hydraulic pump 10 so that the pressures of the first and second discharge ports 10a and 1Ob are controlled by the second displacement control unit 25 and the third displacement control unit, respectively. The capacity of the double hydraulic pump 10 may be controlled so as to act on the capacity control unit so that the differential pressure between the pump discharge pressure and the load pressure becomes constant.
前記ダブル油圧ポンプ 1 0 は、 図 3 に示すよう に、 斜板式油圧 ポンプのシリ ンダーブロ ッ ク 3 0の外周寄り と內周寄りの位置に、 複数の第 1 シリ ンダー孔 3 1 から成る群と複数の第 2 シ リ ンダー 孔 3 2から成る群を互いに同心的な円周状にそれぞれ形成し、 弁 板 3 3の外周寄り と内周寄り位置に、 第 1 高圧ポー ト 3 4, 第 1 低圧ポー ト 3 5から成る組と第 2高圧ポー ト 3 6 , 第 2低圧ポー ト 3 7から成る組を互いに同心的な円周状にそれぞれ形成して、 独立した第 1油圧ポンプと第 2油圧ポンプを同一ブロ ッ ク内に構 成したものであって、 駆動軸が共通で複数の吐出ポー トを有する 可変容量型油圧ポンプュニ ッ ト と して構成されている。 そ して - その第 1 油圧ポンプの吐出部 (第 1 高圧ポー ト 3 4 ) が第 1 吐出 ポー ト 1 0 a、 第 2油圧ポンプの吐出部 (第 2高圧ポー ト 3 6 ) が第 2吐出ポー ト 1 0 b となっている。  As shown in FIG. 3, the double hydraulic pump 10 includes a group including a plurality of first cylinder holes 31 at positions near the outer periphery and near the outer periphery of the cylinder block 30 of the swash plate type hydraulic pump. A group consisting of a plurality of second cylinder holes 32 is formed concentrically around each other, and the first high-pressure ports 34 and the first high-pressure ports 34 are located near the outer periphery and the inner periphery of the valve plate 33. A pair consisting of the low-pressure port 35 and a pair consisting of the second high-pressure port 36 and the second low-pressure port 37 are formed concentrically with each other to form an independent first hydraulic pump and a second hydraulic pump. The hydraulic pump is configured in the same block, and is configured as a variable displacement hydraulic pump unit having a common drive shaft and a plurality of discharge ports. And-the discharge part (first high pressure port 34) of the first hydraulic pump is the first discharge port 10a, and the discharge part (second high pressure port 36) of the second hydraulic pump is the second discharge port. The discharge port is 10b.
次に、 本第 1 の実施の形態の作動を説明する。  Next, the operation of the first embodiment will be described.
第 1 ァクチユエ一夕 1 7の負加圧が低圧で要求流量が大、 第 2 ァクチユエ一夕 1 8の負加圧が高圧で要求流量が小の時。 Negative pressurization at 1st factory overnight was low pressure and the required flow rate was large. When the negative pressure of 18 is high and the required flow rate is small.
第 1 回路 1 1 の圧力 P 1 が第 2回路 1 2の圧力 P 2 より も低いの で、 合流弁 1 9は第 2連通位置 c とな り、 第 2 回路 1 2 の流体の 一部が第 1 回路 1 1 に流入する。 第 2 ァクチユエ一夕 1 8 の負荷 圧が容量制御部 2 3 に作用 してダブル油圧ポンプ 1 0 の容量は第 2ァクチユエ一夕 1 8の負荷圧に見合う容量となる。  Since the pressure P 1 in the first circuit 11 is lower than the pressure P 2 in the second circuit 12, the merging valve 19 is in the second communication position c, and a part of the fluid in the second circuit 12 is Flows into the first circuit 1 1. The load pressure of the second factory 18 acts on the capacity control unit 23, and the capacity of the double hydraulic pump 10 becomes a capacity corresponding to the load pressure of the second factory 18.
このように、 第 1 回路 1 1 の圧力 P 1 はァクチユエ一夕 1 7の外 部負荷の大きさに見合う低圧で、 第 2回路 1 2の圧力 P 2は第 2ァ クチユエ一タ 1 8の外部負荷の大きさに見合う高圧である し、 第 2回路 1 2の流体の一部が第 1 ァクチユエ一タ 1 7 に応援のため に供給される。 したがって、 第 1 ァクチユエ一夕 1 7 に大流量の 流体を供給して高速で作動させるこ とができる し、 第 2 ァクチュ ェ一タ 1 8に第 1 ァクチユエ一夕 1 7 よ り も高い圧力の流体を供 給して大きな力で作動させることができる。  Thus, the pressure P 1 of the first circuit 11 is a low pressure commensurate with the magnitude of the external load of the actuator 17, and the pressure P 2 of the second circuit 12 is the pressure of the second actuator 18. The pressure is high corresponding to the magnitude of the external load, and a part of the fluid in the second circuit 12 is supplied to the first actuator 17 for support. Therefore, it is possible to supply a large amount of fluid to the first actuator 17 and operate it at high speed, and to operate the second actuator 18 at a higher pressure than the first actuator 17. Fluid can be supplied and operated with great power.
また、 第 1圧力補償弁 1 5 は高圧側の負荷圧で開口面積が小と なるが、 流通する流体の圧力が低圧であるからロスが少な く 、 第 2回路 1 2の流体の一部が合流弁 1 9を流通する際に絞られるが. その流量は少ないから、 ロスが小となる。  Although the opening area of the first pressure compensating valve 15 is small due to the load pressure on the high pressure side, the loss of the fluid is small because the pressure of the flowing fluid is low. It is throttled when flowing through the merging valve 19. Since the flow rate is small, the loss is small.
第 1 ァクチユエ一夕 1 7 の負加圧が低圧で要求流量が小、 第 2 ァクチユエ一タ 1 8の負加圧が高圧で要求流量が大の時。  When the negative pressure of the 1st factory 17 is low pressure and the required flow rate is small, and when the negative pressure of the 2nd factory 18 is high pressure and the required flow rate is large.
前述と同様に合流弁 1 9 は第 2連通位置 c となって、 第 1 回路 1 1 と第 2回路 1 2が連通し、 第 1 圧力補償弁 1 5 が高圧側の負 荷圧で絞られるので、 第 1 回路 1 1の圧力 P 1 と第 2回路 1 2の圧 力 P 2は同一となり、 合流弁 1 9が遮断位置 a となる。 これによつ て、 第 1 回路 1 1 の圧力 P 1 が低圧、 第 2回路 1 2の圧力 P 2 が高 圧となって、 合流弁 1 9 は再び第 2連通位置 c となる。 この動作 を繰り返す。 As described above, the merging valve 19 is at the second communication position c, the first circuit 11 and the second circuit 12 are in communication, and the first pressure compensating valve 15 is throttled by the high-pressure side load pressure. Therefore, the pressure P 1 of the first circuit 11 and the pressure P 2 of the second circuit 12 are the same, and the junction valve 19 is at the shut-off position a. As a result, the pressure P 1 in the first circuit 11 is low and the pressure P 2 in the second circuit 12 is high. With the pressure, the merger valve 19 is again at the second communication position c. This operation is repeated.
図 4 は第 2の実施の形態を示している。  FIG. 4 shows a second embodiment.
この場合、 第 1油圧ポンプ 4 0 と第 2油圧ポンプ 4 1 の駆動軸 を機械的に連結すると共に、 その第 1 油圧ポンプ 4 0 の斜板 4 2 と第 2油圧ポンプ 4 1 の斜板 4 3 を連結して両ポンプ 4 0 , 4 1 が同一容量となるよう にして、 駆動軸が共通で複数の吐出ポー ト を有する可変容量型油圧ポ ンプュニ ッ ト と して構成されている ( 第 1 油圧ポンプ 4 0の容量制御部 4 4 と第 2油圧ポンプ 4 1 の容 量制御部 4 5 にシャ トル弁 2 2 の出力圧を供給する。 In this case, the drive shafts of the first hydraulic pump 40 and the second hydraulic pump 41 are mechanically connected, and the swash plate 42 of the first hydraulic pump 40 and the swash plate 4 of the second hydraulic pump 41 are connected. 3 are connected so that both pumps 40 and 41 have the same capacity, and are configured as a variable displacement hydraulic pump unit having a common drive shaft and a plurality of discharge ports ( No. 1 The output pressure of the shuttle valve 22 is supplied to the capacity control unit 44 of the hydraulic pump 40 and the capacity control unit 45 of the second hydraulic pump 41.
第 1 油圧ポンプ 4 0 の吐出ポー ト 4 0 a に接続した第 1 回路 1 1 と第 2油圧ポンプ 4 1 の吐出ポー ト 4 1 a に接続した第 2回 路 1 2 は合流弁 1 9 で連通 ' 遮断される。 この合流弁 1 9 は、 ス プリ ング力で遮断位置 a に保持され、 ソ レノ イ ド 4 6 に通電され ると連通位置 d となる。 前記第 1 回路 1 1 の圧力を第 1 圧力セ ン サ 4 7で検出し、 第 2回路 1 2 の圧力を第 2圧力センサ 4 8で検 出してコン トローラ 4 9 にそれぞれ入力する。 コ ン ト ローラ 4 9 は第 1圧力センサ 4 7 による検出圧力と第 2圧力センサ 4 8 によ る検出圧力に差が生じた時にソレノィ ド 4 6 に通電する。  The first circuit 11 connected to the discharge port 40a of the first hydraulic pump 40 and the second circuit 12 connected to the discharge port 41a of the second hydraulic pump 41 connect the merging valve 19. Communication 'blocked. The merging valve 19 is held at the shut-off position a by the spring force, and becomes the communication position d when the solenoid 46 is energized. The pressure of the first circuit 11 is detected by a first pressure sensor 47, the pressure of the second circuit 12 is detected by a second pressure sensor 48, and input to the controller 49. The controller 49 energizes the solenoid 46 when there is a difference between the pressure detected by the first pressure sensor 47 and the pressure detected by the second pressure sensor 48.
次に、 本第 2の実施の形態の作動を説明する。  Next, the operation of the second embodiment will be described.
第 1 回路 1 1 の圧力 P i と第 2回路 1 2の圧力 P 2 とに差が生じ る と合流弁 1 9 が連通位置 d となる し、 第 1 · 第 2 油圧ポ ンプ 4 0 , 4 1 の容量は同一容量に制御されるので、 前述の第 1 の実 施の形態と同様に作動する。  If there is a difference between the pressure P i of the first circuit 11 and the pressure P 2 of the second circuit 12, the merging valve 19 becomes the communication position d, and the first and second hydraulic pumps 40, 4 Since the capacity of 1 is controlled to the same capacity, it operates in the same manner as in the first embodiment described above.
なお、 前記合流弁 1 9 は受圧部に供給されるパイ ロ ッ ト圧油で 連通位置 d となる ものと しても良い。 この場合はコ ン ト ローラ 4 9で図示しないパイ ロ ッ ト圧油供給用電磁弁を切換えてパイ ロッ ト圧油を合流弁 1 9の受圧部に供給するようにする。 The merging valve 19 is made of pilot pressure oil supplied to the pressure receiving section. It may be the communication position d. In this case, the pilot pressure oil supply solenoid valve (not shown) is switched by the controller 49 to supply the pilot pressure oil to the pressure receiving portion of the merge valve 19.
なお、 本発明は例示的な実施の形態について説明 したが、 開示 した実施例に関して、 本発明の要旨及び範囲を逸脱するこ とな く 種々の変更、 省略、 追加が可能である こ とは、 当業者において自 明である。 従って、 本発明は、 上記の実施の形態に限定される も のではなく 、 請求の範囲に記載された要素によって規定される範 囲及びその均等範囲を包含する ものと して理解されなければなら ない。  Although the present invention has been described with reference to exemplary embodiments, it is to be noted that various modifications, omissions, and additions can be made to the disclosed embodiments without departing from the spirit and scope of the invention. It is obvious to those skilled in the art. Therefore, the present invention is not limited to the above embodiments, but should be understood as including the scope defined by the elements described in the claims and the equivalent scope thereof. Absent.

Claims

請求の範囲 The scope of the claims
1 . 駆動軸が共通で独立した複数の吐出ポー トを有する可変容量 型油圧ポンプュニッ 卜と、  1. A variable displacement hydraulic pump unit having a plurality of independent discharge ports with a common drive shaft;
前記複数の吐出ポー 卜に複数のァクチユエ一夕をそれぞれ接続 する複数の回路と、  A plurality of circuits respectively connecting a plurality of factories to the plurality of discharge ports;
前記複数の回路にそれぞれ設けた操作弁と、  Operating valves respectively provided in the plurality of circuits,
前記複数の回路にそれぞれ設けられていいて前記複数のァク チユエ一夕の最も高い負荷圧でセッ 卜される圧力補償弁と、 前記複数の回路間に設けられていて、 前記複数の吐出ポー 卜の 圧力が等しい時には前記複数の回路を遮断し、 該圧力に差が生じ た時に連通する合流弁とで構成した、 圧油供給装置。  A pressure compensating valve provided in each of the plurality of circuits and set at the highest load pressure of the plurality of actuators; and a plurality of discharge ports provided between the plurality of circuits. A pressure oil supply device, comprising: a plurality of circuits that are cut off when the pressures are equal to each other;
2 . 前記可変容量型油圧ポンプュニッ 卜が、 斜板式油圧ポンプの シ リ ンダ一ブロ ッ クの外周寄り と内周寄りの位置に、 複数のシ リ ンダ一孔から成る複数の群を互いに同芯的な円周状にそれぞれ形 成し、 弁板の外周寄り と内周寄り位置に、 高圧ポー ト, 低圧ポー トとから成る複数の組を互い同芯的な円周状に形成したものであ る、 請求項 1 に記載の圧油供給装置。 2. The variable displacement hydraulic pump unit has a plurality of groups of a plurality of cylinders and holes concentric with each other at positions closer to the outer circumference and inner circumference of the cylinder block of the swash plate type hydraulic pump. A plurality of sets each consisting of a high-pressure port and a low-pressure port are formed concentrically around the outer and inner circumferences of the valve plate. The pressurized oil supply device according to claim 1, which is provided.
3 . 前記可変容量型油圧ポンプュニッ 卜が、 可変容量型の複数の 油圧ポンプの駆動軸を機械的に連結すると共に、 前記複数の油圧 ポンプの斜板を連結して前記複数の油圧ポンプが同一容量となる ようにした、 請求項 1 に記載の圧油供給装置。 3. The variable displacement hydraulic pump unit mechanically connects the drive shafts of the plurality of variable displacement hydraulic pumps and connects the swash plates of the plurality of hydraulic pumps so that the plurality of hydraulic pumps have the same capacity. The pressure oil supply device according to claim 1, wherein:
4 . 前記合流弁が、 スプリ ングと、 前記複数の回路の一方に接続 された第 1受圧部と、 前記複数の回路の他方に接続された第 2受 圧部とを有し、 前記スプリ ングの力で遮断位置、 前記第 1受圧部 の圧力で第 1連通位置、 前記第 2受圧部の圧力で第 2連通位置と なる ものと した、 請求項 1 乃至 3 のいずれかに記載の圧油供給装 置。 4. The junction valve connects to a spring and one of the plurality of circuits. A first pressure receiving portion, and a second pressure receiving portion connected to the other of the plurality of circuits, a breaking position by the force of the spring, a first communication position by the pressure of the first pressure receiving portion, The pressure oil supply device according to any one of claims 1 to 3, wherein the pressure oil supply device is set to a second communication position by a pressure of the second pressure receiving portion.
5 . 前記合流弁が、 スプリ ングとソ レノ イ ドを有し、 前記スプリ ング力で遮断位置、 前記ソ レノィ ドに供給された外部信号で連通 位置となるものと し、 5. The merging valve has a spring and a solenoid, and assumes a shut-off position by the spring force and a communication position by an external signal supplied to the solenoid,
前記複数の回路の一方と他方の圧力をそれぞれ検出する第 1及 び第 2圧力センサと、  First and second pressure sensors for respectively detecting one and the other pressures of the plurality of circuits,
前記第 1及び第 2圧力セ ンサによる検出圧力に差がある時に前 記ソレノイ ドに外部信号を供給するコ ン ト ローラ とを設けた、 請 求項 1乃至 3のいずれかに記載の圧油供給装置。  The pressure oil according to any one of claims 1 to 3, further comprising: a controller that supplies an external signal to the solenoid when there is a difference between the pressures detected by the first and second pressure sensors. Feeding device.
PCT/JP1998/001043 1997-03-14 1998-03-12 Pressure oil supplying apparatus WO1998041765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/60387 1997-03-14
JP9060387A JPH10252705A (en) 1997-03-14 1997-03-14 Pressure oil feeding device

Publications (1)

Publication Number Publication Date
WO1998041765A1 true WO1998041765A1 (en) 1998-09-24

Family

ID=13140695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001043 WO1998041765A1 (en) 1997-03-14 1998-03-12 Pressure oil supplying apparatus

Country Status (3)

Country Link
JP (1) JPH10252705A (en)
KR (1) KR19980079912A (en)
WO (1) WO1998041765A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047709A1 (en) * 2003-11-14 2005-05-26 Komatsu Ltd. Hydraulic pressure control device of construction machinery
US7559197B2 (en) 2005-08-31 2009-07-14 Caterpillar Inc. Combiner valve control system and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015036601A2 (en) 2013-09-16 2015-03-19 Ipgate Ag Braking device and method for operating a braking device
KR102317791B1 (en) * 2013-09-16 2021-10-26 이페게이트 아게 Electric-actuated pressure regulator- and volume-delivery units

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116967A (en) * 1980-11-24 1982-07-21 Linde Ag Driving system with two part systems at least
JPH0384204A (en) * 1989-08-25 1991-04-09 Toshiba Mach Co Ltd Confluence valve device for load sensing type hydraulic circuit
JPH05126104A (en) * 1991-11-06 1993-05-21 Yutani Heavy Ind Ltd Hydraulic circuit for construction machine
JPH07158559A (en) * 1993-12-10 1995-06-20 Kayaba Ind Co Ltd Multiple piston pump
JPH0942205A (en) * 1995-07-26 1997-02-10 Kobe Steel Ltd Pump control device for hydraulic machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116967A (en) * 1980-11-24 1982-07-21 Linde Ag Driving system with two part systems at least
JPH0384204A (en) * 1989-08-25 1991-04-09 Toshiba Mach Co Ltd Confluence valve device for load sensing type hydraulic circuit
JPH05126104A (en) * 1991-11-06 1993-05-21 Yutani Heavy Ind Ltd Hydraulic circuit for construction machine
JPH07158559A (en) * 1993-12-10 1995-06-20 Kayaba Ind Co Ltd Multiple piston pump
JPH0942205A (en) * 1995-07-26 1997-02-10 Kobe Steel Ltd Pump control device for hydraulic machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047709A1 (en) * 2003-11-14 2005-05-26 Komatsu Ltd. Hydraulic pressure control device of construction machinery
GB2422876A (en) * 2003-11-14 2006-08-09 Komatsu Mfg Co Ltd Hydraulic pressure control device of construction machinery
GB2422876B (en) * 2003-11-14 2007-12-12 Komatsu Mfg Co Ltd Hydraulic pressure control device of construction machine
CN100451353C (en) * 2003-11-14 2009-01-14 株式会社小松制作所 Hydraulic pressure control device of construction machinery
US7520130B2 (en) 2003-11-14 2009-04-21 Komatsu Ltd. Hydraulic pressure control device of construction machine
US7559197B2 (en) 2005-08-31 2009-07-14 Caterpillar Inc. Combiner valve control system and method

Also Published As

Publication number Publication date
JPH10252705A (en) 1998-09-22
KR19980079912A (en) 1998-11-25

Similar Documents

Publication Publication Date Title
EP0351402B1 (en) Load responsive control system adapted to use of negative load pressure in operation of system controls
US6026730A (en) Flow control apparatus in a hydraulic circuit
JP4874815B2 (en) Dynamic fluid power monitoring system for separate actuators
US5251442A (en) Fluid power regenerator
JP2000087904A (en) Pressure oil supplying device
KR20120036776A (en) Flow summation system for ontrolling a variable displacement hydraulic pump
US5673557A (en) Displacement control system for variable displacement type hydraulic pump
US11060533B2 (en) Logic-controlled flow compensation circuit for operating single-rod hydrostatic actuators
WO1998041765A1 (en) Pressure oil supplying apparatus
EP2840260B1 (en) Hydraulic system
KR850000831B1 (en) Control valve assembly apparatus
JPH0384204A (en) Confluence valve device for load sensing type hydraulic circuit
US6325104B1 (en) Hydraulic circuit, precedence valve block and operation valve block assembly
US7028599B2 (en) Control device for the continuous drive of a hydraulic control motor
WO2017064953A1 (en) Fluid pressure control circuit and fluid pressure control device
JPH10184556A (en) Hydraulic pump displacement control device
US11512718B2 (en) Hydraulic pressure amplifier arrangement
WO1994012795A1 (en) Hydraulic system
JP2575326Y2 (en) Pressure control device
JPH08200308A (en) Hydraulic circuit
RU2298112C2 (en) Converter for automatic control device
JPH0596503U (en) Pressure compensation valve
USRE29329E (en) Hydraulic systems
JP3669830B2 (en) Compound control valve
JP2556999B2 (en) Hydraulic circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase