WO1998040784A1 - Dispositif de commutation-modulation de lumiere - Google Patents

Dispositif de commutation-modulation de lumiere Download PDF

Info

Publication number
WO1998040784A1
WO1998040784A1 PCT/FR1998/000465 FR9800465W WO9840784A1 WO 1998040784 A1 WO1998040784 A1 WO 1998040784A1 FR 9800465 W FR9800465 W FR 9800465W WO 9840784 A1 WO9840784 A1 WO 9840784A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
electrostatic field
guides
electrodes
guide
Prior art date
Application number
PCT/FR1998/000465
Other languages
English (en)
Inventor
François Kajzar
Maryanne Large
Paul Raimond
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to EP98913865A priority Critical patent/EP0966700A1/fr
Publication of WO1998040784A1 publication Critical patent/WO1998040784A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/061Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material
    • G02F1/065Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • G02F1/3517All-optical modulation, gating, switching, e.g. control of a light beam by another light beam using an interferometer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • G02F3/02Optical bistable devices

Definitions

  • the present invention relates to a light switching-modulation device.
  • optical switching and modulation functions find numerous applications in optical microsystems.
  • the present invention applies in particular to optical telecommunications, fast electronics and computers.
  • These rectifier couplers can be controlled by an electric field or by an electromagnetic field.
  • the object of the present invention is to remedy the above drawbacks.
  • the invention requires only low control light powers, of the order of lmW, while having a high speed of response and being inexpensive to implement.
  • the subject of the present invention is a light switching-modulation device, this device being characterized in that it comprises:
  • the molecules of the element material gradually change in isomeric conformation and spatial orientation, which results in a modification of the refractive index sufficient to change the propagation conditions of the first light beam.
  • the present invention results from the implementation, by its authors, of a phenomenon which is surprising for those skilled in the art: under the combined effect of the control beam and the electrostatic field, which constitutes a polarization field, expects indeed to obtain an increase in the polar order in the material as it is the case in the articles of J. Delaire and collaborators (reference B mentioned at the end of this description) and M. Dumont and collaborators (reference C mentioned at the end of this description); but the authors of the present invention have on the contrary found, surprisingly, the decrease in this polar order.
  • the means for creating the electrostatic field comprise two electrodes placed on either side of the element.
  • At least one of the electrodes is at least partially transparent to the second beam.
  • the device which is the subject of the invention may further comprise at least two layers of confinement ("cladding layers") which are capable of confining the first beam in the element and which are provided on at least two opposite sides of this element.
  • the element forms a layer on either side of which are the two confinement layers.
  • the element forms a ribbon on each side of which there is one of said confinement layers.
  • the device which is the subject of the invention can constitute an X junction comprising two branches which each have a central part extended, on one side, by an input light guide and, on the other side, by a light guide of output, each central part comprising an element made of said material, so that, when the first beam is brought to the device by one of the input guides, it is capable of leaving this device by one or the other output guides depending on whether the second beam is or is not sent into the elements.
  • the device which is the subject of the invention may constitute a Y junction comprising an inlet light guide, two outlet light guides and a central part comprising said element and connected, on one side, to the guide entry and, on the other side, to the exit guides, so that, when the first beam is brought to the device by the entry guide, it is likely to leave this device by one or the other output guides depending on whether the second beam is or is not sent into the element.
  • the device can constitute a Fabry-Pérot resonator in which the element is placed, the two electrodes being moreover transparent to the first beam and placed on either side of the resonator or delimiting it.
  • the device which is the subject of the invention further comprises a Mach-Zehnder mterferometer in a branch of which the element is placed.
  • the device which is the subject of the invention may further comprise means for generating the second beam parallel to the electrostatic field or obliquely with respect thereto.
  • the material used in the invention can be chosen from electro-optical polymers comprising photoisomerizable chromophores.
  • Figure 1 is a schematic longitudinal sectional view and partial of a particular embodiment of the device which is the subject of the invention, in which the element has the form of a layer,
  • FIG. 2 is a schematic cross-sectional view of the embodiment shown in FIG. 1
  • Figure 3 is a schematic cross-sectional view of another particular embodiment of the device object of the invention, in which the element has the shape of a ribbon
  • Figure A represents the variations, depending of time, of the intensity of the second harmonic generated by means of an electro-optical polymer
  • FIG. 5 is a schematic and partial top view of a device according to the invention forming a directional coupler
  • FIG. 6 is a schematic and partial top view of another device according to the invention forming a digital electro-optical modulator
  • FIG. 7 is a schematic view of another device according to the invention, comprising a Fabry-Pérot resonator, and
  • Figure 8 is a schematic top view of another device according to the invention, comprising a Mach-Zehnder mterferometer.
  • the device according to the invention which is schematically and partially shown in longitudinal section in FIG. 1, comprises an element 2 made of a non-linear, non-centrosymmetric, photoisomenable optical material such as, for example, an electro optic comprising photoisomerizable chromophores.
  • This material includes molecules which have a large permanent dipole moment and which undergo a change in conformation when this material is illuminated.
  • PMMA-DR1 the grafted polymer
  • PMMA-DR1 consisting of polymethylmethacrylate (PMMA) on which the photoisomerizable molecules known under the name Disperse Red # 1 (DR1) have been attached.
  • the element 2 is intended to guide a first light beam 4 which is emitted by a source 6.
  • this element 2 is between two confinement layers 8 and 10 which have a refractive index lower than the refractive index of the material constituting the element 2.
  • layers 8 and 10 can be made of silica.
  • the lower confinement layer which has the reference 8 itself rests on a conductive substrate 12 for example of silicon forming electrode.
  • the material constituting the element 2 is transparent to the light beam 4, the source 6 being chosen to emit in the transparency band of this material.
  • the device of FIG. 1 comprises another electrode 16 in addition to the electrode 12 formed by the substrate.
  • the electrode 12 which coincides with the substrate, constitutes a lower electrode while the electrode 16 is formed on the upper confinement layer 10.
  • the two electrodes 12 and 16 are intended to create, in element 2, an electrostatic field E
  • the substrate 12 is insulating and a conductive layer 14 is then deposited on its upper face to form an electrode, the layer 8 then being above this electrode 14.
  • the voltage is applied between the electrodes 14 and 16.
  • the electrostatic field E is perpendicular to the direction of propagation of the first light beam 4 in the element 2.
  • the device of FIG. 1 is provided with another light source 20 intended to provide a second light beam 22 which propagates perpendicular to the electrodes 12 and 16 and therefore parallel to the electrostatic field E.
  • This source 20 is chosen so that the beam 22 can be totally or partially absorbed by the material constituting the element 2.
  • the element 2 partially absorbs the beam 22 and this beam 22 is sent into the element 2 through the electrode 16 which is chosen to be transparent or partially transparent to this beam 22.
  • the electrode 12 may also be transparent or partially transparent to this beam 22, in which case at least part of this beam 22 passes through this electrode 12 when beam 22 is generated by source 20.
  • the electrode 12 could be opaque to the beam 22.
  • the zone 23 of the device is shown in dotted lines, zone which is crossed by the beam 22 when this beam 22 is generated by the source 20.
  • the first beam 4 crosses the part of this zone 23 which is in the element 2 and therefore interacts with the electrostatic field E and the beam 22.
  • the beam 4 passes through the element 2
  • the electrostatic field E has an intensity of the order of 1 MV / cm or a few MV / cm.
  • This electrostatic field polarizes the molecules of the material constituting element 2 and creates a privileged direction in this material.
  • the beam 22 instead of having an orientation parallel to that of this electrostatic field, could be oriented obliquely with respect to this electrostatic field.
  • Figure 2 is a schematic cross-sectional view of the device of Figure 1 in the case where the substrate constitutes an electrode. It can be seen in this FIG. 2 that the guide element 2 constitutes a layer of the optical material.
  • a layer of silica 8 is formed on the silicon substrate 12, acting as an electrode, and layer 2 of the optical material is formed on this layer of silica 8, for example by a "spin coating” deposit, then another layer of silica 10 is formed on this layer 2. Then the electrode 16 is formed on the layer 10.
  • FIG. 3 Another device according to the invention is shown diagrammatically in cross section in FIG. 3, in the case where the substrate constitutes an electrode.
  • Figure 1 is a schematic longitudinal sectional view along I-I of this other device.
  • the element 2 forms a ribbon which is surrounded by confinement layers 9 and 10 which are made of silica in the example shown.
  • a layer of silica 9 is deposited on the substrate 12 in which a groove is hollowed out intended to contain the ribbon-shaped guide element 2.
  • This element is formed in this groove for example by photobleaching ("photobleaching").
  • the assembly obtained is covered with a layer of silica 10 and then the electrode 16 is formed as before. It is specified that the illumination of the element 2 by the beam 22 causes a change in the refractive index of this element 2 at the illuminated place.
  • the decoupling of the guided light beam 4 is obtained when the electrostatic field E is established and the beam
  • Stopping the illumination of the element 2 by the beam 22 restores the conditions for guiding the element 2 so that the beam 4 is again guided by this element 2.
  • the length L of the beam decoupling zone 4 is equal to the diameter of the beam 22 and one is therefore able to easily control this length of the decoupling zone.
  • the illumination of the material by the beam 22 leads to a reduction in the polar order in this material and consequently to a reduction in the coefficient of generation of second harmonic and in the electro-optical coefficient of the material.
  • this effect of decreasing the polar order and the associated change in the refractive index can be used in other systems such as, for example, directional couplers.
  • a device of the kind of those of FIGS. 1 to 3 has the following advantages over the known devices mentioned above.
  • This device is controlled by an external light source.
  • this device has a very short response time which can be of the order of 1 nanosecond.
  • an electro-optical polymer such as for example PMMA-DR1
  • PMMA-DR1 an electro-optical polymer
  • such a polymer has a strong electro-optical effect (its electro-optical coefficient is greater than or equal to 10 pm / V) and a high breakdown voltage (its breakdown field is greater than or equal to 100 V / ⁇ m) , allowing large variations in refractive index.
  • such a polymer is malleable, which contributes to inexpensive manufacture of the device.
  • stopping the illumination of the element by the second beam restores the conditions for guiding the first beam.
  • FIG. 4 shows the curve representing the variations in the intensity I (in arbitrary units) of the second harmonic generation signal as a function of time t (in arbitrary units), when the polymer is illuminated (parts A of the curve) and when it is not illuminated (parts B of the curve).
  • This decrease in the intensity of the second harmonic I 2 ⁇ corresponds to a decrease in the electro-optical coefficient r of the material by a factor of 2.
  • E represents the intensity of the applied electrostatic field.
  • Liquid crystals can also be used, for example nitrophenyl alkylammophényldiazesses.
  • the device according to the invention which is shown diagrammatically in top view in FIG. 5, comprises an X junction comprising two branches 24, 26 which each have a central part 28, 30.
  • Each central part 28, 30 is extended, on one side, by an inlet light guide 32, 34 and, on the other side, by an outlet light guide 36, 38.
  • Each central part comprises an element 40, 42 made of the same material as the element 8 in FIG. 1.
  • Guides 32, 34, 36 and 38 can be made of silica or of this material.
  • junction X provided with the elements 40 and 42 can be produced on an electrically conductive substrate 12, for example made of silicon.
  • lower and upper confinement layers are provided on the substrate so that the light can be actually guided in guides 32, 34, 36 and 38 and elements 40 and 42.
  • the upper face of the upper confinement layer is provided with an electrode 16 which is transparent to the control beam of the device (of the kind of the beam 22 of FIG. 1) and which extends above the elements 40 and 42.
  • the confinement layers are for example chosen from silica to allow light to be guided and electrically isolate the upper electrode 16 from the substrate 12 which constitutes the lower electrode. As can be seen in FIG. 5, at the level of the elements 40 and 42, the upper electrode 16 extends on both sides of these elements.
  • the interaction length Li of the junction X and the distance d between the branches of the latter, at the level of the central parts 28 and 30, are determined so that the beam 4 injected into the guide 32 passes completely through the guide 38 located in line with guide 32.
  • the device according to the invention which is shown diagrammatically in top view in FIG. 6, comprises a Y junction.
  • This Y junction includes an inlet light guide 44, two outlet light guides
  • This central part 50 is connected, on one side, to the inlet guide 44 and, on the other side, to the outlet guides 46 and 48.
  • the guides 44, 46 and 48 can be made of a material capable of conducting light, for example silica, or can be made of the same material as the material constituting the element 52.
  • the whole of the Y junction, including the element 52, is conventionally formed on an electrically conductive substrate 12, for example made of silicon.
  • the device of FIG. 6 comprises, like that of FIG. 5, lower and upper confinement layers not shown, allowing the light to be guided by the guides 44, 46 and 48 and by the element 52.
  • An electrode 16 is formed on the upper face of the upper confinement layer, above the branch of the Y of the element 52, branch which is connected to the guide 46.
  • the confinement layers are for example chosen from silica to allow light to be guided and electrically isolate the upper electrode 16 from the substrate 12 which constitutes the lower electrode.
  • the upper electrode 16 extends on both sides of the branch of the Y above which it is located.
  • the light beam 4 is also sent towards the element 52 via the input guide 44.
  • An electrostatic field is further established in this element 52 by applying a voltage, by means not shown, between the electrodes.
  • This voltage is chosen so that the beam 4 passes through the guide 46 in the absence of illumination, by a control beam of the type of the beam 22 of FIG. 1, of the part of the element
  • the percentage of the beam 4 which passes through the guide 48 is an increasing function of the intensity of the control beam.
  • the device thus constitutes a modulator.
  • a digital electro-optical modulator is obtained if this intensity takes only two values: the value 0 and a value large enough for the entire beam 4 to pass through the guide 48.
  • the electrode 16 covers the whole of the element 52 but only the part of the element 52 mentioned above is illuminated with the control beam, through the electrode 16. high.
  • the device according to the invention which is shown diagrammatically in FIG. 7, comprises a Fabry-Pérot resonator delimited by two parallel semi-reflecting mirrors 54 and 56.
  • An element 58 made of the same material as element 2 in FIG. 1, is between the two mirrors 54 and 56.
  • These two mirrors are electrically conductive and constitute two electrodes.
  • the thickness of material between the electrodes 54 and 56 is small, of the order of a few micrometers.
  • the device of FIG. 7 is also provided with the source 20 capable of supplying the control light beam 22.
  • this beam 22 is sent obliquely to the element 52, through the electrode 56 chosen so as to be transparent to this beam 22.
  • the beam 22 could be sent parallel to the beam 4, for example by means of a semi-transparent mirror not shown.
  • the distance between the electrodes 54 and 56 is chosen to have the maximum transmission of the Fabry-Pérot resonator without illumination by the beam 22.
  • the refractive index of the material constituting this element is modified and the transmission of the beam 4 by the resonator decreases.
  • An optical bistable device having two transmission states depending on whether the beam 22 illuminates or does not illuminate the element 58.
  • the Fabry-Pérot cavity is delimited by two semi-reflecting mirrors and these two mirrors are respectively provided with two electrodes.
  • the device according to the invention which is schematically in top view in FIG. 8, comprises a Mach-Zehnder interferometer in a branch of which is an element 62 of the kind of element 2 of FIG. 1.
  • the the assembly is formed in a conventional manner on a conductive substrate 12, for example made of silicon.
  • lower and upper confinement layers are provided on the substrate for guiding the light by the guides of the interferometer and by the element 62.
  • Two electrodes 64 and 66 are placed on either side of the element 62, as seen in plan view in FIG. 8, and are included, like the element 62, between the upper confinement layer and the lower containment layer.
  • the silicon substrate constitutes an electrode (lower electrode) of the device while another electrode (upper electrode) is formed above the element 62 on the upper face of the layer of superior confinement, for example in silica.
  • the light beam 4 is sent into the input guide 70 of the interferometer and the electrostatic field is created.
  • a control beam of the kind of the beam 22 in FIG. 1 a light beam 73 having a certain intensity (which may be zero) is obtained in the output guide 72 of the interferometer.
  • this control beam modifies the refractive index of the material constituting the element 62 and therefore the phase of the light which is propagates in the corresponding branch 74 of the interferometer with respect to the other branch 76 of the latter and therefore modifies the intensity of the beam 73 which propagates in the output guide 72.
  • a light modulator controlled by a light is controlled by a light.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Ce dispositif comprend au moins un élément (2) fait d'un matériau optique non-linéaire, non-centrosymétrique, photoisomérisable et des moyens (12, 16) de création d'un champ électrostatique dans l'élément pour modifier la direction de propagation et/ou l'intensité d'un faisceau lumineux (4) atteignant l'élément, lorsque le champ est créé et qu'un autre faisceau lumineux (22) apte à modifier l'indice de réfraction du matériau est envoyé dans l'élément. Application aux télécommunications optiques.

Description

DISPOSITIF DE COMMUTATION-MODULATION DE LUMIERE
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne un dispositif de commutation-modulation de lumière.
Il s'agit donc d'un dispositif destiné à changer la direction d'un faisceau lumineux et/ou a moduler l'intensité de ce faisceau lumineux.
Ces fonctions optiques de commutation et de modulation trouvent de nombreuses applications dans les micro-systèmes optiques.
La présente invention s'applique en particulier aux télécommunications optiques, à l'électronique rapide et aux ordinateurs.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Pour changer la direction de propagation d'un faisceau lumineux en particulier dans un guide de lumière, il est connu d'utiliser des prismes à haut indice de réfraction ou des réseaux de diffraction. Le principal inconvénient de ces prismes et de ces réseaux de diffraction réside dans leur caractère statique.
Pour changer la direction de propagation d'un faisceau lumineux il est également connu d'utiliser des coupleurs directifs tels que décrit dans la référence A mentionnée à la fin de la présente description, dans lesquels on'procede par variation des indices respectifs de deux guides en présence l'un de l'autre, produisant un couplage variable par effet tunnel .
Ces coupleurs d rectifs peuvent être commandés par un champ électrique ou par un champ électromagnétique .
Cependant, les puissances de commande requises sont très élevées à cause de la valeur relativement faible de l'indice non-linéaire n2 des matériaux connus.
EXPOSÉ DE L' INVENTION
La présente invention a pour but de remédier aux inconvénients précédents.
L'invention ne nécessite que de faibles puissances lumineuses de commande, de l'ordre de lmW, tout en ayant une grande rapidité de réponse et en étant peu coûteuse à mettre en oeuvre.
De façon précise, la présente invention pour objet un dispositif de commutation-modulation de lumière, ce dispositif étant caractérise en ce qu'il comprend :
- au moins un élément fait d'un matériau optique non- lméaire, non-centrosymétrique, photoisoménsable, et
- des moyens de création d'un champ électrostatique dans l'élément, de manière à pouvoir modifier au moins l'un des deux paramètres constitués par la direction de propagation et l'intensité d'un premier faisceau lumineux qui atteint l'élément et auquel celui-ci est transparent, lorsque le champ électrostatique est crée et qu'un deuxième faisceau lumineux, qui est apte à être absorbé par le matériau et à modifier l'indice de réfraction de ce matériau, est envoyé dans l'élément.
Sous l'action du deuxième faisceau lumineux, qui constitue un faisceau de commande, les molécules du matériau de l'élément changent progressivement de conformation isomérique et d'orientation spatiale, ce qui se traduit par une modification d'indice de réfraction suffisante pour changer les conditions de propagation du premier faisceau lumineux.
La présente invention resuite de la mise en oeuvre, par ses auteurs, d'un phénomène qui est surprenant pour l'homme du métier : sous l'effet conjugue du faisceau de commande et du champ électrostatique, qui constitue un champ de polarisation, on s'attend en effet à obtenir une augmentation de l'ordre polaire dans le matériau comme c'est le cas dans les articles de J. Delaire et collaborateurs (référence B mentionnée a la fin de la présente description) et M. Dumont et collaborateurs (référence C mentionnée à la fin de la présente description) ; mais les auteurs de la présente invention ont au contraire constaté, de façon surprenante, la diminution de cet ordre polaire. Selon un mode de réalisation préféré du dispositif objet de l'invention, les moyens de création du champ électrostatique comprennent deux électrodes placées de part et d'autre de l'élément.
De préférence, au moins l'une des électrodes est au moins partiellement transparente au deuxième faisceau.
Le dispositif objet de l'invention peut comprendre en outre au moins deux couches de confinement ( "cladding layers" ) qui sont aptes à confiner le premier faisceau dans l'élément et qui sont prévues sur au moins deux côtés opposés de cet élément. Dans ce cas, selon un premier mode de réalisation particulier, l'élément forme une couche de part et d'autre de laquelle se trouvent les deux couches de confinement.
Dans ce cas également, selon un deuxième mode de réalisation particulier, l'élément forme un ruban de chaque côté duquel se trouve l'une desdites couches de confinement.
Le dispositif objet de l'invention peut constituer une jonction X comprenant deux branches qui comportent chacune une partie centrale prolongée, d'un côté, par un guide de lumière d'entrée et, de l'autre côté, par un guide de lumière de sortie, chaque partie centrale comprenant un élément fait dudit matériau, de sorte que, lorsque le premier faisceau est amené au dispositif par l'un des guides d'entrée, il est susceptible de sortir de ce dispositif par l'un ou l'autre des guides de sortie selon que le deuxième faisceau est ou n'est pas envoyé dans les éléments.
Au lieu de cela, le dispositif objet de l'invention peut constituer une jonction Y comprenant un guide de lumière d'entrée, deux guides de lumière de sortie et une partie centrale comprenant ledit élément et raccordée, d'un côté, au guide d'entrée et, de l'autre côté, aux guides de sortie, de sorte que, lorsque le premier faisceau est amené au dispositif par le guide d'entrée, il est susceptible de sortir de ce dispositif par l'un ou l'autre des guides de sortie selon que le deuxième faisceau est ou n'est pas envoyé dans l'élément. Dans le cas où l'on utilise les deux électrodes dont il a été question plus haut, le dispositif peut constituer un résonateur de Fabry-Pérot dans lequel est placé l'élément, les deux électrodes étant en outre transparentes au premier faisceau et placées de part et d'autre du résonateur ou délimitant celui-ci .
Selon une autre réalisation particulière, le dispositif objet de l'invention comprend en outre un mterféromètre de Mach-Zehnder dans une branche duquel est placé l'élément.
Le dispositif objet de l'invention peut comprendre en outre des moyens de génération du deuxième faisceau parallèlement au champ électrostatique ou obliquement par rapport à celui-ci.
Le matériau utilisé dans l'invention peut être choisi parmi les polymères électro-optiques comportant des chromophores photoisomérisables .
BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-apres, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels : • la figure 1 est une vue en coupe longitudinale schématique et partielle d'un mode de réalisation particulier du dispositif objet de l'invention, dans lequel l'élément a la forme d'une couche,
• la figure 2 est une vue en coupe transversale schématique du mode de réalisation représenté sur la figure 1, • la figure 3 est une vue en coupe transversale schématique d'un autre mode de réalisation particulier du dispositif objet de l'invention, dans lequel l'élément a la forme d'un ruban, • la figure A représente les variations, en fonction du temps, de l'intensité du second harmonique engendré au moyen d'un polymère électro-optique,
• la figure 5 est une vue de dessus schématique et partielle d'un dispositif conforme à l'invention formant un coupleur directif,
• la figure 6 est une vue de dessus schématique et partielle d'un autre dispositif conforme à l'invention formant un modulateur électro-optique digital,
• la figure 7 est une vue schématique d'un autre dispositif conforme à l'invention, comprenant un résonateur de Fabry-Pérot, et
• la figure 8 est une vue de dessus schématique d'un autre dispositif conforme à l'invention, comprenant un mterféromètre de Mach-Zehnder.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Le dispositif conforme à l'invention, qui est schematiquement et partiellement représente en coupe longitudinale sur la figure 1, comprend un élément 2 fait d'un matériau optique non-linéaire, non- centrosymétrique, photoisoménsable comme, par exemple, un polymère électro-optique comportant des chromophores photoisomérisables . Ce matériau comprend des molécules qui ont un moment dipolaire permanent important et qui subissent un changement de conformation lorsque ce matériau est illuminé. A titre d'exemple, on utilise le polymère greffé généralement dénommé PMMA-DR1, constitué du polyméthylméthacrylate (PMMA) sur lequel on a accroché les molécules photoisomérisables connues sous l'appellation Disperse Red #1 (DR1) . L'élément 2 est destiné à guider un premier faisceau lumineux 4 qui est émis par une source 6.
Pour ce faire, cet élément 2 est compris entre deux couches de confinement 8 et 10 qui ont un indice de réfraction inférieur à l'indice de réfraction du matériau constitutif de l'élément 2.
Avec le PMMA-DR1, les couches 8 et 10 peuvent être en silice.
Dans l'exemple représenté sur la figure 1, la couche de confinement inférieure, qui a la référence 8, repose elle-même sur un substrat conducteur 12 par exemple en silicium formant électrode.
On précise que le matériau constitutif de l'élément 2 est transparent au faisceau lumineux 4, la source 6 étant choisie pour émettre dans la bande de transparence de ce matériau.
Le dispositif de la figure 1 comprend une autre électrode 16 en plus de l'électrode 12 formée par le substrat.
On voit sur la figure 1 que l'électrode 12, qui est confondue avec le substrat, constitue une électrode inférieure tandis que l'électrode 16 est formée sur la couche de confinement supérieure 10. Les deux électrodes 12 et 16 sont destinées à créer, dans l'élément 2, un champ électrostatique E
(dont l'intensité est constante au cours du temps) lorsqu'une tension électrique constante V est appliquée entre les deux électrodes grâce à des moyens de polarisation 18.
Dans une variante, le substrat 12 est isolant et l'on dépose alors, sur sa face supérieure, une couche conductrice 14 pour constituer une électrode, la couche 8 étant alors au dessus de cette électrode 14.
Dans ce cas, la tension est appliquée entre les électrodes 14 et 16.
Le champ électrostatique E est perpendiculaire à la direction de propagation du premier faisceau lumineux 4 dans l'élément 2.
On munit le dispositif de la figure 1 d'une autre source lumineuse 20 destinée à fournir un deuxième faisceau lumineux 22 qui se propage perpendiculairement aux électrodes 12 et 16 et donc parallèlement au champ électrostatique E.
Cette source 20 est choisie de façon que le faisceau 22 puisse être totalement ou partiellement absorbé par le matériau constitutif de l'élément 2. Dans l'exemple représenté, l'élément 2 absorbe partiellement le faisceau 22 et ce faisceau 22 est envoyé dans l'élément 2 à travers l'électrode 16 qui est choisie pour être transparente ou partiellement transparente à ce faisceau 22. L'électrode 12 peut être également transparente ou partiellement transparente à ce faisceau 22, auquel cas au moins une partie de ce faisceau 22 traverse cette électrode 12 lorsque le faisceau 22 est engendré par la source 20.
Cependant, l'électrode 12 pourrait être opaque au faisceau 22. On a représenté en pointillé la zone 23 du dispositif, zone qui est traversée par le faisceau 22 lorsque ce faisceau 22 est engendré par la source 20.
Le premier faisceau 4 traverse la partie de cette zone 23 qui se trouve dans l'élément 2 et interagit donc avec le champ électrostatique E et le faisceau 22.
Lorsque le faisceau 22 n'est pas émis par la source 20, le faisceau 4 traverse l'élément 2
(position I ) . Lorsque le faisceau 22 est émis par la source 20, le faisceau 4 est dévié à cause de la variation de l'indice de réfraction de l'élément 2 induit par l'action conjointe du champ électrostatique
E et du faisceau 22 et il occupe alors une position déviée II.
On précise que le champ électrostatique E a une intensité de l'ordre de 1 MV/cm ou de quelques MV/cm.
Ce champ électrostatique polarise les molécules du matériau constitutif de l'élément 2 et crée une direction privilégiée dans ce matériau.
De plus, le faisceau 22, au lieu d'avoir une orientation parallèle à celle de ce champ électrostatique, pourrait être orienté obliquement par rapport à ce champ électrostatique.
La figure 2 est une vue en coupe transversale schématique du dispositif de la figure 1 dans le cas où le substrat constitue une électrode. On voit sur cette figure 2 que l'élément de guidage 2 constitue une couche du matériau optique.
Pour obtenir le dispositif de la figure 2, on forme sur le substrat en silicium 12, faisant fonction d'électrode, une couche de silice 8 et l'on forme la couche 2 du matériau optique sur cette couche de silice 8, par exemple par un dépôt "à la tournette" { " spin coating" ) , puis l'on forme sur cette couche 2 une autre couche de silice 10. Ensuite on forme l'électrode 16 sur la couche 10.
Un autre dispositif conforme à l'invention est schematiquement représenté en coupe transversale sur la figure 3, dans le cas où le substrat constitue une électrode.
La figure 1 constitue une vue en coupe longitudinale schématique selon I-I de cet autre dispositif.
On voit sur cette figure 3 que l'élément 2 forme un ruban qui est entouré par des couches de confinement 9 et 10 qui sont en silice dans l'exemple représenté .
Pour obtenir ce dispositif de la figure 3, on dépose sur le substrat 12 une couche de silice 9 dans laquelle on creuse un sillon destiné à contenir l'élément 2 de guidage en forme de ruban.
Cet élément est formé dans ce sillon par exemple par photoblanchiment { "photobleaching" ) .
Après quoi, l'ensemble obtenu est recouvert par une couche de silice 10 puis l'on forme l'électrode 16 comme précédemment. On précise que l'illumination de l'élément 2 par le faisceau 22 provoque un changement de l'indice de réfraction de cet élément 2 à l'endroit illuminé.
Avec un choix convenable de cet indice de réfraction et des couches de confinement, on obtient le découplage du faisceau lumineux guidé 4 lorsque le champ électrostatique E est établi et que le faisceau
22 est envoyé dans l'élément 2.
L'arrêt de l'illumination de l'élément 2 par le faisceau 22 rétablit les conditions de guidage de l'élément 2 de sorte que le faisceau 4 est à nouveau guidé par cet élément 2.
La longueur L de la zone de découplage du faisceau 4 est égale au diamètre du faisceau 22 et l'on est donc capable de maîtriser facilement cette longueur de zone de découplage.
En présence du champ électrostatique E, l'illumination du matériau par le faisceau 22 conduit à une diminution de l'ordre polaire dans ce matériau et en conséquence à une diminution du coefficient de génération de second harmonique et du coefficient électro-optique du matériau.
Comme on le verra mieux par la suite, cet effet de diminution de l'ordre polaire et du changement associé de l'indice de réfraction est utilisable dans d'autres systèmes comme par exemple les coupleurs directifs .
Il est également utilisable pour faire varier l'intensité du faisceau lumineux guidé, cette intensité dépendant de l'efficacité de découplage qui dépend d'autre part de l'intensité du faisceau 22. Un dispositif du genre de ceux des figures 1 à 3 présente les avantages suivants par rapport aux dispositifs connus, mentionnés plus haut.
Ce dispositif est commandé par une source lumineuse extérieure.
De plus, ce dispositif a un temps de réponse très court qui peut être de l'ordre de 1 nanoseconde.
L'utilisation d'un polymère électro- optique, comme par exemple le PMMA-DR1, permet également d'obtenir d'excellentes caractéristiques optiques, avec un faible coût.
En effet, un tel polymère présente un fort effet électro-optique (son coefficient électro-optique est supérieur ou égal à 10 pm/V) et une tension de claquage élevée (son champ de claquage est supérieur ou égal à 100 V/μm) , permettant de fortes variations d'indice de réfraction.
De plus, un tel polymère est malléable, ce qui contribue à une fabrication peu coûteuse du dispositif .
En outre, le phénomène mis en jeu dans ce dispositif est réversible.
En effet, l'arrêt de l'illumination de l'élément par le deuxième faisceau rétablit les conditions de guidage du premier faisceau.
Enfin, la puissance lumineuse du faisceau de commande 22 est faible.
On peut par exemple utiliser, en tant que faisceau de commande, un faisceau laser dont la puissance est de l'ordre de 1 mW.
Des expériences de génération de second harmonique dans le polymère, électro-optique PMMA-DR1 ont été effectuées grâce à l'orientation des chromophores de ce polymère par effet corona.
La figure 4 montre la courbe représentative des variations de l'intensité I (en unités arbitraires) du signal de génération de second harmonique en fonction du temps t (en unités arbitraires) , lorsque le polymère est illuminé (parties A de la courbe) et lorsqu'il n'est pas illuminé (parties B de la courbe).
On observe une diminution de l'intensité d'harmonique deux I d'un facteur 5.
Le phénomène est parfaitement réversible comme le montre la figure 4.
Cette diminution de l'intensité de second harmonique I correspond à une diminution du coefficient électro-optique r du matériau d'un facteur 2.
Il en résulte une variation de l'indice de réfraction n du matériau.
Cette variation Δn est donnée par la formule suivante :
n'.r.E
Δn =
Dans cette formule, E représente l'intensité du champ électrostatique appliqué.
Si la variation Δr du coefficient électrooptique est égale à 10 pm/V (ce qui correspond à une valeur initiale de 20 pm/V pour r, valeur usuellement observée dans un tel polymère) , et si n et E sont respectivement égaux à 1,6 et à 2 MV/cm, on obtient une variation d'indice de réfraction Δn égale à 0,01. Une telle valeur est largement suffisante pour changer les conditions de guidage.
Pour améliorer les performances d'un dispositif conforme à l'invention, il suffit d'utiliser des polymères ayant des coefficients non-linéaires plus élevés .
De plus, au lieu d'utiliser un polymère électro-optique, il est possible d'utiliser un matériau constitué de petites molécules comme par exemple les distilbènes.
On peut également utiliser des cristaux liquides comme par exemple les nitrophenyl alkylammophényldiazènes .
Le dispositif conforme à l'invention, qui est schematiquement représenté en vue de dessus sur la figure 5, comprend une jonction X comprenant deux branches 24, 26 qui comportent chacune une partie centrale 28, 30.
Chaque partie centrale 28, 30 est prolongée, d'un côte, par un guide de lumière d'entrée 32, 34 et, de l'autre côte, par un guide de lumière de sortie 36, 38.
Chaque partie centrale comprend un élément 40, 42 fait du même matériau que l'élément 8 de la figure 1.
Les guides 32, 34, 36 et 38 peuvent être en silice ou en ce matériau.
De façon classique, la jonction X munie des éléments 40 et 42 est réalisable sur un substrat 12 électriquement conducteur, par exemple en silicium.
Bien entendu, des couches inférieure et supérieure de confinement (non représentées) sont prévues sur le substrat pour -que la lumière puisse être effectivement guidée dans les guides 32, 34, 36 et 38 et les éléments 40 et 42.
On munit la face supérieure de la couche supérieure de confinement d'une électrode 16 qui est transparente au faisceau de commande du dispositif (du genre du faisceau 22 de la figure 1) et qui s'étend au- dessus des éléments 40 et 42.
On note, sur la figure 5, que les éléments 40 et 42 s'étendent au-delà de la zone recouverte par l'électrode supérieure 16.
Les couches de confinement sont par exemple choisies en silice pour permettre le guidage de la lumière et isoler électriquement l'électrode supérieure 16 du substrat 12 qui constitue l'électrode inférieure. Comme on le voit sur la figure 5, au niveau des éléments 40 et 42, l'électrode supérieure 16 s'étend des deux côtés de ces éléments.
Il en est donc de même pour les couches de confinement afin d'obtenir l'isolation souhaitée. En appliquant une tension entre ces deux électrodes on est encore capable de créer un champ électrostatique dans les éléments 40 et 42, perpendiculairement aux électrodes.
On explique maintenant le fonctionnement du dispositif de la figure 5.
On détermine la longueur d'interaction Li de la jonction X et la distance d entre les branches de celle-ci, au niveau des parties centrales 28 et 30, pour que le faisceau 4 injecté dans le guide 32 passe totalement dans le guide 38 situé dans le prolongement du guide 32.
Lorsqu'un faisceau lumineux de commande non représenté, du genre du faisceau 22 de la figure 1, est envoyé dans les éléments 40 et 42, à travers l'électrode 16, avec une intensité suffisante, le faisceau 4 passe totalement dans le guide 36 (qui est dans le prolongement du guide 34). On a ainsi une configuration de type coupleur directif.
En faisant varier l'intensité du faisceau de commande, on est capable de faire varier le pourcentage du faisceau lumineux 4 qui passe dans le guide 36 et donc de moduler ce faisceau.
Le dispositif conforme a l'invention, qui est schematiquement représente en vue de dessus sur la figure 6, comprend une jonction Y.
Cette jonction Y comprend un guide de lumière d'entrée 44, deux guides de lumière de sortie
46, 48 et une partie centrale 50 en forme de Y comprenant un élément 52 fait du même matériau que l'élément 8 de la figure 1.
Cette partie centrale 50 est raccordée, d'un côté, au guide d'entrée 44 et, de l'autre côte, aux guiαes de sortie 46 et 48.
On précise que les guides 44, 46 et 48 peuvent être faits d'un matériau apte à conduire la lumière, par exemple la silice, ou peuvent être faits du même matériau que le matériau constitutif de l'élément 52.
L'ensemble de la jonction Y, y compris l'élément 52, est formé de manière classique sur un substrat 12 électriquement conducteur, par exemple en silicium.
Bien entendu, le dispositif de la figure 6 comprend, comme celui de la figure 5, des couches de confinement inférieure et supérieure non représentées, permettant le guidage de la lumière par les guides 44, 46 et 48 et par l'élément 52.
Une électrode 16 est formée sur la face supérieure de la couche supérieure de confinement, au dessus de la branche du Y de l'élément 52, branche qui est raccordée au guide 46.
Les couches de confinement sont par exemple choisies en silice pour permettre le guidage de la lumière et isoler électriquement l'électrode supérieure 16 du substrat 12 qui constitue l'électrode inférieure.
Comme on le voit sur la figure 6, l'électrode supérieure 16 s'étend des deux côtés de la branche du Y au dessus de laquelle elle se trouve.
Il en est donc de même pour les couches de confinement afin obtenir l'isolation souhaitée.
On explique maintenant le fonctionnement du dispositif de la figure 6.
On envoie encore le faisceau lumineux 4 en direction de l'élément 52 par l'intermédiaire du guide d'entrée 44.
On établit encore un champ électrostatique dans cet élément 52 en appliquant une tension, grâce à des moyens non représentés, entre les électrodes.
On choisit cette tension de façon que le faisceau 4 passe dans le guide 46 en l'absence d'illumination, par un faisceau de commande du genre du faisceau 22 de la figure 1, de la partie de l'élément
52 qui est recouverte par l'électrode 16.
Lorsque le faisceau de commande est envoyé à cette partie de l'élément 52, le pourcentage du faisceau 4 qui passe dans le guide 48 est une fonction croissante de l'intensité du faisceau de commande. Le dispositif constitue ainsi un modulateur .
On obtient un modulateur électro-optique digital si cette intensité ne prend que deux valeurs : la valeur 0 et une valeur suffisamment grande pour que la totalité du faisceau 4 passe dans le guide 48.
Dans un mode de réalisation particulier non représenté, l'électrode 16 recouvre la totalité de l'élément 52 mais l'on éclaire seulement, avec le faisceau de commande, à travers l'électrode 16, la partie de l'élément 52 mentionnée plus haut.
Le dispositif conforme à l'invention, qui est schematiquement représenté sur la figure 7, comprend un résonateur de Fabry-Pérot délimité par deux miroirs parallèles semi-refléchissants 54 et 56.
Un élément 58, fait du même matériau que l'élément 2 de la figure 1 est compris entre les deux miroirs 54 et 56.
Ces deux miroirs sont électriquement conducteurs et constituent deux électrodes.
Ces deux électrodes laissent passer le faisceau 4.
On applique, grâce à des moyens appropriés
60, une tension électrique entre les électrodes 54 et 56 de manière à créer un champ électrostatique qui est perpendiculaire à ces électrodes et parallèle au faisceau 4.
On précise que l'épaisseur de matériau compris entre les électrodes 54 et 56 est faible, de l'ordre de quelques micromètres.
Le dispositif de la figure 7 est encore muni de la source 20 apte à fournir le faisceau lumineux de commande 22. Dans le cas de la figure 7, ce faisceau 22 est envoyé obliquement vers l'élément 52, à travers l'électrode 56 choisie de manière à être transparente à ce faisceau 22. Cependant, le faisceau 22 pourrait être envoyé parallèlement au faisceau 4, par exemple par l'intermédiaire d'un miroir semi-transparent non représenté .
On choisit la distance entre les électrodes 54 et 56 pour avoir le maximum de transmission du résonateur de Fabry-Pérot sans illumination par le faisceau 22.
Lorsque le faisceau 22 est envoyé dans l'élément 58, on modifie l'indice de réfraction du matériau constitutif de cet élément et la transmission du faisceau 4 par le résonateur diminue.
On obtient ainsi un dispositif bistable optique possédant deux états de transmission suivant que le faisceau 22 illumine ou n'illumine pas l'élément 58.
Dans un mode de réalisation particulier non représenté, la cavité de Fabry-Pérot est délimitée par deux miroirs semi-réfléchissants et ces deux miroirs sont respectivement munis de deux électrodes. Le dispositif conforme à l'invention, qui est schematiquement en vue de dessus sur la figure 8, comprend un interféromètre de Mach-Zehnder dans une branche duquel se trouve un élément 62 du genre de l'élément 2 de la figure 1. L'ensemble est formé d'une manière classique sur un substrat conducteur 12 par exemple en silicium. Bien entendu, des couches inférieure et supérieure de confinement non représentées, par exemple en silice, sont prévues sur le substrat pour le guidage de la lumière par les guides de 1 ' interféromètre et par l'élément 62.
Deux électrodes 64 et 66 sont placées de part et d'autre de l'élément 62, comme on le voit en vue de dessus sur la figure 8, et sont comprises, comme l'élément 62, entre la couche de confinement supérieure et la couche de confinement inférieure.
Grâce à des moyens appropriés 68, on établit une tension entre les électrodes 64 et 66 pour créer, dans l'élément 62, le champ électrostatique souhaité . Dans un mode de réalisation particulier non représenté, le substrat en silicium constitue une électrode (électrode inférieure) du dispositif tandis qu'une autre électrode (électrode supérieure) est formée au-dessus de l'élément 62 sur la face supérieure de la couche de confinement supérieure par exemple en silice .
Le faisceau lumineux 4 est envoyé dans le guide d'entrée 70 de 1 ' interféromètre et le champ électrostatique est créé. En l'absence de faisceau de commande du genre du faisceau 22 de la figure 1, on obtient dans le guide de sortie 72 de 1 ' interféromètre un faisceau lumineux 73 ayant une certaine intensité (qui peut être nulle) . Lorsque le faisceau de commande est envoyé à l'élément 62, ce faisceau de commande modifie l'indice de réfraction du matériau constitutif de l'élément 62 et donc la phase de la lumière qui se propage dans la branche correspondante 74 de 1 ' interféromètre par rapport à l'autre branche 76 de celui-ci et modifie donc l'intensité du faisceau 73 qui se propage dans le guide de sortie 72. On obtient ainsi un modulateur de lumière commandé par une lumière.
Les documents cités dans la présente description sont les suivants :
A) R.G. Hunsperger, Integrated Optics : Theory and Technology, Springer-Verlag, Berlin 1991, Chapitre 6.
B) J. Delaire, Y. Atassi, R. Loucif-Saibi et K. Nakatani, Nonlinear Optics, 9, 317 (1995) .
C) M. Dumont, G. Froc et S. Hosotte, Nonlinear Optics, 9, 327 (1995) .

Claims

REVENDICATIONS
1. Dispositif de commutation-modulation de lumière, ce dispositif étant caractérisé en ce qu'il comprend : - au moins un élément (2, 40-42, 52, 58, 62) fait d'un matériau optique non-linéaire, non-centrosymétrique, photoisoménsable, et
- des moyens (12-16, 54-56, 64-66) de création d'un champ électrostatique (E) dans l'élément, de manière à pouvoir modifier au moins l'un des deux paramètres constitués par la direction de propagation et l' intensité d'un premier faisceau lumineux (4) qui atteint l'élément et auquel celui-ci est transparent, lorsque le champ électrostatique est créé et qu'un deuxième faisceau lumineux (22), qui est apte à être absorbé par le matériau et à modifier l'indice de réfraction de ce matériau, est envoyé dans l'élément.
2. Dispositif selon la revendication 1, dans lequel les moyens de création du champ électrostatique comprennent deux électrodes (12-16, 54- 56, 64-66) placées de part et d'autre de l'élément.
3. Dispositif selon la revendication 2, dans lequel au moins l'une des électrodes (16) est au moins partiellement transparente au deuxième faisceau (22) .
4. Dispositif selon l'une quelconque des revendications 1 à 3, comprenant en outre au moins deux couches de confinement (8-10, 9-10) qui sont aptes a confiner le premier faisceau dans l'élément et qui sont prévues sur au moins deux côtés opposés de cet élément.
5. Dispositif selon la revendication 4, dans lequel l'élément (2) forme une couche de part et d'autre de laquelle se trouvent les deux couches de confinement (8-10).
6. Dispositif selon la revendication 4, dans lequel l'élément forme un ruban (2) de chaque côté duquel se trouve l'une desdites couches de confinement (9-10) .
7. Dispositif selon l'une quelconque des revendications 1 à 6, constituant une jonction X comprenant deux branches qui comportent chacune une partie centrale prolongée, d'un côté, par un guide de lumière d'entrée (32, 34) et, de l'autre côté, par un guide de lumière de sortie (36, 38) , chaque partie centrale comprenant un élément (40, 42) fait dudit matériau, de sorte que, lorsque le premier faisceau (4) est amené au dispositif (32) par l'un des guides d'entrée, il est susceptible de sortir de ce dispositif par l'un ou l'autre des guides de sortie selon que le deuxième faisceau est ou n'est pas envoyé dans les éléments .
8. Dispositif selon l'une quelconque des revendications 1 à 6, constituant une jonction Y comprenant un guide de lumière d'entrée (44), deux guides de lumière de sortie (46, 48) et une partie centrale comprenant ledit élément (52) et raccordée, d'un côté, au guide d'entrée et, de l'autre côté, aux guides de sortie, de sorte que, lorsque le premier faisceau (4) est amené au dispositif par le guide d'entrée, il est susceptible de sortir de ce dispositif par l'un ou l'autre des guides de sortie selon que le deuxième faisceau est ou n'est pas envoyé dans 1 ' élément .
9. Dispositif selon la revendication 3, comprenant en outre un résonateur de Fabry-Pérot dans lequel est placé l'élément (58), les deux électrodes (54, 56) étant en outre transparentes au premier faisceau et placées de part et d'autre du résonateur ou délimitant celui-ci.
10. Dispositif selon la revendication 4, comprenant en outre un interféromètre de Mach-Zehnder dans une branche (74) duquel est placé l'élément (62).
11. Dispositif selon l'une quelconque des revendications 1 à 10, comprenant en outre des moyens (20) de génération du deuxième faisceau (22) parallèlement au champ électrostatique (E) ou obliquement par rapport à celui-ci.
12. Dispositif selon l'une quelconque des revendications 1 à 11, dans lequel le matériau est choisi parmi les polymères électro-optiques comportant des chromophores photoisomérisables.
PCT/FR1998/000465 1997-03-10 1998-03-09 Dispositif de commutation-modulation de lumiere WO1998040784A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98913865A EP0966700A1 (fr) 1997-03-10 1998-03-09 Dispositif de commutation-modulation de lumiere

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/02794 1997-03-10
FR9702794A FR2760543B1 (fr) 1997-03-10 1997-03-10 Dispositif de commutation-modulation de lumiere

Publications (1)

Publication Number Publication Date
WO1998040784A1 true WO1998040784A1 (fr) 1998-09-17

Family

ID=9504556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000465 WO1998040784A1 (fr) 1997-03-10 1998-03-09 Dispositif de commutation-modulation de lumiere

Country Status (3)

Country Link
EP (1) EP0966700A1 (fr)
FR (1) FR2760543B1 (fr)
WO (1) WO1998040784A1 (fr)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DELAIRE J A ET AL: "Photoinduced electric field poling of NLO chromophores in polymer films", ICONO'1 - INTERNATIONAL CONFERENCE ON ORGANIC NONLINEAR OPTICS, VAL THORENS, FRANCE, 9-13 JAN. 1994, vol. 9, no. 1-4, 1995, ISSN 1058-7268, NONLINEAR OPTICS, pages 317 - 325, XP000677262 *
DUMONT M ET AL: "Alignment and orientation of chromophores by optical pumping", ICONO'1 - INTERNATIONAL CONFERENCE ON ORGANIC NONLINEAR OPTICS, VAL THORENS, FRANCE, 9-13 JAN. 1994, vol. 9, no. 1-4, 1995, ISSN 1058-7268, NONLINEAR OPTICS, pages 327 - 338, XP000677261 *
NAKATANI K ET AL: "SHG of organic photochromes in polymer matrix: photo-assisted poling and photo-switching", ICONO'2 - INTERNATIONAL CONFERENCE ON ORGANIC NONLINEAR OPTICS, KUSATSU, JAPAN, 23-26 JULY 1995, vol. 15, no. 1-4, 1996, ISSN 1058-7268, NONLINEAR OPTICS, pages 351 - 358, XP002048604 *

Also Published As

Publication number Publication date
EP0966700A1 (fr) 1999-12-29
FR2760543A1 (fr) 1998-09-11
FR2760543B1 (fr) 1999-04-16

Similar Documents

Publication Publication Date Title
EP0017571B1 (fr) Modulateur d'intensité lumineuse en optique intégrée et circuit optique intégré comportant un tel modulateur
EP3009879B1 (fr) Modulateur de phase électro-optique et procédé de modulation
EP0720262B1 (fr) Composant laser à réflecteur de Bragg en matériau organique et procédé pour sa réalisation
EP0031263B1 (fr) Dispositif optique non-linéaire à guide d'onde composite et source de rayonnement utilisant un tel dispositif
EP3009878B1 (fr) Modulateur de phase électro-optique
FR2950708A1 (fr) Modulateur optique compact a haut debit en semi-conducteur sur isolant.
FR2521737A1 (fr) Dispositif optique bistable
EP0847113B1 (fr) Emetteur-récepteur optique à semi-conducteur
EP0025386A1 (fr) Commutateur électro-optique à commande électrique, et circuit optique intégré comprenant un tel commutateur
EP1011011A1 (fr) Modulateur de type Mach-Zehnder présentant un taux d'extinction très élevé
FR2678744A1 (fr) Commutateur optique a commande electrique.
EP0855611A1 (fr) Procédé de modulation et modulateur optique à semiconducteur
EP0966700A1 (fr) Dispositif de commutation-modulation de lumiere
EP0671791B1 (fr) Modulateur semiconducteur électro-optique et liaison optique incluant ce modulateur
EP1253462B1 (fr) Emetteur optique comprenant un modulateur compose d'une pluralite d'éléments de modulation
EP1856573A1 (fr) Modulateur a guide d´onde et procede de modulation associe
FR2780520A1 (fr) Modulateur d'intensite optique et son procede de fabrication
FR2707766A1 (fr) Modulateur électroabsorbant et générateur d'impulsions optiques le comportant.
FR2772149A1 (fr) Cellule de pockels et interrupteur optique a cellule de pockels
FR2706090A1 (fr) Dispositif résonateur pour obtenir de la lumière cohérente avec une largeur de bande de fréquence réduite.
FR2764398A1 (fr) Deflecteur electro-optique de faisceau lumineux, notamment pour adressage optique multipoints
FR2633060A1 (fr) Separateur recombineur de polarisations realise en optique integree
WO2002017452A1 (fr) Dispositif optique amplificateur
FR2863728A1 (fr) Dispositif de commutation optique integre, accordable en longueur d'onde
FR2857109A1 (fr) Dispositif optique a guide d'onde optique ruban planaire, muni de moyens pour y inscrire un reseau de bragg de facon temporaire

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998913865

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998913865

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998539283

Format of ref document f/p: F

WWR Wipo information: refused in national office

Ref document number: 1998913865

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998913865

Country of ref document: EP