WO1998037323A1 - Moteur magneto-gazo-dynamique combine a statoreacteur - Google Patents

Moteur magneto-gazo-dynamique combine a statoreacteur Download PDF

Info

Publication number
WO1998037323A1
WO1998037323A1 PCT/RU1997/000045 RU9700045W WO9837323A1 WO 1998037323 A1 WO1998037323 A1 WO 1998037323A1 RU 9700045 W RU9700045 W RU 9700045W WO 9837323 A1 WO9837323 A1 WO 9837323A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
engine
dynamic
mhd
magnet
Prior art date
Application number
PCT/RU1997/000045
Other languages
English (en)
Russian (ru)
Inventor
Anatoly Grigorievich Korolev
Yury Valentinovich Aksenty
Original Assignee
Anatoly Grigorievich Korolev
Yury Valentinovich Aksenty
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anatoly Grigorievich Korolev, Yury Valentinovich Aksenty filed Critical Anatoly Grigorievich Korolev
Priority to PCT/RU1997/000045 priority Critical patent/WO1998037323A1/fr
Publication of WO1998037323A1 publication Critical patent/WO1998037323A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K44/00Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
    • H02K44/08Magnetohydrodynamic [MHD] generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K7/00Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
    • F02K7/10Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof characterised by having ram-action compression, i.e. aero-thermo-dynamic-ducts or ram-jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0081Electromagnetic plasma thrusters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K44/00Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
    • H02K44/02Electrodynamic pumps
    • H02K44/04Conduction pumps

Definitions

  • the invention is available for airborne reactive engines for hypersonic and airborne aerospace equipment.
  • a hypersonic direct-air engine is known
  • the increased thickness of the boundary layer facilitates the development of a small flow in the chamber of combustion and a high value of full enthalpy and temperature.
  • the full enthalpy is 6.36 x 10 6 J / kg, and the vehicle is at a constant speed of a moment
  • the flow rate is reduced in the case of thickness of the boundary, the kinetic energy goes into heat, causing an increase in the temperature at a later time.
  • a high gas temperature in the case of the natural flow of air leads to an increase in the local speed of sound (in our case, at a rate of 1,150 m / s) and, in addition to this, a decrease in the temperature of Here, there are reciprocal currents that result in the discharge of flow.
  • the process of burning fuel which is a source of strong disturbances in the process, results in a large increase in the consumption of gas and large amounts of food.
  • the flow system is caused by an increase in the temperature level in the combustion chamber as a result of the reduction of gas consumption, which leads to a decrease in the input pressure.
  • the authors are not using the whole user-friendly tool, but only the user-friendly one.
  • the electric circuit of the OGD engine is equipped with a power supply that is equipped with a non-volatile electric motor that is electrically
  • the electric driving force (EMF) of the OGD generator depends on the magnitude of the inter-electric distribution.
  • EMF electric driving force
  • ⁇ GDG with solid elec- trodes as a part of small and medium sized motors cannot generate voltage, There is a substantial increase in efficiency, a significant share of which is the best idea for heating elec- tricity as a result of which the processors are not used. This feature of the engine makes it difficult to process small-scale models.
  • the vehicle is equipped with a gas-disconnecting unit.
  • the efficiency of the engine increases due to the elimination of solid electrics, as a result of the reduction in mass and the output of the process.
  • FIG. ⁇ -principle diagram of the engine Fig. 2-section ⁇ ⁇ - ⁇ ; ⁇ ig.Z-section ⁇ ⁇ - ⁇ ; FIG. 4-FIGURE of a fragment of a full separation wall; Fig. 5-drawing of the wall with a constant and a saltwater; Fig. b-group of the change in the complex Y, on the number of the missile; Fig. 7 diagram of the flow of an electric medium in a direct-channel channel in the presence of a magnetic field; Fig. 8- ⁇ phile of speed and different values ⁇ Hartman's criteria; Fig. 9-comparative graphs of the specific impulse of the thrust / impact on the numbers of the flight. Better ⁇ and ⁇ nt Antistence
  • Fig. 2 the middle line of the current of the electrical discharge / ⁇ is shown in the section /- ⁇ .
  • the fuses / g and / or are compatible with the generator and the accelerator.
  • ⁇ a ⁇ ig.Z in section C-C ⁇ azana ⁇ n ⁇ igu ⁇ atsiya ⁇ ame ⁇ sg ⁇ aniya GP ⁇ D 9 and 12.
  • SP ⁇ D ⁇ agmen ⁇ ⁇ l ⁇ y ⁇ azdeli ⁇ eln ⁇ y s ⁇ en ⁇ i 4 ( ⁇ ig.4) s ⁇ de ⁇ zhi ⁇ ⁇ na with ⁇ y ⁇ ymi and za ⁇ y ⁇ ymi s ⁇ v ⁇ ami ⁇ e ⁇ eg ⁇ d ⁇ i 5 and 6, ⁇ ye ⁇ b ⁇ azuyu ⁇ ⁇ ana- ⁇ v ⁇ d ⁇ v ly.
  • Figure 5 shows a section of the wall with a window and a state of 5, a demo- strating one of the options for the current system of regulating the energy exchange.
  • Turning the power on is effected, for example, by frame 13, by installing the internal system, and by using this system, 14 will be supplied with electric power.
  • this current interacts with the magnetic field sammlung induced by the solenoid yields 3 (Fig. 2), a moment arises, throwing the switch to the given position.
  • the external fasteners will be able to operate the engine without using the principles of magneto-gas dynamics and two values of the fastest running time.
  • the horizontal line conventionally means the range of equipment, and the lower parts are compatible with the engine with the ⁇ GD-converters, we offer.
  • FIG. 1 conventionally means the range of equipment, and the lower parts are compatible with the engine with the ⁇ GD-converters, we offer.
  • the direct-connected channel is provided in an electronic circuit, in which a direct electrical circuit is used in the industrial industry.
  • Turning ⁇ ) indicates that the speed profile at the entrance to the channel has a user-defined format, and closed lines with arrows mean the induced stream.
  • Fig. 8 the change in the speed of the electric fluid is indicated, depending on the Hartmann numbers ( ⁇ rion) in the range from 0 to 10.
  • Fig. 9 shows the dependences of the specific impulse of the thrust of the engine modules included in the system, which is indicated for the engine, which is combined, is combined.
  • the digits denote the sharp, corresponding to: 15-rocket engine; 16 - to a jet engine with an ejector; 17 - directly with the secondary flow in the combustion chamber (SPDD); 18th direct native sound current (GPD); 19 -GP ⁇ D with ⁇ GD-manufacturers, upon request.
  • Dviga ⁇ el ⁇ ab ⁇ ae ⁇ ⁇ b ⁇ az ⁇ m follows: P ⁇ i d ⁇ s ⁇ izhenii s ⁇ s ⁇ n ⁇ g ⁇ ⁇ edela ⁇ ab ⁇ s ⁇ s ⁇ bn ⁇ s ⁇ i m ⁇ dulya GP ⁇ D, v ⁇ dya- scheg ⁇ in s ⁇ s ⁇ av ⁇ mbini ⁇ vann ⁇ g ⁇ dviga ⁇ elya in deys ⁇ vie vv ⁇ dya ⁇ sya s ⁇ eds ⁇ va magnets ⁇ gaz ⁇ dinami ⁇ i ⁇ u ⁇ em v ⁇ zbuzhdeniya and ⁇ sleduyuscheg ⁇ ⁇ dde ⁇ zhaniya, na ⁇ ime ⁇ , S ⁇ CH- ⁇ az ⁇ yada on v ⁇ da ⁇ in ⁇ GD- ⁇ e ⁇ b ⁇ az ⁇ va ⁇ eli, ch ⁇ ⁇ zv ⁇ lyae ⁇ s ⁇ zda ⁇ ne
  • the device for securing the RISE discharge is not indicated for the circuit.
  • Sv ⁇ b ⁇ dnye ele ⁇ ny in ⁇ az ⁇ yadn ⁇ m ⁇ mezhu ⁇ e ⁇ d influence indutsi ⁇ vann ⁇ g ⁇ (in ⁇ GD-gene ⁇ a ⁇ e) or ⁇ il ⁇ zhenn ⁇ g ⁇ (in ⁇ GD- us ⁇ i ⁇ ele) ele ⁇ iches ⁇ g ⁇ ⁇ lya us ⁇ yayu ⁇ sya, ⁇ i ⁇ b ⁇ e ⁇ aya ene ⁇ giyu, d ⁇ s ⁇ a ⁇ chnuyu for i ⁇ nizatsii ney ⁇ alny ⁇ chas ⁇ its.
  • ⁇ Canal Power exchangers of converters use avalanches of elec- tricity from the average temperature of 5000 ⁇ , which means that it detects the elec-
  • the engine control system acting on a program that depends on the parameters of the circuit board, turns off the state 5 (Fig. 1 and 4) in the camera.
  • the engine control system in accordance with equation (2), ensures the condition / g> / y for each series of gas supply channels. Discharging / discharging a closed circuit, partly in the chamber of the generator and the accelerator, as well as in the gas channels.
  • the chamber in the accelerator chamber has a direction inverse to the circuit in the generator chamber, therefore, the electric power is applied], which is connected to the voltage.
  • the electrodynamic force acting in each channel of the gas circuit does not affect the gas velocity and the kinetic energy of the flow.
  • the GPDU module with an OGD-generator installed on its outlet is free from air flow, which is more convenient for operation without a higher odor.
  • ⁇ сол ⁇ ⁇ ( ⁇ / ⁇ ) t is Garthmann's theory. ⁇ - half the distance between the walls of the symmetric channel, m. ⁇ - specific elec- tricity, Sim / m, ⁇ - coefficient of dynamic viscosity, kg / ms,
  • Adjusting the b value is proposed by changing the quantity of the channels of the gas circuits, the processing of the adjusted power supply 5
  • ⁇ HD generators such as ⁇ HD generators.
  • the results of calculating the complex ⁇ taking into account the decrease in the thickness of the boundary layer of the SRV are presented in Fig. 6 by the two lower curves. From the following it follows that a fast range 10 OPPORTUNITIES of the GPA, which is included in the engine, is compliant with this application, increases the global speed ( ⁇ > 25).
  • s ⁇ de ⁇ z hasheg ⁇ ⁇ a ⁇ e ⁇ nye, and sve ⁇ zvu ⁇ vye gi ⁇ e ⁇ zvu ⁇ vye ⁇ yam ⁇ ch- nye dviga ⁇ eli and ⁇ a ⁇ zhe identified ⁇ sn ⁇ vnye ⁇ agmen ⁇ y ⁇ e ⁇ niches ⁇ g ⁇ ⁇ bli ⁇ a mn ⁇ g ⁇ az ⁇ v ⁇ g ⁇ ⁇ dn ⁇ s ⁇ u ⁇ encha ⁇ g ⁇ v ⁇ zdushn ⁇ - ⁇ smiches ⁇ g ⁇ ⁇ ablya ( ⁇ ), ⁇ ed- usma ⁇ ivayuscheg ⁇ ve ⁇ i ⁇ alnye s ⁇ a ⁇ y and ⁇ sad ⁇ i.
  • the engine's direct parts are located on the side of the front part of the cylinder ⁇ . All engines are equipped with a general air circuit breaker, separated by disconnectors, and The combined engine provides six operating modes: motorized; quick-start ( ⁇ ); a superb direct flow with a sound flow in a combustion chamber; a gypsum-sounding direct with super-sonic current in the combustion chamber; GYPU-HYPICAL sound with ⁇ HD-power interchange between engine circuits; missile.
  • the direct vents which at this moment do not create a traction, carry the air flow functions, and the supercharged mode
  • the engine to be mounted is designed to build ⁇ . Cost-effective operating systems, if a number of conditions are met, may be close to the current level. to the corresponding modern aviation technology. EFFICIENCY OF OPERATION IS PROVIDED TO BE PROVIDED BY THE FOLLOWING HIGH RESIDUAL LOAD OF THE CABLE. With its large application with a large frequency of acquisitions and the use of an accelerated quick-loading complex.

Abstract

Le moteur magnéto-gazo-dynamique combiné à statoréacteur est conçu pour être intégré à des aéronefs hypersoniques et aérospatiaux. Le moteur comprend des modules de moteurs supersoniques et hypersoniques, ainsi que des générateurs magnéto-hydro-dynamiques (MHD) et des accélérateurs magnéto-hydro-dynamiques (MHD) reliés entre eux électriquement et installés sur des circuits aériens de modules mixtes de polarités contraires. Les chambres d'échange d'énergie des générateurs MHD et des accélérateurs MHD sont divisées entre elles par deux cloisons électro-isolantes avec des fenêtres (fig. 4), sur lesquelles sont montés des volets à commande (fig. 5) permettant de mettre en oeuvre le processus d'échange d'énergie entre les convertisseurs MHD. Les moyens de magnéto-gazo-dynamique sont utilisés pour relever la limite de vitesse de fonctionnement des modules du moteur hypersonique à écoulement direct en faisant passer les nombres de mach de vol de 8-10 à 20-25.
PCT/RU1997/000045 1997-02-25 1997-02-25 Moteur magneto-gazo-dynamique combine a statoreacteur WO1998037323A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU1997/000045 WO1998037323A1 (fr) 1997-02-25 1997-02-25 Moteur magneto-gazo-dynamique combine a statoreacteur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU1997/000045 WO1998037323A1 (fr) 1997-02-25 1997-02-25 Moteur magneto-gazo-dynamique combine a statoreacteur

Publications (1)

Publication Number Publication Date
WO1998037323A1 true WO1998037323A1 (fr) 1998-08-27

Family

ID=20130087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU1997/000045 WO1998037323A1 (fr) 1997-02-25 1997-02-25 Moteur magneto-gazo-dynamique combine a statoreacteur

Country Status (1)

Country Link
WO (1) WO1998037323A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050415A1 (fr) * 2001-12-13 2003-06-19 Gritskevich Oleg Vyacheslavovi Procede permettant le deplacement d'un aeronef dans l'espace
CN101975122A (zh) * 2010-11-04 2011-02-16 北京动力机械研究所 带有磁流体能量旁路系统的驻定爆震发动机
CN107013370A (zh) * 2017-05-16 2017-08-04 中国人民解放军国防科学技术大学 超声速钝后缘混合层的主动控制装置
CN109184951A (zh) * 2018-08-10 2019-01-11 西安理工大学 隔离段横向支板磁控放电装置及其对隔离段流动控制方法
CN111140447A (zh) * 2019-12-23 2020-05-12 北京航空航天大学 一种用于电推进的包括旁置电磁线圈的矢量磁喷管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3436918A (en) * 1966-11-08 1969-04-08 Us Air Force Magnetohydrodynamic motor-generator
GB1303123A (fr) * 1969-05-24 1973-01-17
FR2629873A1 (fr) * 1988-04-07 1989-10-13 Messerschmitt Boelkow Blohm Agencement de propulseurs pour appareils volants hypersoniques
US5211006A (en) * 1991-11-12 1993-05-18 Sohnly Michael J Magnetohydrodynamic propulsion system
FR2692938A1 (fr) * 1992-06-24 1993-12-31 Snecma Réacteur combiné et muni de moyens de commutation entre deux états de fonctionnement.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3436918A (en) * 1966-11-08 1969-04-08 Us Air Force Magnetohydrodynamic motor-generator
GB1303123A (fr) * 1969-05-24 1973-01-17
FR2629873A1 (fr) * 1988-04-07 1989-10-13 Messerschmitt Boelkow Blohm Agencement de propulseurs pour appareils volants hypersoniques
US5211006A (en) * 1991-11-12 1993-05-18 Sohnly Michael J Magnetohydrodynamic propulsion system
FR2692938A1 (fr) * 1992-06-24 1993-12-31 Snecma Réacteur combiné et muni de moyens de commutation entre deux états de fonctionnement.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.R.I. KURZINER, "Jet Enginer for High Supersonic Flight Speeds", MOSCOW, MACHINE CONSTRUCTION PUBLISHERS, 1997, pages 119-132. *
E. TERIEVA, "A 21st Century Aircraft", SCIENCE AND LIFE, MOSCOW, 1993, No. 8, pages 12-13. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050415A1 (fr) * 2001-12-13 2003-06-19 Gritskevich Oleg Vyacheslavovi Procede permettant le deplacement d'un aeronef dans l'espace
CN101975122A (zh) * 2010-11-04 2011-02-16 北京动力机械研究所 带有磁流体能量旁路系统的驻定爆震发动机
CN101975122B (zh) * 2010-11-04 2013-03-13 北京动力机械研究所 带有磁流体能量旁路系统的驻定爆震发动机
CN107013370A (zh) * 2017-05-16 2017-08-04 中国人民解放军国防科学技术大学 超声速钝后缘混合层的主动控制装置
CN109184951A (zh) * 2018-08-10 2019-01-11 西安理工大学 隔离段横向支板磁控放电装置及其对隔离段流动控制方法
CN109184951B (zh) * 2018-08-10 2019-06-18 西安理工大学 隔离段横向支板磁控放电装置及其对隔离段流动控制方法
CN111140447A (zh) * 2019-12-23 2020-05-12 北京航空航天大学 一种用于电推进的包括旁置电磁线圈的矢量磁喷管

Similar Documents

Publication Publication Date Title
US8365510B2 (en) Magnetic advanced generation jet electric turbine
EP2010429B1 (fr) Système de commande de distorsion d'entrée et de récupération
US20060150611A1 (en) Systems and methods for plasma propulsion
CN108028595B (zh) 磁流体发电机、涡轮发动机以及发电的磁流体方法
CN110635622B (zh) 风力发电机组、电磁装置及铁心的换热装置
US10738692B2 (en) Distributed propulsion and electric power generation system
EP2798173A1 (fr) Turbine à gaz avec adhésion prolongée de courant d'aube de turbine
CA2966853A1 (fr) Section d'echappement pour moteur a turbine a gaz d'avion
US20160172955A1 (en) Fluid Ferfereh
US3214615A (en) Magnetohydrodynamic generator apparatus
CN107645822A (zh) 一种基于表面磁控电弧放电的进气道激波控制装置及方法
Litchford et al. Magnetohydrodynamic augmented propulsion experiment: i. performance analysis and design
WO1998037323A1 (fr) Moteur magneto-gazo-dynamique combine a statoreacteur
WO2022183920A1 (fr) Dispositif de puissance à vortex de fluide électromagnétique
CN110635588A (zh) 电磁装置中铁心的介质输运和换热装置及涡流分离器
US4450361A (en) Coupling of MHD generator to gas turbine
CN108843460A (zh) 涡轮冲压组合发动机预冷热电转换及增推方法
US3436918A (en) Magnetohydrodynamic motor-generator
Park et al. Theoretical performance of a magnetohydrodynamic-bypass scramjet engine with nonequilibrium ionization
US8205428B2 (en) Capacitive stator
US3453462A (en) Slug flow magnetohydrodynamic generator
US20160083119A1 (en) Thrust Augmentation Systems
US3156433A (en) Magnetohydrodynamic generator
WO2016178701A1 (fr) Systèmes d'augmentation de poussée
RU2138668C1 (ru) Воздушно-реактивный комбинированный магнитогазодинамический двигатель

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

CFP Corrected version of a pamphlet front page

Free format text: FIGURE ADDED

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase