WO1998036219A1 - Combustion apparatus - Google Patents

Combustion apparatus Download PDF

Info

Publication number
WO1998036219A1
WO1998036219A1 PCT/JP1998/000606 JP9800606W WO9836219A1 WO 1998036219 A1 WO1998036219 A1 WO 1998036219A1 JP 9800606 W JP9800606 W JP 9800606W WO 9836219 A1 WO9836219 A1 WO 9836219A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
fan
negative pressure
air volume
control data
Prior art date
Application number
PCT/JP1998/000606
Other languages
French (fr)
Japanese (ja)
Inventor
Ken Isozaki
Yoshimitsu Matsumoto
Naoyuki Takeshita
Toru Izumisawa
Akihiro Nirasawa
Masaharu Itagaki
Kikuo Okamoto
Kazuyuki Iizumi
Yoshihiko Tanaka
Original Assignee
Gastar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3037397A external-priority patent/JPH10227452A/en
Priority claimed from JP3593797A external-priority patent/JPH10232015A/en
Priority claimed from JP5824797A external-priority patent/JP3673361B2/en
Priority claimed from JP06242497A external-priority patent/JP3673362B2/en
Priority claimed from JP06242597A external-priority patent/JP3673363B2/en
Priority claimed from JP06178597A external-priority patent/JP3777011B2/en
Priority claimed from JP06178497A external-priority patent/JP3810174B2/en
Priority claimed from JP06242697A external-priority patent/JP3727437B2/en
Priority claimed from JP09320397A external-priority patent/JP3736929B2/en
Priority claimed from JP10677197A external-priority patent/JPH10281459A/en
Application filed by Gastar Co., Ltd. filed Critical Gastar Co., Ltd.
Publication of WO1998036219A1 publication Critical patent/WO1998036219A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/06Postpurge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/04Air or combustion gas valves or dampers in stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods

Definitions

  • the present invention relates to a combustion device such as a water heater installed in a room, and more particularly to an improvement in combustion control when the room is under a negative pressure with respect to the combustion chamber.
  • FIG. 1 shows an example in which water heater 1 is installed indoors.
  • This type of water heater rotates the combustion fan to supply gas fuel to the wrench, ignites the wrench to form a flame, and heats water passing through the heat exchanger to produce hot water at a set temperature. Guide this hot water to a desired hot water supply place such as a kitchen.
  • a carbon monoxide (hereinafter simply referred to as CO) sensor 28 is provided on the exhaust side of the water heater 1, and the CO concentration in the exhaust gas is detected by the CO sensor 28, and when the CO concentration reaches a dangerous concentration. C ⁇ safety measures such as stopping combustion will be provided.
  • CO carbon monoxide
  • the rotation speed of the combustion fan to be operated after combustion is set in advance to a sufficiently high value so that the exhaust gas does not flow back into the room even if the negative pressure of the ventilation fan or the like works.
  • the hot water is temporarily stopped and then restarted within a certain period of time, the hot water is supplied without any significant temperature fluctuation from the set temperature before the stop.
  • a water heater equipped with a function (Q function) that can do this has been proposed.
  • An object of the present invention is to solve a series of problems caused by the above-described negative pressure state in a chamber.
  • An object of the present invention is to ensure that when an ignition error occurs, a re-ignition is performed to ensure stable formation of a point flame, and that during combustion operation after ignition, the CO concentration in the exhaust gas and the negative pressure in the room are reduced.
  • An object of the present invention is to provide a combustion device capable of appropriately controlling a fan air flow according to a degree and performing good combustion control.
  • an object of the present invention is to reduce the combustion capacity when the room is in a negative pressure state
  • An object of the present invention is to provide a combustion device capable of avoiding deterioration of a combustion state due to shortage.
  • an object of the present invention is to eliminate the state of air supply shortage and smoothly perform the combustion operation when resetting and restarting the combustion operation after the CO safety device operates and the combustion is stopped.
  • An object of the present invention is to provide a combustion apparatus which can be continued and which can reduce the C0 concentration in exhaust gas after restarting combustion and has excellent safety.
  • an object of the present invention is to prevent the exhaust gas from flowing back into the room even when the room is in a negative pressure state, and to keep the fluctuation of the hot water temperature within the allowable temperature range when tapping is resumed. To provide a water heater that can be maintained for a long time.
  • an object of the present invention is to minimize the pressure loss in the exhaust path, to prevent the exhaust gas from flowing back in the exhaust path with a simple configuration, and to reduce the exhaust gas generated by the exhaust sensor without increasing the cost.
  • An object of the present invention is to provide a combustion device that can appropriately detect an abnormality in the combustion.
  • a first aspect of the present invention that achieves the above object is a burner that performs combustion
  • a flame detection sensor that detects the magnitude of the flame of the parner; a combustion fan that supplies and exhausts air to and from the parner; and an air volume control unit that controls a blowing capacity of the combustion fan.
  • the air volume control unit controls the blowing capacity of the combustion fan to a first blowing capacity when the room is in the first pressure state, and the room is lower than the first pressure state and has a negative pressure with respect to a combustion device. Controlling the blowing capacity of the combustion fan to a second blowing capacity higher than the first blowing capacity when in the second pressure state, which is a pressure state, wherein one of the first or second blowing capacity is blown; If the flame of the ignited burner extinguishes when the combustion is started in the state controlled to the capacity, the control is performed to the other of the first or second blowing capacity. And start combustion again.
  • the air volume control unit starts combustion in a state in which the combustion fan is controlled to the air blowing ability at the time when the previous combustion was stopped, of the first or second air blowing ability. It is characterized by.
  • the fan air flow control data in the combustion operation after the ignition, when the C0 concentration detected by the CO sensor becomes high, the fan air flow control data is switched to the data on the air flow up side, and the flame load is increased.
  • the degree of negative pressure in the room is determined from the current, and when the degree of negative pressure in the room increases, the fan air volume control is switched to the air volume up side similarly, and the indoor negative pressure is released. In this case, the fan air volume control data is switched to the air volume down side to eliminate the excess air volume.
  • a suitable combustion operation is performed by appropriate air volume control according to the degree of the negative pressure in the chamber.
  • the air blowing capacity of the combustion fan is, for example, the number of revolutions of the combustion fan, or, in another example, the opening / closing degree of a damper that restricts the air blowing of the combustion fan.
  • the blowing capacity of the combustion fan is controlled to always supply the optimum air volume to the wrench.
  • a second invention for achieving the above object has a burner that performs combustion, a burner that burns air, a combustion fan that supplies and exhausts air to and from the burner, and an air volume control unit that controls a blowing capacity of the combustion fan.
  • a combustion device installed indoors,
  • the air volume control unit controls the blowing capacity of the combustion fan to the first blowing capacity when the room is in the first pressure state during combustion, and the combustion device has a lower room temperature than the first pressure state. Controlling the blowing capacity of the combustion fan to a second blowing capacity higher than the first blowing capacity when in a second pressure state that is a negative pressure state with respect to At the start of combustion, the combustion fan is controlled to have a blowing capacity intermediate between the first and second blowing capacities to ignite the parner.
  • the indoor pressure state can be any one. Even in this state, the wrench can be reliably ignited.
  • a negative pressure detecting device for detecting whether the room is in a first pressure state or a second pressure state is provided,
  • the air flow control unit switches to the first or second air blowing capacity according to the first or second pressure state detected by the negative pressure detection device after the burner is ignited. Is controlled.
  • fan air volume control data at normal time for example, fan air volume control data at negative pressure, and fan air volume control data at ignition time are given in advance.
  • the unit controls the rotation of the combustion fan in accordance with the above-described fan air volume control data at the time of ignition. Thereafter, when the negative pressure is detected by the negative pressure detecting means, the control data transfer control unit transfers the control value from the fan air volume control data at the time of ignition to the fan air volume control data at the time of negative pressure, to thereby control the combustion fan.
  • the combustion fan rotation control is performed by shifting from the fan air flow control data at the time of ignition to the fan air flow control data at the time of negative pressure.
  • the fan air volume control data at the time of the ignition is the air volume area of the combustible combustion fan which the normal fan air volume control data has, and the air volume area of the combustible combustion fan which the fan air volume control data at the negative pressure has. Is set in the area where the combustion equipment is overlapped, so that the ignition is performed regardless of whether the room where the combustion equipment is installed is in a normal standard mode or in a negative pressure state compared to the standard mode. By performing the rotation control of the combustion fan in accordance with the fan air volume control data at the time, it is possible to reliably achieve the point ignition.
  • a third aspect of the present invention provides a burner that performs combustion, a combustion control unit that controls the combustion capacity of the burner, a combustion fan that supplies and exhausts air to the burner, and a blower of the combustion fan.
  • An air volume control unit for controlling the capacity according to the combustion capacity, wherein the combustion device installed indoors, When the combustion control unit controls the burner with a first combustion capacity, the air volume control unit controls the combustion fan to a first blowing capacity according to the first combustion capacity, and When controlling the parner with a second combustion capacity lower than the first combustion capacity, the air volume control unit corresponds to the second combustion capacity and has a second airflow lower than the first airflow capacity. Control the combustion fan to the ability,
  • the air volume control unit controls the combustion fan with a third ventilation capability higher than the second ventilation capability. Controlling, and changing to the second blowing capacity after the predetermined period.
  • the blowing capacity is reduced due to the reduced capacity, a certain period of time is required to alleviate the negative pressure state in the room, so that the period is longer than the reduced blowing capacity.
  • Temporarily control with high third blowing capacity Therefore, it is possible to prevent a temporary shortage of the air volume during the transition period of the capacity reduction.
  • a fourth aspect of the present invention provides a burner that performs combustion, a combustion control unit that controls the combustion performance of the burner, a combustion fan that supplies and exhausts air to and from the burner, A combustion amount control unit for controlling the capacity according to the combustion capacity,
  • a carbon monoxide sensor for detecting the concentration of carbon monoxide in the exhaust gas is provided on the exhaust side of the combustion device,
  • the air volume control unit controls the combustion fan to a blowing capacity according to a combustion capacity, the combustion control unit stops the combustion when a predetermined dangerous concentration is detected by the carbon monoxide sensor,
  • the air volume control unit sets the combustion to a second air blowing capacity larger than the first air blowing capacity when restarting the combustion after the normal combustion stop. It is characterized by controlling a fan.
  • the combustion fan when the combustion is restarted after the combustion is forcibly stopped due to an increase in the concentration of carbon monoxide, the combustion fan is controlled to have a blowing capacity higher than usual. Therefore, it is possible to prevent a dangerous state in which the concentration of carbon monoxide is high at the time of restarting combustion from being repeated.
  • a water heater that supplies indoor air to a combustion chamber and discharges exhausted air after combustion through an exhaust stack to the outside.
  • a negative pressure detection device for detecting the presence or absence of a negative pressure in a direction in which air in the combustion chamber is sucked into the room;
  • a post-combustion fan driving unit that rotationally drives the combustion fan until a predetermined time elapses after the combustion in the combustion chamber is stopped;
  • a rotation speed control unit that sets a rotation speed when the combustion fan is rotated after the combustion is stopped by the post-combustion fan driving unit, when there is a negative pressure, higher than when there is no negative pressure.
  • the fifth invention described above operates as follows.
  • the negative pressure detecting means detects whether or not a negative pressure has been generated due to the operation of the ventilation fan, etc., for drawing air in the combustion chamber into the room.
  • the number-of-revolutions control means determines the number of rotations of the fan when the fan drive means is rotating and driving the combustion fan until a predetermined time elapses after the combustion is stopped. Set a higher rotation speed. This prevents exhaust gas from flowing back into the room even when negative pressure due to a ventilation fan or the like exists, and prevents the rotational speed of the combustion fan from becoming unnecessarily high without negative pressure. be able to.
  • a carbon monoxide concentration detecting means for detecting the concentration of carbon monoxide contained in the exhaust gas
  • a gas amount detecting means for detecting the amount of combustion of the combustion gas
  • a combustion method for controlling the carbon monoxide concentration to fall within a predetermined allowable range.
  • Combustion speed control means for controlling the rotation speed of the combustion fan at the time of combustion, wherein the negative pressure detection means comprises: a combustion amount detected by the gas amount detection means immediately before the stop of combustion; The magnitude of the negative pressure after the combustion is stopped is determined based on the height of the rotation speed set in.
  • the apparatus By determining the magnitude of the negative pressure in this way, there is no need to provide a separate negative pressure sensor in addition to the carbon monoxide concentration detecting means, and the apparatus can be simplified. Furthermore, by setting the number of revolutions of the combustion fan immediately after the combustion is stopped based on not only the presence or absence of the negative pressure but also the magnitude of the negative pressure determined by the negative pressure detecting means, the magnitude of the negative pressure can be adjusted. The appropriate rotation speed is set. If the rotation speed of the combustion fan is gradually reduced from high rotation as time elapses after the stop of combustion, the residual heat after the stop of the combustion is gradually released, so that when the hot water is restarted, the temperature will be lower than the allowable lower limit temperature. The more hot water is discharged, the longer the time required for the release of residual heat after the combustion stops can be extended, and the period during which the Q function can be satisfied can be maintained longer.
  • the combustion fan is operated at a high speed in consideration of the presence or absence of negative pressure. Rotate with. This can prevent exhaust gas from flowing back into the room and, because of the large amount of heat released, temporarily allow high-temperature hot water exceeding the allowable upper limit temperature even if hot water is restarted relatively shortly after combustion stops. It is possible to prevent the overshoot phenomenon, which occurs in a typical manner.
  • the number of revolutions of the combustion fan after exhaust of the exhaust gas remaining in the combustion chamber and exhaust stack from the end of the exhaust stack to the atmosphere is reduced to some extent within a range where hot water exceeding the allowable upper limit temperature is not discharged. .
  • This increases the time it takes for the heat exchanger to become subcooled even if the combustion fan continues to rotate, and for a long time after the combustion is stopped, low-temperature hot water that falls below the minimum allowable temperature is released. The undershoot phenomenon does not occur and the Q function can be maintained for a long time.
  • the rotation speed at each stage and the time until the rotation speed decreases to the next stage are determined according to the length of the exhaust stack.
  • the exhaust remaining in the exhaust pipe can be properly exhausted regardless of the installation status of the water heater.
  • the exhaust resistance also changes according to the length of the exhaust stack, changing the number of revolutions of the combustion fan, etc. based on the length of the exhaust stack cools the heat exchanger with an appropriate air flow regardless of installation conditions. can do . Therefore, the Q function can be satisfied for a long time regardless of the installation condition of the water heater. Can be
  • a sixth aspect of the present invention provides a combustion chamber (630) partitioned in an instrument case (611), and is provided at the most downstream side of an exhaust passage communicating with the combustion chamber (630).
  • An exhaust pipe (644) extending outside the instrument case (611) is provided, and a chamber (644) having a larger flow area than the exhaust pipe (644) is provided upstream of the exhaust pipe (44). 0) in the combustion device (610),
  • the exhaust port (642) in the chamber chamber (640) can be displaced into an open state in which the exhaust port (642) is opened and exhaust gas flows in, and a closed state in which the exhaust port (642) is closed to prevent backflow of exhaust gas.
  • the apparatus case (611) is not located in the exhaust pipe (644) located at the most downstream side of the exhaust path communicating with the combustion chamber (630) but is located upstream of the exhaust pipe (644).
  • a check valve (650) for preventing backflow of exhaust gas is provided at the exhaust port (642) of the chamber (640) provided in the chamber.
  • the non-return valve is located inside the exhaust pipe (644) having a relatively narrow flow path, so that there is no extra resistance to the exhaust flow. Since it opens and closes in the wide chamber chamber (640), the pressure loss at the time of exhaustion due to the check valve (650) itself can be minimized.
  • a seventh aspect of the present invention is a burner that burns, a frame rod electrode that detects the magnitude of the flame of the burner, a combustion fan that supplies and exhausts air to and from the burner, and an air volume control that controls a blowing capacity of the combustion fan.
  • a combustion unit installed indoors, wherein the air volume control unit controls the blowing capacity of the combustion fan in accordance with a detection signal from the flame rod electrode together with the combustion capacity.
  • the blowing capacity of the combustion fan is controlled in accordance with the flame rod current. As a result, it is possible to quickly supply an optimal air volume according to the negative pressure condition in the room.
  • FIG. 1 is an explanatory diagram of a usage condition of a water heater, which is generally known as a combustion device, installed indoors.
  • FIG. 2 is a system configuration diagram of the combustion device in the embodiment.
  • FIG. 3 is a block diagram showing a configuration of a main part of the embodiment of the first invention.
  • FIG. 4 is an explanatory diagram of fan air volume control data given in the embodiment.
  • FIG. 5 is an explanatory diagram of the combustion control data showing the relationship between the proportional valve opening and the amount of combustion heat.
  • FIG. 6 is an explanatory diagram showing the relationship between the frame rod current, the lower threshold value, and the cancellation time ⁇ t CAN.
  • FIG. 7 is an explanatory diagram of an example of flame detection of a wrench by a flame rod.
  • FIG. 8 is a block diagram of a fan air volume control configuration during a combustion operation after ignition according to the present invention.
  • FIG. 9 is an explanatory diagram of another example of the fan air volume control data.
  • FIG. 10 is an explanatory diagram of an example of setting an upper threshold value and a lower threshold value of a flame rod current.
  • FIG. 11 is an explanatory diagram of an example of detecting generation of a negative pressure and release of a negative pressure in a room based on a change amount of a flame rod current.
  • FIG. 12 is an explanatory diagram of an example in which the generation of a sudden negative pressure in a room is detected based on a sudden drop change amount of a frame rod current.
  • FIG. 13 is a flowchart of an operation of detecting a negative pressure state in a room based on the CO concentration and performing air volume control.
  • FIG. 14 is a flowchart of the operation of detecting the negative pressure condition in the room by the flame rod current and controlling the air volume.
  • FIG. 15 is a block diagram showing an embodiment of the second invention.
  • FIG. 16 is a model diagram showing a phenomenon in which an abnormal combustion state due to insufficient air can be detected based on a flame rod current value.
  • FIG. 17 shows the fan air volume control data at normal time and the fan air volume control data at negative pressure.
  • FIG. 7 is a graph showing an example of fan air volume control data at the time of ignition set based on FIG.
  • FIG. 18 is a block diagram showing an embodiment of the second invention.
  • Fig. 19 is a graph showing an example of the fan air flow control data of a plurality of stages and the fan air flow control data at the time of ignition set based on the respective fan air flow control data.
  • FIG. 20 is a flowchart of an operation example of detecting a negative pressure state in a room based on the CO concentration and performing fan rotation control.
  • FIG. 21 is a graph showing an example of standard value data of a frame rod current value.
  • FIG. 22 is a block diagram showing an embodiment of the third invention.
  • FIG. 23 is a graph showing an example of the fan rotation control data.
  • FIG. 24 is a graph showing an example of a change in the indoor air pressure when the combustion capacity is changed to decrease when the indoor is in a negative pressure state.
  • FIG. 25 is a block diagram of a main part of an embodiment of the fourth invention.
  • FIG. 26 is a time chart showing the relationship between the combustion state of the combustion device, the CO detection operation state of the CO sensor, and the C • monitoring state in the embodiment of the fourth invention.
  • FIG. 27 is a flowchart showing the operation of the embodiment of the fourth invention.
  • FIG. 28 is a flowchart following FIG.
  • FIG. 29 is a flowchart following FIG.
  • FIG. 30 is an explanatory diagram showing a configuration of a water heater according to the fifth embodiment of the invention o
  • FIG. 31 is a block diagram showing a circuit configuration of a water heater according to an embodiment of the fifth invention.
  • FIG. 32 is a flowchart showing a flow of operation performed by the water heater according to the embodiment of the fifth invention.
  • FIG. 33 is an explanatory diagram showing the number of rotations of the combustion fan with respect to the amount of gas combustion for each operation mode.
  • FIG. 34 is a diagram showing a combustion fan performed by the water heater according to the fifth embodiment of the present invention after the combustion is stopped. 6 is a flowchart showing drive control of the fan.
  • FIG. 35 is a side view showing a chamber room provided in the appliance case of the combustion apparatus according to the sixth embodiment of the present invention.
  • FIG. 36 is a front view showing a chamber room provided in an appliance case of the combustion apparatus according to the sixth embodiment of the present invention.
  • FIG. 37 is a rear view showing a partially cutaway chamber chamber provided in the appliance case of the combustion apparatus according to the sixth embodiment of the present invention.
  • FIG. 38 is a plan view showing a chamber room provided in the appliance case of the combustion apparatus according to the sixth embodiment of the present invention.
  • FIG. 39 is an exploded perspective view showing a combustion device according to an embodiment of the sixth invention.
  • FIG. 40 is an enlarged front view showing a check valve provided at an exhaust inlet of a chamber constituting a combustion apparatus according to an embodiment of the sixth invention.
  • FIG. 41 is an enlarged side view showing a main part of the check ring.
  • FIG. 42 is an enlarged front view showing a guide member that supports a check valve that constitutes a combustion device according to an embodiment of the sixth invention.
  • FIG. 43 is a side view showing, on an enlarged scale, a guide member that supports a check ring constituting a combustion device according to an embodiment of the sixth invention.
  • FIG. 44 is an enlarged perspective view showing an exhaust sensor and its sensor case that constitute the combustion device according to the sixth embodiment of the present invention.
  • FIG. 45 shows a modification in the case where the negative pressure state in the room and its release are detected by the frame rod current of the seventh invention.
  • FIG. 46 is a schematic circuit diagram for supplying a voltage V in to the flame rod electrode pair.
  • FIG. 47 is a diagram illustrating a correction value ⁇ ⁇ ⁇ ⁇ for the frame rod current with respect to the variation ⁇ of the input voltage V in.
  • FIG. 48 is a diagram showing the flame rod current with respect to the combustion capacity.
  • FIG. 49 is a diagram showing that the actual frame rod current 712 is delayed with respect to the gas amount control command.
  • FIG. 50 is a diagram for explaining a delay time in detecting whether a negative pressure state or a negative pressure release is performed according to a change in the frame rod current.
  • Fig. 51 is a diagram showing the relationship between the proportional valve opening and the time when the combustion capacity is changed.
  • FIG. 2 shows a mechanical configuration of a combustion apparatus according to an embodiment of the present invention.
  • the combustion device of the present embodiment relates to a water heater, and a main unit 4 of the water heater is housed in an appliance case 3.
  • the appliance case 3 is provided with an air inlet 5 from which air is guided to an air inlet 6 of the main body 4 through a filter (not shown).
  • the main body 4 has a combustion chamber 7, and a lower part of the combustion chamber 7 is provided with a parner 8, such as a semi-bunsempana, which burns using primary air and secondary air.
  • a gas passage 10 is connected to the gas passage 10, and fuel gas is supplied to the burner 8 through the gas passage 10.
  • the gas passage 10 is provided with solenoid valves 11 and 12 for opening and closing the passage and a proportional valve 13 for controlling the amount of gas supplied to the parner 8 by the amount of valve opening.
  • the proportional valve 13 is controlled by the controller 14 to control the valve opening amount (gas supply amount), that is, the amount of combustion heat (combustion capacity) of the panner 8 according to the magnitude of the valve opening drive current applied. It is of a configuration.
  • an ignition plug 15 for igniting the wrench 8 and a flame rod 16 for detecting a flame of the wrench 8 are provided in the vicinity of the wrench 8, an ignition plug 15 for igniting the wrench 8 and a flame rod 16 for detecting a flame of the wrench 8 are provided.
  • the frame port 16 is installed at a position where the internal flame of the flame generated in the wrench 8 comes into contact with the flame rod 16.
  • a hot water heat exchanger 18 is provided on the upper side of the combustion chamber 7, and a water supply pipe 20 is connected to an inlet of the hot water heat exchanger 18, and a hot water is supplied to an outlet of the hot water heat exchanger 18.
  • Tube 21 connected Have been.
  • the hot water supply pipe 21 is connected to an external pipe.
  • the external pipe is led to a desired hot water supply place such as a kitchen, and a hot water supply pipe (not shown) is provided at an outlet side.
  • 22 is a feedwater flow rate sensor that detects the flow rate of the feedwater
  • 23 is a feedwater temperature J3 ⁇ 4 sensor that detects the feedwater temperature
  • 24 is a tap temperature sensor that detects the tap water temperature
  • 25 is a water flow control valve that controls the flow rate of the feedwater.
  • a combustion fan 26 for supplying and discharging the burner.
  • the rotation of the combustion fan 26 is detected by a fan rotation detection sensor 27.
  • a CO sensor 28 is provided in the exhaust passage on the downstream side of the combustion fan 26, and the CO sensor 28 detects the CO concentration in the exhaust gas.
  • an exhaust duct is connected to the outlet side of the exhaust passage 30, and the exhaust gas is exhausted to the outside as shown in FIG. .
  • a remote controller 31 is connected to the controller 14 via a signal.
  • the remote controller 31 includes a temperature setting device for setting the hot water temperature, and a display section for displaying appropriate information (for example, a hot water temperature and an error signal) from the control device 14.
  • FIG. 3 shows a main part of the control device 14 according to the first invention.
  • a combustion control unit 32 In the first embodiment of the control configuration, as shown by a solid line, a combustion control unit 32, an air volume control unit 33, It is configured to include a storage unit 34, an air flow control data monitoring storage unit 35, and an ignition retry control unit 36.
  • This control device 14 is preferably constituted by, for example, a microcomputer.
  • the combustion control unit 32 is configured to correct a difference between a feedforward heat amount required to increase the feedwater temperature to a set hot water temperature set by the remote controller 31 or the like and a difference between the hot water supply temperature (outlet water temperature) and the set hot water supply temperature.
  • the combustion control unit 32 is provided with combustion control data indicating the relationship between the proportional valve opening and the combustion heat amount (combustion capacity) as shown in FIG. 5, and the combustion control unit 32 determines the maximum combustion heat amount Ma
  • the proportional valve opening is controlled within the range of the combustion capacity between X and the minimum combustion heat amount Min. For example, when the amount of combustion heat obtained by the calculation is P, the proportional valve opening is obtained as Q from the control data in FIG. 5, and the proportional valve current to the proportional valve 13 is calculated so that the proportional valve opening Q is obtained. It controls to supply.
  • the proportional valve opening corresponding to the minimum combustion heat is 0%
  • the proportional valve opening corresponding to the maximum combustion heat is 100%
  • the proportional valve opening is 0%.
  • a control mode is adopted in which control is performed within a range of 100% to obtain a combustion heat amount within the range of the minimum combustion heat amount and the maximum combustion heat amount.
  • the air volume control unit 33 is provided with air volume control data as shown in FIG.
  • the air volume control data is stored in the data storage unit 34.
  • the horizontal axis indicates the proportional valve opening (combustion heat), and the vertical axis indicates the fan rotation speed (fan blowing capacity, hereinafter simply referred to as fan air flow).
  • the data in A in Fig. 4 is the standard fan airflow control data for normal combustion operation, and the data in C is the first stage airflow fan shifted in the direction of increasing the fan airflow from this standard fan airflow control data.
  • B is the air flow control data for the second stage, and B is the air flow control data for the second stage which increases the fan air volume even more than the fan air flow control data for the first stage.
  • the minimum input minimum proportional valve opening
  • changing the fan air volume control data from B to E greatly changes the fan rotation speed, whereas the fan input at the maximum input.
  • the number of revolutions is not changed much.
  • Pana originally has the maximum input ( It uses a burner that can burn at the rated input) and controls the air flow so that it does not disappear even if the fuel is reduced.
  • the lines are parallel, but in the present application, the distance between the lines increases as the proportional valve opening decreases, and the distance between the lines increases as the proportional valve opening increases. (Each line does not have to converge at one point, and the imaginary line of each line intersects somewhere in the large proportional valve opening direction.)
  • the air volume control unit 33 uses the control data of A to determine a fan rotation speed (fan air volume) corresponding to the proportional valve opening so that the fan rotation speed (fan air volume) can be obtained.
  • the rotation of the combustion fan 26 is controlled.
  • an air volume corresponding to the combustion heat amount (gas supply amount) is obtained, and the combustion control in which the combustion heat amount and the air volume match is achieved.
  • the air volume control unit 33 has a control function for switching the fan air volume control data to the air volume increasing direction when the CO concentration exceeds a predetermined reference value based on the C ⁇ detection concentration of the CO sensor 28. I have.
  • the fan air volume control data of A and C are classified as control data on the weak negative pressure side
  • the fan air flow control data of B, D, and E are classified as control data on the strong negative pressure side.
  • the term "low negative pressure side” means a state of the indoor pressure when the range hood ⁇ ventilation fan 2 is not activated, and when the combustion fan 26 is rotated in a closed state of the room, the indoor air Is discharged, so the room becomes slightly negative pressure, so we use the term weak negative pressure side.
  • the strong negative pressure side is a state of the indoor pressure when at least one of the range hood and the ventilation fan 2 is in the activated state, that is, the indoor pressure is in a negative pressure state stronger than the weak negative pressure state. That means.
  • the air flow control data monitoring and storage unit 35 monitors in a time series which of the fan air flow control data A to E shown in FIG. 4 is being used during the combustion operation, and records the data.
  • the initial ignition control unit 39 controls the ignition by driving the spark plug 15 at the beginning of the combustion operation when the combustion operation is started.
  • Section 39 stores the standard fan air volume control data A Ignition is performed as specified by the airflow control data, or the airflow control data monitoring storage unit
  • the ignition operation is controlled by designating the same fan airflow control data used at the end of the previous combustion operation.
  • This initial ignition operation is performed in cooperation with the combustion control unit 32 and the air volume control unit 33, and uses the air volume control data specified by the initial ignition control unit 39 to reduce the startup gas supply amount during ignition.
  • the combustion fan is rotated at a fan speed (fan flow rate) corresponding to the proportional valve opening, and in this state, sparks are blown by the ignition plug 15 to the fuel gas ejected from the panner 8 to ignite.
  • the ignition retry control unit 36 detects the frame rod current from the frame rod 16, detects whether or not the initial ignition performed by the initial ignition control unit 39 has succeeded. Control the try operation.
  • the ignition retry control unit 36 is provided with classification information of a plurality of fan air volume control data shown in FIG.
  • the fan air flow control data of A and C are classified (grouped) as the weak negative air flow control data, and the fan air flow control data of B, D, and E are output as the strong negative air flow. It is classified (grouped) as control data overnight.
  • the strong negative pressure side air volume control data B, D, and E indicate that when the ventilation fan 2 and the range hood are driven and the room is in a negative pressure state, the air volume increases to compensate for the insufficient air volume of the combustion fan 26 due to the negative pressure in the room.
  • the air flow control data A and C indicate that the ventilation fan 2 and the range hood are in a stopped state, and that the indoor pressure is slightly reduced by the rotation of the combustion fan 26. This is control data for supplying an appropriate amount of air required for combustion in a state where the negative pressure has been eliminated, for example, when the air pressure has been reduced or the window has been opened.
  • the ignition retry control unit 36 determines that the initial ignition has failed, It is determined whether the fan air volume control data used at the time of the initial ignition is the control data on the strong negative pressure side or the control data on the weak negative pressure side, and when the strong negative pressure side air flow control data B, D, E, the room is Since the air flow control data on the strong negative pressure side was used even though the vacuum was not negative, it was determined that the ignition flame had blown out due to excessive air flow.
  • the ignition operation is performed by specifying the first-stage air-flow-increase fan airflow control data C, which is the fan airflow control data on the weak negative pressure side on the opposite side from the fan airflow control data.
  • the range hood ⁇ ventilation fan 2 is driven and the room is at a high negative pressure.
  • the re-ignition (ignition retry) operation is controlled by specifying the fan air volume control data B for the second stage air volume up, which is the fan air volume control data on the high / negative pressure side different from the control data.
  • the initial ignition when the initial ignition has failed, it is determined whether the fan air volume control data used at the time of the initial ignition belongs to the strong negative pressure side or the weak negative pressure side. Since reignition is performed using either the first stage air volume control fan air volume control data C or the second stage air volume fan air volume control data B of a different classification from the initial ignition. However, when the initial ignition fails due to excessive air volume, re-ignition uses the fan air volume control data C for increasing the first stage air volume, which is the smaller air volume, and the re-ignition is larger than when the initial ignition fails due to insufficient air volume.
  • the ignition retry operation is performed using the fan air flow control data B for the second-stage air flow increase, the air flow that can be ignited without insufficient or excessive air flow is supplied during re-ignition. Re-ignition operations The ignition flame can be reliably formed by the This enables ignition retry control.
  • the control configuration of the second embodiment is provided with a time measuring means 37 such as a clock mechanism and a timer as shown by a broken line in FIG.
  • the ignition retry control unit 36 is provided with a judgment reference time, and the ignition retry control unit 36 detects the time from when the combustion operation is stopped by using a time measuring unit 37, and from the time when the combustion is stopped, the judgment reference time is used.
  • the initial ignition is performed by the initial ignition control unit 39 using the fan air volume control data used when the combustion was stopped in the previous combustion operation.
  • the combustion operation is restarted after the judgment reference time has elapsed since the previous combustion stop, the standard fan air volume control data A for normal combustion operation or the fan air volume control data C for the first stage air volume increase is used. Allow the initial ignition to occur.
  • Other configurations are the same as those of the first embodiment.
  • the initial operation performed using the fan air volume control data A or C is performed.
  • the re-ignition is controlled by specifying the fan air flow control data B on the opposite side of the classification of the fan air flow control data A and C as in the first embodiment. It is.
  • a value of, for example, 5 minutes and 30 seconds is given as the determination reference time. Normally, when the combustion operation is restarted within this determination reference time, the previous combustion was stopped. Therefore, when the combustion operation is restarted within the reference time, the fan air volume control data that was selected and used as the optimum combustion state data during the previous combustion operation was high. In the evening, the initial ignition is performed to increase the success rate of the initial ignition.
  • a fan air volume control data switching unit 38 is provided to switch and set the fan air volume control data according to the degree of indoor negative pressure.
  • the method of detecting the fan airflow control data used at the end of the previous combustion operation by the airflow control data monitoring storage unit 35 has been changed, and the other configuration is the same as that of the second embodiment. is there.
  • the fan airflow control data is switched to the control data on the fan airflow up side, and the flame load current falls below the lower threshold.
  • the fan air volume control data is converted to the fan air volume down side, that is, the original fan air volume control data before the fan air volume is increased. It has a configuration to switch setting.
  • the air volume control unit 33 controls the fan air volume during the combustion operation using the fan air volume control data switched and set by the fan air volume control data switching unit 38.
  • a combustion stop command is output from the combustion control unit 32 and the solenoid valves 11 and 12 are closed by the fan air flow control data switching unit 38 switching setting operation of the fan air flow control data.
  • the flame rod current passes downward through the lower threshold, and the combustion is stopped at a level lower than the lower threshold.
  • the fan air volume control data switching unit 38 Since it is erroneously determined that the negative pressure state has been released and the fan air volume control data is switched to the direction in which the fan air volume decreases, the air volume control data monitoring storage unit 35 is used when the combustion is stopped.
  • the fan air volume control data the fan air volume control data set to be switched to the air volume down direction by the fan air volume control data switching unit 38 is stored as the fan air volume control data used at the end of the combustion operation.
  • the initial ignition control unit 39 is used at the end of the previous combustion operation.
  • the fan air volume control data that was mistakenly stored by the air volume control data monitoring and storage unit 35 was designated as the fan air volume control data at the time of initial ignition. The problem is that the probability increases.
  • the airflow control data monitoring storage unit 35 is provided with a cancellation time ⁇ t CAN as shown in FIG.
  • the cancellation time ⁇ t CAN is given by a time value greater than the time ⁇ tF from the time when the flame rod current crosses the lower threshold to the time when combustion stops when combustion stops, and Specifically, A t F is measured by an experiment or the like, and a value larger than the A t F is given as the value of the cancel time t CAN.
  • the airflow control data monitoring and storage unit 35 stores the flame load current at the time of combustion stop in a time-series manner, and cancels the time ⁇ t CAN from the time of combustion stop at which the flame load current level value P FIN at the time of combustion stop is reached.
  • the air flow control data that was used just before this time that is, the fan air flow control data that was used before the flame rod current crossed the lower threshold value downward when combustion stopped It is stored as the fan air volume control data that has been used.
  • the fan air volume control data before the switching setting is correctly stored as the fan air volume control data used when the combustion was stopped by the air volume control data monitoring storage unit 35, the initial ignition control unit is used when the next combustion restarts.
  • correct fan air volume control data is specified as the fan air volume control data used at the time of the previous combustion stop, and the initial ignition operation is performed, so that the probability of success of the initial ignition operation can be increased, and ignition failure Thus, it is possible to perform initial ignition with less noise.
  • the fan air volume control data of X 0 corresponding to the fan air volume control data A of FIG.
  • FIG. 8 shows a control configuration of the combustion fan 26 after the ignition.
  • the fan air volume control unit 33 controls the fan air volume of the combustion fan 26 in accordance with the fan air volume control process. Is provided.
  • the fan air volume control data switching control unit 40 receives the signals from the CO sensor 28 and the frame rod 16 and converts the fan air volume control data used by the air volume control unit 33 into the CO concentration detected by the CO sensor 28, It switches and controls the fan air volume control according to the negative pressure condition of the indoor combustion environment detected by the current of the frame opening 16, and has one or more of the following functions.
  • the first function is a function of setting the fan air flow control data to be gradually switched to the fan air flow up side as the CO concentration detected by the CO sensor 28 increases.
  • An operation example of this function will be described with reference to the flowchart of FIG. 13.
  • step 101 it is determined whether or not the CO concentration is equal to or higher than the upper limit.
  • the fan air flow control data is determined in step 102. Is increased by one level.
  • the fan air volume control data shown in FIG. 9 is described as an example.
  • the X in the flowchart is the value of X in each fan air volume control data shown in FIG. O corresponds to
  • the upper limit of the C ⁇ concentration may be given as the time to reach the dangerous CO concentration when a person is exposed to the atmosphere having the CO concentration detected by the CO sensor 28, or It may be given at a high CO concentration threshold, or assuming that a person has been exposed to the atmosphere with the CO concentration detected by the CO sensor 28, the C0 concentration of hemoglobin in the blood is determined, and the unit time
  • the ratio of the unit time t to the dangerous arrival time T of the moglobin CO concentration in the blood calculated for each t may be given by the upper limit value of the integrated value of the ZT.
  • step 107 combustion is performed at a fan rotation speed (fan airflow) corresponding to the combustion amount (combustion heat amount) based on the fan airflow control data in which the airflow is increased by one stage in step 102. Rotate the fan and register the value of X as the negative pressure intensity in the room in step 110.
  • step 111 it is determined whether an ON signal is supplied from the feedwater flow sensor 22. When the ON signal is supplied, the operation from step 101 is repeated. On the other hand, when an OFF signal is output from the feedwater flow sensor 22, it is determined that the hot water supply ⁇ has been closed, and the combustion is stopped.
  • step 112 the elapsed time from when the combustion was stopped is measured using a timer or the like, and it is determined whether or not the time is within 10 minutes after the stop of the combustion.
  • the combustion operation is restarted within 10 minutes after stopping the combustion, it is estimated that the negative pressure state in the room is the same as the value of X registered in step 110, and the fan airflow of the registered value of X is assumed.
  • the fan air volume control data is selected and specified according to the negative pressure in the room, eliminating the shortage of air supply due to negative pressure in the room and performing good combustion operation.
  • the second function of the fan air volume control by the fan air volume control data switching control unit 40 is to detect a frame rod current output from the frame rod 16 and determine the degree of negative pressure in the room based on the frame rod current. This function switches and sets fan air volume control data. That is, as shown in FIG. 10, the proportional valve is opened in the data storage The relationship data between the temperature (combustion heat) and the flame rod current is given as a threshold value.
  • the fan airflow control data is gradually increased toward the fan airflow increasing side.
  • This function controls the fan airflow control data to be switched stepwise to the fan airflow down side as the degree of negative pressure decreases.
  • a lower threshold value is applied to the lower side of the frame rod current, and an upper threshold value is applied to the upper side.
  • the lower threshold is given by the lower fixed threshold and the lower variable threshold
  • the upper threshold is given by the upper variable threshold and the upper fixed threshold.
  • the lower thresholds may be given by lower fixed thresholds, lower variable thresholds, values, or proportional values.
  • the lower fixed threshold value and the lower variable threshold value may be selectively used according to the category of the valve opening.
  • the upper threshold value may be given by the upper fixed threshold value or the upper variable threshold value.
  • the upper fixed threshold value and the upper variable threshold value are set according to the division of the proportional valve opening. You can use different values.
  • the fan air volume control data switching control unit 40 takes in the frame rod current from the frame rod 16, and when the frame rod current exceeds the upper threshold value, the room enters a negative pressure state. When the flame load current falls below the lower threshold (exceeds below), the negative pressure in the room decreases in the release direction. It is determined that the air flow has changed, and the fan air flow control data is switched to the fan air flow down side.
  • FIG. 14 is a flowchart showing the operation of the second function. That is, in step 201, it is determined whether or not the frame rod current has exceeded the upper threshold value.
  • the fan airflow control data is raised by one step to the fan airflow increase side, and step 203
  • the fan air flow control WP This is to switch the setting to one step fan air flow down side.
  • the up / down switching operation of the fan air volume control data is the same as the operation shown in FIG. 13, and the same operation is denoted by the same step number, and redundant description is omitted.
  • the present inventor has experimentally verified the relationship between the degree of the negative pressure in the room and the flame rod current.
  • the combustion flame expands upward due to insufficient air supply, and the flame increases.
  • the magnitude of the rod current increases and the negative pressure in the room is released, the shortage of air supply is resolved, and the flame shrinks to its original state, causing a phenomenon in which the flame rod current decreases.
  • the operation of this second function is that when the frame rod current exceeds the upper threshold, a negative pressure in the room is generated and the frame port current falls below the lower threshold.
  • the pressure exceeds, it is judged that the negative pressure has been released or the degree of negative pressure has decreased, and the fan air volume control data is switched and set according to the degree of negative pressure in the room. Good combustion operation by controlling fan air volume It is intended to guarantee.
  • a third function of the fan air volume control configuration by the fan air volume control data switching control unit 40 is a function of detecting a negative pressure state and a negative pressure release state in the room based on a change amount of the frame rod current.
  • (A) in Fig. 11 is to detect the generation of negative pressure in the room based on the amount of increase in the frame rod current and switch the fan airflow control data to the fan airflow up side, and set the data to the data storage unit 34.
  • the data of the change reference value F thl (for example, 1.1 A) and the reference time T thl (for example, 0.6 seconds) given to the rise change reference value are given.
  • FIG. 11 (b) shows the function of detecting the release of the negative pressure in the room based on the amount of decrease in the frame rod current.
  • the data storage section 34 stores the reference value F th2 for the decrease in frame rod current and this decrease.
  • the reference time T th2 given to the change reference value is given, and the fan air flow control data switching control unit 40 determines that the amount of decrease in the flame rod current is within the time of the judgment time T th2,
  • the room Judgment is made that the negative pressure condition in () has been released (or changed in the negative pressure decreasing direction), and the fan air volume control data X is switched to the fan air volume down side ((X-1) side).
  • the data storage unit 34 stores the reference value F thO of the falling change of the frame rod current (for example, 0.7 mA data and the time width longer than the determination time T th2 shown in FIG. 11B).
  • a short minute setting time AT th (for example, 0.1 second) is given, and the fan air volume control data overnight switching control unit 40 determines that the frame rod current falls within the minute setting time AT th.
  • Fan air volume to eliminate shortage His data X is to switch setting on the fan air volume Appu side ((X + 1) side).
  • the air volume control unit 33 uses the switched fan air volume control data to set the combustion fan. 26 air volume control is performed.
  • the fan air volume control data switching control unit 40 is provided with one or more of the above-described functions to set the fan air volume control data according to the negative pressure condition in the room. In the low combustion capacity range where the (proportional valve opening) is below the specified value of the control range (for example, the proportional valve opening is 30%), the combustion performance is more easily affected by the negative pressure in the room.
  • the flame rod current instantaneously responds to the deterioration of combustion, and the change in the flame rod current detects the deterioration of combustion quickly, preventing the misfiring by quickly controlling the air flow in the direction of improving combustion. can do.
  • Flame rods on the other hand, have a range of flame rod current that can detect combustion deterioration with high sensitivity.If the flame rod current deviates from this range, the detection sensitivity of combustion deterioration decreases.However, in this range, combustion deterioration is detected by the CO sensor.
  • the indoor pressure can be detected over the entire range of combustion heat control. It is possible to accurately detect the negative pressure condition of the combustion environment, and to control the fan air volume more accurately according to the degree of negative pressure in the room.
  • the present invention is not limited to the above embodiments, and various embodiments can be adopted.
  • a water heater was described as an example of a combustion device.
  • the combustion device of the present invention is not limited to a water heater using gas or oil as a fuel, for example, a bath kettle, a heating device, a cooling device, and a cooling / heating device. It can be applied to various combustion devices such as air conditioners and fan heaters.
  • the combustion fan 26 is provided on the exhaust side and is of a suction type.
  • the combustion fan 26 may be provided on the lower side of the burner 8 and may be of an extrusion type.
  • the fan air volume control data shown in FIG. 3 may be given by the relationship between the proportional valve opening and the fan speed, or may be given by the relationship between the proportional valve opening and the fan air volume.
  • an airflow sensor for example, a wind speed sensor
  • a control mode is adopted to control the fan speed so that the detected airflow reaches the target airflow corresponding to the proportional valve opening.
  • the first-stage air-flow-increase fan air volume control data which makes it possible to reliably perform ignition when the room is under a weak negative pressure
  • the second stage airflow control fan airflow control data in which the fan airflow is increased more than the first stage airflow fan airflow control data capable of reliably performing ignition in a state is provided. If the initial ignition operation at the start of combustion has failed, it is determined whether the fan air volume control data used in the failed initial ignition operation belongs to the weak negative pressure side or the strong negative pressure side. When the initial ignition operation is failed using the fan airflow control data on the weak negative pressure side, it is determined that the indoor negative pressure state is a strong negative pressure state.
  • Re-ignition is performed by specifying the fan air volume control data for increasing the stage air volume.
  • the initial ignition fails using the high negative pressure side fan airflow control data
  • the negative pressure state is almost canceled in the room, and in this state, the high negative pressure side fan airflow control data is used.
  • the fan air flow control data for the first-stage air flow up on the weak negative pressure side is specified and re-ignition is performed. Therefore, even if the initial ignition fails using either the high-pressure side or the low-pressure side fan airflow control data, the fan airflow control data on the side that provides the appropriate airflow for ignition is specified at the next reignition.
  • the flame of ignition can be formed stably by the single reignition operation, and the ignition can be reliably performed without repeating the reignition operation many times.
  • the accuracy of the ignition control can be improved, and the reliability of the ignition control can be significantly improved.
  • the air flow control data monitoring storage unit is provided to monitor and store the fan air flow control data used at the time of the previous combustion stop, and to perform the combustion within the determination reference time from the combustion stop.
  • the initial ignition is performed using the fan air volume control data at the time of the previous combustion stoppage monitored and stored by the air volume control data monitoring storage unit.
  • the initial ignition will be performed in the same negative pressure in the room as in the previous combustion stop or in the environment where the negative pressure is released.
  • the fan air volume control data that was used the probability of successful initial ignition was increased, thereby reducing initial ignition failures and enabling initial ignition to efficiently form an ignition flame. The effect is obtained.
  • the first embodiment of the present invention has a configuration in which the fan air volume control data is switched to the air volume down side when the detection signal level of the flame detection sensor falls below a predetermined threshold value.
  • a predetermined threshold value Gives a cancellation time longer than the time required for the detection signal level of the flame detection sensor to cross the threshold level downward and drop to the combustion stop level, and only for the cancellation time after the combustion stop point.
  • the configuration is such that the fan air volume control data used at the time of the previous combustion is detected as the fan air volume control data used at the time of stopping the combustion. Therefore, even if the detection signal level of the flame detection sensor crosses the threshold value when the combustion is stopped and the fan airflow control data is switched to the airflow downside, the fan airflow control data on the airflow downside is compared with the previous combustion airflow.
  • the first embodiment of the present invention detects the degree of negative pressure in the room based on the CO concentration detection signal of the CO sensor and the frame rod current output from the frame rod, and outputs the fan air volume control data. According to the degree of indoor negative pressure, the fan air volume control data is switched so that the air flow increases when the indoor negative pressure is large, and the air flow decreases when the indoor negative pressure is released (or decreases).
  • the control unit is provided.
  • the air flow control data of the fan is replaced with different data, and then the ignition control is performed again.
  • the air flow control data at the time of ignition at the start of combustion is compared with the air flow control data of the normal state and the air flow control data of the negative pressure state when the combustion is stopped. Use the air volume control data for ignition in the middle area.
  • the combustion stop time is a negative pressure drop state
  • the air flow control data for ignition in the intermediate region between the air flow control data in the normal state and the air flow control data in the negative pressure state is used.
  • the ignition can be reliably performed regardless of whether the room is in a normal pressure state or a negative pressure state at the time of ignition. After the ignition, it is detected whether or not the room is in a negative pressure state, and the combustion control is performed by switching to the optimal air volume control data.
  • the water heater system shown in this embodiment is configured as described above, and this water heater can be installed in a room such as a kitchen or a washroom.
  • This embodiment is characterized by the control configuration of the appliance operation, and is applicable to a room in which the water heater is installed in a normal standard mode or in a negative pressure mode which is a negative pressure state more than the standard mode.
  • an ignition operation control structure that can achieve point ignition at the time of ignition from both the standard mode state and the negative pressure mode state. The characteristic control configuration will be described below.
  • FIG. 15 shows a characteristic control configuration in the first embodiment of the second invention.
  • the water heater control device 230 includes a combustion control unit 35, a data storage unit 236, an ignition air volume control unit 238, and a control data transfer control unit 40. It has a negative pressure detecting means 24 1 and a control data switching control section 24 4.
  • a sequence program for operating the appliance is given in advance to the combustion control unit 235, and the combustion control unit 235 fetches information of the remote controller 31 and sensor output information of various sensors, Based on the acquired information, control of the appliance operation is performed as described above.
  • the negative pressure detecting means 2 41 is based on the CO concentration in the exhaust gas detected and outputted from the CO sensor 28 and the flame rod current value detected and outputted from the flame rod electrode 16, and the water heater is provided. It detects a negative pressure condition in the installed room and has one or more of the following functions.
  • the basic function is to detect the C0 concentration detected by the C0 sensor 28, focusing on the fact that the C ⁇ concentration in the exhaust gas increases when the combustion state deteriorates due to lack of air due to the negative pressure in the room.
  • a predetermined dangerous value for example, 200 ppm
  • the dangerous value of the CO concentration is determined when the person is exposed to the atmosphere with the CO concentration detected by the CO sensor 28.
  • the time to reach the dangerous CO concentration may be given as a risk value, or may be given as a high C ⁇ concentration threshold, or if a person is in an atmosphere with a C ⁇ concentration detected by the CO sensor 28 Calculate C0 concentration of moglobin in blood assuming exposure, and calculate per unit time t In which it may be given at risk value of the integrated value of the ratio t ZT of the unit time t with respect to the danger arrival time T of the hemoglobin C 0 concentration to the blood to be.
  • the first additional function of the negative pressure detection by the negative pressure detecting means 2441 is to detect the frame rod current output from the frame rod electrode 16 and to generate the negative pressure in the room by the frame rod current. It is a function to detect. That is, as shown in FIG. 10, the data storage section 36 is provided with the relation data of the combustion capacity and the flame rod current as a threshold value, and the function of detecting the degree of the negative pressure in the room based on the relation data is provided. is there.
  • the relationship data shown in FIG. 10 gives a lower threshold to the lower side of the flame rod current and an upper threshold to the upper side. In the example of Fig.
  • the lower threshold is given by the lower fixed threshold, the value and the lower variable threshold, the value is given, and the upper threshold is given by the upper variable threshold and the upper fixed threshold.
  • the upper and lower fixed threshold values are given as fixed values, the values of which do not fluctuate depending on the combustion capacity, and the upper and lower variable threshold values increase as the combustion capacity increases.
  • the lower thresholds are given as values fixed in the lower direction, these lower thresholds may be given as lower fixed thresholds or values.
  • the lower fixed threshold and the lower variable threshold may be selectively used according to the category of the combustion capacity.
  • the upper threshold value may be given by the upper fixed threshold value or the upper variable threshold value, and the upper fixed threshold value and the upper variable threshold value are determined according to the combustion capacity. You can use them properly.
  • the negative pressure detecting means 2 41 takes in the frame rod current from the frame rod electrode 16 when the first additional function is operated, and when the frame rod current exceeds the upper threshold value, the indoor pressure becomes negative. When the flame load current falls below the lower threshold (exceeds below), it is detected that the negative pressure in the room has changed in the release direction. is there.
  • the present inventor has experimentally verified the relationship between the degree of negative pressure in the room and the flame load current.
  • a lack of air supply causes a good combustion state.
  • the combustion flame extends upward as shown in Fig. 16 (b), and the electrical resistivity of the inner flame 46 of the combustion flame is lower than that of the outer flame 45. Therefore, when the magnitude of the frame rod current increases and the negative pressure in the room is released, the shortage of air supply is resolved, and the flame shrinks to its original state and the flame rod current decreases.
  • the first additional function takes advantage of this fact, and as described above, a negative pressure in the room is generated when the flame load current exceeds the upper threshold. Negative pressure is released when flame load current exceeds the lower threshold. Are those degree of negative pressure is detected as those lowered.
  • the second additional function in indoor negative pressure detection is a function of detecting the indoor negative pressure state and negative pressure release state based on the amount of change in the flame load current.
  • (A) in FIG. 11 detects the occurrence of a negative pressure in the room based on the amount of increase in the frame rod current.
  • the data storage section 236 stores the reference value of the increase change F thl (for example, 1.1 il k).
  • Fig. 11 (b) shows the negative pressure solution in the room based on the amount of decrease in the flame rod current.
  • the data storage section 236 is provided with a reference value F th2 of the fall of the frame rod current and a reference time T th2 given to the reference value of the fall.
  • the negative pressure detecting means 2 41 releases the negative pressure condition in the room (or negative pressure) when the amount of decrease in the flame rod current exceeds the reference value F th2 within the reference time T th2. (Change in the decreasing direction) is detected.
  • the third additional function in negative pressure detection is to detect a sudden negative pressure change in the room based on the amount of rapid decrease in flame load current as shown in FIG.
  • the data storage section 236 stores the data of the reference value F thO (for example, 0.7 A) of the falling change of the frame rod current and the reference time T th2 shown in FIG. 11B.
  • the data of the minute setting time AT th (for example, 0.1 second) with a narrow time width is given, and the negative pressure detecting means 2 41 1 reduces the frame rod current within the time of the minute setting time AT th.
  • the negative pressure detecting means 2 41 has one or more additional functions of the first, second and third additional functions in addition to the above basic functions. Captures the information of the combustion capacity from the combustion control section 235, and when the combustion operation is performed with a combustion capacity lower than a predetermined combustion capacity (for example, a combustion capacity of 30%), the above basic function is performed. And the additional function are combined to detect the negative pressure in the room, otherwise the basic function is used to detect the negative pressure in the room. .
  • a predetermined combustion capacity for example, a combustion capacity of 30%
  • the flame rod electrode has a range based on the relationship between the mounting position and the combustion capacity that can detect combustion deterioration with high sensitivity. If the combustion capacity deviates from this range, the detection sensitivity of combustion deterioration deteriorates, but high combustion Capacity range (for example, the combustion capacity shown in Figure 10 In the range of power X to 100%, the deterioration of combustion can be detected satisfactorily by the c ⁇ sensor, so that the combustion capacity is low (for example, the combustion capacity o to x shown in Fig. 10).
  • the data storage unit 236 stores the fan air volume control data R at normal time and the fan air volume control data T at negative pressure shown by the solid line in FIG.
  • the fan air volume control data R and T are data given in correspondence with the air volume of the combustion fan 2 corresponding to the combustion capacity (in this embodiment, the combustion capacity from a predetermined minimum combustion capacity to a maximum combustion capacity).
  • the fan air volume control data T at the time of the negative pressure is based on the negative pressure mode for performing good combustion when the negative pressure detecting means 241 detects a negative pressure in the room. This is a time for controlling the rotation, and the fan air volume control data R in the normal state is used for controlling the rotation of the combustion fan 26 in order to perform good combustion in the standard mode other than the negative pressure mode.
  • Each of the fan air volume control data R and T is obtained in advance by experiments, calculations, or the like.
  • the fan air volume control data T at the time of negative pressure is larger than the fan air volume control data R at the normal time.
  • the predetermined minimum combustion capacity is set to 0%, and as the combustion capacity increases, the combustion capacity increases so that the maximum value becomes 100%. Is replaced with
  • the control data switching control section 244 takes in the operation information of the combustion control section 235 and detects that the combustion control section 235 has issued a drive command for the combustion fan 266. However, when the detection information of the negative pressure detecting means 24 1 is taken in and a negative pressure state in the room is detected, according to the combustion capacity information of the combustion control section 235 and the fan air volume control data T at the time of the negative pressure. In the negative pressure mode, the rotation control of the combustion fan 26 is performed. In the other standard modes, the combustion fan 26 is controlled in the standard mode in accordance with the combustion capacity information of the combustion control section 235 and the normal fan air volume control data R. Perform rotation control.
  • the rotation of the combustion fan 26 is controlled based on the fan air volume control data T at the time of the negative pressure.
  • the fan airflow increases as compared to the rotation control of the combustion fan 26 according to the fan airflow control data at the time, so that the amount of air supplied to the burner 1 can be improved due to the negative pressure in the room. It is possible to suppress the decrease from the air amount, and it is possible to prevent the combustion state from being deteriorated due to the lack of air due to the negative pressure state in the room.
  • the burner 8 when the burner 8 is ignited, it is conceivable to control the rotation of the combustion fan 26 based on the fan air volume control data used when the previous combustion was stopped.
  • the room may transition from the standard mode to the negative pressure mode, or conversely, may transition from the negative pressure mode to the standard mode. If the mode shifts from the standard mode to the negative pressure mode while the combustion is stopped, the combustion is performed based on the normal fan air volume control data R at the time of ignition, even though the room is in the negative pressure mode. Since the rotation control of the fan 26 is performed, the fan airflow becomes smaller than the combustible fan airflow, and there is a possibility that the point ignition cannot be achieved due to a shortage of air.
  • the fan air volume control at the time of negative pressure at the time of ignition is performed even if the room is in the standard mode. Since the rotation control of the combustion fan 26 is performed based on the data T, the fan airflow may be larger than the combustible fan airflow, and the combustion flame may not be blown out to achieve the point ignition. . .
  • the configuration is such that spot ignition can be reliably achieved regardless of whether the room is in the standard mode or in the negative pressure mode.
  • the data storage section 236 stores fan air volume control data V at the time of ignition.
  • the fan air volume control data V at the time of ignition is based on the air volume range Xr of the combustion fan shown in Fig. 17 (i.e., combustion in the standard mode
  • the fan air volume range Xt that is, the fan air volume range that can be burned in the negative pressure mode
  • Fig. 17 where combustion is possible in the fan air volume control data T at negative pressure
  • the ignition air volume control unit 238 captures the operation information of the combustion control unit 235, and when it is detected that a command to start the rotation control of the combustion fan 26 at the time of ignition is issued based on the information, The rotation control of the combustion fan 26 is performed based on the fan air volume control data V at the time of ignition.
  • the control data transfer control section 240 has a built-in timer (not shown), and the operation information of the ignition air flow control section 238, the detection information of the negative pressure detecting means 241 and the frame rod electrode 1
  • the flame load current value detected and output from 6 is taken in, and the rotation of the combustion fan 2 at the time of ignition is controlled by the ignition air volume control unit 238, and after the combustion flame is detected based on the flame rod current value, If the combustion flame can be continuously detected based on the frame rod current value until the predetermined margin time elapses, it is determined that spot ignition has been achieved.
  • the control data transfer control unit 240 when the negative pressure state in the room is detected based on the information of the negative pressure detecting means 241, The fan air flow control data at the time of ignition is changed from V to the fan air flow control data at the time of negative pressure, and the rotation control of the combustion fan 26 is performed in the standard mode. Otherwise, the fan air flow control at the time of ignition is performed.
  • the rotation of the combustion fan 26 is controlled in the standard mode by shifting from the night V to the normal fan air volume control data R.
  • control data switching control unit 244 achieves the point ignition based on the operation information of the control data transfer control unit 240, and the control data transfer control unit 240 transfers the fan air volume control data.
  • the control data switching operation is performed after a predetermined period has elapsed after detecting that the control data has been detected. .
  • the fan air flow control data T at negative pressure is given, and the state of air pressure (combustion environment) in the room where the water heater is installed is determined.
  • the rotation of the combustion fan 26 is controlled based on the above-described normal fan air volume control data R, and the negative pressure mode, which is in a more negative pressure state than in the standard mode, is controlled.
  • the rotation of the combustion fan 26 is controlled based on the fan air flow control data T at the time of the negative pressure, when the combustion environment is in the negative pressure mode, the fan air flow at the time of the negative pressure is controlled.
  • the normal The fan airflow increases as compared with the rotation control of the combustion fan 26 according to R, and the fan airflow for good combustion can be obtained.
  • the deterioration of the combustion state due to the lack of air due to the negative pressure in the room can be reduced. Can be avoided.
  • the above-mentioned normal fan air flow control data scale and the fan air flow control data T at the time of negative pressure are provided, and the fan air flow control data V at the time of ignition are provided.
  • An ignition air volume control unit 238 that controls the rotation of the combustion fan 26 in accordance with the fan air volume control data V is provided.
  • the water heater Since the combustible air volume region Xr of the control data R and the combustible air volume region Xt of the fan airflow control data T at the time of negative pressure are set in the overlapping region Xv, the water heater is Regardless of whether the installed room is in the standard mode or the negative pressure mode, the ignition of the combustion fan 26 at the time of ignition is controlled in accordance with the fan air volume control data V at the time of the ignition described above, so that the ignition is almost assured. Us It is possible to.
  • control data transfer control section 240 since the control data transfer control section 240 is provided, the negative pressure detection means 2441 is provided after the rotation of the combustion fan 26 at the time of ignition is performed by the ignition airflow rate control section 2338.
  • the control data transfer control unit 240 transfers the fan air volume control data V at the time of ignition to the fan air volume control data T at the time of negative pressure, and the combustion fan 26
  • the rotation of the combustion fan 26 is controlled by transferring to the normal fan air volume control data R, so that better combustion can be achieved according to the combustion environment.
  • the rotation of the combustion fan 26 can be controlled by transferring to appropriate fan air volume control data that can be performed, and better combustion can be performed.
  • This embodiment is applied to a water heater which has a system configuration as shown in FIG. 2 described above, and in which a plurality of stages of fan airflow control data having different fan airflows with respect to combustion capacity are given in advance. There is a feature in the operation control configuration. Note that the description of the system configuration in FIG. 2 described above, and in which a plurality of stages of fan airflow control data having different fan airflows with respect to combustion capacity are given in advance. There is a feature in the operation control configuration. Note that the description of the system configuration in FIG.
  • the control device 230 shown in the second embodiment includes a combustion control unit 235, a data storage unit 236, an ignition air volume control unit 238, and control data transfer control. Department 24, a negative pressure detecting means 241, a control data monitoring unit 242, a combustion state monitoring unit 243, and a control data switching control unit 2444.
  • a combustion control unit 235 and the negative pressure detecting means 241 are the same as those of the first embodiment, a duplicate description thereof will be omitted. .
  • the fan air volume control data V, W, and ⁇ at the time of ignition shown by the chain line in FIG. 19 are stored.
  • the combustible fan air volume regions of each of the fan air volume control data R, S, ⁇ , and U are obtained in advance by experiments, calculations, and the like.
  • the fan air volume control data ⁇ at the time of the ignition is set in an area where the combustible fan air volume area of the fan air volume control data R and the combustible fan air volume area of the fan air volume control data S overlap
  • the fan air volume control data V at the time of ignition is set in an area where the combustible fan air volume region of the above fan air volume control data S and the combustible fan air volume region of the fan air volume control data ⁇ overlap each other.
  • the fan air volume control data W is set in an area where the combustible fan air volume region of the fan air volume control data ⁇ and the combustible fan air volume region of the fan air volume control data U overlap. .
  • the fan airflow control data when the fan airflow control data is switched as can be seen from the fan rotation control data S, ⁇ , and U shown in FIG. 19, the fan airflow greatly changes at the minimum combustion capacity. At the maximum combustion capacity, the fan air volume hardly changes. This is different from the general method of burning with a constant air-fuel ratio, and is uniquely found by the present inventors.
  • the burner is originally a burner that can burn with the maximum combustion capacity, and the air volume is controlled so that it does not disappear even if the fuel is reduced.
  • the lower the combustion capacity the more the combustion flame will be extinguished if the air volume control is not performed accurately.
  • the interval between the fan air volume control data S, T, and U increases as the combustion capacity decreases, and the fan air volume control data S, T increases as the combustion capacity increases.
  • U are set to be narrower.
  • the control data switching control section 244 controls switching of the fan rotation control data according to the negative pressure state of the indoor combustion environment detected by the negative pressure detecting means 241.
  • An operation example of the unit 244 will be described based on the flowchart of FIG. FIG. 20 is similar to FIG. 13, so similar steps are given the same reference numbers.
  • step 101 it is determined whether or not the generation of a negative pressure in the room is detected by the negative pressure detecting means 241, and when the negative pressure in the room is detected, the fan air volume control data is increased by one step in step 102.
  • the fan air flow control data shown in Fig. 19 is described as an example, and the number X in the flow chart corresponds to the X value of each fan air flow control data shown in Fig.
  • step 103 it is determined in step 103 whether or not the negative pressure in the room is released, and the release of the negative pressure in the room is detected.
  • the fan air volume control data is switched to the one-stage air volume down side.
  • step 111 it is determined whether or not an ON signal has been applied from the water amount sensor 22. When the ON signal has been applied, the operation from step 101 onward is repeated. On the other hand, when the off signal is output from the water amount sensor 22, it is determined that the hot-water tap is closed and the combustion is stopped to prepare for the next combustion.
  • the control data switching control unit 244 selects and designates the fan air volume control data according to the intensity of the negative pressure in the room.
  • the control data monitoring unit 242 captures the operation information of the combustion control unit 235, and is used by the control data switching control unit 44 while detecting that the water heater is performing combustion operation based on the information.
  • the information of the fan air volume control data is fetched from time to time and stored in an internal memory (not shown) corresponding to time.
  • the ignition-time air volume control unit 238 captures the operation information of the combustion control unit 235, and when it detects that an ignition command is issued based on the information, from the internal memory of the control data monitoring unit 422. Reads the information of the fan air volume control data that was used when the previous combustion was stopped. Then, the fan air volume control data If the evening is the fan air volume control data U, the ignition air volume control unit 238 reads out the fan air volume control data W on the lower side of the fan air volume control data U from the data storage unit 236. The rotation control of the combustion fan 2 at the time of ignition is performed based on the fan air volume control data W at the time of ignition.
  • the ignition air volume control unit 238 sets the fan air volume control data Y on the upper side of the fan air volume control data R. Is read from the data storage unit 236, and the rotation of the combustion fan 26 at the time of ignition is controlled based on the fan air volume control data Y at the time of ignition.
  • the ignition air volume control section 238 sets the upper and lower of the fan air volume control data S and T.
  • One side fan air volume control data is read from the data storage section 236, and the rotation of the combustion fan 2 at the time of ignition is controlled based on the read fan air volume control data at the time of ignition.
  • the ignition air volume control unit 238 detects that the point ignition has not been achieved based on the frame rod current detected and output from the frame rod electrode 24, the air volume control unit 238 controls the fan air volume on the other side during ignition. De—Control the rotation of the combustion fan 26 based on the evening.
  • the combustion state monitoring section 243 captures the operation information of the combustion control section 235, and monitors the combustion state while detecting that the combustion operation is being performed based on the information. Various means can be considered for monitoring the combustion state.
  • the combustion control section 235 For example, information on the combustion capacity is taken in from the combustion control section 235, and the frame rod current value is detected from the frame port electrode 16 so as to correspond to the combustion capacity when the frame rod current value is detected.
  • the detected frame rod current value is compared with the standard value data as shown in Fig. 21 corresponding to the combustion capacity of the current value.
  • the combustion state monitoring section 243 detects that the combustion state is deteriorating due to insufficient air when the flame rod current value rises beyond a predetermined allowable range above the standard value.
  • the flame rod current value falls below a predetermined allowable range lower than the standard value, it is detected that the combustion state has deteriorated due to excess air.
  • the combustion state is controlled by means other than the above. It may be monitored.
  • the control data transfer control unit 240 incorporates the monitoring information of the combustion state monitoring unit 243 and detects the achievement of spot ignition in the same manner as in the first embodiment. When it is detected that the combustion state is excessive in air based on the information of the state monitoring unit 243, it is transferred to the fan airflow control data lower than the fan airflow control data at the time of ignition used at the time of ignition. Then, the rotation control of the combustion fan 26 is performed. In other cases, the control is shifted to the fan air flow control data above the fan air flow control data at the time of ignition, and the rotation control of the combustion fan 26 is performed.
  • the control data transfer control section 240 detects that the combustion state is insufficient of air based on the information of the combustion state monitoring section 243, the fan air volume control data at the time of ignition used at the time of ignition is used. The control is transferred to the fan airflow control data above the evening to control the rotation of the combustion fan 26, and at other times, the fan airflow control data is transferred to the fan airflow control data lower than the fan airflow control data at the time of ignition. Perform 6 rotations.
  • control data switching control unit 244 achieves the point ignition based on the operation information of the control data transfer control unit 240, and the control data transfer control unit 240 transfers the fan air volume control data.
  • the control data switching operation is performed after a predetermined period has elapsed after detecting that the control data has been detected.
  • fan air volume control data of a plurality of stages is given, and fan air volume control data at the time of ignition set in a region where the combustible fan air volume regions of each fan air volume control data overlap.
  • the ignition operation is performed based on the fan air volume control data at the time of ignition, which is above or below the fan air volume control data used at the time of the previous combustion stop.
  • the fan air volume control data at the time of ignition used for ignition is The combustible fan air volume range of the fan air volume control data used at the time and the fan air volume above or below the previous fan air volume control data Since the combustible fan air volume region included in the control data is set in an overlapping region, spot ignition can be almost surely achieved.
  • the present invention is not limited to the above embodiments, but may be applied to various embodiments. It can take the form.
  • the fan air flow control data at the time of ignition is fan air flow control data dedicated to ignition used only at the time of ignition. May be used for rotation control.
  • the control data transfer control unit 240 controls the fan air volume control data at the time of ignition.
  • the rotation of combustion fan 26 was controlled by shifting to the upper or lower fan air volume control data from one night, but the rotation of combustion fan 26 during ignition by ignition air volume control unit 238
  • the rotation control of the combustion fan 26 based on the fan air volume control data at the time of ignition may be continuously performed after the operation is performed. In this case, immediately after the ignition, the process is shifted to the rotation control of the combustion fan 26 by the control data switching control unit 244 without shifting from the fan air volume control data at the time of ignition to the upper or lower fan air volume control data. Therefore, the control data transfer control unit 240 can be omitted.
  • each fan air volume control data is stored in the data storage unit 236 by graph data.
  • each fan air volume control data is stored in a graph such as table data or arithmetic expression data.
  • the data may be stored in the data storage unit 236 in a data format other than the data.
  • control data transfer control unit 240 is configured to transfer the fan air volume control data at the time of ignition based on the monitoring information of the combustion state monitoring unit 243 to the other fan.
  • the air flow control data was determined and the fan air flow control data was transferred.However, the other fan air flow control data to be transferred from the fan air flow control data at the time of ignition is changed for each fan air flow control data at the time of ignition.
  • the control data transfer control section 240 controls the rotation of the combustion fan 26 by transferring the fan air flow control data at the time of ignition to the predetermined fan air flow control data after ignition. You may do it.
  • the combustion state monitoring unit 243 can be omitted.
  • it is possible to simplify the control configuration. Although it was composed of a bunner such as Eve's semi-bunsen, etc. Since the combustion mode is similar to that of the above, the flame rod current can be changed within a relatively wide range between the upper limit and the lower limit according to the degree of the negative pressure of the indoor combustion environment in the light and shade panner as well as the semi-bunsen panner.
  • the combustion improvement operation shown in the above-described embodiment can be applied to a combustion device provided with a light / dark panner.
  • the water heater having the system configuration shown in FIG. 2 has been described as an example.
  • the combustion is performed using the air supplied by the rotational drive of the combustion fan 26, and the combustion capacity is variably controlled.
  • the present invention can be applied to any combustion device in which the rotation control of the combustion fan is performed based on the combustion capacity and the fan air volume control data given in advance. It can also be applied to combustion equipment other than hot water heaters.
  • the fan air flow control data at the time of ignition is given.
  • An ignition air volume control unit for controlling the rotation of the combustion fan in accordance with the above-described ignition air volume control is provided. Then, the fan air volume control data at the time of ignition described above exceeds the combustible combustion fan air volume region of the normal fan air volume control data and the combustible combustion fan air volume region of the fan air volume control data at negative pressure. The area to be wrapped is set.
  • the rotation of the combustion fan is controlled in accordance with the above-described fan air volume control data at the time of ignition, so that the temperature can be reliably increased. Ignition can be achieved.
  • the negative pressure detecting means is provided, and the control data transfer control unit is provided.
  • the control data transfer control unit sets The fan air flow control data is transferred from the fan air flow control data at the time of negative pressure to the fan air flow control data at the time of negative pressure, and the rotation of the combustion fan is controlled. Transfer in the evening Then, the rotation of the combustion fan is controlled. Therefore, after the point ignition is achieved, the rotation of the combustion fan can be controlled by transferring to appropriate fan air volume control data capable of performing better combustion according to the combustion environment.
  • the negative pressure detecting the indoor negative pressure based on the CO concentration in the exhaust gas and the indoor negative pressure detection based on the frame opening current are used together. Detection means is provided. It is necessary to detect the deterioration of the combustion state due to the negative pressure in the room as soon as possible. Within the range of the combustion capacity (low combustion capacity range) that can detect the deterioration of the combustion with high sensitivity, the negative pressure in the room is detected based on the flame rod current. In addition, since the deterioration of combustion can be detected by the CO sensor in the entire range of the combustion capacity, the indoor negative pressure can be detected based on the concentration of C ⁇ in the exhaust gas, so the negative pressure based on the flame rod current can be detected. By combining the detection with the negative pressure detection based on the CO concentration detection by the CO sensor, it is possible to accurately detect the negative pressure condition of the indoor combustion environment in the entire range of the combustion capacity.
  • multi-stage fan air volume control data in which the air volume of the combustion fan with respect to the combustion capacity is different from each other is given, and the air volume range of the combustible combustion fan provided by each fan air volume control data is A plurality of fan air volume control data at the time of ignition set in the overlapping area are provided, and the ignition arranged above or (and) below the fan air volume control data used when the previous combustion state was stopped.
  • An ignition air volume control unit for performing an ignition operation based on the fan air volume control data at the time is provided.
  • the fan air volume control data at the time of ignition will be The flammable air volume area of the fan air volume control data used when the combustion was stopped and the flammable air volume area of the fan air volume control data above or below the fan air volume area at the time of the previous combustion stop. Is set in the overlapping region, so that spot ignition can be achieved almost certainly.
  • a phenomenon in which the negative pressure state in the room is alleviated occurs after the control of the combustion capacity reduction is performed.
  • the air volume control of the fan used for controlling the combustion capacity reduction is set on the assumption that the negative pressure condition has been alleviated. Therefore, the fan speed is set low in the airflow control data after the combustion capacity has been reduced.
  • a predetermined delay time is required until the negative pressure state in the room is alleviated. Therefore, in the period of the predetermined delay time,
  • fan rotation control data that temporarily increases the rotation speed (blowing capacity) of the fan is used during the transient period.
  • the characteristic control configuration of the embodiment of the third invention has a configuration in which when a negative pressure is generated in the room, it is possible to avoid deterioration of the combustion state due to the generation of the negative pressure, and the room is in a negative pressure state.
  • a configuration is provided to avoid deterioration of the combustion state due to lack of air due to the negative pressure state.
  • FIG. 22 shows a characteristic control configuration in this embodiment.
  • the water heater control device 330 has a combustion control section 33 35, a data storage section 33 36, a fan rotation control data switching control section 33 37, and a reduced capacity. It is configured to include a fan rotation control unit for change 338 and a fan rotation control unit for high CO generation 340.
  • a sequence program for controlling appliance operation is given to the combustion control section 335 in advance, and the combustion control section 335 captures information of the remote controller 31 and sensor output information of various sensors. Then, the appliance is operated based on the acquired information and the sequence program as described above.
  • the data storage section 336 is constituted by a storage device, and the data storage section 336 stores fan rotation control data.
  • the fan rotation control data is data in which the rotation speed of the combustion fan 26 is given in accordance with the combustion capacity (in this embodiment, the combustion capacity from the predetermined minimum combustion capacity to the maximum combustion capacity).
  • the combustion capacity in this embodiment, the combustion capacity from the predetermined minimum combustion capacity to the maximum combustion capacity.
  • a plurality of stages of fan rotation control data R, S, T, and U in which the number of rotations of the combustion fan 26 differs with respect to the combustion capacity are stored in a data storage unit 3 3. 6
  • the predetermined minimum combustion capacity is set to 0%, and as the combustion capacity increases, the% value increases and the maximum combustion capacity becomes 100%.
  • the combustion capacity is replaced by a% value so that
  • the fan rotation control data when the fan rotation control data is switched as can be seen from the fan rotation control data S, T, and U shown in FIG. 23, the fan rotation speed greatly changes at the minimum combustion capacity. On the other hand, at the maximum combustion capacity, the fan speed is hardly changed. This is different from the general method of burning with a constant air-fuel ratio, and is uniquely found by the present inventors.
  • the burner is originally a burner that can burn with the maximum combustion capacity, and the air volume is controlled so that it does not disappear even if the fuel is reduced.
  • the lower the combustion capacity the more the combustion flame will be extinguished if the air volume control is not performed accurately.
  • the above-mentioned fan rotation control data are parallel, but in this embodiment, the intervals between the above-mentioned fan rotation data S, T, U become smaller as the combustion capacity becomes lower.
  • the intervals between the fan rotation control data S, T, and U are set to be narrower as the spread and the combustion capacity increase.
  • the fan rotation control of X20 corresponding to the fan rotation control data R of FIG.
  • the fan rotation control data switching control section 3337 receives the signals from the CO sensor 28 and the frame rod electrode 16 and outputs the fan rotation control data used by the combustion control section 3335 to the CO sensor 28.
  • the fan rotation control data is switched according to the CO concentration detected by the air conditioner or the negative pressure condition of the indoor combustion environment detected by the current of the flame rod electrode 16.One or more of the following functions It has.
  • the switching control of the fan rotation control data is based on the first function of detecting the negative voltage state based on the CO concentration and switching the rotation control data, and the negative control because the frame pad current exceeds the threshold. Detects pressure state and switches rotation control data Effectively by combining the second function to change the rotation control data by detecting the negative pressure state and the negative pressure release by the short-time change of the frame rod current.
  • the air pressure in the room where the water heater is burned and the combustion fan 26 rotates and the ventilation fan 2 also rotates in the closed room is due to the high airtightness of the room.
  • the air pressure P L0 shown in FIG. 24 is lower than the atmospheric pressure outside the room, and the room is in a negative pressure state.
  • the combustion capacity of the water heater decreases due to a variable decrease in the hot water supply set temperature while the room is in the negative pressure state
  • the rotation speed of the combustion fan 26 is increased in accordance with the change in the combustion capacity. Since the amount of air discharged from the room to the outside is reduced by the reduction control, the air pressure in the room increases, for example, as shown by the curve P in Fig. 24, the air pressure in the room increases from P L0 to P hi. As a result, the negative pressure in the room will be reduced.
  • Negative pressure delay is the time required to reach the rotation speed of the combustion fan 26 after the change in performance from the rotation speed of the combustion fan 26 before the change in performance is reduced, for example, while it takes less than about 1 second.
  • the time At required for the indoor air pressure to increase from P L0 to P hi due to a decrease in the number of revolutions of the combustion fan 26 is, for example, about 10 seconds.
  • the fluctuation in the air pressure in the room due to the change in the capacity drop does not follow the fluctuation in the rotation speed of the combustion fan 26.
  • the flow of air in the direction from the outdoor to the room through the exhaust passage 5 is reduced by the decrease in the indoor air pressure relative to the outdoor air pressure (the magnitude of the negative pressure state).
  • the negative pressure state in the room is almost the same as before the capacity change due to the negative pressure delay, even though the rotation speed of the combustion fan 26 after the capacity decrease has decreased due to the capacity decrease.
  • the amount of backflow air entering from the exhaust passage 30 is substantially the same as before the capacity reduction.
  • the rotational speed of the combustion fan 26 after the change in the capacity decrease is assumed to be a favorable value, assuming the airflow of the backflow in a state where the negative pressure in the room is reduced due to the change in the capacity decrease. Since the rotation speed is to supply the air flow for performing the combustion, the air flow of the combustion fan 26 is larger than the air flow for performing the good combustion due to the backflow having the magnitude due to the negative pressure delay. Decrease. For this reason, the amount of air supplied to the burner 8 becomes much smaller than the amount of air for performing good combustion, and the combustion state deteriorates due to insufficient air, or the combustion flame starts due to excessive insufficient air. The problem of disappearing occurs ⁇
  • a method is proposed that can prevent the combustion capacity from being deteriorated due to a shortage of air and the burning flame from going out when the decrease in the combustion capacity is changed.
  • the fan rotation control section 338 captures the information of the combustion capacity from the combustion control section 335 from time to time, and stores the captured combustion capacity in time into the built-in memory (not shown). In addition to storing the information, the change in combustion capacity is monitored as follows based on the information on the captured combustion capacity.
  • the fan rotation control unit 338 at the time of the change in the capacity fetches the current combustion capacity from the combustion control unit 335, and fetches it before a predetermined set time (for example, 2.6 seconds before) and the built-in memory.
  • the combustion capacity before the set time stored in the storage capacity is read, and the current combustion capacity is compared with the combustion capacity before the set time to determine the change amount of the current combustion capacity with respect to the combustion capacity before the set time.
  • the fan rotation control unit 338 compares the obtained variation in the combustion performance with a predetermined performance reduction variation ⁇ (for example, 10%).
  • ⁇ E is a change in combustion capacity decrease for determining whether or not there is a risk that the combustion state may deteriorate due to the negative pressure delay when a change in combustion capacity decrease is performed. It has been obtained through experiments and calculations.
  • the fan rotation control unit 3 38 at the time of the capacity reduction change determines that the combustion capacity has been reduced by the above-mentioned capacity reduction change ⁇ ⁇ or more based on the above-mentioned change amount of the combustion capacity. If the rotational speed of the combustion fan 26 is reduced according to the data, if the room is in a negative pressure state, the negative pressure lag causes the combustion state to deteriorate due to insufficient air, or the combustion flame to decrease due to excessive insufficient air. Judging that there is a possibility that a problem such as disappearing may occur, the fan rotation control data is transferred to the fan Is switched to the fan rotation control data higher than the rotation control data, and outputs a control data up signal to the combustion control unit 335 to perform the rotation control of the combustion fan 26.
  • the fan rotation control data of the upper fan rotation control data (for example, the fan rotation before the performance reduction change is determined) is set in advance. Switch to fan rotation control data, one step higher than the control data, and control the rotation of combustion fan 26. Specifically, for example, when the rotation control of the combustion fan 26 is being performed according to the fan rotation control data S shown in FIG. 23, for example, the direction in which the hot water user decreases the hot water supply set temperature In accordance with the change in the set hot water supply temperature, the combustion capacity is changed from the combustion capacity a to the combustion capacity ⁇ so as to be reduced by the above-mentioned capacity reduction change amount ⁇ ⁇ or more.
  • the combustion controller 335 receives the control data up signal and switches the fan rotation control data S to the fan rotation control data 1 in the upper stage by one step to change the combustion fan 2. Perform rotation control of 6.
  • the combustion fan 2 is increased from the rotation speed at the point ⁇ of the fan rotation control data S shown in FIG. 23 to the rotation speed at the point B of the fan rotation control data T.
  • the rotation speed of the combustion fan 26 corresponding to the combustion capacity / S after the capacity change is reduced from the point B to the point C which is the rotation number of the combustion fan 26 according to the fan rotation control data T.
  • the fan rotation control unit 338 at the time of the change in performance reduction has a built-in timer (not shown). After outputting the control data up signal, the combustion fan is controlled based on the operation information of the combustion control unit 335. 26 When it is detected that the rotation speed of 6 has reached the rotation speed after the capacity change, the built-in timer is driven, and the measured time of the timer is compared with a predetermined standby time (for example, 10 seconds). It is determined whether or not the time measured by the timer has reached the above-mentioned standby time.
  • a predetermined standby time for example, 10 seconds
  • the standby time is a time obtained by adding a margin time to the time ⁇ t from when the rotational speed of the combustion fan 26 is reduced to be substantially reduced until the negative pressure delay is substantially eliminated, and is obtained in advance by experiments, calculations, and the like and stored. Stored in part 3 3 6. Then, when it is determined that the measurement time of the timer has reached the standby time, the negative rotation delay has been resolved, and the fan rotation control unit 338 at the time of the change in capacity reduction switches to the lower fan rotation control data because the negative pressure delay has been resolved. It is determined that the problem of deterioration of the combustion state caused by the negative pressure delay can be avoided even if the rotation control of the combustion fan 26 is performed, and a control data down signal is output to the combustion control unit 335.
  • the combustion control unit 335 When the combustion control unit 335 receives the control data overnight down signal from the above-mentioned capacity reduction change fan rotation control unit 338, the combustion control unit 335 performs predetermined lower fan control data (for example, the fan rotation before the performance reduction change). Switch to control data S) and control the rotation of combustion fan 26.
  • predetermined lower fan control data for example, the fan rotation before the performance reduction change.
  • the combustion fan 26 is reduced from the rotation speed at the point C of the fan rotation control data T to the rotation speed at the point D of the fan rotation control data S.
  • the fan rotation control data is calculated based on the fan rotation control data before the performance reduction change. Also switches to the upper fan rotation control mode to reduce the number of revolutions of combustion fan 2 to the number of revolutions after the change in capacity, so the number of revolutions of combustion fan 26 is reduced according to the fan rotation control data before the capacity change. Therefore, the number of revolutions of the combustion fan 2 is larger than that of the burner, and the amount of air supplied to the burner 1 can be suppressed from being significantly reduced from the amount of air required for performing good combustion by increasing the fan airflow. It is possible to prevent the combustion state from deteriorating due to a shortage of air due to a negative pressure delay at the time of the decrease.
  • the rotation speed based on the above-mentioned fan rotation control data is continuously maintained until the set standby time elapses after the rotation speed has been reduced to the rotation speed after the capacity reduction change, that is, until the negative pressure delay is eliminated. Therefore, the effect of preventing the deterioration of the combustion state due to the lack of air due to the negative pressure delay can be continued until the negative pressure delay is eliminated.
  • the air volume of the combustion fan 26 becomes smaller as the decrease in the combustion capacity increases even if the rotation speed of the combustion fan 26 is the same. It becomes. From this, although the rotation of the combustion fan 26 is controlled by switching to the upper stage fan rotation control unit by the fan rotation control unit 338 at the time of the performance reduction change, the amount of change in the reduction of the combustion capacity is large. Therefore, the air volume of the combustion fan 26 becomes smaller than the air volume for good combustion, and the amount of air supplied to the Pana 18 becomes smaller than the air volume for good combustion. Combustion may deteriorate.
  • the fan rotation control unit 340 at the time of high CO generation is provided, and the combustion performance is reduced by the capacity reduction change amount ⁇ ⁇ or more, and the fan rotation control data before the performance reduction is changed.
  • the control of the combustion fan 26 is being performed by switching to control data overnight, and when the high-CO generation fan rotation control unit 340 detects a combustion state of insufficient air, the fan rotation control data is output. Is further switched to the upper fan rotation control data to control the rotation of the combustion fan 26.
  • the present inventors have focused on the fact that when the combustion state deteriorates due to insufficient air, the C ⁇ concentration in the exhaust gas increases, and detect the deterioration of the combustion state due to the insufficient air by detecting the increase in the C0 concentration in the exhaust gas. I made it.
  • the fan rotation control section 340 detects the sensor output of the CO sensor 28 as the CO concentration in the exhaust gas, and outputs it from the combustion control section 335 or the fan rotation control section 338 when the capacity is changed. Based on the acquired operation information, the performance is reduced due to the capacity reduction change. While it is detected that the rotation control of the combustion fan 2 is being performed by switching to the fan rotation control data higher than the fan rotation control data before the change, When it is determined that the CO concentration in the exhaust gas detected and output by the C0 sensor 28 is equal to or higher than a predetermined dangerous value (for example, 2000 ppm), the control data up signal when high CO is generated Is output to the combustion controller 3 35.
  • a predetermined dangerous value for example, 2000 ppm
  • the above-mentioned danger value is the CO concentration in the exhaust gas for judging whether or not the combustion state has deteriorated due to the shortage of air, and is obtained in advance by experiments or calculations and stored in the data storage unit 336.
  • the combustion control unit 335 When the combustion control unit 335 receives the high C ⁇ ⁇ ⁇ generation control data up signal from the high CO generation fan rotation control unit 340, the combustion rotation control unit 338 before the capacity change Fan rotation control data above the fan rotation control data Even though the combustion fan 26 was controlled in the evening and the rotation was controlled, the combustion condition deteriorated due to insufficient air.In order to improve the deterioration of the combustion condition due to insufficient air, the data was switched to the upper fan rotation control data. Control of the combustion fan 26 to determine that it is necessary to increase the amount of air supplied to the burner 1 by increasing the fan airflow, and switch the fan rotation control data to the upper fan rotation control data. To control the rotation of the combustion fan 26.
  • the fan rotation control data S is switched to the fan rotation control data T, and the rotation speed of the combustion fan 26 is reduced according to the fan rotation control data T (for example, FIG. 23).
  • the fan rotation controller 340 outputs when the high C0 occurs.
  • the combustion control unit 3 35 receives the high-CO generation control data up signal and switches to the upper fan rotation control data U, that is, the rotation speed of the combustion fan 26 is increased to the rotation speed at point F. After that, according to the fan rotation control data U, the rotation speed of the combustion fan 26 is reduced to a point G, which is the rotation speed after the change in the performance reduction.
  • the high-CO generation fan rotation control unit 340 has a built-in timer.Based on the operation information fetched from the combustion control unit 335, the rotation speed of the combustion fan 26 changes to the rotation speed after the capacity change. When it is detected that the time has been reached, the driving of the above-mentioned timer is started, the measured time of the above-mentioned timer is compared with a predetermined standby time Tco (for example, 10 seconds), and the measured time of the timer is set to the above-mentioned standby time Tco. Outputs the control data down signal when high C0 occurs when it is determined that co has been reached.
  • Tco standby time
  • the standby time Tco is a time obtained by adding a marginal time to a time required for substantially eliminating the negative pressure delay, and is obtained in advance by experiments, calculations, and the like, and stored in the data storage unit 336.
  • the combustion control unit 335 When the combustion control unit 335 receives the high CO generation control data down signal from the high CO generation fan rotation control unit 40, the negative pressure delay has been eliminated. Judging that switching to the rotation control data is allowed, the fan rotation control data is converted to the lower fan rotation control data (for example, the fan rotation control data T one step below the fan rotation control data U, Rotation control Switch to data S) and control the rotation of combustion fan 26.
  • the fan rotation control data for example, the fan rotation control data T one step below the fan rotation control data U, Rotation control Switch to data S
  • the control data down from the capacity reduction change fan rotation control section 338 is performed.
  • a cancel signal that cancels the output of the signal is output to the fan rotation control unit 338 when the performance is changed, and the control data down signal is output from the fan rotation control unit 38 when the performance is changed. Cancel.
  • the fan rotation control data before the capacity change is changed. Since the rotation of the combustion fan 26 is controlled by switching to the fan rotation control data at the upper stage than the evening, the combustion fan 26 is controlled more than the rotation control of the combustion fan 26 according to the fan rotation control data before the capacity change. 6, the amount of air supplied to the burner 1 can be prevented from dropping much less than the amount of air required for good combustion. However, the problem of extinguishing of the combustion flame due to excessive air shortage can be avoided.
  • the fan rotation control unit 338 is switched to the upper stage fan rotation control unit by the fan rotation control unit at the time of the performance reduction change, so that the combustion fan is changed. If the amount of air supplied to the burner 1 becomes smaller than the amount of air that performs good combustion inclining and the combustion state deteriorates due to lack of air after performing the rotation control in 26, The deterioration of the combustion state due to the shortage of air is detected by the increase in the C ⁇ concentration in the exhaust gas, and the high-CO generation fan rotation control unit 340 can switch to the upper fan rotation control data.
  • the capacity reduction change-time fan rotation control unit 338 fetches the information of the combustion capacity from the combustion control unit 335, but, for example, a proportional control variably controlled according to the combustion capacity.
  • Valve opening of valve 13 (that is, proportional valve drive current ) May be detected as the combustion capacity.
  • the fan rotation control unit 338 when the combustion capacity is reduced by the predetermined capacity reduction change amount ⁇ E or more, regardless of the negative pressure state, the fan rotation control unit 338 at the time of the capacity reduction change, Although the fan rotation control data was switched to the upper stage than the fan rotation control data before the performance reduction, the negative pressure delay occurred when the performance reduction was changed because the room was under negative pressure.
  • the above-mentioned capacity reduction change-time fan rotation control unit 338 is used when the combustion capacity is reduced by the set capacity reduction change ⁇ E or more when the room is in the negative pressure state. Only the upper stage fan rotation control may be switched to the upper stage.
  • the combustion fan 2 is controlled according to the upper fan rotation control data. Since the time for performing the rotation control is very short, about 10 seconds, deterioration of the combustion state due to excessive air as described above cannot be substantially avoided.
  • the performance reduction change fan rotation control unit 338 switches to the fan rotation control data higher than the fan rotation control data before the performance change
  • the magnitude of the performance reduction change amount was switched to the fan rotation control data that is one stage higher than the fan rotation control data before the capacity change.
  • the capacity reduction change was 10% or more and 35% If it is less than the range, it is switched to the fan rotation control data one step higher than the fan rotation control data before the capacity change, and the capacity reduction change is within 35% or more and less than 50%
  • the degree of deterioration of the combustion state due to lack of air is likely to increase due to the large amount of change in performance, so in order to avoid the deterioration of the combustion state due to lack of air, the rotational speed of the combustion fan 26 must be reduced.
  • the fan rotation control unit 3 38 at the time of the change in the capacity decrease is set to the upper stage, so that the fan rotation control unit is switched to the fan rotation control data that is two steps higher than the fan rotation control data before the capacity change.
  • fan rotation control data according to the magnitude of the capacity reduction change amount may be selected, and switching may be performed to the selected fan rotation control data.
  • the fan rotation control data according to the magnitude of the capacity reduction change amount is selected.
  • the fan rotation control unit 338 at the time of the performance reduction change can switch to the fan rotation control data that matches the degree of the combustion deterioration state due to the negative pressure delay. From this, the combustion state does not worsen due to the shortage of air even when switching to the upper fan rotation control system at the time of the capacity reduction change, so in such a case, the fan rotation during high CO O
  • the control section 340 may be omitted.
  • the fan rotation control unit 338 at the time of the change in the capacity and the fan rotation control unit 340 at the time of the occurrence of the high C0 decrease to the rotation number after the capacity change according to the switched fan rotation control data.
  • the detection may be performed based on the rotation speed of the combustion fan 26 detected by the following.
  • the fan rotation control data is given by graph data, but may be given in a data format other than graph data such as table data or arithmetic expression data.
  • the standby time that determines the timing for switching to the lower fan rotation control data is constant, but the time required for the negative pressure delay to be eliminated as the capacity reduction change amount increases. As the capacity change amount increases, the standby time may be increased continuously or stepwise.
  • the rotation speed of the combustion fan 26 is controlled based on the fan rotation control data in which the rotation speed of the combustion fan 26 is given in accordance with the combustion capacity.
  • the airflow of the combustion fan 26 is controlled by using the fan airflow control data given in accordance with the combustion capacity, as shown in Fig. 23. It may be performed.
  • a current rise fan rotation control unit 342 shown by a dotted line in FIG. 22 may be provided instead of the high-CO generation fan rotation control unit 340 shown in the above embodiment. Focusing on the fact that the deterioration of combustion can be detected based on the flame rod current as described above, the fan rotation control unit 348 at the time of current rise is used to control the fine rotation control Switch to combustion fan 2 6 times When combustion deterioration is detected based on the flame rod current while the rotation control is being performed, it is switched to the fan rotation control data in the upper stage to avoid the deterioration of the combustion state caused by the negative pressure delay. It is.
  • an example of the control operation of the above-described current rise fan rotation control unit 342 will be described.
  • the current increase fan rotation control section 3 4 2 detects the frame rod current detected and output from the frame rod electrode 16 and takes it in from the combustion control section 3 3 5 and the fan rotation control section 3 3 8 when the capacity is changed. Based on the operation information, while detecting that the rotation control of the combustion fan 2 is being performed by switching to the fan rotation control data in the upper stage from the fan rotation control data before the performance reduction due to the performance reduction due to the performance reduction change When it is determined that the frame port current has risen above the upper threshold shown in FIG. 10, a current rise control data up signal is output to the combustion control unit 3335.
  • the combustion control unit 335 When the combustion control unit 335 receives the control data up signal when the current rises from the above-mentioned fan rotation control unit 342 when the current rises, the combustion control unit 335 switches to the fan rotation control data on the higher fan speed to switch the combustion fan 2 The rotation control of is performed.
  • the fan rotation control section 342 when the current rises has a built-in timer (not shown), and the number of rotations of the combustion fan 26 changes according to the operation information taken from the combustion control section 335.
  • the timer is driven, and the timer time of the timer is compared with a predetermined standby time T st (for example, 10 seconds), and the timer time of the timer is calculated. Outputs the control data down signal at the time of current rise when it is determined that the standby time has reached the standby time T st.
  • the combustion control unit 3335 When the combustion control unit 3335 receives the current rise control data down signal from the above-described current rise fan rotation control unit 3422, the combustion control unit 335 switches the fan rotation control data to the fan rotation control data on the low rotation speed side and performs combustion. Control the rotation of fan 26.
  • a fan rotation control section 344 for combined use of a frame rod current value and a CO concentration shown by a chain line in FIG. 22 is provided. You may.
  • the frame rod current value / CO concentration combined fan rotation control unit 344 4 captures, for example, the frame rod current detected and output from the frame rod electrode 16 and the combustion capacity information from the combustion control unit 335.
  • the sensor output detected by the CO sensor 28 is detected as the concentration of C ⁇ in the exhaust gas, and the operation information taken from the combustion control unit 335 and the fan rotation control unit 338 when the performance is changed is reduced.
  • the combustion capacity When it is determined that the flame load current is lower than the preset combustion capacity (for example, combustion capacity of 30%) and the flame rod current has risen to the upper threshold value shown in FIG. If it is determined that the C ⁇ concentration in the gas has increased to a predetermined dangerous value (for example, 2000 ppm) or more, the control data up signal for the current rise and high C ⁇ generation is sent to the combustion control unit.
  • the preset combustion capacity for example, combustion capacity of 30%
  • Combustion control unit 335 increases the current from flame rod current value and CO concentration combined fan rotation control unit 344. Switch to the fan rotation control data on the side to control the rotation of combustion fan 2.
  • the flame rotation current value / C ⁇ concentration combined fan rotation control section 344 has a built-in head (not shown), and the combustion fan 26 based on the operation information taken from the combustion control section 35.
  • the timer is driven, the measured time of the timer is compared with a predetermined standby time T st (for example, 10 seconds), and the When it is determined that the measuring time has reached the above standby time T st, a current rise and a high C control data down signal is output.
  • the combustion control unit 335 When the combustion control unit 335 receives the flame load current value, the current rise from the CO concentration combined fan rotation control unit 344, and the high (0: 0 control data down signal, the fan rotation control data Evening is switched to the fan rotation control date on the Control the rotation of pin 26.
  • the flame rod current has a current range in which the deterioration of combustion can be detected with high sensitivity, and in the region outside this current range, the combustion deterioration can be detected with high sensitivity by the CO concentration.
  • the state deterioration detection and the combustion state deterioration detection based on the CO concentration in the exhaust gas the deterioration of the combustion state can be detected with high sensitivity over the entire range of the combustion capacity.
  • the fan rotation control unit 338 switches to the upper stage fan rotation control data by the fan rotation control unit at the time of performance change and the rotation control of the combustion fan 2 If the combustion condition deteriorates due to the lack of air while the engine is running, the deterioration of the combustion condition can be detected based on the flame rod current, and further switched to the upper fan rotation control data. Therefore, it is possible to reliably prevent the combustion state from deteriorating due to the lack of air due to the negative pressure delay.
  • the fan rotation control unit at the time of the change in the capacity reduction is provided, and a plurality of stages of fan rotation control data having different rotation speeds with respect to the combustion capacity are provided. Since a plurality of stages of fan airflow control data having different fan airflows are provided, when the combustion capacity is reduced by a predetermined capacity reduction change amount or more, the above-described capacity reduction change fan rotation control unit The fan rotation control data or the fan air volume control data can be switched to the control data in the upper stage than the control data before the performance reduction change.
  • the fan rotation control unit for high C0 generation, the fan rotation control unit for current rise, and the fan rotation control unit for flame load and CO concentration are provided, the fan rotation when the above-mentioned capacity reduction is changed
  • the control unit switches to the upper combustion capacity and If the deterioration of the combustion state is detected based on the CO concentration in the exhaust gas and the flame rod current value detected and output by the CO sensor during engine rotation control, The fan rotation control unit and the fan rotation control unit at the time of current rise ⁇ frame rod current value ⁇ ⁇ ⁇ ⁇
  • the fan rotation control unit with CO concentration switches to the upper fan rotation control data or fan air volume control data to switch the combustion fan Since rotation control is performed, when the performance is changed, the rotation of the combustion fan is controlled by switching to the upper control data by the fan rotation control unit when the performance is changed, but the combustion state deteriorates due to insufficient air.
  • the air volume of the combustion fan can be increased, and the amount of air supplied to the combustion can be increased to improve the deterioration of the combustion state.
  • the number of rotations of the fan (blowing capacity) at the time of restarting the combustion is determined. Control the rotation speed (blowing capacity) higher than usual.
  • FIG. 25 shows the main parts of the control device 14.
  • the combustion control section 432 has the same function as the combustion control section 32 described in FIG.
  • the air volume control unit 433 also controls the air volume according to the air volume control data shown in FIG. 5 described in FIG.
  • the air flow control data specifying unit 434 designates the fan air volume control data on the air volume side B as the air volume control data by the combustion restart air volume control data specifying unit 434, the specified air volume Using the fan air volume control data B for up, the fan air volume is controlled according to the proportional valve opening.
  • the sensor energization control unit 436 energizes the CO sensor 428 to maintain a state where the CO sensor 428 can normally detect the CO concentration. Then, when the combustion operation is stopped, post-energization is performed, for example, for 120 minutes thereafter, and when the combustion operation is restarted, the system is ready to detect the CO concentration immediately. Further, the zero point correction of the CO sensor 28 is performed during the boost energization period, and the deviation of the zero point of the CO sensor 28 is corrected.
  • the sensor energization control unit 436 normally supplies the CO sensor 28 with a signal.
  • a current larger than that at the time of the CO concentration detection is applied to increase the CO detection unit of the CO sensor 28 to, for example, 400, and incineration removal of hydrocarbons and other deposits on the surface of the CO detection unit is performed to perform heat cleaning.
  • the sampling unit 437 captures (samples) the C ⁇ concentration detection signal from the CO sensor 28 at predetermined intervals, for example, at 0.1-second intervals using a time measurement unit 435 such as a clock mechanism, and converts the sampling value into an ER calculation unit 438.
  • a time measurement unit 435 such as a clock mechanism
  • the ER calculation unit 438 is provided with the data of the danger arrival time T to reach the danger state of C0 poisoning when it is assumed that a person is exposed to the atmosphere of the C0 concentration for each CO concentration. .
  • data on the time to reach danger for each CO concentration is given, such as Tl for C ⁇ concentration XI, T2 for CO concentration X2, and danger arrival time T3 for CO concentration X3. I have.
  • the ER operation unit 438 obtains the C ⁇ concentration detection value added every 0.1 second from the sampling unit 437 as an average value per unit time t (for example, 1 second), and corresponds to the average CO concentration per unit time.
  • the ratio t / T between the unit time t and the danger arrival time T is calculated as the stop constant ER.
  • the stop constant ER is obtained as tZT2, t / T3.
  • the value of the stop constant ER obtained every time the unit time t elapses is added to the TR calculation unit 439. Since the control circuit of the control device 14 uses a computer circuit, the stop constant ER and the integrated value TR of the ER are actually converted to a value multiplied by 250 to perform data processing. However, in this specification, the explanation will be made using a value that is not multiplied by 250 to make it easier to understand the content of the invention.
  • the TR operation unit 439 accumulates (adds) the value. Then, the integrated value TR of the stop constant ER is added to the CO safety operation section 40.
  • the C ⁇ safe operation section 440 is provided with the value of the dangerous CO concentration in multiple stages, for example, a value of 0.7 is given as the value of the dangerous C ⁇ concentration of the first stage, and 0.8 is the second stage. Is given as the value of the dangerous C ⁇ concentration, 0.9 is given as the value of the dangerous CO concentration in the third stage, and the range of more than 0.9 and less than or equal to 1.0 is given as the value of the dangerous CO concentration in the final stage.
  • the CO safety operation unit 440 has the stop condition added from the TR operation unit 439.
  • the integrated value TR of the number ER is compared with the value of the dangerous C ⁇ concentration in each of the above-mentioned stages, and when the integrated value TR reaches the value of the dangerous CO concentration in each of the stages up to the third stage, re-combustion is started by reset. Operate in the A-stop control mode. When the integrated value TR falls within the range of the final stage danger C ⁇ concentration, perform the operation in the B-stop control mode.
  • the operation in the B stop control mode is a control operation that does not accept the combustion operation command even if a combustion operation command is issued until a predetermined time (for example, 2 hours) has elapsed after the combustion is stopped, that is, a reset operation after the combustion is stopped.
  • the display unit 441 determines from the C0 safe operation unit 40 that the integrated value TR of the stop constant ER has reached the value of the dangerous C ⁇ concentration at each stage, since the combustion operation is a control operation that cannot be performed until the predetermined time has elapsed.
  • the status is displayed on the display of the remote controller 31 when an error occurs.For example, if the integrated value ER of the ER reaches the value of the dangerous C0 concentration in each stage up to the third stage, an error 90 is displayed. When the integrated value TR falls within the range of the dangerous CO concentration at the final stage, an error 13 is displayed.
  • the combustion restart air volume control data designating section 434 is reset by the CO safety operation section 40 when the integrated value TR of the stop constant ER reaches the value of the dangerous C
  • the control data is switched from the control data A in the normal operation shown in Fig. 4 to the fan air volume control data B for increasing the air volume in which the fan air volume is shifted to the increasing side.
  • the control data B on the up side perform spot ignition and restart the combustion operation.
  • the CO safety operation unit 440 information from the CO safety operation unit 440 that the CO safety operation was performed by stopping the combustion at each stage from the CO safety operation unit 440 to the third stage is detected, and a reset signal (for example, operation When the switch is turned off and then the operation switch is turned on), the air flow control data is switched from A to B and specified.
  • a reset signal for example, operation When the switch is turned off and then the operation switch is turned on
  • the air flow control section is operated during the restart operation of the combustion by the reset after the CO safety operation by the CO safety operation section 440 by the CO safety operation section 440.
  • 433 performs air volume control (fan speed control) in accordance with the control of the proportional valve opening by the combustion control unit 432 using the air volume control data B on the air volume up side.
  • reference numeral 30 denotes a memory (E 2 PROM). It stores the operation data of the combustion operation mode (data such as used fan air volume control data).
  • step 4101 it is determined whether or not the post energization flag of the C0 sensor 28 is turned on.
  • the boost energizing flag is on, it is determined that a hot start (combustion starts while post-energizing the CO sensor 28) is performed.
  • the boost energizing flag is off, it is determined that the engine is in a cold start state. If so, the process proceeds to step 4104. If the post-energization flag is off, the process proceeds to step 4102.
  • step 4102. heat cleaning is performed in step 4102.
  • a current for heat cleaning is supplied from the sensor conduction control unit 436 to the C sensor 28, and the CO sensor 28 is supplied.
  • Heat the CO detection section to approximately 400 ° C for heat cleaning.
  • step 4103 it is determined whether or not 40 seconds of the heat cleaning period has elapsed.
  • the operation of step 4104 is performed assuming that the heat cleaning has ended.
  • the operation of this step 4104 is an operation to be performed, for example, for 20 seconds from time tB to tC in FIG.
  • the operation in step 4104 is a transitional period from the completion of the heat cleaning of the CO sensor 28 to the stabilization of the operating temperature at which the C 0 sensor 28 can stably detect the C 0 concentration. Since reliability of the detected value cannot be obtained, as shown in step 105, only the detection of a dangerous C ⁇ ⁇ concentration as high as 3000 ppm is detected.
  • step 4105 for example, it is determined whether or not the detected concentration of the CO sensor 28 is 3000 ppm or less on average for one second, and if it exceeds 3000 ppm, the operation in the combustion improvement mode 1 is performed in step 109.
  • the operation in the combustion improvement mode 1 is an operation in which the airflow control data is switched from A to B (see FIG. 4), and the rotation speed of the combustion fan 26 is controlled to increase the airflow.
  • step 4110 it is determined whether or not 20 seconds have elapsed after the operation of the combustion improvement mode 1.When 20 seconds have elapsed, the average 1-second CO concentration detected again by the CO sensor 28 in step 4111 is 3000 ppm.
  • step 4112 If it exceeds 3000 ppm, it is determined that the combustion improvement effect of the combustion improvement mode 1 cannot be obtained, and in step 4112, control is shifted to B stop control, and error 13 is displayed on the display of the remote control or the like. indicate. On the other hand, if it is determined in step 4111 that the CO concentration is 3000 ppm or less, the operation returns to step 4105 and thereafter.
  • the B stop control in step 4112 is a control operation for immediately stopping the combustion operation and not restarting the combustion operation until two hours have elapsed after the stop, as described above.
  • step 4105 When it is determined in step 4105 that the CO concentration is 3000 ppm or less on average for one second, it is determined in step 4106 whether or not the boost energization flag of the CO sensor is on, and it is determined that the flag is not on.
  • step 4106 determines whether or not the boost energization flag of the CO sensor is on, and it is determined that the flag is not on.
  • the time tC which is 20 seconds after the time tB when the heat cleaning has ended, has reached time tC. At that time, that is, when it is determined that the CO sensor 28 is in a state of stably detecting the CO concentration, the operation moves to Step 4113.
  • step 4106 If it is determined in step 4106 that the boost energization flag is ON, the time required from when combustion in the combustion improvement mode is performed in step 4110 until the CO concentration is sufficiently reduced, that is, Then, it is determined whether or not 50 seconds have elapsed from the time t B shown in FIG. 26. When 50 seconds have elapsed, the operation shifts to the normal CO concentration detection operation from step 4113.
  • step 4114 After the start of the normal detection of the C ⁇ concentration in step 4113, that is, in the operation after time t C shown in FIG. 26, in step 4114, it is determined whether or not the C concentration is 350 ppm or less on average for 10 seconds. . If the CO concentration exceeds 350 ppm, the operation of the combustion improvement mode 1 in step 4116 (the operation of switching the air flow control data from the normal fan control data A to the control data B on the air flow up side to perform the combustion operation) ) I do.
  • step 4114 When it is determined in step 4114 that the CO concentration is 350 ppm or less, it is determined in the next step 115 whether the C concentration is 1500 ppm or less on average for 1 second, and the C concentration is 1500 ppm. If it has exceeded, the operation of the combustion improvement mode 1 is performed in step 4116, and the flow advances to step 117. Also, in step 4115, if the one-second average CO concentration value is 1500 ppnr or less, the operation shifts to step 4117.
  • step 4117 based on the C ⁇ concentration detection information from the CO sensor 28, a stop constant ER corresponding to the detected concentration and an integrated value of the stop constant ER are calculated.
  • step 4122 each of the first to third steps is performed.
  • step 4121 if it is determined in step 4121 that the integrated value of the stop constant ER is smaller than the value of the dangerous CO concentration in each of the first to third stages, the operation of the combustion improvement mode 2 is performed in step 4121. Is performed. In the operation of the combustion improvement mode 2, for example, the upper side of the control range of the proportional valve opening of the combustion control data as shown in FIG. 5 is cut at, for example, 95%, and the proportional valve opening is reduced from 0% to 95%. The combustion operation is performed within the range. Note that the operation of the combustion control mode 2 in step 4121 may be omitted.
  • step 4118 it is determined in step 4118 whether or not the feedwater flow rate is detected by the feedwater flow rate sensor 22.
  • the water supply flow rate sensor 22 outputs an off signal of the water supply flow rate after performing the operations from 41 to 14, it is determined that the hot water tap is closed, and the combustion operation is stopped.
  • step 4124 an error 90 indicating that the A-stop control is being performed is blinkingly displayed on the display unit of the remote controller 31 or the like.
  • step 4125 the solenoid valve 12 (original solenoid valve), the solenoid valve 11 and the proportional valve 13 are closed (turned off), the combustion lamp of the remote control is turned off, and the combustion improvement start flag is turned off. Power supply to the CO sensor 28 is stopped.
  • step 4126 the combustion fan 26 is rotated at the maximum speed for 7 seconds, and the hot water tap is closed. Then, in a step 4128, it is determined whether or not the operation switch is turned off. When the operation switch is ON, the operation proceeds to the next step 4129.
  • step 4129 it is determined whether or not two hours have elapsed since the combustion was stopped. If two hours have elapsed, the integrated value of the stop constant ER is reduced to half in step 130, and the combustion improvement start flag is turned off. Then, in step 4131, it is determined whether four hours have elapsed since the combustion was stopped.If four hours had elapsed, it was determined that all the C ⁇ gas in the room had exited the room, and the integrated value of the stop constant ER was determined. To zero.
  • step 4128 determines whether or not the operation switch has been turned off.
  • step 4133 determines whether or not the operation switch has been turned on.
  • the reset signal is applied to the combustion restart airflow control data designating section 434 shown in Fig. 25, and the operation lamp is turned on in step 4134.
  • step 4135 the fan air volume control data is switched and designated from the normal fan air volume control data A shown in FIG. 4 to the fan air volume control data B for air volume up, and the flow proceeds to the ignition operation in step 4100.
  • step 4100 the combustion fan 26 is rotated, ignited, and performs a combustion operation with the fan-up fan air volume control data B specified in step 4134.
  • the combustion restart air flow control data designating section 434 fetches the information of the fan air flow control data used in the previous combustion operation stored in the memory 430, and the combustion operation is stopped by the operation of the A stop control. For example, when the fan air flow control data of B is used, when the combustion is restarted by resetting, the fan air flow control data of D, for example, on the air flow gap side is specified, and this D air flow control data is designated.
  • the ignition operation is performed using the fan air volume control data.
  • the combustion is stopped when the integrated value of the stop constant ER obtained from the detected CO concentration during the combustion operation reaches a predetermined dangerous CO concentration value, and the combustion operation is restarted after the combustion is stopped.
  • the combustion operation is restarted by selecting and specifying the fan air volume control data for increasing the air volume.Therefore, even if the CO concentration reaches the dangerous concentration due to clogging of the exhaust system, etc., combustion is stopped.
  • combustion resumes wind Since the combustion operation is restarted with the amount increased, the shortage of air supply due to clogging of the exhaust system is eliminated by the air volume gap, and the air volume matching the combustion heat is supplied, so the combustion operation is performed.
  • high-concentration c ⁇ gas is not generated again, and combustion operation is not stopped. Thus, combustion operation after restarting combustion can be continued smoothly.
  • a stop constant is determined for each detected CO concentration, and a safety operation for C ⁇ poisoning is performed based on the integrated value of the stop constant, assuming that exhaust gas has leaked into the room.
  • the switching control of the fan rotation control data includes the first function of detecting the negative pressure state based on the CO concentration and switching the rotation control data, and the frame head current sets the threshold value.
  • the second function that detects the negative pressure state and switches the rotation control data when it exceeds the limit, and switches the rotation control data by detecting the negative pressure state and the negative pressure release due to the short-term change of the flame load current. Effectively done by combining with the third function.
  • the flame rod 16 detects the external flame of the combustion flame shown in FIG. 7 when the combustion state is good, a negative pressure state is generated and is caused by the negative pressure state.
  • both the outer flame and the inner flame extend, and the flame mouth 16 detects the inner flame.
  • the outer flame has a high electrical resistivity and the inner flame has a low electrical resistivity, when the frame rod 16 shifts from the external flame detection state to the internal flame detection state due to the generation of a negative pressure state as described above. However, the electrical resistivity decreases, and the frame rod current detected and output from the frame rod 16 increases.
  • the frame rod current value increases when the room is in a negative pressure state, and thus the room is in a negative pressure state when the frame opening current value increases.
  • the fourth embodiment of the present invention relates to a method for restarting the combustion operation after the C0 concentration detected by the C0 sensor reaches a predetermined dangerous concentration and the combustion is stopped by the CO safety device.
  • the combustion operation is easily restarted by the reset operation by the user without performing an inspection or the like.
  • the air flow is switched to the fan airflow control data in which the airflow is shifted in the increasing direction, that is, the combustion operation is restarted in a state where the combustion is improved, so that the combustion is necessary.
  • Sufficient air is supplied to perform combustion. As a result, the concentration of c ⁇ in the exhaust gas can be reduced, and the safety of CO poisoning against CO gas can be improved.
  • a stop constant ER for each concentration detected by the CO sensor is obtained, and each time the stop constant ER is calculated, the stop constant ER is integrated, and the integrated value is compared with a predetermined dangerous CO concentration value.
  • the accurate detection value of the dangerous state of the CO concentration taking into account each CO concentration comprehensively is obtained as the integrated value of the stop constant ER, and the C0 safe operation is performed. It is possible to perform highly reliable C0 safe operation.
  • the degree of indoor negative pressure is detected, and the fan air volume control data is adjusted according to the degree of indoor negative pressure.
  • a fan air volume control data switching control unit is set to switch to the air volume increasing direction when the degree of indoor negative pressure is large, and to set the air volume decreasing direction when the indoor negative pressure is released (or reduced). Therefore, since the fan airflow is controlled according to the degree of the negative pressure in the room, the insufficient air supply due to the negative pressure in the room is eliminated by increasing the airflow, and when the negative pressure in the room is released, the airflow is reduced in the downward direction. As a result, the air flow is controlled to eliminate the excess air flow, so that good combustion operation can be performed without being affected by changes in the indoor negative pressure condition.
  • the amount of combustion heat can be controlled over the entire control range.
  • the degree of indoor negative pressure can be accurately detected, and more accurate fan air volume control according to the degree of indoor negative pressure can be performed.
  • the fifth invention relates to post-fan control after the end of combustion in a negative pressure state. Even if the room is under negative pressure, it is necessary to set the fan speed (blowing capacity) high enough to ensure that the exhaust gas inside the combustion chamber is exhausted from the exhaust port to the outside. However, if the rotation speed of the fan is increased too much, there is a problem since supercooled water lower than the set temperature is discharged when a request for hot water supply is made again. Therefore, in the fifth invention, the post-fan control is a first-stage control in which the fan rotation speed is set to be high so that sufficient exhaust can be performed regardless of the negative pressure state in the room, and then the heat exchanger is cooled too much. The second stage control, in which the fan speed is set as low as possible, and the fan speed control, which is low enough to eliminate the initial fan rotation period before starting combustion when restarting the combustion operation, And a third stage control to be performed.
  • the hot water supply device adopts a forced exhaust type, which is installed indoors, supplies air in the indoors for combustion, and discharges exhaust gas after combustion to the outside through an exhaust pipe.
  • the water heater closes the faucet and temporarily stops tapping, and then reopens the tap within 5 minutes and restarts tapping. It has a so-called Q function that keeps it within 3 degrees above and below.
  • the housing 5111 which is the main body of the water heater 5110, has a box-like shape, and the right side of the housing 511 has a main body supply for taking in room air into the machine.
  • the spirit 5 1 2 has been established.
  • a filter 513 for removing dust and dust is attached inside the main body air supply port 511.
  • a combustion chamber 521 is provided at a substantially central portion in the housing 511, and a heat exchanger 522 for heating the water supply by heat obtained by burning the gas is disposed above the combustion chamber 5221. I have.
  • the heat exchanger 522 has a large number of fin plates attached to a pipe through which water is supplied, and is made of a member having good heat conductivity such as copper.
  • An exhaust port 5 23 is provided at the center of the upper surface of the combustion chamber 5 21, and an air supply port for taking in air that has flowed in from the main body air supply port 5 12 into the combustion chamber 5 2 1 at the bottom right. 24 are provided.
  • the exhaust port 5 2 3 of the combustion chamber 5 2 1 communicates with the exhaust pipe connecting section 5 2 6 protruding from the upper surface of the housing 5 1 1 through the exhaust duct 5 2 5.
  • An exhaust cylinder 527 leading to the outside is connected to the cylinder connection section 526.
  • the exhaust pipe 527 is attached to the exhaust pipe connecting section 526 by an operator when installing the water heater 510.
  • a combustion fan 531 for supplying / exhausting air to / from the combustion chamber 5221 is disposed in the middle of the exhaust duct section 5205, and an exhaust box 5 for performing functions such as reducing the flow velocity of exhaust gas is provided downstream thereof.
  • the combustion fan 531 is a centrifugal fan driven by a motor 5334 having a control circuit 5333 on the rear side, and exhausts exhaust gas from the exhaust port 5223 side of the combustion chamber 5221. Supply and exhaust.
  • a reverse wind plate 535 Inside the exhaust box 532, there is provided a reverse wind plate 535 for preventing the reverse wind from the exhaust pipe 5277 from flowing into the combustion chamber 5221.
  • a C 5 sensor 536 for detecting the concentration of carbon monoxide (CO) in the exhaust gas is attached to the side wall of the exhaust box 532.
  • an anti-vibration box 537 for preventing vibration caused by resonance of the air supplied and exhausted is provided.
  • the burners 541 receive gas for combustion through these. Further, an ignition device 546 is provided adjacent to the burner 541.
  • a water supply pipe 55 1 and a hot water supply pipe 55 2 are connected to the heat exchanger 52 2. Between the water supply pipe 5 5 1 and the hot water supply pipe 5 5 2, a bypass passage 5 5 3 for passing the water supply from the water supply pipe 5 5 1 to the hot water supply pipe 5 5 2 without passing through the heat exchanger 5 2 2 Is provided.
  • the bypass passage 553 By providing the bypass passage 553, the hot water heated by the heat exchanger 522 is mixed at a fixed rate with the water supplied from the water supply pipe 551, and after the temperature of the hot water is lowered, the hot water is discharged. It has become.
  • a water volume sensor 5 5 4 for detecting the presence or absence of water flow, a water input sensor 5 5 5 for detecting the temperature of the water supply, and a water filter for removing the contamination of the water supply 5 5 6 Is provided.
  • a water amount control valve 557 for controlling the amount of hot water, and the temperature of the hot water discharged from the hot water supply device 510.
  • To detect the hot water thermistor 5 5 8 is installed.
  • a main body operation part 5 61 1 "with various operation switches for performing operations on the water heater 5 110 such as temperature setting, and at the lower part, an exhaust pipe extension
  • An exhaust extension changeover switch 562 for setting and registering the distance at the time of installation is provided at an upper right end in the housing 511.
  • An electrical board 563 which controls various kinds of control of the water heater 5110 is provided. Is arranged.
  • a freezing prevention heater 571 for detecting the temperature of the hot water in the heat exchanger 522, and overheating prevention using a thermal fuse
  • a filter switch 574 for detecting a mounting error of the filter 513, and the like are provided.
  • FIG. 31 shows a circuit configuration of water heater 5 10.
  • the electric board 563 of the water heater 5110 is provided with a CPU (Central Processing Unit) 581, which performs a central function of various controls.
  • Various circuit devices are connected to the CPU 581 via various buses 582 such as a data bus and an address bus.
  • ROM (read only memory) 583 is a read-only memory that stores programs executed by the CPU 581 and various fixed data.
  • RAM (random access memory) 5884 is a working memory for storing data temporarily required to execute a program.
  • the bus 582 is connected to the main unit operation unit 561, and an input / output interface circuit unit 585 for inputting and outputting electric signals between various circuit devices and the CPU 581. .
  • Various electrical components such as an exhaust extension switching switch 62, a CO sensor 536, a combustion fan 531, and a water sensor 554 are connected to the input / output interface circuit 585.
  • FIG. 32 shows the flow of the operation performed by water heater 5 10.
  • the operator sets the extension distance of the exhaust pipe in the installed state by the exhaust extension switch 5 62.
  • the extension length of the exhaust stack is 4 meters or less (short distance mode), 4 meters or more and 7 meters or less (medium distance mode), or 7 meters or more and 13 meters or less (long distance mode). Configuration Is done.
  • the water heater 510 is in a standby state in which the Q function is maintained within 5 minutes after the previous stoppage of water supply, and after 5 minutes from the stop of water supply, the sleep state in which the Q function is not maintained become.
  • the water heater 5110 detects that the flow of water has started in the resting state by the water volume sensor 54 (step S101; Y)
  • the water heater 510 first starts the rotation drive of the combustion fan 531 (step S101).
  • Step S102 Thereafter, when the number of revolutions of the combustion fan 531 exceeds a predetermined number of revolutions required for ignition (here, 100 rpm) (step S103; Y), ignition is performed after a prepurge period.
  • the burner 41 is ignited by the device 546 (step S104).
  • step S105 After ignition of the burner 541, proportional control of the gas amount and the like is performed so that hot water at the set temperature is discharged until the flow of water is stopped (step S105). At this time, the rotation speed of the combustion fan 531 is controlled based on the concentration of carbon monoxide detected by the C ⁇ sensor 5336 so that an optimal air volume can be obtained.
  • the gas amount is detected using FF (feed forward amount) calculated from the flow rate, set temperature, and feed water temperature, or FB (feedback amount) calculated from the signal from the tapping thermistor 558. Can be performed.
  • the flow rate is measured by a water flow sensor 554, and the set temperature is a set value by a remote controller or the like.
  • the water supply temperature is measured by the input water thermistor.
  • the gas amount may be detected using a proportional valve current that determines the opening of the gas proportional valve 543.
  • Step S106 When the water supply is stopped (Step S106; Y), the combustion fan 5 is then operated until the 5 minutes to maintain the Q function elapse or until the water supply is resumed within 5 minutes. 31. Post-fan processing (step S107) for continuously rotating 1 is performed.
  • Post-fan processing is divided into three stages.
  • the first stage is a period during which exhaust gas remaining in the combustion chamber 521 and the exhaust stack 527 is exhausted outdoors, and a period during which the combustion fan 531 is rotated at high speed.
  • the second stage in order to maintain the water temperature in the heat exchanger 522 as long as possible within the temperature range that can satisfy the Q function, the number of revolutions of the combustion van 531 is reduced to some extent compared to the first stage. This is the period of rotation.
  • the third stage is However, after cooling the heat exchanger 22 to such an extent that hot water exceeding the allowable upper limit temperature is not discharged even when the combustion fan 5 31 is stopped, immediately after skipping the pre-purge period when passing water In this period, the combustion fan 531 is kept rotating at the lowest possible speed so that the burner 541 can be ignited.
  • the number of revolutions of the combustion fan 531 at each of these stages in the post-fan process and the revolution maintaining time at which the current stage revolution should be maintained until shifting to the next stage are determined by operating the ventilation fan indoors.
  • the pressure is changed depending on whether or not a negative pressure is generated so that the exhaust gas in the combustion chamber 521 is sucked into the chamber, and the extension distance of the exhaust pipe 527.
  • the longer the extension distance of the exhaust stack the more the exhaust resistance increases, and the higher the rotation speed of the combustion fan 531 required to obtain a constant air volume.
  • the longer the exhaust cylinder the longer the time required to finish discharging the remaining exhaust gas to the atmosphere. Therefore, the rotation speed of the combustion fan 531 and the rotation maintaining time of each stage are changed according to the set extension distance of the exhaust stack. Further, when a negative pressure is applied by a ventilator or the like to draw air in the combustion chamber 521 into the room, the air volume is reduced accordingly. Therefore, when a negative pressure is acting, the rotation speed of the combustion fan 531 is set higher than when there is no negative pressure, so that a necessary air volume is secured.
  • the ROM 583 stores in advance a non-illustrated data table in which the number of rotations of the combustion fan 531 and the rotation maintaining time in each of the first to third stages are associated with each other. .
  • the data table is prepared separately for cases where the exhaust cylinder extension distance is short-range mode, middle-distance mode, and long-distance mode with and without negative pressure.A total of six types of data tables are provided. Have been.
  • the data table to be referred to in this post fan process is selected from these six types based on the mode of the exhaust cylinder extension distance set at the time of installation and the presence or absence of negative pressure at the time of combustion stop.
  • the three types of data tables corresponding to the case where there is a negative pressure divide the data in the first stage into three according to the intensity of the negative pressure, and for each division, the number of rotations of the combustion fan 31 Etc. are registered.
  • the number of revolutions of the combustion fan 5 3 1 in the first stage registered in the data table Is the highest when the stack extension distance is in the long-distance mode, and is gradually lower in the order of the medium-distance mode and the short-distance mode.
  • the rotation speed of the combustion fan 531 is lowest when there is no negative pressure, and the higher the negative pressure intensity is, the higher the rotation speed is registered.
  • the longest rotation mode in the first stage registered in the data table is longest in the long-distance mode, and is gradually reduced in the order of the medium-distance mode and the short-distance mode.
  • the exhaust remaining in the combustion chamber 52 1 and the exhaust stack 5 27 can be exhausted to the outside without flowing back into the room, and A high rotation speed and a necessary rotation maintenance time that can sufficiently radiate the residual heat immediately after the stop of combustion so that the overshoot phenomenon does not occur are registered.
  • the first stage by registering the number of revolutions of the combustion fan in detail according to the negative pressure intensity in addition to the presence or absence of negative pressure, it is optimal to prevent exhaust backflow etc. according to the negative pressure intensity when combustion is stopped It is possible to select a different rotation speed.
  • the number of revolutions of the combustion fan 531 in the second stage registered in each data table is the same as that of the first data table registered in the same data table under the same conditions such as the mode of the exhaust cylinder extension distance and the presence or absence of negative pressure.
  • Each value is lower than the number of revolutions in each stage, and each is set so that the air volume is lower than in the first stage. Also, when comparing the second stage of the six types of evening tables, the longer the exhaust cylinder extension distance, the higher the number of revolutions, and the case where negative pressure is present is greater than when there is no negative pressure. High rpm is set.
  • the rotation speed of the combustion fan 531 in the second stage is set so that the cooling amount is reduced as much as possible within a range in which the hot water exceeding the allowable upper limit temperature is not discharged when the hot water is restarted.
  • the time during which the hot water in the heat exchanger 522 and the like can be maintained at a temperature higher than the allowable lower limit temperature becomes longer, and the Q function can be maintained for a longer time.
  • the minimum rotation speed that can be set regardless of the mode of the exhaust cylinder extension distance and the presence or absence of negative pressure is registered.
  • the third stage is a stage after the cooling of the heat exchanger 52 has advanced to such an extent that hot water exceeding the allowable upper limit temperature is not discharged even when the combustion fan 531 is stopped. Cooling It is not necessary to increase the air flow, regardless of the presence or absence of negative pressure and the mode of the exhaust cylinder extension distance
  • the total rotation maintenance time for the first to third stages is 5 minutes for any data table regardless of the mode of exhaust stack extension distance or the presence or absence of negative pressure.
  • the rotation speed of the combustion fan 531 in the first and second stages is set to be higher when there is a negative pressure than when there is no negative pressure. Even if a negative pressure acts to draw exhaust gas from the combustion chamber 52 1 into the room, the combustion fan 531 rotates at a higher speed, and the air volume itself is almost constant regardless of the negative pressure. Is kept. As a result, even if a negative pressure exists, exhaust gas is prevented from flowing back into the room, and when there is no negative pressure, an excessive amount of air is not generated, so that the heat exchanger 522 is subcooled. And the Q function can be maintained for a longer time.
  • the number of rotations of the combustion fan is finely set according to the magnitude of the negative pressure intensity in addition to the presence or absence of negative pressure, so that exhaust backflow is prevented according to the negative pressure intensity when combustion is stopped
  • the optimum rotation speed is selected to prevent excessive cooling.
  • Figure 33 shows the correspondence between the amount of gas burned during combustion and the number of revolutions of the combustion fan.
  • Four types of operation modes of the water heater 5100 are provided: a normal mode, a first improvement mode, a second improvement mode, and a third improvement mode.
  • the lowermost graph 91 corresponds to the normal mode
  • the upper graphs 92, 93, and 94 correspond to the first improvement mode, the second improvement mode, and the third improvement mode, respectively. It corresponds to the mode.
  • the graphs 91 to 94 that determine the rotation speed of the combustion fan 531 in each operation mode show that the required supply / exhaust amount increases with an increase in the gas combustion amount. It is set to increase the rotation speed of 1. The number of revolutions of the combustion fan 531 is determined by the set operation mode and the gas combustion amount at that time.
  • the normal mode is an operation mode corresponding to the case where negative pressure is not applied by a ventilation fan etc.
  • the water heater 5110 operates so that the carbon monoxide concentration falls within an appropriate range by rotating the combustion fan 531 in accordance with the mode.
  • the first improvement mode corresponds to a case where the rotation speed of the combustion fan 531 must be set to be somewhat higher than that in the normal mode in order to keep the carbon monoxide concentration in an appropriate range. In other words, it corresponds to the case where some negative pressure acts and the rotation speed of the combustion fan 531 needs to be set high enough to cancel the negative pressure.
  • the second improvement mode is used when a stronger negative pressure is applied compared to the first improvement mode
  • the third improvement mode is used when a stronger negative pressure is applied than the second improvement mode. This is a corresponding operation mode.
  • the mode of operation changes sequentially during combustion depending on whether the carbon monoxide concentration is in the proper range.
  • the presence or absence of a negative pressure and the negative pressure intensity are determined based on the number of revolutions of the combustion fan 531 required to maintain the concentration of carbon monoxide detected by the C ⁇ sensor 5336 in an optimum range. Has been determined. More specifically, the negative pressure intensity is determined based on which operation mode is set immediately before the stop of combustion.
  • the presence or absence of the negative pressure and the magnitude of the negative pressure intensity are detected during the burning of the burner 541, while the step S105 in FIG. 32 is being executed. Based on the operation mode immediately before the stop of the combustion, the presence or absence of the negative pressure and the negative pressure intensity after the stop of the combustion are estimated, and the rotation speed of the combustion fan 531 after the stop of the combustion is selected.
  • Negative pressure here refers to any action against the action of the combustion fan trying to discharge exhaust gas to the outside of the room.In addition to suction by the ventilation fan, backflow due to strong wind, etc. Exhaust passage pressure loss is also included.
  • FIG. 34 shows a flow of the operation performed by the water heater 5110 in the post-fan processing.
  • step S301 the number of revolutions of the combustion fan 531 in each of the first stage, the second stage, and the third stage, and the time to maintain each stage are determined. That is, one of the six data tables described above is selected based on the presence / absence of a negative pressure immediately before the stop of combustion and the exhaust cylinder extension distance set at the time of installation.
  • the combustion fan 531 is rotated at the first stage rotation speed according to the value registered in the selected data table (step S302), and the time to shift to the second stage is obtained. Until the arrival (Step S303; N), the rotation speed is maintained.
  • step S304 if water flow is confirmed before moving to the second stage (step S304; Y), the flow returns to step S104 in Fig. 32, and the burner 41 is immediately ignited.
  • the number of revolutions of the combustion fan 531 in the first stage is selected according to not only the presence or absence of the negative pressure but also the magnitude of the negative pressure intensity.
  • the exhaust remaining in the combustion chamber 521 and the exhaust pipe 527 after the combustion is stopped is discharged outside through the exhaust pipe 527.
  • the rotation speed at this time is set in consideration of not only the presence / absence of a negative pressure and the length of the exhaust cylinder extension but also the magnitude of the negative pressure strength, even when the ventilation fan or the like is operating, the exhaust air is indoors. It is possible to secure the necessary air volume so as not to flow backward.
  • the combustion fan 531 at high speed the residual heat after the combustion was stopped can be efficiently radiated, and the water flow was restarted relatively shortly after the combustion was stopped (while continuing the first stage). Even so, hot water can be supplied without causing an overshoot phenomenon.
  • Step S305 the number of revolutions of the combustion fan 531 is reduced to the second-stage rotation speed
  • Step S305 the number of revolutions of the combustion fan 531 is reduced to the second-stage rotation speed
  • step S306 N
  • the number of revolutions of the combustion fan 31 is reduced compared to the first stage, so that the supercooling of the heat exchanger 522 is prevented and the Q function is maintained for a longer time can do.
  • step S306; Y When the rotation maintaining time of the second stage has elapsed (step S306; Y), the rotational speed of the combustion fan 531 is reduced to the rotational speed of the third stage (step S308), and the rotation speed of the third stage is reduced. The rotation speed is maintained until the rotation maintaining time of the step elapses (step S309; N). In this way, the rotation of the combustion fan 31 is maintained at the number of revolutions required for ignition, so that the burner 541 can be ignited almost simultaneously with the detection of water flow, regardless of when water flow is resumed, and water that is not heated It is possible to prevent the occurrence of an undershoot phenomenon, which occurs from the water heater 5110.
  • step S309; Y When the rotation maintaining time of the third stage has elapsed (step S309; Y), the rotation of the combustion fan 531 is stopped (step S311), and the post-fan processing is completed. The process returns to the indicated step S101 to be in the sleep state. After that, when there is water flow, a pre-purging process is performed to confirm that the rotation of the combustion fan 531 has reached a specified speed, and then the burner 541 is ignited.
  • step S307 When water flow is resumed in the middle of the second and third stages (step S307; Y or step S310; ⁇ ⁇ ), as in the first stage, Return to step S104 and immediately ignite burner 541.
  • the number of revolutions of the combustion fan 31 is reduced stepwise in the post-fan processing. However, in the second and subsequent stages, the number of revolutions of the combustion fan 31 is reduced gradually. You may.
  • the rotation speed of the combustion fan 531 in the first stage is changed according to the magnitude of the negative pressure, but the rotation speed of the combustion fan 531 in the second and subsequent stages is also changed to the negative pressure. You may make it set finely according to the magnitude of intensity
  • the reason for considering the negative pressure intensity in the first stage is to prevent the backflow of exhaust gas properly regardless of the magnitude of the negative pressure. If the rotation speed of the combustion fan 531 is controlled in consideration of the strength, the Q function can be maintained for a longer time.
  • the rotation speed of the combustion fan 5 The rotation maintenance time at this stage was registered in the data table in advance, but the presence or absence of negative pressure, the length of the exhaust stack, and the temperature of the heat exchanger 5
  • the rotation speed and the rotation maintaining time of the combustion fan 531 may be dynamically controlled based on the above.
  • the combustion fan 531 is rotated at a rotation speed at which the amount of heat radiation is minimized within a range in which hot water exceeding the allowable upper limit temperature is not discharged.
  • combustion is performed so that the temperature of the hot water in the heat exchanger 522 is maintained as high as possible without exceeding the upper limit of the allowable range.
  • the number of rotations of the combustion fan 531 is controlled so that the number of rotations is as low as possible.
  • the presence or absence of the negative pressure is detected based on the concentration of carbon monoxide detected immediately before the stop of the combustion, but may be detected by a separately provided negative pressure sensor. Good. Further, the presence or absence of negative pressure and the magnitude of exhaust resistance may be detected based on the amount of current required when rotating the combustion fan 531 at a predetermined rotation speed.
  • a negative pressure when a negative pressure is generated by a ventilation fan or the like, the exhaust resistance increases and the amount of air blows decreases even at the same rotation speed, so that the amount of current required to rotate the combustion fan 531 at a certain rotation speed or Power consumption is reduced.
  • the presence or absence of a negative pressure can be detected based on the current rotational speed and the current amount at that time. In this case, it is possible to detect the presence or absence of a negative pressure even after the combustion has stopped.
  • a method is employed in which combustion exhaust is sucked from the exhaust side of the combustion chamber 521, but a forced exhaust system is employed in which indoor air is taken in for combustion and exhaust is discharged to the outside.
  • the combustion air may be pushed in from the air supply side of the combustion chamber 52 1.
  • the smaller the combustion amount the more easily the effect of air shortage occurs. Therefore, the relationship between the combustion amount and the fan speed shown in 33 may be as shown by the dotted line.
  • the water heater according to the fifth embodiment of the present invention it is detected whether or not a negative pressure for sucking air in the combustion chamber into the room is generated, and the number of rotations of the combustion fan after stopping the combustion is detected. Is changed according to the presence or absence of a negative pressure, so that it is possible to prevent exhaust gas from flowing back into the room even when the room is in a negative pressure state.
  • the combustion fan is initially driven at a high speed. Can be prevented from occurring.
  • the rotation of the combustion fan is gradually reduced as time elapses after stopping the combustion, so that the heat exchanger is not overcooled in a short time, and the Q function can be maintained for a longer time.
  • the combustion fan rotation was maintained at a configurable minimum speed, so that when tapping was resumed, the burner could be ignited immediately and the unheated water was temporarily removed. It is possible to prevent the occurrence of the undershoot phenomenon due to the erroneous appearance.
  • the sixth invention relates to a structure of a check valve at an exhaust port.
  • the exhaust gas from the combustion chamber provided in the appliance case is provided at the most downstream of the exhaust path communicating with the combustion chamber. It was forced through a cylinder and by a combustion fan.
  • a chimney force having an inner diameter substantially equal to that of the exhaust stack.
  • the tip of this chimney extends to the outside, and when the combustion fan is stopped or when the wind is strong, the exhaust air may flow back into the appliance case through the exhaust pipe due to the air blown from the chimney tip opening. There is.
  • Such backflow of exhaust gas causes a problem that dust and the like mixed in the backflow air adhere to the inner wall of the combustion chamber, thereby causing poor combustion.
  • a so-called bath fly valve is provided inside the exhaust stack so as to close in a direction in which exhaust gas does not flow backward.
  • An exhaust sensor for detecting a combustion abnormality is provided at an appropriate position in the exhaust path, and the information obtained from the exhaust sensor is comprehensively analyzed to control the rotation of the combustion fan.
  • the state of the exhaust gas discharged from the combustion chamber varies depending on the position in the exhaust path.Therefore, a special member to reduce this is provided in the exhaust path, and the optimal installation location of the exhaust sensor is determined. It was necessary to select through various experiments, which led to an increase in cost and an increase in design man-hours.
  • FIG. 35 to FIG. 43 show an embodiment of the sixth invention.
  • the combustion device 6 10 according to the present embodiment is a gas water heater of a gas forced exhaust combustion type installed indoors.
  • a combustion chamber 6300, a combustion fan 636 for air supply and exhaust, a control device for controlling the combustion operation, and the like are housed in the appliance case 611 of the combustion device 610. It is configured to take in air from the intake opening 613 provided in the front cover 6111B, and discharge the exhaust gas after combustion outside through the exhaust pipe 6444. As shown in FIG.
  • the instrument case 6 11 is composed of a box-shaped case body 6 11 A with an open front side, and a detachable front cover 6 that covers the front side opening of the case body 6 11 A. 1 1B.
  • a notch 6 12 through which the exhaust pipe 6 4 4 passes is formed in the ceiling wall of the case body 6 11 A.
  • An intake opening 613 for taking in combustion air is provided in a horizontally-long rectangular shape at a position below the approximate center of the front cover 611B.
  • the intake opening 6 13 is provided with an intake filter 6 14 for preventing intrusion of dust and the like.
  • An opening 615 for a remote controller is provided below one end of the opening 615 for intake.
  • the opening 615 is immovably positioned when the remote controller 616 matches, and the operation surface of the remote controller 616 is exposed outside the instrument case 611.
  • the remote control 616 is provided with various switches for predetermined operations such as ONZOFF of combustion operation and designation of a set temperature of hot water supply.
  • a heat exchanger 631 for warming water with heat obtained by burning gas is disposed above a combustion chamber 630 in the case body 611A.
  • a burner connected to a gas supply pipe is provided in the combustion chamber 63 0, and a water supply pipe 6 33 and a hot water supply pipe 6 32 are connected to the heat exchanger 63 1.
  • an anti-vibration box 634 is provided beside the combustion chamber 630 and the heat exchanger 631.
  • an exhaust case 635 for exhausting exhaust gas from the combustion chamber 630 is provided, and the exhaust case 6353 is rotated by a motor 6337.
  • a suction port for a driven combustion fan 636 is provided.
  • the exhaust case 635 is connected to a chamber room 640 provided above the vibration isolating box 34 via an exhaust duct 358.
  • an exhaust case 635, an exhaust duct 638, a chamber 640, and an exhaust pipe 644 constitute an exhaust path.
  • the chamber 640 is a box-shaped space formed in the shape shown in FIGS. 35 to 384, and has a larger cross-sectional area perpendicular to the exhaust gas flow direction than that of the exhaust duct 636. In addition, it has a function to reduce the flow velocity of the exhaust flow from the combustion fan 636.
  • a square exhaust inlet 642 is opened in the front wall 641 of the chamber room 64, and an exhaust duct 638 is connected to the exhaust inlet 642. Further, an exhaust pipe 644 projecting upward from the instrument case 611 is connected to the ceiling wall 644.
  • the exhaust port 644 of the chamber 640 is displaced between an open state in which the exhaust port 644 is opened and exhaust gas is introduced, and a closed state in which the exhaust port 644 is closed to prevent exhaust gas from flowing back.
  • a possible non-return valve 650 is provided. More specifically, the non-return valve 650 pivots via a pivot pin 652 with respect to a guide member 653 fixed above the upper end edge of the exhaust port 642. Supported.
  • the check valve 65 is made of a plate processed into a shape having a size that can block the exhaust port 642, and the upper edge 65 Oa has a pivot shaft.
  • a knuckle portion 651 through which the pin 652 is inserted in the left-right direction is formed.
  • the guide member 653 is provided with mounting pieces 6554a, 6554b for fixing above the upper edge of the exhaust port 642, and a pivot pin. And a cover portion 655 in which a rotating hole 56 through which the hole 652 is inserted is formed.
  • An exhaust sensor 661 for detecting the concentration of carbon monoxide in the exhaust gas is attached to one end of the upper end of the chamber 640.
  • a sensor case 660 shown in FIG. 44 may be provided at a position shown by a two-dot broken line in FIG.
  • the check ring 65 When the check ring 65 is in the closed state, there is a gap between the exhaust inlet 642 and the check ring 65, but above the guide hole, as shown in FIG.
  • the member 653 By the member 653, the other three sides are closed by the cut-and-raised exhaust inlet 642 shown in FIG.
  • a cover member 62 is attached to one side wall of the case body 611A, and a control device is housed inside the cover member 62.
  • the controller mainly controls the combustion operation by variably controlling the gas supply amount so as to produce hot water at the set temperature, and controlling the rotation of the combustion fan 636 to match the gas amount.
  • Yes consists of a microcomputer including a CPU, ROM, RAM, etc.
  • the exhaust generated in the combustion chamber 6 30 is first guided to the exhaust case 6 35 by the rotation of the combustion fan 6 36, and then the exhaust duct 6 3 8
  • the exhaust gas is guided to the chamber 640 through the chamber 640, and the flow velocity of the exhaust flow decreases in the chamber 640, and is finally discharged from the exhaust pipe 644 to the outside of the instrument case 611.
  • the exhaust pressure causes the check valve 650 at the exhaust inlet 624 of the chamber 640 to move to the pivot pin 65. It swings easily and upwardly around the center of rotation of 2 to guide the exhaust gas smoothly into the chamber 640.
  • the non-return valve 650 is located inside the exhaust pipe 644 having a relatively narrow flow path as in the prior art, so that there is no extra resistance to the exhaust flow, and the chamber chamber 640 having a wide flow path is provided. Since the check valve opens and closes, the loss of pressure at the time of exhaustion due to the check valve itself can be minimized.
  • the check valve 6550 When the exhaust gas does not flow into the chamber chamber 64 from the exhaust inlet 642, the check valve 6550 is closed by its own weight. Also, when a strong wind is blown in the reverse flow direction from the exhaust pipe 644, the check valve 650 is locked in the closed state. With such a simple configuration, it is possible to reliably prevent the backflow of the outdoor air in the exhaust path in the chamber chamber 640.
  • the exhaust flow does not directly hit the periphery of the exhaust sensor 661, as shown in FIG.
  • the exhaust gas sensor 661 can accurately detect the exhaust gas condition such as the concentration of carbon monoxide.
  • the combustion device according to the present invention is not limited to the above-described embodiment, and may have various specific configurations.
  • the exhaust port of the chamber and the check valve for opening and closing the exhaust port may be used. However, it is not limited to the illustrated shape and size. Further, in the present embodiment, the combustion device is described as a water heater, but may be applied to other devices such as a bath kettle and a heater.
  • the exhaust gas flows from the exhaust stack upstream of the exhaust stack.
  • a chamber with a large passage area is provided.
  • the seventh invention relates to a combustion device capable of detecting a negative pressure state in a room with high sensitivity, and relates to a combustion device detecting a negative pressure state in a room using the flame rod current described above.
  • a seventh invention is a combustion device capable of effectively detecting a negative pressure state in a room by using the flame rod current.
  • the flame shown in Fig. 7 has high resistance to external flames and low resistance to internal flames. Therefore, when a constant voltage is applied to the electrode pair of the frame rod, the current is low when the electrode pair of the frame rod is located in the external flame, and the current is low when the electrode pair of the frame rod is located in the internal flame. Get higher. Therefore, first, as shown in Fig. 6 and Fig. 10, when the flame load current exceeds the upper threshold, the room is in a negative pressure state, and when the flame load current falls below the lower threshold, the room reduces the negative pressure. State, that is, normal state
  • the fixed threshold value shown in FIG. 10 is used, for example, for determining when the combustion device is ignited.
  • the variable threshold shown in Fig. 10 is used for judgment during combustion control after ignition.
  • FIG. 45 shows a modified example in the case where the negative pressure state in the room and its release are detected by the flame rod current of the seventh invention.
  • two frame rod electrode pairs F 1 and F 2 having different heights are provided near the burner 8.
  • 1 and? 2 indicates a frame rod electrode pair.
  • the flame size differs depending on the combustion capacity, so that the frame rods with different heights are used to detect the negative pressure state and its release with high accuracy over a wide range of combustion capacity.
  • An electrode pair is provided.
  • the frame rod electrode pair F1 is arranged such that its tip is located in the external flame in a low combustion capacity state.
  • the frame rod electrode pair F2 is arranged such that its tip is located in the outer flame in a high combustion capacity state.
  • the negative pressure state and its release are detected mainly in accordance with the flame rod current from the frame rod electrode pair F1.
  • the combustion capacity is high, mainly the flame rod electrode pair F 2
  • the negative pressure state and its release are detected according to these frame rod currents. As a result, highly sensitive detection can be achieved.
  • FIG. 46 is a schematic circuit diagram for supplying a voltage V in to the frame rod electrode pair.
  • a commercial AC voltage AC is supplied to an input power supply circuit 700 in the combustion device, and the input power supply circuit 700 outputs a DC voltage Vout. Further, this DC voltage Vout generates an input voltage Vin that is optimal for the frame rod electrode pair FR by the transformer 720.
  • the DC voltage V 0 ut or the input voltage V in may fluctuate due to fluctuations in the commercial power supply.
  • the frame rod current fluctuates with the fluctuation of the voltage V out or V in. Such fluctuations may cause erroneous detection of the above-described negative pressure state or negative pressure release.
  • FIG. 48 is a diagram showing the flame rod current with respect to the combustion capacity.
  • the solid line b shows the current value when the appropriate input voltage V in is given to the frame rod electrode pair.
  • the frame current at that time rises as shown by the dashed line a.
  • the frame rod current at that time decreases as indicated by the dashed line c. Therefore, for example, when the input voltage V in rises, it is expected that the frame rod current IPa exceeding the upper threshold value indicated by the broken line is detected, and the negative pressure state is erroneously determined.
  • the correction is performed using the correction value K in FIG. 47 so that the frame rod current I pa becomes the correct current I pb.
  • the combustion device is controlled by a control board using a microcomputer. Therefore, after the control to change the combustion capacity is performed, the opening of the proportional valve is opened, and accordingly, the flame increases, and a certain system delay time is required until the flame rod current rises and is detected.
  • FIG. 49 shows that the actual frame rod current 712 lags the time on the horizontal axis with respect to the gas amount control command 710 shown by the solid line.
  • the frame rod current 712 follows the gas amount control command 710 with a delay of the delay time Ts.
  • An upper threshold value Pu and a lower threshold value PL of the frame rod current are set in advance for each of the gas amounts 710. Therefore, in the present embodiment, the detected frame rod current 712 is determined by the upper and lower thresholds P with respect to the gas amount 7 10 at a time before the system delay time T s from the time of the detection (at this time).
  • a comparison is made based on U1 and PL1 to determine whether the state is a negative pressure state or negative pressure release.
  • FIG. 50 is a diagram for explaining a delay time in detecting whether a negative pressure state or a negative pressure release is performed in accordance with a change in the frame ⁇ current.
  • T s the system delay time
  • TG the delay time required from the time when the frame rod detects a variable change to the time when the accompanying change in the frame rod current is detected. Therefore, as shown in FIG. 50, the amount of change in the frame load current within the time Tth period, which is just before the delay time TG from the current time, is detected, and the negative pressure state and the negative pressure release described above are detected. It is preferable to detect any one of the following and a sudden negative pressure state.
  • the method of monitoring changes in flame rod current is a simpler method for detecting negative pressure because it is not necessary to consider the magnitude of the combustion capacity.
  • the state of the flame also changes at the same time.
  • the change in the flame current in the transient state does not reflect the negative pressure state or the negative pressure release in the room. Therefore, in order to eliminate such noise, when the combustion capacity is changed, the negative pressure monitoring based on the change in the flame rod current is not performed until the state of the opening of the gas proportional valve is stabilized.
  • FIG. 51 is a diagram showing the relationship between the proportional valve opening and time when the combustion capacity is changed. If the proportional valve opening greatly fluctuates for a predetermined period TW from the reference point before the delay time TD required for proportional valve control from the present time, negative pressure monitoring is performed based on the change in the frame rod current at that time. Absent.
  • the negative pressure state in the room and its release can be efficiently detected in a short time using the frame rod current. Therefore, this frame is used in indoor-installed combustion devices that need to perform combustion control according to the indoor negative pressure state. Providing a negative pressure monitoring mechanism using the mud current enables more accurate combustion control. Industrial applicability
  • the combustion device or the water heater according to the present invention can solve various problems caused by a negative pressure in the room when installed in the room.
  • a negative pressure in the room even if the room is in a negative pressure state, it is possible to ignite the wrench under optimal air volume control, and to reduce ignition errors.
  • the combustion capacity is reduced in a negative pressure state in the room, it is possible to temporarily avoid a state of insufficient supply air volume.
  • the supply airflow is controlled to a high level to prevent poisoning of carbon monoxide. be able to.
  • a simple check valve is provided to eliminate pressure loss in a normal exhaust state, and to reliably prevent a reverse flow from the exhaust port even when the room is in a negative pressure state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

A combustion apparatus can minimize a burner ignition failure by optimizing control on an air volume supplied during burner ignition at startup of combustion in accordance with a negative pressure state in a chamber. Further, during combustion control, the combustion apparatus detects a negative pressure state in the chamber from a flame rod current and an output of a carbon monoxide sensor to increase a supplied air volume during a period of time, in which relieving of the negative pressure state in the chamber is retarded when a combustion capacity is lowered, thereby avoiding a deficiency of the supplied air quantity. Exhaust gas can be surely discharged outside of the chamber by setting a post fan control air supply capacity after combustion in accordance with the negative pressure state in the chamber. Further, a check valve adapted to close by self-weight and open by an exhaust gas pressure is provided in an exhaust gas path to surely prevent an exhaust gas from counterflowing into the combustion chamber from an exhaust port when the chamber becomes negative in pressure. Further, a flame rod current detects the negative pressure state in the chamber and releasing of such state, and an air supply capacity of a combustion fan is correspondingly controlled to maintain an optimum air volume.

Description

明 細 書  Specification
燃焼装置 技術分野 Combustion equipment Technical field
本発明は、 室内に設置される給湯器等の燃焼装置に関し、 特に室内が燃焼室に 対して負圧状態の時の燃焼制御の改良に関するものである。  The present invention relates to a combustion device such as a water heater installed in a room, and more particularly to an improvement in combustion control when the room is under a negative pressure with respect to the combustion chamber.
図 1には、 給湯器 1が室内に設置されている例が示されている。 この種の給湯 器は、 燃焼ファンを回転してパーナにガス燃料を供給し、 パーナを点火させて火 炎を形成し、 熱交換器を通る水を加熱することで、 設定温度の湯を作り出し、 こ の湯を台所等の所望の給湯場所に導く。 なお、 給湯器 1の排気側には一酸化炭素 (以下単に C O ) センサ 28が設けられ、 排気ガス中の C O濃度が C Oセンサ 28に より検出され、 C 0濃度が危険濃度に達したときに燃焼を停止する等の C〇安全 手段が設けられる。  FIG. 1 shows an example in which water heater 1 is installed indoors. This type of water heater rotates the combustion fan to supply gas fuel to the wrench, ignites the wrench to form a flame, and heats water passing through the heat exchanger to produce hot water at a set temperature. Guide this hot water to a desired hot water supply place such as a kitchen. In addition, a carbon monoxide (hereinafter simply referred to as CO) sensor 28 is provided on the exhaust side of the water heater 1, and the CO concentration in the exhaust gas is detected by the CO sensor 28, and when the CO concentration reaches a dangerous concentration. C〇 safety measures such as stopping combustion will be provided.
通常、 この種の給湯器において、 パーナの点火時には、 その点火時のガス供給 量に対応させたファン回転数で燃焼ファンを回転して点火を行う。 しかし、 最近 の住居は気密性が高く、 例えば、 換気扇 2やレンジフードが起動されると、 室内 が燃焼装置に対して負圧状態となり、 パーナの点火を行う際に、 燃焼ファンの給 気量が不足状態となり、 点火ミスを起こす問題が生じる。  Normally, in this type of water heater, when the burner is ignited, the combustion fan is rotated at a fan speed corresponding to the gas supply amount at the time of the ignition to ignite. However, recent houses have high airtightness.For example, when the ventilation fan 2 or the range hood is activated, the interior of the room is in a negative pressure state with respect to the combustion device, and when the burner is ignited, the amount of air supplied by the combustion fan is increased. Is in shortage, causing a problem of misfiring.
この点火ミスを起こしたときは、 再び点火動作を繰り返すが、 その再点火の動 作も同じ燃焼ファンの回転数で行う方式であるため、 室内の負圧状態が続いてい る場合は、 再び給気不足の状態となり、 点火ミスが再び生じ、 点火動作を繰り返 し行っても点火火炎を安定に得ることができなレ、。  When this ignition error occurs, the ignition operation is repeated again.However, since the reignition operation is performed at the same rotation speed of the combustion fan, if the indoor negative pressure condition continues, the supply operation is repeated. Insufficient power, an ignition error occurs again, and the ignition flame cannot be obtained stably even if the ignition operation is repeated.
第 2に、 室内が負圧状態である場合に、 燃焼機器の燃焼能力を低下する方向に 変更したときに、 室内の負圧状態の緩和への変化が緩慢であるため、 一時的な過 剰負圧状態に起因して燃焼機器の燃焼状態が空気不足により悪化することが出願 人らの実験等により判明した。  Secondly, when the room is under negative pressure and the combustion equipment is changed in a direction to reduce the combustion capacity, the negative pressure inside the room is gradually changed to a moderate level. Experiments conducted by the applicants have shown that the combustion state of the combustion equipment is deteriorated due to the lack of air due to the negative pressure state.
第 3に、 一般に、 高濃度の C〇 (一酸化炭素ガス) が検出されて燃焼停止が行 われる要因として、 排気詰まり等の排気系の異常の場合と、 燃焼装置の空気取り 入れ口に設けたフィル夕の目詰まり等の給気系の異常の場合とがある。 給気系の 異常の場合には、 フィルタを清掃して、 フィル夕の目詰まりをなくすことによりThird, in general, high concentrations of C〇 (carbon monoxide gas) are detected and the combustion is stopped when there is an abnormality in the exhaust system such as clogging of the exhaust gas, or when it is installed in the air intake of the combustion device. In some cases, the air supply system may be abnormal such as clogging in the evening. Air supply In the event of an abnormality, clean the filter to eliminate clogging
、 正常な燃焼運転を再開できる。 そのため、 C O安全装置により燃焼停止がされ た後においても、 例えば、 燃焼装置の運転スィッチをオフして電源を一旦切って から再び運転スィッチをオンすることにより、 燃焼運転の制御プログラムがリセ ッ トされて、 燃焼運転を再開できるよう。 Normal combustion operation can be resumed. Therefore, even after the combustion is stopped by the CO safety device, for example, the combustion operation control program is reset by turning off the operation switch of the combustion device, turning off the power once, and then turning on the operation switch again. Being able to restart the combustion operation.
しかしながら、 排気詰まり等の排気系の異常のために c〇濃度が危険濃度に達 して燃焼停止が行われた場合には、 前記排気詰まりによって給気の不足状態が発 生し C〇濃度が高くなり、 燃焼が停止されたものである。 従って、 C O安全装置 により燃焼が停止された後に、 リセッ トして燃焼運転を再開したとしても、 排気 詰まりの異常は解消されていないので、 燃焼再開後、 C O濃度の高い排気ガスが 再び発生し、 燃焼再開の直後に再び C O安全装置が動作して燃焼運転が停止され However, if the c〇 concentration reaches the dangerous concentration and combustion is stopped due to an exhaust system abnormality such as exhaust clogging, the clogging of the exhaust causes a shortage of air supply and the C〇 concentration decreases. It has risen and combustion has stopped. Therefore, even if the combustion is stopped by the CO safety device and reset and the combustion operation is restarted, the exhaust clogging abnormality has not been resolved, and after the combustion restarts, exhaust gas with high CO concentration is generated again. However, immediately after restarting combustion, the CO safety device operates again and combustion operation is stopped.
、 燃焼装置を円滑に使用できなくなる。 However, the combustion device cannot be used smoothly.
また、 排気ガスが室内に洩れているような場合には、 C O安全装置が動作した 時点で、 かなり濃度の高い C Oガスが室内に拡散しており、 その後、 リセッ トし て燃焼運転が再開されたときには、 再度高濃度の C 0ガスが室内に洩れることと なって非常に危険である。  If the exhaust gas leaks into the room, when the CO safety device operates, the CO gas with a considerably high concentration is diffused into the room, and then reset and the combustion operation is restarted. When this happens, high-concentration CO gas leaks into the room again, which is extremely dangerous.
c〇安全装置が動作して燃焼が停止されても、 リセッ ト操作により簡単に燃焼 運転が再開できるので、 一般の利用者は、 排気詰まり等の異常によって給気量が 不足状態にあるにもかかわらず、 点検を行わずに燃焼運転を再開してしまう場合 が多く、 そのため、 安全性の上でさらなる改善が望まれている。  c) Even if the safety device operates and the combustion is stopped, the combustion operation can be easily restarted by the reset operation. Nevertheless, in many cases, combustion operation is restarted without inspection, and further improvement in safety is desired.
第 4に、 従来の給湯機は、 通水が無くなり燃焼室での燃焼を停止させたとき、 ほぼ同時に給排気用の燃焼ファンを止めたり、 あるいは燃焼を停止した後一定時 間が経過するまでの間、 予め定めた一定回転数で燃焼ファンを作動させ、 燃焼室 や排気筒に残留する排気を排出する。 室内の空気を給気し、 排気筒を通じて排気 を室外へ排出する強制排気式 (F E式… Forced Exhaust式) の給湯機では、 室内 で換気扇等が作動しているとき、 燃焼室内の排気が室内へ吸い出される向きの負 圧が加わる。 そこで、 特に F E式の給湯機では、 通常、 換気扇等による負圧が働 いても排気が室内へ逆流しないよう、 燃焼後に作動させる燃焼ファンの回転数を 十分高い値に予め設定する。 また、 近年、 給湯機の快適性をより向上させるため、 出湯を一旦停止させた後 一定時間内に出湯を再開したとき、 停止前の設定温度から大幅な温度変動が起き ることなく湯を出すことのできる機能 (Q機能) を備えた給湯機が提案されてい る。 Fourth, in conventional water heaters, when water flow stops and combustion in the combustion chamber is stopped, the combustion fan for air supply and exhaust is stopped almost simultaneously, or until a certain time elapses after stopping the combustion. During this period, the combustion fan is operated at a predetermined constant number of revolutions to discharge the exhaust remaining in the combustion chamber and exhaust stack. In a forced-exhaust water heater (FE type: Forced Exhaust type), which supplies indoor air and discharges exhaust gas to the outside through an exhaust pipe, the exhaust gas in the combustion chamber is exhausted when a ventilation fan or the like is operating indoors. Negative pressure is applied in the direction to be sucked out. Therefore, especially in the case of the FE type water heater, the rotation speed of the combustion fan to be operated after combustion is set in advance to a sufficiently high value so that the exhaust gas does not flow back into the room even if the negative pressure of the ventilation fan or the like works. In recent years, in order to further improve the comfort of the water heater, when the hot water is temporarily stopped and then restarted within a certain period of time, the hot water is supplied without any significant temperature fluctuation from the set temperature before the stop. A water heater equipped with a function (Q function) that can do this has been proposed.
従来の燃焼停止後に燃焼ファンをすぐに停止させる給湯機では、 室内が負圧状 態のとき、 燃焼室や排気筒に残留する排気が室内へ逆流して悪臭等が発生してし まう。 また、 燃焼を停止した直後は、 熱交換器がまだ高温状態であり、 熱交換器 内等の水が加熱されてしまう。 このため、 燃焼停止後すぐに通水を再開したとき 、 設定温度を越える高温の湯が一時的に出湯されるオーバーシユート現象が生じ る。 前回の出湯から所定時間以内に再び出湯する場合に、 設定温度に対して許容 上下限温度範囲内 (たとえば ± 3で) の湯温変動に収めることが利用者にとって 快適である。  In a conventional hot water heater that immediately stops the combustion fan after stopping combustion, when the room is in a negative pressure state, the exhaust gas remaining in the combustion chamber and the exhaust stack flows back into the room, generating odor and the like. Immediately after the combustion is stopped, the heat exchanger is still at a high temperature, and the water inside the heat exchanger will be heated. For this reason, when the flow of water is restarted immediately after the combustion is stopped, an overshoot phenomenon occurs in which hot water exceeding the set temperature is temporarily discharged. It is comfortable for the user to keep the temperature within the allowable upper and lower limit temperature range (for example, ± 3) with respect to the set temperature when tapping again within a predetermined time from the previous tapping.
一方、 燃焼停止後一定時間が経過するまでの間、 高回転で燃焼ファンを回転さ せることにより、 換気扇等による負圧があっても室内への排気の逆流を防ぐこと ができる。 さらに、 高速で燃焼ファンを回転させるので燃焼停止後の余熱を十分 に放熱でき、 出湯が再開された際に、 許容上限温度を越える高温の湯が出湯され る、 オーバ一シュート現象の発生を防止することができる。  On the other hand, by rotating the combustion fan at a high speed until a certain time elapses after stopping the combustion, it is possible to prevent exhaust gas from flowing back into the room even if there is a negative pressure due to a ventilation fan or the like. In addition, since the combustion fan rotates at high speed, the residual heat after stopping the combustion can be sufficiently dissipated, and when hot water is restarted, hot water exceeding the allowable upper limit temperature is discharged, preventing the overshoot phenomenon. can do.
ところが、 通水後バーナーを点火するまでに時間がかかると逆に熱交換器内の 水が低温下し、 許容下限温度を下回るような低温の湯が一時的に出てしまう。 か かるアンダーシユート現象も、 Q機能確保の為には避けなければならない。 本発明は上記の室内の負圧状態に起因する一連の問題を解決することを目的と する。  However, if it takes time before the burner is ignited after passing the water, the water in the heat exchanger will be cooled down, and low-temperature hot water below the allowable lower limit temperature will be temporarily discharged. Such undershoot phenomena must also be avoided to ensure the Q function. An object of the present invention is to solve a series of problems caused by the above-described negative pressure state in a chamber.
本発明の目的は、 点火ミスを生じたときにはその後の再点火によつて確実に点 火火炎を安定に形成し、 点火後の燃焼運転に際しては、 排気ガス中の C O濃度や 室内の負圧の程度に応じてファン風量を適切に制御して良好な燃焼制御が可能な 燃焼装置を提供することにある。  It is an object of the present invention to ensure that when an ignition error occurs, a re-ignition is performed to ensure stable formation of a point flame, and that during combustion operation after ignition, the CO concentration in the exhaust gas and the negative pressure in the room are reduced. An object of the present invention is to provide a combustion device capable of appropriately controlling a fan air flow according to a degree and performing good combustion control.
更に、 本発明の目的は、 燃焼機器が設置されている室内が通常状態でも負圧状 態でも点着火をより確実に達成できる燃焼機器を提供することにある。  It is a further object of the present invention to provide a combustion device capable of more reliably achieving spot ignition regardless of whether a room in which the combustion device is installed is in a normal state or a negative pressure state.
更に、 本発明の目的は、 室内が負圧状態の時の燃焼能力の低下変更時に、 空気 不足による燃焼状態の悪化を回避することができる燃焼装置を提供することにあ る Further, an object of the present invention is to reduce the combustion capacity when the room is in a negative pressure state, An object of the present invention is to provide a combustion device capable of avoiding deterioration of a combustion state due to shortage.
更に、 本発明の目的は、 C O安全装置が働いて燃焼停止が行われた後に、 リセ ッ トして燃焼運転を再開する際には、 給気の不足状態を解消して円滑に燃焼運転 を継続することができると共に、 燃焼再開後の排気ガス中の C 0濃度の低減を図 ることができる安全性に優れた燃焼装置を提供することにある。  Further, an object of the present invention is to eliminate the state of air supply shortage and smoothly perform the combustion operation when resetting and restarting the combustion operation after the CO safety device operates and the combustion is stopped. An object of the present invention is to provide a combustion apparatus which can be continued and which can reduce the C0 concentration in exhaust gas after restarting combustion and has excellent safety.
更に、 本発明の目的は、 室内が負圧状態になっても室内に排気が逆流すること を防止し得るとともに、 出湯が再開された際における湯温の変動を許容温度範囲 内に収める Q機能を長時間に渡って維持することのできる給湯機を提供すること (こめる。  Further, an object of the present invention is to prevent the exhaust gas from flowing back into the room even when the room is in a negative pressure state, and to keep the fluctuation of the hot water temperature within the allowable temperature range when tapping is resumed. To provide a water heater that can be maintained for a long time.
更に、 本発明の目的は、 排気経路における圧力損失を最小限に抑えつつ、 排気 経路での排気の逆流を簡易な構成で防ぐことができ、 また、 コストアップを招く ことなく、 排気センサによる排気の異常を適切に検出することができる燃焼装置 を提供することにある。  Furthermore, an object of the present invention is to minimize the pressure loss in the exhaust path, to prevent the exhaust gas from flowing back in the exhaust path with a simple configuration, and to reduce the exhaust gas generated by the exhaust sensor without increasing the cost. An object of the present invention is to provide a combustion device that can appropriately detect an abnormality in the combustion.
更に、 本発明の目的は、 室内の負圧状態と負圧状態の解除とを迅速に検出し、 それに伴い燃焼ファンの回転数を最適に制御することができる燃焼装置を提供す とにのる 発明の開示  Further, it is an object of the present invention to provide a combustion apparatus capable of quickly detecting a negative pressure state in a room and releasing the negative pressure state, and thereby optimally controlling the rotation speed of a combustion fan. Disclosure of the invention
上記目的を達成する第 1の本発明は、 燃焼を行うパーナと、 パーナ点火手段と A first aspect of the present invention that achieves the above object is a burner that performs combustion,
、 前記パーナの火炎の大小を検出する火炎検出センサと、 前記パーナに給排気を 行う燃焼ファンと、 前記燃焼ファンの送風能力を制御する風量制御部とを有し、 室内に設置される燃焼装置において、 A flame detection sensor that detects the magnitude of the flame of the parner; a combustion fan that supplies and exhausts air to and from the parner; and an air volume control unit that controls a blowing capacity of the combustion fan. At
前記風量制御部は、 前記室内が第 1の圧力状態の時に前記燃焼ファンの送風能 力を第 1の送風能力に制御し、 前記室内が前記第 1の圧力状態より低く燃焼装置 に対して負圧状態である第 2の圧力状態の時に前記燃焼ファンの送風能力を前記 第 1の送風能力よりも高い第 2の送風能力に制御し、 前記第 1又は第 2の送風能 力の一方の送風能力に制御した状態で燃焼開始した時に、 点火されたパーナの火 炎が立ち消えした時は、 前記第 1又は第 2の送風能力の他方の送風能力に制御し て再度燃焼開始を行うことを特徴とする。 The air volume control unit controls the blowing capacity of the combustion fan to a first blowing capacity when the room is in the first pressure state, and the room is lower than the first pressure state and has a negative pressure with respect to a combustion device. Controlling the blowing capacity of the combustion fan to a second blowing capacity higher than the first blowing capacity when in the second pressure state, which is a pressure state, wherein one of the first or second blowing capacity is blown; If the flame of the ignited burner extinguishes when the combustion is started in the state controlled to the capacity, the control is performed to the other of the first or second blowing capacity. And start combustion again.
燃焼開始時のバーナ点火において、 点火されたパーナの火炎が立ち消えになつ た場合は、 供給される風量が過剰或いは不足であることが原因であるので、 次の パーナ点火では点火ミスした時と異なる送風能力に制御されることで、 確実に点 火を行うことができる。 従って、 室内が燃焼装置に対して負圧状態になった場合 でも点火ミスの回数を最小限に抑えることが可能になる。  If the flame of the ignited burner does not extinguish at the burner ignition at the start of combustion, it is because the supplied air volume is excessive or insufficient. By controlling the air blowing capacity, it is possible to reliably ignite. Therefore, even when the room is in a negative pressure state with respect to the combustion device, it is possible to minimize the number of ignition mistakes.
更に、 第 1の発明では、 前記風量制御部は、 前記第 1又は第 2の送風能力のう ち、 前回燃焼が停止した時の送風能力に前記燃焼ファンを制御した状態で、 燃焼 開始することを特徴とする。 前回燃焼制御時の送風能力に基づいて、 次の燃焼開 始時のパーナ点火時の送風能力を制御することにより、 室内が負圧状態であって も点火ミスを少なくすることができる。  Further, in the first invention, the air volume control unit starts combustion in a state in which the combustion fan is controlled to the air blowing ability at the time when the previous combustion was stopped, of the first or second air blowing ability. It is characterized by. By controlling the air blowing capacity at the time of the burner ignition at the start of the next combustion based on the air blowing capacity at the previous combustion control, ignition errors can be reduced even when the room is in a negative pressure state.
第 1の発明では、 点火後の燃焼運転に際しては、 C Oセンサによって検出され る C 0濃度が高くなつたときにはファン風量制御デ一夕が風量ァップ側のデー夕 に切り替えられ、 また、 フレームロッ ド電流により、 室内の負圧の程度が判断さ れ、 室内の負圧の程度が高くなつたときには、 同様にファン風量制御デ一夕が風 量ァップ側に切り替えられ、 室内の負圧が解除されたときには風量過剰を解消す るためにファン風量制御データが風量ダウン側に切り替えられる。 このように室 内の負圧の程度に応じた適切な風量制御によって好適な燃焼運転が行われる。 尚、 本明細書において、 燃焼ファンの送風能力とは、 例えば、 燃焼ファンの回 転数であり、 あるいは別の例では、 燃焼ファンの送風を制限するダンパーの開閉 度である。 いずれにしても、 負圧発生時あるいは負圧解除時において、 燃焼ファ ンによる送風能力を制御して、 常に最適な風量がパーナに供給される。  In the first invention, in the combustion operation after the ignition, when the C0 concentration detected by the CO sensor becomes high, the fan air flow control data is switched to the data on the air flow up side, and the flame load is increased. The degree of negative pressure in the room is determined from the current, and when the degree of negative pressure in the room increases, the fan air volume control is switched to the air volume up side similarly, and the indoor negative pressure is released. In this case, the fan air volume control data is switched to the air volume down side to eliminate the excess air volume. Thus, a suitable combustion operation is performed by appropriate air volume control according to the degree of the negative pressure in the chamber. In this specification, the air blowing capacity of the combustion fan is, for example, the number of revolutions of the combustion fan, or, in another example, the opening / closing degree of a damper that restricts the air blowing of the combustion fan. In any case, when a negative pressure is generated or when the negative pressure is released, the blowing capacity of the combustion fan is controlled to always supply the optimum air volume to the wrench.
上記目的を達成する第 2の発明は、 燃焼を行うパーナと、 パーナ点火装置と、 前記パーナに給排気を行う燃焼フアンと、 前記燃焼ファンの送風能力を制御する 風量制御部とを有し、 室内に設置される燃焼装置において、  A second invention for achieving the above object has a burner that performs combustion, a burner that burns air, a combustion fan that supplies and exhausts air to and from the burner, and an air volume control unit that controls a blowing capacity of the combustion fan. In a combustion device installed indoors,
前記風量制御部は、 燃焼中において、 前記室内が第 1の圧力状態の時に前記燃 焼ファンの送風能力を第 1の送風能力に制御し、 前記室内が前記第 1の圧力状態 より低く燃焼装置に対して負圧状態である第 2の圧力状態の時に前記燃焼ファン の送風能力を前記第 1の送風能力よりも高い第 2の送風能力に制御し、 燃焼開始時において、 前記第 1及び第 2の送風能力の中間の送風能力に前記燃 焼ファンを制御して前記パーナの点火を行うことを特徴とする。 The air volume control unit controls the blowing capacity of the combustion fan to the first blowing capacity when the room is in the first pressure state during combustion, and the combustion device has a lower room temperature than the first pressure state. Controlling the blowing capacity of the combustion fan to a second blowing capacity higher than the first blowing capacity when in a second pressure state that is a negative pressure state with respect to At the start of combustion, the combustion fan is controlled to have a blowing capacity intermediate between the first and second blowing capacities to ignite the parner.
上記の発明によれば、 燃焼開始時において、 第 1の圧力状態と第 2の圧力状態 の両方に適用可能な中間の送風能力でパーナの点火を行うことにより、 室内の圧 力状態がいずれの状態であっても、 確実にパーナを点火させることができる。 上記の第 2の発明において、 更に、 前記室内が第 1の圧力状態か第 2の圧力状 態かを検出する負圧検出装置が設けられ、  According to the invention described above, at the start of combustion, by igniting the parner with an intermediate air blowing capacity applicable to both the first pressure state and the second pressure state, the indoor pressure state can be any one. Even in this state, the wrench can be reliably ignited. In the above second invention, further, a negative pressure detecting device for detecting whether the room is in a first pressure state or a second pressure state is provided,
前記風量制御部は、 前記パーナの点火後において、 前記負圧検出装置により検 出される前記第 1又は第 2の圧力状態に応じて、 前記第 1又は第 2の送風能力に 切り換えて前記燃焼ファンを制御することを特徴とする。  The air flow control unit switches to the first or second air blowing capacity according to the first or second pressure state detected by the negative pressure detection device after the burner is ignited. Is controlled.
上記構成の発明において、 例えば、 通常時のファン風量制御データと、 負圧時 のファン風量制御データと、 点火時のファン風量制御データとが予め与えられて おり、 点火を行うときには点火時風量制御部が上記点火時のファン風量制御デー 夕に従って燃焼ファンの回転制御を行う。 その後、 制御データ転移制御部は、 負 圧検知手段により室内の負圧が検知されている場合には、 点火時のファン風量制 御データから負圧時のファン風量制御データに転移させて燃焼ファンの回転制御 を行い、 それ以外のときには、 点火時のファン風量制御データから負圧時のファ ン風量制御デー夕に転移させて燃焼ファンの回転制御を行う。  In the invention having the above configuration, for example, fan air volume control data at normal time, fan air volume control data at negative pressure, and fan air volume control data at ignition time are given in advance. The unit controls the rotation of the combustion fan in accordance with the above-described fan air volume control data at the time of ignition. Thereafter, when the negative pressure is detected by the negative pressure detecting means, the control data transfer control unit transfers the control value from the fan air volume control data at the time of ignition to the fan air volume control data at the time of negative pressure, to thereby control the combustion fan. At other times, the combustion fan rotation control is performed by shifting from the fan air flow control data at the time of ignition to the fan air flow control data at the time of negative pressure.
上記点火時のファン風量制御デー夕は、 通常時のファン風量制御デ一夕が持つ 燃焼可能な燃焼ファンの風量領域と、 負圧時のファン風量制御データが持つ燃焼 可能な燃焼ファンの風量領域とがオーバーラップする領域に設定されていること から、 燃焼機器が設置されている室内が通常の標準モード時の状態であっても標 準モード時よりも負圧状態であっても、 上記点火時のファン風量制御データに従 つて燃焼ファンの回転制御を行うことによって、 点着火を確実に達成させること が可能である。  The fan air volume control data at the time of the ignition is the air volume area of the combustible combustion fan which the normal fan air volume control data has, and the air volume area of the combustible combustion fan which the fan air volume control data at the negative pressure has. Is set in the area where the combustion equipment is overlapped, so that the ignition is performed regardless of whether the room where the combustion equipment is installed is in a normal standard mode or in a negative pressure state compared to the standard mode. By performing the rotation control of the combustion fan in accordance with the fan air volume control data at the time, it is possible to reliably achieve the point ignition.
上記目的を達成する為に、 第 3の発明は、 燃焼を行うパーナと、 前記パーナの 燃焼能力を制御する燃焼制御部と、 前記パーナに給排気を行う燃焼ファンと、 前 記燃焼ファンの送風能力を前記燃焼能力に応じて制御する風量制御部とを有し、 室内に設置される燃焼装置において、 前記燃焼制御部が第 1の燃焼能力で前記パーナを制御する時、 前記風量制御部 が前記第 1の燃焼能力に応じた第 1の送風能力に前記燃焼ファンを制御し、 il己 燃焼制御部が前記第 1の燃焼能力より低い第 2の燃焼能力で前記パーナを制御す る時、 前記風量制御部が前記第 2の燃焼能力に対応し前記第 1の送風能力より低 い第 2の送風能力に前記燃焼ファンを制御し、 In order to achieve the above object, a third aspect of the present invention provides a burner that performs combustion, a combustion control unit that controls the combustion capacity of the burner, a combustion fan that supplies and exhausts air to the burner, and a blower of the combustion fan. An air volume control unit for controlling the capacity according to the combustion capacity, wherein the combustion device installed indoors, When the combustion control unit controls the burner with a first combustion capacity, the air volume control unit controls the combustion fan to a first blowing capacity according to the first combustion capacity, and When controlling the parner with a second combustion capacity lower than the first combustion capacity, the air volume control unit corresponds to the second combustion capacity and has a second airflow lower than the first airflow capacity. Control the combustion fan to the ability,
前記燃焼制御部が前記第 1の燃焼能力から第 2の燃焼能力に変更した後の所定 期間は、 前記風量制御部は前記第 2の送風能力よりも高い第 3の送風能力で前記 燃焼ファンを制御し、 前記所定期間の後前記第 2の送風能力に変更することを特 徴とする。  During a predetermined period after the combustion control unit changes from the first combustion capability to the second combustion capability, the air volume control unit controls the combustion fan with a third ventilation capability higher than the second ventilation capability. Controlling, and changing to the second blowing capacity after the predetermined period.
上記の第 3の発明によれば、 能力低下に伴い送風能力を低下させても、 室内の 負圧状態の緩和には一定に時間を要するので、 その期間は、 低下後の送風能力よ りも高い第 3の送風能力で一時的に制御する。 従って、 能力低下の過渡期間にお いて一時的に風量不足になることが防止される。  According to the third aspect of the present invention, even if the blowing capacity is reduced due to the reduced capacity, a certain period of time is required to alleviate the negative pressure state in the room, so that the period is longer than the reduced blowing capacity. Temporarily control with high third blowing capacity. Therefore, it is possible to prevent a temporary shortage of the air volume during the transition period of the capacity reduction.
上記の目的を達成する為に、 第 4の発明は、 燃焼を行うパーナと、 前記パーナ の燃焼能力を制御する燃焼制御部と、 前記パーナに給排気を行う燃焼ファンと、 前記燃焼ファンの送風能力を前記燃焼能力に応じて制御する風量制御部とを有す る燃焼装置において、  In order to achieve the above object, a fourth aspect of the present invention provides a burner that performs combustion, a combustion control unit that controls the combustion performance of the burner, a combustion fan that supplies and exhausts air to and from the burner, A combustion amount control unit for controlling the capacity according to the combustion capacity,
更に、 燃焼装置の排気側に排気ガス中の一酸化炭素濃度を検出する一酸化炭素 センサが設けられ、  Further, a carbon monoxide sensor for detecting the concentration of carbon monoxide in the exhaust gas is provided on the exhaust side of the combustion device,
前記風量制御部は、 燃焼能力に応じた送風能力に前記燃焼ファンを制御し、 前 記燃焼制御部は、 前記一酸化炭素センサにより所定の危険濃度が検出された時に 前記燃焼を停止し、  The air volume control unit controls the combustion fan to a blowing capacity according to a combustion capacity, the combustion control unit stops the combustion when a predetermined dangerous concentration is detected by the carbon monoxide sensor,
当該一酸化炭素濃度検出による燃焼停止後に燃焼が再開される時は、 前記風量 制御部は、 通常の燃焼停止後の燃焼再開時の第 1の送風能力よりも大きい第 2の 送風能力に前記燃焼ファンを制御することを特徴とする。  When the combustion is restarted after the combustion is stopped by the detection of the concentration of carbon monoxide, the air volume control unit sets the combustion to a second air blowing capacity larger than the first air blowing capacity when restarting the combustion after the normal combustion stop. It is characterized by controlling a fan.
上記の発明によれば、 一酸化炭素濃度の上昇に伴い強制的に燃焼停止された後 に、 燃焼再開される場合は、 通常より高い送風能力に燃焼ファンを制御する。 従 つて、 燃焼再開時における一酸化炭素濃度の高い危険な状態を繰り返すことを防 止することができる。 上記の目的は、 第 5の発明によれば、 室内の空気を燃焼室へ給気し燃焼後の排 気を排気筒を通じて室外へ排出する給湯器において、 一 前記燃焼室への給気および排気を行う燃焼ファンと、 According to the above invention, when the combustion is restarted after the combustion is forcibly stopped due to an increase in the concentration of carbon monoxide, the combustion fan is controlled to have a blowing capacity higher than usual. Therefore, it is possible to prevent a dangerous state in which the concentration of carbon monoxide is high at the time of restarting combustion from being repeated. According to a fifth aspect of the present invention, there is provided a water heater that supplies indoor air to a combustion chamber and discharges exhausted air after combustion through an exhaust stack to the outside. With a combustion fan,
前記燃焼室内の空気を室内へ吸い出す向きの負圧の有無を検出する負圧検出装 置と、  A negative pressure detection device for detecting the presence or absence of a negative pressure in a direction in which air in the combustion chamber is sucked into the room;
前記燃焼室内での燃焼が停止した後所定時間の経過するまでの間前記燃焼ファ ンを回転駆動する燃焼後ファン駆動手段と、  A post-combustion fan driving unit that rotationally drives the combustion fan until a predetermined time elapses after the combustion in the combustion chamber is stopped;
前記燃焼後ファン駆動手段によって燃焼停止後に前記燃焼ファンを回転させる 際の回転数を負圧のある場合に負圧のないときより高く設定する回転数制御部と を有することを特徴とする。  A rotation speed control unit that sets a rotation speed when the combustion fan is rotated after the combustion is stopped by the post-combustion fan driving unit, when there is a negative pressure, higher than when there is no negative pressure.
上記の第 5の本発明は次のように作用する。  The fifth invention described above operates as follows.
負圧検出手段は、 換気扇の作動等に起因して、 燃焼室内の空気を室内へ吸い出 す向きの負圧が発生しているか否かを検出する。 回転数制御手段は、 燃焼後ファ ン駆動手段が燃焼停止後所定時間の経過するまでの間燃焼ファンを回転駆動して いる際におけるファンの回転数を、 負圧のあるとき負圧のない場合よりも高い回 転数に設定する。 これにより、 換気扇等による負圧が存在する場合であっても室 内へ排気が逆流することを防止できるとともに、 負圧のない場合に燃焼フアンの 回転数が必要以上に高くなることを防止することができる。  The negative pressure detecting means detects whether or not a negative pressure has been generated due to the operation of the ventilation fan, etc., for drawing air in the combustion chamber into the room. The number-of-revolutions control means determines the number of rotations of the fan when the fan drive means is rotating and driving the combustion fan until a predetermined time elapses after the combustion is stopped. Set a higher rotation speed. This prevents exhaust gas from flowing back into the room even when negative pressure due to a ventilation fan or the like exists, and prevents the rotational speed of the combustion fan from becoming unnecessarily high without negative pressure. be able to.
また、 排気に含まれる一酸化炭素濃度を検出する一酸化炭素濃度検出手段と、 燃焼ガスの燃焼量を検出するガス量検出手段と、 一酸化炭素濃度が所定の許容範 囲に収まるよう燃焼中における燃焼ファンの回転数を制御する燃焼時回転数制御 手段とを設け、 負圧検出手段は、 燃焼停止直前におけるガス量検出手段の検出し た燃焼量とこれに対して燃焼時回転数制御手段の設定した回転数の高さとを基に して燃焼停止後における負圧の大きさを判定する。  Also, a carbon monoxide concentration detecting means for detecting the concentration of carbon monoxide contained in the exhaust gas, a gas amount detecting means for detecting the amount of combustion of the combustion gas, and a combustion method for controlling the carbon monoxide concentration to fall within a predetermined allowable range. Combustion speed control means for controlling the rotation speed of the combustion fan at the time of combustion, wherein the negative pressure detection means comprises: a combustion amount detected by the gas amount detection means immediately before the stop of combustion; The magnitude of the negative pressure after the combustion is stopped is determined based on the height of the rotation speed set in.
このようにして負圧の大きさを判定することにより、 一酸化炭素濃度検出手段 のほかに別途負圧センサを設ける必要がなく、 装置の簡略化を図ることができる 。 さらに、 負圧の有無のみならず、 負圧検出手段の判定した負圧の大きさを基に して燃焼停止直後における燃焼ファンの回転数を設定することにより、 負圧の大 きさに応じた適切な回転数が設定される。 また、 燃焼停止後の時間の経過に従って燃焼ファンの回転数を高回転から次第 に低下させるものでは、 燃焼停止後の余熱が徐々に放熱されるので、 出湯を再開 した際に許容下限温度以下の湯が出湯されるほど燃焼停止後の余熱の放熱が進む までに要する時間を引き延ばすことができ、 Q機能を満足し得る期間をより長く 維持することができる。 By determining the magnitude of the negative pressure in this way, there is no need to provide a separate negative pressure sensor in addition to the carbon monoxide concentration detecting means, and the apparatus can be simplified. Furthermore, by setting the number of revolutions of the combustion fan immediately after the combustion is stopped based on not only the presence or absence of the negative pressure but also the magnitude of the negative pressure determined by the negative pressure detecting means, the magnitude of the negative pressure can be adjusted. The appropriate rotation speed is set. If the rotation speed of the combustion fan is gradually reduced from high rotation as time elapses after the stop of combustion, the residual heat after the stop of the combustion is gradually released, so that when the hot water is restarted, the temperature will be lower than the allowable lower limit temperature. The more hot water is discharged, the longer the time required for the release of residual heat after the combustion stops can be extended, and the period during which the Q function can be satisfied can be maintained longer.
たとえば、 燃焼を停止してから少なくとも燃焼室および排気筒内に残留する排 気を該排気筒端部から大気中へ排出し終えるまでの間、 燃焼ファンを負圧の有無 等を考慮した高速度で回転させる。 これにより、 排気が室内に逆流することを防 止し得るとともに、 放熱量が多いので、 燃焼停止後比較的すぐに出湯が再開され た場合であっても許容上限温度を越える高温の湯が一時的に出る、 オーバーシュ 一ト現象を防止することができる。  For example, after stopping the combustion, at least until exhaust gas remaining in the combustion chamber and the exhaust cylinder is exhausted into the atmosphere from the end of the exhaust cylinder, the combustion fan is operated at a high speed in consideration of the presence or absence of negative pressure. Rotate with. This can prevent exhaust gas from flowing back into the room and, because of the large amount of heat released, temporarily allow high-temperature hot water exceeding the allowable upper limit temperature even if hot water is restarted relatively shortly after combustion stops. It is possible to prevent the overshoot phenomenon, which occurs in a typical manner.
また、 燃焼室および排気筒内に残留する排気を排気筒端部から大気中へ排出し 終えた後における燃焼ファンの回転数を、 許容上限温度を越える湯が出湯されな い範囲である程度低下させる。 これにより、 燃焼ファンの回転を継続させても熱 交換器が過冷却されるに至るまでの時間が長くなり、 燃焼停止後の長時間に渡つ て、 許容下限温度を下回る低温の湯の出るアンダーシュート現象が発生せず、 Q 機能を長く維持することができる。 さらに、 燃焼ファンの回転を停止させても 出湯が再開された際に許容上限温度を越える高温の湯が出湯されない程度に冷却 が進んだ後、 設定可能な最小回転数で燃焼ファンの回転動作を維持する。 これに より、 いつ通水があってもすぐに点火することができ、 加熱されない低温の水が 一時的に出ることを防止できる。 また、 熱交換器の冷却が最小限に抑られるので 、 Q機能をより長時間維持することができる。  In addition, the number of revolutions of the combustion fan after exhaust of the exhaust gas remaining in the combustion chamber and exhaust stack from the end of the exhaust stack to the atmosphere is reduced to some extent within a range where hot water exceeding the allowable upper limit temperature is not discharged. . This increases the time it takes for the heat exchanger to become subcooled even if the combustion fan continues to rotate, and for a long time after the combustion is stopped, low-temperature hot water that falls below the minimum allowable temperature is released. The undershoot phenomenon does not occur and the Q function can be maintained for a long time. Furthermore, even if the rotation of the combustion fan is stopped, when the hot water is restarted, cooling proceeds to such an extent that hot water exceeding the allowable upper limit temperature is not discharged, and then the rotation of the combustion fan is performed at the settable minimum rotation speed. maintain. As a result, it is possible to ignite immediately when there is water flow, and to prevent the unheated, low-temperature water from temporarily coming out. Further, since the cooling of the heat exchanger is suppressed to a minimum, the Q function can be maintained for a longer time.
さらに、 燃焼停止後の時間の経過に従って燃焼ファンの回転数を次第に低下さ せる際における各段階での回転数と次の段階へ回転数を低下させるまでの時間と を排気筒の長さに応じて変更するものでは、 給湯機の設置状況にかかわらず排気 筒内に残留する排気を適切に排気することができる。 また排気筒の長さに応じて 排気抵抗も変化するので、 燃焼ファンの回転数等を排気筒の長さに基づいて変更 することで設置状況に左右されず適切な風量で熱交換器を冷却することができる 。 したがって、 給湯機の設置状況にかかわらず長時間に渡って Q機能を満足させ ることができる。 Furthermore, when gradually decreasing the rotation speed of the combustion fan as time elapses after stopping the combustion, the rotation speed at each stage and the time until the rotation speed decreases to the next stage are determined according to the length of the exhaust stack. In this case, the exhaust remaining in the exhaust pipe can be properly exhausted regardless of the installation status of the water heater. In addition, since the exhaust resistance also changes according to the length of the exhaust stack, changing the number of revolutions of the combustion fan, etc. based on the length of the exhaust stack cools the heat exchanger with an appropriate air flow regardless of installation conditions. can do . Therefore, the Q function can be satisfied for a long time regardless of the installation condition of the water heater. Can be
上記の目的を達成するために、 第 6の発明は、 器具ケース (611 ) 内に区画さ れた燃焼室 (630 ) を備え、 該燃焼室 (630 ) に連通した排気経路の最下流側に 、 前記器具ケース (611 ) 外に延出する排気筒 (644 ) が設けられ、 該排気筒 ( 4 4 ) の手前上流側に、 排気筒 (644 ) より流路面積が大きなチャンバ室 (64 4 0 ) を設けた燃焼装置 (610 ) において、  In order to achieve the above object, a sixth aspect of the present invention provides a combustion chamber (630) partitioned in an instrument case (611), and is provided at the most downstream side of an exhaust passage communicating with the combustion chamber (630). An exhaust pipe (644) extending outside the instrument case (611) is provided, and a chamber (644) having a larger flow area than the exhaust pipe (644) is provided upstream of the exhaust pipe (44). 0) in the combustion device (610),
前記チャンバ室 (640 ) における排気入口 (642 ) に、 排気入口 (642 ) を開 いて排気を流入させる開状態と、 排気入口 (642 ) を塞いで排気の逆流を防ぐ閉 状態とに変位可能な逆流防止弁 (650 ) を設けたことを特徴とする燃焼装置 (61 The exhaust port (642) in the chamber chamber (640) can be displaced into an open state in which the exhaust port (642) is opened and exhaust gas flows in, and a closed state in which the exhaust port (642) is closed to prevent backflow of exhaust gas. Combustion device equipped with a check valve (650) (61
0 ) o 0) o
上記の第 6の発明の燃焼装置によれば、 器具ケース (611 ) 内に燃焼室 (630 ) に連通した排気経路の最下流側にある排気筒 (644 ) 内ではなく、 その手前上 流側に設けたチャンバ室 (640 ) の排気入口 (642 ) に、 排気の逆流を防ぐため の逆流防止弁 (650 ) を設ける。  According to the combustion apparatus of the sixth aspect, the apparatus case (611) is not located in the exhaust pipe (644) located at the most downstream side of the exhaust path communicating with the combustion chamber (630) but is located upstream of the exhaust pipe (644). A check valve (650) for preventing backflow of exhaust gas is provided at the exhaust port (642) of the chamber (640) provided in the chamber.
それにより、 従来技術の如く逆流防止弁が、 比較的狭い流路の排気筒 (644 ) 内部に位置して排気流に対する余分な抵抗となることがなく、 逆流防止弁 (650 ) は、 流路の広いチャンバ室 (640 ) 内で開閉するため、 該逆流防止弁 (650 ) 自体による排気時の圧力の損失を極力抑えることができる。  Thus, unlike the prior art, the non-return valve is located inside the exhaust pipe (644) having a relatively narrow flow path, so that there is no extra resistance to the exhaust flow. Since it opens and closes in the wide chamber chamber (640), the pressure loss at the time of exhaustion due to the check valve (650) itself can be minimized.
第 7の発明は、 燃焼を行うパーナと、 前記パーナの火炎の大小を検出するフレ 一ムロッ ド電極と、 前記パーナに給排気を行う燃焼ファンと、 前記燃焼ファンの 送風能力を制御する風量制御部とを有し、 室内に設置される燃焼装置において、 前記風量制御部は、 燃焼能力と共に前記フレームロツ ド電極からの検出信号に 応じて、 前記燃焼ファンの送風能力制御を行うことを特徴とする。  A seventh aspect of the present invention is a burner that burns, a frame rod electrode that detects the magnitude of the flame of the burner, a combustion fan that supplies and exhausts air to and from the burner, and an air volume control that controls a blowing capacity of the combustion fan. A combustion unit installed indoors, wherein the air volume control unit controls the blowing capacity of the combustion fan in accordance with a detection signal from the flame rod electrode together with the combustion capacity. .
第 7の発明によれば、 フレームロツ ド電流が室内の負圧状態と負圧解除とに対 応して一定の変化をするので、 そのフレームロツ ド電流に従って燃焼ファンの送 風能力の制御を行うことで、 迅速に室内の負圧状態に応じた最適な風量供給を行 うことができる。 図面の簡単な説明 According to the seventh aspect, since the flame rod current changes constantly in response to the negative pressure state in the room and the release of the negative pressure, the blowing capacity of the combustion fan is controlled in accordance with the flame rod current. As a result, it is possible to quickly supply an optimal air volume according to the negative pressure condition in the room. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 燃焼装置として一般的に知られている給湯器の室内設置使用状雜の 説明図である。  FIG. 1 is an explanatory diagram of a usage condition of a water heater, which is generally known as a combustion device, installed indoors.
第 2図は、 実施形態例における燃焼装置のシステム構成図である。  FIG. 2 is a system configuration diagram of the combustion device in the embodiment.
第 3図は、 第 1の発明の実施形態例の要部構成を示すプロック図である。 第 4図は、 実施形態例において与えられるファン風量制御データの説明図であ る。  FIG. 3 is a block diagram showing a configuration of a main part of the embodiment of the first invention. FIG. 4 is an explanatory diagram of fan air volume control data given in the embodiment.
第 5図は、 比例弁開度と燃焼熱量との関係を示す燃焼制御デー夕の説明図であ る  FIG. 5 is an explanatory diagram of the combustion control data showing the relationship between the proportional valve opening and the amount of combustion heat.
第 6図は、 フレームロッ ド電流と下側しきい値とキャンセル時間 Δ t CAN との 関係を示す説明図である。  FIG. 6 is an explanatory diagram showing the relationship between the frame rod current, the lower threshold value, and the cancellation time Δt CAN.
第 7図は、 フレームロツ ドによるパーナの火炎検出例の説明図である。  FIG. 7 is an explanatory diagram of an example of flame detection of a wrench by a flame rod.
第 8図は、 本発明における点火後の燃焼運転時のファン風量制御構成のプロッ ク構成図である。  FIG. 8 is a block diagram of a fan air volume control configuration during a combustion operation after ignition according to the present invention.
第 9図は、 ファン風量制御データの他の形態例の説明図である。  FIG. 9 is an explanatory diagram of another example of the fan air volume control data.
第 1 0図は、 フレームロッド電流の上側しきい値と下側しきい値の設定例の説 明図である。  FIG. 10 is an explanatory diagram of an example of setting an upper threshold value and a lower threshold value of a flame rod current.
第 1 1図は、 フレームロッド電流の変化量によって室内の負圧発生と負圧解除 を検出する例の説明図である。  FIG. 11 is an explanatory diagram of an example of detecting generation of a negative pressure and release of a negative pressure in a room based on a change amount of a flame rod current.
第 1 2図は、 フレームロッ ド電流の急激降下変化量に基づいて室内の急激負圧 発生を検出する例の説明図である。  FIG. 12 is an explanatory diagram of an example in which the generation of a sudden negative pressure in a room is detected based on a sudden drop change amount of a frame rod current.
第 1 3図は、 C O濃度によって室内の負圧状況を検出して風量制御を行う動作 のフローチヤ一トである。  FIG. 13 is a flowchart of an operation of detecting a negative pressure state in a room based on the CO concentration and performing air volume control.
第 1 4図は、 フレームロッド電流によって室内の負圧状況を検出して風量制御 を行う動作のフローチヤ一トである。  FIG. 14 is a flowchart of the operation of detecting the negative pressure condition in the room by the flame rod current and controlling the air volume.
第 1 5図は、 第 2の発明の実施形態例を示すブロック構成図である。  FIG. 15 is a block diagram showing an embodiment of the second invention.
第 1 6図は、 フレームロッ ド電流値により空気不足の燃焼異常状態を検知でき る現象を示すモデル図である。  FIG. 16 is a model diagram showing a phenomenon in which an abnormal combustion state due to insufficient air can be detected based on a flame rod current value.
第 1 7図は、 通常時のファン風量制御データと負圧時のファン風量制御データ とに基づいて設定された点火時のファン風量制御デー夕の一例を示すグラフであ る Fig. 17 shows the fan air volume control data at normal time and the fan air volume control data at negative pressure. FIG. 7 is a graph showing an example of fan air volume control data at the time of ignition set based on FIG.
第 1 8図は、 第 2の発明の実施形態例を示すブロック構成図である。  FIG. 18 is a block diagram showing an embodiment of the second invention.
第 1 9図は、 複数段のファン風量制御データと、 それら各ファン風量制御デー 夕に基づいて設定された点火時のファン風量制御データの一例を示すグラフであ る o  Fig. 19 is a graph showing an example of the fan air flow control data of a plurality of stages and the fan air flow control data at the time of ignition set based on the respective fan air flow control data.
第 2 0図は、 C O濃度によって室内の負圧状況を検出してファン回転制御を行 う動作例のフローチヤ一トである。  FIG. 20 is a flowchart of an operation example of detecting a negative pressure state in a room based on the CO concentration and performing fan rotation control.
第 2 1図は、 フレームロツ ド電流値の標準値データの一例を示すグラフである 第 2 2図は、 第 3の発明に係る一実施形態例を示すブロック構成図である。 第 2 3図は、 ファン回転制御データの一例を示すグラフである。  FIG. 21 is a graph showing an example of standard value data of a frame rod current value. FIG. 22 is a block diagram showing an embodiment of the third invention. FIG. 23 is a graph showing an example of the fan rotation control data.
第 2 4図は、 室内が負圧状態であるときに燃焼能力が低下変更された場合の室 内空気圧の変動例を示すグラフである。  FIG. 24 is a graph showing an example of a change in the indoor air pressure when the combustion capacity is changed to decrease when the indoor is in a negative pressure state.
第 2 5図は、 第 4の発明の実施形態例の要部構成ブロック図である。  FIG. 25 is a block diagram of a main part of an embodiment of the fourth invention.
第 2 6図は、 第 4の発明の実施形態例における燃焼装置の燃焼状態と C Oセン ザの C 0検出動作状態と C◦監視状態の関係を示すタイムチヤ一トである。 第 2 7図は、 第 4の発明の実施形態例の動作を示すフローチヤ一トである。 第 2 8図は、 図 2 7に続くフローチャートである。  FIG. 26 is a time chart showing the relationship between the combustion state of the combustion device, the CO detection operation state of the CO sensor, and the C • monitoring state in the embodiment of the fourth invention. FIG. 27 is a flowchart showing the operation of the embodiment of the fourth invention. FIG. 28 is a flowchart following FIG.
第 2 9図は、 図 2 8に続くフローチャートである。  FIG. 29 is a flowchart following FIG.
第 3 0図は、 第 5の発明の実施の形態に係る給湯機の構成を示す説明図である o  FIG. 30 is an explanatory diagram showing a configuration of a water heater according to the fifth embodiment of the invention o
第 3 1図は、 第 5の発明の実施の形態に係る給湯機の回路構成を示すブロック 図である。  FIG. 31 is a block diagram showing a circuit configuration of a water heater according to an embodiment of the fifth invention.
第 3 2図は、 第 5の発明の実施の形態に係る給湯機の行う動作の流れを示す流 れ図である。  FIG. 32 is a flowchart showing a flow of operation performed by the water heater according to the embodiment of the fifth invention.
第 3 3図は、 ガスの燃焼量に対する燃焼ファンの回転数を動作モード別に示す 説明図である。  FIG. 33 is an explanatory diagram showing the number of rotations of the combustion fan with respect to the amount of gas combustion for each operation mode.
第 3 4図は、 第 5の発明の実施の形態に係る給湯機が燃焼停止後に行う燃焼フ ァンの駆動制御を示す流れ図である。 FIG. 34 is a diagram showing a combustion fan performed by the water heater according to the fifth embodiment of the present invention after the combustion is stopped. 6 is a flowchart showing drive control of the fan.
第 3 5図は、 第 6の発明の実施の形態に係る燃焼装置の器具ケース内に配設す るチャンバ室を示す側面図である。  FIG. 35 is a side view showing a chamber room provided in the appliance case of the combustion apparatus according to the sixth embodiment of the present invention.
第 3 6図は、 第 6の発明の実施の形態に係る燃焼装置の器具ケース内に配設す るチャンバ室を示す正面図である。  FIG. 36 is a front view showing a chamber room provided in an appliance case of the combustion apparatus according to the sixth embodiment of the present invention.
第 3 7図は、 第 6の発明の実施の形態に係る燃焼装置の器具ケース内に配設す るチャンバ室を一部破断して示す背面図である。  FIG. 37 is a rear view showing a partially cutaway chamber chamber provided in the appliance case of the combustion apparatus according to the sixth embodiment of the present invention.
第 3 8図は、 第 6の発明の実施の形態に係る燃焼装置の器具ケース内に配設す るチャンバ室を示す平面図である。  FIG. 38 is a plan view showing a chamber room provided in the appliance case of the combustion apparatus according to the sixth embodiment of the present invention.
第 3 9図は、 第 6の発明の実施の形態に係る燃焼装置を分解して示す斜視図で める。  FIG. 39 is an exploded perspective view showing a combustion device according to an embodiment of the sixth invention.
第 4 0図は、 第 6の発明の実施の形態に係る燃焼装置を構成するチャンバ室の 排気入口に設けた逆流防止弁を拡大して示す正面図である。  FIG. 40 is an enlarged front view showing a check valve provided at an exhaust inlet of a chamber constituting a combustion apparatus according to an embodiment of the sixth invention.
第 4 1図は、 逆流防止弁の要部を拡大して示す側面図である。  FIG. 41 is an enlarged side view showing a main part of the check ring.
第 4 2図は、 第 6の発明の実施の形態に係る燃焼装置を構成する逆流防止弁を 支持するガイド部材を拡大して示す正面図である。  FIG. 42 is an enlarged front view showing a guide member that supports a check valve that constitutes a combustion device according to an embodiment of the sixth invention.
第 4 3図は、 第 6の発明の実施の形態に係る燃焼装置を構成する逆流防止弁を 支持するガイド部材を拡大して示す側面図である。  FIG. 43 is a side view showing, on an enlarged scale, a guide member that supports a check ring constituting a combustion device according to an embodiment of the sixth invention.
第 4 4図は、 第 6の発明の実施の形態に係る燃焼装置を構成する排気センサと そのセンサーケースを拡大して示す斜視図である。  FIG. 44 is an enlarged perspective view showing an exhaust sensor and its sensor case that constitute the combustion device according to the sixth embodiment of the present invention.
図 4 5は、 第 7の発明のフレームロツ ド電流によって室内の負圧状態とその解 除を検出する場合の、 変形例を示すものである。  FIG. 45 shows a modification in the case where the negative pressure state in the room and its release are detected by the frame rod current of the seventh invention.
図 4 6は、 フレームロツ ド電極対に電圧 V i nを供給する概略的回路図である o  FIG. 46 is a schematic circuit diagram for supplying a voltage V in to the flame rod electrode pair.
図 4 7は、 入力電圧 V i nの変動量 Δ νに対するフレームロツ ド電流に対する 補正値 Κを示す図である。  FIG. 47 is a diagram illustrating a correction value に 対 す る for the frame rod current with respect to the variation Δν of the input voltage V in.
図 4 8は、 燃焼能力に対するフレームロツ ド電流を示す図である。  FIG. 48 is a diagram showing the flame rod current with respect to the combustion capacity.
図 4 9は、 ガス量制御指令に対して、 実際のフレームロツ ド電流 7 1 2が遅れ ることを示す図である。 図 5 0は、 フレームロツ ド電流の変化に従って負圧状態か負圧解除かを検出す る場合の遅延時間を説明する図である。 一 図 5 1は、 燃焼能力が変更された時の比例弁開度と時間との関係を示す図であ る。 発明を実施するための最良の形態 FIG. 49 is a diagram showing that the actual frame rod current 712 is delayed with respect to the gas amount control command. FIG. 50 is a diagram for explaining a delay time in detecting whether a negative pressure state or a negative pressure release is performed according to a change in the frame rod current. Fig. 51 is a diagram showing the relationship between the proportional valve opening and the time when the combustion capacity is changed. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態例を図面に基づいて説明する。 図 2には本発明に係る 一実施形態例の燃焼装置の機械的構成が示されている。 本実施形態例の燃焼装置 は、 給湯器に関するもので、 器具ケース 3内には給湯器の本体部 4が収容設置さ れている。 なお、 器具ケース 3には給気口 5が設けられ、 この給気口 5からフィ ル夕 (図示せず) を通して空気が本体部 4の空気導入口 6に導かれるようになつ ている。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 shows a mechanical configuration of a combustion apparatus according to an embodiment of the present invention. The combustion device of the present embodiment relates to a water heater, and a main unit 4 of the water heater is housed in an appliance case 3. The appliance case 3 is provided with an air inlet 5 from which air is guided to an air inlet 6 of the main body 4 through a filter (not shown).
本体部 4は燃焼室 7を有し、 この燃焼室 7の下部側には一次空気と二次空気を 利用して燃焼するタイプのセミブンゼンパーナ等のパーナ 8が設置されており、 このパーナ 8にガス通路 10が接続され、 このガス通路 10を通して燃料ガスがバー ナ 8に供給されるようになっている。  The main body 4 has a combustion chamber 7, and a lower part of the combustion chamber 7 is provided with a parner 8, such as a semi-bunsempana, which burns using primary air and secondary air. A gas passage 10 is connected to the gas passage 10, and fuel gas is supplied to the burner 8 through the gas passage 10.
ガス通路 10には通路の開閉を行う電磁弁 1 1, 12とパーナ 8へのガス供給量を開 弁量によって制御する比例弁 13が設けられている。 この比例弁 13は制御装置 14に よつて制御されて印加される開弁駆動電流の大きさに応じて開弁量 (ガス供給量 ) 、 すなわちパーナ 8の燃焼熱量 (燃焼能力) が制御される構成のものである。 パーナ 8の近傍にはパーナ 8の点火を行う点火手段としての点火ブラグ 15と、 パーナ 8の火炎を検出するフレームロツ ド 16が設けられている。 このフレーム口 ッ ド 16は図 7に示す如く、 パーナ 8に生じる火炎の内炎が接触する高さ位置に設 置され、 フレームロッド 16に電圧が印加されることで、 内炎に電離するイオンを 伝搬してフレーム口ッド 16からバ一ナ 8側のアース端 17にフレーム口ッ ド電流が 流れる構成となっている。 すなわち、 フレームロツ ド 16は、 火炎に接触すること で、 フレームロツ ド電流を出力する火炎検出センサとして機能するものである。 前記燃焼室 7の上部側には給湯熱交換器 18が設けられており、 この^湯熱交換 器 18の入側には給水管 20が接続され、 給湯熱交換器 18の出側には給湯管 21が接続 されている。 この給湯管 21は外部配管に接続され、 この外部配管は台所等の所望 の給湯場所に導かれ、 出口側には給湯拴 (図示せず) が設けられる。 なお、 図中 、 22は給水流量を検出する給水流量センサ、 23は給水温を検出する給水温 J¾セン サ、 24は出湯温度を検出する出湯温度センサ、 25は給湯流量を制御する水量制御 弁をそれぞれ示している。 The gas passage 10 is provided with solenoid valves 11 and 12 for opening and closing the passage and a proportional valve 13 for controlling the amount of gas supplied to the parner 8 by the amount of valve opening. The proportional valve 13 is controlled by the controller 14 to control the valve opening amount (gas supply amount), that is, the amount of combustion heat (combustion capacity) of the panner 8 according to the magnitude of the valve opening drive current applied. It is of a configuration. In the vicinity of the wrench 8, an ignition plug 15 for igniting the wrench 8 and a flame rod 16 for detecting a flame of the wrench 8 are provided. As shown in FIG. 7, the frame port 16 is installed at a position where the internal flame of the flame generated in the wrench 8 comes into contact with the flame rod 16. When a voltage is applied to the frame rod 16, ions that ionize to the internal flame are formed. And the frame current flows from the frame opening 16 to the grounding end 17 on the burner 8 side. That is, the flame rod 16 functions as a flame detection sensor that outputs a flame rod current by coming into contact with the flame. A hot water heat exchanger 18 is provided on the upper side of the combustion chamber 7, and a water supply pipe 20 is connected to an inlet of the hot water heat exchanger 18, and a hot water is supplied to an outlet of the hot water heat exchanger 18. Tube 21 connected Have been. The hot water supply pipe 21 is connected to an external pipe. The external pipe is led to a desired hot water supply place such as a kitchen, and a hot water supply pipe (not shown) is provided at an outlet side. In the figure, 22 is a feedwater flow rate sensor that detects the flow rate of the feedwater, 23 is a feedwater temperature J¾ sensor that detects the feedwater temperature, 24 is a tap temperature sensor that detects the tap water temperature, and 25 is a water flow control valve that controls the flow rate of the feedwater. Are respectively shown.
前記燃焼室 7の上部側にはパーナ燃焼の給排気を行う燃焼ファン 26が設けられ ている。 この燃焼ファン 26の回転はファン回転検出センサ 27によって検出されて いる。  On the upper side of the combustion chamber 7, there is provided a combustion fan 26 for supplying and discharging the burner. The rotation of the combustion fan 26 is detected by a fan rotation detection sensor 27.
前記燃焼ファン 26の下流側の排気通路には、 C Oセンサ 28が設けられており、 この C〇センサ 28により排気ガス中の C O濃度が検出される構成となっている。 この実施形態例の給湯器が室内に設置される場合には、 排気通路 30の出口側に排 気ダクトが接続されて、 図 6に示す如く、 排気ガスは室外に排出される施工形態 となる。  A CO sensor 28 is provided in the exhaust passage on the downstream side of the combustion fan 26, and the CO sensor 28 detects the CO concentration in the exhaust gas. When the water heater of this embodiment is installed indoors, an exhaust duct is connected to the outlet side of the exhaust passage 30, and the exhaust gas is exhausted to the outside as shown in FIG. .
前記制御装置 14にはリモコン 31が信号接続されている。 このリモコン 31には給 湯温度を設定する温度設定器や、 制御装置 14からの適宜の情報 (例えば、 給湯温 度やエラーの信号) を表示する表示部を備えている。  A remote controller 31 is connected to the controller 14 via a signal. The remote controller 31 includes a temperature setting device for setting the hot water temperature, and a display section for displaying appropriate information (for example, a hot water temperature and an error signal) from the control device 14.
[第 1の発明]  [First invention]
室内が負圧状態にあるとき、 通常の燃焼制御にかかる燃焼ファンの回転数によ る制御では、 燃焼の為にパーナを点火すると、 供給風量が不足して点火ミスを起 こすことがある。 逆に、 室内が通常状態の時に、 負圧状態でのファン風量制御デ 一夕で点火すると、 供給風量が過剰になり同様に点火ミスを起こすことがある。 そこで、 第 1の発明では、 負圧状態の時に点火ミスが発生したら、 異なるファン 風量制御データにより再度点火を行う。 それにより、 点火ミスの回数を抑制する ことができる。  When the room is under negative pressure, with the control based on the number of revolutions of the combustion fan in the normal combustion control, if the burner is ignited for combustion, the supply air volume may be insufficient and an ignition error may occur. Conversely, when the room is in a normal state, if the fan air volume control is performed overnight in a negative pressure state, the supply air volume becomes excessive and an ignition mistake may occur. Therefore, in the first invention, if an ignition error occurs in a negative pressure state, ignition is performed again using different fan air volume control data. Thereby, the number of ignition mistakes can be suppressed.
図 3は、 第 1の発明にかかる制御装置 14の要部を示すもので、 その制御構成の 第 1実施形態例は実線で示すように、 燃焼制御部 32と、 風量制御部 33と、 データ 格納部 34と、 風量制御データ監視記憶部 35と、 点火リ トライ制御部 36とを有して 構成されている。 この制御装置 1 4は、 例えばマイクロコンピュータにより構成 されることが好ましい。 前記燃焼制御部 32は、 給水温度をリモコン 31等で設定される給湯設定温度に高 めるのに要するフィードフォワード熱量と、 給湯設定温度に対する給湯温度 (出 湯温度) のずれを修正するフィ一ドフォヮ一ド熱量とを加算して得られるトー夕 ル熱量を算出し、 パーナ 8の燃焼熱量がこのトー夕ル熱量となるように比例弁 13 への比例弁電流 (開弁駆動電流) を制御する。 FIG. 3 shows a main part of the control device 14 according to the first invention. In the first embodiment of the control configuration, as shown by a solid line, a combustion control unit 32, an air volume control unit 33, It is configured to include a storage unit 34, an air flow control data monitoring storage unit 35, and an ignition retry control unit 36. This control device 14 is preferably constituted by, for example, a microcomputer. The combustion control unit 32 is configured to correct a difference between a feedforward heat amount required to increase the feedwater temperature to a set hot water temperature set by the remote controller 31 or the like and a difference between the hot water supply temperature (outlet water temperature) and the set hot water supply temperature. Calculate the towel calorific value obtained by adding the calorific value to the toe calorific value, and control the proportional valve current (valve opening drive current) to the proportional valve 13 so that the combustion calorie of the wrench 8 becomes this tor calorific value. I do.
すなわち、 燃焼制御部 32には図 5に示すような比例弁開度と燃焼熱量 (燃焼能 力) の関係を示す燃焼制御データが与えられており、 燃焼制御部 32は、 最大燃焼 熱量 M a Xと最小燃焼熱量 M i nとの燃焼能力の範囲内で比例弁開度を制御する 。 例えば、 演算によって得られる燃焼熱量が Pのときには、 図 5の制御データか ら比例弁開度は Qとして求められ、 この比例弁開度 Qが得られるように比例弁 13 への比例弁電流を供給すべく制御するのである。 なお、 図 5に示す制御データで は、 最小燃焼熱量に対応する比例弁開度を 0 %とし、 最大燃焼熱量に対応する比 例弁開度を 100 %とし、 比例弁開度を 0 %から 100 %の範囲内で制御して最小燃 焼熱量と最大燃焼熱量の範囲内の燃焼熱量を得る制御形態が採られる。  That is, the combustion control unit 32 is provided with combustion control data indicating the relationship between the proportional valve opening and the combustion heat amount (combustion capacity) as shown in FIG. 5, and the combustion control unit 32 determines the maximum combustion heat amount Ma The proportional valve opening is controlled within the range of the combustion capacity between X and the minimum combustion heat amount Min. For example, when the amount of combustion heat obtained by the calculation is P, the proportional valve opening is obtained as Q from the control data in FIG. 5, and the proportional valve current to the proportional valve 13 is calculated so that the proportional valve opening Q is obtained. It controls to supply. In the control data shown in Fig. 5, the proportional valve opening corresponding to the minimum combustion heat is 0%, the proportional valve opening corresponding to the maximum combustion heat is 100%, and the proportional valve opening is 0%. A control mode is adopted in which control is performed within a range of 100% to obtain a combustion heat amount within the range of the minimum combustion heat amount and the maximum combustion heat amount.
風量制御部 33には、 図 4に示すような風量制御データが与えられている。 この 風量制御データはデータ格納部 34に格納されている。 図 4において、 横軸は比例 弁開度 (燃焼熱量) を示し、 縦軸はファン回転数 (ファン送風能力、 以下簡便に ファン風量) を示している。 図 4の Aのデータは通常の燃焼運転用の標準ファン 風量制御データであり、 Cのデータはこの標準ファン風量制御データよりもファ ン風量を増加する方向にシフトした第 1段風量ァップ用ファン風量制御デ一夕で あり、 Bはこの第 1段風量アップ用ファン風量制御データよりもさらにファン風 量を増加させた第 2段風量アップ用ファン風量制御データであり、 D , Eのデー 夕はさらに順次風量をァップ方向にシフトさせたファン風量制御データである。 この図 4に示すデータから分かるように、 最小インプッ ト時 (最小比例弁開度 時) には B〜Eのファン風量制御データを変えるとファン回転数が大きく変わる のに対して最大ィンプット時にはファン回転数はあまり変わらないようにしてあ る。 これは一般的に行われている空燃比を一定にして燃焼させるものとは異なり 本出願人が独自に見い出したものである。 つまり本来パーナは最大インプッ ト ( 定格インプッ ト) で燃やすことのできるパーナを用いて燃料を少なく しても消え ないように風量制御を行っているものである。 つまり低インプッ ト (低燃焼熱量 ) ほど風量制御を正確に行わないと消えてしまうことを意味する。 つまり空燃比 を一定にした相関関係では各線は平行となるが、 本願では比例弁開度小方向にな るにしたがって各線間間隔は広がり、 比例弁開度大方向になるにしたがって各線 の間隔はせまくなる (各線が一点に集まる必要はなく各線の想像線が比例弁開度 大方向のどこかで交差する) ようにしている。 The air volume control unit 33 is provided with air volume control data as shown in FIG. The air volume control data is stored in the data storage unit 34. In Fig. 4, the horizontal axis indicates the proportional valve opening (combustion heat), and the vertical axis indicates the fan rotation speed (fan blowing capacity, hereinafter simply referred to as fan air flow). The data in A in Fig. 4 is the standard fan airflow control data for normal combustion operation, and the data in C is the first stage airflow fan shifted in the direction of increasing the fan airflow from this standard fan airflow control data. B is the air flow control data for the second stage, and B is the air flow control data for the second stage which increases the fan air volume even more than the fan air flow control data for the first stage. Is fan air volume control data in which the air volume is sequentially shifted in the up direction. As can be seen from the data shown in Fig. 4, when the minimum input (minimum proportional valve opening) is used, changing the fan air volume control data from B to E greatly changes the fan rotation speed, whereas the fan input at the maximum input. The number of revolutions is not changed much. This is different from the general method in which the combustion is performed with a constant air-fuel ratio, and is uniquely found by the present applicant. In other words, Pana originally has the maximum input ( It uses a burner that can burn at the rated input) and controls the air flow so that it does not disappear even if the fuel is reduced. In other words, the lower the input (lower the calorific value of heat), the less the air volume control is performed. In other words, in the correlation with a constant air-fuel ratio, the lines are parallel, but in the present application, the distance between the lines increases as the proportional valve opening decreases, and the distance between the lines increases as the proportional valve opening increases. (Each line does not have to converge at one point, and the imaginary line of each line intersects somewhere in the large proportional valve opening direction.)
風量制御部 33は、 通常の燃焼運転に際しては、 Aの制御データを用いて比例弁 開度に対応するファン回転数 (ファン風量) を求め、 このファン回転数 (ファン 風量) が得られるように燃焼ファン 26の回転制御を行う。 この風量制御により、 燃焼熱量 (ガス供給量) に見合う風量が得られ、 燃焼熱量と風量とがマッチング した燃焼制御が達成されるものとなる。 なお、 風量制御部 33は、 C Oセンサ 28の C〇検出濃度に基づき、 C O濃度が予め定めた設定基準値を越えたときに、 ファ ン風量制御データを風量アップ方向に切り替える制御機能を備えている。  During normal combustion operation, the air volume control unit 33 uses the control data of A to determine a fan rotation speed (fan air volume) corresponding to the proportional valve opening so that the fan rotation speed (fan air volume) can be obtained. The rotation of the combustion fan 26 is controlled. By this air volume control, an air volume corresponding to the combustion heat amount (gas supply amount) is obtained, and the combustion control in which the combustion heat amount and the air volume match is achieved. The air volume control unit 33 has a control function for switching the fan air volume control data to the air volume increasing direction when the CO concentration exceeds a predetermined reference value based on the C〇 detection concentration of the CO sensor 28. I have.
なお、 本実施形態例では、 Aと Cのファン風量制御データは弱負圧側の制御デ 一夕として分類され、 B , D , Eのファン風量制御データは強負圧側の制御デー 夕として分類されている。 本明細書中において弱負圧側というのは、 レンジフー ドゃ換気扇 2が起動されていない状態のときの室内圧の状態を意味し、 室内が密 閉状態で燃焼ファン 26を回転させると室内の空気が排出されるので僅かに室内が 負圧になるので弱負圧側という用語を使用している。 一方、 強負圧側というのは 、 レンジフードと換気扇 2の少なくとも一方が起動状態にあるときの室内圧の状 態、 つまり、 室内圧が前記弱負圧状態よりも強い負圧状態になっていることを意 味する。  In this embodiment, the fan air volume control data of A and C are classified as control data on the weak negative pressure side, and the fan air flow control data of B, D, and E are classified as control data on the strong negative pressure side. ing. In this specification, the term "low negative pressure side" means a state of the indoor pressure when the range hood ゃ ventilation fan 2 is not activated, and when the combustion fan 26 is rotated in a closed state of the room, the indoor air Is discharged, so the room becomes slightly negative pressure, so we use the term weak negative pressure side. On the other hand, the strong negative pressure side is a state of the indoor pressure when at least one of the range hood and the ventilation fan 2 is in the activated state, that is, the indoor pressure is in a negative pressure state stronger than the weak negative pressure state. That means.
風量制御データ監視記憶部 35は、 燃焼運転中に図 4に示される A〜Eのファン 風量制御データのうち、 どのデータが使用されているかを時系列的に監視して記 点火リ トライ制御部 36は、 初期点火制御部 39を内蔵した構成とされており、 初 期点火制御部 39は燃焼運転の開始時に最初に点火プラグ 15を駆動して点火を制御 するものであり、 この初期点火制御部 39は、 標準ファン風量制御データ Aをファ ン風量制御データとして指定して点火を行うか、 又は風量制御データ監視記憶部The air flow control data monitoring and storage unit 35 monitors in a time series which of the fan air flow control data A to E shown in FIG. 4 is being used during the combustion operation, and records the data. The initial ignition control unit 39 controls the ignition by driving the spark plug 15 at the beginning of the combustion operation when the combustion operation is started. Section 39 stores the standard fan air volume control data A Ignition is performed as specified by the airflow control data, or the airflow control data monitoring storage unit
35で監視記憶されているデータにより、 前回の燃焼運転の終了時に使用されて t、 たファン風量制御データと同じファン風量制御データを指定して点火動作を制御 する。 Based on the data monitored and stored in 35, the ignition operation is controlled by designating the same fan airflow control data used at the end of the previous combustion operation.
この初期点火動作は燃焼制御部 32および風量制御部 33との協同によって行われ るもので、 初期点火制御部 39により指定された風量制御デ一夕を用い、 点火時の 立ち上げガス供給量の比例弁開度に対応したファン回転数 (ファン風量) でもつ て燃焼ファンを回転させ、 その状態でパーナ 8から噴出する燃料ガスに点火ブラ グ 15で火花を飛ばして点火を行うものである。  This initial ignition operation is performed in cooperation with the combustion control unit 32 and the air volume control unit 33, and uses the air volume control data specified by the initial ignition control unit 39 to reduce the startup gas supply amount during ignition. The combustion fan is rotated at a fan speed (fan flow rate) corresponding to the proportional valve opening, and in this state, sparks are blown by the ignition plug 15 to the fuel gas ejected from the panner 8 to ignite.
点火リ トライ制御部 36は、 フレームロッ ド 16からのフレームロツド電流を検出 し、 初期点火制御部 39によって行われた初期点火が成功したか否かを検出し、 点 火失敗の場合には点火リ トライ動作を制御する。  The ignition retry control unit 36 detects the frame rod current from the frame rod 16, detects whether or not the initial ignition performed by the initial ignition control unit 39 has succeeded. Control the try operation.
すなわち、 フレームロツ ド 16からオン信号 (火炎検出レベルの電流) が加えら れているときには初期点火により火炎が形成されて点火動作が成功したと判断し 、 フレームロッ ド 16からオフ信号が加えられたときには点火ミス (点火失敗) と 判断する。  That is, when an ON signal (flame detection level current) is applied from the frame rod 16, it is determined that the flame is formed by the initial ignition and the ignition operation is successful, and the OFF signal is applied from the frame rod 16. Occasionally, a misfire (ignition failure) is determined.
この点火リ トライ制御部 36には前記図 4に示す複数のファン風量制御デー夕の 分類情報が与えられている。 この実施形態例では、 前記した如く、 Aと Cのファ ン風量制御データが弱負圧側風量制御データとして分類 (グループ分け) され、 Bと Dと Eのファン風量制御デー夕が強負圧側風量制御デ一夕として分類 (グル ープ分け) されている。  The ignition retry control unit 36 is provided with classification information of a plurality of fan air volume control data shown in FIG. In this embodiment, as described above, the fan air flow control data of A and C are classified (grouped) as the weak negative air flow control data, and the fan air flow control data of B, D, and E are output as the strong negative air flow. It is classified (grouped) as control data overnight.
強負圧側風量制御データ B, D , Eは、 換気扇 2やレンジフードが駆動されて 室内が負圧状態になっているときに、 その室内負圧による燃焼ファン 26の風量不 足を補う風量アップが確保されている風量制御データであり、 また、 弱負圧側風 量制御データ A, Cは、 換気扇 2やレンジフードが停止状態にあり、 室内が燃焼 ファン 26の回転による分だけ僅かに負圧化されているか、 又は窓が開けられてい る等で、 負圧状態が解消されている状態で燃焼に必要な適量の風量を供給する制 御データである。  The strong negative pressure side air volume control data B, D, and E indicate that when the ventilation fan 2 and the range hood are driven and the room is in a negative pressure state, the air volume increases to compensate for the insufficient air volume of the combustion fan 26 due to the negative pressure in the room. The air flow control data A and C indicate that the ventilation fan 2 and the range hood are in a stopped state, and that the indoor pressure is slightly reduced by the rotation of the combustion fan 26. This is control data for supplying an appropriate amount of air required for combustion in a state where the negative pressure has been eliminated, for example, when the air pressure has been reduced or the window has been opened.
点火リ トライ制御部 36は、 前記初期点火が失敗したと判断したときには、 その 初期点火時に使用したファン風量制御データが強負圧側の制御データであるか、 弱負圧側の制御データであるかを判別し、 強負圧側風量制御データ B , D , Eの ときには、 室内が強負圧になっていないにも拘わらず強負圧側の風量制御データ が使用されたために、 風量過多のために点火の火炎が吹き消えたものと判断し、 再点火を行うに際し、 初期点火時のファン風量制御デー夕とは分類が反対側の弱 負圧側のファン風量制御データである第 1段風量アップ用ファン風量制御データ Cを指定して点火動作を行わせる。 When the ignition retry control unit 36 determines that the initial ignition has failed, It is determined whether the fan air volume control data used at the time of the initial ignition is the control data on the strong negative pressure side or the control data on the weak negative pressure side, and when the strong negative pressure side air flow control data B, D, E, the room is Since the air flow control data on the strong negative pressure side was used even though the vacuum was not negative, it was determined that the ignition flame had blown out due to excessive air flow. The ignition operation is performed by specifying the first-stage air-flow-increase fan airflow control data C, which is the fan airflow control data on the weak negative pressure side on the opposite side from the fan airflow control data.
その逆に、 初期点火が弱負圧側のファン風量制御データ A , Cを用いて失敗し たものと判断したときには、 レンジフードゃ換気扇 2が駆動されて室内が強負圧 になっているにも拘わらず弱負圧側のファン風量制御デ一夕が指定されて初期点 火が行われたために、 風量不足のために点火の火炎が立ち消えしたものと判断し 、 再点火に際して、 初期点火時の風量制御データとは異なる強負圧側のファ ン風 量制御デー夕である第 2段風量ァップ用ファン風量制御デ一タ Bを指定して再点 火 (点火リ トライ) 動作を制御する。  Conversely, when it is determined that the initial ignition has failed using the fan air volume control data A and C on the weak negative pressure side, the range hood ゃ ventilation fan 2 is driven and the room is at a high negative pressure. Despite this, it was determined that the flame of ignition was extinguished due to the lack of air volume because the initial ignition was performed with the fan air volume control data on the low negative pressure side specified and the initial air volume was set at the time of re-ignition. The re-ignition (ignition retry) operation is controlled by specifying the fan air volume control data B for the second stage air volume up, which is the fan air volume control data on the high / negative pressure side different from the control data.
これら再点火の制御動作は、 前記初期点火制御部 39による初期点火の制御動作 と同様に、 指定されたファン風量制御データを用い、 点火時のガス供給量に対応 する比例弁開度に応じたファン風量が得られるようにファン回転数を制御し、 そ の状態で、 パーナ 8に燃料ガスを供給して点火プラグ 15により火花を飛ばし、 点 火動作を行うものである。  These reignition control operations are performed in accordance with the proportional valve opening corresponding to the gas supply amount at the time of ignition, using the specified fan air volume control data, similarly to the initial ignition control operation by the initial ignition control unit 39. The fan rotation speed is controlled so as to obtain a fan air volume, and in that state, fuel gas is supplied to the wrench 8 and a spark is blown by the spark plug 15 to perform a ignition operation.
この実施形態例によれば、 初期点火が失敗したときには、 その初期点火時に使 用されていたファン風量制御データが強負圧側と弱負圧側の何れに属するかを判 断し、 再点火時には、 その初期点火時とは異なる分類の第 1段風量アップ用ファ ン風量制御デー夕 Cと第 2段風量ァップ用ファン風量制御デー夕 Bの何れか一方 のデータを用いて再点火が行われるので、 初期点火が風量過多で失敗したときに は再点火は風量の少ない方の第 1段風量アップ用ファン風量制御データ Cを用い て、 風量不足により初期点火が失敗されたときにはより風量が大の第 2段風量ァ ップ用ファン風量制御データ Bを用いて点火リ トライ動作が行われるので、 再点 火時には風量の不足や過剰のない点火可能な風量が供給されることとなるので、 1回の再点火動作によって点火火炎を確実に形成することができ、 信頼性の高い 点火リ トライ制御が可能となるものである。 According to this embodiment, when the initial ignition has failed, it is determined whether the fan air volume control data used at the time of the initial ignition belongs to the strong negative pressure side or the weak negative pressure side. Since reignition is performed using either the first stage air volume control fan air volume control data C or the second stage air volume fan air volume control data B of a different classification from the initial ignition. However, when the initial ignition fails due to excessive air volume, re-ignition uses the fan air volume control data C for increasing the first stage air volume, which is the smaller air volume, and the re-ignition is larger than when the initial ignition fails due to insufficient air volume. Since the ignition retry operation is performed using the fan air flow control data B for the second-stage air flow increase, the air flow that can be ignited without insufficient or excessive air flow is supplied during re-ignition. Re-ignition operations The ignition flame can be reliably formed by the This enables ignition retry control.
次に、 第 1の発明の制御構成の第 2実施形態例を説明する。 この第 2実施形態 例の制御構成は、 図 3の破線で示すように、 クロック機構やタイマ等の時間計測 手段 37を設ける。 また、 点火リ トライ制御部 36に判定基準時間を与え、 点火リ ト ライ制御部 36は、 燃焼運転の停止時からの時間を時間計測手段 37を用いて検出し 、 燃焼停止時から前記判定基準時間内において燃焼運転が再開されたときには、 初期点火制御部 39により前回燃焼運転の燃焼停止時に使用されていたファン風量 制御データを用いて初期点火を行わせる。 この初期点火が失敗したときには、 前 記第 1実施形態例と同様にその初期点火時に使用したファン風量制御データの属 する分類とは異なる分類側の第 1段風量アップ用ファン風量制御データ C又は第 2段風量アップ用ファン風量制御データ Bを用いて再点火を行い、 点火火炎を確 実に形成するように制御する。 前回の燃焼停止時から前記判定基準時間を経過し た後に燃焼運転が再開されるときには、 通常の燃焼運転用の標準ファン風量制御 データ A又は第 1段風量アップ用ファン風量制御データ Cを用いて初期点火を行 わせるようにする。 それ以外の構成は前記第 1実施形態例と同様である。  Next, a second embodiment of the control configuration of the first invention will be described. The control configuration of the second embodiment is provided with a time measuring means 37 such as a clock mechanism and a timer as shown by a broken line in FIG. The ignition retry control unit 36 is provided with a judgment reference time, and the ignition retry control unit 36 detects the time from when the combustion operation is stopped by using a time measuring unit 37, and from the time when the combustion is stopped, the judgment reference time is used. When the combustion operation is restarted within the time, the initial ignition is performed by the initial ignition control unit 39 using the fan air volume control data used when the combustion was stopped in the previous combustion operation. When the initial ignition has failed, as in the case of the first embodiment, the fan air volume control data C for the first stage air volume increase of the classification side different from the classification to which the fan air volume control data used at the time of the initial ignition belongs, or Reignition is performed using the fan air flow control data B for the second-stage air volume increase, and control is performed so that an ignition flame is reliably formed. When the combustion operation is restarted after the judgment reference time has elapsed since the previous combustion stop, the standard fan air volume control data A for normal combustion operation or the fan air volume control data C for the first stage air volume increase is used. Allow the initial ignition to occur. Other configurations are the same as those of the first embodiment.
なお、 この第 2実施形態例で、 前回の燃焼運転の停止時から判定基準時間を経 過した後に燃焼運転が再開されたときに、 ファン風量制御デー夕 A又は Cを用い て行われた初期点火が失敗したときは、 このファン風量制御デ一タ Aと Cとは分 類が反対側のファン風量制御データ Bを指定して再点火が制御されることは前記 第 1実施形態例と同様である。  In the second embodiment, when the combustion operation is restarted after a lapse of the determination reference time from the previous stop of the combustion operation, the initial operation performed using the fan air volume control data A or C is performed. When the ignition fails, the re-ignition is controlled by specifying the fan air flow control data B on the opposite side of the classification of the fan air flow control data A and C as in the first embodiment. It is.
この第 2実施形態例では、 判定基準時間として例えば 5分 30秒の値が与えられ ており、 通常、 この判定基準時間内で燃焼運転が再開される場合には、 前回の燃 焼停止されたときの室内負圧の状態と同じである確率が高く、 そのため、 判定基 準時間以内で燃焼運転が再開されたときには、 前回燃焼運転時に最適燃焼状態の データとして選択使用されていたファン風量制御デー夕を用 、て初期点火を行わ せ、 初期点火の成功率を高めるようにしたものである。  In the second embodiment, for example, a value of, for example, 5 minutes and 30 seconds is given as the determination reference time. Normally, when the combustion operation is restarted within this determination reference time, the previous combustion was stopped. Therefore, when the combustion operation is restarted within the reference time, the fan air volume control data that was selected and used as the optimum combustion state data during the previous combustion operation was high. In the evening, the initial ignition is performed to increase the success rate of the initial ignition.
次に制御構成の第 3実施形態例を説明する。 この第 3実施形態例は、 図 3の 2 点鎖線で示すように、 ファン風量制御データ切り替え部 38を設けて室内の負圧の 程度によってファン風量制御データを切り替え設定するようにし、 これに合わせ て、 風量制御データ監視記憶部 35による前回燃焼運転の終了時に使用されていた ファン風量制御データの検出の仕方を変更したことを特徴とし、 それ以外の構成 は前記第 2実施形態例と同様である。 Next, a third embodiment of the control configuration will be described. In the third embodiment, as shown by a two-dot chain line in FIG. 3, a fan air volume control data switching unit 38 is provided to switch and set the fan air volume control data according to the degree of indoor negative pressure. The method of detecting the fan airflow control data used at the end of the previous combustion operation by the airflow control data monitoring storage unit 35 has been changed, and the other configuration is the same as that of the second embodiment. is there.
本発明者の実験による検討によれば、 室内が負圧化して燃焼ファン 26による給 気量が減少すると、 図 7に示す火炎が上側に伸び、 フレームロッ ド電流が増加し 、 その逆に、 室内の負圧化が解消されることにより、 火炎は元の状態に縮み、 フ レームロッド電流が減少する現象を突き止めるに至った。 この点に着目し、 この 第 3実施形態例では、 図 6に示す如く、 フレームロッ ド電流の上位側レベル位置 に上側しきい値を設置し、 フレームロッ ド電流の下位側 (低位側) レベル位置に 下側しきい値を設定し、 ファン風量制御データ切り替え部 38は、 フレームロッ ド 16から取り込まれるフレームロツ ド電流を上側および下側のしきい値と比較し、 フレームロツド電流が上側しきい値を越えたときには、 室内は負圧状態になった ものと判断し、 ファン風量制御デー夕をファン風量ァップ側の制御デー夕に切り 替え設定し、 フレームロッ ド電流が下側しきい値を下回ったときに、 室内負圧は 解除されたものと判断し、 ファン風量制御データをファン風量ダウン側、 つまり 、 ファン風量をアップする前の元のファン風量制御データに切り替え設定する構 成としている。  According to an experiment conducted by the inventor, when the pressure in the room becomes negative and the amount of air supplied by the combustion fan 26 decreases, the flame shown in FIG. 7 extends upward, and the flame rod current increases. As the negative pressure in the room was eliminated, the flame shrunk back to its original state, which led to the finding that the frame rod current decreased. Focusing on this point, in the third embodiment, as shown in FIG. 6, an upper threshold is set at the upper level position of the frame rod current, and the lower (lower) level of the frame rod current is set. Set the lower threshold value at the position, and the fan air volume control data switching unit 38 compares the frame rod current taken in from the frame rod 16 with the upper and lower threshold values, and sets the frame rod current to the upper threshold value. When the airflow exceeds the threshold, it is determined that the room is in a negative pressure state, the fan airflow control data is switched to the control data on the fan airflow up side, and the flame load current falls below the lower threshold. When it is determined that the indoor negative pressure has been released, the fan air volume control data is converted to the fan air volume down side, that is, the original fan air volume control data before the fan air volume is increased. It has a configuration to switch setting.
そして、 風量制御部 33は、 前記ファン風量制御データ切り替え部 38により切り 替え設定されたファン風量制御データを用いて燃焼運転時のファン風量を制御す るようにしている。  The air volume control unit 33 controls the fan air volume during the combustion operation using the fan air volume control data switched and set by the fan air volume control data switching unit 38.
前記ファン風量制御データ切り替え部 38のファン風量制御デー夕の切り替え設 定動作により、 例えば、 図 6に示す如く、 燃焼制御部 32から燃焼停止指令が出力 され、 電磁弁 1 1 , 12が閉じられて燃焼停止がされる際には、 フレームロッ ド電流 は下側しきい値を下方に向けて通過して下側しきい値よりも低位のレベルで燃焼 停止状態となる。 すなわち、 ファン風量制御データ切り替え部 38を設けたことに より、 燃焼停止時にフレームロツ ド電流が下側しきい値を下側に向けて横切ると きに、 ファン風量制御データ切り替え部 38は、 室内の負圧状態が解除されたもの と誤判断してファン風量制御データをファン風量がダウンする方向に切り替え設 定してしまうので、 風量制御データ監視記憶部 35は、 燃焼停止時に使用されてい たファン風量制御デ一夕として、 ファン風量制御データ切り替え部 38により風量 ダウン方向に切り替え設定したファン風量制御データを燃焼運転終了時に使用じ ていたファン風量制御デ一夕として記憶してしまう。 As shown in FIG. 6, for example, a combustion stop command is output from the combustion control unit 32 and the solenoid valves 11 and 12 are closed by the fan air flow control data switching unit 38 switching setting operation of the fan air flow control data. When the combustion is stopped, the flame rod current passes downward through the lower threshold, and the combustion is stopped at a level lower than the lower threshold. In other words, by providing the fan air volume control data switching unit 38, when the flame rod current crosses the lower threshold value downward during combustion stoppage, the fan air volume control data switching unit 38 Since it is erroneously determined that the negative pressure state has been released and the fan air volume control data is switched to the direction in which the fan air volume decreases, the air volume control data monitoring storage unit 35 is used when the combustion is stopped. As the fan air volume control data, the fan air volume control data set to be switched to the air volume down direction by the fan air volume control data switching unit 38 is stored as the fan air volume control data used at the end of the combustion operation.
このために、 燃焼停止時から判定基準時間以内に燃焼運転が再開されて初期点 火制御部 39により初期点火がされる際に、 初期点火制御部 39は前回の燃焼運転の 終了時に使用されていたファン風量制御データを風量制御データ監視記憶部 35に よって誤って記憶された風量制御デー夕を初期点火時のファン風量制御デ一タと して指定してしまうために、 初期点火の失敗の確率が増大するという問題が生じ ることになる。  For this reason, when the combustion operation is restarted within the reference time from the stop of combustion and the initial ignition is performed by the initial ignition control unit 39, the initial ignition control unit 39 is used at the end of the previous combustion operation. The fan air volume control data that was mistakenly stored by the air volume control data monitoring and storage unit 35 was designated as the fan air volume control data at the time of initial ignition. The problem is that the probability increases.
第 3実施形態例では、 このような問題を解消するために、 風量制御データ監視 記憶部 35に、 図 6に示されるようなキャンセル時間△ t CAN が与えられている。 このキャンセル時間△ t CAN は、 燃焼停止時にフレームロツ ド電流が下側しきい 値を横切ってから燃焼停止に至るまでの時間 Δ t F を上回る大きさの時間値によ つて与えられており、 具体的には、 実験等により、 A t F を測定し、 この A t F よりも大きめの値がキヤンセル時間厶 t CAN の値として与えられる。  In the third embodiment, in order to solve such a problem, the airflow control data monitoring storage unit 35 is provided with a cancellation time Δt CAN as shown in FIG. The cancellation time Δt CAN is given by a time value greater than the time ΔtF from the time when the flame rod current crosses the lower threshold to the time when combustion stops when combustion stops, and Specifically, A t F is measured by an experiment or the like, and a value larger than the A t F is given as the value of the cancel time t CAN.
風量制御データ監視記憶部 35は、 燃焼停止時のフレームロツ ド電流を時系列的 に記憶し、 燃焼停止のフレームロッ ド電流のレベル値 P FIN となった燃焼停止時 からキャンセル時間 Δ t CAN の時間だけ手前の時点で使用されていた風量制御デ 一夕、 つまり、 燃焼停止時にフレームロツ ド電流が下側しきい値を下側に向けて 横切る前に使用されていたファン風量制御データを燃焼停止時に使用されていた ファン風量制御データとして記憶するのである。  The airflow control data monitoring and storage unit 35 stores the flame load current at the time of combustion stop in a time-series manner, and cancels the time Δt CAN from the time of combustion stop at which the flame load current level value P FIN at the time of combustion stop is reached. The air flow control data that was used just before this time, that is, the fan air flow control data that was used before the flame rod current crossed the lower threshold value downward when combustion stopped It is stored as the fan air volume control data that has been used.
この第 3実施形態例では、 燃焼停止時に、 フレームロッ ド電流が下側しきい値 を下側に向けて横切ってファン風量制御デ一夕が風量ダウン側に切り替え設定さ れたとしても、 その り替え設定前のファン風量制御データが燃焼停止時に使用 されていたファン風量制御デ一タとして正しく風量制御デー夕監視記憶部 35によ り記憶されるので、 次の燃焼再開時には初期点火制御部 39により前回燃焼停止時 に使用されていたファン風量制御データとして正しいファン風量制御データが指 定されて初期点火動作が行われるので、 その初期点火動作の成功の確率を高める ことができ、 点火ミスの少ない初期点火を行うことが可能となるものである。 なお、 ファン風量制御データは、 図 4に示されるような形態で与える他に、 図 9に示すように、 図 4のファン風量制御デ一夕 Aに相当する X = 0のファン風量 制御データに対し、 X == 2, X = 4のファン風量制御データのように平行な制御 ラインの形態で与えるようにしてもよいものである。 In the third embodiment, even when the flame load current crosses the lower threshold value downward and the fan air flow control is switched to the air flow down side at the time of the combustion stoppage, this is not the case. Since the fan air volume control data before the switching setting is correctly stored as the fan air volume control data used when the combustion was stopped by the air volume control data monitoring storage unit 35, the initial ignition control unit is used when the next combustion restarts. According to 39, correct fan air volume control data is specified as the fan air volume control data used at the time of the previous combustion stop, and the initial ignition operation is performed, so that the probability of success of the initial ignition operation can be increased, and ignition failure Thus, it is possible to perform initial ignition with less noise. In addition to the fan air volume control data given in the form shown in FIG. 4, as shown in FIG. 9, the fan air volume control data of X = 0 corresponding to the fan air volume control data A of FIG. On the other hand, it may be provided in the form of parallel control lines like fan air volume control data of X == 2, X = 4.
次に、 点火後の燃焼運転時のファン風量制御構成に関し説明する。 図 8は点火 後の燃焼ファン 26の制御構成を示すもので、 ファン風量制御デ一夕に従って燃焼 ファン 26のファン風量を制御する風量制御部 33に関連させてファン風量制御デー 夕切り替え制御部 40が設けられている。 このファン風量制御データ切り替え制御 部 40は、 C Oセンサ 28や、 フレームロッ ド 16の信号を受けて、 風量制御部 33が使 用するファン風量制御データを C Oセンサ 28によって検出される C O濃度や、 フ レーム口ッ ド 16の電流で検出される室内燃焼環境の負圧状況に応じてファン風量 制御デ一夕を切り替え制御するもので、 以下の 1つ以上の機能を備えている。 第 1の機能は、 C Oセンサ 28で検出される C O濃度が高くなるにつれ、 ファン 風量制御デ一夕を段階的にファン風量ァップ側に切り替え設定する機能である。 この機能の動作例を図 13のフローチャートに基づいて説明すると、 まず、 ステツ プ 101 で、 C O濃度が上限値以上か否かが判断され、 上限値以上のときにはステ ップ 102 でファン風量制御データが 1段階高められる。 このフローチヤ一トにお いては、 図 9に示すファン風量制御データを例にして説明してあり、 フローチヤ —ト中の Xの数字は図 9に示す各ファン風量制御デ一夕の Xの値に対応している o  Next, the configuration of controlling the fan air volume during the combustion operation after ignition will be described. FIG. 8 shows a control configuration of the combustion fan 26 after the ignition. The fan air volume control unit 33 controls the fan air volume of the combustion fan 26 in accordance with the fan air volume control process. Is provided. The fan air volume control data switching control unit 40 receives the signals from the CO sensor 28 and the frame rod 16 and converts the fan air volume control data used by the air volume control unit 33 into the CO concentration detected by the CO sensor 28, It switches and controls the fan air volume control according to the negative pressure condition of the indoor combustion environment detected by the current of the frame opening 16, and has one or more of the following functions. The first function is a function of setting the fan air flow control data to be gradually switched to the fan air flow up side as the CO concentration detected by the CO sensor 28 increases. An operation example of this function will be described with reference to the flowchart of FIG. 13.First, in step 101, it is determined whether or not the CO concentration is equal to or higher than the upper limit. When the CO concentration is equal to or higher than the upper limit, the fan air flow control data is determined in step 102. Is increased by one level. In this flowchart, the fan air volume control data shown in FIG. 9 is described as an example. The X in the flowchart is the value of X in each fan air volume control data shown in FIG. O corresponds to
なお、 この C〇濃度の上限値は、 C Oセンサ 28で検出される C O濃度の雰囲気 中に人が晒されたときに、 C O危険濃度に達する時間を上限値として与えてもよ く、 又は、 高 C O濃度のしきい値で与えてもよく、 又は、 C Oセンサ 28で検出さ れる C O濃度の雰囲気中に人が晒されたと仮定したときの血中へモグロビンの C 0濃度を求め、 単位時間 t毎に算出されるその血中へモグロビン C O濃度の危険 到達時間 Tに対する前記単位時間 tとの比 t Z Tの積算値の上限値で与えてもよ いものである。  The upper limit of the C〇 concentration may be given as the time to reach the dangerous CO concentration when a person is exposed to the atmosphere having the CO concentration detected by the CO sensor 28, or It may be given at a high CO concentration threshold, or assuming that a person has been exposed to the atmosphere with the CO concentration detected by the CO sensor 28, the C0 concentration of hemoglobin in the blood is determined, and the unit time The ratio of the unit time t to the dangerous arrival time T of the moglobin CO concentration in the blood calculated for each t may be given by the upper limit value of the integrated value of the ZT.
一方、 前記ステップ 101 で、 C O濃度が上限値未満のときには、 ステップ 103 で C 0濃度が規定値以下か否かが判断され、 C 0濃度が規定値以下ときにはフ アン風量制御データを 1段階風量ダウン側に切り替える。 このとき、 ステップ 10 5 でファン風量制御デ一夕が X = 0のデ一夕になるか否かを判断し、 X = 0の一 ファン風量制御データになるときには、 ファン風量制御データを X = 0のデータ よりもファン風量が 1段階上側の X = 1のデータに設定する。 On the other hand, if the CO concentration is less than the upper limit in step 101, it is determined in step 103 whether the C0 concentration is less than a specified value. Switches the unair flow control data to the one-step lower air flow. At this time, in step 105, it is determined whether or not the fan air flow control data is X = 0, and if the fan air flow control data is X = 0, the fan air flow control data is changed to X = Set the data of X = 1, where the fan air volume is one step higher than the data of 0.
ステップ 107 では前記ステップ 102 でファン風量制御データが 1段階風量アツ プ側に切り替えられることで X = 5の値に達したか否かを判断し、 X = 5の値に 達したときにはファン風量をアップさせても高濃度の C Oガスの発生の防止が期 待できないので、 ステップ 108 で燃焼停止を行う。  In step 107, it is determined whether the fan airflow control data has reached the value of X = 5 by switching the fan airflow control data to the one-step airflow up side in step 102, and when the value of X = 5 has been reached, the fan airflow is reduced. Since it is not expected to prevent the generation of high-concentration CO gas even if it is increased, combustion is stopped in step 108.
前記ステップ 107 で Xが 5に達しないときには前記ステップ 102 で風量を 1段 階アップさせたファン風量制御データに基づき、 燃焼量 (燃焼熱量) に応じたフ アン回転数 (ファン風量) でもって燃焼ファンを回転させ、 ステップ 1 10 で室内 の負圧強度として Xの値を登録する。 ステップ 1 1 1 では給水流量センサ 22からォ ン信号が加えられているかを判断し、 オン信号が加えられているときにはステツ プ 101 以降の動作を繰り返す。 これに対し、 給水流量センサ 22からオフ信号が出 力されたときには、 給湯拴が閉じられたものと判断して燃焼停止を行う。 そして 、 ステップ 112 では、 タイマ等を用いて燃焼停止時からの経過時間を測定し、 燃 焼停止後 10分以内か否かを判断する。 燃焼停止後 10分以内で燃焼運転が再開され るときには、 室内の負圧状態は前記ステップ 110 で登録された Xの値と同じであ ると推定し、 その登録された Xの値のファン風量制御データを用いて燃焼運転を 行うが、 燃焼停止後 10分を経過したときには、 標準モードのファン風量制御デー 夕である X = 0のファン風量制御データを設定して次の燃焼運転に備える。  If X does not reach 5 in step 107, combustion is performed at a fan rotation speed (fan airflow) corresponding to the combustion amount (combustion heat amount) based on the fan airflow control data in which the airflow is increased by one stage in step 102. Rotate the fan and register the value of X as the negative pressure intensity in the room in step 110. In step 111, it is determined whether an ON signal is supplied from the feedwater flow sensor 22. When the ON signal is supplied, the operation from step 101 is repeated. On the other hand, when an OFF signal is output from the feedwater flow sensor 22, it is determined that the hot water supply 拴 has been closed, and the combustion is stopped. Then, in step 112, the elapsed time from when the combustion was stopped is measured using a timer or the like, and it is determined whether or not the time is within 10 minutes after the stop of the combustion. When the combustion operation is restarted within 10 minutes after stopping the combustion, it is estimated that the negative pressure state in the room is the same as the value of X registered in step 110, and the fan airflow of the registered value of X is assumed. The combustion operation is performed using the control data, but when 10 minutes have elapsed after the combustion was stopped, the fan air volume control data of X = 0, which is the standard mode fan air volume control data, is set to prepare for the next combustion operation.
この図 13に示すフローチャートにおいては、 室内が負圧になると、 給気の不足 状態が生じ、 室内の負圧の程度に応じて C O濃度が上昇するので、 この C O濃度 の上昇を検出して、 室内の負圧の強度に応じたファン風量制御データを選択指定 し、 室内の負圧化に伴う給気不足を解消し、 良好な燃焼運転を行うものである。 ファン風量制御データ切り替え制御部 40によるファン風量制御の第 2の機能は 、 フレームロッ ド 16から出力されるフレームロッ ド電流を検出し、 このフレーム ロッ ド電流により室内の負圧の程度を判断し、 ファン風量制御データを切り替え 設定する機能である。 すなわち、 図 10に示すように、 データ格納部 34に比例弁開 度 (燃焼熱量) とフレームロツ ド電流の関係データをしきい値として与えておき 、 この関係データに基づき室内の負圧の程度が大きくなるにつれ、 ファン風量制 御データをファン風量アップ側に段階的に切り替え、 負圧の程度が減少するにつ れて、 ファン風量制御データをファン風量ダウン側に段階的に切り替えるように 制御する機能である。 In the flowchart shown in FIG. 13, when a negative pressure is generated in the room, an air supply shortage occurs, and the CO concentration increases according to the degree of the negative pressure in the room. The fan air volume control data is selected and specified according to the negative pressure in the room, eliminating the shortage of air supply due to negative pressure in the room and performing good combustion operation. The second function of the fan air volume control by the fan air volume control data switching control unit 40 is to detect a frame rod current output from the frame rod 16 and determine the degree of negative pressure in the room based on the frame rod current. This function switches and sets fan air volume control data. That is, as shown in FIG. 10, the proportional valve is opened in the data storage The relationship data between the temperature (combustion heat) and the flame rod current is given as a threshold value. Based on this relationship data, as the degree of negative pressure in the room increases, the fan airflow control data is gradually increased toward the fan airflow increasing side. This function controls the fan airflow control data to be switched stepwise to the fan airflow down side as the degree of negative pressure decreases.
図 10に示す関係データは、 フレームロツ ド電流の低位側に下側しきい値を与え 、 上位側に上側しきい値を与えている。 この図 10の例では、 下側しきい値を下側 固定しきい値と下側可変しきレ、値で与え、 上側しきい値を上側可変しきい値と上 側固定しきい値で与えている。 これら上側と下側の固定しきい値は比例弁開度に よつて値が変動しなレ、一定の値で与えるものであり、 上側と下側の可変しきい値 は比例弁開度が大きくなるにつれ、 増加する方向に可変させた値で与えてあるが 、 これら下側しきい値は下側固定しきい値で与えてもよく下側可変しきレ、値で与 えてもよく、 あるいは比例弁開度の区分に応じ、 下側固定しきい値と下側可変し きい値を使い分けるようにしてもよいものである。 同様に、 上側しきい値も、 上 側固定しきい値で与えてもよく、 上側可変しきい値で与えてもよく、 比例弁開度 の区分に応じ上側固定しきい値と上側可変しきい値を使い分けてもよいものであ る。  In the relational data shown in FIG. 10, a lower threshold value is applied to the lower side of the frame rod current, and an upper threshold value is applied to the upper side. In the example of Fig. 10, the lower threshold is given by the lower fixed threshold and the lower variable threshold, and the upper threshold is given by the upper variable threshold and the upper fixed threshold. I have. These upper and lower fixed threshold values are given as fixed values, whose values do not fluctuate depending on the proportional valve opening.The upper and lower variable threshold values are large for the proportional valve opening. The lower thresholds may be given by lower fixed thresholds, lower variable thresholds, values, or proportional values. The lower fixed threshold value and the lower variable threshold value may be selectively used according to the category of the valve opening. Similarly, the upper threshold value may be given by the upper fixed threshold value or the upper variable threshold value. The upper fixed threshold value and the upper variable threshold value are set according to the division of the proportional valve opening. You can use different values.
ファン風量制御データ切り替え制御部 40は、 この第 2の機能の動作に際し、 フ レームロツ ド 16からフレームロツド電流を取り込み、 フレームロツ ド電流が上側 しきい値を越えたときに、 室内が負圧状況になったものと判断してファン風量制 御データを風量アップ側に切り替え設定し、 フレームロツ ド電流が下側しきい値 を下回ったとき (下側に越えたとき) は室内の負圧が解除方向に変化したものと 判断しファン風量制御データをファン風量ダウン側に切り替え設定するものであ 図 14はこの第 2の機能の動作をフローチヤ一卜で示したものである。 すなわち 、 ステップ 201 でフレームロッ ド電流が上側しきい値を越えたか否かを判断し、 上側しきい値を越えたときにはファン風量制御デ一タをファン風量増加側に 1段 階高め、 ステップ 203 でフレームロツ ド電流が下側しきい値を下側に越えたと判 断されたときには室内の負圧状況が解除されたものと判断してファン風量制御デ W P 一夕を 1段階ファン風量ダウン側に切り替え設定するものである。 ファン風量制 御データのアップダウンの切り替え動作は前記 13図に示す動作と同様であり、 じ動作には同じステツプ番号を付してその重複説明は省略する。 In the operation of the second function, the fan air volume control data switching control unit 40 takes in the frame rod current from the frame rod 16, and when the frame rod current exceeds the upper threshold value, the room enters a negative pressure state. When the flame load current falls below the lower threshold (exceeds below), the negative pressure in the room decreases in the release direction. It is determined that the air flow has changed, and the fan air flow control data is switched to the fan air flow down side. FIG. 14 is a flowchart showing the operation of the second function. That is, in step 201, it is determined whether or not the frame rod current has exceeded the upper threshold value. When the frame rod current has exceeded the upper threshold value, the fan airflow control data is raised by one step to the fan airflow increase side, and step 203 When it is determined that the frame load current has exceeded the lower threshold value in the lower direction, it is determined that the indoor negative pressure condition has been released and the fan air flow control WP This is to switch the setting to one step fan air flow down side. The up / down switching operation of the fan air volume control data is the same as the operation shown in FIG. 13, and the same operation is denoted by the same step number, and redundant description is omitted.
本発明者は、 室内の負圧の程度と、 フレームロッ ド電流の関係を実験により検 証しており、 室内が負圧化されると、 給気の不足により、 燃焼火炎は上方に伸び 、 フレームロッ ド電流の大きさが大きくなり、 室内の負圧が解除されると、 給気 の不足状態が解消されることで、 火炎は元の状態に縮み、 フレームロッ ド電流が 減少する現象が生じることを突き止めており、 この第 2の機能の動作は、 フレー ムロツ ド電流が上側しきい値を越えたときには室内の負圧が発生し、 フレーム口 ッ ド電流が下側しきい値を下側に越えたときには負圧解除あるいは負圧の程度が 低下したものと判断し、 室内の負圧の程度に応じてファン風量制御デ一夕を切り 替え設定し、 室内の負圧の程度の応じてファ ン風量を制御して良好な燃焼運転を 確保するものである。  The present inventor has experimentally verified the relationship between the degree of the negative pressure in the room and the flame rod current. When the indoor pressure is reduced, the combustion flame expands upward due to insufficient air supply, and the flame increases. When the magnitude of the rod current increases and the negative pressure in the room is released, the shortage of air supply is resolved, and the flame shrinks to its original state, causing a phenomenon in which the flame rod current decreases. The operation of this second function is that when the frame rod current exceeds the upper threshold, a negative pressure in the room is generated and the frame port current falls below the lower threshold. When the pressure exceeds, it is judged that the negative pressure has been released or the degree of negative pressure has decreased, and the fan air volume control data is switched and set according to the degree of negative pressure in the room. Good combustion operation by controlling fan air volume It is intended to guarantee.
ファン風量制御データ切り替え制御部 40によるファン風量制御構成の第 3の機 能は、 フレームロツ ド電流の変化量によって室内の負圧状況と負圧解除状況を検 出する機能である。 図 11の (a ) はフレームロッ ド電流の上昇変化量によって室 内の負圧発生状況を検出してファン風量制御データをファン風量アップ側に切り 替え設定するもので、 データ格納部 34に上昇変化基準値 F thl (例えば 1. 1 A ) とその上昇変化基準値に対して与えられる基準時間 T thl (例えば 0. 6 秒) の データが与えられており、 ファン風量制御データ切り替え制御部 40は、 フレーム ロッ ド電流の上昇変化量が基準時間 T thl の時間内で、 上昇変化基準値 F thl を 越えたときには、 例えば燃焼運転中にレンジフードゃ換気扇が起動される等して 室内が負圧化されたものと判断し、 ファン風量制御データ Xを風量アップ側 ( ( X + 1 ) 側) に切り替え設定する。  A third function of the fan air volume control configuration by the fan air volume control data switching control unit 40 is a function of detecting a negative pressure state and a negative pressure release state in the room based on a change amount of the frame rod current. (A) in Fig. 11 is to detect the generation of negative pressure in the room based on the amount of increase in the frame rod current and switch the fan airflow control data to the fan airflow up side, and set the data to the data storage unit 34. The data of the change reference value F thl (for example, 1.1 A) and the reference time T thl (for example, 0.6 seconds) given to the rise change reference value are given. If the amount of change in flame rod current exceeds the reference value for change of increase F thl within the time of the reference time T thl, if the range hood ゃ ventilation fan is started during combustion operation, the indoor It is determined that the pressure has been increased, and the fan air volume control data X is switched to the air volume up side ((X + 1) side).
図 11の (b ) は、 フレームロッ ド電流の下降変化量に基づいて室内の負圧解除 を検出する機能であり、 データ格納部 34にはフレームロツ ド電流の下降変化基準 値 F th2 とこの下降変化基準値に対して与えられる基準時間 T th2 とが与えられ 、 ファン風量制御データ切り替え制御部 40は、 フレームロッド電流の下降変化量 が前記判断時間 T th2 の時間内で、 下降変化基準値 F th2 を越えたときには、 室 内の負圧状況は解除 (又は負圧減少方向に変化) したものと判断し、 ファン風量 制御データ Xをファン風量ダウン側 ( (X— 1 ) 側) に切り替え設定する。 一- 図 12はフレームロツ ド電流の急激減少変化量によって室内の急激な負圧変化を 検出してファン風量を増加する方向にファン風量制御デー夕を切り替え設定する 機能を示すものである。 この機能では、 データ格納部 34にフレームロッ ド電流の 下降変化基準値 F thO (例えば 0. 7 m A のデータと前記図 11の (b ) に示され る判断時間 T th2 よりも時間幅が狭い微小設定時間 A T th (例えば 0. 1 秒) のデ 一夕が与えられており、 ファン風量制御デ一夕切り替え制御部 40はフレームロツ ド電流が微小設定時間 A T thの時間内で下降変化基準値 F thO を越えて下降した ときには、 例えば室内の戸が開けられている状態でレンジフードが起動状態で燃 焼運転がされているときに、 戸が急に閉められて室内が急激に負圧化して燃焼火 炎が立ち消え寸前となって (火炎が極めて小さくなつて) フレームロッ ド電流が 急激に下降変化したものと判断する。 そしてこの場合には、 急激な負圧発生によ る給気の不足を解消するために、 ファン風量制御データ Xをファン風量ァップ側 ( ( X + 1 ) 側) に切り替え設定するのである。 FIG. 11 (b) shows the function of detecting the release of the negative pressure in the room based on the amount of decrease in the frame rod current. The data storage section 34 stores the reference value F th2 for the decrease in frame rod current and this decrease. The reference time T th2 given to the change reference value is given, and the fan air flow control data switching control unit 40 determines that the amount of decrease in the flame rod current is within the time of the judgment time T th2, When th2 is exceeded, the room Judgment is made that the negative pressure condition in () has been released (or changed in the negative pressure decreasing direction), and the fan air volume control data X is switched to the fan air volume down side ((X-1) side). Fig. 12 shows the function of detecting the sudden negative pressure change in the room based on the amount of sudden decrease in the frame rod current and switching the fan air flow control data in the direction to increase the fan air flow. In this function, the data storage unit 34 stores the reference value F thO of the falling change of the frame rod current (for example, 0.7 mA data and the time width longer than the determination time T th2 shown in FIG. 11B). A short minute setting time AT th (for example, 0.1 second) is given, and the fan air volume control data overnight switching control unit 40 determines that the frame rod current falls within the minute setting time AT th. When the value falls below the value F thO, for example, when the range hood is activated and the combustion operation is being performed with the indoor door open, the door is closed suddenly and the negative pressure It is determined that the flame flame current has fallen and the flame has almost disappeared (the flame has become extremely small), and that the flame rod current has dropped sharply. Fan air volume to eliminate shortage His data X is to switch setting on the fan air volume Appu side ((X + 1) side).
上記ファン風量制御デ一夕切り替え制御部 40により何れかの機能によってファ ン風量制御データが切り替え設定されたときには、 風量制御部 33は、 その切り替 え設定されたファン風量制御データを用いて燃焼ファン 26の風量制御を行う。 ファン風量制御データ切り替え制御部 40には前記複数の機能のうち、 1つ以上 の機能が設けられて室内の負圧状況に応じたファン風量制御デー夕の設定が行わ れるが、 特に、 燃焼熱量 (比例弁開度) が例えば制御範囲の指定値 (例えば比例 弁開度 30% ) 以下の低燃焼能力範囲では燃焼性能が室内の負圧によってより影響 を受け易いので、 この低燃焼能力範囲においては、 C Oセンサの C〇検出信号に 基づく前記第 1の機能 (基本機能) とフレームロッ ド電流に基づく前記 1つ以上 の機能 (付加機能) とを組み合わせ、 C Oセンサによる室内の負圧程度の検出に 基づくファン風量制御データの設定と、 フレームロツ ド電流による室内負圧程度 の検出に基づくファン風量制御デ一夕の切り替え設定とを併用することにより、 室内の負圧の程度に応じたより正確なファン風量制御が可能となる。  When the fan air volume control data is switched and set by any of the functions by the fan air volume control switching control unit 40, the air volume control unit 33 uses the switched fan air volume control data to set the combustion fan. 26 air volume control is performed. The fan air volume control data switching control unit 40 is provided with one or more of the above-described functions to set the fan air volume control data according to the negative pressure condition in the room. In the low combustion capacity range where the (proportional valve opening) is below the specified value of the control range (for example, the proportional valve opening is 30%), the combustion performance is more easily affected by the negative pressure in the room. Combines the first function (basic function) based on the C〇 detection signal of the CO sensor and the one or more functions (additional function) based on the frame rod current to reduce the negative pressure in the room by the CO sensor. By using the setting of fan air volume control data based on detection and the setting of switching of fan air volume control data based on detection of about room negative pressure by flame load current, the indoor negative pressure can be reduced. It is possible to correct the fan air volume control than depending on time.
すなわち、 燃焼熱量が低い (比例弁開度が小側) 領域では、 風量不足により燃 焼が悪化して放出される C Oを C Oセンサで補集して燃焼悪化を検知していると 、 C Oが発生してから C Oセンサで検出されるまでに時間がかかり、 この間に失一 火してしまうおそれがある。 この点、 フレームロッ ド電流は燃焼悪化に瞬時に反 応し、 このフレームロッ ド電流の変化によって燃焼悪化を迅速に検出し、 燃焼改 善方向に風量がいち早く制御されることで、 失火を防止することができる。 In other words, in the region where the amount of combustion heat is low (proportional valve opening is small), the amount of If CO emission is collected by the CO sensor to detect combustion deterioration, it takes a long time from the generation of CO to the detection of CO by the CO sensor. There is a risk that it will. In this regard, the flame rod current instantaneously responds to the deterioration of combustion, and the change in the flame rod current detects the deterioration of combustion quickly, preventing the misfiring by quickly controlling the air flow in the direction of improving combustion. can do.
一方、 フレームロツ ドには燃焼悪化を感度よく検出できるフレームロツ ド電流 の範囲があり、 フレームロツ ド電流がこの範囲から外れると燃焼悪化の検出感度 が低下するが、 この範囲においては、 C Oセンサによって燃焼悪化を良好に検出 することができるので、 フレームロツ ド電流に基づく負圧検出と C〇センサによ る C 0濃度検出信号に基づく負圧検出とを併用することにより、 燃焼熱量制御の 全範囲において室内燃焼環境の負圧状況を精度よく検出でき、 室内の負圧の程度 に応じたより正確なファン風量制御が可能となるのである。  Flame rods, on the other hand, have a range of flame rod current that can detect combustion deterioration with high sensitivity.If the flame rod current deviates from this range, the detection sensitivity of combustion deterioration decreases.However, in this range, combustion deterioration is detected by the CO sensor. By using the negative pressure detection based on the flame rod current and the negative pressure detection based on the C0 concentration detection signal by the C〇 sensor together, the indoor pressure can be detected over the entire range of combustion heat control. It is possible to accurately detect the negative pressure condition of the combustion environment, and to control the fan air volume more accurately according to the degree of negative pressure in the room.
なお、 本発明は上記実施形態例に限定されることはなく、 様々な実施の形態を 採り得る。 例えば、 上記実施形態例では、 燃焼装置として給湯器を例にして説明 したが、 本発明の燃焼装置は、 ガスや石油を燃料とする給湯器以外の例えば風呂 釜、 暖房機、 冷房機、 冷暖房機、 ファンヒータ等の様々な燃焼装置に適用される ものである。  Note that the present invention is not limited to the above embodiments, and various embodiments can be adopted. For example, in the above embodiment, a water heater was described as an example of a combustion device. However, the combustion device of the present invention is not limited to a water heater using gas or oil as a fuel, for example, a bath kettle, a heating device, a cooling device, and a cooling / heating device. It can be applied to various combustion devices such as air conditioners and fan heaters.
さらに、 上記実施形態例では図 2に示す如く、 燃焼ファン 26を排気側に設けて 吸い出し式としたが、 例えば、 燃焼ファン 26をバーナ 8の下方側に設けて押し出 し式としてもよい。  Further, in the above embodiment, as shown in FIG. 2, the combustion fan 26 is provided on the exhaust side and is of a suction type. However, for example, the combustion fan 26 may be provided on the lower side of the burner 8 and may be of an extrusion type.
さらに、 図 3に示すファン風量制御デー夕は比例弁開度とファン回転数の関係 で与えてもよく、 比例弁開度とファン風量の関係で与えてもよい。 後者の場合に はファン風量を検出する風量センサ (例えば風速センサ) を設け、 検出風量が比 例弁開度に対応する目標風量になるようにファン回転数を制御する制御形態を採 ることになる。  Further, the fan air volume control data shown in FIG. 3 may be given by the relationship between the proportional valve opening and the fan speed, or may be given by the relationship between the proportional valve opening and the fan air volume. In the latter case, an airflow sensor (for example, a wind speed sensor) that detects the fan airflow is provided, and a control mode is adopted to control the fan speed so that the detected airflow reaches the target airflow corresponding to the proportional valve opening. Become.
さらに、 上記図 13や図 14で示した実施形態例では、 ファン風量制御データを順 次風量アップ側に上げるときには、 X = 0 , X = 1 , Χ = 2 , Χ = 3 , Χ = 4と いう如く Xが 1ずつ順に上げるようにし、 ファン風量制御データを風量ダウン側 に下げるときには Χ = 4, Χ = 3 , Χ = 2, Χ = 1 という如く Xが 1ずつ順次下 げるようにしたが、 これらファン風量制御デ一夕の上昇と下降の順序は必ずしも これに限定されることはなく、 例えば、 ファン風量制御データを上げるときにばFurther, in the embodiment shown in FIG. 13 and FIG. 14, when the fan airflow control data is sequentially increased to the airflow up side, X = 0, X = 1, Χ = 2, Χ = 3, Χ = 4. As described above, X is increased by 1 in order, and when decreasing the fan airflow control data to the airflow down side, X is sequentially decreased by 1 such as Χ = 4, Χ = 3, Χ = 2, Χ = 1. However, the order of ascending and descending of the fan air volume control data is not necessarily limited to this. For example, when increasing the fan air volume control data,
、 X = 0 , X = 2, X - 3 , X = 4という如く手順で上げるようにしてもよい。 上記第 1の本発明の実施例は、 室内が弱負圧の状態で点火を確実に行わせるこ とを可能にした第 1段風量アップ用ファン風量制御データと、 室内が強負圧の状 態で確実に点火を行わせることが可能な前記第 1段風量ァップ用ファン風量制御 データよりもファン風量を増加させた第 2段風量アップ用ファン風量制御データ が与えられる。 燃焼開始時の初期点火動作が失敗した場合には、 その失敗した初 期点火動作時に使用したファン風量制御データが弱負圧側の分類に属するものか 、 又は強負圧側の分類の属するものかを判断し、 弱負圧側のファン風量制御デー 夕を用いて初期点火動作を失敗したときには、 室内負圧状態は強負圧の状態にあ るものと判断され、 このときには、 強負圧側の第 2段風量アップ用ファン風量制 御データが指定されて再点火が行われる。 その逆に、 強負圧側のファン風量制御 データを用いて初期点火が失敗されたときには、 室内は負圧状態がほぼ解除され ており、 この状態で、 強負圧側のファン風量制御データが使用されたために、 風 量過剰によって初期点火動作が失敗したものと判断され、 この場合には、 弱負圧 側の第 1段風量ァップ用ファン風量制御データが指定されて再点火が行われる。 従って、 強負圧側と弱負圧側の何れのファン風量制御データを用いて初期点火が 失敗されたとしても、 次の再点火時には、 点火に適切な風量となる側のファン風 量制御データが指定されて再点火が行われるので、 その 1回の再点火の動作で点 火の火炎を安定に形成することができることとなり、 再点火動作を何回も繰り返 すことなく確実に点火させることができ、 点火制御の精度を高め、 点火制御の信 頼性を格段に高めることが可能となる。 , X = 0, X = 2, X−3, X = 4. In the first embodiment of the present invention, the first-stage air-flow-increase fan air volume control data, which makes it possible to reliably perform ignition when the room is under a weak negative pressure, The second stage airflow control fan airflow control data in which the fan airflow is increased more than the first stage airflow fan airflow control data capable of reliably performing ignition in a state is provided. If the initial ignition operation at the start of combustion has failed, it is determined whether the fan air volume control data used in the failed initial ignition operation belongs to the weak negative pressure side or the strong negative pressure side. When the initial ignition operation is failed using the fan airflow control data on the weak negative pressure side, it is determined that the indoor negative pressure state is a strong negative pressure state. Re-ignition is performed by specifying the fan air volume control data for increasing the stage air volume. Conversely, when the initial ignition fails using the high negative pressure side fan airflow control data, the negative pressure state is almost canceled in the room, and in this state, the high negative pressure side fan airflow control data is used. For this reason, it is determined that the initial ignition operation has failed due to excessive air flow. In this case, the fan air flow control data for the first-stage air flow up on the weak negative pressure side is specified and re-ignition is performed. Therefore, even if the initial ignition fails using either the high-pressure side or the low-pressure side fan airflow control data, the fan airflow control data on the side that provides the appropriate airflow for ignition is specified at the next reignition. Since reignition is performed, the flame of ignition can be formed stably by the single reignition operation, and the ignition can be reliably performed without repeating the reignition operation many times. As a result, the accuracy of the ignition control can be improved, and the reliability of the ignition control can be significantly improved.
また、 上記第 1の本発明の実施例は、 風量制御データ監視記憶部を設けて前回 の燃焼停止時に使用されていたファン風量制御データを監視記憶し、 燃焼停止時 から判定基準時間内に燃焼運転が再開されるときには、 風量制御データ監視記憶 部によつて監視記憶された前回燃焼停止時のファン風量制御データを用いて初期 点火を行わせる構成とした。 この場合は、 前回燃焼停止時と同じ室内の負圧ある いは負圧解除の環境で初期点火が行われる可能性が高いので、 前回燃焼停止時に 使用されていたファン風量制御データを使用することによって、 初期点火の成功 の確率が高くなり、 これにより、 初期点火の失敗を少なく し、 初期点火によって 効率的に点火火炎を形成することができるという効果が得られる。 Further, in the first embodiment of the present invention, the air flow control data monitoring storage unit is provided to monitor and store the fan air flow control data used at the time of the previous combustion stop, and to perform the combustion within the determination reference time from the combustion stop. When the operation is restarted, the initial ignition is performed using the fan air volume control data at the time of the previous combustion stoppage monitored and stored by the air volume control data monitoring storage unit. In this case, there is a high possibility that the initial ignition will be performed in the same negative pressure in the room as in the previous combustion stop or in the environment where the negative pressure is released. By using the fan air volume control data that was used, the probability of successful initial ignition was increased, thereby reducing initial ignition failures and enabling initial ignition to efficiently form an ignition flame. The effect is obtained.
さらに、 上記第 1の本発明の実施例は、 火炎検出センサの検出信号レベルが予 め与えられるしきい値を下回ったときにはファン風量制御データを風量ダウン側 に切り替える構成としたものにあっては、 火炎検出センサの検出信号レベルが前 記しきい値レベルを下側に向けて横切ってから燃焼の停止レベルまで低下するの に要する時間を上回るキャンセル時間を与え、 燃焼停止時点よりもキャンセル時 間だけ手前の燃焼時点で使用されていたファン風量制御データを燃焼停止時に使 用されていたファン風量制御データとして検出する構成とした。 従って、 燃焼停 止時に火炎検出センサの検出信号レベルが前記しきい値を横切つてファン風量制 御データが風量ダウン側に切り替えられたとしても、 その風量ダウン側のファン 風量制御データを前回燃焼停止時に使用していたファン風量制御データとして誤 認設定されるのを防止でき、 燃焼停止時点よりもキャンセル時間だけ手前の燃焼 時点で使用されているファン風量制御デー夕を燃焼停止時に使用されていたファ ン風量制御データとして正しく検出設定することができる。  Further, the first embodiment of the present invention has a configuration in which the fan air volume control data is switched to the air volume down side when the detection signal level of the flame detection sensor falls below a predetermined threshold value. Gives a cancellation time longer than the time required for the detection signal level of the flame detection sensor to cross the threshold level downward and drop to the combustion stop level, and only for the cancellation time after the combustion stop point The configuration is such that the fan air volume control data used at the time of the previous combustion is detected as the fan air volume control data used at the time of stopping the combustion. Therefore, even if the detection signal level of the flame detection sensor crosses the threshold value when the combustion is stopped and the fan airflow control data is switched to the airflow downside, the fan airflow control data on the airflow downside is compared with the previous combustion airflow. It is possible to prevent erroneous setting as the fan air volume control data used at the time of stoppage, and to use the fan air volume control data used at the time of combustion just before the stop time of combustion for the cancellation time before the stop of combustion. It can be correctly detected and set as fan air volume control data.
このため、 次の燃焼再開時に、 初期点火を行う場合、 前回の燃焼終了時に使用 されていたファン風量制御データを正しく指定して、 その正しいファン風量制御 デー夕を使用して初期点火が行われるので、 前記ファン風量制御デー夕切り替え 部の動作に影響を受けることなく初期点火を行わせることができ、 これにより、 初期点火の成功の確率を高めることができるという効果を奏するものである。 さらに、 上記第 1の本発明の実施例は、 C Oセンサの C O濃度検出信号や、 フ レームロッ ドから出力されるフレームロツ ド電流に基づき、 室内の負圧の程度を 検出し、 ファン風量制御データを室内の負圧の程度に応じて室内の負圧の程度が 大きいときには風量アップ方向に、 室内の負圧が解除 (あるいは減少) されたと きには風量ダウン方向に切り替え設定するファン風量制御データ切り替え制御部 を設ける構成とした。 従って、 室内の負圧の程度に応じてファン風量が制御され るために、 室内の負圧による給気不足を風量アップにより解消し、 室内の負圧が 解除されるときには、 風量をダウン方向にして風量の過剰を解消する方向に制御 されるので、 室内の負圧状況の変化に影響を受けずに良好な燃焼運転を行うこと が可能となる。 一For this reason, when initial ignition is performed at the next restart of combustion, the initial ignition is performed using the correct fan air volume control data by correctly specifying the fan air volume control data used at the end of the previous combustion Therefore, the initial ignition can be performed without being affected by the operation of the fan air volume control data switching unit, whereby the probability of success of the initial ignition can be increased. Further, the first embodiment of the present invention detects the degree of negative pressure in the room based on the CO concentration detection signal of the CO sensor and the frame rod current output from the frame rod, and outputs the fan air volume control data. According to the degree of indoor negative pressure, the fan air volume control data is switched so that the air flow increases when the indoor negative pressure is large, and the air flow decreases when the indoor negative pressure is released (or decreases). The control unit is provided. Therefore, since the fan airflow is controlled according to the degree of the negative pressure in the room, the shortage of air supply due to the negative pressure in the room is eliminated by increasing the airflow, and when the negative pressure in the room is released, the airflow is decreased. Control to eliminate excess air flow Therefore, good combustion operation can be performed without being affected by the change in the indoor negative pressure condition. one
[第 2の発明] [Second invention]
上記した第 1の発明では、 点火ミスが発生するとファンの風量制御データを異 なるデータに置き換えてから、 再度点火制御を行った。 それに対して、 第 2の発 明では、 燃焼開始時の点火の時の風量制御データを、 燃焼停止時が通常状態の時 は、 通常状態の風量制御データと負圧状態の風量制御データとの中間領域の点火 用の風量制御データにする。 また、 燃焼停止時が負圧伏態の時も、 同様に通常状 態の風量制御データと負圧状態の風量制御データとの中間領域の点火用の風量制 御データにする。 従って、 第 2の発明では、 点火時において室内が通常の圧力状 態であっても、 負圧状態であっても、 確実に点火させることができる。 点火後は 、 室内が負圧状態か否かの検出を行って、 最適の風量制御データに切り替えて燃 焼制御を行う。  In the first invention described above, when an ignition error occurs, the air flow control data of the fan is replaced with different data, and then the ignition control is performed again. On the other hand, in the second invention, the air flow control data at the time of ignition at the start of combustion is compared with the air flow control data of the normal state and the air flow control data of the negative pressure state when the combustion is stopped. Use the air volume control data for ignition in the middle area. Also, when the combustion stop time is a negative pressure drop state, similarly, the air flow control data for ignition in the intermediate region between the air flow control data in the normal state and the air flow control data in the negative pressure state is used. Therefore, in the second invention, the ignition can be reliably performed regardless of whether the room is in a normal pressure state or a negative pressure state at the time of ignition. After the ignition, it is detected whether or not the room is in a negative pressure state, and the combustion control is performed by switching to the optimal air volume control data.
この実施形態例に示す給湯器のシステムは以上のように構成されており、 この 給湯器は台所や洗面所等の室内に設置することが可能である。 この実施形態例で は、 器具運転の制御構成に特徴があり、 給湯器が設置されている室内が通常の標 準モードの状態でも該標準モード時よりも負圧状態の負圧モードの状態でも良好 な燃焼を行わせることができる上に、 点火時に標準モードの状態からも負圧モー ドの状態からも点着火を達成させることが可能な点火動作制御構成が設けられて いる。 以下に、 その特徴的な制御構成を説明する。  The water heater system shown in this embodiment is configured as described above, and this water heater can be installed in a room such as a kitchen or a washroom. This embodiment is characterized by the control configuration of the appliance operation, and is applicable to a room in which the water heater is installed in a normal standard mode or in a negative pressure mode which is a negative pressure state more than the standard mode. In addition to being able to perform good combustion, there is provided an ignition operation control structure that can achieve point ignition at the time of ignition from both the standard mode state and the negative pressure mode state. The characteristic control configuration will be described below.
図 1 5には第 2の発明の第 1の実施形態例において特徴的な制御構成が示され ている。 この給湯器の制御装置 2 3 0は、 図 1 5に示されるように、 燃焼制御部 3 5とデータ格納部 2 3 6と点火時風量制御部 2 3 8と制御データ転移制御部 4 0と負圧検知手段 2 4 1 と制御データ切り換え制御部 2 4 4を有して構成されて いる。  FIG. 15 shows a characteristic control configuration in the first embodiment of the second invention. As shown in FIG. 15, the water heater control device 230 includes a combustion control unit 35, a data storage unit 236, an ignition air volume control unit 238, and a control data transfer control unit 40. It has a negative pressure detecting means 24 1 and a control data switching control section 24 4.
上記燃焼制御部 2 3 5には器具運転を行うためのシーケンスプログラムが予め 与えられており、 燃焼制御部 2 3 5は、 リモコン 3 1の情報や、 各種のセンサの センサ出力情報を取り込んで、 それら取り込んだ情報に基づいて前述したように 器具運転の制御を行う。 負圧検知手段 2 4 1は、 C Oセンサ 2 8から検出出力される排気ガス中の C O 濃度や、 フレームロッ ド電極 1 6から検出出力されるフレームロッ ド電流値に基- づき、 給湯器が設置されている室内の負圧状態を検知するもので、 以下の 1っ以 上の機能を備えている。 A sequence program for operating the appliance is given in advance to the combustion control unit 235, and the combustion control unit 235 fetches information of the remote controller 31 and sensor output information of various sensors, Based on the acquired information, control of the appliance operation is performed as described above. The negative pressure detecting means 2 41 is based on the CO concentration in the exhaust gas detected and outputted from the CO sensor 28 and the flame rod current value detected and outputted from the flame rod electrode 16, and the water heater is provided. It detects a negative pressure condition in the installed room and has one or more of the following functions.
基本機能は、 室内の負圧状態に起因して燃焼状態が空気不足により悪化すると 排気ガス中の C〇濃度が増加することに着目し、 C 0センサ 2 8で検出される C 0濃度を検出し、 該 C O濃度が予め定めた危険値 (例えば、 2 0 0 O p p m ) 以 上に増加したときには室内が負圧状態であると検知し、 C 0濃度が予め定めた下 限値以下に減少したときには室内の負圧が緩和解除されたと検知する機能である なお、 上記 C O濃度の危険値は、 C Oセンサ 2 8で検出される C O濃度の雰囲 気中に人が晒されたときに、 C O危険濃度に達する時間を危険値として与えても よく、 又は、 高 C〇濃度のしきい値で与えてもよく、 又は、 C Oセンサ 2 8で検 出される C〇濃度の雰囲気中に人が晒されたと仮定したときの血中へモグロビン の C 0濃度を求め、 単位時間 t毎に算出されるその血中へモグロビン C 0濃度の 危険到達時間 Tに対する前記単位時間 tとの比 t ZTの積算値の危険値で与えて もよいものである。  The basic function is to detect the C0 concentration detected by the C0 sensor 28, focusing on the fact that the C〇 concentration in the exhaust gas increases when the combustion state deteriorates due to lack of air due to the negative pressure in the room. However, when the CO concentration increases above a predetermined dangerous value (for example, 200 ppm), it is detected that the room is in a negative pressure state, and the C0 concentration decreases below the predetermined lower limit. In this case, the dangerous value of the CO concentration is determined when the person is exposed to the atmosphere with the CO concentration detected by the CO sensor 28. The time to reach the dangerous CO concentration may be given as a risk value, or may be given as a high C〇 concentration threshold, or if a person is in an atmosphere with a C〇 concentration detected by the CO sensor 28 Calculate C0 concentration of moglobin in blood assuming exposure, and calculate per unit time t In which it may be given at risk value of the integrated value of the ratio t ZT of the unit time t with respect to the danger arrival time T of the hemoglobin C 0 concentration to the blood to be.
負圧検知手段 2 4 1による負圧検知の第 1の付加機能は、 フレームロツ ド電極 1 6から出力されるフレームロッ ド電流を検出し、 このフレームロッ ド電流によ り室内の負圧発生を検知する機能である。 すなわち、 図 1 0に示すように、 デー 夕格納部 3 6に燃焼能力とフレームロツド電流の関係データをしきい値として与 えておき、 この関係データに基づき室内の負圧の程度を検知する機能である。 図 1 0に示す関係データは、 フレームロッド電流の低位側に下側しきい値を与 え、 上位側に上側しきい値を与えている。 この図 1 0の例では、 下側しきい値を 下側固定しきレ、値と下側可変しきレ、値で与え、 上側しきい値を上側可変しきい値 と上側固定しきい値で与えている。 これら上側と下側の固定しきい値は燃焼能力 によつて値が変動しなレ、一定の値で与えるものであり、 上側と下側の可変しきい 値は燃焼能力が大きくなるにつれ、 増加する方向に可変させた値で与えてあるが 、 これら下側しきい値は下側固定しきレ、値で与えてもよく下側可変しきレ、値で与 えてもよく、 あるいは燃焼能力の区分に応じ、 下側固定しきい値と下側可変しき い値を使い分けるようにしてもよいものである。 同様に、 上側しきい値も、 上側 固定しきい値で与えてもよく、 上側可変しきい値で与えてもよく、 燃焼能力の区 分に応じ上側固定しきい値と上側可変しきい値を使い分けてもよいものである。 負圧検知手段 2 4 1は、 この第 1の付加機能の動作に際し、 フレームロッ ド電 極 1 6からフレームロツ ド電流を取り込み、 フレームロツ ド電流が上側しきい値 を越えたときに、 室内が負圧状況になったものと検知し、 フレームロッ ド電流が 下側しきい値を下回ったとき (下側に越えたとき) は室内の負圧が解除方向に変 化したものと検知するものである。 The first additional function of the negative pressure detection by the negative pressure detecting means 2441 is to detect the frame rod current output from the frame rod electrode 16 and to generate the negative pressure in the room by the frame rod current. It is a function to detect. That is, as shown in FIG. 10, the data storage section 36 is provided with the relation data of the combustion capacity and the flame rod current as a threshold value, and the function of detecting the degree of the negative pressure in the room based on the relation data is provided. is there. The relationship data shown in FIG. 10 gives a lower threshold to the lower side of the flame rod current and an upper threshold to the upper side. In the example of Fig. 10, the lower threshold is given by the lower fixed threshold, the value and the lower variable threshold, the value is given, and the upper threshold is given by the upper variable threshold and the upper fixed threshold. ing. The upper and lower fixed threshold values are given as fixed values, the values of which do not fluctuate depending on the combustion capacity, and the upper and lower variable threshold values increase as the combustion capacity increases. Although the lower thresholds are given as values fixed in the lower direction, these lower thresholds may be given as lower fixed thresholds or values. Alternatively, the lower fixed threshold and the lower variable threshold may be selectively used according to the category of the combustion capacity. Similarly, the upper threshold value may be given by the upper fixed threshold value or the upper variable threshold value, and the upper fixed threshold value and the upper variable threshold value are determined according to the combustion capacity. You can use them properly. The negative pressure detecting means 2 41 takes in the frame rod current from the frame rod electrode 16 when the first additional function is operated, and when the frame rod current exceeds the upper threshold value, the indoor pressure becomes negative. When the flame load current falls below the lower threshold (exceeds below), it is detected that the negative pressure in the room has changed in the release direction. is there.
本発明者は、 室内の負圧の程度と、 フレームロッ ド電流の関係を実験により検 証しており、 室内が負圧化されると、 給気の不足により、 良好な燃焼状態の図 1 6の (a ) に示す燃焼火炎に対して、 燃焼火炎は図 1 6の (b ) に示すように上 方に伸び、 燃焼火炎の内炎 4 6の電気抵抗率は外炎 4 5よりも低いことからフレ ームロッ ド電流の大きさが大きくなり、 室内の負圧が解除されると、 給気の不足 状態が解消されることで、 火炎は元の伏態に縮み、 フレームロッ ド電流が減少す る現象が生じることを突き止めており、 この第 1の付加機能では、 このことを利 用し、 前記の如く、 フレームロッ ド電流が上側しきい値を越えたときには室内の 負圧が発生し、 フレームロツ ド電流が下側しきい値を下側に越えたときには負圧 解除あるいは負圧の程度が低下したものと検知するものである。  The present inventor has experimentally verified the relationship between the degree of negative pressure in the room and the flame load current. When the room is negatively charged, a lack of air supply causes a good combustion state. In contrast to the combustion flame shown in Fig. 16 (a), the combustion flame extends upward as shown in Fig. 16 (b), and the electrical resistivity of the inner flame 46 of the combustion flame is lower than that of the outer flame 45. Therefore, when the magnitude of the frame rod current increases and the negative pressure in the room is released, the shortage of air supply is resolved, and the flame shrinks to its original state and the flame rod current decreases. The first additional function takes advantage of this fact, and as described above, a negative pressure in the room is generated when the flame load current exceeds the upper threshold. Negative pressure is released when flame load current exceeds the lower threshold. Are those degree of negative pressure is detected as those lowered.
室内の負圧検知における第 2の付加機能は、 フレームロツ ド電流の変化量によ つて室内の負圧状況と負圧解除状況を検出する機能である。 図 1 1の (a ) はフ レームロツド電流の上昇変化量によつて室内の負圧発生状況を検出するもので、 データ格納部 2 3 6に上昇変化基準値 F thl (例えば 1. 1 il k ) とその上昇変化 基準値に対して与えられる負圧検知基準時間 T thl (例えば 0. 6秒) のデータが 与えられており、 負圧検知手段 2 4 1は、 フレームロツ ド電流の上昇変化量が負 圧検知基準時間 T thl の時間内で、 上昇変化基準値 F thl を越えたときには、 例 えば、 燃焼運転中にレンジフードゃ換気扇が起動される等して室内が負圧化され たものと検知する。  The second additional function in indoor negative pressure detection is a function of detecting the indoor negative pressure state and negative pressure release state based on the amount of change in the flame load current. (A) in FIG. 11 detects the occurrence of a negative pressure in the room based on the amount of increase in the frame rod current. The data storage section 236 stores the reference value of the increase change F thl (for example, 1.1 il k). ) And its rise change The data of the negative pressure detection reference time T thl (for example, 0.6 seconds) given to the reference value is given, and the negative pressure detection means 2 41 If the pressure exceeds the rising change reference value F thl within the time of the negative pressure detection reference time T thl, for example, when the range hood 起動 ventilation fan is started during the combustion operation, the indoor pressure is reduced. Is detected.
図 1 1の (b ) は、 フレームロツ ド電流の下降変化量に基づいて室内の負圧解 除を検出する機能であり、 デ一夕格納部 2 3 6にはフレームロツ ド電流の下降変 化基準値 F th2 とこの下降変化基準値に対して与えられる基準時間 T th2 とが与 えられ、 負圧検知手段 2 4 1は、 フレームロツ ド電流の下降変化量が前記基準時 間 T th2 の時間内で、 下降変化基準値 F th2 を越えたときには、 室内の負圧状況 は解除 (又は負圧減少方向に変化) したものと検知する。 Fig. 11 (b) shows the negative pressure solution in the room based on the amount of decrease in the flame rod current. The data storage section 236 is provided with a reference value F th2 of the fall of the frame rod current and a reference time T th2 given to the reference value of the fall. The negative pressure detecting means 2 41 releases the negative pressure condition in the room (or negative pressure) when the amount of decrease in the flame rod current exceeds the reference value F th2 within the reference time T th2. (Change in the decreasing direction) is detected.
負圧検知における第 3の付加機能は、 図 1 2に示すようなフレームロツ ド電流 の急激減少変化量によって室内の急激な負圧変化を検出するものである。 この機 能では、 データ格納部 2 3 6にフレームロッ ド電流の下降変化基準値 F thO (例 えば 0. 7 A ) のデータと前記図 1 1の (b ) に示される基準時間 T th2 よりも 時間幅が狭い微小設定時間 A T th (例えば 0. 1 秒) のデータが与えられており、 負圧検知手段 2 4 1はフレームロツ ド電流が微小設定時間 A T thの時間内で下降 変化基準値 F thO を越えて下降したときには、 例えば室内の戸が開けられている 状態でレンジフードが起動状態で燃焼運転がされているときに、 戸が急に閉めら れて室内が急激に負圧化して燃焼火炎が立ち消え寸前となって (火炎が極めて小 さくなって) フレームロツ ド電流が急激に下降変化したものと検知する。  The third additional function in negative pressure detection is to detect a sudden negative pressure change in the room based on the amount of rapid decrease in flame load current as shown in FIG. In this function, the data storage section 236 stores the data of the reference value F thO (for example, 0.7 A) of the falling change of the frame rod current and the reference time T th2 shown in FIG. 11B. Also, the data of the minute setting time AT th (for example, 0.1 second) with a narrow time width is given, and the negative pressure detecting means 2 41 1 reduces the frame rod current within the time of the minute setting time AT th. When descending beyond F thO, for example, when the indoor hood is open and the range hood is running and the combustion operation is being performed, the door is closed suddenly and the interior pressure suddenly becomes negative. As the combustion flame goes out and is on the verge of extinguishing (the flame has become extremely small), it is detected that the flame rod current has dropped sharply.
負圧検知手段 2 4 1には上記基本機能に加えて、 上記第 1 と第 2と第 3の付加 機能のうちの 1つ以上の付加機能が備えられており、 負圧検知手段 2 4 1は燃焼 制御部 2 3 5から燃焼能力の情報を取り込み、 予め定めた設定の燃焼能力 (例え ば、 燃焼能力 3 0 % ) よりも低い燃焼能力で燃焼運転が行われているときには、 上記基本機能と付加機能を組み合わせて室内の負圧検知を行い、 それ以外のとき には基本機能によって室内の負圧検知を行う。.  The negative pressure detecting means 2 41 has one or more additional functions of the first, second and third additional functions in addition to the above basic functions. Captures the information of the combustion capacity from the combustion control section 235, and when the combustion operation is performed with a combustion capacity lower than a predetermined combustion capacity (for example, a combustion capacity of 30%), the above basic function is performed. And the additional function are combined to detect the negative pressure in the room, otherwise the basic function is used to detect the negative pressure in the room. .
すなわち、 燃焼能力が低い領域では、 室内の負圧発生に起因して燃焼が悪化し て放出される C Oを C Oセンサ 2 8で補集して燃焼悪化を検知していると、 C O が発生してから C Oセンサ 2 8で検出されるまでに時間が掛かる。 この点、 フレ 一ムロツド電流は燃焼悪化に瞬時に反応し、 フレームロツ ド電流の変化によって 燃焼悪化を迅速に検出することができる。  In other words, in a region where the combustion capacity is low, CO is generated if CO deterioration is detected by collecting CO released due to deterioration of combustion due to generation of negative pressure in the room with the CO sensor 28. It takes a long time to be detected by the CO sensor 28 afterwards. In this regard, the frame rod current reacts instantaneously to the deterioration of combustion, and the deterioration of combustion can be quickly detected by the change of the flame rod current.
一方、 フレームロツド電極には燃焼悪化を感度良く検出できる取り付け位置と 燃焼能力との関係に基づいた範囲があり、 燃焼能力がその範囲から外れると、 燃 焼悪化の検出感度が低下するが、 高燃焼能力範囲 (例えば、 図 1 0に示す燃焼能 力 X〜 l 0 0 %の範囲) においては、 c〇センサによって燃焼悪化を良好に検出 することができるので、 低燃焼能力範囲 (例えば、 図 1 0に示す燃焼能力 o〜xOn the other hand, the flame rod electrode has a range based on the relationship between the mounting position and the combustion capacity that can detect combustion deterioration with high sensitivity.If the combustion capacity deviates from this range, the detection sensitivity of combustion deterioration deteriorates, but high combustion Capacity range (for example, the combustion capacity shown in Figure 10 In the range of power X to 100%, the deterioration of combustion can be detected satisfactorily by the c〇 sensor, so that the combustion capacity is low (for example, the combustion capacity o to x shown in Fig. 10).
%の範囲) におけるフレームロッ ド電流に基づく負圧検出と、 高燃焼能力範囲に おける C Oセンサによる C O濃度検出に基づく負圧検出とを併用することにより% Range) and negative pressure detection based on CO concentration detection by a CO sensor in the high combustion capacity range.
、 燃焼能力の全範囲において室内の燃焼環境の負圧状況を精度良く検出できるこ とが可能となるものである。 In addition, it is possible to accurately detect the negative pressure state of the indoor combustion environment in the entire range of the combustion capacity.
データ格納部 2 3 6には図 1 7の実線に示す通常時のファン風量制御データ R と、 負圧時のファン風量制御データ Tとが格納されている。 上記各ファン風量制 御データ R , Tは燃焼ファン 2の風量が燃焼能力 (この実施形態例では予め定め た最小燃焼能力から最大燃焼能力までの燃焼能力) に対応させて与えられている データであり、 上記負圧時のファン風量制御データ Tは、 上記負圧検知手段 2 4 1により室内の負圧が検知されたときに良好な燃焼を行わせるための負圧モード によって燃焼ファン 2 6の回転制御を行うためのデ一夕であり、 通常時のファン 風量制御データ Rは、 上記負圧モード時以外の標準モード時に良好な燃焼を行う ために燃焼ファン 2 6の回転制御を行うためのデータであり、 上記各ファン風量 制御データ R , Tは予め実験や演算等により求められる。 燃焼能力に対する風量 は通常時のファン風量制御データ Rよりも負圧時のファン風量制御データ Tがァ ップしている。  The data storage unit 236 stores the fan air volume control data R at normal time and the fan air volume control data T at negative pressure shown by the solid line in FIG. The fan air volume control data R and T are data given in correspondence with the air volume of the combustion fan 2 corresponding to the combustion capacity (in this embodiment, the combustion capacity from a predetermined minimum combustion capacity to a maximum combustion capacity). Yes, the fan air volume control data T at the time of the negative pressure is based on the negative pressure mode for performing good combustion when the negative pressure detecting means 241 detects a negative pressure in the room. This is a time for controlling the rotation, and the fan air volume control data R in the normal state is used for controlling the rotation of the combustion fan 26 in order to perform good combustion in the standard mode other than the negative pressure mode. Each of the fan air volume control data R and T is obtained in advance by experiments, calculations, or the like. The fan air volume control data T at the time of negative pressure is larger than the fan air volume control data R at the normal time.
なお、 この実施形態例では、 予め定めた最小燃焼能力を 0 %とし、 燃焼能力が 増加していくに従って%値が増加して最大燃焼能力が 1 0 0 %となるように燃焼 能力を%値に置き換えて表している。  In this embodiment, the predetermined minimum combustion capacity is set to 0%, and as the combustion capacity increases, the combustion capacity increases so that the maximum value becomes 100%. Is replaced with
制御データ切り換え制御部 2 4 4は前記燃焼制御部 2 3 5の動作情報を取り込 み、 燃焼制御部 2 3 5により燃焼ファン 2 6の駆動指令が発せられていると検知 しているときに、 上記負圧検知手段 2 4 1の検知情報を取り込んで室内の負圧状 態が検知されたときには、 前記燃焼制御部 2 3 5の燃焼能力情報と上記負圧時の ファン風量制御データ Tに従って負圧モードで燃焼フアン 2 6の回転制御を行い 、 それ以外の標準モード時には前記燃焼制御部 2 3 5の燃焼能力情報と上記通常 時のファン風量制御データ Rに従って標準モードで燃焼ファン 2 6の回転制御を 行う。 上記のように、 負圧検知手段 2 4 1により室内の負圧状態が検知されたときに 、 負圧時のファン風量制御データ Tに基づいて燃焼ファン 2 6の回転制御を行う ことによって、 通常時のファン風量制御データに従って燃焼フアン 2 6の回転制 御を行うよりもファン風量が増加するので、 室内の負圧状態に起因してバーナー 1への供給空気量が良好な燃焼を行うための空気量よりも減少するのを抑制する ことができ、 室内の負圧状態に起因して燃焼状態が空気不足により悪化するのを 回避することが可能である。 The control data switching control section 244 takes in the operation information of the combustion control section 235 and detects that the combustion control section 235 has issued a drive command for the combustion fan 266. However, when the detection information of the negative pressure detecting means 24 1 is taken in and a negative pressure state in the room is detected, according to the combustion capacity information of the combustion control section 235 and the fan air volume control data T at the time of the negative pressure. In the negative pressure mode, the rotation control of the combustion fan 26 is performed. In the other standard modes, the combustion fan 26 is controlled in the standard mode in accordance with the combustion capacity information of the combustion control section 235 and the normal fan air volume control data R. Perform rotation control. As described above, when the negative pressure detecting means 2 41 detects the negative pressure state in the room, the rotation of the combustion fan 26 is controlled based on the fan air volume control data T at the time of the negative pressure. The fan airflow increases as compared to the rotation control of the combustion fan 26 according to the fan airflow control data at the time, so that the amount of air supplied to the burner 1 can be improved due to the negative pressure in the room. It is possible to suppress the decrease from the air amount, and it is possible to prevent the combustion state from being deteriorated due to the lack of air due to the negative pressure state in the room.
ところで、 バーナー 8の点火を行うときに前回の燃焼停止時に使用していたフ ァン風量制御データに基づいて燃焼フアン 2 6の回転制御を行うことが考えられ る。 しかしながら、 燃焼を停止している間に、 室内が標準モードの状態から負圧 モードの状態に移行したり、 反対に、 負圧モードの状態から標準モードの状態に 移行する場合があり、 例えば、 燃焼停止中に標準モードの状態から負圧モードの 状態に移行した場合には、 点火時に、 室内が負圧モードの状態であるにも拘らず 、 通常時のファン風量制御データ Rに基づいて燃焼ファン 2 6の回転制御が行わ れるので、 ファン風量が燃焼可能なファン風量よりも少なくなつてしまい、 空気 不足により点着火を達成することができない虞がある。  By the way, when the burner 8 is ignited, it is conceivable to control the rotation of the combustion fan 26 based on the fan air volume control data used when the previous combustion was stopped. However, while the combustion is stopped, the room may transition from the standard mode to the negative pressure mode, or conversely, may transition from the negative pressure mode to the standard mode. If the mode shifts from the standard mode to the negative pressure mode while the combustion is stopped, the combustion is performed based on the normal fan air volume control data R at the time of ignition, even though the room is in the negative pressure mode. Since the rotation control of the fan 26 is performed, the fan airflow becomes smaller than the combustible fan airflow, and there is a possibility that the point ignition cannot be achieved due to a shortage of air.
また、 反対に、 燃焼停止中に、 負圧モードの状態から標準モードの状態に移行 した場合には、 点火時に、 室内が標準モードの状態であるにも拘らず、 負圧時の ファン風量制御データ Tに基づいて燃焼フアン 2 6の回転制御が行われるので、 ファン風量が燃焼可能なファン風量よりも多くなつてしまレ、燃焼火炎を吹き消し て点着火を達成することができない虞がある。.  Conversely, if the mode is changed from the negative pressure mode to the standard mode while the combustion is stopped, the fan air volume control at the time of negative pressure at the time of ignition is performed even if the room is in the standard mode. Since the rotation control of the combustion fan 26 is performed based on the data T, the fan airflow may be larger than the combustible fan airflow, and the combustion flame may not be blown out to achieve the point ignition. . .
そこで、 この実施形態例では、 室内が標準モードの状態でも負圧モードの状態 でも点着火を確実に達成させることが可能な構成にした。 データ格納部 2 3 6に は点火時のファン風量制御データ Vが格納されている。 この点火時のファン風量 制御データ Vは、 通常時のファン風量制御デ一夕 Rが持つ燃焼可能な図 1 7に示 す燃焼ファンの風量領域 X r (つまり、 標準モードの状態で燃焼が可能なファン 風量領域) と、 負圧時のファン風量制御データ Tが持つ燃焼可能な図 1 7に示す 燃焼ファンの風量領域 X t (つまり、 負圧モードの状態で燃焼が可能なファン風 量領域) とがオーバーラップする領域 X vに設定されている。 点火時風量制御部 2 3 8は前記燃焼制御部 2 3 5の動作情報を取り込み、 該情 報に基づき点火時の燃焼フアン 2 6の回転制御開始の指合が発せられたと検知 たときに、 上記点火時のファン風量制御デ一夕 Vに基づいて燃焼ファン 2 6の回 転制御を行う。 Therefore, in this embodiment, the configuration is such that spot ignition can be reliably achieved regardless of whether the room is in the standard mode or in the negative pressure mode. The data storage section 236 stores fan air volume control data V at the time of ignition. The fan air volume control data V at the time of ignition is based on the air volume range Xr of the combustion fan shown in Fig. 17 (i.e., combustion in the standard mode The fan air volume range Xt (that is, the fan air volume range that can be burned in the negative pressure mode) as shown in Fig. 17 where combustion is possible in the fan air volume control data T at negative pressure ) Are set in the overlapping area Xv. The ignition air volume control unit 238 captures the operation information of the combustion control unit 235, and when it is detected that a command to start the rotation control of the combustion fan 26 at the time of ignition is issued based on the information, The rotation control of the combustion fan 26 is performed based on the fan air volume control data V at the time of ignition.
制御データ転移制御部 2 4 0はタイマ (図示せず) を内蔵しており、 点火時風 量制御部 2 3 8の動作情報と負圧検知手段 2 4 1の検知情報とフレームロツ ド電 極 1 6から検出出力されるフレームロッ ド電流値とを取り込み、 点火時風量制御 部 2 3 8により点火時の燃焼ファン 2の回転制御が行われフレームロツ ド電流値 によつて燃焼火炎を検知してから予め定めた余裕時間が経過するまで継続してフ レームロツ ド電流値により燃焼火炎を検知することができたときには、 点着火が 達成されたと判断する。  The control data transfer control section 240 has a built-in timer (not shown), and the operation information of the ignition air flow control section 238, the detection information of the negative pressure detecting means 241 and the frame rod electrode 1 The flame load current value detected and output from 6 is taken in, and the rotation of the combustion fan 2 at the time of ignition is controlled by the ignition air volume control unit 238, and after the combustion flame is detected based on the flame rod current value, If the combustion flame can be continuously detected based on the frame rod current value until the predetermined margin time elapses, it is determined that spot ignition has been achieved.
そして、 制御データ転移制御部 2 4 0は、 上記の如く、 点着火の達成を確認し た後に、 上記負圧検知手段 2 4 1の情報に基づき室内の負圧状態が検知されてい るときには、 点火時のファン風量制御データ Vから負圧時のファン風量制御デー 夕 Tに転移させて標準モードで燃焼ファン 2 6の回転制御を行い、 それ以外のと きには、 点火時のファン風量制御デ一夕 Vから通常時のファン風量制御データ R に転移させて標準モードで燃焼フアン 2 6の回転制御を行う。  Then, as described above, after confirming the achievement of the point ignition, the control data transfer control unit 240, when the negative pressure state in the room is detected based on the information of the negative pressure detecting means 241, The fan air flow control data at the time of ignition is changed from V to the fan air flow control data at the time of negative pressure, and the rotation control of the combustion fan 26 is performed in the standard mode. Otherwise, the fan air flow control at the time of ignition is performed. The rotation of the combustion fan 26 is controlled in the standard mode by shifting from the night V to the normal fan air volume control data R.
その後、 制御データ切り換え制御部 2 4 4は、 上記制御データ転移制御部 2 4 0の動作情報により、 点着火が達成され制御データ転移制御部 2 4 0によりファ ン風量制御データの転移が成されたことを検知した後に予め定めた期間が経過し た後に、 前記制御データ切り換え動作を行う。.  Thereafter, the control data switching control unit 244 achieves the point ignition based on the operation information of the control data transfer control unit 240, and the control data transfer control unit 240 transfers the fan air volume control data. The control data switching operation is performed after a predetermined period has elapsed after detecting that the control data has been detected. .
この実施形態例によれば、 通常時のファン風量制御データ Rに加えて、 負圧時 のファン風量制御データ Tが与えられ、 給湯器が設置されている室内の空気圧の 状態 (燃焼環境) が室外の空気圧とほぼ同様である標準モードの場合には、 上記 通常時のファン風量制御データ Rに基づいて燃焼フアン 2 6の回転制御を行い、 標準モード時よりも負圧状態である負圧モ一ドの場合には、 上記負圧時のファン 風量制御データ Tに基づいて燃焼ファン 2 6の回転制御を行うので、 燃焼環境が 負圧モードの状態であるときには、 負圧時のファン風量制御データ Tに基づいて 燃焼フアン 2 6の回転制御を行うことによって、 通常時のファン風量制御データ Rに従って燃焼フアン 2 6の回転制御を行うよりもファン風量が増加し、 良好な 燃焼を行うためのファン風量を得ることができ、 室内の負圧状態に起因した空気 不足による燃焼状態の悪化を回避することができる。 According to this embodiment, in addition to the fan air flow control data R at normal time, the fan air flow control data T at negative pressure is given, and the state of air pressure (combustion environment) in the room where the water heater is installed is determined. In the case of the standard mode, which is almost the same as the outdoor air pressure, the rotation of the combustion fan 26 is controlled based on the above-described normal fan air volume control data R, and the negative pressure mode, which is in a more negative pressure state than in the standard mode, is controlled. In the first case, since the rotation of the combustion fan 26 is controlled based on the fan air flow control data T at the time of the negative pressure, when the combustion environment is in the negative pressure mode, the fan air flow at the time of the negative pressure is controlled. By controlling the rotation of the combustion fan 26 based on the data T, the normal The fan airflow increases as compared with the rotation control of the combustion fan 26 according to R, and the fan airflow for good combustion can be obtained.The deterioration of the combustion state due to the lack of air due to the negative pressure in the room can be reduced. Can be avoided.
また、 上記通常時のファン風量制御データ尺と、 負圧時のファン風量制御デー 夕 Tとが与えられると共に、 点火時のファン風量制御データ Vとが与えられ、 点 火を行うときには点火時のファン風量制御データ Vに従つて燃焼ファン 2 6の回 転制御を行う点火時風量制御部 2 3 8が設けられており、 上記点火時のファン風 量制御データ Vは、 上記通常時のファン風量制御データ Rが持つ燃焼可能な風量 領域 X rと、 負圧時のファン風量制御データ Tが持つ燃焼可能な風量領域 X tと がオーバーラップする領域 X vに設定されているので、 給湯器が設置されている 部屋が標準モードの状態でも、 負圧モードの状態でも、 上記点火時のファン風量 制御データ Vに従って点火時の燃焼フアン 2 6の回転制御を行うことによって、 ほぼ確実に点着火を達成させることが可能となる。  In addition, the above-mentioned normal fan air flow control data scale and the fan air flow control data T at the time of negative pressure are provided, and the fan air flow control data V at the time of ignition are provided. An ignition air volume control unit 238 that controls the rotation of the combustion fan 26 in accordance with the fan air volume control data V is provided. Since the combustible air volume region Xr of the control data R and the combustible air volume region Xt of the fan airflow control data T at the time of negative pressure are set in the overlapping region Xv, the water heater is Regardless of whether the installed room is in the standard mode or the negative pressure mode, the ignition of the combustion fan 26 at the time of ignition is controlled in accordance with the fan air volume control data V at the time of the ignition described above, so that the ignition is almost assured. Us It is possible to.
さらに、 制御データ転移制御部 2 4 0が設けられているので、 上記点火時風量 制御部 2 3 8によって点火時の燃焼ファン 2 6の回転制御が行われた後に、 負圧 検知手段 2 4 1により室内の負圧状態が検知されているときには、 制御データ転 移制御部 2 4 0によって、 点火時のファン風量制御データ Vから負圧時のファン 風量制御データ Tに転移させて燃焼ファン 2 6の回転制御を行い、 それ以外のと きには通常時のファン風量制御データ Rに転移させて燃焼ファン 2 6の回転制御 を行うことになることから、 燃焼環境に応じてより良好な燃焼を行うことができ る適宜のファン風量制御データに転移させて燃焼ファン 2 6の回転制御を行うこ とができ、 より良好な燃焼を行うことができる。  Further, since the control data transfer control section 240 is provided, the negative pressure detection means 2441 is provided after the rotation of the combustion fan 26 at the time of ignition is performed by the ignition airflow rate control section 2338. When a negative pressure state in the room is detected by the control unit, the control data transfer control unit 240 transfers the fan air volume control data V at the time of ignition to the fan air volume control data T at the time of negative pressure, and the combustion fan 26 In other cases, the rotation of the combustion fan 26 is controlled by transferring to the normal fan air volume control data R, so that better combustion can be achieved according to the combustion environment. The rotation of the combustion fan 26 can be controlled by transferring to appropriate fan air volume control data that can be performed, and better combustion can be performed.
以下に、 第 2の発明の第 2の実施形態例を説明する。 この実施形態例は、 前記 図 2に示すようなシステム構成を有し、 燃焼能力に対するファン風量が互いに異 なる複数段のファン風量制御データが予め与えられる給湯器に適用するものであ り、 点火動作の制御構成に特徴がある。 なお、 前記図 2のシステム構成の説明は 前述したので省略する。  Hereinafter, a second embodiment of the second invention will be described. This embodiment is applied to a water heater which has a system configuration as shown in FIG. 2 described above, and in which a plurality of stages of fan airflow control data having different fan airflows with respect to combustion capacity are given in advance. There is a feature in the operation control configuration. Note that the description of the system configuration in FIG.
第 2の実施形態例に示す制御装置 2 3 0は、 図 1 8に示すように、 燃焼制御部 2 3 5とデータ格納部 2 3 6と点火時風量制御部 2 3 8と制御データ転移制御部 2 4 0と負圧検知手段 2 4 1 と制御データ監視部 2 4 2と燃焼状態監視部 2 4 3 と制御データ切り換え制御部 2 4 4を有して構成されている。 なお、 第 2の実施 形態例の説明において、 上記燃焼制御部 2 3 5と負圧検知手段 2 4 1の構成は前 記第 1の実施形態例と同様であるので、 その重複説明は省略する。 As shown in FIG. 18, the control device 230 shown in the second embodiment includes a combustion control unit 235, a data storage unit 236, an ignition air volume control unit 238, and control data transfer control. Department 24, a negative pressure detecting means 241, a control data monitoring unit 242, a combustion state monitoring unit 243, and a control data switching control unit 2444. In the description of the second embodiment, since the configurations of the combustion control unit 235 and the negative pressure detecting means 241 are the same as those of the first embodiment, a duplicate description thereof will be omitted. .
記憶装置であるデータ格納部 2 3 6には燃焼能力に対するファン風量が互いに 異なる図 1 9の実線に示す複数段のファ ン風量制御データ R , S , T, Uが予め 格納されていると共に、 図 1 9の鎖線に示す点火時のファン風量制御データ V, W, Υが格納されている。  A plurality of stages of fan air flow control data R, S, T, and U indicated by solid lines in FIG. The fan air volume control data V, W, and の at the time of ignition shown by the chain line in FIG. 19 are stored.
前記各ファン風量制御デ一夕 R , S , Τ, Uが持つ燃焼可能なファ ン風量領域 が予め実験や演算等により求められ、 上記各点火時のファン風量制御データ V, W, Υが次のように設定される。 上記点火時のファン風量制御データ Υは上記フ ァン風量制御データ Rが持つ燃焼可能なファン風量領域とファン風量制御データ Sが持つ燃焼可能なファン風量領域とがオーバーラップする領域に設定され、 点 火時のファン風量制御データ Vは上記ファン風量制御データ Sが持つ燃焼可能な ファン風量領域とファン風量制御データ Τが持つ燃焼可能なファン風量領域とが オーバーラップする領域に設定され、 点火時のファン風量制御データ Wは上記フ ァン風量制御データ Τが持つ燃焼な可能なファン風量領域とファン風量制御デー 夕 Uが持つ燃焼可能なファン風量領域とがオーバーラップする領域に設定されて いる。  The combustible fan air volume regions of each of the fan air volume control data R, S, Τ, and U are obtained in advance by experiments, calculations, and the like. The fan air volume control data V, W, Is set as follows. The fan air volume control data の at the time of the ignition is set in an area where the combustible fan air volume area of the fan air volume control data R and the combustible fan air volume area of the fan air volume control data S overlap, The fan air volume control data V at the time of ignition is set in an area where the combustible fan air volume region of the above fan air volume control data S and the combustible fan air volume region of the fan air volume control data Τ overlap each other. The fan air volume control data W is set in an area where the combustible fan air volume region of the fan air volume control data Τ and the combustible fan air volume region of the fan air volume control data U overlap. .
この実施形態例では、 図 1 9に示すファン回転制御データ S, Τ, Uから分か るように、 ファン風量制御データを切り換えると、 最小燃焼能力時にはファン風 量が大きく変化するのに対して、 最大燃焼能力時にはファン風量は殆ど変化しな いようにしてある。 これは、 一般的に行われている空燃比を一定にして燃焼させ るものとは異なり、 本発明者等が独自に見出したものである。  In this embodiment, when the fan airflow control data is switched as can be seen from the fan rotation control data S, Τ, and U shown in FIG. 19, the fan airflow greatly changes at the minimum combustion capacity. At the maximum combustion capacity, the fan air volume hardly changes. This is different from the general method of burning with a constant air-fuel ratio, and is uniquely found by the present inventors.
つまり、 本来バーナーは最大燃焼能力で燃やすことができるバーナーを用い、 燃料を少なくしても消えないように風量制御を行っているものである。 言い換え ると、 低燃焼能力であるほど、 風量制御を正確に行わないと、 燃焼火炎が消えて しまうことを意味する。  In other words, the burner is originally a burner that can burn with the maximum combustion capacity, and the air volume is controlled so that it does not disappear even if the fuel is reduced. In other words, the lower the combustion capacity, the more the combustion flame will be extinguished if the air volume control is not performed accurately.
したがって、 空燃比を一定にした相関関係では上記各ファン風量制御データは 平行となるが、 この実施形態例では、 燃焼能力が低くなるに従って上記各ファン 風量制御データ S , T, Uの間隔は広がり、 燃焼能力が高くなるに従って上記各 ファン風量制御デ一夕 S, T , Uの間隔は狭くなるように設定している。 なお、 図 1 9に示す各ファン風量制御データ S , T, Uは最大燃焼能力で一点に集まつ ているが、 最大燃焼能力で一点に集まる必要はなく、 高燃焼能力領域で各ファン 風量制御データが交差するように設定してもよい。 Therefore, in the correlation with a constant air-fuel ratio, In this embodiment, the interval between the fan air volume control data S, T, and U increases as the combustion capacity decreases, and the fan air volume control data S, T increases as the combustion capacity increases. , U are set to be narrower. Although the fan air volume control data S, T, and U shown in Fig. 19 are collected at one point at the maximum combustion capacity, it is not necessary to converge at one point at the maximum combustion capacity. The data may be set to intersect.
また、 ファン風量制御データは、 図 1 9に示されるような形態で与える他に、 図 9に示すように、 図 1 9のファン風量制御データ Rに相当する X = 0のファン 風量制御データに対し、 X = 2, X = 4のファン風量制御データのように平行な 制御ラインの形態で与えるようにしてもよいものである。  In addition to providing the fan air volume control data in the form shown in FIG. 19, as shown in FIG. 9, the fan air volume control data of X = 0 corresponding to the fan air volume control data R of FIG. On the other hand, it may be provided in the form of parallel control lines like fan air volume control data of X = 2, X = 4.
制御データ切り換え制御部 2 4 4は、 負圧検知手段 2 4 1により検出される室 内燃焼環境の負圧状況に応じてファン回転制御デー夕を切り換え制御するもので 上記制御デ一夕切り換え制御部 2 4 4の動作例を図 2 0のフローチャートに基 づいて説明する。 図 2 0は、 図 1 3に類似するので類似するステップには同じ引 用番号を与える。 まず、 ステップ 101 で、 負圧検知手段 2 4 1により室内の負圧 発生が検知されたか否かが判断され、 室内の負圧が検知されたときにはステップ 102 でファン風量制御データが 1段階高められる。 このフローチヤ一卜において は、 図 1 9に示すファン風量制御データを例にして説明してあり、 フローチヤ一 ト中の Xの数字は図 1 9に示す各ファン風量制御データの Xの値に対応している 一方、 前記ステップ 101 で、 室内の負圧発生が検知されなかったときには、 ス テツプ 103 で室内の負圧が緩和解除されたか否かが判断され、 室内の負圧緩和解 除が検知されたときにはファン風量制御データを 1段階風量ダウン側に切り換え る。 このとき、 ステップ 105 でファン風量制御データが X = 0のデータになるか 否かを判断し、 X = 0のファン風量制御データになるときには、 ファン風量制御 データを X = 0のデータよりもファン風量が 1段階上側の X = 1のデータに設定 する。  The control data switching control section 244 controls switching of the fan rotation control data according to the negative pressure state of the indoor combustion environment detected by the negative pressure detecting means 241. An operation example of the unit 244 will be described based on the flowchart of FIG. FIG. 20 is similar to FIG. 13, so similar steps are given the same reference numbers. First, in step 101, it is determined whether or not the generation of a negative pressure in the room is detected by the negative pressure detecting means 241, and when the negative pressure in the room is detected, the fan air volume control data is increased by one step in step 102. . In this flow chart, the fan air flow control data shown in Fig. 19 is described as an example, and the number X in the flow chart corresponds to the X value of each fan air flow control data shown in Fig. 19 On the other hand, if the occurrence of negative pressure in the room is not detected in step 101, it is determined in step 103 whether or not the negative pressure in the room is released, and the release of the negative pressure in the room is detected. When this is done, the fan air volume control data is switched to the one-stage air volume down side. At this time, it is determined in step 105 whether or not the fan air volume control data becomes X = 0 data.If the fan air volume control data becomes X = 0, the fan air volume control data is set to be larger than the X = 0 data. Set the air volume to the data of X = 1 at the upper level.
ステップ 107 では前記ステップ 102 でファン風量制御データが 1段階風量アツ プ側に切り換えられることで X= 5の値に達したか否かを判断し、 X= 5の値に 達したときにはファン風量をアップさせても高濃度の C〇ガスの発生の防止が期 待できないので、 ステップ 108 で燃焼停止を行う。 In step 107, the fan air volume control data is output in step 102 in By switching to the fan side, it is determined whether or not the value of X = 5 has been reached.When the value of X = 5 is reached, the prevention of generation of high-concentration C〇 gas is expected even if the fan airflow is increased. Since it is not possible to wait, the combustion is stopped in step 108.
前記ステップ 107 で Xが 5に達しないときには前記ステップ 102 で風量を 1段 階アップさせたファン風量制御データに基づき、 燃焼能力に応じたファ ン回転数 でもって燃焼ファンを回転させ、 ステップ 110 で室内の負圧強度として Xの値を 登録する。 ステップ 111 では水量センサ 2 2からオン信号が加えられているかを 判断し、 オン信号が加えられているときにはステップ 101 以降の動作を繰り返す 。 これに対し、 水量センサ 2 2からオフ信号が出力されたときには、 給湯栓が閉 じられたものと判断して燃焼停止を行い、 次の燃焼に備える。  If X does not reach 5 in step 107, the combustion fan is rotated at a fan speed corresponding to the combustion capacity based on the fan air volume control data in which the air volume is increased by one step in step 102, and in step 110 Register the value of X as the negative pressure intensity in the room. In step 111, it is determined whether or not an ON signal has been applied from the water amount sensor 22. When the ON signal has been applied, the operation from step 101 onward is repeated. On the other hand, when the off signal is output from the water amount sensor 22, it is determined that the hot-water tap is closed and the combustion is stopped to prepare for the next combustion.
上記制御データ切り換え制御部 2 4 4は、 負圧検知手段 2 4 1により室内の負 圧発生が検知されると、 室内の負圧の強度に応じたファン風量制御データを選択 指定し、 室内の負圧化に伴う給気不足を解消し、 良好な燃焼運転を行うものであ なお、 上記動作例では、 ファン風量制御データを順次風量アップ側に上げると きには、 X= 0, X= l, X= 2, X= 3, X= 4という如く Xが 1ずつ順に上 げるようにし、 ファン風量制御デ一夕を風量ダウン側に下げるときには X = 4 , X= 3, X= 2, X= 1 という如く Xが 1ずつ順次下げるようにしたが、 これら ファン風量制御デ一夕の上昇と下降の順序は必ずしもこれに限定されることはな く、 例えば、 ファン風量制御データを上げるときには、 X= 0, X= 2, X= 3 , Χ= 4という如く手順で上げるようにしてもよい。  When the negative pressure detection means 24 detects the generation of a negative pressure in the room, the control data switching control unit 244 selects and designates the fan air volume control data according to the intensity of the negative pressure in the room. In this operation example, when the fan air volume control data is sequentially increased to the air volume up side, X = 0, X = l, X = 2, X = 3, X = 4, so that X is increased by 1 in order, and when the fan airflow control data is lowered to the airflow down side, X = 4, X = 3, X = 2 , X = 1, X is sequentially decreased by one, but the order of the rise and fall of the fan air flow control data is not necessarily limited to this.For example, the fan air flow control data is increased Occasionally, the values may be raised in the order of X = 0, X = 2, X = 3, Χ = 4.
制御データ監視部 2 4 2は燃焼制御部 2 3 5の動作情報を取り込み、 該情報に 基づき給湯器が燃焼運転を行っていると検知している間、 制御データ切り換え制 御部 4 4が使用しているファン風量制御データの情報を時々刻々と取り込んで内 蔵のメモリ (図示せず) に時間に対応させて格納する。  The control data monitoring unit 242 captures the operation information of the combustion control unit 235, and is used by the control data switching control unit 44 while detecting that the water heater is performing combustion operation based on the information. The information of the fan air volume control data is fetched from time to time and stored in an internal memory (not shown) corresponding to time.
点火時風量制御部 2 3 8は燃焼制御部 2 3 5の動作情報を取り込み、 該情報に 基づいて点火の指令が発せられたことを検知すると、 前記制御データ監視部 4 2 の内蔵のメモリから前回の燃焼停止時に使用されていたファン風量制御データの 情報を読み出す。 そして、 前回の燃焼停止時に使用していたファン風量制御デー 夕がファン風量制御デ一夕 Uである場合には、 点火時風量制御部 2 3 8はファン 風量制御データ Uの下側のファン風量制御データ Wをデータ格納部 2 3 6から -読 み出し、 上記点火時のファン風量制御データ Wに基づいて点火時の燃焼フアン 2 の回転制御を行う。 The ignition-time air volume control unit 238 captures the operation information of the combustion control unit 235, and when it detects that an ignition command is issued based on the information, from the internal memory of the control data monitoring unit 422. Reads the information of the fan air volume control data that was used when the previous combustion was stopped. Then, the fan air volume control data If the evening is the fan air volume control data U, the ignition air volume control unit 238 reads out the fan air volume control data W on the lower side of the fan air volume control data U from the data storage unit 236. The rotation control of the combustion fan 2 at the time of ignition is performed based on the fan air volume control data W at the time of ignition.
また、 前回の燃焼停止時に使用していたファン風量制御データがファン風量制 御データ Rである場合には、 点火時風量制御部 2 3 8はファン風量制御データ R の上側のファン風量制御データ Yをデータ格納部 2 3 6から読み出し、 この点火 時のファン風量制御データ Yに基づいて点火時の燃焼フアン 2 6の回転制御を行 う。  If the fan air volume control data used at the time of the previous combustion stop is the fan air volume control data R, the ignition air volume control unit 238 sets the fan air volume control data Y on the upper side of the fan air volume control data R. Is read from the data storage unit 236, and the rotation of the combustion fan 26 at the time of ignition is controlled based on the fan air volume control data Y at the time of ignition.
さらに、 前回の燃焼停止時に使用していたファン風量制御データがファン風量 制御データ S又は Tである場合には、 点火時風量制御部 2 3 8はファン風量制御 データ S , Tの上下のうちの一方側のファン風量制御データをデータ格納部 2 3 6から読み出し、 この読み出された点火時のファン風量制御デー夕に基づいて点 火時の燃焼ファン 2の回転制御を行う。 そして、 点火時風量制御部 2 3 8は、 フ レームロツ ド電極 2 4から検出出力されるフレームロツ ド電流に基づいて点着火 が達成されなかつたことを検知したときには他方側の点火時のファン風量制御デ —夕に基づいて燃焼フアン 2 6の回転制御を行う。  Furthermore, if the fan air volume control data used at the time of the previous combustion stop is the fan air volume control data S or T, the ignition air volume control section 238 sets the upper and lower of the fan air volume control data S and T. One side fan air volume control data is read from the data storage section 236, and the rotation of the combustion fan 2 at the time of ignition is controlled based on the read fan air volume control data at the time of ignition. When the ignition air volume control unit 238 detects that the point ignition has not been achieved based on the frame rod current detected and output from the frame rod electrode 24, the air volume control unit 238 controls the fan air volume on the other side during ignition. De—Control the rotation of the combustion fan 26 based on the evening.
燃焼状態監視部 2 4 3は燃焼制御部 2 3 5の動作情報を取り込み、 該情報に基 づき燃焼運転が行われていると検知している間、 燃焼状態を監視する。 燃焼状態 の監視手段として様々な手段が考えられる。  The combustion state monitoring section 243 captures the operation information of the combustion control section 235, and monitors the combustion state while detecting that the combustion operation is being performed based on the information. Various means can be considered for monitoring the combustion state.
例えば、 燃焼制御部 2 3 5から燃焼能力の情報を取り込むと共に、 フレーム口 ッ ド電極 1 6からフレームロツ ド電流値を検出してフレームロツ ド電流値を検出 したときの燃焼能力に対応させ、 このフレームロツ ド電流値の燃焼能力に対応す る図 2 1に示すような標準値データに上記検出したフレームロツ ド電流値を比較 する。 そして、 燃焼状態監視部 2 4 3は上記フレームロツ ド電流値が上記標準値 よりも予め定めた上側の許容範囲を越えて上昇しているときには、 燃焼状態は空 気不足により悪化していると検知し、 上記フレームロツ ド電流値が上記標準値よ りも予め定めた下側の許容範囲を越えて低下しているときには、 燃焼状態は空気 過多により悪化していると検知する。 なお、 上記以外の手段によって燃焼状態を 監視してもよい。 For example, information on the combustion capacity is taken in from the combustion control section 235, and the frame rod current value is detected from the frame port electrode 16 so as to correspond to the combustion capacity when the frame rod current value is detected. The detected frame rod current value is compared with the standard value data as shown in Fig. 21 corresponding to the combustion capacity of the current value. Then, the combustion state monitoring section 243 detects that the combustion state is deteriorating due to insufficient air when the flame rod current value rises beyond a predetermined allowable range above the standard value. However, when the flame rod current value falls below a predetermined allowable range lower than the standard value, it is detected that the combustion state has deteriorated due to excess air. It should be noted that the combustion state is controlled by means other than the above. It may be monitored.
制御デ一タ転移制御部 2 4 0は、 上記燃焼状態監視部 2 4 3の監視情報を耽り 込み、 前記第 1の実施形態例と同様にして点着火の達成を検知した後に、 上記燃 焼状態監視部 2 4 3の情報に基づき燃焼状態が空気過多であると検知していると きには、 点火時に使用された点火時のファン風量制御データよりも下側のファン 風量制御データに転移させて燃焼ファン 2 6の回転制御を行い、 それ以外のとき には点火時のファン風量制御データよりも上側のファン風量制御デ一夕に転移さ せて燃焼ファン 2 6の回転制御を行う。 又は、 制御データ転移制御部 2 4 0は燃 焼状態監視部 2 4 3の情報により燃焼状態が空気不足であると検知しているとき には点火時に使用された点火時のファン風量制御デ一夕よりも上側のファン風量 制御データに転移させて燃焼ファン 2 6の回転制御を行い、 それ以外のときには 点火時のファン風量制御データよりも下側のファン風量制御データに転移させて 燃焼ファン 2 6の回転を行う。  The control data transfer control unit 240 incorporates the monitoring information of the combustion state monitoring unit 243 and detects the achievement of spot ignition in the same manner as in the first embodiment. When it is detected that the combustion state is excessive in air based on the information of the state monitoring unit 243, it is transferred to the fan airflow control data lower than the fan airflow control data at the time of ignition used at the time of ignition. Then, the rotation control of the combustion fan 26 is performed. In other cases, the control is shifted to the fan air flow control data above the fan air flow control data at the time of ignition, and the rotation control of the combustion fan 26 is performed. Alternatively, when the control data transfer control section 240 detects that the combustion state is insufficient of air based on the information of the combustion state monitoring section 243, the fan air volume control data at the time of ignition used at the time of ignition is used. The control is transferred to the fan airflow control data above the evening to control the rotation of the combustion fan 26, and at other times, the fan airflow control data is transferred to the fan airflow control data lower than the fan airflow control data at the time of ignition. Perform 6 rotations.
その後、 制御データ切り換え制御部 2 4 4は、 上記制御データ転移制御部 2 4 0の動作情報により、 点着火が達成され制御データ転移制御部 2 4 0によりファ ン風量制御データの転移が成されたことを検知した後に予め定めた期間が経過し た後に、 前記制御データ切り換え動作を行う。  Thereafter, the control data switching control unit 244 achieves the point ignition based on the operation information of the control data transfer control unit 240, and the control data transfer control unit 240 transfers the fan air volume control data. The control data switching operation is performed after a predetermined period has elapsed after detecting that the control data has been detected.
この実施形態例によれば、 複数段のファン風量制御データが与えられると共に 、 各ファン風量制御データが持つ燃焼可能なファン風量領域がオーバーラップす る領域に設定された点火時のファン風量制御データが与えられ、 点火時には前回 の燃焼停止時に使用していたファン風量制御データの上又は下側の点火時のファ ン風量制御データに基づいて点火動作を行うので、 燃焼運転が再開されるときの 燃焼環境が前回の燃焼運転停止時の燃焼環境とほぼ同様であるときにはもちろん のこと、 燃焼環境が変化していても、 点火時に使用される点火時のファン風量制 御データは、 前回の燃焼停止時に使用していたファン風量制御データが持つ燃焼 可能なファン風量領域と上記前回のファン風量制御データよりも上側又は下側の ファン風量制御データが持つ燃焼可能なファン風量領域とがオーバーラップする 領域に設定されていることから、 点着火をほぼ確実に達成させることができる。 なお、 この発明は上記各実施形態例に限定されるものではなく、 様々な実施の 形態を採り得る。 例えば、 上記各実施形態例では、 点火時のファン風量制御デー 夕は点火時のみに用いられる点火時専用のファン風量制御データであつたが、 -点 火時以外のときにも燃焼フアン 2 6の回転制御に用いてもよい。 According to this embodiment, fan air volume control data of a plurality of stages is given, and fan air volume control data at the time of ignition set in a region where the combustible fan air volume regions of each fan air volume control data overlap. At the time of ignition, the ignition operation is performed based on the fan air volume control data at the time of ignition, which is above or below the fan air volume control data used at the time of the previous combustion stop. Not only when the combustion environment is almost the same as the combustion environment when the previous combustion operation was stopped, but also when the combustion environment changes, the fan air volume control data at the time of ignition used for ignition is The combustible fan air volume range of the fan air volume control data used at the time and the fan air volume above or below the previous fan air volume control data Since the combustible fan air volume region included in the control data is set in an overlapping region, spot ignition can be almost surely achieved. It should be noted that the present invention is not limited to the above embodiments, but may be applied to various embodiments. It can take the form. For example, in each of the above embodiments, the fan air flow control data at the time of ignition is fan air flow control data dedicated to ignition used only at the time of ignition. May be used for rotation control.
さらに、 上記各実施形態例では、 点火時風量制御部 2 3 8による点火時の燃焼 ファン 2 6の回転制御が行われた後に、 制御データ転移制御部 2 4 0により点火 時のファン風量制御デ一夕からその上側又は下側のファン風量制御デー夕に転移 させて燃焼ファン 2 6の回転制御を行ったが、 点火時風量制御部 2 3 8による点 火時の燃焼フアン 2 6の回転制御が行われた後にも引き続き点火時のファン風量 制御データに基づいた燃焼ファン 2 6の回転制御を継続して行ってもよい。 この 場合には点火時直後に点火時のファン風量制御データから上側又は下側のファン 風量制御データに転移させないで前記制御データ切り換え制御部 2 4 4による燃 焼ファン 2 6の回転制御に移行するので、 制御データ転移制御部 2 4 0を省略す ることができる。  Further, in each of the above-described embodiments, after the rotation control of the combustion fan 26 at the time of ignition by the ignition air volume control unit 238 is performed, the control data transfer control unit 240 controls the fan air volume control data at the time of ignition. The rotation of combustion fan 26 was controlled by shifting to the upper or lower fan air volume control data from one night, but the rotation of combustion fan 26 during ignition by ignition air volume control unit 238 The rotation control of the combustion fan 26 based on the fan air volume control data at the time of ignition may be continuously performed after the operation is performed. In this case, immediately after the ignition, the process is shifted to the rotation control of the combustion fan 26 by the control data switching control unit 244 without shifting from the fan air volume control data at the time of ignition to the upper or lower fan air volume control data. Therefore, the control data transfer control unit 240 can be omitted.
さらに、 上記各実施形態例では、 各ファン風量制御データはグラフデータによ りデータ格納部 2 3 6に格納されていたが、 各ファン風量制御デ一夕は表データ や演算式データ等のグラフデータ以外のデータ形式でデータ格納部 2 3 6に格納 してもよい。  Furthermore, in each of the above embodiments, each fan air volume control data is stored in the data storage unit 236 by graph data. However, each fan air volume control data is stored in a graph such as table data or arithmetic expression data. The data may be stored in the data storage unit 236 in a data format other than the data.
さらに、 上記第 2の実施形態例では、 制御データ転移制御部 2 4 0は、 燃焼状 態監視部 2 4 3の監視情報に基づいて点火時のファン風量制御データから転移さ せる相手側のファン風量制御データを決定してファン風量制御データの転移を行 つていたが、 点火時のファン風量制御デ一夕から転移させる相手側のファン風量 制御デー夕を点火時のファン風量制御データ毎に予め与えておき、 制御デー夕転 移制御部 2 4 0は点火後に点火時のファン風量制御データから予め措定されたフ ァン風量制御デー夕に転移させて燃焼フアン 2 6の回転制御を行うようにしても よい。 この場合には、 各点火時のファン風量制御データから転移させる相手側の ファン風量制御データを決定するために燃焼状態を監視する必要ないので、 燃焼 状態監視部 2 4 3を省略することができ、 制御構成の簡略を図ることが可能であ また、 本実施形態例ではパーナ 8を一次空気と二次空気を利用して燃焼する夕 イブのセミブンゼン等のパーナで構成したが、 全一次空気燃焼式タイプのパーナ のうち濃淡 く一ナにあっては濃パーナが淡パーナの空気をもらつて燃焼するので 濃パーナの燃焼がセミブンゼンパーナの燃焼形態に近似したものとなり、 セミブ ンゼンパーナと同様に濃淡パーナにおいても室内燃焼環境の負圧の程度に応じて フレームロツ ド電流を上限と下限の比較的広い幅内で変化させることができるの で、 上記実施形態例に示した燃焼改善動作は濃淡パーナを備えた燃焼機器にも適 用することができる。 Further, in the second embodiment, the control data transfer control unit 240 is configured to transfer the fan air volume control data at the time of ignition based on the monitoring information of the combustion state monitoring unit 243 to the other fan. The air flow control data was determined and the fan air flow control data was transferred.However, the other fan air flow control data to be transferred from the fan air flow control data at the time of ignition is changed for each fan air flow control data at the time of ignition. The control data transfer control section 240 controls the rotation of the combustion fan 26 by transferring the fan air flow control data at the time of ignition to the predetermined fan air flow control data after ignition. You may do it. In this case, it is not necessary to monitor the combustion state in order to determine the fan air flow control data of the other party to be transferred from the fan air flow control data at each ignition, so that the combustion state monitoring unit 243 can be omitted. In addition, in this embodiment, it is possible to simplify the control configuration. Although it was composed of a bunner such as Eve's semi-bunsen, etc. Since the combustion mode is similar to that of the above, the flame rod current can be changed within a relatively wide range between the upper limit and the lower limit according to the degree of the negative pressure of the indoor combustion environment in the light and shade panner as well as the semi-bunsen panner. However, the combustion improvement operation shown in the above-described embodiment can be applied to a combustion device provided with a light / dark panner.
さらに、 上記各実施形態例は図 2に示すシステム構成の給湯器を例にして説明 したが、 燃焼ファン 2 6の回転駆動により供給される空気を利用して燃焼を行い 、 燃焼能力の可変制御が可能で、 燃焼能力と予め与えられるファン風量制御デー 夕とに基づいて燃焼ファンの回転制御が行われる燃焼機器であれば、 この発明は 適用することができ、 石油ファンヒー夕一や風呂装置等の給湯器以外の燃焼機器 にも適用することができる。  Further, in each of the above embodiments, the water heater having the system configuration shown in FIG. 2 has been described as an example. However, the combustion is performed using the air supplied by the rotational drive of the combustion fan 26, and the combustion capacity is variably controlled. The present invention can be applied to any combustion device in which the rotation control of the combustion fan is performed based on the combustion capacity and the fan air volume control data given in advance. It can also be applied to combustion equipment other than hot water heaters.
この第 2の発明の実施の形態例によれば、 通常時のファン風量制御データと負 圧時のファン風量制御データに加えて、 点火時のファン風量制御データが与えら れ、 点火を行うときには上記点火時のファン風量制御デ一夕に従って燃焼ファン の回転制御を行う点火時風量制御部を設けた。 そして、 上記点火時のファン風量 制御データが通常時のファン風量制御データが持つ燃焼可能な燃焼ファンの風量 領域と負圧時のファン風量制御データが持つ燃焼可能な燃焼ファンの風量領域と がオーバーラップする領域に設定されている。 従って、 室内が標準モードの状態 であっても、 該標準モード時よりも負圧状態であっても、 上記点火時のファン風 量制御データに従って燃焼ファンの回転制御を行うことによって、 確実に点着火 を達成することができる。  According to the embodiment of the second invention, in addition to the fan air flow control data at the normal time and the fan air flow control data at the negative pressure, the fan air flow control data at the time of ignition is given. An ignition air volume control unit for controlling the rotation of the combustion fan in accordance with the above-described ignition air volume control is provided. Then, the fan air volume control data at the time of ignition described above exceeds the combustible combustion fan air volume region of the normal fan air volume control data and the combustible combustion fan air volume region of the fan air volume control data at negative pressure. The area to be wrapped is set. Therefore, regardless of whether the room is in the standard mode or in a more negative pressure state than in the standard mode, the rotation of the combustion fan is controlled in accordance with the above-described fan air volume control data at the time of ignition, so that the temperature can be reliably increased. Ignition can be achieved.
実施の形態例によれば、 負圧検知手段が設けられると共に、 制御データ転移制 御部が設けられている。 上記負圧検知手段により室内の負圧状態が検知されたと きには、 点火時風量制御部によって点火時の燃焼ファンの回転制御が行われた後 に、 上記制御データ転移制御部が、 点火時のファン風量制御データから負圧時の ファン風量制御データに転移させて燃焼ファンの回転制御を行い、 ぞれ以外のと きには点火時のファン風量制御デー夕から通常時のファン風量制御デー夕に転移 させて燃焼ファンの回転制御を行う。 従って、 点着火が達成された後に、 燃焼環 境に応じてより良好な燃焼を行わせることが可能な適宜のファン風量制御データ に転移させて燃焼ファンの回転制御を行うことができる。 According to the embodiment, the negative pressure detecting means is provided, and the control data transfer control unit is provided. When a negative pressure state in the room is detected by the negative pressure detecting means, after the rotation of the combustion fan at the time of ignition is controlled by the ignition air volume control unit, the control data transfer control unit sets The fan air flow control data is transferred from the fan air flow control data at the time of negative pressure to the fan air flow control data at the time of negative pressure, and the rotation of the combustion fan is controlled. Transfer in the evening Then, the rotation of the combustion fan is controlled. Therefore, after the point ignition is achieved, the rotation of the combustion fan can be controlled by transferring to appropriate fan air volume control data capable of performing better combustion according to the combustion environment.
実施の形態例によれば、 排気ガス中の C O濃度に基づく室内の負圧検知と、 フ レーム口ッド電流に基づき室内の負圧検知とを併用して室内の負圧を検知する負 圧検知手段が設けられている。 室内の負圧に起因した燃焼状態の悪化をいち早く 検出する必要があり、 燃焼悪化を感度良く検出できる燃焼能力の範囲 (低燃焼能 力範囲) 内ではフレームロッ ド電流に基づき室内の負圧検知を行い、 また、 燃焼 能力の全範囲では C Oセンサにより燃焼悪化を検出できることから排気ガス中の C〇濃度に基づいて室内の負圧検知を行うことができるので、 フレームロツ ド電 流に基づく負圧検出と、 C Oセンサによる C 0濃度検出に基づく負圧検出とを併 用することにより、 燃焼能力の全範囲において室内の燃焼環境の負圧状況を精度 良く検出できることが可能となる。  According to the embodiment, the negative pressure detecting the indoor negative pressure based on the CO concentration in the exhaust gas and the indoor negative pressure detection based on the frame opening current are used together. Detection means is provided. It is necessary to detect the deterioration of the combustion state due to the negative pressure in the room as soon as possible. Within the range of the combustion capacity (low combustion capacity range) that can detect the deterioration of the combustion with high sensitivity, the negative pressure in the room is detected based on the flame rod current. In addition, since the deterioration of combustion can be detected by the CO sensor in the entire range of the combustion capacity, the indoor negative pressure can be detected based on the concentration of C〇 in the exhaust gas, so the negative pressure based on the flame rod current can be detected. By combining the detection with the negative pressure detection based on the CO concentration detection by the CO sensor, it is possible to accurately detect the negative pressure condition of the indoor combustion environment in the entire range of the combustion capacity.
実施の形態例によれば、 燃焼能力に対する燃焼ファンの風量が互いに異なる複 数段のファン風量制御データが与えられると共に、 各ファン風量制御デ一夕が持 つ燃焼可能な燃焼ファンの風量領域がオーバーラップする領域に設定される点火 時のファン風量制御データが複数個与えられ、 前回の燃焼状態の停止時に使用さ れていたファン風量制御データの上又は (および) 下側に配置される点火時のフ ァン風量制御データに基づいて点火動作を行う点火時風量制御部を設けた。 燃焼 機器の点火を行うときの燃焼環境が前回の燃焼状態停止時とほぼ同様である場合 にはもちろんのこと、 燃焼環境が変動したとしても、 上記点火時のファン風量制 御データは、 前回の燃焼停止時に使用されていたファン風量制御データが持つ燃 焼可能な風量領域と上記前回の燃焼停止時のファン風量領域の上側又は下側のフ ァン風量制御データが持つ燃焼可能な風量領域とがオーバーラップする領域に設 定されていることから、 点着火をほぼ確実に達成することができる。  According to the embodiment, multi-stage fan air volume control data in which the air volume of the combustion fan with respect to the combustion capacity is different from each other is given, and the air volume range of the combustible combustion fan provided by each fan air volume control data is A plurality of fan air volume control data at the time of ignition set in the overlapping area are provided, and the ignition arranged above or (and) below the fan air volume control data used when the previous combustion state was stopped. An ignition air volume control unit for performing an ignition operation based on the fan air volume control data at the time is provided. If the combustion environment when igniting the combustion equipment is almost the same as when the previous combustion state was stopped, the fan air volume control data at the time of ignition will be The flammable air volume area of the fan air volume control data used when the combustion was stopped and the flammable air volume area of the fan air volume control data above or below the fan air volume area at the time of the previous combustion stop. Is set in the overlapping region, so that spot ignition can be achieved almost certainly.
[第 3の発明] [Third invention]
第 3の発明は、 燃焼制御中に燃焼能力をダウンさせた時に、 室内の負圧状態が 緩和される現象が燃焼能力ダウンの制御を行ってから遅れて発生することにより 、 一時的に供給風量が不足することを解決する。 燃焼能力ダウンの制御に伴い使 用されるファンの風量制御デ一夕は、 より負圧状態が緩和されたことを前提にし て設定されている。 従って、 燃焼能力をダウンさせた後の風量制御データではフ アンの回転数が少なく設定されている。 それに対して、 室内の負圧状態が緩和さ れるまで所定の遅延時間を要する。 従って、 その所定の遅延時間の期間においてAccording to a third aspect of the invention, when the combustion capacity is reduced during the combustion control, a phenomenon in which the negative pressure state in the room is alleviated occurs after the control of the combustion capacity reduction is performed. To solve the shortage of supply air volume temporarily. The air volume control of the fan used for controlling the combustion capacity reduction is set on the assumption that the negative pressure condition has been alleviated. Therefore, the fan speed is set low in the airflow control data after the combustion capacity has been reduced. On the other hand, a predetermined delay time is required until the negative pressure state in the room is alleviated. Therefore, in the period of the predetermined delay time,
、 ファンの回転数が少なく供給風量不足を生じる。 そこで、 第 3の発明では、 過 渡期間においては、 一時的にファンの回転数 (送風能力) を高くするようなファ ン回転制御データが使用される。 However, the number of rotations of the fan is small and the supply air volume is insufficient. Therefore, in the third invention, fan rotation control data that temporarily increases the rotation speed (blowing capacity) of the fan is used during the transient period.
第 3の発明の実施形態例の特徴的な制御構成は、 室内の負圧が発生したときに 負圧発生に起因した燃焼状態の悪化を回避できる構成を有するとともに、 室内が 負圧状態であるときに燃焼能力が低下変更したときに、 負圧状態に起因した空気 不足による燃焼状態の悪化を回避する構成を有していることである。  The characteristic control configuration of the embodiment of the third invention has a configuration in which when a negative pressure is generated in the room, it is possible to avoid deterioration of the combustion state due to the generation of the negative pressure, and the room is in a negative pressure state. In other words, when the combustion capacity is reduced and changed, a configuration is provided to avoid deterioration of the combustion state due to lack of air due to the negative pressure state.
図 2 2にはこの実施形態例において特徴的な制御構成が示されている。 この給 湯器の制御装置 3 3 0は、 図 2 2に示されるように、 燃焼制御部 3 3 5とデータ 格納部 3 3 6とファン回転制御デ一夕切り換え制御部 3 3 7と能力低下変更時フ アン回転制御部 3 3 8と高 C O発生時ファン回転制御部 3 4 0を有して構成され ている。  FIG. 22 shows a characteristic control configuration in this embodiment. As shown in FIG. 22, the water heater control device 330 has a combustion control section 33 35, a data storage section 33 36, a fan rotation control data switching control section 33 37, and a reduced capacity. It is configured to include a fan rotation control unit for change 338 and a fan rotation control unit for high CO generation 340.
上記燃焼制御部 3 3 5には器具運転を制御するためのシーケンスプログラムが 予め与えられており、 燃焼制御部 3 3 5は、 リモコン 3 1の情報や、 各種のセン ザのセンサ出力情報を取り込んで、 それら取り込んだ情報と上記シーケンスプロ グラムに基づいて前述したように器具運転を行う。  A sequence program for controlling appliance operation is given to the combustion control section 335 in advance, and the combustion control section 335 captures information of the remote controller 31 and sensor output information of various sensors. Then, the appliance is operated based on the acquired information and the sequence program as described above.
データ格納部 3 3 6は記憶装置により構成され、 データ格納部 3 3 6にはファ ン回転制御データが格納されている。 このファン回転制御データは燃焼フアン 2 6の回転数が燃焼能力 (この実施形態例では予め定めた最小燃焼能力から最大燃 焼能力までの燃焼能力) に対応させて与えられているデータであり、 この実施形 態例では、 図 2 3に示すように、 燃焼能力に対する燃焼ファン 2 6の回転数が互 いに異なる複数段のファン回転制御データ R, S , T, Uがデータ格納部 3 3 6 に格納されている。 なお、 この実施形態例では、 予め定めた最小燃焼能力を 0 % とし、 燃焼能力が増加していくに従って%値が増加して最大燃焼能力が 1 0 0 % となるように燃焼能力を%値に置き換えて表している。 The data storage section 336 is constituted by a storage device, and the data storage section 336 stores fan rotation control data. The fan rotation control data is data in which the rotation speed of the combustion fan 26 is given in accordance with the combustion capacity (in this embodiment, the combustion capacity from the predetermined minimum combustion capacity to the maximum combustion capacity). In this embodiment, as shown in FIG. 23, a plurality of stages of fan rotation control data R, S, T, and U in which the number of rotations of the combustion fan 26 differs with respect to the combustion capacity are stored in a data storage unit 3 3. 6 In this embodiment, the predetermined minimum combustion capacity is set to 0%, and as the combustion capacity increases, the% value increases and the maximum combustion capacity becomes 100%. The combustion capacity is replaced by a% value so that
この実施形態例では、 図 2 3に示すファン回転制御データ S , T, Uから分か るように、 ファン回転制御デ一夕を切り換えると、 最小燃焼能力時にはファン回 転数が大きく変化するのに対して、 最大燃焼能力時にはファン回転数は殆ど変化 しないようにしてある。 これは、 一般的に行われている空燃比を一定にして燃焼 させるものとは異なり、 本発明者等が独自に見出したものである。  In this embodiment, when the fan rotation control data is switched as can be seen from the fan rotation control data S, T, and U shown in FIG. 23, the fan rotation speed greatly changes at the minimum combustion capacity. On the other hand, at the maximum combustion capacity, the fan speed is hardly changed. This is different from the general method of burning with a constant air-fuel ratio, and is uniquely found by the present inventors.
つまり、 本来バーナーは最大燃焼能力で燃やすことができるバーナーを用い、 燃料を少なくしても消えないように風量制御を行っているものである。 言い換え ると、 低燃焼能力であるほど、 風量制御を正確に行わないと、 燃焼火炎が消えて しまうことを意味する。  In other words, the burner is originally a burner that can burn with the maximum combustion capacity, and the air volume is controlled so that it does not disappear even if the fuel is reduced. In other words, the lower the combustion capacity, the more the combustion flame will be extinguished if the air volume control is not performed accurately.
したがって、 空燃比を一定にした相関関係では上記各ファン回転制御デ一夕は 平行となるが、 この実施形態例では、 燃焼能力が低くなるに従って上記各ファン 回転データ S , T, Uの間隔は広がり、 燃焼能力が高くなるに従って上記各ファ ン回転制御データ S , T, Uの間隔は狭くなるように設定している。  Therefore, in the correlation with a constant air-fuel ratio, the above-mentioned fan rotation control data are parallel, but in this embodiment, the intervals between the above-mentioned fan rotation data S, T, U become smaller as the combustion capacity becomes lower. The intervals between the fan rotation control data S, T, and U are set to be narrower as the spread and the combustion capacity increase.
なお、 図 2 3に示す各ファン回転制御データ S , T, Uは最大燃焼能力で一点 に集まっているが、 最大燃焼能力で一点に集まる必要はなく、 高燃焼能力領域で 各ファン回転制御データが交差するように設定してもよい。  Although the fan rotation control data S, T, and U shown in Fig. 23 are gathered at one point at the maximum combustion capacity, it is not necessary to gather at one point at the maximum combustion capacity. May be set to intersect.
また、 ファン回転制御データは、 図 2 3に示されるような形態で与える他に、 図 9に示すように、 図 2 3のファン回転制御デ一夕 Rに相当する X二 0のファン 回転制御デ一夕に対し、 X = 2, X = 4のファン回転制御データのように平行な 制御ラィンの形態で与えるようにしてもよいものである。  In addition to providing the fan rotation control data in the form shown in FIG. 23, as shown in FIG. 9, the fan rotation control of X20 corresponding to the fan rotation control data R of FIG. The data may be given in the form of parallel control lines such as fan rotation control data of X = 2 and X = 4 for the entire night.
ファン回転制御データ切り換え制御部 3 3 7は、 C Oセンサ 2 8や、 フレーム ロッ ド電極 1 6の信号を受けて、 燃焼制御部 3 3 5が使用するファン回転制御デ —夕を C Oセンサ 2 8によって検出される C O濃度や、 フレームロツ ド電極 1 6 の電流で検出される室内燃焼環境の負圧状況に応じてファン回転制御デー夕を切 り換え制御するもので、 以下の 1つ以上の機能を備えている。  The fan rotation control data switching control section 3337 receives the signals from the CO sensor 28 and the frame rod electrode 16 and outputs the fan rotation control data used by the combustion control section 3335 to the CO sensor 28. The fan rotation control data is switched according to the CO concentration detected by the air conditioner or the negative pressure condition of the indoor combustion environment detected by the current of the flame rod electrode 16.One or more of the following functions It has.
ファン回転制御データの切り換え制御は、 既に説明した通り、 C O濃度により 負庄状態を検出して回転制御データの切り換えを行う第 1の機能と、 フレーム口 ッ ド電流が閾値を超えたことにより負圧状態を検出して回転制御デー夕を切り換 えるする第 2の機能と、 フレームロツ ド電流の短時間での変化により負圧状態と 負圧解除とを検出して回転制御デ一夕を切り換える第 3の機能とを組み合わせる ことで、 有効に行われる。 As described above, the switching control of the fan rotation control data is based on the first function of detecting the negative voltage state based on the CO concentration and switching the rotation control data, and the negative control because the frame pad current exceeds the threshold. Detects pressure state and switches rotation control data Effectively by combining the second function to change the rotation control data by detecting the negative pressure state and the negative pressure release by the short-time change of the frame rod current. Will be
前述したように、 閉め切られた部屋で給湯器の燃焼運転が行われて燃焼ファン 2 6が回転駆動し、 換気扇 2も回転駆動している室内の空気圧は、 部屋の高い気 密性に起因して、 室外の大気圧よりも図 2 4に示す空気圧 P L0のように低下して 室内は負圧状態になっている。 このように室内が負圧状態であるときに給湯設定 温度の低下可変等によって給湯器の燃焼能力が低下した場合には、 燃焼能力の低 下変更に対応させて燃焼ファン 2 6の回転数が低下制御されて室内から外部に排 出される空気量が減少するので、 例えば、 図 2 4の曲線 Pに示すように、 室内の 空気圧が P L0から P hiまで上昇するというように室内の空気圧が上昇し、 室内の 負圧状態が緩和されることになる。  As described above, the air pressure in the room where the water heater is burned and the combustion fan 26 rotates and the ventilation fan 2 also rotates in the closed room is due to the high airtightness of the room. As a result, the air pressure P L0 shown in FIG. 24 is lower than the atmospheric pressure outside the room, and the room is in a negative pressure state. When the combustion capacity of the water heater decreases due to a variable decrease in the hot water supply set temperature while the room is in the negative pressure state, the rotation speed of the combustion fan 26 is increased in accordance with the change in the combustion capacity. Since the amount of air discharged from the room to the outside is reduced by the reduction control, the air pressure in the room increases, for example, as shown by the curve P in Fig. 24, the air pressure in the room increases from P L0 to P hi. As a result, the negative pressure in the room will be reduced.
この室内の負圧緩和時に次に示す負圧遅れの現象が発生する。 負圧遅れとは、 能力低下変更前の燃焼フアン 2 6の回転数から能力低下変更後の燃焼フアン 2 6 の回転数に達するのに要する時間が、 例えば、 約 1秒掛からないのに対して、 燃 焼ファン 2 6の回転数の低下によって室内の空気圧が P L0から P hiまで上昇する のに要する時間 A tは、 例えば、 約 1 0秒掛かるというように、 上記負圧状態下 における燃焼能力低下変更に伴う室内の空気圧の上昇変動は燃焼フアン 2 6の回 転数の低下変動に追従しない現象のことである。 この負圧遅れに起因して次のよ うに燃焼状態が空気不足により悪化するという問題が生じることが本発明者等の 実験等によりわかった。  When the negative pressure in the chamber is alleviated, the following negative pressure delay phenomenon occurs. Negative pressure delay is the time required to reach the rotation speed of the combustion fan 26 after the change in performance from the rotation speed of the combustion fan 26 before the change in performance is reduced, for example, while it takes less than about 1 second. However, the time At required for the indoor air pressure to increase from P L0 to P hi due to a decrease in the number of revolutions of the combustion fan 26 is, for example, about 10 seconds. The fluctuation in the air pressure in the room due to the change in the capacity drop does not follow the fluctuation in the rotation speed of the combustion fan 26. Experiments by the present inventors have found that the negative pressure delay causes a problem that the combustion state deteriorates due to insufficient air as described below.
室内が負圧状態になっている場合には、 室外から排気通路 5を通って室内に入 り込む方向の空気の流れが室外の空気圧に対する室内の空気圧の低下分 (負圧状 態の大きさ) に応じた大きさで発生するので、 能力低下変更によって能力低下変 更後の燃焼ファン 2 6の回転数が低下したのに、 前記負圧遅れによって室内の負 圧状態はほぼ能力低下変更前の状態である場合には、 前記排気通路 3 0から入り 込む逆流の風量はほぼ能力低下変更前の大きさである。  When the room is in a negative pressure state, the flow of air in the direction from the outdoor to the room through the exhaust passage 5 is reduced by the decrease in the indoor air pressure relative to the outdoor air pressure (the magnitude of the negative pressure state). ), The negative pressure state in the room is almost the same as before the capacity change due to the negative pressure delay, even though the rotation speed of the combustion fan 26 after the capacity decrease has decreased due to the capacity decrease. In this case, the amount of backflow air entering from the exhaust passage 30 is substantially the same as before the capacity reduction.
これに対して、 能力低下変更後の燃焼ファン 2 6の回転数は、 室内の負圧状態 が能力低下変更に起因して緩和された状態での前記逆流の風量を想定し、 良好な 燃焼を行うための風量を供給するための回転数であることから、 上記負圧遅れに 起因した大きさを有する逆流風によって、 燃焼ファン 2 6の風量は良好な燃焼を 行うための風量よりも減少する。 このため、 バーナー 8に供給される空気量が良 好な燃焼を行うための空気量よりも格段に少なくなつて燃焼状態が空気不足によ り悪化したり、 過度の空気不足により燃焼火炎が立ち消えるという問題が生じる ο On the other hand, the rotational speed of the combustion fan 26 after the change in the capacity decrease is assumed to be a favorable value, assuming the airflow of the backflow in a state where the negative pressure in the room is reduced due to the change in the capacity decrease. Since the rotation speed is to supply the air flow for performing the combustion, the air flow of the combustion fan 26 is larger than the air flow for performing the good combustion due to the backflow having the magnitude due to the negative pressure delay. Decrease. For this reason, the amount of air supplied to the burner 8 becomes much smaller than the amount of air for performing good combustion, and the combustion state deteriorates due to insufficient air, or the combustion flame starts due to excessive insufficient air. The problem of disappearing occurs ο
そこで、 この実施形態例では、 上記燃焼能力の低下変更時に空気不足により燃 焼能力が悪化したり、 燃焼火炎の立ち消えが生じるのを回避することができる手 段を提案する。  Therefore, in this embodiment, a method is proposed that can prevent the combustion capacity from being deteriorated due to a shortage of air and the burning flame from going out when the decrease in the combustion capacity is changed.
能力低下変更時ファン回転制御部 3 3 8は上記燃焼制御部 3 3 5から燃焼能力 の情報を時々刻々と取り込み、 取り込んだ燃焼能力を時間に対応させて内蔵のメ モリ (図示せず) に格納すると共に、 それら取り込んだ燃焼能力の情報に基づき 燃焼能力の変化を次のように監視する。  At the time of the capacity reduction change, the fan rotation control section 338 captures the information of the combustion capacity from the combustion control section 335 from time to time, and stores the captured combustion capacity in time into the built-in memory (not shown). In addition to storing the information, the change in combustion capacity is monitored as follows based on the information on the captured combustion capacity.
例えば、 能力低下変更時ファン回転制御部 3 3 8は燃焼制御部 3 3 5から現在 の燃焼能力を取り込むと共に、 予め定めた設定時間前 (例えば、 2 . 6秒前) に 取り込まれて内蔵メモリに格納されている設定時間前の燃焼能力を読み出し、 上 記現在の燃焼能力を設定時間前の燃焼能力に比較して設定時間前の燃焼能力に対 する現在の燃焼能力の変化量を求める。  For example, the fan rotation control unit 338 at the time of the change in the capacity fetches the current combustion capacity from the combustion control unit 335, and fetches it before a predetermined set time (for example, 2.6 seconds before) and the built-in memory. The combustion capacity before the set time stored in the storage capacity is read, and the current combustion capacity is compared with the combustion capacity before the set time to determine the change amount of the current combustion capacity with respect to the combustion capacity before the set time.
そして、 能力低下変更時ファン回転制御部 3 3 8は上記求めた燃焼能力の変化 量を予め定めた能力低下変化量 Δ Ε (例えば、 1 0 % ) に比較する。 上記能力低 下変化量 Δ Eは燃焼能力の低下変更が行われたときに前記負圧遅れによつて燃焼 状態が悪化する虞があるか否かを判断するための燃焼能力低下変化量であり、 予 め実験や演算等により求め与えられている。  Then, at the time of the performance reduction change, the fan rotation control unit 338 compares the obtained variation in the combustion performance with a predetermined performance reduction variation ΔΕ (for example, 10%). The above-mentioned change in capacity decrease ΔE is a change in combustion capacity decrease for determining whether or not there is a risk that the combustion state may deteriorate due to the negative pressure delay when a change in combustion capacity decrease is performed. It has been obtained through experiments and calculations.
能力低下変更時ファン回転制御部 3 3 8は、 上記燃焼能力の変化量に基づき、 燃焼能力が上記能力低下変化量 Δ Ε以上低下していたと判断したときに、 能力変 更前のファン回転制御データに従って燃焼フアン 2 6の回転数を低下させると、 室内が負圧状態である場合には、 前記負圧遅れによって、 燃焼状態が空気不足に より悪化したり、 過度の空気不足により燃焼火炎の立ち消えが生じる等の問題が 発生する虞があると判断し、 ファン回転制御データを能力低下変更前のファン回 転制御データよりも上段のファン回転制御デ一夕に切り換えて燃焼ファ ン 2 6の 回転制御を行わせるための制御データアップ信号を燃焼制御部 3 3 5に出力する 燃焼制御部 3 3 5は、 上記能力低下変更時ファン回転制御部 3 3 8から制御デ —夕アップ信号を受け取ると、 ファン回転制御デ一夕を予め定めた上段のファン 回転制御データ (例えば、 能力低下変更前のファン回転制御データよりも 1段階 上段のファン回転制御デ 夕) に切り換え燃焼フアン 2 6の回転制御を行う。 具体的には、 例えば、 図 2 3に示すファン回転制御デ一夕 Sに従って燃焼ファ ン 2 6の回転制御を行っていたときに、 例えば、 湯の利用者が給湯設定温度を低 下する方向に変更し、 この給湯設定温度の低下変更に伴って燃焼能力が燃焼能力 aから燃焼能力 βに上記能力低下変化量 Δ Ε以上低下変更され、 上記能力低下変 更時ファン回転制御部 3 3 8から制御データアップ信号が出力された場合には、 燃焼制御部 3 3 5は上記制御データアツプ信号を受けて、 ファン回転制御データ Sから 1段階上段のファン回転制御データ Τに切り換えて燃焼フアン 2 6の回転 制御を行う。 The fan rotation control unit 3 38 at the time of the capacity reduction change determines that the combustion capacity has been reduced by the above-mentioned capacity reduction change Δ Δ or more based on the above-mentioned change amount of the combustion capacity. If the rotational speed of the combustion fan 26 is reduced according to the data, if the room is in a negative pressure state, the negative pressure lag causes the combustion state to deteriorate due to insufficient air, or the combustion flame to decrease due to excessive insufficient air. Judging that there is a possibility that a problem such as disappearing may occur, the fan rotation control data is transferred to the fan Is switched to the fan rotation control data higher than the rotation control data, and outputs a control data up signal to the combustion control unit 335 to perform the rotation control of the combustion fan 26. When the control signal is received from the fan rotation controller 3 3 8 at the time of the performance reduction change, the fan rotation control data of the upper fan rotation control data (for example, the fan rotation before the performance reduction change is determined) is set in advance. Switch to fan rotation control data, one step higher than the control data, and control the rotation of combustion fan 26. Specifically, for example, when the rotation control of the combustion fan 26 is being performed according to the fan rotation control data S shown in FIG. 23, for example, the direction in which the hot water user decreases the hot water supply set temperature In accordance with the change in the set hot water supply temperature, the combustion capacity is changed from the combustion capacity a to the combustion capacity β so as to be reduced by the above-mentioned capacity reduction change amount Δ Ε or more. When the control data up signal is output from the controller, the combustion controller 335 receives the control data up signal and switches the fan rotation control data S to the fan rotation control data 1 in the upper stage by one step to change the combustion fan 2. Perform rotation control of 6.
このファン回転制御データの切り換えによって、 燃焼ファン 2は、 例えば、 図 2 3に示すファン回転制御デー夕 Sの点 Αの回転数からファン回転制御デ一夕 T の点 Bの回転数にアップされ、 この点 Bからファン回転制御データ Tに従って能 力変更後の燃焼能力 /Sに対応する燃焼ファン 2 6の回転数である点 Cの回転数ま でダウンされる。  By this switching of the fan rotation control data, for example, the combustion fan 2 is increased from the rotation speed at the point Α of the fan rotation control data S shown in FIG. 23 to the rotation speed at the point B of the fan rotation control data T. However, the rotation speed of the combustion fan 26 corresponding to the combustion capacity / S after the capacity change is reduced from the point B to the point C which is the rotation number of the combustion fan 26 according to the fan rotation control data T.
前記能力低下変更時ファン回転制御部 3 3 8はタイマ (図示せず) を内蔵して おり、 上記制御データアップ信号を出力した後に、 上記燃焼制御部 3 3 5の運転 情報に基づいて燃焼フアン 2 6の回転数が能力変更後の回転数に達したと検知し たときに、 上記内蔵のタイマを駆動し、 タイマの計測時間を予め定めた待機時間 (例えば、 1 0秒) に比較し、 タイマの計測時間が上記待機時間に達したか否か を判断する。  The fan rotation control unit 338 at the time of the change in performance reduction has a built-in timer (not shown). After outputting the control data up signal, the combustion fan is controlled based on the operation information of the combustion control unit 335. 26 When it is detected that the rotation speed of 6 has reached the rotation speed after the capacity change, the built-in timer is driven, and the measured time of the timer is compared with a predetermined standby time (for example, 10 seconds). It is determined whether or not the time measured by the timer has reached the above-mentioned standby time.
上記待機時間は燃焼フアン 2 6の回転数が低下変更されてから前記負圧遅れが ほぼ解消するまでの時間 Δ tに余裕時間を加えた時間であり、 予め実験や演算等 により求められデータ格納部 3 3 6に格納されている。 そして、 能力低下変更時ファン回転制御部 3 3 8は、 上記タイマの計測時間が 上記待機時間に達したと判断したときに、 負圧遅れが解消したので下段のフ ン 回転制御データに切り換えて燃焼フアン 2 6の回転制御を行わせても上記負圧遅 れに起因した燃焼状態悪化の問題を回避できると判断し、 燃焼制御部 3 3 5に制 御データダウン信号を出力する。 The standby time is a time obtained by adding a margin time to the time Δt from when the rotational speed of the combustion fan 26 is reduced to be substantially reduced until the negative pressure delay is substantially eliminated, and is obtained in advance by experiments, calculations, and the like and stored. Stored in part 3 3 6. Then, when it is determined that the measurement time of the timer has reached the standby time, the negative rotation delay has been resolved, and the fan rotation control unit 338 at the time of the change in capacity reduction switches to the lower fan rotation control data because the negative pressure delay has been resolved. It is determined that the problem of deterioration of the combustion state caused by the negative pressure delay can be avoided even if the rotation control of the combustion fan 26 is performed, and a control data down signal is output to the combustion control unit 335.
燃焼制御部 3 3 5は、 上記能力低下変更時ファン回転制御部 3 3 8から制御デ 一夕ダウン信号を受け取ると、 予め定めた下段のファン制御データ (例えば、 能 力低下変更前のファン回転制御データ S ) に切り換えて燃焼ファン 2 6の回転制 御を行う。  When the combustion control unit 335 receives the control data overnight down signal from the above-mentioned capacity reduction change fan rotation control unit 338, the combustion control unit 335 performs predetermined lower fan control data (for example, the fan rotation before the performance reduction change). Switch to control data S) and control the rotation of combustion fan 26.
具体的には、 例えば、 上記能力低下変更後の燃焼ファン 2 6の回転数である図 2 3のファン回転制御デー夕 Tの点 Cを上記待機時間が経過するまで継続して行 つた後に、 ファン回転制御データ Tからファン回転制御データ Sに切り換え、 燃 焼ファン 2 6はファン回転制御データ Tの点 Cの回転数からファン回転制御デー 夕 Sの点 Dの回転数にダウンされる。  Specifically, for example, after continuously performing the point C of the fan rotation control data T in FIG. 23, which is the rotation speed of the combustion fan 26 after the above-mentioned capacity reduction change, until the standby time elapses, Switching from the fan rotation control data T to the fan rotation control data S, the combustion fan 26 is reduced from the rotation speed at the point C of the fan rotation control data T to the rotation speed at the point D of the fan rotation control data S.
上記のように、 能力低下変更時に負圧遅れに起因して燃焼状態が空気不足によ り悪化する虞がある場合に、 ファン回転制御デ一夕を能力低下変更前のファン回 転制御データよりも上段のファン回転制御デ一夕に切り換えて燃焼フアン 2の回 転数を能力低下変更後の回転数までダウンさせるので、 能力変更前のファン回転 制御データに従って燃焼フアン 2 6の回転数をダウンさせるよりも燃焼フアン 2 の回転数は多くファン風量が多くなってバーナー 1への供給空気量が良好な燃焼 を行うために要する空気量よりも大幅に減少するのを抑制することができ、 能力 低下変更時の負圧遅れに起因した空気不足による燃焼状態の悪化を防止すること ができる。  As described above, when there is a possibility that the combustion state may be deteriorated due to the lack of air due to the negative pressure delay at the time of the performance reduction, the fan rotation control data is calculated based on the fan rotation control data before the performance reduction change. Also switches to the upper fan rotation control mode to reduce the number of revolutions of combustion fan 2 to the number of revolutions after the change in capacity, so the number of revolutions of combustion fan 26 is reduced according to the fan rotation control data before the capacity change. Therefore, the number of revolutions of the combustion fan 2 is larger than that of the burner, and the amount of air supplied to the burner 1 can be suppressed from being significantly reduced from the amount of air required for performing good combustion by increasing the fan airflow. It is possible to prevent the combustion state from deteriorating due to a shortage of air due to a negative pressure delay at the time of the decrease.
その上、 能力低下変更後の回転数にダウンしてから設定の待機時間が経過する まで、 つまり、 負圧遅れが解消するまで上記上段のファン回転制御データに基づ いた回転数を継続して行うので、 上記負圧遅れに起因した空気不足による燃焼状 態の悪化防止の効果を負圧遅れが解消するまで継続させることができる。  In addition, the rotation speed based on the above-mentioned fan rotation control data is continuously maintained until the set standby time elapses after the rotation speed has been reduced to the rotation speed after the capacity reduction change, that is, until the negative pressure delay is eliminated. Therefore, the effect of preventing the deterioration of the combustion state due to the lack of air due to the negative pressure delay can be continued until the negative pressure delay is eliminated.
ところで、 負圧遅れが発生しているときの燃焼ファン 2 6の風量は、 燃焼ファ ン 2 6の回転数が等しくても、 燃焼能力の低下変化量が大きくなるに従って少な くなる。 このことから、 前記能力低下変更時ファン回転制御部 3 3 8により上段 のファン回転制御デ一夕に切り換えて燃焼フアン 2 6の回転制御を行つているの に、 燃焼能力の低下変化量が大きいために、 燃焼ファン 2 6の風量が良好な燃焼 を行うための風量よりも減少してしまい、 パーナ一 8への供給空気量が良好な燃 焼を行う空気量よりも低下し、 空気不足により燃焼状態の悪化を招いてしまう場 合がある。 By the way, when the negative pressure delay occurs, the air volume of the combustion fan 26 becomes smaller as the decrease in the combustion capacity increases even if the rotation speed of the combustion fan 26 is the same. It becomes. From this, although the rotation of the combustion fan 26 is controlled by switching to the upper stage fan rotation control unit by the fan rotation control unit 338 at the time of the performance reduction change, the amount of change in the reduction of the combustion capacity is large. Therefore, the air volume of the combustion fan 26 becomes smaller than the air volume for good combustion, and the amount of air supplied to the Pana 18 becomes smaller than the air volume for good combustion. Combustion may deteriorate.
そこで、 この実施形態例では、 高 C O発生時ファン回転制御部 3 4 0を設け、 燃焼能力が能力低下変化量 Δ Ε以上低下し能力低下変更前のファン回転制御デー 夕よりも上段のファン回転制御デ一夕に切り換えて燃焼フアン 2 6の回転制御が 行われているときに、 上記高 C O発生時ファン回転制御部 3 4 0によって、 空気 不足の燃焼状態を検知したときには、 ファン回転制御データをさらに上段のファ ン回転制御デー夕に切り換えて燃焼フアン 2 6の回転制御を行わせる構成を有し ている。 本発明者等は空気不足により燃焼状態が悪化したときには排気ガス中の C〇濃度が高くなることに着目し、 空気不足による燃焼状態の悪化を排気ガス中 の C 0濃度の上昇により検出するようにした。  Therefore, in this embodiment, the fan rotation control unit 340 at the time of high CO generation is provided, and the combustion performance is reduced by the capacity reduction change amount Δ Ε or more, and the fan rotation control data before the performance reduction is changed. When the control of the combustion fan 26 is being performed by switching to control data overnight, and when the high-CO generation fan rotation control unit 340 detects a combustion state of insufficient air, the fan rotation control data is output. Is further switched to the upper fan rotation control data to control the rotation of the combustion fan 26. The present inventors have focused on the fact that when the combustion state deteriorates due to insufficient air, the C〇 concentration in the exhaust gas increases, and detect the deterioration of the combustion state due to the insufficient air by detecting the increase in the C0 concentration in the exhaust gas. I made it.
高 C O発生時ファン回転制御部 3 4 0は、 C Oセンサ 2 8のセンサ出力を排気 ガス中の C O濃度として検出し、 燃焼制御部 3 3 5や能力低下変更時ファン回転 制御部 3 3 8から取り込んだ動作情報に基づき、 能力低下変更によって能力低下 変更前のファン回転制御データよりも上段のファン回転制御データに切り換えて 燃焼フアン 2の回転制御が行われていると検知している間に、 上記 C 0センサ 2 8により検出出力される排気ガス中の C O濃度が予め定めた危険値 (例えば、 2 0 0 0 p p m ) 以上であると判断したときに、 高 C O発生時制御データアップ信 号を燃焼制御部 3 3 5に出力する。  When high CO is generated, the fan rotation control section 340 detects the sensor output of the CO sensor 28 as the CO concentration in the exhaust gas, and outputs it from the combustion control section 335 or the fan rotation control section 338 when the capacity is changed. Based on the acquired operation information, the performance is reduced due to the capacity reduction change.While it is detected that the rotation control of the combustion fan 2 is being performed by switching to the fan rotation control data higher than the fan rotation control data before the change, When it is determined that the CO concentration in the exhaust gas detected and output by the C0 sensor 28 is equal to or higher than a predetermined dangerous value (for example, 2000 ppm), the control data up signal when high CO is generated Is output to the combustion controller 3 35.
上記危険値は空気不足により燃焼状態が悪化したか否かを判断するための排気 ガス中の C O濃度であり、 予め実験や演算等により求めてデータ格納部 3 3 6に 格納されている。  The above-mentioned danger value is the CO concentration in the exhaust gas for judging whether or not the combustion state has deteriorated due to the shortage of air, and is obtained in advance by experiments or calculations and stored in the data storage unit 336.
燃焼制御部 3 3 5は、 上記高 C O発生時ファン回転制御部 3 4 0から高 C〇発 生時制御データアップ信号を受け取ると、 能力低下変更時ファン回転制御部 3 3 8によって能力変更前のファン回転制御データよりも上段のファン回転制御デー 夕に切り換えて燃焼フアン 2 6の回転制御を行ったのに空気不足により燃焼状態 が悪化したので、 空気不足の燃焼状態の悪化を改善するために、 さらに上段のフ ァン回転制御データに切り換えて燃焼フアン 2 6の回転制御を行いファン風量を 増加させバーナー 1への供給空気量を増加させる必要があると判断し、 ファ ン回 転制御デー夕をさらに上段のファン回転制御デー夕に切り換えて燃焼ファン 2 6 の回転制御を行う。 When the combustion control unit 335 receives the high C ア ッ プ generation control data up signal from the high CO generation fan rotation control unit 340, the combustion rotation control unit 338 before the capacity change Fan rotation control data above the fan rotation control data Even though the combustion fan 26 was controlled in the evening and the rotation was controlled, the combustion condition deteriorated due to insufficient air.In order to improve the deterioration of the combustion condition due to insufficient air, the data was switched to the upper fan rotation control data. Control of the combustion fan 26 to determine that it is necessary to increase the amount of air supplied to the burner 1 by increasing the fan airflow, and switch the fan rotation control data to the upper fan rotation control data. To control the rotation of the combustion fan 26.
例えば、 能力低下変更時にファン回転制御デー夕 Sからファン回転制御デー夕 Tに切り換え、 このファン回転制御デ一夕 Tに従って燃焼フアン 2 6の回転数を ダウンさせている途中 (例えば、 図 2 3の点 Eの回転数まで低下したとき) に、 排気ガス中の C〇濃度が上記危険値以上になつた場合には、 上記高 C 0発生時フ ァン回転制御部 3 4 0から出力された高 C O発生時制御データアップ信号を燃焼 制御部 3 3 5が受けて、 さらに上段のファン回転制御データ Uに切り換え、 つま り、 燃焼ファン 2 6の回転数を点 Fの回転数に増加させた後に、 上記ファン回転 制御データ Uに従って能力低下変更後の回転数である点 Gまで燃焼フアン 2 6の 回転数をダウンさせる。  For example, when the capacity reduction is changed, the fan rotation control data S is switched to the fan rotation control data T, and the rotation speed of the combustion fan 26 is reduced according to the fan rotation control data T (for example, FIG. 23). If the C〇 concentration in the exhaust gas exceeds the above-mentioned danger value at the time when the number of revolutions of the point E has decreased to the point E), the fan rotation controller 340 outputs when the high C0 occurs. The combustion control unit 3 35 receives the high-CO generation control data up signal and switches to the upper fan rotation control data U, that is, the rotation speed of the combustion fan 26 is increased to the rotation speed at point F. After that, according to the fan rotation control data U, the rotation speed of the combustion fan 26 is reduced to a point G, which is the rotation speed after the change in the performance reduction.
上記高 C O発生時ファン回転制御部 3 4 0はタイマを内蔵しており、 上記燃焼 制御部 3 3 5から取り込んだ動作情報に基づき、 燃焼ファン 2 6の回転数が能力 変更後の回転数に達したと検知したときに上記夕イマの駆動を開始させ、 上記夕 イマの計測時間を予め定めた待機時間 T co (例えば、 1 0秒) に比較し、 タイマ の計測時間が上記待機時間 T coに達したと判断したときに高 C 0発生時制御デー 夕ダウン信号を出力する。  The high-CO generation fan rotation control unit 340 has a built-in timer.Based on the operation information fetched from the combustion control unit 335, the rotation speed of the combustion fan 26 changes to the rotation speed after the capacity change. When it is detected that the time has been reached, the driving of the above-mentioned timer is started, the measured time of the above-mentioned timer is compared with a predetermined standby time Tco (for example, 10 seconds), and the measured time of the timer is set to the above-mentioned standby time Tco. Outputs the control data down signal when high C0 occurs when it is determined that co has been reached.
上記待機時間 T coは負圧遅れがほぼ解消するのに要する時間に余裕時間を加え た時間であり、 予め実験や演算等により求められ前記データ格納部 3 3 6に格納 されている。  The standby time Tco is a time obtained by adding a marginal time to a time required for substantially eliminating the negative pressure delay, and is obtained in advance by experiments, calculations, and the like, and stored in the data storage unit 336.
燃焼制御部 3 3 5は、 上記高 C O発生時ファン回転制御部 4 0から高 C O発生 時制御データダウン信号を受け取ると、 負圧遅れが解消されたので、 ファ ン回転 制御データを下段のファン回転制御データに切り換えてもよいと判断し、 ファ ン 回転制御データを下段のファン回転制御データ (例えば、 ファン回転制御データ Uから 1段階下のファン回転制御データ Tや、 能力低下変更前のファン回転制御 データ S ) に切り換えて燃焼ファン 2 6の回転制御を行う。 When the combustion control unit 335 receives the high CO generation control data down signal from the high CO generation fan rotation control unit 40, the negative pressure delay has been eliminated. Judging that switching to the rotation control data is allowed, the fan rotation control data is converted to the lower fan rotation control data (for example, the fan rotation control data T one step below the fan rotation control data U, Rotation control Switch to data S) and control the rotation of combustion fan 26.
また、 上記高 C O発生時ファン回転制御部 3 4 0は、 前記高 C O発生時制御デ 一夕アップ信号を出力するときに、 同時に、 能力低下変更時ファン回転制御部 3 3 8から制御データダウン信号が出力されるのをキヤンセルさせるキヤンセル信 号を能力低下変更時ファン回転制御部 3 3 8に出力し、 能力低下変更時ファン回 転制御部 3 8から制御データダウン信号が出力されるのをキャンセルさせる。  When the high-CO generation fan rotation control section 340 outputs the high-CO generation control data overnight up signal, at the same time, the control data down from the capacity reduction change fan rotation control section 338 is performed. A cancel signal that cancels the output of the signal is output to the fan rotation control unit 338 when the performance is changed, and the control data down signal is output from the fan rotation control unit 38 when the performance is changed. Cancel.
この実施形態例によれば、 燃焼能力が変更された場合に、 能力低下変更に起因 した負圧遅れによって燃焼状態が空気不足により悪化する虞がある場合に、 能力 変更前のファン回転制御デ一夕よりも上段のファン回転制御デ一夕に切り換えて 燃焼ファン 2 6の回転制御を行うので、 能力変更前のファン回転制御データに従 つて燃焼フアン 2 6の回転制御を行うよりも燃焼フアン 2 6の風量が増加し、 バ ーナー 1への供給空気量が良好な燃焼を行わせるための空気量よりも格段に減少 するのを防止することができ、 空気不足による燃焼状態の悪化の問題や、 過度の 空気不足による燃焼火炎の立ち消えの問題を回避することが可能となる。  According to this embodiment, when the combustion capacity is changed, if the combustion state is likely to be deteriorated due to the lack of air due to the negative pressure delay caused by the change in capacity, the fan rotation control data before the capacity change is changed. Since the rotation of the combustion fan 26 is controlled by switching to the fan rotation control data at the upper stage than the evening, the combustion fan 26 is controlled more than the rotation control of the combustion fan 26 according to the fan rotation control data before the capacity change. 6, the amount of air supplied to the burner 1 can be prevented from dropping much less than the amount of air required for good combustion. However, the problem of extinguishing of the combustion flame due to excessive air shortage can be avoided.
また、 この実施形態例では、 高 C O発生時ファン回転制御部 3 4 0を設けたの で、 能力低下変更時ファン回転制御部 3 3 8によって上段のファン回転制御デ一 夕に切り換えて燃焼ファン 2 6の回転制御を行ったのに、 バーナー 1への供給空 気量が良好な燃焼伏態を行う空気量よりも減少して燃焼状態が空気不足により悪 化してしまった場合には、 その空気不足による燃焼状態の悪化を排気ガス中の C 〇濃度の上昇によって検知し、 上記高 C O発生時ファン回転制御部 3 4 0により 、 さらに上段のファン回転制御データに切り換えることができる。  Further, in this embodiment, since the high-CO generation fan rotation control unit 340 is provided, the fan rotation control unit 338 is switched to the upper stage fan rotation control unit by the fan rotation control unit at the time of the performance reduction change, so that the combustion fan is changed. If the amount of air supplied to the burner 1 becomes smaller than the amount of air that performs good combustion inclining and the combustion state deteriorates due to lack of air after performing the rotation control in 26, The deterioration of the combustion state due to the shortage of air is detected by the increase in the C〇 concentration in the exhaust gas, and the high-CO generation fan rotation control unit 340 can switch to the upper fan rotation control data.
このように、 さらに上段のファン回転制御デ一夕に切り換えることができるの で、 燃焼ファン 2 6の風量が増加してバーナー 8への供給空気量を増加させるこ とができ、 空気不足の燃焼状態の悪化を改善することができ、 過度の空気不足に よる燃焼火炎の立ち消えの問題を確実に回避することができる。  In this way, it is possible to switch to the further upper fan rotation control, so that the air volume of the combustion fan 26 increases and the amount of air supplied to the burner 8 can be increased. The deterioration of the condition can be ameliorated, and the problem of extinguishing of the combustion flame due to excessive air shortage can be reliably avoided.
なお、 この発明は上記実施形態例に限定されるものではなく、 様々な実施の形 態を採り得る。 例えば、 上記実施形態例では、 能力低下変更時ファン回転制御部 3 3 8は、 燃焼制御部 3 3 5から燃焼能力の情報を取り込んでいたが、 例えば、 燃焼能力に応じて可変制御される比例弁 1 3の開弁量 (つまり、 比例弁駆動電流 ) を燃焼能力として検出してもよい。 It should be noted that the present invention is not limited to the above-described embodiment, but can take various embodiments. For example, in the above embodiment, the capacity reduction change-time fan rotation control unit 338 fetches the information of the combustion capacity from the combustion control unit 335, but, for example, a proportional control variably controlled according to the combustion capacity. Valve opening of valve 13 (that is, proportional valve drive current ) May be detected as the combustion capacity.
また、 上記実施形態例では燃焼能力が予め定めた能力低下変化量 Δ E以上低下 したときには、 負圧状態であるか否かに拘らず、 能力低下変更時ファン回転制御 部 3 3 8は、 燃焼能力低下変更前のファン回転制御データよりも上段のファン回 転制御データに切り換えていたが、 能力低下変更時に負圧遅れが生じるのは室内 が負圧状態の場合であるので、 室内の負圧状態を検知する手段を設けた場合には 、 上記能力低下変更時ファン回転制御部 3 3 8は、 室内が負圧状態であるときに 燃焼能力が設定の能力低下変化量 Δ E以上低下したときのみ、 上段のファン回転 制御デ一夕へ切り換えるようにしてもよい。  Further, in the above embodiment, when the combustion capacity is reduced by the predetermined capacity reduction change amount ΔE or more, regardless of the negative pressure state, the fan rotation control unit 338 at the time of the capacity reduction change, Although the fan rotation control data was switched to the upper stage than the fan rotation control data before the performance reduction, the negative pressure delay occurred when the performance reduction was changed because the room was under negative pressure. In the case where the means for detecting the state is provided, the above-mentioned capacity reduction change-time fan rotation control unit 338 is used when the combustion capacity is reduced by the set capacity reduction change ΔE or more when the room is in the negative pressure state. Only the upper stage fan rotation control may be switched to the upper stage.
なお、 室内が負圧状態でない時に、 燃焼能力が能力低下変化量 Δ Ε以上低下し て上段のファン回転制御デ一夕に切り換えられた場合、 その上段のファン回転制 御データに従って燃焼ファン 2の回転制御を行う時間は、 約 1 0秒と非常に短い ので、 前述したような空気過多による燃焼状態の悪化はほぼ回避することができ な  Note that if the combustion capacity is reduced by the variation Δ 能力 or more and the operation is switched to the upper fan rotation control when the room is not in the negative pressure state, the combustion fan 2 is controlled according to the upper fan rotation control data. Since the time for performing the rotation control is very short, about 10 seconds, deterioration of the combustion state due to excessive air as described above cannot be substantially avoided.
さらに、 上記実施形態例では、 能力低下変更時ファン回転制御部 3 3 8は、 能 力変更前のファン回転制御データよりも上段のファン回転制御データに切り換え るときには、 能力低下変化量の大きさに拘らず、 能力変更前のファン回転制御デ 一夕よりも 1段階上段のファン回転制御デ一夕に切り換えていたが、 例えば、 能 力低下変化量が 1 0 %以上、 かつ、 3 5 %未満の範囲内である場合には能力変更 前のファン回転制御データよりも 1段階上段のファン回転制御データに切り換え 、 能力低下変化量が 3 5 %以上、 かつ、 5 0 %未満の範囲内である場合には、 能 力低下変化量が大きいために空気不足による燃焼状態の悪化の度合が大きくなり 易いので、 空気不足による燃焼状態の悪化を回避するためには燃焼ファン 2 6の 回転数をより高める必要があることから、 能力変更前のファン回転制御デー夕よ りも 2段階上段のファン回転制御デ一夕に切り換えるというように、 能力低下変 更時ファン回転制御部 3 3 8は、 上段のファン回転制御データに切り換えるとき には、 能力低下変化量の大きさに応じたファン回転制御データを選択し該選択さ れたファン回転制御デー夕に切り換えるようにしてもよい。  Further, in the above-described embodiment, when the performance reduction change fan rotation control unit 338 switches to the fan rotation control data higher than the fan rotation control data before the performance change, the magnitude of the performance reduction change amount Despite this, the fan rotation control data was switched to the fan rotation control data that is one stage higher than the fan rotation control data before the capacity change.However, for example, the capacity reduction change was 10% or more and 35% If it is less than the range, it is switched to the fan rotation control data one step higher than the fan rotation control data before the capacity change, and the capacity reduction change is within 35% or more and less than 50% In some cases, the degree of deterioration of the combustion state due to lack of air is likely to increase due to the large amount of change in performance, so in order to avoid the deterioration of the combustion state due to lack of air, the rotational speed of the combustion fan 26 must be reduced. Enhance more Therefore, the fan rotation control unit 3 38 at the time of the change in the capacity decrease is set to the upper stage, so that the fan rotation control unit is switched to the fan rotation control data that is two steps higher than the fan rotation control data before the capacity change. When switching to the fan rotation control data, fan rotation control data according to the magnitude of the capacity reduction change amount may be selected, and switching may be performed to the selected fan rotation control data.
このように、 能力低下変化量の大きさに応じたファン回転制御デー夕を選択し て切り換えることによって、 能力低下変更時ファン回転制御部 3 3 8は負圧遅れ に起因した燃焼悪化状態の度合に見合つたファン回転制御デー夕に切り換えるこ とが可能になる。 このことから、 能力低下変更時に、 上段のファン回転制御デ一 夕に切り換えたのに燃焼状態が空気不足により悪化することがなくなるので、 こ のような場合には、 前記高 C O発生時ファン回転制御部 3 4 0を省略してもよい o In this way, the fan rotation control data according to the magnitude of the capacity reduction change amount is selected. In this case, the fan rotation control unit 338 at the time of the performance reduction change can switch to the fan rotation control data that matches the degree of the combustion deterioration state due to the negative pressure delay. From this, the combustion state does not worsen due to the shortage of air even when switching to the upper fan rotation control system at the time of the capacity reduction change, so in such a case, the fan rotation during high CO O The control section 340 may be omitted.
さらに、 上記実施形態例では、 能力低下変更時ファン回転制御部 3 3 8や高 C 0発生時ファン回転制御部 3 4 0は、 切り換えたファン回転制御データに従って 能力変更後の回転数まで低下したことを燃焼制御部 3 3 5の情報に基づいて検知 していたが、 例えば、 燃焼ファン 2 6に回転数を検知する回転数検出センサが設 けられている場合には、 上記回転数検出センサにより検出される燃焼ファン 2 6 の回転数に基づいて検知するようにしてもよい。  Further, in the above embodiment, the fan rotation control unit 338 at the time of the change in the capacity and the fan rotation control unit 340 at the time of the occurrence of the high C0 decrease to the rotation number after the capacity change according to the switched fan rotation control data. Was detected based on the information of the combustion control unit 335.For example, if the combustion fan 26 is provided with a rotation speed detection sensor for detecting the rotation speed, The detection may be performed based on the rotation speed of the combustion fan 26 detected by the following.
さらに、 上記実施形態例では、 ファン回転制御データはグラフデータにより与 えられていたが、 表データや演算式デ一夕等のグラフデ一夕以外のデータ形式で 与えてもよい。  Furthermore, in the above-described embodiment, the fan rotation control data is given by graph data, but may be given in a data format other than graph data such as table data or arithmetic expression data.
さらに、 上記実施形態例では、 下段のファン回転制御データに切り換えるタイ ミングを定める待機時間は一定であつたが、 能力低下変更量が大きくなるに従つ て負圧遅れが解消するのに要する時間が長くなることから、 能力変化量が大きく なるに従って待機時間を連続的に又は段階的に長くするようにしてもよい。  Further, in the above embodiment, the standby time that determines the timing for switching to the lower fan rotation control data is constant, but the time required for the negative pressure delay to be eliminated as the capacity reduction change amount increases. As the capacity change amount increases, the standby time may be increased continuously or stepwise.
さらに、 上記実施形態例では、 燃焼ファン 2 6の回転数が燃焼能力に対応させ て与えられているファン回転制御データに基づいて、 燃焼フアン 2 6の回転制御 が行われていたが、 上記ファン回転制御データの代わりに、 燃焼ファン 2 6の風 量が、 図 2 3に示すように、 燃焼能力に対応させて与えられているファン風量制 御データを用いて燃焼ファン 2 6の回転制御を行うようにしてもよい。  Further, in the above embodiment, the rotation speed of the combustion fan 26 is controlled based on the fan rotation control data in which the rotation speed of the combustion fan 26 is given in accordance with the combustion capacity. Instead of the rotation control data, the airflow of the combustion fan 26 is controlled by using the fan airflow control data given in accordance with the combustion capacity, as shown in Fig. 23. It may be performed.
さらに、 上記実施形態例に示した高 C O発生時ファン回転制御部 3 4 0の代わ りに、 図 2 2の点線に示す電流上昇時ファン回転制御部 3 4 2を設けてもよい。 この電流上昇時ファン回転制御部 3 4 2は、 前述したようにフレームロツ ド電流 に基づいて燃焼悪化を検知できることに着目し、 能力低下変更時ファン回転制御 部 3 3 8により上段のファイン回転制御データに切り換えて燃焼ファン 2 6の回 転制御が行われているときに、 フレームロツ ド電流に基づいて燃焼悪化を検知し たときには、 さらに上段のファン回転制御データに切り換えて、 負圧遅れに ¾ a した燃焼状態の悪化を回避するものである。 以下に、 上記電流上昇時ファン回転 制御部 3 4 2の制御動作の一例を説明する。 Further, instead of the high-CO generation fan rotation control unit 340 shown in the above embodiment, a current rise fan rotation control unit 342 shown by a dotted line in FIG. 22 may be provided. Focusing on the fact that the deterioration of combustion can be detected based on the flame rod current as described above, the fan rotation control unit 348 at the time of current rise is used to control the fine rotation control Switch to combustion fan 2 6 times When combustion deterioration is detected based on the flame rod current while the rotation control is being performed, it is switched to the fan rotation control data in the upper stage to avoid the deterioration of the combustion state caused by the negative pressure delay. It is. Hereinafter, an example of the control operation of the above-described current rise fan rotation control unit 342 will be described.
電流上昇時ファン回転制御部 3 4 2はフレームロツ ド電極 1 6から検出出力さ れるフレームロツ ド電流を検出し、 燃焼制御部 3 3 5や能力低下変更時ファン回 転制御部 3 3 8から取り込んだ動作情報に基づき、 能力低下変更によって能力低 下変更前のファン回転制御デ一夕よりも上段のファン回転制御データに切り換え て燃焼ファン 2の回転制御が行われていると検知している間に、 上記フレーム口 ッ ド電流が前記図 1 0に示す上側しきい値以上に上昇したと判断したときに、 電 流上昇時制御データアップ信号を燃焼制御部 3 3 5に出力する。  The current increase fan rotation control section 3 4 2 detects the frame rod current detected and output from the frame rod electrode 16 and takes it in from the combustion control section 3 3 5 and the fan rotation control section 3 3 8 when the capacity is changed. Based on the operation information, while detecting that the rotation control of the combustion fan 2 is being performed by switching to the fan rotation control data in the upper stage from the fan rotation control data before the performance reduction due to the performance reduction due to the performance reduction change When it is determined that the frame port current has risen above the upper threshold shown in FIG. 10, a current rise control data up signal is output to the combustion control unit 3335.
燃焼制御部 3 3 5は、 上記電流上昇時ファン回転制御部 3 4 2から電流上昇時 制御データアップ信号を受け取ると、 さらにファン回転数が高い側のファン回転 制御デー夕に切り換えて燃焼ファン 2の回転制御を行う。  When the combustion control unit 335 receives the control data up signal when the current rises from the above-mentioned fan rotation control unit 342 when the current rises, the combustion control unit 335 switches to the fan rotation control data on the higher fan speed to switch the combustion fan 2 The rotation control of is performed.
また、 電流上昇時ファン回転制御部 3 4 2はタイマ (図示せず) を内蔵してお り、 燃焼制御部 3 3 5から取り込んだ動作情報に基づき、 燃焼ファン 2 6の回転 数が能力変更後の回転数に達したと検知したときに上記タイマを駆動させ、 上記 夕イマの計側時間を予め定めた待機時間 T s t (例えば、 1 0秒) に比較し、 夕 イマの計側時間が上記待機時間 T s tに達したと判断したときに電流上昇時制御 データダウン信号を出力する。  In addition, the fan rotation control section 342 when the current rises has a built-in timer (not shown), and the number of rotations of the combustion fan 26 changes according to the operation information taken from the combustion control section 335. When it is detected that the number of rotations has reached a later speed, the timer is driven, and the timer time of the timer is compared with a predetermined standby time T st (for example, 10 seconds), and the timer time of the timer is calculated. Outputs the control data down signal at the time of current rise when it is determined that the standby time has reached the standby time T st.
燃焼制御部 3 3 5は、 上記電流上昇時ファン回転制御部 3 4 2から電流上昇時 制御データダウン信号を受け取ると、 ファン回転制御データを低回転数側のファ ン回転制御データに切り換えて燃焼ファン 2 6の回転制御を行う。  When the combustion control unit 3335 receives the current rise control data down signal from the above-described current rise fan rotation control unit 3422, the combustion control unit 335 switches the fan rotation control data to the fan rotation control data on the low rotation speed side and performs combustion. Control the rotation of fan 26.
上記電流上昇時ファン回転制御部 3 4 2を設けることによって、 能力低下変更 時ファン回転制御部 3 3 8により上段のファン回転制御データに切り換えて燃焼 ファン 2 6の回転制御が行われているときに空気不足により燃焼状態が悪化して しまった場合に、 その燃焼状態の悪化をフレームロツ ド電流に基づいて検出する ことができ、 さらに上段のファン回転制御データに切り換えることができるので 、 負圧遅れに起因した空気不足による燃焼状態の悪化を確実に防止することがで きる。 By providing the above-described current rise fan rotation control unit 342, when the rotation of the combustion fan 26 is controlled by switching to the upper fan rotation control data by the fan rotation control unit 338 when the performance is changed, If the combustion state deteriorates due to insufficient air, the deterioration of the combustion state can be detected based on the flame rod current, and the data can be switched to the fan rotation control data in the upper stage. The deterioration of the combustion state due to the lack of air due to Wear.
さらに、 上記実施形態例に示した高 C O発生時ファン回転制御部 3 4 0の代わ りに、 図 2 2の鎖線に示すフレームロツ ド電流値 · C O濃度併用ファ ン回転制御 部 3 4 4を設けてもよい。  Further, instead of the high-CO generation fan rotation control section 340 shown in the above-described embodiment, a fan rotation control section 344 for combined use of a frame rod current value and a CO concentration shown by a chain line in FIG. 22 is provided. You may.
フレームロツ ド電流値 · C O濃度併用ファン回転制御部 3 4 4は、 例えば、 フ レームロッ ド電極 1 6から検出出力されるフレームロッ ド電流と、 燃焼制御部 3 3 5から燃焼能力の情報とを取り込むと共に、 C Oセンサ 2 8により検出出力さ れたセンサ出力を排気ガス中の C〇濃度として検出し、 燃焼制御部 3 3 5や能力 低下変更時ファン回転制御部 3 3 8から取り込んだ動作情報に基づき、 能力低下 変更によって能力低下変更前のファン回転制御データよりも上段のファン回転制 御データに切り換えて燃焼フアン 2の回転制御が行われていると検知している間 に、 上記燃焼能力が予め定めた設定の燃焼能力 (例えば、 燃焼能力 3 0 % ) 以下 にありフレームロツ ド電流が前記図 1 0に示す上側しきい値以上に上昇したと判 断したとき、 あるいは、 排気ガス中の C〇濃度が予め定めた危険値 (例えば、 2 0 0 0 p p m ) 以上に増加したと判断したときには、 電流上昇 ·高 C〇発生時制 御データアップ信号を燃焼制御部 3 3 5に出力する。  The frame rod current value / CO concentration combined fan rotation control unit 344 4 captures, for example, the frame rod current detected and output from the frame rod electrode 16 and the combustion capacity information from the combustion control unit 335. At the same time, the sensor output detected by the CO sensor 28 is detected as the concentration of C〇 in the exhaust gas, and the operation information taken from the combustion control unit 335 and the fan rotation control unit 338 when the performance is changed is reduced. Based on the above, while detecting that the rotation control of the combustion fan 2 is being performed by switching to the fan rotation control data higher than the fan rotation control data before the performance reduction due to the performance reduction change, the combustion capacity When it is determined that the flame load current is lower than the preset combustion capacity (for example, combustion capacity of 30%) and the flame rod current has risen to the upper threshold value shown in FIG. If it is determined that the C〇 concentration in the gas has increased to a predetermined dangerous value (for example, 2000 ppm) or more, the control data up signal for the current rise and high C〇 generation is sent to the combustion control unit. Output to
' 燃焼制御部 3 3 5は、 上記フレームロツ ド電流値 · C O濃度併用ファン回転制 御部 3 4 4から電流上昇 ·高 C O発生時制御データアップ信号を受け取ると、 さ らにファン回転数が高い側のファン回転制御データに切り換えて燃焼フアン 2の 回転制御を行う。  '' Combustion control unit 335 increases the current from flame rod current value and CO concentration combined fan rotation control unit 344. Switch to the fan rotation control data on the side to control the rotation of combustion fan 2.
また、 フレームロツ ド電流値 · C〇濃度併用ファン回転制御部 3 4 4は夕イマ (図示せず) を内蔵しており、 燃焼制御部 3 5から取り込んだ動作情報に基づき 、 燃焼ファン 2 6の回転数が能力変更後の回転数に達したと検知したときに上記 タイマを駆動させ、 上記タイマの計側時間を予め定めた待機時間 T s t (例えば 、 1 0秒) に比較し、 タイマの計側時間が上記待機時間 T s tに達したと判断し たときに電流上昇 ·高 Cひ発生時制御デー夕ダウン信号を出力する。  In addition, the flame rotation current value / C〇 concentration combined fan rotation control section 344 has a built-in head (not shown), and the combustion fan 26 based on the operation information taken from the combustion control section 35. When it is detected that the number of revolutions has reached the number of revolutions after the capacity change, the timer is driven, the measured time of the timer is compared with a predetermined standby time T st (for example, 10 seconds), and the When it is determined that the measuring time has reached the above standby time T st, a current rise and a high C control data down signal is output.
燃焼制御部 3 3 5は、 上記フレームロツ ド電流値 · C O濃度併用ファン回転制 御部 3 4 4から電流上昇 ·高(:0発生時制御データダウン信号を受け取ると、 フ ァン回転制御デ一夕を低回転数側のファン回転制御デー夕に切り換えて燃焼ファ ン 2 6の回転制御を行う。 When the combustion control unit 335 receives the flame load current value, the current rise from the CO concentration combined fan rotation control unit 344, and the high (0: 0 control data down signal, the fan rotation control data Evening is switched to the fan rotation control date on the Control the rotation of pin 26.
前述したように、 フレームロツ ド電流には燃焼悪化を感度良く検出できる電流 範囲があり、 また、 この電流範囲から外れる領域では、 C O濃度により感度良く 燃焼悪化を検出できることから、 フレームロツ ド電流に基づく燃焼状態悪化検出 と、 排気ガス中の C O濃度に基づく燃焼状態悪化検出とを併用することによって 、 燃焼能力の全範囲に渡って燃焼状態の悪化を感度良く検出することができる。 上記フレームロツ ド電流値■ C O濃度併用ファン回転制御部 3 4 4を設けるこ とによって、 能力低下変更時ファン回転制御部 3 3 8により上段のファン回転制 御データに切り換えて燃焼ファン 2の回転制御が行われているときに空気不足に より燃焼状態が悪化してしまった場合に、 その燃焼状態の悪化をフレームロツ ド 電流に基づいて検出することができ、 さらに上段のファン回転制御データに切り 換えることができるので、 負圧遅れに起因した空気不足による燃焼状態の悪化を 確実に防止することができる。  As described above, the flame rod current has a current range in which the deterioration of combustion can be detected with high sensitivity, and in the region outside this current range, the combustion deterioration can be detected with high sensitivity by the CO concentration. By using both the state deterioration detection and the combustion state deterioration detection based on the CO concentration in the exhaust gas, the deterioration of the combustion state can be detected with high sensitivity over the entire range of the combustion capacity. By providing the above frame rod current value ■ CO concentration combined fan rotation control unit 344, the fan rotation control unit 338 switches to the upper stage fan rotation control data by the fan rotation control unit at the time of performance change and the rotation control of the combustion fan 2 If the combustion condition deteriorates due to the lack of air while the engine is running, the deterioration of the combustion condition can be detected based on the flame rod current, and further switched to the upper fan rotation control data. Therefore, it is possible to reliably prevent the combustion state from deteriorating due to the lack of air due to the negative pressure delay.
第 3の発明の実施の形態例によれば、 能力低下変更時ファン回転制御部が設け られ、 また、 燃焼能力に対する回転数が互いに異なる複数段のファン回転制御デ 一夕、 又は、 燃焼能力に対するファン風量が互いに異なる複数段のファン風量制 御デ一夕が与えられているので、 燃焼能力が予め定めた能力低下変化量以上低下 した場合には、 上記能力低下変更時ファン回転制御部によって、 ファン回転制御 データ、 又は、 ファン風量制御データを、 能力低下変更前の制御データよりも上 段の制御デ一夕に切り換えることができる。  According to the embodiment of the third aspect of the present invention, the fan rotation control unit at the time of the change in the capacity reduction is provided, and a plurality of stages of fan rotation control data having different rotation speeds with respect to the combustion capacity are provided. Since a plurality of stages of fan airflow control data having different fan airflows are provided, when the combustion capacity is reduced by a predetermined capacity reduction change amount or more, the above-described capacity reduction change fan rotation control unit The fan rotation control data or the fan air volume control data can be switched to the control data in the upper stage than the control data before the performance reduction change.
このことにより、 燃焼機器が設置されている室内が負圧状態で能力低下変更に 起因して負圧遅れが生じ燃焼状態が空気不足により悪化する虞がある場合に、 燃 焼能力の低下に伴って燃焼ファンの風量が良好な燃焼を行うための風量よりも減 少するのを抑制することができ、 良好な燃焼を行わせるための空気量を燃焼へ供 給でき、 空気不足による燃焼状態の悪化や、 過度の空気不足による燃焼火炎の立 ち消えを回避することができる。  As a result, when there is a possibility that the negative pressure is delayed due to a change in the capacity reduction and the combustion state is deteriorated due to the lack of air in a negative pressure state in the room where the combustion equipment is installed, the combustion capacity is reduced. It is possible to suppress the air volume of the combustion fan from decreasing below the air volume for good combustion, supply the air volume for good combustion to combustion, and reduce the combustion state due to insufficient air. Deterioration and the burning flame due to excessive air shortage can be avoided.
高 C 0発生時ファン回転制御部や電流上昇時ファン回転制御部やフレームロツ ド竃流値 · C O濃度併用ファン回転制御部が設けられているものにあっては、 上 記能力低下変更時ファン回転制御部により上段の燃焼能力に切り換えて燃焼ファ ンの回転制御が行われているときに、 C Oセンサにより検出出力される排気ガス 中の C O濃度やフレームロツ ド電流値に基づいて燃焼状態の悪化を検知した場合 には、 上記高 C 0発生時ファン回転制御部や電流上昇時ファン回転制御部ゃフレ 一ムロツ ド電流値 ' C O濃度併用ファン回転制御部によって、 さらに上段のファ ン回転制御データ、 又は、 ファン風量制御データに切り換えて燃焼ファンの回転 制御を行うので、 能力低下変更時に、 上記能力低下変更時ファン回転制御部によ り上段の制御データに切り換えて燃焼ファンの回転制御を行ったのに、 空気不足 による燃焼状態の悪化が発生してしまったときには、 その空気不足による燃焼状 態の悪化を排気ガス中の c〇濃度やフレームロツド電流によって検知し、 さらに 上段の制御データに切り換えて燃焼ファンの回転制御を行うことによって、 燃焼 ファンの風量を増加させることができ、 燃焼への供給空気量が増加して燃焼状態 の悪化を改善することができる。 If the fan rotation control unit for high C0 generation, the fan rotation control unit for current rise, and the fan rotation control unit for flame load and CO concentration are provided, the fan rotation when the above-mentioned capacity reduction is changed The control unit switches to the upper combustion capacity and If the deterioration of the combustion state is detected based on the CO concentration in the exhaust gas and the flame rod current value detected and output by the CO sensor during engine rotation control, The fan rotation control unit and the fan rotation control unit at the time of current rise ゃ frame rod current value に よ っ て The fan rotation control unit with CO concentration switches to the upper fan rotation control data or fan air volume control data to switch the combustion fan Since rotation control is performed, when the performance is changed, the rotation of the combustion fan is controlled by switching to the upper control data by the fan rotation control unit when the performance is changed, but the combustion state deteriorates due to insufficient air. If it does, the deterioration of the combustion state due to the shortage of air is detected by the c〇 concentration in the exhaust gas and the flame rod current, and the upper control data By controlling the rotation of the combustion fan by switching to the air conditioner, the air volume of the combustion fan can be increased, and the amount of air supplied to the combustion can be increased to improve the deterioration of the combustion state.
また、 上記能力低下変更時ファン回転制御部や高 C O発生時ファン回転制御部 や電流上昇時ファン回転制御部やフレームロツ ド電流値 · C 0濃度併用ファン回 転制御部によって上段の制御データに切り換えて燃焼ファン 2の回転数をダウン させ、 そのダウンした回転数を予め定めた待機時間が経過するまで継続して行つ た後に、 下段の制御データに切り換えるので、 負圧遅れが解消した後にも上段の 制御データに従って燃焼ファンの回転制御を継続したために空気過多により燃焼 状態が悪化するという問題を回避することができる。 Also, switch to the upper control data by the fan rotation control unit when the capacity is changed, the fan rotation control unit when high CO is generated, the fan rotation control unit when current is increased, and the fan rotation control unit with frame rod current value and C0 concentration. After lowering the rotation speed of the combustion fan 2 until the predetermined standby time elapses, the control data is switched to the lower control data. Since the rotation control of the combustion fan is continued according to the control data in the upper row, the problem that the combustion state is deteriorated due to excess air can be avoided.
[第 4の発明] [Fourth invention]
第 4の発明では、 燃焼制御中に C 0濃度が危険状態になる程度の排出されたこ とを検出して燃焼停止がなされた時は、 燃焼再開時におけるファンの回転数 (送 風能力) を通常より高い回転数 (送風能力) に制御する。 燃焼再開時において少 なくとも最初の期間において、 強制的によりファンの回転数を高く制御すること により、 燃焼停止と燃焼再開を繰り返す状況をなくすことができ、 C O中毒事故 を未然に防止することが可能になる。  In the fourth invention, when the combustion is stopped by detecting that the C0 concentration has been discharged to such an extent that the concentration becomes dangerous during the combustion control, the number of rotations of the fan (blowing capacity) at the time of restarting the combustion is determined. Control the rotation speed (blowing capacity) higher than usual. By forcibly controlling the rotation speed of the fan at least in the first period when restarting combustion, it is possible to eliminate the situation where combustion is stopped and restarted repeatedly, thereby preventing CO poisoning accidents. Will be possible.
図 2 5は制御装置 14の要部を示すもので、 燃焼制御部 432 と、 風量制御部 433 と、 燃焼再起動風量制御デ一夕指定部 434 と、 時間計測手段 435 と、 センサ通電 制御部 436 と、 サンプリング部 437 と、 E R演算部 438 と、 T R演算部 439 と、 C O安全動作部 440 とを有して構成されている。  FIG. 25 shows the main parts of the control device 14.The combustion control unit 432, the air flow control unit 433, the combustion restart air flow control data designating unit 434, the time measuring unit 435, and the sensor energization control unit 436, a sampling unit 437, an ER operation unit 438, a TR operation unit 439, and a CO safe operation unit 440.
前記燃焼制御部 432 は、 図 3において説明した燃焼制御部 3 2と同様の機能を 有する。 また、 風量制御部 433 も、 図 3において説明した図 5に示すような風量 制御データに従って風量制御を行う。  The combustion control section 432 has the same function as the combustion control section 32 described in FIG. The air volume control unit 433 also controls the air volume according to the air volume control data shown in FIG. 5 described in FIG.
また、 風量制御部 433 は、 後述する燃焼再起動風量制御データ指定部 434 によ り風量制御デー夕として風量ァップ側の Bのファン風量制御デ一夕が指定された ときには、 この指定された風量アップ用のファン風量制御データ Bを用いて比例 弁開度に応じたファン風量を制御する。  Further, when the air flow control data specifying unit 434, which will be described later, designates the fan air volume control data on the air volume side B as the air volume control data by the combustion restart air volume control data specifying unit 434, the specified air volume Using the fan air volume control data B for up, the fan air volume is controlled according to the proportional valve opening.
センサ通電制御部 436 は、 燃焼運転中には、 C Oセンサ 428 に通電を行い、 C 0センサ 428 が C O濃度を正常に検出可能な状態を維持する。 そして、 燃焼運転 が停止したときには、 その後、 例えば 120 分間ポスト通電を行い、 燃焼運転が再 開されたときには直ちに C O濃度を検出できる態勢を維持する。 また、 前記ボス ト通電の期間に C Oセンサ 28の零点補正を行い、 C 0センサ 28の零点のずれを修 正する。  During the combustion operation, the sensor energization control unit 436 energizes the CO sensor 428 to maintain a state where the CO sensor 428 can normally detect the CO concentration. Then, when the combustion operation is stopped, post-energization is performed, for example, for 120 minutes thereafter, and when the combustion operation is restarted, the system is ready to detect the CO concentration immediately. Further, the zero point correction of the CO sensor 28 is performed during the boost energization period, and the deviation of the zero point of the CO sensor 28 is corrected.
その一方で、 センサ通電制御部 436 は、 燃焼運転がコールドスタート状態 (燃 焼停止後、 長時間経過した後に燃焼運転がスタートする動作状態) から燃焼運転 が開始されたときには、 C Oセンサ 28に通常の C O濃度検出時よりも大きな電流 を通電して C Oセンサ 28の C O検出部を例えば 400 でに高めて C O検出部の表面 の炭化水素等の付着物を焼却除去してヒートクリーニングを行う。 サンプリング部 437 はクロック機構等の時間計測手段 435 を用いて、 所定の例 えば 0.1 秒間隔で COセンサ 28から C〇濃度の検出信号を取り込み (サンプ ン グし) そのサンプリング値を ER演算部 438 に加える。 On the other hand, when the combustion operation is started from a cold start state (an operation state in which the combustion operation starts after a long time has elapsed after the combustion is stopped), the sensor energization control unit 436 normally supplies the CO sensor 28 with a signal. A current larger than that at the time of the CO concentration detection is applied to increase the CO detection unit of the CO sensor 28 to, for example, 400, and incineration removal of hydrocarbons and other deposits on the surface of the CO detection unit is performed to perform heat cleaning. The sampling unit 437 captures (samples) the C〇 concentration detection signal from the CO sensor 28 at predetermined intervals, for example, at 0.1-second intervals using a time measurement unit 435 such as a clock mechanism, and converts the sampling value into an ER calculation unit 438. Add to
ER演算部 438 には各 CO濃度毎にその C 0濃度の雰囲気中に人が晒されたと 仮定したときに C 0中毒の危険伏態に到達する危険到達時間 Tのデータが与えら れている。 例えば、 C〇濃度 XI に対しては Tl , CO濃度 X2 に対しては T2 , CO濃度 X3 に対しては危険到達時間が T3 という如く各 CO濃度毎の危険到 達時間のデータが与えられている。  The ER calculation unit 438 is provided with the data of the danger arrival time T to reach the danger state of C0 poisoning when it is assumed that a person is exposed to the atmosphere of the C0 concentration for each CO concentration. . For example, data on the time to reach danger for each CO concentration is given, such as Tl for C〇 concentration XI, T2 for CO concentration X2, and danger arrival time T3 for CO concentration X3. I have.
ER演算部 438 は、 前記サンプリング部 437 から 0.1 秒毎に加えられる C〇濃 度検出値を単位時間の t (例えば 1秒間) 当たりの平均値として求め、 この単位 時間当たりの平均 CO濃度に対応する危険到達時間を用い、 単位時間 t と危険到 達時間 Tとの比 t/Tを停止定数 ERとして算出する。 例えば、 単位時間 t当た りの CO平均濃度が XI であるときには、 その平均濃度 XI の危険到達時間は T 1 であるから、 停止定数 ERは tZTl として求められる。 同様に、 単位時間当 たりの平均 CO濃度が X2 , X3 であるときには停止定数 ERは tZT2 , t/ T3 という如く求められる。 そして、 これら単位時間 t経過後毎に求められる 停止定数 ERの値は TR演算部 439 に加えられる。 なお、 制御装置 14の制御回路 はコンピュータの回路が用いられる関係上、 停止定数 ERと、 ERの積算値 TR は、 実際には 250 の値を掛けた値に変換してデータ処理を行わせているが、 本明 細書中では発明の内容を理解し易くするために 250 の値を掛けない数値を使用し て説明することにする。  The ER operation unit 438 obtains the C〇 concentration detection value added every 0.1 second from the sampling unit 437 as an average value per unit time t (for example, 1 second), and corresponds to the average CO concentration per unit time. Using the danger arrival time, the ratio t / T between the unit time t and the danger arrival time T is calculated as the stop constant ER. For example, when the average CO concentration per unit time t is XI, the danger arrival time of the average concentration XI is T1, and the stopping constant ER is obtained as tZTl. Similarly, when the average CO concentration per unit time is X2, X3, the stop constant ER is obtained as tZT2, t / T3. Then, the value of the stop constant ER obtained every time the unit time t elapses is added to the TR calculation unit 439. Since the control circuit of the control device 14 uses a computer circuit, the stop constant ER and the integrated value TR of the ER are actually converted to a value multiplied by 250 to perform data processing. However, in this specification, the explanation will be made using a value that is not multiplied by 250 to make it easier to understand the content of the invention.
TR演算部 439 は、 ER演算部 38から停止定数 ERの値が加えられる毎に、 そ の値を積算 (加算) する。 そして、 この停止定数 ERの積算値 TRは CO安全動 作部 40に加えられる。  Each time the value of the stop constant ER is added from the ER operation unit 38, the TR operation unit 439 accumulates (adds) the value. Then, the integrated value TR of the stop constant ER is added to the CO safety operation section 40.
C〇安全動作部 440 には危険 CO濃度の値が複数段の形態で与えられており、 例えば、 0.7 の値を第 1段階の危険 C〇濃度の値として与えられ、 0.8 を第 2段 階の危険 C〇濃度の値として与えられ、 0.9 を第 3段階の危険 CO濃度の値とし て与えられ、 0.9 を越え、 1.0 以下の範囲を最終段階の危険 CO濃度の値として 与えられている。 CO安全動作部 440 は、 TR演算部 439 から加えられる停止定 数 E Rの積算値 T Rを前記各段階の危険 C〇濃度の値と比較し、 積算値 T Rが第 3段階までの各段階の危険 C O濃度の値に達したときには、 リセッ トにより再燃 焼起動が可能な A停止制御モードの動作を行い、 積算値 T Rが最終段階の危険 C 〇濃度の範囲に入ったときには B停止制御モードの動作を行う。 この B停止制御 モードの動作は、 燃焼停止後所定の時間 (例えば 2時間) が経過するまでは燃焼 運転指令が出されてもその燃焼運転指令を受け付けない制御動作、 つまり、 燃焼 停止後リセットにより燃焼運転が所定時間経過しない間は行えない制御動作であ 表示部 441 は C 0安全動作部 40から停止定数 E Rの積算値 T Rが各段階の危険 C〇濃度の値に達したことが判断されたときに、 その状態をリモコン 31の表示部 等に表示するものであり、 例えば、 E Rの積算値 T Rが第 3段階までの各段階の 危険 C 0濃度の値に達したときにはエラー 90が表示され、 積算値 T Rが最終段階 の危険 C O濃度の範囲に入ったときにはエラ一 13が表示される。 The C〇 safe operation section 440 is provided with the value of the dangerous CO concentration in multiple stages, for example, a value of 0.7 is given as the value of the dangerous C の concentration of the first stage, and 0.8 is the second stage. Is given as the value of the dangerous C〇 concentration, 0.9 is given as the value of the dangerous CO concentration in the third stage, and the range of more than 0.9 and less than or equal to 1.0 is given as the value of the dangerous CO concentration in the final stage. The CO safety operation unit 440 has the stop condition added from the TR operation unit 439. The integrated value TR of the number ER is compared with the value of the dangerous C〇 concentration in each of the above-mentioned stages, and when the integrated value TR reaches the value of the dangerous CO concentration in each of the stages up to the third stage, re-combustion is started by reset. Operate in the A-stop control mode. When the integrated value TR falls within the range of the final stage danger C 〇 concentration, perform the operation in the B-stop control mode. The operation in the B stop control mode is a control operation that does not accept the combustion operation command even if a combustion operation command is issued until a predetermined time (for example, 2 hours) has elapsed after the combustion is stopped, that is, a reset operation after the combustion is stopped. The display unit 441 determines from the C0 safe operation unit 40 that the integrated value TR of the stop constant ER has reached the value of the dangerous C〇 concentration at each stage, since the combustion operation is a control operation that cannot be performed until the predetermined time has elapsed. The status is displayed on the display of the remote controller 31 when an error occurs.For example, if the integrated value ER of the ER reaches the value of the dangerous C0 concentration in each stage up to the third stage, an error 90 is displayed. When the integrated value TR falls within the range of the dangerous CO concentration at the final stage, an error 13 is displayed.
燃焼再起動風量制御データ指定部 434 は、 C O安全動作部 40により停止定数 E Rの積算値 T Rが第 3段階までの各段階の危険 C◦濃度の値に達して燃焼停止が 行われ、 リセッ トにより燃焼運転が再開される際には、 図 4に示す通常運転時の 制御デ一夕 Aからファン風量を増加側にシフトした風量アップ用のファン風量制 御データ Bに切り替え設定し、 この風量ァップ側の制御デー夕 Bを用いて点着火 を行わせ、 燃焼運転を再開させる。 具体的には、 C O安全動作部 440 から第 3段 階までの各段階の燃焼停止による C O安全動作が行われたことを C O安全動作部 440 からの情報により検知し、 リセッ ト信号 (例えば運転スィッチを一旦オフし た後に運転スィツチがオンとなる信号) を受けて風量制御データを Aから Bへ切 り替え指定するのである。  The combustion restart air volume control data designating section 434 is reset by the CO safety operation section 40 when the integrated value TR of the stop constant ER reaches the value of the dangerous C When the combustion operation is restarted, the control data is switched from the control data A in the normal operation shown in Fig. 4 to the fan air volume control data B for increasing the air volume in which the fan air volume is shifted to the increasing side. Using the control data B on the up side, perform spot ignition and restart the combustion operation. Specifically, information from the CO safety operation unit 440 that the CO safety operation was performed by stopping the combustion at each stage from the CO safety operation unit 440 to the third stage is detected, and a reset signal (for example, operation When the switch is turned off and then the operation switch is turned on), the air flow control data is switched from A to B and specified.
この燃焼再起動風量制御デー夕指定部 434 による風量制御デー夕の変更指定に より、 C O安全動作部 440 による燃焼停止の C O安全動作後のリセッ トによる燃 焼の再起動運転時には、 風量制御部 433 は風量アップ側の風量制御データ Bを用 いて燃焼制御部 432 による比例弁開度の制御に合わせて風量制御 (ファン回転数 制御) を行う。  By specifying the change of the air flow control data by the combustion restart air flow control data setting section 434, the air flow control section is operated during the restart operation of the combustion by the reset after the CO safety operation by the CO safety operation section 440 by the CO safety operation section 440. 433 performs air volume control (fan speed control) in accordance with the control of the proportional valve opening by the combustion control unit 432 using the air volume control data B on the air volume up side.
なお、 図 2 5中、 30はメモリ (E 2 P R O M) であり、 このメモリ 30は前回の 燃焼運転モードの動作データ (使用したファン風量制御デ一夕等のデータ) を記 憶するものである。 In FIG. 25, reference numeral 30 denotes a memory (E 2 PROM). It stores the operation data of the combustion operation mode (data such as used fan air volume control data).
本実施形態例は上記のように構成されており、 次に、 その動作を図 2 6のタイ ムチャートおよび図 2 7〜図 2 9に示すフローチヤ一卜に基づき説明する。 まず 、 図 2 6の t A の時刻で図 2 7のステップ 4100の点火動作が行われ、 給湯器の燃 焼運転が開始する。 次にステップ 4101で C 0センサ 28のポスト通電フラグがオン されているか否かを判断する。 ボスト通電フラグがオンされているときにはホッ トスタート (C Oセンサ 28にポスト通電がされている間の燃焼開始) と判断し、 ボスト通電フラグがオフであるときにはコールドスタート状態と判断し、 ボスト 通電フラグガオンされているときにはステツプ 4104へ、 ポスト通電フラグがオフ のときにはステツプ 4102へ進む。  The present embodiment is configured as described above. Next, the operation thereof will be described based on the time chart of FIG. 26 and the flowcharts shown in FIGS. 27 to 29. First, at time t A in FIG. 26, the ignition operation in step 4100 in FIG. 27 is performed, and the combustion operation of the water heater starts. Next, in step 4101, it is determined whether or not the post energization flag of the C0 sensor 28 is turned on. When the boost energizing flag is on, it is determined that a hot start (combustion starts while post-energizing the CO sensor 28) is performed. When the boost energizing flag is off, it is determined that the engine is in a cold start state. If so, the process proceeds to step 4104. If the post-energization flag is off, the process proceeds to step 4102.
図 2 6に示す例では、 コールドスタートの状態を示しており、 このときには、 ステップ 4102でヒートクリーニングを行う。 このヒートクリーニングは、 図 2 6 の時刻 t A から t B の区間 (例えば 40秒) で、 センサ通電制御部 436 から C〇セ ンサ 28にヒ一トクリ一ニングの電流を通電し、 C Oセンサ 28の C O検出部をほぼ 400 °Cに加熱してヒートクリ一二ングを行う。 ステップ 4103ではヒートクリ一二 ング期間の 40秒が経過したか否かを判断し、 40秒が経過したと判断されたときに はヒートクリ一ニングが終了したものとしてステップ 4104の動作を行う。 このス テップ 4104の動作は図 2 6の時刻 t B から t C の例えば 20秒の間で行う動作であ る。 このステップ 4104の動作は、 C Oセンサ 28のヒートクリーニングが終了して から C 0センサ 28が安定に C 0濃度を検出できる動作温度に安定するまでの過渡 期間であり、 この期間は、 C O濃度の検出値に信頼性が得られないので、 ステツ プ 105 に示す如く、 例えば 3000ppm という高い危険 C〇濃度が発生したか否かの みを検出するようにしている。  The example shown in FIG. 26 shows a state of a cold start. At this time, heat cleaning is performed in step 4102. In this heat cleaning, in the section from time tA to tB in FIG. 26 (for example, 40 seconds), a current for heat cleaning is supplied from the sensor conduction control unit 436 to the C sensor 28, and the CO sensor 28 is supplied. Heat the CO detection section to approximately 400 ° C for heat cleaning. In step 4103, it is determined whether or not 40 seconds of the heat cleaning period has elapsed. When it is determined that 40 seconds have elapsed, the operation of step 4104 is performed assuming that the heat cleaning has ended. The operation of this step 4104 is an operation to be performed, for example, for 20 seconds from time tB to tC in FIG. The operation in step 4104 is a transitional period from the completion of the heat cleaning of the CO sensor 28 to the stabilization of the operating temperature at which the C 0 sensor 28 can stably detect the C 0 concentration. Since reliability of the detected value cannot be obtained, as shown in step 105, only the detection of a dangerous C 危 険 concentration as high as 3000 ppm is detected.
すなわち、 ステップ 4105で、 例えば 1秒平均で C Oセンサ 28の検出濃度が 3000 ppm 以下か否かを判断し、 3000ppm を越えたときには、 ステップ 109 で燃焼改善 モード 1の運転を行う。 この燃焼改善モード 1の運転は、 風量制御データを Aか ら Bへ切り替えて (図 4参照) 、 燃焼ファン 26の回転数を風量アップ方向に回転 制御する動作である。 ステップ 4110ではこの燃焼改善モード 1の動作後、 20秒経過したか否かを判断 し、 20秒経過したときに、 ステップ 4111で再び C Oセンサ 28で検出される 1秒平 均の CO濃度が 3000ppm以下か否かを判断し、 3000ppm を越えていたときには、 燃焼改善モード 1の燃焼改善効果が得られないと判断し、 ステップ 4112で B停止 制御に移行し、 リモコン等の表示部にエラー 13を表示する。 一方、 ステップ 4111 で C O濃度が 3000ppm以下と判断されたときには、 ステップ 4105以降の動作に戻 o That is, in step 4105, for example, it is determined whether or not the detected concentration of the CO sensor 28 is 3000 ppm or less on average for one second, and if it exceeds 3000 ppm, the operation in the combustion improvement mode 1 is performed in step 109. The operation in the combustion improvement mode 1 is an operation in which the airflow control data is switched from A to B (see FIG. 4), and the rotation speed of the combustion fan 26 is controlled to increase the airflow. In step 4110, it is determined whether or not 20 seconds have elapsed after the operation of the combustion improvement mode 1.When 20 seconds have elapsed, the average 1-second CO concentration detected again by the CO sensor 28 in step 4111 is 3000 ppm. If it exceeds 3000 ppm, it is determined that the combustion improvement effect of the combustion improvement mode 1 cannot be obtained, and in step 4112, control is shifted to B stop control, and error 13 is displayed on the display of the remote control or the like. indicate. On the other hand, if it is determined in step 4111 that the CO concentration is 3000 ppm or less, the operation returns to step 4105 and thereafter.
なお、 ステップ 4112での B停止制御とは、 前記した如く、 燃焼運転を直ちに停 止し、 その停止後は、 2時間経過するまでは燃焼運転を再開させない制御動作で ある。  The B stop control in step 4112 is a control operation for immediately stopping the combustion operation and not restarting the combustion operation until two hours have elapsed after the stop, as described above.
前記ステップ 4105で C O濃度が 1秒平均で 3000ppm 以下と判断されたときには 、 ステップ 4106で C Oセンサのボスト通電フラグがオンされているか否かを判断 し、 フラグがオンされていないものと判断されたときには、 コールドスタートに よる燃焼運転が開始されたことになるので、 ヒートクリ一ニングが終了した t B の時刻から 20秒後の時刻 t C になったか否かを判断し、 時刻 t C になったとき 、 すなわち、 C Oセンサ 28が安定に C O濃度を検出する状態になったものと判断 されたときに、 ステップ 4113の動作に移る。  When it is determined in step 4105 that the CO concentration is 3000 ppm or less on average for one second, it is determined in step 4106 whether or not the boost energization flag of the CO sensor is on, and it is determined that the flag is not on. Sometimes, since the combustion operation by cold start has been started, it is determined whether or not the time tC, which is 20 seconds after the time tB when the heat cleaning has ended, has reached time tC. At that time, that is, when it is determined that the CO sensor 28 is in a state of stably detecting the CO concentration, the operation moves to Step 4113.
また、 前記ステップ 4106でボスト通電フラグがオンされていると判断されたと きには、 前記ステップ 4110で燃焼改善モードでの燃焼が行われてから C O濃度が 十分に低下するまでに要する時間、 すなわち、 図 2 6に示す時刻 t B から 50秒経 過したか否かを判断し、 50秒経過したときには、 ステップ 4113以降の C O濃度の 通常の検出動作に移行する。  If it is determined in step 4106 that the boost energization flag is ON, the time required from when combustion in the combustion improvement mode is performed in step 4110 until the CO concentration is sufficiently reduced, that is, Then, it is determined whether or not 50 seconds have elapsed from the time t B shown in FIG. 26. When 50 seconds have elapsed, the operation shifts to the normal CO concentration detection operation from step 4113.
ステップ 4113の C〇濃度の通常検出の開始後、 つまり、 図 2 6に示す時刻 t C 以降の動作においては、 ステップ 4114で、 Cひ濃度が 10秒平均で 350 ppm 以下か 否かを判断する。 C O濃度が 350 ppm を越えていたときにはステップ 4116の燃焼 改善モ一ド 1の動作 (風量制御データを通常のファン制御データ Aから風量ァッ プ側の制御データ Bに切り替えて燃焼運転を行う動作) を行う。  After the start of the normal detection of the C〇 concentration in step 4113, that is, in the operation after time t C shown in FIG. 26, in step 4114, it is determined whether or not the C concentration is 350 ppm or less on average for 10 seconds. . If the CO concentration exceeds 350 ppm, the operation of the combustion improvement mode 1 in step 4116 (the operation of switching the air flow control data from the normal fan control data A to the control data B on the air flow up side to perform the combustion operation) ) I do.
前記ステップ 4114で C O濃度が 350 ppm以下と判断されたときは次のステップ 115 で C〇濃度が 1秒平均で 1500ppm以下か否かを判断し、 C〇濃度が 1500ppm を越えていたときには前記ステップ 41 1 6で燃焼改善モード 1の動作を行いステ ッ 117 に進む。 また、 前記ステップ 41 15で 1秒平均の C O濃度の値が 1500ppnr以 下のときもステップ 41 17の動作に移る。 When it is determined in step 4114 that the CO concentration is 350 ppm or less, it is determined in the next step 115 whether the C concentration is 1500 ppm or less on average for 1 second, and the C concentration is 1500 ppm. If it has exceeded, the operation of the combustion improvement mode 1 is performed in step 4116, and the flow advances to step 117. Also, in step 4115, if the one-second average CO concentration value is 1500 ppnr or less, the operation shifts to step 4117.
ステップ 41 17では、 C Oセンサ 28からの C〇濃度検出情報に基づき、 その検出 濃度に対応する停止定数 E Rとその停止定数 E Rの積算値を演算する。 このステ ップ 4117で計算された停止定数 E Rの積算値 T R ( T R =∑E R ) は、 ステップ 120 で最終段階の危険 C O濃度の値である 1. 0 と比較し、 停止定数の積算値が最 終段階の危険 C 0濃度の値の 1. 0 以上のときには前記ステツプ 41 12の B停止制御 を行う。 これに対し、 ステップ 4120で停止定数 E Rの積算値が最終段階の危険 C 0濃度の値 1. 0 よりも小さいと判断されたときには、 ステップ 4122で第 1段階か ら第 3段階の各段階の危険 C〇濃度の値と停止定数 E Rの積算値とを比較し、 停 止定数の積算値が各段階の危険 C O濃度の値以上のときには、 ステップ 4123の A 停止制御が行われ、 ステップ 4124以降の動作が行われる。  In step 4117, based on the C〇 concentration detection information from the CO sensor 28, a stop constant ER corresponding to the detected concentration and an integrated value of the stop constant ER are calculated. The integrated value TR (TR = ∑ER) of the stop constant ER calculated in step 4117 is compared with 1.0, which is the value of the dangerous CO concentration at the final stage, in step 120, and the integrated value of the stop constant is calculated. Danger at the final stage When the value of the C0 concentration is 1.0 or more, the B stop control of the above step 4112 is performed. On the other hand, when it is determined in step 4120 that the integrated value of the stop constant ER is smaller than the final danger C 0 concentration value 1.0, in step 4122, each of the first to third steps is performed. Compare the value of the dangerous C〇 concentration with the cumulative value of the stop constant ER.If the cumulative value of the stop constant is equal to or greater than the value of the dangerous CO concentration at each stage, A stop control in step 4123 is performed, and steps 4124 onward. Is performed.
これに対し、 ステップ 4121で停止定数 E Rの積算値が第 1段階から第 3段階の 各段階の危険 C O濃度の値よりも小さいものと判断されたときには、 ステップ 41 21で燃焼改善モード 2の動作が行われる。 この燃焼改善モード 2の動作は、 例え ば図 5に示すような燃焼制御データの比例弁開度の制御範囲の上側を例えば 95% でカツ 卜し、 比例弁開度を 0 %から 95%の範囲内で燃焼運転を行わせるものであ る。 なお、 このステップ 4121の燃焼制御モード 2の動作は省略されることもある o  On the other hand, if it is determined in step 4121 that the integrated value of the stop constant ER is smaller than the value of the dangerous CO concentration in each of the first to third stages, the operation of the combustion improvement mode 2 is performed in step 4121. Is performed. In the operation of the combustion improvement mode 2, for example, the upper side of the control range of the proportional valve opening of the combustion control data as shown in FIG. 5 is cut at, for example, 95%, and the proportional valve opening is reduced from 0% to 95%. The combustion operation is performed within the range. Note that the operation of the combustion control mode 2 in step 4121 may be omitted.
前記ステップ 121 で燃焼改善モード 2の動作が行われた後には、 ステップ 41 18 において、 給水流量センサ 22によって給水流量が検出されているか否かを判断 し、 給水流量が検出されているときには、 ステップ 41 14以降の動作を行い、 給水 流量センサ 22が給水流量のオフ信号を出力したときには、 給湯栓が閉められたも のと判断し、 燃焼運転を停止させる。  After the operation of the combustion improvement mode 2 is performed in step 121, it is determined in step 4118 whether or not the feedwater flow rate is detected by the feedwater flow rate sensor 22. When the water supply flow rate sensor 22 outputs an off signal of the water supply flow rate after performing the operations from 41 to 14, it is determined that the hot water tap is closed, and the combustion operation is stopped.
次にステップ 4124以降の A停止制御の動作を簡単に説明する。 まずステップ 41 24でリモコン 31等の表示部に A停止制御状態であることを示すエラー 90を点滅表 示する。 そしてステップ 4125で電磁弁 12 (元電磁弁) 、 電磁弁 1 1、 比例弁 13を閉 じ (オフし) 、 リモコン等の燃焼ランプを消灯し、 燃焼改善スタートフラグをォ ンし、 C Oセンサ 28への通電を停止する。 Next, the operation of the A stop control after step 4124 will be briefly described. First, in step 4124, an error 90 indicating that the A-stop control is being performed is blinkingly displayed on the display unit of the remote controller 31 or the like. Then, in step 4125, the solenoid valve 12 (original solenoid valve), the solenoid valve 11 and the proportional valve 13 are closed (turned off), the combustion lamp of the remote control is turned off, and the combustion improvement start flag is turned off. Power supply to the CO sensor 28 is stopped.
次に、 ステップ 4126で燃焼ファン 26を最大回転数で 7秒間回転させ、 給湯栓を 閉じる。 そしてステップ 4128で運転スィッチがオフされたか否かを判断する。 運 転スィッチがオンのときには次のステツプ 4129の判断動作に進む。  Next, in step 4126, the combustion fan 26 is rotated at the maximum speed for 7 seconds, and the hot water tap is closed. Then, in a step 4128, it is determined whether or not the operation switch is turned off. When the operation switch is ON, the operation proceeds to the next step 4129.
ステップ 4129では、 燃焼停止後 2時間が経過したか否かを判断し、 2時間経過 していたときには、 ステップ 130 で停止定数 E Rの積算値を半分に減らし、 燃焼 改善スタートフラグをオフする。 そして、 ステップ 4131で燃焼停止後 4時間を経 過したか否かを判断し、 4時間経過していたときには室内の C〇ガスは室外に全 て出たものと判断し停止定数 E Rの積算値を零にクリァする。  In step 4129, it is determined whether or not two hours have elapsed since the combustion was stopped. If two hours have elapsed, the integrated value of the stop constant ER is reduced to half in step 130, and the combustion improvement start flag is turned off. Then, in step 4131, it is determined whether four hours have elapsed since the combustion was stopped.If four hours had elapsed, it was determined that all the C〇 gas in the room had exited the room, and the integrated value of the stop constant ER was determined. To zero.
一方、 前記ステツプ 4128で運転スィッチがオフされたと判断されたときには、 ステップ 4133で運転スィツチがオンされたか否かを判断する。 運転スィツチが一 旦オフされてから運転スィツチがオンされることにより、 リセッ ト信号が図 2 5 の燃焼再起動風量制御データ指定部 434 に加えられた状態となり、 ステップ 4134 で運転ランプが点灯し、 続いてステップ 4135で、 ファン風量制御データが図 4に 示す通常のファン風量制御データ Aから風量ァップ用のファン風量制御デー夕 B に切り替え選択指定され、 ステップ 4100の点火動作に移る。  On the other hand, if it is determined in step 4128 that the operation switch has been turned off, it is determined in step 4133 whether or not the operation switch has been turned on. When the operation switch is turned off and then turned on, the reset signal is applied to the combustion restart airflow control data designating section 434 shown in Fig. 25, and the operation lamp is turned on in step 4134. Subsequently, in step 4135, the fan air volume control data is switched and designated from the normal fan air volume control data A shown in FIG. 4 to the fan air volume control data B for air volume up, and the flow proceeds to the ignition operation in step 4100.
ステップ 4100では、 前記ステップ 4134で指定されたファンアップ用のファン風 量制御データ Bでもって燃焼ファン 26を回転し、 点火を行い、 燃焼運転を行う。 なお、 燃焼再起動風量制御データ指定部 434 はメモリ 430 に記憶されている前 回燃焼運転に使用されたファン風量制御データの情報を取り込み、 前記 A停止制 御の動作によって燃焼運転が停止されたときに、 例えば、 Bのファン風量制御デ 一夕が使用されていたときには、 リセットによる燃焼再開時にはそれよりも風量 ァップ側の例えば Dのファン風量制御デー夕を指定することとなり、 この Dのフ ァン風量制御データを用いて点火動作が行われることになる。  In step 4100, the combustion fan 26 is rotated, ignited, and performs a combustion operation with the fan-up fan air volume control data B specified in step 4134. The combustion restart air flow control data designating section 434 fetches the information of the fan air flow control data used in the previous combustion operation stored in the memory 430, and the combustion operation is stopped by the operation of the A stop control. For example, when the fan air flow control data of B is used, when the combustion is restarted by resetting, the fan air flow control data of D, for example, on the air flow gap side is specified, and this D air flow control data is designated. The ignition operation is performed using the fan air volume control data.
本実施形態例では、 燃焼運転中に検出 C O濃度によって求まる停止定数 E Rの 積算値が予め与えられる危険 C O濃度の値に達したときに燃焼停止を行い、 この 燃焼停止後に燃焼運転を再開する際には、 風量アップ用のファン風量制御データ が選択指定されて燃焼運転が再開されるので、 排気系の詰まり等に起因して C O 濃度が危険濃度に達して燃焼停止がされた場合においても、 燃焼再開時には、 風 量がアップされた状態で燃焼運転が再開されるので、 排気系の詰まり等による給 気の不足分が風量ァップによつて解消され、 燃焼熱量にマッチングした風量が供 給されるので、 燃焼運転の再開の直後に再び高濃度の c〇ガスが発生して燃焼運 転が停止されるということがなくなり、 燃焼再開後の燃焼運転を円滑に継続させ ることが可能となる。 In the present embodiment, the combustion is stopped when the integrated value of the stop constant ER obtained from the detected CO concentration during the combustion operation reaches a predetermined dangerous CO concentration value, and the combustion operation is restarted after the combustion is stopped. The combustion operation is restarted by selecting and specifying the fan air volume control data for increasing the air volume.Therefore, even if the CO concentration reaches the dangerous concentration due to clogging of the exhaust system, etc., combustion is stopped. When combustion resumes, wind Since the combustion operation is restarted with the amount increased, the shortage of air supply due to clogging of the exhaust system is eliminated by the air volume gap, and the air volume matching the combustion heat is supplied, so the combustion operation is performed. Immediately after restart of combustion, high-concentration c〇 gas is not generated again, and combustion operation is not stopped. Thus, combustion operation after restarting combustion can be continued smoothly.
また、 燃焼再開後の燃焼運転では、 給気不足状態が解消されているので、 C O ガスの発生が少なくなり、 c〇中毒に対する安全を図れることとなる。 特に、 燃 焼再開がコールドス夕一ト状態で行われたときには、 図 2 6に示す如く C Oセン サ 27のヒ一トクリーニングが行われることになり、 その区間は C〇濃度の検出が できない空白期間となり、 この空白期間で高濃度の C Oガスが発生すると非常に 危険であるが、 本実施形態例では前記の如く、 風量ァップ用のファン風量制御デ —夕が指定されて燃焼運転が再開されるので、 空白期間に高濃度の C〇ガスが発 生することがなく、 C〇中毒に対する安全を効果的に図ることが可能となるもの でめる。  In addition, in the combustion operation after the restart of combustion, the shortage of air supply has been eliminated, so the generation of CO gas will be reduced and safety against c〇 poisoning will be achieved. In particular, when combustion is restarted in the cold state, heat cleaning of the CO sensor 27 is performed as shown in Fig. 26. It is extremely dangerous if high-concentration CO gas is generated during this blank period. However, in this embodiment, the combustion operation is restarted with the fan air volume control data for air volume up specified as described above. As a result, high concentrations of C〇 gas are not generated during blank periods, and safety against C 効果 poisoning can be effectively achieved.
さらに、 本実施形態例では、 検出される各 C O濃度毎に停止定数を求め、 この 停止定数の積算値によつて排気ガスが室内に洩れたと仮定したときの C〇中毒に 対する安全動作を行っているので、 その C O安全動作の精度が高くなり、 信頼性 の高い c〇安全動作を行うことが可能となる。  Furthermore, in the present embodiment, a stop constant is determined for each detected CO concentration, and a safety operation for C〇 poisoning is performed based on the integrated value of the stop constant, assuming that exhaust gas has leaked into the room. As a result, the accuracy of the CO safe operation is improved, and highly reliable c〇 safe operation can be performed.
なお、 ファン風量制御デ一夕は、 図 4に示されるような形態で与える他に、 図 13に示すように、 図 4のファン風量制御データ Aに相当する X = 0のファン風量 制御データに対し、 X = 2 , X = 4のファン風量制御データのように平行な制御 ラインの形態で与えるようにしてもよいものである。  The fan air volume control data is given in the form as shown in FIG. 4 and, as shown in FIG. 13, as shown in FIG. 13, the fan air volume control data of X = 0 corresponding to the fan air volume control data A of FIG. On the other hand, it may be provided in the form of parallel control lines like fan air volume control data of X = 2 and X = 4.
次に、 燃焼運転時のファン風量制御構成に関しては、 図 1 3, 1 4にて正津名 したのと同様である。 また、 ファン回転制御データの切り換え制御は、 既に説明 した通り、 C O濃度により負圧状態を検出して回転制御デ一夕の切り換えを行う 第 1の機能と、 フレー厶ひッ ド電流が閾値を超えたことにより負圧状態を検出し て回転制御データを切り換えるする第 2の機能と、 フレームロツ ド電流の短時間 での変化により負圧状態と負圧解除とを検出して回転制御データを切り換える第 3の機能とを組み合わせることで、 有効に行われる。 上記の第 2の機能において、 良好な燃焼状態であるときにフレームロツ ド 16が 、 図 7に示す燃焼火炎の外炎を検知している状態から、 負圧状態が発生し負圧状 態に起因した空気不足の燃焼状態になると、 外炎と内炎が共に伸び、 フレーム口 ッ ド 16は内炎を検知するようになる。 Next, the configuration of the fan air volume control during combustion operation is the same as that named Masatsu in Figs. 13 and 14. As described above, the switching control of the fan rotation control data includes the first function of detecting the negative pressure state based on the CO concentration and switching the rotation control data, and the frame head current sets the threshold value. The second function that detects the negative pressure state and switches the rotation control data when it exceeds the limit, and switches the rotation control data by detecting the negative pressure state and the negative pressure release due to the short-term change of the flame load current. Effectively done by combining with the third function. In the second function described above, when the flame rod 16 detects the external flame of the combustion flame shown in FIG. 7 when the combustion state is good, a negative pressure state is generated and is caused by the negative pressure state. When the air-deficient combustion state occurs, both the outer flame and the inner flame extend, and the flame mouth 16 detects the inner flame.
上記外炎は電気抵抗率が高く、 内炎は電気抵抗率が低いので、 上記のように負 圧状態発生に起因してフレームロツ ド 16が外炎検知の状態から内炎検知の状態に 移行すると、 電気抵抗率が低下し、 フレームロッ ド 16から検出出力されるフレー ムロツ ド電流値が上昇する。  Since the outer flame has a high electrical resistivity and the inner flame has a low electrical resistivity, when the frame rod 16 shifts from the external flame detection state to the internal flame detection state due to the generation of a negative pressure state as described above. However, the electrical resistivity decreases, and the frame rod current detected and output from the frame rod 16 increases.
つまり、 図 1 0において、 例えば燃焼能力 (比例弁開度) Xよりも低めの低燃 焼能力範囲内の燃焼能力で燃焼が良好に行われているときには外炎に位置し、 負 圧状態が発生して燃焼火炎が立ち上がったときには内炎に位置する高さ位置にフ レームロツ ド 16を取り付けることによって、 負圧状態の発生時にフレームロツ ド 16から検出出力されるフレーム πッ ド電流値の上昇変化がより明確になり、 排気 ガス中の C〇濃度に基づいて室内の負圧状態の発生を検知するよりも早く負圧状 態の発生を検知することができる。  In other words, in FIG. 10, for example, when the combustion is performed well with the combustion capacity within the low combustion capacity range lower than the combustion capacity (proportional valve opening) X, it is located in the outer flame and the negative pressure state When the combustion flame is generated and the combustion flame rises, the frame rod 16 is mounted at the height position located at the inner flame, so that the frame π-quad current value detected and output from the frame rod 16 when a negative pressure occurs is increased. This makes it possible to detect the occurrence of a negative pressure state earlier than to detect the occurrence of a negative pressure state in a room based on the C〇 concentration in exhaust gas.
このように、 フレームロッ ド 16の取り付け位置を設定することによって、 室内 が負圧状態になったときにはフレームロツ ド電流値が上昇するので、 フレーム口 ッ ド電流値が上昇したときには室内が負圧状態になつたと検知することができる o  By setting the mounting position of the frame rod 16 in this manner, the frame rod current value increases when the room is in a negative pressure state, and thus the room is in a negative pressure state when the frame opening current value increases. Can be detected as o
第 4の発明の実施の形態例は、 C 0センサで検出される C 0濃度が予め与えら れる危険濃度に達して C O安全装置により燃焼停止が行われた後に、 燃焼運転を 再開する際には、 通常運転用のファン風量制御データよりもファン風量を増加側 にシフトした風量アップ用のファン風量制御データを指定し、 そのファン風量ァ ップ用のファン風量制御デ一夕を用いて燃焼運転を再開するように構成した。 従 つて、 排気系の詰まりに起因して C Oガスが発生し、 C O安全装置が働いて燃焼 停止が行われた場合、 再起動の燃焼運転に際しては、 風量アップ用のファン風量 制御データを用いて燃焼運転が再開される。 即ち、 排気詰まりによる風量不足分 がファン風量制御デ一夕のファン風量アップ分によつて補償されて正常な給気状 態の下で燃焼運転が行われるので、 燃焼運転を再開した直後に再び空気不足等に よる燃焼状態の悪化により高濃度の C 0ガスが発生して再び C 0安全装置が作動 し燃焼運転が停止されるという従来の問題を解消することができ、 再起動後の燃 焼運転を円滑に継続させることが可能となる。 The fourth embodiment of the present invention relates to a method for restarting the combustion operation after the C0 concentration detected by the C0 sensor reaches a predetermined dangerous concentration and the combustion is stopped by the CO safety device. Specifies the fan airflow control data for increasing the airflow that is higher than the fan airflow control data for normal operation, and performs combustion using the fan airflow control data for that fan airflow increase. It was configured to resume operation. Therefore, when CO gas is generated due to clogging of the exhaust system and the combustion is stopped by operating the CO safety device, the restarting combustion operation uses the fan air volume control data for increasing the air volume. The combustion operation is restarted. In other words, the shortage of air volume due to exhaust clogging is compensated for by the increase in fan air volume in the fan air volume control, and the combustion operation is performed under a normal air supply condition. For lack of air The conventional problem that high-concentration C0 gas is generated due to the deterioration of the combustion state and the C0 safety device is activated again and the combustion operation is stopped can be solved, and the combustion operation after restarting is smoothly performed. Can be continued.
また、 C O安全装置により燃焼停止の C O安全動作が行われたときに、 点検等 が行われずに使用者によりリセッ ト操作によって手軽に燃焼運転が再開されてし まうケースが多々あるが、 本発明の実施の形態例では、 リセットによる燃焼再開 時には風量が増加方向にシフトされたファン風量制御デー夕に切り替えられて、 つまり、 燃焼が改善された状態で燃焼運転が再開されるので、 燃焼に必要十分な 空気が供給されて燃焼が行われる。 これにより、 排気ガス中の c〇濃度の低減を 図ることができ、 C Oガスに対する C O中毒の安全を図ることが可能となる。 さらに、 C Oセンサによって検出される各濃度に対する停止定数 E Rを求め、 この停止定数 E Rが算出される毎にその停止定数 E Rを積算し、 その積算値を予 め与えられる危険 C O濃度の値と比較して C O安全動作を行う構成とした。 その ため、 各 C O濃度を総合的に考慮した的確な C O濃度の危険状態の検出値が停止 定数 E Rの積算値として求めて C 0安全動作が行われるので、 C〇安全動作の精 度が格段にァップし、 信頼性の高い C 0安全動作を行うことが可能となる。 さらに、 C〇センサの C〇濃度検出信号や、 フレームロッ ドから出力されるフ レームロッ ド電流に基づき、 室内の負圧の程度を検出し、 ファン風量制御データ を室内の負圧の程度に応じて室内の負圧の程度が大きいときには風量アップ方向 に、 室内の負圧が解除 (あるいは減少) されたときには風量ダウン方向に切り替 え設定するファン風量制御データ切り替え制御部を設ける構成とした。 そのため 、 室内の負圧の程度に応じてファン風量が制御されるために、 室内の負圧による 給気不足を風量アップにより解消し、 室内の負圧が解除されるときには、 風量を ダウン方向にして風量の過剰を解消する方向に制御されるので、 室内の負圧状況 の変化に影響を受けずに良好な燃焼運転を行うことが可能となる。 特に、 C Oセ ンサの C O濃度検出信号に基づく室内の負圧程度の検出とフレームロツ ド電流に 基づく室内負圧程度の検出を併用することにより、 燃焼熱量 (燃焼能力) の全制 御範囲に亙って室内の負圧の程度を精度良く検出でき、 室内の負圧の程度に応じ たより正確なファン風量制御が可能となる。 [第 5の発明] In addition, in many cases, when the CO safety device performs the safety operation for stopping the combustion by the CO safety device, the combustion operation is easily restarted by the reset operation by the user without performing an inspection or the like. In the embodiment of the present invention, when the combustion is restarted by resetting, the air flow is switched to the fan airflow control data in which the airflow is shifted in the increasing direction, that is, the combustion operation is restarted in a state where the combustion is improved, so that the combustion is necessary. Sufficient air is supplied to perform combustion. As a result, the concentration of c〇 in the exhaust gas can be reduced, and the safety of CO poisoning against CO gas can be improved. Further, a stop constant ER for each concentration detected by the CO sensor is obtained, and each time the stop constant ER is calculated, the stop constant ER is integrated, and the integrated value is compared with a predetermined dangerous CO concentration value. To perform CO safe operation. Therefore, the accurate detection value of the dangerous state of the CO concentration taking into account each CO concentration comprehensively is obtained as the integrated value of the stop constant ER, and the C0 safe operation is performed. It is possible to perform highly reliable C0 safe operation. Furthermore, based on the C〇 concentration detection signal of the C〇 sensor and the frame rod current output from the frame rod, the degree of indoor negative pressure is detected, and the fan air volume control data is adjusted according to the degree of indoor negative pressure. Therefore, a fan air volume control data switching control unit is set to switch to the air volume increasing direction when the degree of indoor negative pressure is large, and to set the air volume decreasing direction when the indoor negative pressure is released (or reduced). Therefore, since the fan airflow is controlled according to the degree of the negative pressure in the room, the insufficient air supply due to the negative pressure in the room is eliminated by increasing the airflow, and when the negative pressure in the room is released, the airflow is reduced in the downward direction. As a result, the air flow is controlled to eliminate the excess air flow, so that good combustion operation can be performed without being affected by changes in the indoor negative pressure condition. In particular, by using the detection of the degree of indoor negative pressure based on the CO concentration detection signal of the CO sensor and the detection of the degree of indoor negative pressure based on the flame rod current in combination, the amount of combustion heat (combustion capacity) can be controlled over the entire control range. As a result, the degree of indoor negative pressure can be accurately detected, and more accurate fan air volume control according to the degree of indoor negative pressure can be performed. [Fifth invention]
第 5の発明は、 負圧状態の時の燃焼終了後のポストファン制御に関する。 室内 が負圧状態であっても確実に燃焼室内の排気を排気口から室外に排出する為にあ る程度ファンの回転数 (送風能力) を高く設定することが必要である。 但し、 余 りファンの回転数を上げると、 再度給湯要求があった時に、 設定温度より低い過 冷却された湯が出湯されるので問題がある。 そこで、 第 5の発明では、 ポストフ τン制御が、 室内の負圧状態に係わらす十分に排気できる様にファン回転数を高 く設定した第 1段階の制御と、 その後熱交換器を余り冷やさない様にできるだけ ファン回転数を低く設定した第 2段階の制御と、 更にその後、 再度燃焼運転する ときの燃焼開始までのファンの初期回転期間をなくすことができる程度に低いフ ァン回転制御を行う第 3段階の制御とを有する。  The fifth invention relates to post-fan control after the end of combustion in a negative pressure state. Even if the room is under negative pressure, it is necessary to set the fan speed (blowing capacity) high enough to ensure that the exhaust gas inside the combustion chamber is exhausted from the exhaust port to the outside. However, if the rotation speed of the fan is increased too much, there is a problem since supercooled water lower than the set temperature is discharged when a request for hot water supply is made again. Therefore, in the fifth invention, the post-fan control is a first-stage control in which the fan rotation speed is set to be high so that sufficient exhaust can be performed regardless of the negative pressure state in the room, and then the heat exchanger is cooled too much. The second stage control, in which the fan speed is set as low as possible, and the fan speed control, which is low enough to eliminate the initial fan rotation period before starting combustion when restarting the combustion operation, And a third stage control to be performed.
本発明に係る給湯機は、 室内に設置され、 当該室内の空気を燃焼用として給気 し、 燃焼後の排気を排気筒を通じて屋外へ排出する、 強制排気式が採用されてい る。 また給湯機は、 水栓を閉じて出湯を一旦停止してから、 5分以内に再び水栓 を開き出湯を再開した場合に、 少なくとも給湯機本体の出湯口から出る湯の温度 変動を設定温度の上下 3度以内に抑える、 いわゆる Q機能を備えている。  The hot water supply device according to the present invention adopts a forced exhaust type, which is installed indoors, supplies air in the indoors for combustion, and discharges exhaust gas after combustion to the outside through an exhaust pipe. In addition, the water heater closes the faucet and temporarily stops tapping, and then reopens the tap within 5 minutes and restarts tapping. It has a so-called Q function that keeps it within 3 degrees above and below.
図 3 0に示すように、 給湯機 5 1 0の本体であるハウジング 5 1 1は箱型の形 状を成しており、 その右側面に、 室内の空気を機内に取り入れるための本体部給 気口 5 1 2が開設されている。 また、 本体部給気口 5 1 2の内側に、 ちりやほこ りを取り除くためのフィルター 5 1 3が取り付けられている。  As shown in FIG. 30, the housing 5111, which is the main body of the water heater 5110, has a box-like shape, and the right side of the housing 511 has a main body supply for taking in room air into the machine. The spirit 5 1 2 has been established. In addition, a filter 513 for removing dust and dust is attached inside the main body air supply port 511.
ハウジング 5 1 1内の略中央部分には、 燃焼室 5 2 1が設けられ、 その上部に は、 ガスを燃焼させて得た熱によって給水を暖めるための熱交換器 5 2 2が配置 されている。 熱交換器 5 2 2は、 給水を通すパイプに多数のフィンプレートを取 り付けたものであり、 銅など熱伝導率の良好な部材で構成されている。  A combustion chamber 521 is provided at a substantially central portion in the housing 511, and a heat exchanger 522 for heating the water supply by heat obtained by burning the gas is disposed above the combustion chamber 5221. I have. The heat exchanger 522 has a large number of fin plates attached to a pipe through which water is supplied, and is made of a member having good heat conductivity such as copper.
燃焼室 5 2 1の上面中央部には、 排気口 5 2 3が、 また右底部には本体部給気 口 5 1 2から流入した空気を燃焼室 5 2 1内部へ取り込むための給気口 2 4が設 けられている。 燃焼室 5 2 1の排気口 5 2 3は、 排気ダクト部 5 2 5を通じて、 ハウジング 5 1 1の上面から突出した排気筒接続部 5 2 6へと連通しており、 排 気筒接続部 5 2 6には屋外へ通じる排気筒 5 2 7が接続されている。 なお、 排気 筒 5 2 7は給湯機 5 1 0を設置する際に作業者により排気筒接続部 5 2 6に取り 付けられるものである。 An exhaust port 5 23 is provided at the center of the upper surface of the combustion chamber 5 21, and an air supply port for taking in air that has flowed in from the main body air supply port 5 12 into the combustion chamber 5 2 1 at the bottom right. 24 are provided. The exhaust port 5 2 3 of the combustion chamber 5 2 1 communicates with the exhaust pipe connecting section 5 2 6 protruding from the upper surface of the housing 5 1 1 through the exhaust duct 5 2 5. An exhaust cylinder 527 leading to the outside is connected to the cylinder connection section 526. The exhaust pipe 527 is attached to the exhaust pipe connecting section 526 by an operator when installing the water heater 510.
排気ダクト部 5 2 5の途中に燃焼室 5 2 1への給排気を行うための燃焼ファン 5 3 1が配され、 その下流側には排気の流速を低下させる等の作用を果たす排気 ボックス 5 3 2が設けられている。 燃焼ファン 5 3 1は、 背面に制御回路 5 3 3 を備えたモ一夕 5 3 4によって駆動される遠心ファンであり、 燃焼室 5 2 1の排 気口 5 2 3側から排気を吸い出すことにより、 給排気を行うようになっている。 排気ボックス 5 3 2内部には、 排気筒 5 2 7側からの逆風が燃焼室 5 2 1へ流 れ込むことを防止する逆風板 5 3 5が設けられている。 また、 排気ボックス 5 3 2の側壁には、 排気中の一酸化炭素 (C O ) 濃度を検出するための C〇センサ 5 3 6が取り付けられている。 燃焼室 5 2 1の右側方には、 給排気される空気の共 振によって生じる振動を防止するための防振箱 5 3 7が設けてある。  A combustion fan 531 for supplying / exhausting air to / from the combustion chamber 5221 is disposed in the middle of the exhaust duct section 5205, and an exhaust box 5 for performing functions such as reducing the flow velocity of exhaust gas is provided downstream thereof. There are 32 provided. The combustion fan 531 is a centrifugal fan driven by a motor 5334 having a control circuit 5333 on the rear side, and exhausts exhaust gas from the exhaust port 5223 side of the combustion chamber 5221. Supply and exhaust. Inside the exhaust box 532, there is provided a reverse wind plate 535 for preventing the reverse wind from the exhaust pipe 5277 from flowing into the combustion chamber 5221. Further, a C 5 sensor 536 for detecting the concentration of carbon monoxide (CO) in the exhaust gas is attached to the side wall of the exhaust box 532. On the right side of the combustion chamber 521, there is provided an anti-vibration box 537 for preventing vibration caused by resonance of the air supplied and exhausted.
燃焼室 5 2 1の内部下方に配置されたバーナー 5 4 1には、 ガス電磁弁 5 4 2 、 ガス比例弁 5 4 3、 元ガス電磁弁 5 4 4など各種弁の取り付けられたガス供給 パイプ 5 4 5が接続されている。 バーナー 5 4 1は、 これらを通じて燃焼用のガ スの供給を受ける。 またバーナー 5 4 1に隣接して、 点火装置 5 4 6が設けられ ている。  The gas supply pipe to which various valves such as the gas solenoid valve 542, the gas proportional valve 543, and the original gas solenoid valve 5444 are attached to the burner 541, which is located below the inside of the combustion chamber 521, 5 4 5 is connected. The burners 541 receive gas for combustion through these. Further, an ignition device 546 is provided adjacent to the burner 541.
熱交換器 5 2 2には、 給水パイプ 5 5 1 と給湯パイプ 5 5 2とが接続されてい る。 給水パイプ 5 5 1 と給湯パイプ 5 5 2の間には、 給水パイプ 5 5 1からの給 水を熱交換器 5 2 2を介さずに給湯パイプ 5 5 2へ通すためのバイパス通路 5 5 3が設けられている。 バイパス通路 5 5 3を設けることにより、 熱交換器 5 2 2 で加熱された湯は、 一定の割合で給水パイプ 5 5 1からの給水と混合され、 湯温 が下げられた後、 出湯されるようになっている。  A water supply pipe 55 1 and a hot water supply pipe 55 2 are connected to the heat exchanger 52 2. Between the water supply pipe 5 5 1 and the hot water supply pipe 5 5 2, a bypass passage 5 5 3 for passing the water supply from the water supply pipe 5 5 1 to the hot water supply pipe 5 5 2 without passing through the heat exchanger 5 2 2 Is provided. By providing the bypass passage 553, the hot water heated by the heat exchanger 522 is mixed at a fixed rate with the water supplied from the water supply pipe 551, and after the temperature of the hot water is lowered, the hot water is discharged. It has become.
給水パイプ 5 5 1の途中には、 通水の有無を検知するための水量センサ 5 5 4 と、 給水の温度を検出する入水センサ 5 5 5と、 給水の汚れを取り除く水フィル 夕 5 5 6が設けられている。 給湯パイプ 5 5 2の出口部近傍には、 出湯される水 量を制御するための水量制御弁 5 5 7と、 給湯機 5 1 0から出湯される湯の温度 を検出する出湯サーミス夕 5 5 8が取り付けられている。 In the middle of the water supply pipe 5 5 1, a water volume sensor 5 5 4 for detecting the presence or absence of water flow, a water input sensor 5 5 5 for detecting the temperature of the water supply, and a water filter for removing the contamination of the water supply 5 5 6 Is provided. In the vicinity of the outlet of the hot water supply pipe 552, there is a water amount control valve 557 for controlling the amount of hot water, and the temperature of the hot water discharged from the hot water supply device 510. To detect the hot water thermistor 5 5 8 is installed.
ハウジング 5 1 1の正面下部には、 温度設定など給湯機 5 1 0における操作を 行うための各種操作スィッチを備えた本体操作部 5 6 1力"^、 またその下部には、 排気筒の延長距離を設置時に設定登録するための排気延長切替スィッチ 5 6 2が 設けられている。 ハウジング 5 1 1内の上部右端には、 給湯機 5 1 0における各 種の制御を司る電装基板 5 6 3が配置されている。  At the lower part of the front of the housing 5 11, a main body operation part 5 61 1 "with various operation switches for performing operations on the water heater 5 110 such as temperature setting, and at the lower part, an exhaust pipe extension An exhaust extension changeover switch 562 for setting and registering the distance at the time of installation is provided at an upper right end in the housing 511. An electrical board 563 which controls various kinds of control of the water heater 5110 is provided. Is arranged.
このほか、 給湯機 5 1 0内部には、 凍結予防ヒー夕 5 7 1、 熱交換器 5 2 2内 の湯温を検知するための熱交サーミス夕 5 7 2、 温度ヒューズを用いた過熱防止 装置 5 7 3、 フィルター 5 1 3の取り付け異常を検出するフィルタスィッチ 5 7 4等が設けられている。  In addition, inside the water heater 510, a freezing prevention heater 571, a heat exchanger thermistor 572 for detecting the temperature of the hot water in the heat exchanger 522, and overheating prevention using a thermal fuse A device 574, a filter switch 574 for detecting a mounting error of the filter 513, and the like are provided.
図 3 1は、 給湯機 5 1 0の回路構成を表したものである。 給湯機 5 1 0の電装 基板 5 6 3は、 各種制御の中枢的機能を果たす C P U (中央処理装置) 5 8 1を 備えている。 C P U 5 8 1には、 データバスやアドレスバスなど各種バス 5 8 2 を介して各種の回路装置が接続されている。  FIG. 31 shows a circuit configuration of water heater 5 10. The electric board 563 of the water heater 5110 is provided with a CPU (Central Processing Unit) 581, which performs a central function of various controls. Various circuit devices are connected to the CPU 581 via various buses 582 such as a data bus and an address bus.
このうち、 R O M (リード ·オンリ · メモリ) 5 8 3は、 C P U 5 8 1の実行 するプログラムや各種の固定的データを記憶する読み出し専用メモリである。 R A M (ランダム ·アクセス ' メモリ) 5 8 4は、 プログラムを実行する上で、 一 時的に必要になるデータを記憶するための作業メモリである。  Of these, ROM (read only memory) 583 is a read-only memory that stores programs executed by the CPU 581 and various fixed data. RAM (random access memory) 5884 is a working memory for storing data temporarily required to execute a program.
バス 5 8 2には本体操作部 5 6 1のほか、 各種回路装置と C P U 5 8 1 との間 で電気信号の入出力を行うための入出力インターフェイス回路部 5 8 5が接続さ れている。 入出力インターフヱイス回路部 5 8 5には、 排気延長切替スィッチ 6 2、 C Oセンサ 5 3 6、 燃焼ファン 5 3 1、 水量センサ 5 5 4等の各種電装部品 が接続されている。  The bus 582 is connected to the main unit operation unit 561, and an input / output interface circuit unit 585 for inputting and outputting electric signals between various circuit devices and the CPU 581. . Various electrical components such as an exhaust extension switching switch 62, a CO sensor 536, a combustion fan 531, and a water sensor 554 are connected to the input / output interface circuit 585.
次に図 3 0に示した給湯機 5 1 0の行う動作について説明する。  Next, the operation performed by water heater 5110 shown in FIG. 30 will be described.
図 3 2は、 給湯機 5 1 0の行う動作の流れを示している。 給湯機 5 1 0は、 設 置された際に、 作業者がその設置状態における排気筒の延長距離を排気延長切替 スィッチ 5 6 2によって設定するようになっている。 排気筒の延長距離として、 4メートル以下 (短距離モード) 、 4メートル以上で 7メートル以下 (中距離モ ―ド) 、 7メ一トル以上で 1 3メートル以下 (長距離モード) のいずれかが設定 される。 FIG. 32 shows the flow of the operation performed by water heater 5 10. When the water heater 5 10 is installed, the operator sets the extension distance of the exhaust pipe in the installed state by the exhaust extension switch 5 62. The extension length of the exhaust stack is 4 meters or less (short distance mode), 4 meters or more and 7 meters or less (medium distance mode), or 7 meters or more and 13 meters or less (long distance mode). Configuration Is done.
給湯機 5 1 0は、 前回の通水が停止してから 5分以内は Q機能の維持される待 機状態となり、 通水停止後 5分を経過した後は、 Q機能の維持されない休止状態 になる。 給湯機 5 1 0は、 該休止状態において通水が始まったことを水量センサ 5 4により検知すると (ステップ S 1 0 1 ; Y ) 、 まず、 燃焼ファン 5 3 1の回 転駆動を開始させる (ステップ S 1 0 2 ) 。 その後燃焼ファン 5 3 1の回転数が 、 点火の際に必要な所定回転数 (ここで、 1 0 0 0 r p m ) 以上になったとき ( ステップ S 1 0 3 ; Y ) 、 プリパージ期間を経て点火装置 5 4 6によりバーナー 4 1を点火する (ステップ S 1 0 4 ) 。  The water heater 510 is in a standby state in which the Q function is maintained within 5 minutes after the previous stoppage of water supply, and after 5 minutes from the stop of water supply, the sleep state in which the Q function is not maintained become. When the water heater 5110 detects that the flow of water has started in the resting state by the water volume sensor 54 (step S101; Y), the water heater 510 first starts the rotation drive of the combustion fan 531 (step S101). Step S102). Thereafter, when the number of revolutions of the combustion fan 531 exceeds a predetermined number of revolutions required for ignition (here, 100 rpm) (step S103; Y), ignition is performed after a prepurge period. The burner 41 is ignited by the device 546 (step S104).
バーナー 5 4 1を点火した後、 通水が停止するまでの間、 設定温度の湯が出湯 されるように、 ガス量等の比例制御が行われる (ステップ S 1 0 5 ) 。 この際、 C〇センサ 5 3 6で検出される一酸化炭素濃度を基にして、 最適な風量が得られ るよう燃焼ファン 5 3 1の回転数が制御される。  After ignition of the burner 541, proportional control of the gas amount and the like is performed so that hot water at the set temperature is discharged until the flow of water is stopped (step S105). At this time, the rotation speed of the combustion fan 531 is controlled based on the concentration of carbon monoxide detected by the C〇 sensor 5336 so that an optimal air volume can be obtained.
なお、 ガス量の検出は、 通水量、 設定温度、 給水温度から計算される F F (フ イードフォーワード量) を用いたり、 出湯サーミスター 5 5 8からの信号により 計算される F B (フィードバック量) を用いて行うことができる。 ここで、 通水 量は水量センサ 5 5 4により測定され、 設定温度はリモコン等による設定値であ る。 また給水温度は入水サーミスター 5 5 5により測定される。 このほか、 ガス 比例弁 5 4 3の開度を決める比例弁電流を用いてガス量を検出するようにしても よい。  The gas amount is detected using FF (feed forward amount) calculated from the flow rate, set temperature, and feed water temperature, or FB (feedback amount) calculated from the signal from the tapping thermistor 558. Can be performed. Here, the flow rate is measured by a water flow sensor 554, and the set temperature is a set value by a remote controller or the like. In addition, the water supply temperature is measured by the input water thermistor. In addition, the gas amount may be detected using a proportional valve current that determines the opening of the gas proportional valve 543.
通水が停止すると (ステップ S 1 0 6 ; Y ) 、 その後、 Q機能を維持すべき 5 分間が経過するまでの間、 あるいは 5分以内に通水が再開されるまでの間、 燃焼 ファン 5 3 1を継続して回転させる、 ポストファン処理 (ステップ S 1 0 7 ) が 行われる。  When the water supply is stopped (Step S106; Y), the combustion fan 5 is then operated until the 5 minutes to maintain the Q function elapse or until the water supply is resumed within 5 minutes. 31. Post-fan processing (step S107) for continuously rotating 1 is performed.
ポストファン処理は、 3つの段階に分けられている。 第 1段階は、 燃焼室 5 2 1や排気筒 5 2 7内に残留する排気を屋外へ排出する期間であり、 燃焼ファン 5 3 1を高速回転させる期間である。 第 2段階は、 Q機能を満足し得る範囲内の温 度にできるだけ長く熱交換器 5 2 2内の水温を保持するため、 燃焼ブァン 5 3 1 の回転数を第 1段階に比べてある程度下げて回転させる期間である。 第 3段階は 、 燃焼ファン 5 3 1を停止させても許容上限温度を越える湯が出湯されることの ない程度まで熱交換器 2 2の冷却が進んだ後、 通水の際、 プリパージ期間を省略 してすぐにバーナー 5 4 1を点火し得るよう可能な限り低速度で燃焼ファ ン 5 3 1の回転を維持する期間である。 Post-fan processing is divided into three stages. The first stage is a period during which exhaust gas remaining in the combustion chamber 521 and the exhaust stack 527 is exhausted outdoors, and a period during which the combustion fan 531 is rotated at high speed. In the second stage, in order to maintain the water temperature in the heat exchanger 522 as long as possible within the temperature range that can satisfy the Q function, the number of revolutions of the combustion van 531 is reduced to some extent compared to the first stage. This is the period of rotation. The third stage is However, after cooling the heat exchanger 22 to such an extent that hot water exceeding the allowable upper limit temperature is not discharged even when the combustion fan 5 31 is stopped, immediately after skipping the pre-purge period when passing water In this period, the combustion fan 531 is kept rotating at the lowest possible speed so that the burner 541 can be ignited.
また、 ポストファン処理におけるこれら各段階での燃焼ファン 5 3 1の回転数 と次の段階に移行するまで現段階の回転数を維持すべき回転維持時間とは、 室内 で換気扇が作動している等により燃焼室 5 2 1内の排気が室内へ吸い出される向 きの負圧が発生しているか否か、 および排気筒 5 2 7の延長距離に依存して変更 される。  In addition, the number of revolutions of the combustion fan 531 at each of these stages in the post-fan process and the revolution maintaining time at which the current stage revolution should be maintained until shifting to the next stage are determined by operating the ventilation fan indoors. For example, the pressure is changed depending on whether or not a negative pressure is generated so that the exhaust gas in the combustion chamber 521 is sucked into the chamber, and the extension distance of the exhaust pipe 527.
すなわち、 排気筒の延長距離が長くなれば、 それだけ排気抵抗が増加するので 、 一定の風量を得るために要する燃焼ファン 5 3 1の回転数が高くなる。 また排 気筒が長くなれば、 残留する排気を大気中に排出し終えるまでに要する時間も長 くなる。 そこで、 設定されている排気筒の延長距離に応じて燃焼ファン 5 3 1の 回転数および各段階の回転維持時間を変更している。 さらに、 換気扇等により燃 焼室 5 2 1内の空気を室内へ吸い出す向きの負圧が加わると、 その分、 風量が低 下する。 そこで負圧が作用している場合には、 燃焼ファン 5 3 1の回転数を負圧 のないときより高く設定し、 必要な風量を確保するようになっている。  In other words, the longer the extension distance of the exhaust stack, the more the exhaust resistance increases, and the higher the rotation speed of the combustion fan 531 required to obtain a constant air volume. Also, the longer the exhaust cylinder, the longer the time required to finish discharging the remaining exhaust gas to the atmosphere. Therefore, the rotation speed of the combustion fan 531 and the rotation maintaining time of each stage are changed according to the set extension distance of the exhaust stack. Further, when a negative pressure is applied by a ventilator or the like to draw air in the combustion chamber 521 into the room, the air volume is reduced accordingly. Therefore, when a negative pressure is acting, the rotation speed of the combustion fan 531 is set higher than when there is no negative pressure, so that a necessary air volume is secured.
R O M 5 8 3には、 第 1段階から第 3段階の各段階における燃焼ファン 5 3 1 の回転数、 および回転維持時間を対応付けて組にした図示しないデ一夕テーブル が予め記憶されている。 該デ一夕テーブルは、 排気筒延長距離が短距離モード、 中距離モード、 長距離モードについてそれぞれ負圧がある場合と無い場合に分け て用意されており、 合計で 6種類のデータテーブルが設けられている。 今回のポ ストファン処理で参照すべきデータテーブルは、 設置時に設定された排気筒延長 距離のモードと燃焼停止時点における負圧の有無とを基にしてこれら 6種類の中 から選択される。  The ROM 583 stores in advance a non-illustrated data table in which the number of rotations of the combustion fan 531 and the rotation maintaining time in each of the first to third stages are associated with each other. . The data table is prepared separately for cases where the exhaust cylinder extension distance is short-range mode, middle-distance mode, and long-distance mode with and without negative pressure.A total of six types of data tables are provided. Have been. The data table to be referred to in this post fan process is selected from these six types based on the mode of the exhaust cylinder extension distance set at the time of installation and the presence or absence of negative pressure at the time of combustion stop.
なお、 負圧がある場合に対応する 3種類のデータテーブルは、 第 1段階におけ るデータを負圧の強度に応じて 3つに区分し、 各区分ごとに燃焼ファン 3 1の回 転数等を登録してある。  The three types of data tables corresponding to the case where there is a negative pressure divide the data in the first stage into three according to the intensity of the negative pressure, and for each division, the number of rotations of the combustion fan 31 Etc. are registered.
データテーブルに登録されている第 1段階における燃焼ファン 5 3 1の回転数 は、 排気筒延長距離が長距離モードのとき最も高く、 中距離モード、 短距離モー ドの順に次第に低い値が登録されている。 また、 それぞれのモードにおける燃焼 ファン 5 3 1の回転数は負圧がない場合が最も低く、 負圧強度が大きくなるに従 つて高い回転数が登録されている。 さらに、 データテーブルに登録されている第 1段階での回転維持時間は、 長距離モードが最も長く、 中距離モード、 短距離モ 一ドの順に次第に短い時間が登録されている。 The number of revolutions of the combustion fan 5 3 1 in the first stage registered in the data table Is the highest when the stack extension distance is in the long-distance mode, and is gradually lower in the order of the medium-distance mode and the short-distance mode. In each mode, the rotation speed of the combustion fan 531 is lowest when there is no negative pressure, and the higher the negative pressure intensity is, the higher the rotation speed is registered. Furthermore, the longest rotation mode in the first stage registered in the data table is longest in the long-distance mode, and is gradually reduced in the order of the medium-distance mode and the short-distance mode.
いずれの場合にも、 第 1段階については、 燃焼室 5 2 1や排気筒 5 2 7内に残 留する排気が室内に逆流することなく屋外へ排出し終えることが可能であり、 ま た、 オーバ—シュート現象が生じないよう燃焼停止直後の余熱を十分に放熱し得 る高い回転数および必要な回転維持時間が設定登録されている。 また、 第 1段階 では、 負圧の有無のほか負圧強度に応じて細かく燃焼ファンの回転数を登録する ことにより、 燃焼停止時の負圧強度に応じて排気の逆流等を防ぐのに最適な回転 数を選択し得るようになつている。  In any case, in the first stage, the exhaust remaining in the combustion chamber 52 1 and the exhaust stack 5 27 can be exhausted to the outside without flowing back into the room, and A high rotation speed and a necessary rotation maintenance time that can sufficiently radiate the residual heat immediately after the stop of combustion so that the overshoot phenomenon does not occur are registered. In the first stage, by registering the number of revolutions of the combustion fan in detail according to the negative pressure intensity in addition to the presence or absence of negative pressure, it is optimal to prevent exhaust backflow etc. according to the negative pressure intensity when combustion is stopped It is possible to select a different rotation speed.
各データテーブルに登録されている第 2段階における燃焼ファン 5 3 1の回転 数は、 排気筒延長距離のモードゃ負圧の有無などが等しい条件の同一のデータテ 一ブルに登録されている第 1段階の回転数に比べて、 それぞれ低い値になってお り、 各々第 1段階に比べて風量が低下するよう設定されている。 また 6種類のデ —夕テーブルの第 2段階同士を比較した場合には、 排気筒延長距離が長いほど回 転数が高く、 さらに負圧が無いときよりも負圧の存在する場合の方が高い回転数 に設定されている。 The number of revolutions of the combustion fan 531 in the second stage registered in each data table is the same as that of the first data table registered in the same data table under the same conditions such as the mode of the exhaust cylinder extension distance and the presence or absence of negative pressure. Each value is lower than the number of revolutions in each stage, and each is set so that the air volume is lower than in the first stage. Also, when comparing the second stage of the six types of evening tables, the longer the exhaust cylinder extension distance, the higher the number of revolutions, and the case where negative pressure is present is greater than when there is no negative pressure. High rpm is set.
第 2段階における燃焼ファン 5 3 1の回転数は、 出湯が再開された際に、 許容 上限温度を越える湯が出ない範囲内で極力冷却量が少なくなるよう設定されてい る。 これより、 熱交換器 5 2 2内等の湯を許容下限温度より高い温度に保つこと のできる時間が長くなり、 Q機能をより長時間に渡って維持することができる。 第 3段階における燃焼ファン 5 3 1の回転数は、 排気筒延長距離のモードや負 圧の有無にかかわらず設定可能な最小回転数が登録されている。 すなわち、 第 3 段階は、 燃焼ファン 5 3 1を停止させても許容上限温度を越える湯が出湯される ことのない程度まで熱交換器 5 2 2の冷却が進んだ後の段階であるので、 冷却の ために風量を稼ぐ必要はなく、 負圧の有無や排気筒延長距離のモ一ドに関係無くThe rotation speed of the combustion fan 531 in the second stage is set so that the cooling amount is reduced as much as possible within a range in which the hot water exceeding the allowable upper limit temperature is not discharged when the hot water is restarted. As a result, the time during which the hot water in the heat exchanger 522 and the like can be maintained at a temperature higher than the allowable lower limit temperature becomes longer, and the Q function can be maintained for a longer time. For the rotation speed of the combustion fan 531 in the third stage, the minimum rotation speed that can be set regardless of the mode of the exhaust cylinder extension distance and the presence or absence of negative pressure is registered. In other words, the third stage is a stage after the cooling of the heat exchanger 52 has advanced to such an extent that hot water exceeding the allowable upper limit temperature is not discharged even when the combustion fan 531 is stopped. Cooling It is not necessary to increase the air flow, regardless of the presence or absence of negative pressure and the mode of the exhaust cylinder extension distance
、 通水が再開された際すぐにバーナー 5 4 1を点火し得る範囲内で最も低い回転 数が設定されている。 なお、 第 1段階から第 3段階を合計した回転維持時間は、 排気筒延長距離のモードゃ負圧の有無にかかわらずいずれのデータテーブルにあ つても 5分になっている。 However, the lowest rotational speed is set within a range where the burner 541 can be ignited immediately after the water supply is resumed. The total rotation maintenance time for the first to third stages is 5 minutes for any data table regardless of the mode of exhaust stack extension distance or the presence or absence of negative pressure.
このように、 第 1段階および第 2段階における燃焼ファン 5 3 1の回転数を、 負圧がある場合に、 負圧のないときより高い回転数に設定しているので、 換気扇 などが作動して燃焼室 5 2 1内の排気を室内へ吸い出す向きの負圧が働いても、 その分、 燃焼ファン 5 3 1が高い回転数で回転し、 負圧の有無によらず風量自体 はほぼ一定に保たれる。 その結果、 負圧が存在する場合であっても排気が室内へ 逆流することが防止され、 また負圧のないときには必要以上の風量が発生しない ので、 熱交換器 5 2 2が過冷却されることがなく、 Q機能をより長い時間に渡つ て維持することができる。 さらに、 第 1段階では、 負圧の有無のほか負圧強度 の大きさに応じて細かく燃焼ファンの回転数等を設定するので、 燃焼停止時の負 圧強度に応じて排気の逆流等を防ぐのに最適な回転数が選択され、 必要以上の冷 却が防止される。  As described above, the rotation speed of the combustion fan 531 in the first and second stages is set to be higher when there is a negative pressure than when there is no negative pressure. Even if a negative pressure acts to draw exhaust gas from the combustion chamber 52 1 into the room, the combustion fan 531 rotates at a higher speed, and the air volume itself is almost constant regardless of the negative pressure. Is kept. As a result, even if a negative pressure exists, exhaust gas is prevented from flowing back into the room, and when there is no negative pressure, an excessive amount of air is not generated, so that the heat exchanger 522 is subcooled. And the Q function can be maintained for a longer time. In addition, in the first stage, the number of rotations of the combustion fan is finely set according to the magnitude of the negative pressure intensity in addition to the presence or absence of negative pressure, so that exhaust backflow is prevented according to the negative pressure intensity when combustion is stopped The optimum rotation speed is selected to prevent excessive cooling.
次に、 負圧の有無および負圧強度の大きさを検知する際の動作について説明す る。 図 3 3は、 燃焼中におけるガスの燃焼量と燃焼ファンの回転数との対応関係 を示したものである。 給湯機 5 1 0の動作モードは、 通常モードと第 1改善モー ドと第 2改善モードと第 3改善モードの 4種類が設けられている。 図中、 最も下 方に位置するグラフ 9 1が通常モードに対応し、 その上方に位置するグラフ 9 2 、 グラフ 9 3、 グラフ 9 4がそれぞれ第 1改善モード、 第 2改善モードおよび第 3改善モードに対応している。  Next, the operation for detecting the presence or absence of a negative pressure and the magnitude of the negative pressure intensity will be described. Figure 33 shows the correspondence between the amount of gas burned during combustion and the number of revolutions of the combustion fan. Four types of operation modes of the water heater 5100 are provided: a normal mode, a first improvement mode, a second improvement mode, and a third improvement mode. In the figure, the lowermost graph 91 corresponds to the normal mode, and the upper graphs 92, 93, and 94 correspond to the first improvement mode, the second improvement mode, and the third improvement mode, respectively. It corresponds to the mode.
各動作モードにおいて燃焼フアン 5 3 1の回転数を定めるグラフ 9 1〜 9 4は 、 ガスの燃焼量の増加に従って必要な給排気量が増すので、 燃焼量の増加に対応 して燃焼ファン 5 3 1の回転数を高くするよう設定してある。 燃焼ファン 5 3 1 の回転数は、 設定されている動作モードと、 その時点におけるガスの燃焼量によ つて決定される。  The graphs 91 to 94 that determine the rotation speed of the combustion fan 531 in each operation mode show that the required supply / exhaust amount increases with an increase in the gas combustion amount. It is set to increase the rotation speed of 1. The number of revolutions of the combustion fan 531 is determined by the set operation mode and the gas combustion amount at that time.
通常モードは、 換気扇等による負圧が働いていない場合に対応する動作モード で、 負圧の無いとき当該モードに従って燃焼ファン 5 3 1を回転させることで一 酸化炭素濃度が適正な範囲に収まるように給湯機 5 1 0が動作するようになって いる。 The normal mode is an operation mode corresponding to the case where negative pressure is not applied by a ventilation fan etc. When there is no negative pressure, the water heater 5110 operates so that the carbon monoxide concentration falls within an appropriate range by rotating the combustion fan 531 in accordance with the mode.
第 1改善モードは、 一酸化炭素濃度を適正な範囲に保っために、 燃焼ファン 5 3 1の回転数を通常モードに比べてある程度高く設定しなければならない場合に 対応している。 すなわち、 何らかの負圧が作用し、 その負圧を打ち消すに必要な だけ燃焼ファン 5 3 1の回転数を高く設定する必要のある場合に対応している。 同様に、 第 2改善モードは、 第 1改善モードに比べてより強い負圧が作用して いる場合に、 第 3改善モードは第 2改善モードょりさらに強い負圧が作用してい る場合に対応した動作モードである。 動作モードは、 一酸化炭素濃度が適正な範 囲にあるか否かに応じて、 燃焼中、 逐次変更される。 本実施の形態では、 C〇 センサ 5 3 6の検出する一酸化炭素濃度を最適範囲に維持するために要した燃焼 ファン 5 3 1の回転数を基にして負圧の有無や負圧強度を判別している。 より具 体的には、 燃焼停止直前における動作モードがどのモードに設定されているかに 基づいて負圧強度を判別するようになっている。  The first improvement mode corresponds to a case where the rotation speed of the combustion fan 531 must be set to be somewhat higher than that in the normal mode in order to keep the carbon monoxide concentration in an appropriate range. In other words, it corresponds to the case where some negative pressure acts and the rotation speed of the combustion fan 531 needs to be set high enough to cancel the negative pressure. Similarly, the second improvement mode is used when a stronger negative pressure is applied compared to the first improvement mode, and the third improvement mode is used when a stronger negative pressure is applied than the second improvement mode. This is a corresponding operation mode. The mode of operation changes sequentially during combustion depending on whether the carbon monoxide concentration is in the proper range. In the present embodiment, the presence or absence of a negative pressure and the negative pressure intensity are determined based on the number of revolutions of the combustion fan 531 required to maintain the concentration of carbon monoxide detected by the C〇 sensor 5336 in an optimum range. Has been determined. More specifically, the negative pressure intensity is determined based on which operation mode is set immediately before the stop of combustion.
したがって、 負圧の有無および負圧強度の大きさの検知はバーナー 5 4 1の燃 焼中 (図 3 2におけるステップ S 1 0 5を実行している期間) に行われ、 ポスト ファン処理では、 燃焼停止直前における動作モードを基にして燃焼停止後におけ る負圧の有無や負圧強度を推定し、 燃焼停止後における燃焼ファン 5 3 1の回転 数を選択するようになっている。  Therefore, the presence or absence of the negative pressure and the magnitude of the negative pressure intensity are detected during the burning of the burner 541, while the step S105 in FIG. 32 is being executed. Based on the operation mode immediately before the stop of the combustion, the presence or absence of the negative pressure and the negative pressure intensity after the stop of the combustion are estimated, and the rotation speed of the combustion fan 531 after the stop of the combustion is selected.
なお、 ここで言う負圧とは、 燃焼ファンが排気を室外へ排出しょうとする作用 に抗するすべての作用をいい、 換気扇の吸い出しによるもののほか、 強風などに よる逆流、 また排気筒等の有する排気通路圧損なども含まれる。  Negative pressure here refers to any action against the action of the combustion fan trying to discharge exhaust gas to the outside of the room.In addition to suction by the ventilation fan, backflow due to strong wind, etc. Exhaust passage pressure loss is also included.
負圧強度を検知する際に行う処理の流れは、 図 1 3にて既に説明した通りであ る。 即ち、 C Oセンサにより C〇濃度が上昇する度に、 燃焼ファンの回転数がよ り高い制御データに置き換えられる。 逆に C Oセンサにより C O濃度が減少する 度に、 燃焼ファンの回転数がより低い制御データに置き換えられる。 そして、 流 水スィッチがオフして燃焼が停止したら、 その時の負圧強度が記憶され、 燃焼再 開のときの燃焼ファンの回転数制御は、 その負圧強度に応じた制御データに従つ て行われる。 The flow of processing performed when detecting the negative pressure intensity is as described above with reference to FIG. In other words, each time the CO sensor increases the C〇 concentration, it is replaced with control data with a higher rotation speed of the combustion fan. Conversely, every time the CO concentration is reduced by the CO sensor, the combustion fan speed is replaced with lower control data. Then, when the running water switch is turned off and combustion stops, the negative pressure intensity at that time is stored and the combustion is restarted. When the combustion fan is opened, the rotation speed of the combustion fan is controlled according to the control data corresponding to the negative pressure intensity.
図 3 4は、 ポストファン処理において給湯機 5 1 0の行う動作の流れを表した ものである。 水量センサ 5 5 4によって通水の停止が検出されると、 ガス電磁弁 FIG. 34 shows a flow of the operation performed by the water heater 5110 in the post-fan processing. When the stoppage of water flow is detected by the water volume sensor 5 5 4, the gas solenoid valve
4 2、 ガス比例弁 5 4 3、 元ガス電磁弁 5 4 4を閉じてバーナー 5 4 1へのガス の供給を停止し燃焼を停止させる。 その後、 第 1段階、 第 2段階、 第 3段階のそ れぞれにおける燃焼ファン 5 3 1の回転数と、 各段階を維持すべき時間とを求め る (ステップ S 3 0 1 ) 。 すなわち、 燃焼停止直前における負圧の有無と、 設置 時に設定されている排気筒延長距離とを基にして先に説明した 6種類の中のいず れか 1つのデータテーブルを選択する。 次に、 選択したデータテ一ブルに登録 されている値に従った第 1段階の回転数により燃焼ファン 5 3 1を回転させ (ス テツプ S 3 0 2 ) 、 第 2段階へ移行すべき時間が到来するまでの間 (ステップ S 3 0 3 ; N ) 、 当該回転数を維持する。 ただし、 第 2段階へ移行する前に通水が 確認されたときは (ステップ S 3 0 4 ; Y ) 、 図 3 2のステップ S 1 0 4へ戻り 、 すぐにバーナー 4 1を点火する。 また第 1段階における燃焼ファン 5 3 1の回 転数は、 負圧の有無のみならず負圧強度の大きさに応じて選択される。 42. Close the gas proportional valve 543 and the original gas solenoid valve 5444 to stop gas supply to the burner 5441 and stop combustion. Thereafter, the number of revolutions of the combustion fan 531 in each of the first stage, the second stage, and the third stage, and the time to maintain each stage are determined (step S301). That is, one of the six data tables described above is selected based on the presence / absence of a negative pressure immediately before the stop of combustion and the exhaust cylinder extension distance set at the time of installation. Next, the combustion fan 531 is rotated at the first stage rotation speed according to the value registered in the selected data table (step S302), and the time to shift to the second stage is obtained. Until the arrival (Step S303; N), the rotation speed is maintained. However, if water flow is confirmed before moving to the second stage (step S304; Y), the flow returns to step S104 in Fig. 32, and the burner 41 is immediately ignited. The number of revolutions of the combustion fan 531 in the first stage is selected according to not only the presence or absence of the negative pressure but also the magnitude of the negative pressure intensity.
第 1段階において、 燃焼ファン 5 3 1を高速に回転させることで、 燃焼停止後 に燃焼室 5 2 1や排気筒 5 2 7内に残留する排気は、 排気筒 5 2 7を通じて屋外 へ排出される。 また、 この際の回転数を負圧の有無と排気筒延長距離のみならず 、 負圧強度の大きさを考慮して設定するので、 換気扇等が作動している場合であ つても排気が室内へ逆流しないために必要な風量を確保することができる。 さらに、 高速で燃焼ファン 5 3 1を回転させることにより、 燃焼停止後の余熱 を効率よく放熱でき、 燃焼停止後比較的すぐに (第 1段階継続中に) 通水が再開 された場合であっても、 オーバーシュ一ト現象を起すことなく出湯することがで きる。  In the first stage, by rotating the combustion fan 531 at high speed, the exhaust remaining in the combustion chamber 521 and the exhaust pipe 527 after the combustion is stopped is discharged outside through the exhaust pipe 527. You. In addition, since the rotation speed at this time is set in consideration of not only the presence / absence of a negative pressure and the length of the exhaust cylinder extension but also the magnitude of the negative pressure strength, even when the ventilation fan or the like is operating, the exhaust air is indoors. It is possible to secure the necessary air volume so as not to flow backward. Furthermore, by rotating the combustion fan 531 at high speed, the residual heat after the combustion was stopped can be efficiently radiated, and the water flow was restarted relatively shortly after the combustion was stopped (while continuing the first stage). Even so, hot water can be supplied without causing an overshoot phenomenon.
通水が再開されること無く第 1段階の回転維持時間が経過したとき (ステップ When the rotation maintenance time of the first stage has elapsed without restarting water flow (step
5 3 0 3 ; Y ) 、 燃焼ファン 5 3 1の回転数を第 2段階の回転数へ低下させ (ス テツプ S 3 0 5 ) 、 その後第 3段階へ移行すべき時間が到来するまでの間、 該回 転数を維持する (ステップ S 3 0 6 ; N) 。 このように、 残留する排気の排出が終了した後、 第 1段階に比べて燃焼ファン 3 1の回転数を下げるので、 熱交換器 5 2 2の過冷却が防止され、 Q機能をより 長く維持することができる。 5303; Y), the number of revolutions of the combustion fan 531 is reduced to the second-stage rotation speed (Step S305), and thereafter until the time to shift to the third stage comes. The rotation number is maintained (step S306; N). In this way, after the residual exhaust has been discharged, the number of revolutions of the combustion fan 31 is reduced compared to the first stage, so that the supercooling of the heat exchanger 522 is prevented and the Q function is maintained for a longer time can do.
第 2段階の回転維持時間が経過したとき (ステップ S 3 0 6 ; Y ) 、 燃焼ファ ン 5 3 1の回転数を第 3段階の回転数へ低下させ (ステップ S 3 0 8 ) 、 第 3段 階の回転維持時間が経過するまで (ステップ S 3 0 9 ; N ) 該回転数を維持する 。 このように点火に必要な回転数で燃焼ファン 3 1の回転を維持するので、 いつ 通水が再開されても、 通水の検出とほぼ同時にバーナー 5 4 1を点火でき、 加熱 されないままの水が給湯機 5 1 0から出る、 アンダーシュート現象の発生を防止 することができる。  When the rotation maintaining time of the second stage has elapsed (step S306; Y), the rotational speed of the combustion fan 531 is reduced to the rotational speed of the third stage (step S308), and the rotation speed of the third stage is reduced. The rotation speed is maintained until the rotation maintaining time of the step elapses (step S309; N). In this way, the rotation of the combustion fan 31 is maintained at the number of revolutions required for ignition, so that the burner 541 can be ignited almost simultaneously with the detection of water flow, regardless of when water flow is resumed, and water that is not heated It is possible to prevent the occurrence of an undershoot phenomenon, which occurs from the water heater 5110.
第 3段階の回転維持時間が経過したとき (ステップ S 3 0 9 ; Y ) 、 燃焼ファ ン 5 3 1の回転を停止させて (ステップ S 3 1 1 ) ポストファン処理を終了し、 図 3に示したステップ S 1 0 1へ戻り休止状態になる。 これ以後に通水があった ときは、 燃焼ファン 5 3 1の回転が規定回転数に達したことを確認するプリパー ジ処理を行った後、 バーナー 5 4 1が点火される。  When the rotation maintaining time of the third stage has elapsed (step S309; Y), the rotation of the combustion fan 531 is stopped (step S311), and the post-fan processing is completed. The process returns to the indicated step S101 to be in the sleep state. After that, when there is water flow, a pre-purging process is performed to confirm that the rotation of the combustion fan 531 has reached a specified speed, and then the burner 541 is ignited.
なお、 第 2段階、 第 3段階の途中で通水が再開されたときは (ステップ S 3 0 7 ; Y、 またはステップ S 3 1 0 ; Υ ) 、 第 1段階の場合と同様、 図 3のステツ プ S 1 0 4へ戻り、 すぐにバーナー 5 4 1を点火する。  When water flow is resumed in the middle of the second and third stages (step S307; Y or step S310; 同 様), as in the first stage, Return to step S104 and immediately ignite burner 541.
以上説明した実施の形態では、 ポストファン処理において段階的に燃焼ファン 3 1の回転数を下げるようにしたが、 第 2段階以降は連続的に燃焼ファン 3 1の 回転数を除々に下げるようにしてもよい。  In the embodiment described above, the number of revolutions of the combustion fan 31 is reduced stepwise in the post-fan processing. However, in the second and subsequent stages, the number of revolutions of the combustion fan 31 is reduced gradually. You may.
また、 第 1段階での燃焼ファン 5 3 1の回転数を負圧強度の大きさに応じて変 更するようにしたが、 第 2段階以降における燃焼ファン 5 3 1の回転数について も負圧強度の大きさに応じて細かく設定するようにしても良い。  In addition, the rotation speed of the combustion fan 531 in the first stage is changed according to the magnitude of the negative pressure, but the rotation speed of the combustion fan 531 in the second and subsequent stages is also changed to the negative pressure. You may make it set finely according to the magnitude of intensity | strength.
第 1段階で負圧強度を考慮するのは、 負圧の大きさに係わらず、 排気の逆流を 適切に防止するためであり、 第 2段階以後については逆流防止の要請は無いが、 負圧強度を考慮して燃焼ファン 5 3 1の回転数を制御すれば、 Q機能をより長く 維持させることが可能になる。  The reason for considering the negative pressure intensity in the first stage is to prevent the backflow of exhaust gas properly regardless of the magnitude of the negative pressure. If the rotation speed of the combustion fan 531 is controlled in consideration of the strength, the Q function can be maintained for a longer time.
さらに実施の形態では各段階における燃焼ファン 5 3 1の回転数およびそれぞ れの段階における回転維持時間を予めデータテーブルに登録するようにしたが、 負圧の有無、 排気筒延長距離および熱交サ一ミス夕 5 7 2によって検出される熱 交換器 5 2 2の温度に基づき燃焼ファン 5 3 1の回転数や回転維持時間をダイナ ミックに制御するようにしてもよい。 Further, in the embodiment, the rotation speed of the combustion fan 5 The rotation maintenance time at this stage was registered in the data table in advance, but the presence or absence of negative pressure, the length of the exhaust stack, and the temperature of the heat exchanger 5 The rotation speed and the rotation maintaining time of the combustion fan 531 may be dynamically controlled based on the above.
たとえば、 負圧の有無および排気筒延長距離を基にして残留する排気が室内に 逆流しない最低の回転数を求め、 第 1段階においては、 該最低の回転数以上であ つて、 かつ出湯が再開されたとき許容上限温度を越える湯が出湯されない範囲で 放熱量が最も少なくなる回転数によって燃焼ファン 5 3 1を回転させる。  For example, based on the presence or absence of a negative pressure and the length of the exhaust stack, determine the minimum rotation speed at which the remaining exhaust gas does not flow back into the room.In the first stage, at least the minimum rotation speed and restart of hot water Then, the combustion fan 531 is rotated at a rotation speed at which the amount of heat radiation is minimized within a range in which hot water exceeding the allowable upper limit temperature is not discharged.
すなわち、 熱交サーミス夕 5 7 2で検出される温度を基にして、 許容範囲の上 限温度を越えない範囲で、 できるだけ熱交換器 5 2 2内の湯温が高温に保持され るよう燃焼ファン 5 3 1の回転数を制御する。 第 2段階、 第 3段階では、 残留す る排気を排出し得る最低の回転数にかかわらず、 熱交サーミス夕 5 7 2で検出さ れる温度を基に許容上限温度の湯が出湯されない範囲で極力低い回転数となるよ う燃焼ファン 5 3 1の回転数を制御する。 このように熱交換器 5 2 2内の湯温を 基にしてダイナミックに燃焼ファン 5 3 1の回転数を制御することにより、 Q機 能をさらに長時間に渡って維持することが可能になる。  In other words, based on the temperature detected by the heat exchange thermistor 572, combustion is performed so that the temperature of the hot water in the heat exchanger 522 is maintained as high as possible without exceeding the upper limit of the allowable range. Controls the number of revolutions of fan 5 3 1. In the second and third stages, regardless of the minimum rotational speed at which the residual exhaust gas can be exhausted, the maximum allowable temperature of hot water cannot be discharged based on the temperature detected by the heat exchange thermistor 572. The number of rotations of the combustion fan 531 is controlled so that the number of rotations is as low as possible. By dynamically controlling the number of revolutions of the combustion fan 531 based on the temperature of the hot water in the heat exchanger 5222 in this manner, the Q function can be maintained for a longer time. .
このほか、 実施の形態では、 負圧の有無を燃焼停止直前に検出された一酸化炭 素濃度を基にして検知するようにしたが、 別途、 設けた負圧センサによって検知 するようにしてもよい。 また、 燃焼ファン 5 3 1を所定の回転数で回転させる際 に要する電流量の大小を基にして負圧の有無や排気抵抗の大きさを検出するよう にしてもよい。  In addition, in the embodiment, the presence or absence of the negative pressure is detected based on the concentration of carbon monoxide detected immediately before the stop of the combustion, but may be detected by a separately provided negative pressure sensor. Good. Further, the presence or absence of negative pressure and the magnitude of exhaust resistance may be detected based on the amount of current required when rotating the combustion fan 531 at a predetermined rotation speed.
すなわち、 換気扇等により負圧が発生している場合には、 それだけ排気抵抗が 増大し同一回転数でも送風量が減るので、 ある回転数で燃焼ファン 5 3 1を回転 させる際に要する電流量あるいは消費電力が減^、する。 そこで、 現在の回転数と その際の電流量とを基にして負圧の有無を検知することができる。 なお、 この場 合には、 燃焼が停止した後であっても負圧の有無を検知することが可能になる。 また実施の形態では、 燃焼室 5 2 1の排気側から燃焼排気を吸引ずる方式をと つているが、 室内の空気を燃焼用に取り入れ、 排気を屋外に排出する強制排気式 であれば、 燃焼室 5 2 1の給気側から燃焼用空気を押し込む形式であっても良い 。 また、 一般に燃焼量が少ないほど空気不足による影響を受けやすいので、 3 3に示す燃焼量とファン回転数の関係は、 点線で示すような形であつてもかまわ ない。 That is, when a negative pressure is generated by a ventilation fan or the like, the exhaust resistance increases and the amount of air blows decreases even at the same rotation speed, so that the amount of current required to rotate the combustion fan 531 at a certain rotation speed or Power consumption is reduced. Thus, the presence or absence of a negative pressure can be detected based on the current rotational speed and the current amount at that time. In this case, it is possible to detect the presence or absence of a negative pressure even after the combustion has stopped. Further, in the embodiment, a method is employed in which combustion exhaust is sucked from the exhaust side of the combustion chamber 521, but a forced exhaust system is employed in which indoor air is taken in for combustion and exhaust is discharged to the outside. If so, the combustion air may be pushed in from the air supply side of the combustion chamber 52 1. In general, the smaller the combustion amount, the more easily the effect of air shortage occurs. Therefore, the relationship between the combustion amount and the fan speed shown in 33 may be as shown by the dotted line.
第 5の発明の実施の形態例にかかる給湯機によれば、 燃焼室内の空気を室内へ 吸い出す向きの負圧が発生しているか否かを検出し、 燃焼停止後における燃焼フ アンの回転数を、 負圧の有無に応じて変更したので、 室内が負圧状態であっても 排気が室内へ逆流することを防止できる。  According to the water heater according to the fifth embodiment of the present invention, it is detected whether or not a negative pressure for sucking air in the combustion chamber into the room is generated, and the number of rotations of the combustion fan after stopping the combustion is detected. Is changed according to the presence or absence of a negative pressure, so that it is possible to prevent exhaust gas from flowing back into the room even when the room is in a negative pressure state.
また、 燃焼停止後、 燃焼ファンを当初、 高回転で駆動するので、 燃焼停止後比 較的すぐに出湯を再開しても、 燃焼停止後の余熱によって許容上限温度を越える 湯の出湯するオーバーシュート現象の発生を防止することができる。  Also, after the combustion is stopped, the combustion fan is initially driven at a high speed. Can be prevented from occurring.
さらに、 燃焼停止後の時間の経過に従って次第に燃焼ファンの回転を低下させ たので、 熱交換器が短時間のうちに過冷却されず、 Q機能をより長く維持するこ とができる。  Furthermore, the rotation of the combustion fan is gradually reduced as time elapses after stopping the combustion, so that the heat exchanger is not overcooled in a short time, and the Q function can be maintained for a longer time.
また、 冷却の必要性がなくなった後、 燃焼ファンの回転を設定可能な最小回転 数で維持したので、 出湯が再開されたとき、 すぐにバーナーを点火でき、 加熱さ れないままの水が一時的に出ることによるアンダーシュート現象の発生を防止す ることができる。  In addition, after the need for cooling was eliminated, the combustion fan rotation was maintained at a configurable minimum speed, so that when tapping was resumed, the burner could be ignited immediately and the unheated water was temporarily removed. It is possible to prevent the occurrence of the undershoot phenomenon due to the erroneous appearance.
さらに、 燃焼ファンの回転数および回転時間を排気筒の延長距離をも考慮に入 れて変更したので、 設置状況にかかわらず排気および Q機能の維持を適切に行う ことができる。  Furthermore, since the number of rotations and the rotation time of the combustion fan were changed taking into account the extension distance of the exhaust stack, the exhaust and Q functions can be maintained properly regardless of the installation status.
また、 C〇センサを利用して負圧の有無およびその大きさを検出するようにし たので、 別途負圧センサを設ける必要がなく、 装置構成を簡略にすることができ  In addition, since the presence or absence of the negative pressure and the magnitude of the negative pressure are detected using the C〇 sensor, there is no need to provide a separate negative pressure sensor, and the device configuration can be simplified.
[第 6の発明] [Sixth invention]
第 6の発明は、 排気口の逆流防止弁の構造に関する。  The sixth invention relates to a structure of a check valve at an exhaust port.
徒来、 屋内に設置される給湯器等の燃焼装置では、 その器具ケース内に設けら れた燃焼室からの排気は、 燃焼室に連通した排気経路の最下流に設けられた排気 筒を通して、 燃焼ファンにより強制的に行なわれていた。 For example, in a combustion device such as a water heater installed indoors, the exhaust gas from the combustion chamber provided in the appliance case is provided at the most downstream of the exhaust path communicating with the combustion chamber. It was forced through a cylinder and by a combustion fan.
前記排気筒の先端には、 通常、 排気筒とほぼ等しい内径に形成された煙突力 続されている。 この煙突の先端は屋外へ延びており、 前記燃焼ファンの停止時や 風の強い日等には、 煙突の先端開口より吹き込む空気によって、 排気が前記排気 筒を通って器具ケース内部まで逆流する虞れがある。  At the tip of the exhaust stack, there is usually connected a chimney force having an inner diameter substantially equal to that of the exhaust stack. The tip of this chimney extends to the outside, and when the combustion fan is stopped or when the wind is strong, the exhaust air may flow back into the appliance case through the exhaust pipe due to the air blown from the chimney tip opening. There is.
このような排気の逆流は、 逆流空気に混在していたごみ等が燃焼室の内壁に付 着して、 それにより、 燃焼不良を起こす等の問題が生じる。 かかる事態を未然に 防ぐ為、 一般に排気筒の内部には、 排気の逆流させない方向に閉じるいわゆるバ 夕フライ弁が設けられていた。 また、 前記排気経路の適所には、 燃焼異常を検出 するための排気センサが設けられており、 この排気センサから得られる情報を統 括的に解析して燃焼ファンの回転制御等が行われていた。  Such backflow of exhaust gas causes a problem that dust and the like mixed in the backflow air adhere to the inner wall of the combustion chamber, thereby causing poor combustion. In order to prevent such a situation from occurring, generally, a so-called bath fly valve is provided inside the exhaust stack so as to close in a direction in which exhaust gas does not flow backward. An exhaust sensor for detecting a combustion abnormality is provided at an appropriate position in the exhaust path, and the information obtained from the exhaust sensor is comprehensively analyzed to control the rotation of the combustion fan. Was.
しかしながら、 従来の燃焼装置に設けられるバタフライ弁は、 それ自体が比較 的狭い流路の排気筒内部を塞いでしまう様に設けられるため、 通常の排気時にお いても圧力の損失が大きくなり、 燃焼ファンに過度の負荷がかかり、 騒音等の問 題があった。  However, since the butterfly valve provided in the conventional combustion device is provided so as to block the inside of the exhaust pipe of a relatively narrow flow passage, the pressure loss becomes large even during normal exhaust, and the combustion becomes difficult. Excessive load was applied to the fan, causing problems such as noise.
また、 燃焼室から排出される排気の状態は、 排気経路内の位置によってバラッ キがあるので、 これを低減するための特別な部材を排気経路に設けたり、 排気セ ンサの最適な設置箇所を各種実験を通じて選定する必要があり、 コストアップ並 びに設計工数の増大を招いていた。  Also, the state of the exhaust gas discharged from the combustion chamber varies depending on the position in the exhaust path.Therefore, a special member to reduce this is provided in the exhaust path, and the optimal installation location of the exhaust sensor is determined. It was necessary to select through various experiments, which led to an increase in cost and an increase in design man-hours.
第 6の発明は、 排気経路における圧力損失を最小限に抑えつつ、 排気経路での 排気の逆流を簡易な構成で防ぐことができ、 また、 コストアップを招くことなく 、 排気センサによる排気の異常を適切に検出することができる燃焼装置を提供す 図 3 5〜図 4 3は第 6の発明の実施の形態を示している。 本実施の形態に係る 燃焼装置 6 1 0は、 屋内設置タイプのガス強制排気式燃焼式の給湯器である。 燃 焼装置 6 1 0の器具ケース 6 1 1内には、 燃焼室 6 3 0や給排気用の燃焼ファン 6 3 6、 燃焼運転を制御する制御装置等が収納されており、 燃焼用の空気をフロ ントカバー 6 1 1 Bに設けた吸気用開口部 6 1 3から取り入れ、 燃焼後の排気を 排気筒 6 4 4を通じて屋外に排出するように構成されている。 図 3 9に示すように、 器具ケース 6 1 1は、 前面側が開口した箱型のケース本 体 6 1 1 Aと、 該ケース本体 6 1 1 Aの正面側開口を覆う着脱自在なフロントカ バー 6 1 1 Bとから成る。 ケース本体 6 1 1 Aの天井壁には排気筒 6 4 4を通す 切欠 6 1 2が形成されている。 フロントカバ一 6 1 1 Bの略中央より下側の位置 には、 燃焼用空気を取り込むための吸気用開口部 6 1 3が横長矩形状に設けられ ている。 吸気用開口部 6 1 3には、 ごみ等の侵入を防ぐ吸気フィルター 6 1 4が 装着されている。 According to the sixth aspect of the present invention, it is possible to prevent the backflow of exhaust gas in the exhaust path with a simple configuration while minimizing pressure loss in the exhaust path. FIG. 35 to FIG. 43 show an embodiment of the sixth invention. The combustion device 6 10 according to the present embodiment is a gas water heater of a gas forced exhaust combustion type installed indoors. A combustion chamber 6300, a combustion fan 636 for air supply and exhaust, a control device for controlling the combustion operation, and the like are housed in the appliance case 611 of the combustion device 610. It is configured to take in air from the intake opening 613 provided in the front cover 6111B, and discharge the exhaust gas after combustion outside through the exhaust pipe 6444. As shown in FIG. 39, the instrument case 6 11 is composed of a box-shaped case body 6 11 A with an open front side, and a detachable front cover 6 that covers the front side opening of the case body 6 11 A. 1 1B. A notch 6 12 through which the exhaust pipe 6 4 4 passes is formed in the ceiling wall of the case body 6 11 A. An intake opening 613 for taking in combustion air is provided in a horizontally-long rectangular shape at a position below the approximate center of the front cover 611B. The intake opening 6 13 is provided with an intake filter 6 14 for preventing intrusion of dust and the like.
吸気用開口部 6 1 3の一端側下方には、 リモコン用の開口部 6 1 5が設けられ ている。 この開口部 6 1 5は、 リモコン 6 1 6が合致することで移動不能に位置 決めされ、 該リモコン 6 1 6の操作面を器具ケース 6 1 1の外に表出させる。 リ モコン 6 1 6には、 燃焼運転を O N Z O F Fしたり、 給湯の設定温度を指定する 等、 所定操作用の各種スィッチが設けられている。  An opening 615 for a remote controller is provided below one end of the opening 615 for intake. The opening 615 is immovably positioned when the remote controller 616 matches, and the operation surface of the remote controller 616 is exposed outside the instrument case 611. The remote control 616 is provided with various switches for predetermined operations such as ONZOFF of combustion operation and designation of a set temperature of hot water supply.
図 3 9に示すように、 ケース本体 6 1 1 A内の燃焼室 6 3 0の上部には、 ガス を燃焼させて得た熱によって水を暖める熱交換器 6 3 1が配置されている。 また 、 燃焼室 6 3 0内には、 ガス供給パイプに連通接続されたパーナ一が設けられて おり、 熱交換器 6 3 1には、 給水パイプ 6 3 3と給湯パイプ 6 3 2が接続されて いる。 また、 燃焼室 6 3 0および熱交換器 6 3 1の側方には防振箱 6 3 4が配設 されている。 熱交換器 6 3 1の上方には、 燃焼室 6 3 0から出る排気を排出す るための排気ケース 6 3 5が配設され、 排気ケース 6 3 5には、 モータ一 6 3 7 で回転駆動する燃焼ファン 6 3 6の吸込口が設けられている。 また、 排気ケース 6 3 5は排気ダクト 6 3 8を介して、 防振箱 3 4の上側に配設されたチャンバ室 6 4 0に連通接続されている。 ここで排気ケース 6 3 5、 排気ダクト 6 3 8、 チ ヤンバ室 6 4 0、 それに排気筒 6 4 4が排気経路を成している。  As shown in FIG. 39, a heat exchanger 631 for warming water with heat obtained by burning gas is disposed above a combustion chamber 630 in the case body 611A. In addition, a burner connected to a gas supply pipe is provided in the combustion chamber 63 0, and a water supply pipe 6 33 and a hot water supply pipe 6 32 are connected to the heat exchanger 63 1. ing. Further, an anti-vibration box 634 is provided beside the combustion chamber 630 and the heat exchanger 631. Above the heat exchanger 631, an exhaust case 635 for exhausting exhaust gas from the combustion chamber 630 is provided, and the exhaust case 6353 is rotated by a motor 6337. A suction port for a driven combustion fan 636 is provided. In addition, the exhaust case 635 is connected to a chamber room 640 provided above the vibration isolating box 34 via an exhaust duct 358. Here, an exhaust case 635, an exhaust duct 638, a chamber 640, and an exhaust pipe 644 constitute an exhaust path.
チャンバ室 6 4 0は、 図 3 5〜図 3 8 4に示す形状に形成された箱型空間であ り、 排気の流れる方向と垂直な断面の面積が排気ダクト 6 3 8のそれよりも大き く、 燃焼ファン 6 3 6からの排気流の流速を低下させる機能を備えている。 この チャンバ室 6 4 0の前面壁 6 4 1には正方形の排気入口 6 4 2が開設され、 該排 気入口 6 4 2に排気ダクト 6 3 8が連通接続されている。 また、 天井壁 6 4 3に は器具ケース 6 1 1の上方へ突出させる排気筒 6 4 4が連通接続されている。 チャンバ室 6 4 0の排気入口 6 4 2には、 該排気入口 6 4 2を開いて排気を流 入させる開状態と、 排気入口 6 4 2を塞いで排気の逆流を防ぐ閉状態とに変位可 能な逆流防止弁 6 5 0が設けられている。 更に詳しく言えば、 逆流防止弁 6 5 0 は、 排気入口 6 4 2の上端縁上方に固設されたガイ ド部材 6 5 3に対し、 枢軸ピ ン 6 5 2を介して揺動可能に枢支されている。 The chamber 640 is a box-shaped space formed in the shape shown in FIGS. 35 to 384, and has a larger cross-sectional area perpendicular to the exhaust gas flow direction than that of the exhaust duct 636. In addition, it has a function to reduce the flow velocity of the exhaust flow from the combustion fan 636. A square exhaust inlet 642 is opened in the front wall 641 of the chamber room 64, and an exhaust duct 638 is connected to the exhaust inlet 642. Further, an exhaust pipe 644 projecting upward from the instrument case 611 is connected to the ceiling wall 644. The exhaust port 644 of the chamber 640 is displaced between an open state in which the exhaust port 644 is opened and exhaust gas is introduced, and a closed state in which the exhaust port 644 is closed to prevent exhaust gas from flowing back. A possible non-return valve 650 is provided. More specifically, the non-return valve 650 pivots via a pivot pin 652 with respect to a guide member 653 fixed above the upper end edge of the exhaust port 642. Supported.
図 4 0および図 4 1に示すように、 逆流防止弁 6 5 0は排気入口 6 4 2を塞ぎ 得る大きさ '形状に加工された板材からなり、 その上端縁 6 5 O aには、 枢軸ピ ン 6 5 2を左右方向に挿通させるナックル部 6 5 1が形成されている。 かかる逆 流防止弁 6 5 0は、 前記排気入口 6 4 2から排気が流入する際は該排気圧により 図 3 6中で二点破線で示す開状態となる一方、 排気入口 6 4 2から排気が流入し ない際は自重で図 3 5中で破線で示す閉状態となるように、 枢軸ピン 6 5 2を回 動中心として揺動する。  As shown in FIG. 40 and FIG. 41, the check valve 65 is made of a plate processed into a shape having a size that can block the exhaust port 642, and the upper edge 65 Oa has a pivot shaft. A knuckle portion 651 through which the pin 652 is inserted in the left-right direction is formed. When the exhaust gas flows in from the exhaust inlet 642, the check valve 650 is opened by the exhaust pressure as shown by a two-dot broken line in FIG. When the inflow does not flow, it swings with the pivot pin 652 as the center of rotation so that the closed state shown by the broken line in FIG.
図 4 2および図 4 3に示すように、 ガイド部材 6 5 3は、 排気入口 6 4 2の上 端縁上方に固設するための取付片 6 5 4 a , 6 5 4 bと、 枢軸ピン 6 5 2を貫装 する回動孔 5 6が穿設されているカバー部 6 5 5とから成る。 また、 チャンバ室 6 4 0内の上端一端側には、 排気中の一酸化炭素濃度を検出するための排気セン サ 6 6 1が取付けられている。 前記逆流防止弁 6 5 0は、 排気圧により開状態に 揺動した際に、 図 3 6中で二点破線で示す位置に揺動し、 センサ一ケース 6 6 0 内の排気センサ 6 6 1に排気が直接当たらないようにする風よけとなる。  As shown in FIG. 42 and FIG. 43, the guide member 653 is provided with mounting pieces 6554a, 6554b for fixing above the upper edge of the exhaust port 642, and a pivot pin. And a cover portion 655 in which a rotating hole 56 through which the hole 652 is inserted is formed. An exhaust sensor 661 for detecting the concentration of carbon monoxide in the exhaust gas is attached to one end of the upper end of the chamber 640. When the check valve 650 swings to the open state due to the exhaust pressure, the check valve 650 swings to the position shown by the two-dot dashed line in FIG. 36, and the exhaust sensor 661 in the sensor case 660 is opened. It prevents wind from directly hitting the wind.
更に、 より排気センサ 6 6 1に当る排気を少なく したければ、 図 3 8中にて二 点破線で示す位置に図 4 4に示すセンサーケース 6 6 0を設けてもよい。 また、 逆流防止弁 6 5 0が閉状態のときには、 排気入口 6 4 2と逆流防止弁 6 5 0との 間には隙間があるが、 その上方には図 3 5に示されるように、 ガイド部材 6 5 3 により、 他の三方は図 2 6に示される排気入口 6 4 2の切起しにより塞がれるよ うになっている。  Further, if it is desired to further reduce the exhaust gas hitting the exhaust sensor 661, a sensor case 660 shown in FIG. 44 may be provided at a position shown by a two-dot broken line in FIG. When the check ring 65 is in the closed state, there is a gap between the exhaust inlet 642 and the check ring 65, but above the guide hole, as shown in FIG. By the member 653, the other three sides are closed by the cut-and-raised exhaust inlet 642 shown in FIG.
図 3 9に示すように、 ケース本体 6 1 1 Aの一側壁側にはカバー部材 6 2 0が 装着され、 このカバー部材 6 2 0内に、 制御装置が内装されている。 制御装置は 、 設定温度の湯を作り出すようにガス供給量を可変制御し、 かつガス量に見合う ように燃焼ファン 6 3 6の回転制御を行なって、 主に燃焼運転を制御するもので あり、 C P U, R O M, R A M等を含むマイクロコンピュー夕から成る。 As shown in FIG. 39, a cover member 62 is attached to one side wall of the case body 611A, and a control device is housed inside the cover member 62. The controller mainly controls the combustion operation by variably controlling the gas supply amount so as to produce hot water at the set temperature, and controlling the rotation of the combustion fan 636 to match the gas amount. Yes, consists of a microcomputer including a CPU, ROM, RAM, etc.
次に作用を説明する。 図 3 9に示すように燃焼装置 6 1 0では、 燃焼室 6 3 0 で発生した排気は燃焼ファン 6 3 6の回転により、 先ず排気ケース 6 3 5に導か れ、 続いて排気ダクト 6 3 8を通りチャンバ室 6 4 0に導かれ、 該チャンバ室 6 4 0内で排気流の流速は低下し、 最後に排気筒 6 4 4から器具ケース 6 1 1の外 部に排出される。  Next, the operation will be described. As shown in FIG. 39, in the combustion device 6 10, the exhaust generated in the combustion chamber 6 30 is first guided to the exhaust case 6 35 by the rotation of the combustion fan 6 36, and then the exhaust duct 6 3 8 The exhaust gas is guided to the chamber 640 through the chamber 640, and the flow velocity of the exhaust flow decreases in the chamber 640, and is finally discharged from the exhaust pipe 644 to the outside of the instrument case 611.
排気ダクト 6 3 8を通る排気がチャンバ室 6 4 0内に流入する際、 かかる排気 圧によりチャンバ室 6 4 0の排気入口 6 4 2にある逆流防止弁 6 5 0は、 枢軸ピ ン 6 5 2を回動中心として上方に容易に大きく揺動し、 排気をスムーズにチャン バ室 6 4 0内に導き入れる。  When the exhaust gas passing through the exhaust duct 638 flows into the chamber 640, the exhaust pressure causes the check valve 650 at the exhaust inlet 624 of the chamber 640 to move to the pivot pin 65. It swings easily and upwardly around the center of rotation of 2 to guide the exhaust gas smoothly into the chamber 640.
ここで逆流防止弁 6 5 0は、 従来の如く比較的狭い流路の排気筒 6 4 4内部に 位置して排気流に対する余分な抵抗となることがなく、 流路の広いチャンバ室 6 4 0内で開閉するため、 該逆流防止弁 6 5 0自体による排気時の圧力の損失を極 力抑えることができる。  Here, the non-return valve 650 is located inside the exhaust pipe 644 having a relatively narrow flow path as in the prior art, so that there is no extra resistance to the exhaust flow, and the chamber chamber 640 having a wide flow path is provided. Since the check valve opens and closes, the loss of pressure at the time of exhaustion due to the check valve itself can be minimized.
チャンバ室 6 4 0内に排気入口 6 4 2から排気が流入しない場合、 前記逆流防 止弁 6 5 0はその自重で閉状態となる。 また、 排気筒 6 4 4から強い風が逆流方 向に吹き込まれたりした場合も、 前記逆流防止弁 6 5 0は閉状態に係止する。 こ のように簡易な構成により、 確実にチャンバ室 6 4 0内において排気経路におけ る屋外空気の逆流を防止することができる。  When the exhaust gas does not flow into the chamber chamber 64 from the exhaust inlet 642, the check valve 6550 is closed by its own weight. Also, when a strong wind is blown in the reverse flow direction from the exhaust pipe 644, the check valve 650 is locked in the closed state. With such a simple configuration, it is possible to reliably prevent the backflow of the outdoor air in the exhaust path in the chamber chamber 640.
また、 排気圧により前述の如く逆流防止弁 6 5 0が開状態に変位している際に は、 図 3 8に示されるように排気センサ 6 6 1の周囲に排気流が直接的に当たら ず、 かつ排気の澱まない状態が形成され、 該排気センサ 6 6 1により一酸化炭素 濃度等の排気の状態を精度良く検出することができる。  Further, when the check valve 6550 is displaced to the open state due to the exhaust pressure as described above, the exhaust flow does not directly hit the periphery of the exhaust sensor 661, as shown in FIG. In addition, a state in which the exhaust gas does not remain is formed, and the exhaust gas sensor 661 can accurately detect the exhaust gas condition such as the concentration of carbon monoxide.
なお、 本発明に係る燃焼装置は前記実施の形態に限定されるものではなく、 様 々な具体的な構成を採り得ることができ、 チャンバ室の排気入口やこれを開閉す る逆流防止弁は、 図示した形状 ·大きさに限定されるものではない。 また、 本実 施の形態では、 燃焼装置を給湯器として説明したが、 風呂釜や暖房機等の他の装 置に適用してもかまわない。  The combustion device according to the present invention is not limited to the above-described embodiment, and may have various specific configurations. The exhaust port of the chamber and the check valve for opening and closing the exhaust port may be used. However, it is not limited to the illustrated shape and size. Further, in the present embodiment, the combustion device is described as a water heater, but may be applied to other devices such as a bath kettle and a heater.
第 6の発明に係る燃焼装置によれば、 排気筒の手前上流側に、 該排気筒より流 路面積が大きなチャンバ室を設け、 該チャンバ室の排気入口に、 該排気入口を開 いて排気を流入させる開状態と、 排気入口を塞いで排気の逆流を防ぐ閉状態とに 変位可能な逆流防止弁を設けたから、 従来の如く逆流防止弁が、 比較的狭い流路 の排気筒内部に位置して排気流に対する余分な抵抗となることがなく、 逆流防止 弁は、 流路の広いチャンバ室内で開閉するため、 該逆流防止弁自体による排気時 の圧力の損失を極力抑えることができる。 According to the combustion device of the sixth invention, the exhaust gas flows from the exhaust stack upstream of the exhaust stack. A chamber with a large passage area is provided. At the exhaust inlet of the chamber, a backflow prevention switchable between an open state where the exhaust inlet is opened and exhaust gas flows in, and a closed state where the exhaust inlet is closed to prevent the exhaust gas from flowing backward. Since the valve is provided, the non-return valve is located inside the exhaust pipe of a relatively narrow flow path as in the related art, so that there is no extra resistance to the exhaust flow. Since the valve opens and closes, the loss of pressure at the time of exhaustion due to the check valve itself can be minimized.
[第 7の発明] [Seventh invention]
第 7の発明は、 感度良く室内の負圧状態を検出することができる燃焼装置に関 し、 既に述べたフレームロツ ド電流を利用して室内の負圧状態を検出する燃焼装 置に関する。  The seventh invention relates to a combustion device capable of detecting a negative pressure state in a room with high sensitivity, and relates to a combustion device detecting a negative pressure state in a room using the flame rod current described above.
図 6、 図 7、 図 1 0、 図 1 1、 図 1 2、 図 1 6にて、 室内が通常状態から負圧 状態に変化する時、 負圧状態から通常状態に変化する時のパーナの火炎の振る舞 いとそれに伴うフレームロッ ド電流の振る舞いを説明した。 第 7の発明は、 かか るフレームロツ ド電流を利用して、 有効に室内の負圧状態を検出することができ る燃焼装置である。  In Fig. 6, Fig. 7, Fig. 10, Fig. 11, Fig. 11, Fig. 12, Fig. 16, when the room changes from the normal state to the negative pressure state, and when the room changes from the negative pressure state to the normal state, the The behavior of the flame and the accompanying behavior of the flamerod current were explained. A seventh invention is a combustion device capable of effectively detecting a negative pressure state in a room by using the flame rod current.
既に説明したフレームロツ ド電流の振る舞いについて再度まとめると、 以下の 通りである。 まず、 図 7に示される火炎は、 その外炎の抵抗が高く内炎の抵抗が 低い。 従って、 フレームロッ ドの電極対に一定の電圧を印加すると、 フレーム口 ッ ド電極対が外炎に位置する時はその電流が低く、 フレームロツ ド電極対が内炎 に位置する時はその電流が高くなる。 従って、 第 1に、 図 6、 図 1 0に示される 通り、 フレームロッ ド電流が上側の閾値を超える時は室内が負圧状態であり、 下 側の閾値を下回る時は室内が負圧緩和状態、 即ち通常状態と判断することができ The following summarizes the behavior of the frame rod current already described. First, the flame shown in Fig. 7 has high resistance to external flames and low resistance to internal flames. Therefore, when a constant voltage is applied to the electrode pair of the frame rod, the current is low when the electrode pair of the frame rod is located in the external flame, and the current is low when the electrode pair of the frame rod is located in the internal flame. Get higher. Therefore, first, as shown in Fig. 6 and Fig. 10, when the flame load current exceeds the upper threshold, the room is in a negative pressure state, and when the flame load current falls below the lower threshold, the room reduces the negative pressure. State, that is, normal state
'S o 'S o
図 1 0にて示された固定閾値は、 例えば燃焼装置の着火時の判断に利用される 。 一方、 図 1 0に示された可変閾値は、 着火後の燃焼制御中の判断に利用される The fixed threshold value shown in FIG. 10 is used, for example, for determining when the combustion device is ignited. On the other hand, the variable threshold shown in Fig. 10 is used for judgment during combustion control after ignition.
。 燃焼能力が高くなるに従いフレーム口ッ ド電流も高くなることが判明したこと に伴い、 可変閾値が利用される。 . Since it was found that the flame opening current increased as the combustion capacity increased, a variable threshold was used.
更に、 第 2に、 図 1 1に示した通り、 フレームロッ ド電流の変化を監視し、 フ レームロツ ド電流が一定値以上上昇した時は負圧状態になり、 一定値以上下降し た時は負圧が解除されたと判断することができる。 図 1 6に示される通り、 通常 状態 (図 1 6 ( a ) ) の状態から、 室内が負圧状態になると燃焼装置への供給風 量が減少し、 空気不足の燃焼状態 (図 1 6 ( b ) ) となる。 従って、 フレーム口 ッ ド電流が急速に上昇する。 一方、 負圧状態でファン回転数を上昇させて通常燃 焼状態を保っている状態 (図 1 6 ( a ) ) から、 室内の負圧状態が緩和されると 、 空気過多の異常燃焼状態 (図 1 6 ( c ) ) になる。 従って、 フレームロツ ド電 流は急速に下降する。 フレームロッ ド電流の変化を監視することで、 経年変化に よるフレームロツ ド電流の変動やフレームロツ ド電極への電圧値の変化の影響を 排除することができる。 Secondly, as shown in Fig. 11, changes in the frame rod current are monitored and the flow is monitored. When the frame rod current rises above a certain value, it becomes a negative pressure state, and when it falls below a certain value, it can be determined that the negative pressure has been released. As shown in Fig. 16, when the room becomes negative pressure from the normal state (Fig. 16 (a)), the amount of air supplied to the combustion device decreases, and the combustion state with insufficient air (Fig. 16 (a)) b))). Therefore, the flame current increases rapidly. On the other hand, from the state where the normal combustion state is maintained by increasing the fan rotation speed in the negative pressure state (Fig. 16 (a)), when the negative pressure state in the room is reduced, the abnormal combustion state with excessive air ( Figure 16 (c)). Therefore, the flame load current drops rapidly. By monitoring the change in the frame rod current, it is possible to eliminate the influence of the fluctuation of the frame rod current due to aging and the change of the voltage value to the frame rod electrode.
更に、 第 3に、 図 1 2に示した通り、 フレームロッ ド電流が非常に短時間に一 定値以上下降した時は、 室内が急激に負圧状態が緩和されたと判断することがで きる。 この現象は、 例えば、 換気扇が駆動している状態で部屋の窓やドアが急に 閉められた場合等であり、 この場合は、 室内が急激に負圧状態になり空気不足の 燃焼により燃焼火炎がはっきり形成されず、 フレームロツ ド電流が負圧解除時よ りも急速に下降することが、 本発明者らの実験により確認されている。 .  Third, as shown in Fig. 12, when the flame load current drops by more than a certain value in a very short time, it can be determined that the negative pressure state in the room has been suddenly alleviated. This phenomenon occurs, for example, when the window or door of a room is suddenly closed while the ventilation fan is running.In this case, the room is suddenly under a negative pressure and the combustion flame is short due to insufficient air combustion. It has been confirmed by the present inventors that the flame rod current does not clearly form and the flame rod current decreases more rapidly than when the negative pressure is released. .
図 4 5は、 第 7の発明のフレームロツ ド電流によって室内の負圧伏態とその解 除を検出する場合の、 変形例を示すものである。 この変形例では、 バーナ 8の近 傍に、 高さが異なる 2つのフレームロッ ド電極対 F 1, F 2を設ける。 図では明 記されないが、 1 と? 2は、 それぞれフレームロッ ド電極対を示す。 この変形 例では、 燃焼能力の違いにより火炎の大きさが異なるので、 負圧状態とその解除 の検出を、 燃焼能力の広い範囲にわたり精度良く検出する為に、 高さの異なるフ レ一ムロツ ド電極対を設ける。  FIG. 45 shows a modified example in the case where the negative pressure state in the room and its release are detected by the flame rod current of the seventh invention. In this modification, two frame rod electrode pairs F 1 and F 2 having different heights are provided near the burner 8. Although not specified in the figure, 1 and? 2 indicates a frame rod electrode pair. In this modified example, the flame size differs depending on the combustion capacity, so that the frame rods with different heights are used to detect the negative pressure state and its release with high accuracy over a wide range of combustion capacity. An electrode pair is provided.
例えば、 フレームロツ ド電極対 F 1は、 図 4 5 ( a ) に示される通り、 低い燃 焼能力状態でその先端が外炎に位置する様に配置される。 更に、 フレームロッ ド 電極対 F 2は、 図 4 5 ( b ) に示される通り、 高い燃焼能力状態でその先端が外 炎に位置するように配置される。 これにより、 燃焼能力が低い状態では、 主にフ レ一ムロツ ド電極対 F 1からのフレームロツ ド電流に従って負圧状態とその解除 を検出する。 一方、 燃焼能力が高い状態では、 主にフレームロツ ド電極対 F 2か らのフレームロッ ド電流に従って負圧状態とその解除を検出する。 その結果、 そ れぞれ感度の高い検出を可能にする。 For example, as shown in FIG. 45 (a), the frame rod electrode pair F1 is arranged such that its tip is located in the external flame in a low combustion capacity state. Further, as shown in FIG. 45 (b), the frame rod electrode pair F2 is arranged such that its tip is located in the outer flame in a high combustion capacity state. As a result, in the state where the combustion capacity is low, the negative pressure state and its release are detected mainly in accordance with the flame rod current from the frame rod electrode pair F1. On the other hand, when the combustion capacity is high, mainly the flame rod electrode pair F 2 The negative pressure state and its release are detected according to these frame rod currents. As a result, highly sensitive detection can be achieved.
図 4 6は、 フレームロツ ド電極対に電圧 V i nを供給する概略的回路図である 。 商用の交流電圧 A Cが燃焼装置内の入力電源回路 7 0 0に供給され、 その入力 電源回路 7 0 0が直流電圧 V o u tを出力する。 更に、 この直流電圧 V o u tが 変圧器 7 0 2により、 フレームロツ ド電極対 F Rに最適な入力電圧 V i nを生成 する。  FIG. 46 is a schematic circuit diagram for supplying a voltage V in to the frame rod electrode pair. A commercial AC voltage AC is supplied to an input power supply circuit 700 in the combustion device, and the input power supply circuit 700 outputs a DC voltage Vout. Further, this DC voltage Vout generates an input voltage Vin that is optimal for the frame rod electrode pair FR by the transformer 720.
図 4 6の回路において、 商用電源の変動により、 直流電圧 V 0 u tあるいは入 力電圧 V i nが変動する場合がある。 この場合、 その電圧 V o u tあるいは V i nの変動に伴い、 フレームロッ ド電流も変動する。 かかる変動は、 上記した負圧 状態あるいは負圧解除の誤った検出を招く。  In the circuit of FIG. 46, the DC voltage V 0 ut or the input voltage V in may fluctuate due to fluctuations in the commercial power supply. In this case, the frame rod current fluctuates with the fluctuation of the voltage V out or V in. Such fluctuations may cause erroneous detection of the above-described negative pressure state or negative pressure release.
そこで、 図 4 7に示される通り、 入力電圧 V i nの変動量 A Vを検出し、 フレ 一ムロツ ド電流に対する補正値 Κを乗算あるいは加算するようにする。 かかる補 正データは燃焼装置の制御部に記憶される。  Therefore, as shown in FIG. 47, the variation AV of the input voltage V in is detected, and the correction value に 対 す る for the frame rod current is multiplied or added. Such correction data is stored in the control unit of the combustion device.
図 4 8は、 燃焼能力に対するフレームロツ ド電流を示す図である。 実線 bが適 正な入力電圧 V i nがフレームロツ ド電極対に与えられた時の電流値を示す。 そ れに対して、 入力電圧 V i nが増加する方向に変動すると、 その時のフレーム口 ッ ド電流は、 一点鎖線 aの如く上昇する。 逆に、 入力電圧 V i nが下降する方向 に変動すると、 その時のフレームロッ ド電流は一点鎖線 cの如く下降する。 従つ て、 例えば入力電圧 V i nが上昇すると、 破線の上側閾値を超えたフレームロツ ド電流 I P aが検出されて、 誤って負圧状態と判断されることが予想される。 本 実施例は、 図 4 7の補正値 Kを利用して、 フレームロッ ド電流 I p aが正しい電 流 I p bになるように補正する。  FIG. 48 is a diagram showing the flame rod current with respect to the combustion capacity. The solid line b shows the current value when the appropriate input voltage V in is given to the frame rod electrode pair. On the other hand, when the input voltage V in fluctuates in the increasing direction, the frame current at that time rises as shown by the dashed line a. Conversely, when the input voltage V in fluctuates in the descending direction, the frame rod current at that time decreases as indicated by the dashed line c. Therefore, for example, when the input voltage V in rises, it is expected that the frame rod current IPa exceeding the upper threshold value indicated by the broken line is detected, and the negative pressure state is erroneously determined. In the present embodiment, the correction is performed using the correction value K in FIG. 47 so that the frame rod current I pa becomes the correct current I pb.
更に、 燃焼装置は、 マイクロコンピュータを利用した制御基板により、 その燃 焼制御が行われる。 従って、 燃焼能力を変更する制御を行ってから、 比例弁の開 度を開き、 それに伴い火炎が大きくなり、 フレームロッ ド電流が上昇し検出され るまで、 一定のシステム遅延時間を要する。  Further, the combustion device is controlled by a control board using a microcomputer. Therefore, after the control to change the combustion capacity is performed, the opening of the proportional valve is opened, and accordingly, the flame increases, and a certain system delay time is required until the flame rod current rises and is detected.
図 4 9に、 実線のガス量制御指令 7 1 0に対して、 実際のフレームロツ ド電流 7 1 2が、 横軸の時間に対して遅れることを示す。 この図にある通り、 上記した 遅延時間 T s遅れでフレームロツ ド電流 7 1 2がガス量制御指令 7 1 0に追従す る。 ガス量 7 1 0に対してそれぞれフレームロツ ド電流の上側しきい値 P uと下 側しきい値 P L とが予め設定されている。 従って、 本実施例では、 検出されるフ レームロツ ド電流 7 1 2は、 その検出時 (現時点) からシステム遅延時間 T s前 の時間でのガス量 7 1 0に対する上側と下側しきい値 P U1、 P L1を基準にして、 比較され、 負圧状態か負圧解除かの判断がなされる。 FIG. 49 shows that the actual frame rod current 712 lags the time on the horizontal axis with respect to the gas amount control command 710 shown by the solid line. As shown in this figure, The frame rod current 712 follows the gas amount control command 710 with a delay of the delay time Ts. An upper threshold value Pu and a lower threshold value PL of the frame rod current are set in advance for each of the gas amounts 710. Therefore, in the present embodiment, the detected frame rod current 712 is determined by the upper and lower thresholds P with respect to the gas amount 7 10 at a time before the system delay time T s from the time of the detection (at this time). A comparison is made based on U1 and PL1 to determine whether the state is a negative pressure state or negative pressure release.
図 5 0は、 フレーム αッ ド電流の変化に従って負圧状態か負圧解除かを検出す る場合の遅延時間を説明する図である。 前述の通り、 フレームロッ ド電流の変化 を利用する場合は、 燃焼能力の大小を考慮する必要がない。 従って、 上記の通り しきい値を利用する場合のシステム遅延時間 T sを考慮する必要はない。 但し、 フレームロッ ドが可変の変化を検出してから、 それに伴うフレームロツ ド電流の 変化が検出されるまで一定に遅延時間 TG を要する。 従って、 図 5 0に示される 通り、 現時点から遅延時間 TG だけ前での、 時間 T th期間内でフレームロツ ド電 流がどれだけ変化したかを検出して、 前述の負圧状態、 負圧解除および急激負圧 状態のいずれかを検出するのが好ましい。  FIG. 50 is a diagram for explaining a delay time in detecting whether a negative pressure state or a negative pressure release is performed in accordance with a change in the frame α current. As mentioned above, it is not necessary to consider the magnitude of the combustion capacity when utilizing the change in flame rod current. Therefore, it is not necessary to consider the system delay time T s when using the threshold value as described above. However, a certain delay time TG is required from the time when the frame rod detects a variable change to the time when the accompanying change in the frame rod current is detected. Therefore, as shown in FIG. 50, the amount of change in the frame load current within the time Tth period, which is just before the delay time TG from the current time, is detected, and the negative pressure state and the negative pressure release described above are detected. It is preferable to detect any one of the following and a sudden negative pressure state.
フレームロツ ド電流の変化を監視する方法は、 燃焼能力の大小を考慮する必要 がないので、 より簡便な負圧検出方法である。 但し、 燃焼能力を変える制御がな された時は、 同時に火炎の状態も変化する。 かかる過渡状態におけるフレーム口 ッ ド電流の変化は、 室内の負圧状態あるいは負圧解除を反映するものではない。 従って、 かかるノイズを除去する為に、 燃焼能力が変更された時はそのガス比例 弁の開度の状態が安定するまでの間、 フレームロツ ド電流の変化による負圧監視 を行わないようにする。  The method of monitoring changes in flame rod current is a simpler method for detecting negative pressure because it is not necessary to consider the magnitude of the combustion capacity. However, when control is performed to change the combustion capacity, the state of the flame also changes at the same time. The change in the flame current in the transient state does not reflect the negative pressure state or the negative pressure release in the room. Therefore, in order to eliminate such noise, when the combustion capacity is changed, the negative pressure monitoring based on the change in the flame rod current is not performed until the state of the opening of the gas proportional valve is stabilized.
図 5 1は、 燃焼能力が変更された時の比例弁開度と時間との関係を示す図であ る。 現時点から比例弁制御に要する遅延時間 TD より前の基準点から、 所定の期 間 TW の間で、 比例弁開度が大きく変動した時は、 その時のフレームロツ ド電流 の変化による負圧監視を行わない。  FIG. 51 is a diagram showing the relationship between the proportional valve opening and time when the combustion capacity is changed. If the proportional valve opening greatly fluctuates for a predetermined period TW from the reference point before the delay time TD required for proportional valve control from the present time, negative pressure monitoring is performed based on the change in the frame rod current at that time. Absent.
以上の通り、 第 7の発明によれば、 フレームロッ ド電流を利用して短時間で効 率的に室内の負圧状態とその解除とを検出することができる。 従って、 室内の負 圧状態に応じて燃焼制御を行う必要がある室内設置型の燃焼装置に、 このフレー ムロツ ド電流を利用した負圧監視機構を設けることで、 より正確な燃焼制御を行 うことができる。 産業上の利用可能性 As described above, according to the seventh aspect, the negative pressure state in the room and its release can be efficiently detected in a short time using the frame rod current. Therefore, this frame is used in indoor-installed combustion devices that need to perform combustion control according to the indoor negative pressure state. Providing a negative pressure monitoring mechanism using the mud current enables more accurate combustion control. Industrial applicability
以上の様に、 本発明による燃焼装置或いは給湯器は、 室内に設置された時に室 内の負圧状態になったことに起因する種々の問題点を解決することができる。 即 ち、 室内が負圧状態であっても、 最適な風量制御のもとでパーナの点火を行うこ とができ、 点火ミスを少なくすることができる。 また、 室内が負圧状態において 燃焼能力を低下させても、 一時的に供給風量不足の状態を回避することができる 。 更に、 室内の負圧状態に起因して一酸化炭素濃度が上昇したことによる強制燃 焼停止の後に、 再度燃焼が行われる時は、 供給風量を高く制御して一酸化炭素中 毒を防止することができる。 そして、 室内の負圧状態に応じてポストファンの回 転数を制御することにより、 確実に室外に排気することができる。 また、 簡便な 逆流防止弁を設けて、 通常排気状態における圧力損失をなく し、 室内が負圧状態 であっても排気口からの逆流を確実に防止することができる。  As described above, the combustion device or the water heater according to the present invention can solve various problems caused by a negative pressure in the room when installed in the room. In other words, even if the room is in a negative pressure state, it is possible to ignite the wrench under optimal air volume control, and to reduce ignition errors. In addition, even if the combustion capacity is reduced in a negative pressure state in the room, it is possible to temporarily avoid a state of insufficient supply air volume. Furthermore, when combustion is restarted after forced combustion is stopped due to an increase in the concentration of carbon monoxide due to a negative pressure in the room, the supply airflow is controlled to a high level to prevent poisoning of carbon monoxide. be able to. Then, by controlling the number of rotations of the post fan according to the negative pressure state in the room, it is possible to reliably exhaust air to the outside of the room. In addition, a simple check valve is provided to eliminate pressure loss in a normal exhaust state, and to reliably prevent a reverse flow from the exhaust port even when the room is in a negative pressure state.

Claims

請 求 の 範 囲 The scope of the claims
1 . 燃焼を行うパーナと、 パーナ点火装置と、 前記パーナの火炎の大小を検出 する火炎検出センサと、 前記パーナに給排気を行う燃焼ファンと、 前記燃焼ファ ンの送風能力を制御する風量制御部とを有し、 室内に設置される燃焼装置におい て、  1. A burner burner, a burner igniter, a flame detection sensor that detects the magnitude of the burner flame, a combustion fan that supplies and exhausts air to the burner, and an air volume control that controls the blowing capacity of the combustion fan. And a combustion device installed indoors,
前記風量制御部は、  The air volume control unit,
前記室内が第 1の圧力状態の時に前記燃焼ファンの送風能力を第 1の送風能力 に制御し、 前記室内が前記第 1の圧力状態より低く燃焼装置に対して負圧状態で ある第 2の圧力状態の時に前記燃焼ファンの送風能力を前記第 1の送風能力より も高い第 2の送風能力に制御し、  Controlling the blowing capacity of the combustion fan to a first blowing capacity when the chamber is in the first pressure state, and wherein the chamber is lower than the first pressure state and in a negative pressure state with respect to a combustion device. Controlling the blowing capacity of the combustion fan to a second blowing capacity higher than the first blowing capacity in a pressure state;
前記第 1又は第 2の送風能力の一方の送風能力に制御した状態で燃焼開始した 時に、 点火されたパーナの火炎が立ち消えした時は、 前記第 1又は第 2の送風能 力の他方の送風能力に制御して再度燃焼開始を行うことを特徴とする燃焼装置。  When the combustion is started in a state controlled to one of the first or second blowing capacity, and when the flame of the ignited burner extinguishes, the other blowing of the first or second blowing capacity is performed. A combustion device characterized in that the combustion is controlled again to start the combustion again.
2 . 請求項 1において、 2. In Claim 1,
前記風量制御部は、 前記第 1又は第 2の送風能力のうち、 前回燃焼が停止した 時の送風能力に前記燃焼ファンを制御した状態で、 燃焼開始することを特徴とす る燃焼装置。  The combustion device, wherein the air volume control unit starts combustion in a state where the combustion fan is controlled to the air blowing capability at the time when the previous combustion stopped, of the first or second air blowing capability.
3 . 請求項 1において、  3. In claim 1,
前記風量制御部は、 前回燃焼が停止してから所定時間以内に燃焼を再開する時 は、 前記第 1又は第 2の送風能力のうち前回燃焼が停止した時の送風能力に前記 燃焼ファンを制御した状態で燃焼開始し、 前回燃焼が停止してから所定時間以上 経過後に燃焼を再開する時は、 前記第 1の送風能力に前記燃焼ファンを制御した 状態で燃焼開始することを特徴とする燃焼装置。  When the combustion is restarted within a predetermined time after the previous combustion was stopped, the air volume control unit controls the combustion fan to the one of the first or second air blowing ability at the time when the previous combustion was stopped. When the combustion is started in a state where the combustion has been started and the combustion is restarted after a lapse of a predetermined time or more since the last time the combustion was stopped, the combustion is started in a state where the combustion fan is controlled to the first blowing capacity. apparatus.
4 . 請求項 1において、  4. In Claim 1,
前記風量制御部は、 燃焼制御中において、 前記火炎検出センサの検出信号が低 位側閾値より低下した時は前記第 2の送風能力から前記第 1の送風能力に前記燃 焼ファンを制御し、 前記火炎検出センサの検出信号が高位側閾値より上昇した時 は前記第 1の送風能力から第 2の送風能力に前記燃焼ファンを制御することを特 徴とする燃焼装置。 The air volume control unit controls the combustion fan from the second blowing ability to the first blowing ability when a detection signal of the flame detection sensor falls below a lower threshold during combustion control, When the detection signal of the flame detection sensor rises above a higher threshold, the combustion fan is controlled from the first blowing ability to the second blowing ability. Combustion device to feature.
5 . 請求項 4において、  5. In Claim 4,
前記風量制御部は、 前記第 1又は第 2の送風能力のうち、 前回燃焼が停止した 時の送風能力に前記燃焼ファンを制御した状態で、 燃焼開始し、 前記前回燃焼が 停止した時の送風能力は、 停止時よりも所定の時間より前の火炎検出センサの検 出信号に従って判定されることを特徴とする燃焼装置。  The air volume control unit starts the combustion in a state in which the combustion fan is controlled to the air blowing ability at the time when the previous combustion is stopped among the first or second air blowing ability, and blows the air when the previous combustion is stopped. A combustion device characterized in that the capacity is determined in accordance with a detection signal of a flame detection sensor before a predetermined time before a stop.
6 . 請求項 1〜4のいずれかにおいて、  6. In any one of claims 1 to 4,
更に、 燃焼装置の排気側に排気ガス中の一酸化炭素濃度を検出する一酸化炭素 センサが設けられ、  Further, a carbon monoxide sensor for detecting the concentration of carbon monoxide in the exhaust gas is provided on the exhaust side of the combustion device,
前記風量制御部は、 燃焼制御中において、 前記一酸化炭素センサにより検出さ れる一酸化炭素濃度が高くなるに従レ、送風能力を増加する様に前記燃焼ファンを 制御することを特徴とする燃焼装置。  The combustion amount control unit controls the combustion fan to increase the blowing capacity as the concentration of carbon monoxide detected by the carbon monoxide sensor increases during combustion control. apparatus.
7 . 請求項 1〜 4において、  7. In Claims 1-4,
前記火炎検出センサがフレームロツ ドで構成され、  The flame detection sensor is constituted by a frame rod;
前記風量制御部は、 燃焼制御中において、 フレームロッ ド電流の上昇変化が所 定の基準時間内で所定の基準上昇量を超えた時は燃焼ファンの送風能力を上昇す るように制御し、 フレームロツ ド電流の下降変化が所定の基準時間内で所定の基 準下降量を超えた時は燃焼ファンの送風能力を下降するように制御することを特 徴とする燃焼装置。  During the combustion control, the air volume control unit controls to increase the blowing capacity of the combustion fan when a change in the increase of the frame rod current exceeds a predetermined reference increase amount within a predetermined reference time, A combustion device characterized in that when the change in the flame rod current falls within a predetermined reference amount within a predetermined reference time, the blowing capacity of the combustion fan is controlled to decrease.
8 . 請求項 7において、  8. In Claim 7,
前記風量制御部は、 燃焼制御中において、 前記フレームロツ ド電流の下降変化 が前記所定の基準時間より短い時間内において前記基準下降量を超えた時は、 前 記燃焼ファンの送風能力を上昇するように制御することを特徴とする燃焼装置。  The air volume control unit increases the blowing capacity of the combustion fan when a decrease in the flame rod current exceeds the reference decrease amount within a time shorter than the predetermined reference time during the combustion control. A combustion device characterized in that the combustion device is controlled.
9 . 燃焼を行うパーナと、 パーナ点火装置と、 前記パーナに給排気を行う燃焼 ファンと、 前記燃焼ファンの送風能力を制御する風量制御部とを有し、 室内に設 置される燃焼装置において、  9. A combustion device installed indoors, which includes a burner that burns, a burner igniter, a combustion fan that supplies and exhausts air to and from the burner, and an air volume control unit that controls a blowing capacity of the combustion fan. ,
前記風量制御部は、  The air volume control unit,
燃焼中において、 前記室内が第 1の圧力状態の時に前記燃焼ファンの送風能力 を第 1の送風能力に制御し、 前記室内が前記第 1の圧力状態より低く燃焼装置に 対して負圧状態である第 2の圧力状態の時に前記燃焼ファンの送風能力を前記第 1の送風能力よりも高い第 2の送風能力に制御し、 - 燃焼開始時において、 前記第 1及び第 2の送風能力の中間の送風能力に前記燃 焼ファンを制御して前記パーナの点火を行うことを特徴とする燃焼装置。 During combustion, when the chamber is in the first pressure state, the blowing capacity of the combustion fan is controlled to the first blowing capacity, and the temperature of the chamber is lower than the first pressure state and the combustion device Controlling the blowing capacity of the combustion fan to a second blowing capacity higher than the first blowing capacity when the second pressure state is a negative pressure state, 2. A combustion device, wherein the combustion fan is controlled to have an air blowing capacity intermediate between the air blowing capacities of the second and the second, and the burner is lit.
1 0 . 請求項 9において、  10. In claim 9,
更に、 前記室内が第 1の圧力状態か第 2の圧力状態かを検出する負圧検出装置 が設けられ、  Further, a negative pressure detection device is provided for detecting whether the chamber is in the first pressure state or the second pressure state,
前記風量制御部は、 前記パーナの点火後において、 前記負圧検出装置により検 出される前記第 1又は第 2の圧力状態に応じて、 前記第 1又は第 2の送風能力に 切り換えて前記燃焼ファンを制御することを特徴とする燃焼装置。  The air flow control unit switches to the first or second air blowing capacity according to the first or second pressure state detected by the negative pressure detection device after the burner is ignited. A combustion device characterized by controlling the following.
1 1 . 燃焼を行うパーナと、 パーナ点火装置と、 前記パーナに給排気を行う燃 焼ファンと、 前記燃焼ファンの送風能力を制御する風量制御部とを有し、 室内に 設置される燃焼装置において、  1 1. A burner installed indoors, including a burner that burns, a burner igniter, a combustion fan that supplies and exhausts air to and from the burner, and an air volume control unit that controls the blowing capacity of the combustion fan. At
前記風量制御部は、  The air volume control unit,
燃焼中において、 前記室内が第 1の圧力状態の時に前記燃焼ファンの送風能力 を第 1の送風能力に制御し、 前記室内が前記第 1の圧力状態より低く燃焼装置に 対して負圧状態である第 2の圧力状態の時に前記燃焼ファンの送風能力を前記第 1の送風能力よりも高い第 2の送風能力に制御し、 前記室内が前記第 2の圧力状 態より低い第 3の圧力状態の時に前記燃焼ファンの送風能力を前記第 2の送風能 力よりも高い第 3の送風能力に制御し、  During the combustion, when the chamber is in the first pressure state, the blowing capacity of the combustion fan is controlled to the first blowing capacity, and the room is lower than the first pressure state and in a negative pressure state with respect to the combustion device. In a certain second pressure state, the blowing capacity of the combustion fan is controlled to a second blowing capacity higher than the first blowing capacity, and a third pressure state in which the room is lower than the second pressure state. Controlling the blowing capacity of the combustion fan to a third blowing capacity higher than the second blowing capacity at the time of
燃焼開始時において、 前回燃焼終了時の送風能力が前記第 1の送風能力で制御 されていた時は、 前記第 1及び第 2の送風能力の中間の送風能力に前記燃焼プア ンを制御して前記パーナの点火を行い、 前回燃焼終了時の送風能力が前記第 3の 送風能力で制御されていた時は、 前記第 3及び第 2の送風能力の中間の送風能力 に前記燃焼ファンを制御して前記パーナの点火を行うことを特徴とする燃焼装置  At the start of combustion, when the blowing capacity at the end of the previous combustion was controlled by the first blowing capacity, the combustion fan was controlled to a blowing capacity intermediate between the first and second blowing capacities. When the burner is ignited and the blowing capacity at the end of the previous combustion is controlled by the third blowing capacity, the combustion fan is controlled to a blowing capacity intermediate between the third and second blowing capacity. Combustion apparatus for igniting the parner by using
1 2 . 請求項 9〜 1 1において、 1 2. In Claims 9 to 11,
更に、 前記パーナの火炎の大小を検出する火炎検出センサを有し、  Further, it has a flame detection sensor for detecting the magnitude of the flame of the Pana,
前記風量制御部は、 燃焼制御中において、 前記火炎検出センサの検出信号が低 位側閾値より低下した時は前記第 2 (若しくは第 3 ) の送風能力から前記第 1 ( 若しくは第 2 ) の送風能力に前記燃焼ファンを制御し、 前記火炎検出センサの検 出信号が高位側閾値より上昇した時は前記第 1 (若しくは第 2 ) の送風能力から 第 2 (若しくは第 3 ) の送風能力に前記燃焼ファンを制御することを特徴とする 燃焼装置。 During the combustion control, the air volume control unit may be configured to reduce a detection signal of the flame detection sensor. When the temperature falls below the threshold value, the combustion fan is controlled from the second (or third) air blowing ability to the first (or second) air blowing ability, and the detection signal of the flame detection sensor becomes higher. A combustion device wherein the combustion fan is controlled from the first (or second) blowing capacity to a second (or third) blowing capacity when the temperature rises above a threshold value.
1 3 . 請求項 9〜 1 1のいずれかにおいて、  1 3. In any one of claims 9 to 11,
更に、 燃焼装置の排気側に排気ガス中の一酸化炭素濃度を検出する一酸化炭素 センサが設けられ、  Further, a carbon monoxide sensor for detecting the concentration of carbon monoxide in the exhaust gas is provided on the exhaust side of the combustion device,
前記風量制御部は、 燃焼制御中において、 前記一酸化炭素センサにより検出さ れる一酸化炭素濃度が高くなるに従い送風能力を増加する様に前記燃焼ファンを 制御することを特徴とする燃焼装置。  The combustion device, wherein the air volume control unit controls the combustion fan to increase the blowing capacity as the concentration of carbon monoxide detected by the carbon monoxide sensor increases during combustion control.
1 4 . 請求項 9〜 1 1において、  14. In Claims 9 to 11,
前記パーナの火炎の大小を検出するフレームロツ ドが設けられ、  A frame rod for detecting the magnitude of the flame of the parner is provided;
前記風量制御部は、 燃焼制御中において、 フレームロツ ド電流の上昇変化が所 定の基準時間内で所定の基準上昇量を超えた時は燃焼ファンの送風能力を上昇す るように制御し、 フレームロツ ド電流の下降変化が所定の基準時間内で所定の基 準下降量を超えた時は燃焼ファンの送風能力を下降するように制御することを特 徵とする燃焼装置。  During the combustion control, the air volume control unit controls the combustion fan to increase the blowing capacity of the combustion fan when an increase in the flame load current exceeds a predetermined reference increase amount within a predetermined reference time. A combustion device characterized in that when the change in the cooling current exceeds a predetermined reference lowering amount within a predetermined reference time, control is performed so as to lower the blowing capacity of the combustion fan.
1 5 . 請求項 1 4において、  15. In claim 14,
前記風量制御部は、 燃焼制御中において、 前記フレームロツ ド電流の下降変化 が前記所定の基準時間より短い時間内において前記基準下降量を超えた時は、 前 記燃焼ファンの送風能力を上昇するように制御することを特徴とする燃焼装置。  The air volume control unit increases the blowing capacity of the combustion fan when a decrease in the flame rod current exceeds the reference decrease amount within a time shorter than the predetermined reference time during the combustion control. A combustion device characterized in that the combustion device is controlled in the following manner.
1 6 . 燃焼を行うパーナと、 前記パーナの燃焼能力を制御する燃焼制御部と、 前記パーナに給排気を行う燃焼ファンと、 前記燃焼ファンの送風能力を前記燃焼 能力に応じて制御する風量制御部とを有し、 室内に設置される燃焼装置において 前記燃焼制御部が第 1の燃焼能力で前記パーナを制御する時、 前記風量制御部 が前記第 1の燃焼能力に応じた第 1の送風能力に前記燃焼ファンを制御し、 前記 燃焼制御部が前記第 1の燃焼能力より低い第 2の燃焼能力で前記パーナを制御す る時、 前記風量制御部が前記第 2の燃焼能力に対応し前記第 1の送風能力より低 い第 2の送風能力に前記燃焼ファンを制御し、 16. A burner that burns, a combustion control unit that controls the burning performance of the burner, a combustion fan that supplies and exhausts air to and from the burner, and an air volume control that controls the blowing performance of the burning fan according to the burning performance A combustion unit installed indoors, wherein when the combustion control unit controls the parner with a first combustion capacity, the air volume control unit performs a first air blowing according to the first combustion capacity. The combustion control unit controls the combustion fan to have a second combustion capacity lower than the first combustion capacity. When the air flow control unit controls the combustion fan to a second air blowing capacity lower than the first air blowing capacity corresponding to the second air blowing capacity,
前記燃焼制御部が前記第 1の燃焼能力から第 2の燃焼能力に変更した後の所定 期間は、 前記風量制御部は前記第 2の送風能力よりも高い第 3の送風能力で前記 燃焼ファンを制御し、 前記所定期間の後前記第 2の送風能力に変更することを特 徴とする燃焼装置。  During a predetermined period after the combustion control unit changes from the first combustion capability to the second combustion capability, the air volume control unit controls the combustion fan with a third ventilation capability higher than the second ventilation capability. Controlling the combustion device to change to the second blowing capacity after the predetermined period.
1 7 . 請求項 1 6において、  1 7. In claim 16,
更に、 室内が燃焼装置に対して負圧状態であることを検出する負圧検出装置を 有し、  Furthermore, a negative pressure detecting device is provided for detecting that the indoor is in a negative pressure state with respect to the combustion device,
前記負圧検出装置が負圧状態を検出した時は、 前記風量制御部は前記所定の期 間の間前記第 3の送風能力に制御し、 前記負圧検出装置が負圧状態を検出しない 時は、 前記所定期間において前記第 3の送風能力に代えて第 2の送風能力に制御 することを特徴とする燃焼装置。  When the negative pressure detection device detects a negative pressure state, the air volume control unit controls the third air blowing capability for the predetermined period, and when the negative pressure detection device does not detect the negative pressure state. The combustion apparatus according to claim 1, wherein the second blowing capacity is controlled in place of the third blowing capacity in the predetermined period.
1 8 . 請求項 1 6において、  18. In claim 16,
更に、 燃焼装置の排気側に排気ガス中の一酸化炭素濃度を検出する一酸化炭素 センサが設けられ、  Further, a carbon monoxide sensor for detecting the concentration of carbon monoxide in the exhaust gas is provided on the exhaust side of the combustion device,
前記風量制御部は、 前記所定期間において、 前記一酸化炭素センサにより一酸 化炭素濃度が所定の危険レベルに上昇した時に、 前記第 3の送風能力を更に高く 制御することを特徴とする燃焼装置。  The combustion device, wherein the air volume control unit further controls the third air blowing capability to be higher when the carbon monoxide concentration increases to a predetermined dangerous level by the carbon monoxide sensor during the predetermined period. .
1 9 . 請求項 1 6において、  1 9. In claim 16,
前記パーナの火炎の大小を検出するフレーム口ッ ドが設けられ、  A frame opening for detecting the magnitude of the flame of the parner is provided;
前記風量制御部は、 前記所定期間において、 前記フレームロツ ドによりフレー ムロツ ド電流が所定レベルに上昇した時に、 前記第 3の送風能力を更に高く制御 することを特徴とする燃焼装置。  The combustion device, wherein the air volume control unit further controls the third air blowing capability to be higher when the frame rod current is increased to a predetermined level by the frame rod during the predetermined period.
2 0 . 燃焼を行うパーナと、 前記パーナの燃焼能力を制御する燃焼制御部と、 前記バ一ナに給排気を行う燃焼ファンと、 前記燃焼ファンの送風能力を前記燃焼 能力に応じて制御する風量制御部とを有する燃焼装置において、  20. A burner that burns, a combustion control unit that controls the burnability of the burner, a combustion fan that supplies and exhausts air to and from the burner, and a blowing capacity of the combustion fan that is controlled in accordance with the burnability. A combustion device having an air volume control unit;
更に、 燃焼装置の排気側に排気ガス中の一酸化炭素濃度を検出する一酸化炭素 センサが設けられ、 前記風量制御部は、 燃焼能力に応じた送風能力に前記燃焼ファンを制御し、 前 記燃焼制御部は、 前記一酸化炭素センサにより所定の危険濃度が検出された時に 前記燃焼を停止し、 Further, a carbon monoxide sensor for detecting the concentration of carbon monoxide in the exhaust gas is provided on the exhaust side of the combustion device, The air volume control unit controls the combustion fan to a blowing capacity according to a combustion capacity, the combustion control unit stops the combustion when a predetermined dangerous concentration is detected by the carbon monoxide sensor,
当該一酸化炭素濃度検出による燃焼停止後に燃焼が再開される時は、 前記風量 制御部は、 通常の燃焼停止後の燃焼再開時の第 1の送風能力よりも大きい第 2の 送風能力に前記燃焼ファンを制御することを特徴とする燃焼装置。  When the combustion is restarted after the combustion is stopped by the detection of the concentration of carbon monoxide, the air volume control unit sets the combustion to a second air blowing capacity larger than the first air blowing capacity when restarting the combustion after the normal combustion stop. A combustion device for controlling a fan.
2 1 . 室内の空気を燃焼室へ給気し燃焼後の排気を排気筒を通じて室外へ排出 する給湯器において、  2 1. In a water heater that supplies indoor air to the combustion chamber and discharges exhaust gas after combustion outside through the exhaust stack,
前記燃焼室への給気および排気を行う燃焼フアンと、  A combustion fan for supplying and exhausting the combustion chamber;
前記燃焼室内の空気を室内へ吸い出す向きの負圧の有無を検出する負圧検出装 置と、  A negative pressure detection device for detecting the presence or absence of a negative pressure in a direction in which air in the combustion chamber is sucked into the room;
前記燃焼室内での燃焼が停止した後所定時間の経過するまでの間前記燃焼ファ ンを回転駆動する燃焼後ファン駆動手段と、  A post-combustion fan driving unit that rotationally drives the combustion fan until a predetermined time elapses after the combustion in the combustion chamber is stopped;
前記燃焼後ファン駆動手段によって燃焼停止後に前記燃焼ファンを回転させる 際の回転数を負圧のある場合に負圧のないときより高く設定する回転数制御部と を有することを特徴とする給湯機。  A water speed control unit for setting a rotation speed when the combustion fan is rotated after the combustion is stopped by the post-combustion fan drive means to be higher when there is a negative pressure than when there is no negative pressure. .
2 2 . 請求項 2 1において、  2 2. In claim 21,
前記排気に含まれる一酸化炭素濃度を検出する一酸化炭素濃度検出装置と、 燃 焼ガスの燃焼量を検出するガス量検出装置と、 前記一酸化炭素濃度が所定の許容 範囲に収まるよう燃焼中における前記燃焼ファンの回転数を制御する燃焼時回転 数制御部とを備え、  A carbon monoxide concentration detection device for detecting the concentration of carbon monoxide contained in the exhaust gas, a gas amount detection device for detecting the amount of combustion of the combustion gas, and during combustion so that the carbon monoxide concentration falls within a predetermined allowable range. A combustion speed control unit for controlling the speed of the combustion fan in the above,
前記負圧検出装置は、 燃焼停止直前における前記ガス量検出装置の検出した燃 焼量とこれに対して前記燃焼時回転数制御部の設定した回転数の高さとを基にし て燃焼停止後における前記負圧の大きさを判定することを特徴とする給湯機。  The negative pressure detection device is configured to perform a post-combustion operation based on a combustion amount detected by the gas amount detection device immediately before the stop of the combustion and a rotation speed set by the combustion speed control unit. A water heater characterized in that the magnitude of the negative pressure is determined.
2 3 . 請求項 2 2において、  2 3. In claim 22,
前記回転数制御装置は、 少なくとも前記負圧検出装置の判定した負圧の大きさ を基にして燃焼停止直後における前記燃焼ファンの回転数を設定することを特徴 とする給湯機。  The water heater, wherein the rotation speed control device sets the rotation speed of the combustion fan immediately after the combustion is stopped based on at least the magnitude of the negative pressure determined by the negative pressure detection device.
2 4 . 請求項 2 1〜 2 3のいずれかにおいて、 前記回転数制御部は、 燃焼停止後の時間の経過に従って前記燃焼ファンの回転 数を高回転から次第に低下させることを特徴とする給湯機。 -24. In any one of claims 21 to 23, The water heater according to claim 1, wherein the rotation speed control unit gradually reduces the rotation speed of the combustion fan from a high rotation speed as time elapses after stopping the combustion. -
2 5 . 請求項 2 4において、 25. In claim 24,
燃焼停止後の時間の経過に従って前記燃焼ファンの回転数を次第に低下させる 際における各段階での回転数と次の段階へ回転数を低下させるまでの時間とを、 少なくとも前記排気筒の延長距離に応じて変更することを特徴とする給湯機。  When gradually reducing the rotation speed of the combustion fan in accordance with the lapse of time after the combustion is stopped, the rotation speed at each stage and the time until the rotation speed is reduced to the next stage, at least the extension distance of the exhaust stack A water heater characterized by being changed according to.
2 6 . 請求項 2 1〜2 3のいずれかにおいて、  26. In any one of claims 21 to 23,
前記回転数制御部は、 燃焼を停止してから少なくとも前記燃焼室および前記排 気筒内に残留する排気を該排気筒端部から大気中へ排出し終えるまでの間、 排気 が室内に逆流せずかつ出湯が再開された際に許容上限温度を越える高温の湯が出 湯しないように燃焼停止後の余熱を放熱し得る高回転数で前記燃焼ファンを回転 させることを特徴とする給湯機。  The rotation speed control unit does not allow exhaust gas to flow back into the room from the time when combustion is stopped until at least exhaust gas remaining in the combustion chamber and the exhaust cylinder is exhausted from the end of the exhaust cylinder into the atmosphere. A water heater characterized in that the combustion fan is rotated at a high rotational speed capable of radiating residual heat after the combustion is stopped so that hot water exceeding the allowable upper limit temperature is not discharged when the hot water is restarted.
2 7 . 請求項 2 1〜2 3のいずれかにおいて、  27. In any one of claims 21 to 23,
前記回転数制御部は、 燃焼を停止してから前記燃焼室および前記排気筒内に残 留する排気を該排気筒端部から大気中へ排出し終えた後一定時間の経過するまで の間、 出湯が再開された際に許容上限温度を越える高温の湯が出湯しない範囲で 燃焼停止後における余熱の放熱量を少なく抑えた回転数により前記燃焼ファンを 回転させることを特徴とする給湯機。  The rotation speed control unit is configured to stop the combustion and stop exhaust gas remaining in the combustion chamber and the exhaust cylinder from the end of the exhaust cylinder to the atmosphere until a predetermined time elapses. A water heater characterized in that the combustion fan is rotated at a rotation speed in which the amount of residual heat radiated after the combustion is stopped is reduced within a range in which hot water exceeding an allowable upper limit temperature does not flow when the hot water is restarted.
2 8 . 請求項 2 1〜2 3のいずれかにおいて、  28. In any one of claims 21 to 23,
前記回転数制御部は、 燃焼停止後における余熱の放熱が以後前記燃焼ファンの 回転を停止させても出湯が再開された際に許容上限温度を越える高温の湯が出湯 されないまでに達した後、 設定可能な最小回転数で前記燃焼ファンの回転を維持 することを特徴とする給湯機。  The rotation speed control unit is configured to release the residual heat after the combustion stops until the hot water exceeding the allowable upper limit temperature is not discharged when the hot water is restarted even after the rotation of the combustion fan is stopped. A water heater characterized by maintaining the rotation of the combustion fan at a settable minimum rotation speed.
2 9 . 器具ケース内に区画された燃焼室を備え、 該燃焼室に連通した排気経路 の最下流側に前記器具ケース外に延出する排気筒が設けられ、 該排気筒の手前上 流側に排気筒より流路面積が大きなチャンバ室を設けられた燃焼装置において、 前記チャンバ室における排気入口に、 該排気入口を開いて排気を流入させる開 状態と、 該排気入口を塞いで排気の逆流を防ぐ閉状態とに変位可能な逆流防止弁 が設けられたことを特徴とする燃焼装置。 29. A combustion chamber partitioned within the appliance case, an exhaust tube extending out of the appliance case is provided at the most downstream side of an exhaust path communicating with the combustion chamber, and an upstream side of the exhaust tube. A combustion chamber provided with a chamber chamber having a flow path area larger than that of an exhaust pipe, wherein an open state in which the exhaust port is opened and exhaust gas flows into an exhaust port in the chamber chamber; Check valve that can be displaced to a closed state to prevent A combustion device, comprising:
3 0 . 請求項 2 9において、  30. In claim 29,
前記逆流防止弁は、 前記排気入口から排気が流入する際は該排気圧により開状 態となる一方、 前記排気入口から排気が流入しない際は g重で閉状態となるよう に揺動可能に枢支された板材から成ることを特徴とする燃焼装置。  The check valve is swingable so that when exhaust gas flows in from the exhaust inlet, the check valve is opened by the exhaust pressure, but when exhaust gas does not flow in from the exhaust inlet, the check valve is closed due to weight. A combustion device comprising a pivotally supported plate.
3 1 . 請求項 1 または 2において、  3 1. In Claim 1 or 2,
前記チャンバ室内に、 排気成分中の異常を検出する排気センサを設け、 前記逆 流防止弁を前記排気センサに排気が直接当たらないようにする風よけとして構成 したことを特徴とする燃焼装置。  A combustion device, wherein an exhaust sensor for detecting an abnormality in exhaust components is provided in the chamber, and the check valve is configured as a wind shield for preventing exhaust from directly hitting the exhaust sensor.
3 2 . 燃焼を行うパーナと、 前記パーナの火炎の大小を検出するフレーム口ッ ド電極と、 前記パーナに給排気を行う燃焼ファンと、 前記燃焼ファンの送風能力 を制御する風量制御部とを有し、 室内に設置される燃焼装置において、  32. A burner that burns, a frame opening electrode that detects the magnitude of the flame of the burner, a combustion fan that supplies and exhausts air to and from the burner, and an air volume control unit that controls the blowing capacity of the combustion fan. In the combustion device installed indoors,
前記風量制御部は、  The air volume control unit,
燃焼制御中において、 前記フレームロツ ド電極の検出信号が高位側閾値より高 く上昇した時は、 前記燃焼ファンの送風能力を上昇するように制御し、 前記フレ 一ムロツ ド電極の検出信号が低位側閾値より低く低下した時は、 前記燃焼ファン の送風能力を下降するように制御することを特徴とする燃焼装置。  During the combustion control, when the detection signal of the flame rod electrode rises higher than the high threshold value, control is performed so as to increase the blowing capacity of the combustion fan, and the detection signal of the frame rod electrode is low. The combustion apparatus is characterized in that when it falls below a threshold value, the combustion fan is controlled so as to lower the blowing capacity.
3 3 . 燃焼を行うパーナと、 前記パーナの火炎の大小を検出するフレームロツ ド電極と、 前記パーナに給排気を行う燃焼ファンと、 前記燃焼ファンの送風能力 を制御する風量制御部とを有し、 室内に設置される燃焼装置において、  33. It has a burner that burns, a flame rod electrode that detects the magnitude of the flame of the burner, a combustion fan that supplies and exhausts air to the burner, and an air volume control unit that controls the blowing capacity of the combustion fan. In a combustion device installed indoors,
前記風量制御部は、  The air volume control unit,
燃焼制御中において、 前記フレームロツ ド電極の検出信号の上昇変化が所定の 基準時間内で所定の基準上昇量を超えた時は、 前記燃焼ファンの送風能力を上昇 するように制御し、 前記フレームロツ ド電極の検出信号の下降変化が所定の基準 時間内で所定の基準下降量を超えた時は、 前記燃焼ファンの送風能力を下降する ように制御することを特徴とする燃焼装置。  During the combustion control, when the rising change of the detection signal of the flame rod electrode exceeds a predetermined reference rise amount within a predetermined reference time, control is performed to increase the blowing capacity of the combustion fan, and the flame rod is controlled. A combustion apparatus characterized in that when the falling change of the detection signal of the electrode exceeds a predetermined reference falling amount within a predetermined reference time, the combustion fan is controlled so as to lower the blowing capacity.
3 4 . 請求項 3 3において、  3 4. In claim 33,
前記風量制御部は、 燃焼制御中において、 前記フレームロツ ド電極の検出信号 の下降変化が前記所定の基準時間より短い時間内において前記基準下降量を超え た時は、 前記燃焼ファンの送風能力を上昇するように制御することを特徴とする 燃焼装置。 During the combustion control, the air volume control unit may be configured such that a decrease in the detection signal of the flame rod electrode exceeds the reference decrease amount within a time shorter than the predetermined reference time. And controlling the combustion fan to increase the blowing capacity of the combustion fan.
3 5 . 請求項 3 2〜3 4のいずれかにおいて、  35. In any one of claims 32 to 34,
前記フレームロツ ド電極は、 パーナ近傍の異なる高さに設けられた複数のフレ 一ムロツ ド電極を有し、  The frame rod electrode has a plurality of frame rod electrodes provided at different heights near a corner,
前記風量制御部は、 第 1の燃焼能力の時に高さの低いフレームロツ ド電極から の検出信号に応じて前記燃焼ファンの送風能力の制御を行い、 前記第 1の燃焼能 力よりも高い第 2の燃焼能力の時に高さの高いフレームロツ ド電極からの検出信 号に応じて前記燃焼ファンの送風能力の制御を行うことを特徴とする燃焼装置。  The air volume control unit controls the blowing capacity of the combustion fan in accordance with a detection signal from a frame rod electrode having a low height at the time of the first combustion capacity, and controls a second air flow rate higher than the first combustion capacity. A combustion apparatus wherein the blowing capacity of the combustion fan is controlled according to a detection signal from a frame rod electrode having a high height when the combustion capacity is high.
3 6 . 請求項 3 2〜3 4のいずれかにおいて、 36. In any one of claims 32 to 34,
前記フレームロツド電極に供給される入力電圧の変動に応じて、 前記検出信号 を補正することを特徴とする燃焼装置。  The combustion device according to claim 1, wherein the detection signal is corrected according to a change in an input voltage supplied to the frame rod electrode.
3 7 . 燃焼を行うパーナと、 前記パーナの火炎の大小を検出するフレームロツ ド電極と、 前記パーナに給排気を行う燃焼ファンと、 前記燃焼ファンの風量を制 御する風量制御部とを有し、 室内に設置される燃焼装置において、  37. It has a burner, a flame rod electrode for detecting the magnitude of the flame of the burner, a combustion fan for supplying and exhausting air to and from the burner, and an air flow control unit for controlling the air flow of the combustion fan. In a combustion device installed indoors,
前記風量制御部は、 燃焼能力と共に前記フレームロツ ド電極からの検出信号に 応じて、 前記燃焼ファンの送風能力制御を行うことを特徴とする燃焼装置。  The combustion apparatus according to claim 1, wherein the air volume control unit controls the air blowing capacity of the combustion fan in accordance with a detection signal from the flame rod electrode together with the combustion capacity.
PCT/JP1998/000606 1997-02-14 1998-02-13 Combustion apparatus WO1998036219A1 (en)

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP3037397A JPH10227452A (en) 1997-02-14 1997-02-14 Hot water supplying machine, and hot water supplying machine control method
JP9/30373 1997-02-14
JP3593797A JPH10232015A (en) 1997-02-20 1997-02-20 Combustion device
JP9/35937 1997-02-20
JP9/58247 1997-02-26
JP5824797A JP3673361B2 (en) 1997-02-26 1997-02-26 Combustion equipment
JP06242497A JP3673362B2 (en) 1997-02-28 1997-02-28 Combustion equipment
JP06242597A JP3673363B2 (en) 1997-02-28 1997-02-28 Combustion equipment
JP06178597A JP3777011B2 (en) 1997-02-28 1997-02-28 Combustion device
JP06178497A JP3810174B2 (en) 1997-02-28 1997-02-28 Combustion device
JP9/62425 1997-02-28
JP9/61785 1997-02-28
JP9/62424 1997-02-28
JP9/61784 1997-02-28
JP06242697A JP3727437B2 (en) 1997-02-28 1997-02-28 Combustion equipment and ignition method thereof
JP9/62426 1997-02-28
JP09320397A JP3736929B2 (en) 1997-03-27 1997-03-27 Combustion device
JP9/93203 1997-03-27
JP10677197A JPH10281459A (en) 1997-04-09 1997-04-09 Combustion equipment
JP9/106771 1997-04-09

Publications (1)

Publication Number Publication Date
WO1998036219A1 true WO1998036219A1 (en) 1998-08-20

Family

ID=27579830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000606 WO1998036219A1 (en) 1997-02-14 1998-02-13 Combustion apparatus

Country Status (1)

Country Link
WO (1) WO1998036219A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649356A (en) * 2020-06-10 2020-09-11 绍兴市升博厨房电器有限公司 Gas stove working method and gas stove
CN111699346A (en) * 2018-02-19 2020-09-22 株式会社能率 Combustion apparatus
CN113883911A (en) * 2021-11-03 2022-01-04 北京泓泰天诚科技有限公司 Atmospheric and vacuum heating furnace air control method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202011A (en) * 1985-03-01 1986-09-06 Sanyo Electric Co Ltd Combustion apparatus of forced feed and discharge type
JPS63184340U (en) * 1987-05-20 1988-11-28
JPH0814553A (en) * 1994-07-04 1996-01-19 Gastar Corp Combustion control method for combustion equipment equipped with co detecting sensor upon intermittent combustion and device therefor
JPH0835654A (en) * 1994-07-23 1996-02-06 Takagi Ind Co Ltd Combustion device and combustion control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202011A (en) * 1985-03-01 1986-09-06 Sanyo Electric Co Ltd Combustion apparatus of forced feed and discharge type
JPS63184340U (en) * 1987-05-20 1988-11-28
JPH0814553A (en) * 1994-07-04 1996-01-19 Gastar Corp Combustion control method for combustion equipment equipped with co detecting sensor upon intermittent combustion and device therefor
JPH0835654A (en) * 1994-07-23 1996-02-06 Takagi Ind Co Ltd Combustion device and combustion control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699346A (en) * 2018-02-19 2020-09-22 株式会社能率 Combustion apparatus
CN111699346B (en) * 2018-02-19 2022-02-25 株式会社能率 Combustion apparatus
CN111649356A (en) * 2020-06-10 2020-09-11 绍兴市升博厨房电器有限公司 Gas stove working method and gas stove
CN113883911A (en) * 2021-11-03 2022-01-04 北京泓泰天诚科技有限公司 Atmospheric and vacuum heating furnace air control method and system

Similar Documents

Publication Publication Date Title
US20080083404A1 (en) Space Heater with Microprocessor Control
US5666889A (en) Apparatus and method for furnace combustion control
CN110617627B (en) Gas water heater
US20110277706A1 (en) Gas-fired heating device having a thermopile
US6877462B2 (en) Sensorless flammable vapor protection and method
WO1998036219A1 (en) Combustion apparatus
JP2005195234A (en) Warm-air heater
EP3832224B1 (en) Gas-fired heating appliance with harmful gas detection
JP4302671B2 (en) Gas burning appliances with functions to prevent unplanned gas species
JP2005009688A (en) Gas fan heater and its control method
JP6803257B2 (en) Combustion device
JP7421427B2 (en) combustion equipment
JP3673361B2 (en) Combustion equipment
JP2694890B2 (en) Combustion stopping device for incomplete combustion of combustion equipment
JP3844598B2 (en) Combustion equipment with exhaust duct fire prevention function
JP4045890B2 (en) Water heater control device
KR0169056B1 (en) Hot water temperature keeping method for gas-boiler in case of adverse wind
JP2876945B2 (en) Pot-type oil combustor controller
JP2000028138A (en) Heater
JPH10267270A (en) Combustion device
JPH05157228A (en) Hot water feeding machine
JPH0424287Y2 (en)
JP3727437B2 (en) Combustion equipment and ignition method thereof
JPH10238767A (en) Combustor
JP3777011B2 (en) Combustion device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase