WO1998035810A1 - Systeme d'injection de matiere composite a l'interieur d'un moule de conformation - Google Patents

Systeme d'injection de matiere composite a l'interieur d'un moule de conformation Download PDF

Info

Publication number
WO1998035810A1
WO1998035810A1 PCT/FR1998/000101 FR9800101W WO9835810A1 WO 1998035810 A1 WO1998035810 A1 WO 1998035810A1 FR 9800101 W FR9800101 W FR 9800101W WO 9835810 A1 WO9835810 A1 WO 9835810A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
tubes
injection system
line
sections
Prior art date
Application number
PCT/FR1998/000101
Other languages
English (en)
Inventor
Patrick Bosg
Laurent Vergne
Original Assignee
Inoplast
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoplast filed Critical Inoplast
Priority to AT98903095T priority Critical patent/ATE218091T1/de
Priority to EP98903095A priority patent/EP1007319B1/fr
Priority to DE69805629T priority patent/DE69805629T2/de
Priority to US09/355,721 priority patent/US6461140B1/en
Priority to AU59938/98A priority patent/AU5993898A/en
Priority to BR9807318-4A priority patent/BR9807318A/pt
Publication of WO1998035810A1 publication Critical patent/WO1998035810A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/041Feeding of the material to be moulded, e.g. into a mould cavity using filling or dispensing heads placed in closed moulds or in contact with mould walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/06Feeding of the material to be moulded, e.g. into a mould cavity in measured doses, e.g. by weighting
    • B29C31/061Feeding of the material to be moulded, e.g. into a mould cavity in measured doses, e.g. by weighting using stationary volumetric measuring chambers
    • B29C31/063Feeding of the material to be moulded, e.g. into a mould cavity in measured doses, e.g. by weighting using stationary volumetric measuring chambers of the piston type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/20Injection nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • B29C2045/0008Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements the fibres being oriented randomly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C2045/2717Reconfigurable runner channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C2045/2766Heat insulation between nozzle and mould

Definitions

  • the invention relates to a system for injecting composite material inside a shaping mold.
  • a composite molding material generally comprises a resin and suitable reinforcing or filler fibers.
  • FR-A-2 629 388 there is known an apparatus for the injection of composite material inside a shaping mold comprising one or more metering devices, of the movable piston type, connected to a device. common feed, also of the piston type, each dispenser being associated with an injection device mounted on the mold. This device is effective for molding composite materials comprising a thermosetting resin.
  • thermosetting resins have a relatively high density, of the order of 1.4 to 1.9, and generally do not allow the parts produced to be assembled by simple form cooperation, that is to say by snap-fastening or clipping.
  • clipping may be desirable for bodywork or structural elements of a motor vehicle, such as a grille, a wing or an interior or exterior covering. It has therefore been envisaged to use thermoplastic resins whose density is lower and which allow the parts to be fixed by elastic deformation.
  • thermoplastic resins lie in the fact that they must be injected into the shaping mold at a temperature of the order of 220 to 290 ° C, the molding pressure being of the order of 300 to 350 bars. These values are significantly higher than the corresponding values for thermosetting resins which are approximately 170 ° C and 100 to 250 bars respectively.
  • the injection device it is sometimes necessary for the injection device to be installed on a movable part of the mold so that any trace left on the finished part at the point of injection is located in a hidden part of the room a times this one mounted. It is then necessary to provide a supply system for the molding compound of the injector which allows the movements of the latter due to the movements of the mold. It has been possible to envisage installing in the known device of FR-2 629 388 a flexible pipe between the metering device and the injection device.
  • a flexible pipe should be made with a reinforced hose which is particularly expensive.
  • the geometry of the pipe would vary depending on the position of the movable part of the mold, so that the pressure losses induced by this pipe would be large and variable.
  • known technology does not allow the use of flexible pipes of large diameter at the pressures envisaged, so that the pressure losses induced in a flexible line are significant. It is then necessary for the common supply device to work at very high pressure in order to reach, at the mold footprint, the 300 to 350 bars necessary during the molding of a thermoplastic resin.
  • a flexible line necessarily includes two fittings making it possible to connect it at its two ends to a fluid circuit. These connections necessarily have a reduction in the internal diameter compared to that of the flexible pipe, which induces additional pressure losses, which are also inadmissible.
  • thermoplastic resins can contain relatively long fibers, that is to say those whose length can exceed 20 mm.
  • the long fibers risk being broken when the fittings pass.
  • the temperature of the material to be injected cannot be controlled when it passes through the flexible pipe, the latter being able to reach several meters in length, so that heat exchanges lead to a decrease in the temperature of the composite material, which negatively influences its fluidity and its molding properties.
  • the invention aims to solve these problems and to provide a composite material injection system capable of operating with thermoplastic resins or thermosetting resins, including in the case where the injector is placed on a movable part of the mold.
  • the invention relates to a system for injecting composite material inside a shaping mold, said system comprising a feed device and at least one metering device, characterized in that it comprises at least one line with a substantially constant internal section, said line being formed of articulated tube sections, said tubes being with a double jacket so as to allow the circulation of a heat transfer fluid.
  • the pressure losses induced in the line formed by articulated tube sections can be determined with good precision, in particular by calculation, and remain substantially constant whatever the position of this articulated line.
  • the tubes maintain a generally rectilinear constant geometry whatever their relative positions.
  • the circulation of a heat transfer fluid makes it possible to maintain the injected composite material at a temperature suitable for the molding process, including when the articulated line has a length of several meters.
  • the line formed by articulated tube sections does not include a connection with reduced internal cross-section relative to the rest of the line, so that the fibers included in the material to be injected are not likely to be broken when passing through such connections. .
  • the substantially constant internal section of the line guarantees that no shearing of the fibers takes place during the movements of the articulated line.
  • the line formed by sections of articulated tubes comprises at least one rotary connector capable of withstanding fluid pressures of the order of 350 bars.
  • a rotary coupling makes it possible to obtain a degree of freedom necessary for the articulation function of the line without negatively influencing the pressure losses induced by the latter.
  • the rotary connector comprises a male sleeve penetrating a female sleeve, these sleeves defining between them a gap provided with balls and each being associated with an elbow. This construction guarantees that the swivel joint resists the desired pressures and allows the articulation of the line of the system of the invention.
  • the internal section of the line formed by sections of tubes is substantially constant. This keeps the induced pressure losses to a minimum.
  • the line formed by sections of tubes is interposed between the metering device and the mold.
  • the line formed by sections of tubes is interposed between the supply device and the metering device. In this case, provision can be made for the metering device to be fixed to a movable part of the mold. It thus forms with the injection device a compact assembly inside which the pressure drops and the temperature variations can be optimized to their minimum values.
  • the system comprises at least one injector mounted in the mold, this injector comprising a space for circulation of heat-transfer fluid as close as possible to the outlet of the injector.
  • a thermal connection 1 is placed around the injector in the mold. This aspect of the invention makes it possible to maintain the material to be injected at a temperature different from that of the mold up to its point of injection into the mold.
  • the feed device and / or the metering device and / or the injection device are jacketed so as to allow the circulation of a heat transfer fluid.
  • This aspect of the invention thus makes it possible, in cooperation with the line formed of double-envelope tubes, to control the temperature of the material to be injected along the injection line.
  • FIG. 1 is a block diagram of a composite material injection system according to a first embodiment of the invention
  • FIG. 2 is a cross section of a rotary connector and the end of two tubes belonging to the device of Figure 1;
  • FIG. 3 is a sectional view of the terminal part of an injection device used with the system of FIG. 1 and
  • FIG. 4 is a view similar to Figure 1 for a system according to a second embodiment of the invention.
  • the composite material injection system shown in FIG. 1 comprises a reservoir 1 in which is temporarily stored a composite material which can be produced from thermosetting resin such as polyester, vinyl ester or a phenolic resin or thermoplastic resin, such as a resin belonging to the polyolefin family. This resin can be loaded with reinforcing fibers based on glass, carbon or any other suitable material.
  • An Archimedes screw 2 is placed at the foot of the tank 1 and controlled by a motor 2a. in order to convey the material to be injected to a supply device 3 provided with a stuffing piston 4.
  • a metering device 5 also equipped with a piston 6, the pistons 4 and 6 are moved by means of electrical or pneumatic devices known to those skilled in the art, their position possibly being detected by means of coders or any other equivalent means.
  • the material is injected into a mold 10 essentially formed by a movable die 11 and a fixed punch 12.
  • the die 11 is periodically removed from the punch 12 to allow removal of the molded parts.
  • An injection device 13 is connected with the interior volume 10a. of the mold by means of a bore 14 made in the matrix 11.
  • the injection device can be of any known type and, in particular, in accordance with the technical teaching of EP-A-0 606 037.
  • the tubes 21 are jacketed, so that the circulation of a heat transfer liquid such as an oil based on a mixture of synthetic alkylbenzenes can be used, as shown by the arrows F.
  • the oil based on synthetic alkylbenzenes has the remarkable property of supporting high temperatures, of the order of 290 ° C., without significant degradation.
  • the Archimedes screw 2, the feed device 3, the metering device 5 and / or the injection device 13 are equipped with a double envelope so as to allow circulation.
  • the heat transfer fluid may be the same as that previously described, in which case a common circuit for supplying heat transfer fluid may be provided; it can also be another heat transfer fluid, which makes it possible to maintain these different enclosures at temperatures different from each other.
  • the rotary couplings 22 serving as articulation are able to withstand fluid pressures of the order of 350 bars. To do this and as it appears more clearly in FIG. 2, they comprise a male sleeve 30 and a female sleeve 31 to which two elbows 32 and 33 are respectively fixed, these elbows being themselves connected to two tubes 21.
  • the elbows 32 and 33 are welded to the sleeves 30 and 31, the weld beads appearing with the references 34.
  • a welded joint allows this assembly to withstand high pressures.
  • a gap 35 is formed between the sleeves 30 and 31, it defines circular grooves into which balls 36 can be inserted by means openings closed by plugs 37.
  • O-rings 38 are arranged in grooves 39 of the male sleeve 30, near the ends of the gap 35.
  • This rotary connection therefore allows relative movement of two tubes 21 in the plane of Figure 1. It is noted that the internal section of the tubes 21, the elbows 32 and 33 and the sleeves 30 and 31 is substantially constant, so that the presence of the rotary fittings 22 in the line formed between the metering device 6 and the injection device 13 does not induce specific pressure drops, which is essential at the operating pressures considered. In addition, the fibers contained in the composite material are not likely to be broken when these rotary couplings pass.
  • the injection device or injector is mounted on the movable matrix 11. In its terminal part, it includes a space 15 for circulation of a heat-transfer fluid such as the oil previously mentioned.
  • This space 15 can be provided with fins or internal ribs 15a. intended to promote the guiding of the heat transfer liquid up to the immediate vicinity of the outlet 13a. of the injector 13 as well as the heat exchanges.
  • These ribs 15a. may in particular have a helical shape.
  • the temperature of the composite material to be injected can be controlled up to its point of injection into the interior volume 10a. of the mold 10.
  • thermoplastic resin composite material is used to the extent that the mold 10 is maintained at a temperature 'of about 70 ° while the thermoplastic material is injected a temperature of the order of 250 ° C.
  • the heat transfer liquid present in the space 15 therefore makes it possible to heat the thermoplastic resin.
  • the mold is heated to a temperature of the order of 170 ° C while the resin is injected with a temperature of the order of 70 ° C .
  • the circulation of the heat transfer liquid in the space 15 makes it possible to cool the material before its injection into the volume 10a.
  • a thermal insulation fitting 16 to be placed around the injector 13 in the matrix 11, so that it limits the heat exchanges between the injector 13 and the mold 10.
  • elements similar to those of the embodiment of Figures 1 to 3 bear identical references.
  • This embodiment differs from the previous one essentially in that the metering device 5 is installed on the movable matrix 11 of the mold 10, so that the circulation of composite material to be injected between the metering device 5 and the injector 13 takes place over a minimum distance. This contributes to better dosing accuracy.
  • the line 20 formed by sections of tubes 21 is interposed between the supply device 3 and the metering device 5. It fulfills the same function as above by allowing the relative movements of the matrix 11 relative to the punch 10 without inducing inadmissible pressure drops or temperature variations not compatible with the process used.
  • several metering devices 5 can be associated with a single common feeding device 3. Several lines 20 are then used in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Robotics (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

Système d'injection de matière composite à l'intérieur d'un moule (10) de conformation, ledit système comprenant un dispositif d'alimentation (3) et au moins un dispositif de dosage (5), caractérisé en ce qu'il comprend au moins une ligne (20) formée de sections de tubes (21) articulées, lesdits tubes étant à double enveloppe de façon à permettre la circulation d'un fluide caloporteur. Le système de l'invention permet de limiter les pertes de charge et de contrôler la température de la matière composite alors qu'un injecteur (13) de la matière à l'intérieur du moule peut être monté sur une partie mobile (11) de celui-ci.

Description

SYSTEME D'INJECTION DE MATIERE COMPOSITE A L'INTERIEUR D'UN MOULE DE CONFORMATION
L'invention a trait à un système d'injection de matière composite à l'intérieur d'un moule de conformation.
Une matière de moulage composite comprend généralement une résine et des fibres de renfort ou de charge appropriées . Par la demande de brevet FR-A-2 629 388, on connaît un appareillage pour l'injection de matière composite à l'intérieur d'un moule de conformation comprenant un ou plusieurs doseurs, du type à piston mobile, reliés à un dispositif commun d'alimentation, également du type à piston, chaque doseur étant associé à un dispositif d'injection monté sur le moule. Ce dispositif est efficace pour le moulage de matières composites comprenant une résine thermodurcissable .
Cependant, les résines thermodurcissables ont une densité relativement importante, de l'ordre de 1,4 à 1,9, et ne permettent en général pas d'assembler les pièces réalisées par une simple coopération de forme, c'est-à-dire par enclicjuetage ou clipsage. Or, un tel clipsage peut être souhaitable pour des éléments de carrosserie ou de structure d'un véhicule automobile, tels qu'une calandre, une aile ou un habillage intérieur ou extérieur. On a donc envisagé d'utiliser des résines thermo- plastiques dont la densité est moindre et qui permettent une fixation des pièces par déformation élastique.
Une contrainte des résines thermoplastiques réside dans le fait qu'elles doivent être injectées dans le moule de conformation à une température de l'ordre de 220 à 290°C, la pression de moulage étant de l'ordre de 300 à 350 bars. Ces valeurs sont sensiblement supérieures aux valeurs correspondantes pour les résines thermodurcissables qui sont respectivement de 170°C environ et de 100 à 250 bars.
D'autre part, en fonction de la géométrie de la pièce à mouler, il est parfois nécessaire que le dispositif d'injection soit installé sur une partie mobile du moule afin que la trace éventuellement laissée sur la pièce finie au niveau du point d'injection soit située dans une partie masquée de la pièce une fois celle-ci montée. Il est alors nécessaire de prévoir un système d'alimentation en composé de moulage de l' injecteur qui permette les mouvements de celui-ci dus aux mouvements du moule. On a pu envisager d'installer dans le dispositif connu de FR-2 629 388 une conduite flexible entre le dispositif de dosage et le dispositif d'injection.
Cependant, une telle conduite flexible devrait être réalisée avec un tuyau armé qui est particulièrement onéreux. De plus, la géométrie de la conduite varierait en fonction de la position de la partie mobile du moule, de sorte que les pertes de charges induites par cette conduite seraient importantes et variables. De plus, la technologie connue ne permet pas d'utiliser des tuyaux flexibles de grand diamètre aux pressions envisagées, de sorte que les pertes de charge induites dans une ligne flexible sont importantes. Il est alors nécessaire que le dispositif commun d'alimentation travaille à très haute pression pour atteindre, au niveau de l'empreinte du moule, les 300 à 350 bars nécessaires lors du moulage d'une résine thermoplastique. En outre, une ligne flexible comprend nécessairement deux raccords permettant de la connecter à ses deux extrémités à un circuit fluide . Ces raccords présentent nécessairement une diminution du diamètre interne par rapport à celui de la conduite flexible, ce qui induit des pertes de charge supplé- mentaires, elles aussi inadmissibles.
Par ailleurs, un des intérêts principaux des matières composites à base de résines thermoplastiques est qu'elles peuvent contenir des fibres relativement longues, c'est-à-dire dont la longueur peut excéder 20 mm. Or, dans un système muni d'une conduite flexible, les fibres longues risquent d'être brisées au passage des raccords. Enfin, quelles que soient les précautions prises au niveau des dispositifs d'alimentation ou de dosage, la température de la matière à injecter ne peut pas être contrôlée lorsqu'elle transite dans la conduite flexible, celle-ci pouvant atteindre plusieurs mètres de longueur, de sorte que des échanges thermiques conduisent à la diminution de la température de la matière composite, ce qui influe négativement sur sa fluidité et ses propriétés de moulage. L'invention vise à résoudre ces problèmes et à proposer un système d'injection de matière composite capable de fonctionner avec des résines thermoplastiques ou des résines thermodurcissables, y compris dans le cas où l' injecteur est placé sur une partie mobile du moule.
Dans cet esprit, l'invention concerne un système d'injection de matière composite à l'intérieur d'un moule de conformation, ledit système comprenant un dispositif d'alimentation et au moins un dispositif de dosage, caractérisé en ce qu'il comprend au moins une ligne à section interne sensiblement constante, ladite ligne étant formée de sections de tubes articulées, lesdits tubes étant à double enveloppe de façon à permettre la circulation d'un fluide caloporteur.
Grâce à l'invention, les pertes de charges induites dans la ligne formée de sections de tubes articulées peuvent être déterminées avec une bonne précision, notamment par le calcul, et demeurent sensiblement constantes quelle que soit la position de cette ligne articulée. En effet, les tubes conservent une géométrie constante globalement rectiligne quelles que soient leurs positions relatives. De plus, la circulation d'un fluide caloporteur permet de maintenir la matière composite injectée à une température adaptée au procédé de moulage, y compris lorsque la ligne articulée a une longueur de plusieurs mètres. Enfin, la ligne formée de sections de tubes articulées ne comprend pas de raccord à section intérieure réduite par rapport au reste de la ligne, de sorte que les fibres comprises dans la matière à injecter ne risquent pas d'être brisées au passage de tels raccords. La section interne sensiblement constante de la ligne garantit qu'aucun cisaillement des fibres n'a lieu lors des mouvements de la ligne articulée.
Selon un premier aspect avantageux de l'invention, la ligne formée de sections de tubes articulées comprend au moins un raccord tournant apte à résister à des pressions de fluide de l'ordre de 350 bars. L'utilisation d'un raccord tournant permet d'obtenir un degré de liberté nécessaire à la fonction d'articulation de la ligne sans influer négativement sur les pertes de charge induites par celle-ci. Dans ce cas et selon un autre aspect avantageux de l'invention, le raccord tournant comprend un manchon mâle pénétrant dans un manchon femelle, ces manchons définissant entre eux un interstice garni de billes et étant chacun associé avec un coude. Cette construction garantit que le raccord tournant résiste aux pressions souhaitées et permet l'articulation de la ligne du système de l'invention. Selon un autre aspect avantageux de l'invention, la section interne de la ligne formée de sections de tubes est sensiblement constante. Ceci permet de maintenir les pertes de charge induites à un niveau minimum. Selon un premier mode de réalisation de l'invention, la ligne formée de sections de tubes est intercalée entre le dispositif de dosage et le moule. Selon un second mode de réalisation de l'invention, la ligne formée de sections de tubes est intercalée entre le dispositif d'alimentation et le dispositif de dosage. Dans ce cas, on peut prévoir que le dispositif de dosage est fixé sur une partie mobile du moule. Il forme ainsi avec le dispositif d'injection un ensemble compact à l'intérieur duquel les pertes de charge et les variations de température peuvent être optimisées à leurs valeurs minimales.
Selon un autre aspect avantageux de l'invention, le système comprend au moins un injecteur monté dans le moule, cet injecteur comprenant un espace de circulation de fluide caloporteur jusqu'à proximité immédiate du débouché de l'injec- teur . Cet aspect de l'invention permet de contrôler la température de la matière composite injectée jusqu'à son introduction dans le moule.
Selon un autre aspect avantageux de l'invention, un raccord thermique1 est placé autour de l' injecteur dans le moule. Cet aspect de l'invention permet de maintenir la matière à injecter à une température différente de celle du moule jusqu'à son point d'injection dans le moule.
Selon un autre aspect avantageux de l'invention, le dispositif d'alimentation et/ou le dispositif de dosage et/ou le dispositif d'injection sont à double enveloppe de façon à permettre la circulation d'un fluide caloporteur. Cet aspect de l'invention permet ainsi, en coopération avec la ligne formée de tubes à double enveloppe, de contrôler la température de la matière à injecter tout au long de la ligne d'injection.
L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront plus clairement à la lumière de la description qui va suivre de deux modes de réalisation d'un système d'injection de matière composite conforme à son principe, donnée uniquement à titre d'exemple et faite en référence aux dessins annexés dans lesquels :
- la figure 1 est un schéma de principe d'un système d'injection de matière composite conforme à un premier mode de réalisation de l'invention ;
- la figure 2 est une coupe transversale d'un raccord tournant et de l'extrémité de deux tubes appartenant au dispositif de la figure 1 ;
- la figure 3 est une vue en coupe de la partie terminale d'un dispositif d'injection utilisé avec le système de la figure 1 et
- la figure 4 est une vue analogue à la figure 1 pour un système conforme à un second mode de réalisation de l'invention. Le système d'injection de matière composite représenté à la figure 1 comprend un réservoir 1 dans lequel est stocké, de façon temporaire, une matière composite qui peut être réalisée à partir de résine thermodurcissable telle que du polyester, du vinylester ou une résine phénolique ou de résine thermoplasti- que, telle qu'une résine appartenant à la famille des polyoléi- fines. Cette résine peut être chargée en fibres de renfort à base de verre, de carbone ou de tout autre matériau adapté. Une vis d'Archimède 2 est disposée au pied du réservoir 1 et commandée par un moteur 2a. afin de convoyer la matière à injecter jusqu'à un dispositif d'alimentation 3 muni d'un piston 4 de bourrage. A la sortie du dispositif d'alimentation 3 est raccordé un dispositif de dosage 5 également équipé d'un piston 6, les pistons 4 et 6 sont déplacés au moyen de dispositifs électriques ou pneumatiques connus de l'homme du métier, leur position pouvant être détectée au moyen de codeurs ou de tout autre moyen équivalent.
La matière est injectée dans un moule 10 formé essentiellement d'une matrice mobile 11 et d'un poinçon fixe 12. La matrice 11 est périodiquement écartée du poinçon 12 afin de permettre le retrait des pièces moulées. Un dispositif d'injection 13 est raccordé avec le volume intérieur 10a. du moule grâce à un perçage 14 ménagé dans la matrice 11. Le dispositif d'injection peut être de tout type connu et, notamment, conforme à l'enseignement technique de EP-A-0 606 037.
Conformément à l'invention, entre le dispositif de dosage 5 et le dispositif d'injection 13 est insérée une ligne 20 formée de sections de tubes 21 reliées entre elles par des raccords tournants 22. Les tubes 21 sont à double enveloppe, de sorte que la circulation d'un liquide caloporteur tel qu'une huile à base de mélange d' alkylbenzenes synthétiques peut être mise en oeuvre, comme cela est représenté par les flèches F. L'huile à base d' alkylbenzenes synthétiques a la propriété remarquable de supporter des températures élevées, de l'ordre de 290°C, sans dégradation notable. De la même manière, on peut prévoir que la vis d'Archimède 2, le dispositif d'alimentation 3, le dispositif de dosage 5 et/ou le dispositif d'injection 13 sont équipés d'une double enveloppe de façon à permettre la circulation d'un fluide caloporteur, ceci étant également représenté par les flèches F à la figure 1. Le fluide caloporteur peut être le même que celui précédemment décrit, auquel cas un circuit commun d'alimentation en fluide caloporteur peut être prévu ; il peut aussi s'agir d'un autre fluide calopor- teur, ce qui permet de maintenir ces différentes enceintes à des températures différentes les unes des autres.
Les raccords tournants 22 servant d'articulation sont aptes à résister à des pressions de fluide de l'ordre de 350 bars . Pour ce faire et comme il apparaît plus clairement à la figure 2, ils comprennent un manchon mâle 30 et un manchon femelle 31 sur lesquels sont respectivement fixés deux coudes 32 et 33, ces coudes étant eux-mêmes raccordés à deux tubes 21. Les coudes 32 et 33 sont soudés sur les manchons 30 et 31, les cordons de soudures apparaissant avec les références 34. Une jonction par soudure permet à cet assemblage de résister à des pressions importantes. Un interstice 35 est ménagé entre les manchons 30 et 31, il définit des gorges circulaires dans lesquelles peuvent être insérées des billes 36 au moyen d'ouvertures fermées par des bouchons 37. Des joints toriques 38 sont disposés dans des gorges 39 du manchon mâle 30, à proximité des extrémités de l'interstice 35. Ce raccord tournant permet donc un mouvement relatif de deux tubes 21 dans le plan de la figure 1. On note que la section interne des tubes 21, des coudes 32 et 33 et des manchons 30 et 31 est sensiblement constante, de sorte que la présence des raccords tournants 22 dans la ligne formée entre le dispositif de dosage 6 et le dispositif d'injection 13 n'induit pas de pertes de charge spécifiques, ce qui est essentiel aux pressions d'utilisation considérées. De plus, les fibres contenues dans la matière composite ne risquent pas d'être brisées au passage de ces raccords tournants .
Le dispositif d'injection ou injecteur, représenté partiellement à plus grande échelle à la figure 3, est monté sur la matrice mobile 11. Dans sa partie terminale, il comprend un espace 15 de circulation d'un fluide caloporteur tel que l'huile précédemment évoquée. Cet espace 15 peut être muni d'ailettes ou de nervures internes 15a. destinées à favoriser le guidage du liquide caloporteur jusqu'à proximité immédiate du débouché 13a. de l' injecteur 13 ainsi que les échanges thermiques . Ces nervures 15a. peuvent notamment avoir une forme hélicoïdale. Ainsi, la température de la matière composite à injecter peut être contrôlée jusqu'à son point d'injection dans le volume intérieur 10a. du moule 10. Ceci est particulièrement intéressant dans le cas où on utilise une matière composite à base de résine thermoplastique dans la mesure où le moule 10 est maintenu à une température de' l'ordre de 70° alors que la matière thermoplastique est injectée à une température de l'ordre de 250°C. Le liquide caloporteur présent dans l'espace 15 permet donc de chauffer la résine thermoplastique.
Dans le cas de l'utilisation du dispositif de l'invention avec une résine thermodurcissable, le moule est chauffé à une température de l'ordre de 170°C alors que la résine est injectée avec une température de l'ordre de 70°C. Dans ce cas, la circulation du liquide caloporteur dans l'espace 15 permet de refroidir la matière avant son injection dans le volume 10a..
Afin de faciliter le maintien de la matière à injecter à une température différente de celle du moule, on peut également prévoir qu'un raccord d'isolation thermique 16 est placé autour de l' injecteur 13 dans la matrice 11, de sorte qu'il limite les échanges thermiques entre l' injecteur 13 et le moule 10. Dans le second mode de réalisation de 1 ' invention représenté à la figure 4, les éléments analogues à ceux du mode de réalisation des figures 1 à 3 portent des références identiques. Ce mode de réalisation diffère du précédent essentiellement en ce que le dispositif de dosage 5 est installé sur la matrice mobile 11 du moule 10, de sorte que la circulation de matière composite à injecter entre le dispositif de dosage 5 et l' injecteur 13 a lieu sur une distance minimale. Ceci contribue à une meilleure précision du dosage. Dans ce cas, la ligne 20 formée de sections de tubes 21 est intercalée entre le disposi- tif d'alimentation 3 et le dispositif de dosage 5. Elle remplit la même fonction que précédemment en permettant les mouvements relatifs de la matrice 11 par rapport au poinçon 10 sans induire de pertes de charge inadmissibles ou des variations de température non compatibles avec le procédé mis en oeuvre . Quel que soit le mode de réalisation de l'invention, plusieurs dispositifs de dosage 5 peuvent être associés avec un unique dispositif d'alimentation 3 commun. Plusieurs lignes 20 sont alors utilisées en parallèle.

Claims

REVENDICATIONS
1. Système d'injection de matière composite à l'intérieur d'un moule (10) de conformation, ledit système comprenant un dispositif d'alimentation (3) et au moins un dispositif de dosage (5) , caractérisé en ce qu'il comprend au moins une ligne
(20) à section interne sensiblement constante formée de sections de tubes (21) articulées, lesdits tubes étant à double enveloppe, de façon à permettre la circulation (F) d'un fluide caloporteur .
2. Système d'injection selon la revendication 1, caractérisé en ce que ladite ligne (20) formée de sections de tubes
(21) articulées comprend au moins un raccord tournant (22) apte à résister à des pressions de fluide de l'ordre de 350 bars.
3. Système d'injection selon la revendication 2, caractérisé en ce que ledit raccord tournant (22) comprend un manchon mâle (31) pénétrant dans un manchon femelle (30), lesdits manchons définissant entre eux un interstice (35) garni de billes (36) et étant chacun associé avec un coude (32, 33) .
4. Système d'injection selon la revendication 1, caractérisé en ce que la section interne de ladite ligne (20) formée de sections de tubes (21) est sensiblement constante.
5. Système d'injection selon la revendication 1, caracté- risé en ce que ladite ligne (20) formée de sections de tubes
(21) est intercalée entre ledit dispositif de dosage (5) et ledit moule (10) .
6. Système d'injection selon la revendication 1, caractérisé en ce que ladite ligne (20) formée de sections de tubes (21) est intercalée entre ledit dispositif d'alimentation (3) et ledit dispositif de dosage (5).
7. Système d'injection selon la revendication 6, caractérisé en ce que ledit dispositif de dosage (5) est fixé sur une partie mobile (11) dudit moule (10) .
8. Système d'injection selon l'une des revendications précédentes, caractérisé en ce qu'il comprend au moins un injecteur (13) monté dans ledit moule (10), ledit injecteur comprenant un espace (15) de circulation de fluide caloporteur jusqu'à proximité immédiate du débouché (13a.) dudit injecteur.
9. Système d'injection selon la revendication 8, caractérisé en ce qu'un raccord (16) d'isolation thermique est placé autour dudit injecteur (13) dans ledit moule (10).
10. Système d'injection selon l'une des revendications précédentes, caractérisé en ce que ledit dispositif d'alimentation (3) et/ou ledit dispositif de dosage (5) et/ou un dispositif d'injection (13) sont à double enveloppe de façon à permettre la circulation d'un fluide caloporteur.
PCT/FR1998/000101 1997-02-13 1998-01-20 Systeme d'injection de matiere composite a l'interieur d'un moule de conformation WO1998035810A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT98903095T ATE218091T1 (de) 1997-02-13 1998-01-20 System zum sprizgiessen eines verbundwerkstoffes in einer formgebungsform
EP98903095A EP1007319B1 (fr) 1997-02-13 1998-01-20 Systeme d'injection de matiere composite a l'interieur d'un moule de conformation
DE69805629T DE69805629T2 (de) 1997-02-13 1998-01-20 System zum sprizgiessen eines verbundwerkstoffes in einer formgebungsform
US09/355,721 US6461140B1 (en) 1997-02-13 1998-01-20 System for injecting composite substance inside a forming mould
AU59938/98A AU5993898A (en) 1997-02-13 1998-01-20 System for injecting composite substance inside a forming mould
BR9807318-4A BR9807318A (pt) 1997-02-13 1998-01-20 Sistema de injeção de matéria composta denro de um molde de conformação.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9701912A FR2759318B1 (fr) 1997-02-13 1997-02-13 Systeme d'injection de matiere composite a l'interieur d'un moule de conformation
FR97/01912 1997-02-13

Publications (1)

Publication Number Publication Date
WO1998035810A1 true WO1998035810A1 (fr) 1998-08-20

Family

ID=9503881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000101 WO1998035810A1 (fr) 1997-02-13 1998-01-20 Systeme d'injection de matiere composite a l'interieur d'un moule de conformation

Country Status (11)

Country Link
US (1) US6461140B1 (fr)
EP (1) EP1007319B1 (fr)
AT (1) ATE218091T1 (fr)
AU (1) AU5993898A (fr)
BR (1) BR9807318A (fr)
DE (1) DE69805629T2 (fr)
ES (1) ES2176956T3 (fr)
FR (1) FR2759318B1 (fr)
PT (1) PT1007319E (fr)
TR (1) TR199901939T2 (fr)
WO (1) WO1998035810A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835792A1 (fr) * 2002-02-12 2003-08-15 Inoplast Sa Poutre transversale de pare-chocs de vehicule et procedes de fabrication de cette poutre
US7955070B2 (en) 2007-03-07 2011-06-07 Inoplast Device for moulding parts of a plastic material

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2471659A1 (fr) * 2003-06-20 2004-12-20 Mold-Masters Limited Collecteur de moulage par injection avec blocs et buses de collecteur multi-axes reglables
DE102004063391B3 (de) * 2004-12-23 2006-03-23 Wilhelm Hedrich Vakuumanlagen Gmbh & Co. Kg Vorrichtung zur Positionierung einer Gießdüseneinrichtung
DE102005022912A1 (de) * 2005-05-19 2006-11-23 Hella Kgaa Hueck & Co. Verfahren zur Steuerung eines Innenbeleuchtungssystems für Fahrzeuge
US20120109117A1 (en) * 2010-10-28 2012-05-03 Adam Harp Cryogenic probe with swivel
CN103314165A (zh) * 2010-12-09 2013-09-18 威尔费尔Hc有限责任公司 具有或用于工业消防的消防栓分水器的转环
WO2012092675A1 (fr) * 2011-01-09 2012-07-12 Husky Injection Molding Systems Ltd. Système de moulage ayant des systèmes de préparation et de distribution de matériaux et ensemble de mélange de matériaux
US8721222B2 (en) * 2011-11-04 2014-05-13 Chevron U.S.A. Inc. Lateral buckling mitigation apparatus, methods and systems for use with subsea conduits
DE102011056060A1 (de) 2011-12-05 2013-06-06 EWIKON Heißkanalsysteme GmbH Heißkanal-Verteileranordnung für ein Heißkanalsystem
US9868236B2 (en) * 2015-09-04 2018-01-16 Kun-Nan Tseng Manufacturing method of a composite long fiber product
JP6378223B2 (ja) * 2016-02-19 2018-08-22 ファナック株式会社 射出装置
US11346476B2 (en) 2016-04-18 2022-05-31 Kerr Machine Co. High pressure swivel joint
DE102016218216B4 (de) * 2016-09-22 2024-01-11 Volkswagen Aktiengesellschaft Verfahren zur Herstellung großer Duromerteile
US10371288B1 (en) 2018-10-22 2019-08-06 Chevron U.S.A. Inc. Apparatus and method for reducing impact of stresses on a subsea pipeline
AT523516B1 (de) * 2020-07-08 2021-09-15 Engel Austria Gmbh Einspritzanordnung für eine Formgebungsmaschine und Verfahren zum Betreiben einer solchen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2425318A1 (fr) * 1978-05-12 1979-12-07 Ramond Louis Corps a barriere thermique pour buse d'injection de matiere plastique
US4268241A (en) * 1978-01-06 1981-05-19 Husky Injection Molding Systems Heated injection nozzle
FR2629388A1 (fr) * 1988-03-31 1989-10-06 Inocar Appareillage pour l'injection des matieres composites a l'interieur des moules de conformation
US5540580A (en) * 1994-01-31 1996-07-30 Nissei Asb Machine Co., Ltd. Injection molding apparatus and blow-molding apparatus using said injection molding apparatus
JPH08309821A (ja) * 1995-05-23 1996-11-26 Japan Steel Works Ltd:The 成形方法及び装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR991056A (fr) * 1948-07-26 1951-10-01 Chiksan Co Conduit formé d'éléments accouplables et repliables utilisable notamment dans les exploitations pétrolifères
US3694529A (en) * 1970-04-02 1972-09-26 Allied Chem Method for molding articles
US4107946A (en) * 1977-05-03 1978-08-22 The United States Of America As Represented By The Secretary Of The Navy Low heat loss liquid helium disconnect attachment and system
GB1599491A (en) * 1978-01-07 1981-10-07 Fmc Corp Pipe swivel joints
US4221408A (en) * 1978-05-24 1980-09-09 Fmc Corporation Pipe swivel joint with optional static seal
JP2854459B2 (ja) * 1992-05-11 1999-02-03 伊三五 美浦 射出成形等における可塑化流動体の間歇的加熱装置
US5711895A (en) * 1994-12-12 1998-01-27 Nippon Oil Co., Ltd. Fluid composition for use in a refrigerating machine in which the refrigerating machine oil is at least one hydrocarbon compound of a formula consisting of two phenyl groups joined through an alkylene or alkenylene group
US5538296A (en) * 1995-05-16 1996-07-23 Horton; Duane Swivel joint
WO1998015772A1 (fr) * 1996-10-08 1998-04-16 Process Systems International, Inc. Joint baïonnette pivotant, systeme et procede de distribution de fluides cryogeniques
DE19736055C1 (de) * 1997-08-20 1998-06-04 Esser Werke Gmbh & Co Kg Rohrbogen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268241A (en) * 1978-01-06 1981-05-19 Husky Injection Molding Systems Heated injection nozzle
FR2425318A1 (fr) * 1978-05-12 1979-12-07 Ramond Louis Corps a barriere thermique pour buse d'injection de matiere plastique
FR2629388A1 (fr) * 1988-03-31 1989-10-06 Inocar Appareillage pour l'injection des matieres composites a l'interieur des moules de conformation
US5540580A (en) * 1994-01-31 1996-07-30 Nissei Asb Machine Co., Ltd. Injection molding apparatus and blow-molding apparatus using said injection molding apparatus
JPH08309821A (ja) * 1995-05-23 1996-11-26 Japan Steel Works Ltd:The 成形方法及び装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAERTENS W: "SYSTEME D'INJECTION BMC "INOROC"", COMPOSITES, vol. 31, no. 3, May 1991 (1991-05-01) - June 1991 (1991-06-01), PARIS FR, pages 342 - 346, XP000290305 *
PATENT ABSTRACTS OF JAPAN vol. 97, no. 3 31 March 1997 (1997-03-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835792A1 (fr) * 2002-02-12 2003-08-15 Inoplast Sa Poutre transversale de pare-chocs de vehicule et procedes de fabrication de cette poutre
US7955070B2 (en) 2007-03-07 2011-06-07 Inoplast Device for moulding parts of a plastic material

Also Published As

Publication number Publication date
BR9807318A (pt) 2000-04-18
EP1007319A1 (fr) 2000-06-14
AU5993898A (en) 1998-09-08
FR2759318A1 (fr) 1998-08-14
DE69805629D1 (de) 2002-07-04
US6461140B1 (en) 2002-10-08
TR199901939T2 (xx) 1999-12-21
EP1007319B1 (fr) 2002-05-29
FR2759318B1 (fr) 1999-03-19
DE69805629T2 (de) 2002-12-19
PT1007319E (pt) 2002-10-31
ATE218091T1 (de) 2002-06-15
ES2176956T3 (es) 2002-12-01

Similar Documents

Publication Publication Date Title
EP1007319B1 (fr) Systeme d'injection de matiere composite a l'interieur d'un moule de conformation
EP0446093B1 (fr) Réchauffeur de liquide de lave-glace sur circuit de liquide de refroidissement du moteur
FR2493624A1 (fr) Procede et dispositif pour la realisation de jonctions de branchement, de fermeture ou de liaison, resistantes a la traction, etanches a la pression, et notamment resistantes aux temperatures elevees, pour des canalisations electriques
EP0287429B1 (fr) Procédé de fabrication de tubes métalliques assemblés par leurs extrémités
FR2888309A1 (fr) Piece de raccordement de conduites comportant une chemise interne, procede de revetement et procede d'assemblage
EP1597509B1 (fr) Manchon a insert pour la reparation d'une canalisation de transport de fluide a haute pression
FR2658308A1 (fr) Boite de jonction pour cable a fibres optiques, et son procede de montage.
FR2693249A1 (fr) Procédé de raccordement de tubes ou tuyaux, raccords et dispositifs analogues obtenus par sa mise en Óoeuvre.
FR2651294A1 (fr) Unite d'etancheite.
WO2011131908A1 (fr) Dispositif de fabrication d'un carter en materiau composite et procede de fabrication mettant en œuvre un tel dispositif
EP0583183B1 (fr) Dispositif de raccordement et son procédé de réalisation
FR2522389A1 (fr) Joint, raccord, manchon de raccordement et procede pour reunir des articles
EP0567387B1 (fr) Dispositif de compactage à chaud pour la fabrication de pièces nécessitant des montées en pression et en température simultanées
FR2543356A1 (fr) Procede et dispositif de moulage du revetement isolant d'un isolateur organique de grande longueur
CA2854040C (fr) Dispositif de maintien en pression pour la realisation de pieces composites par injection de resine et procede associe.
EP2134957A2 (fr) Dispositif pour recuperer des fuites de carburant sur les tubes d'alimentation d'une interface
FR2920856A1 (fr) Procede de realisation d'un raccord de conduite
EP3580050A1 (fr) Regulateur d'injection de resine, circuit d'injection de resine et procedes associes
FR2492080A1 (fr) Radiateur a double tube
FR2574734A1 (fr) Cylindre maitre pour freins ou embrayage d'un vehicule
CA2987540C (fr) Profile creux tel qu'un tube realise en materiaux composite thermodurcissable et son procede
WO2011089353A1 (fr) Dispositif de raccordement de tubes de circulation de fluides et procédé associé
EP1568469B1 (fr) Procédé de piquage d'un corps tubulaire sur un conduit de transfert de fluide, et conduit ainsi piqué
EP0934485B1 (fr) Procede de verrouillage de l'emmanchement d'un tube en matiere plastique sur un embout
FR2609426A1 (fr) Procede de realisation d'une enceinte fermee traversee de facon etanche en au moins un point et application a la realisation des echangeurs thermiques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998903095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09355721

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/007425

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1999/01939

Country of ref document: TR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref document number: 1998535402

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1998903095

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998903095

Country of ref document: EP