WO1998034340A1 - Circuit de traitement analogique de signal pour recepteur de positionnement par satellite - Google Patents

Circuit de traitement analogique de signal pour recepteur de positionnement par satellite Download PDF

Info

Publication number
WO1998034340A1
WO1998034340A1 PCT/FR1998/000175 FR9800175W WO9834340A1 WO 1998034340 A1 WO1998034340 A1 WO 1998034340A1 FR 9800175 W FR9800175 W FR 9800175W WO 9834340 A1 WO9834340 A1 WO 9834340A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
mhz
divider
ratios
analog
Prior art date
Application number
PCT/FR1998/000175
Other languages
English (en)
Inventor
Alain Renard
Nelly Suaud
Original Assignee
Sextant Avionique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sextant Avionique filed Critical Sextant Avionique
Priority to US09/355,327 priority Critical patent/US6345177B1/en
Priority to EP98905466A priority patent/EP0960473B1/fr
Priority to CA002278667A priority patent/CA2278667A1/fr
Priority to DE69802780T priority patent/DE69802780T2/de
Publication of WO1998034340A1 publication Critical patent/WO1998034340A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/161Multiple-frequency-changing all the frequency changers being connected in cascade
    • H03D7/163Multiple-frequency-changing all the frequency changers being connected in cascade the local oscillations of at least two of the frequency changers being derived from a single oscillator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain

Definitions

  • the invention relates to satellite positioning receivers such as GPS (Global Positioning System) or GLONASS (Global Navigation Satellite System) receivers.
  • GPS Global Positioning System
  • GLONASS Global Navigation Satellite System
  • Satellites transmit radio frequency signals containing navigation data and codes that identify each satellite. These codes modulate in phase (BPSK modulation) a carrier frequency.
  • a receiver on the ground or on a land, air or sea vehicle, can receive the signals from several satellites simultaneously, calculate its distance to each of the satellites precisely, and deduce its precise position in latitude, longitude, and altitude, in a coordinate system. earthly. It can also deduce from it the precise date and time of reception in the system's time frame. Finally, it can deduce therefrom, by Doppler measurements, its own speed vector in the terrestrial frame of reference (case of a receiver mounted on a mobile vehicle).
  • the GPS system like the GLONASS system, uses two distinct radio frequency bands corresponding respectively to a civil application (L1 frequencies) and a military application (L2 frequencies).
  • L1 frequencies a civil application
  • L2 frequencies a military application
  • L1 frequencies there is only one frequency L1, equal to 1575.42 MHz and only one frequency L2, equal to 1227.60 MHz.
  • L1 band at Glonass can be considered, taking into account its current state and future developments, extends from 1590 MHz to 1620 MHz.
  • the L2 band extends between 1238 and 1265 MHz. Satellite signals are detected by searching for a phase modulation code present in the radio signal.
  • the satellite signals are received by an antenna and sent to an analog circuit which transposes the modulated radio frequency into a lower frequency modulated in the same way, and which converts the transposed signal to digital before sending it to a processing circuit. digital signal. It is the digital processing circuit which detects the presence of the code, by correlating it with an identical code generated locally, and which deduces, from the time position of the local code, pseudorange information then making it possible to determine the receiver position.
  • the analog circuit must make it possible to transpose the frequency of the radio signal, without losing its modulation, to a frequency low enough for the transposed signal to be processed in the digital signal processing circuit.
  • the latter is an integrated circuit based on silicon, the working frequency of which is limited to a few tens of megahertz.
  • One of the aims of the invention is to design the internal circuits of the receiver in such a way that it is easy to adapt the same circuit to the production of receivers of different types and different applications.
  • type of receiver is meant the fact that the receiver is specialized for the GPS system or specialized for the GLONASS system, or else mixed, that is to say capable of receiving the signals of either the other of the two systems.
  • application is meant mainly the fact that the receiver can receive only the signals of the civil frequency band L1 or on the contrary can also receive the signals of the band L2.
  • An object of the invention is to facilitate the implementation of frequency transposition by making this implementation as independent as possible from the type of receiver and from the envisaged application. For reasons relating to protection against disturbances created by radioelectric signals of all kinds which pass through the atmosphere, it is necessary to carry out very selective filtering of the received signals, and this then requires carrying out several frequency transpositions. These successive transpositions make it possible to progressively pass from the radio frequency to an acceptable frequency in the digital processing circuit.
  • the frequency transposition is done in principle by a mixer which receives on the one hand a signal to be transposed and on the other hand the signal of a local oscillator; the local oscillator is produced from a pilot oscillator, a frequency divider, and a phase-locked loop; the same pilot oscillator can then be used to make several local oscillators, if several frequency dividers are used.
  • the last frequency transposition step can be carried out either in a mixer (as explained above), or in the analog-digital converter which finally establishes the signal at destination. of the digital signal processing circuit.
  • the sampling frequency F e of a converter is less than twice the central frequency F c of the spectrum of the signal received by the converter
  • the phenomenon of aliasing well known in the sampled systems, means that the frequency of the converter output signal has a spectrum centered around the difference frequency F e -F c , which is the equivalent of a frequency transposition from F c to F e -F c .
  • An analog circuit for receiving signals from satellites comprising frequency transposition circuits and an analog-digital converter, characterized in that the analog circuit comprises, for transposing the frequency, at least two dividers frequency, of which the first at least is programmable to provide at least the following division ratios: 140 and 143.
  • these ratios offer remarkable possibilities to allow free choice, without changing circuits and with simple programming, the type of receiver and the application you want to make of it among several different types and applications.
  • the second divider then has a division ratio equal to 10 and there is a third ratio divider of 3.
  • the third divider is preferably also programmable so as to allow choosing, preferably by electrical control, at the minus one of the following three ratios: 3, 5, or 7.
  • the first divider is programmable to have the values 140, 143, and 137.
  • it can be programmable to provide a fourth value 142.
  • the first divider can also be programmable to provide all integers between 137 and 143, or even between 136 and 143.
  • the third divider can be programmable to also provide a division ratio equal to 8.
  • the second divider can be programmed to provide the value 10 or the value 11, but it is not necessary to provide a separate command for this divider, the command of the third divider being sufficient, associated with a very simple decoder, to determine the ratio of the second divider as a function of the ratio imposed on the third divider: as will be seen, the value 11 for the second divider will in principle be systematically associated with the value 8 for the third.
  • the frequency dividers which are programmable can be controlled independently of each other, but one can also provide inside the analog circuit a simple decoder, with three input controls, to select a combination of three division ratios among eight possible combinations corresponding to predetermined particular uses of the receiver.
  • the decoder then has outputs for separately controlling the different dividers.
  • FIG 1 there is shown in a dotted frame 10 the circuit elements which are part of an analog integrated circuit designed to perform the reception of satellite signals and to provide another integrated circuit (not shown), called circuit digital signal processing, digital signals at an acceptable frequency for the latter circuit.
  • the digital signals supplied retain the pseudo-random phase modulation of the signals received from the satellites.
  • the radiofrequency signals from the satellites received through a reception antenna and possibly amplified by a preamplifier (not shown), external to the integrated circuit 10, are applied to an RF input of the integrated circuit.
  • the radiofrequency signals pass through an amplifier A1 then through a first mixer ML1 carrying out a first frequency transposition.
  • the mixer ML1 receives a local frequency OL1 from a frequency synthesizer FS which supplies the different local frequencies necessary for the frequency transpositions carried out in the integrated circuit.
  • the mixer produces signals whose frequency is the difference between the frequencies present on its inputs.
  • the signals are filtered by a filter FL1 so as to keep only the frequencies centered around the difference between the radio frequency received (1200 MHz to 1600 MHz approximately) and the local frequency OL1 (approximately 1350 to 1450 MHz ). This difference is approximately 150 to 200 MHz and the filter FL1 is a bandpass filter allowing only the signals in this latter band to pass.
  • the FL1 filter is preferably outside the integrated circuit, as shown, for reasons of feasibility.
  • the signals thus filtered are signals transposed around a first intermediate frequency which is the difference between the nominal frequency received from the satellite and the local frequency OL1. They keep the phase modulation of the satellite signal. These signals return to the integrated circuit and are again amplified in an amplifier A2, then they pass through a second filter FL2, outside the integrated circuit, then return to an amplifier A3 of the integrated circuit.
  • Amplifiers A2 and A3, as well as an amplifier A4 mentioned below, are preferably gain-controlled amplifiers, and an automatic gain control circuit AGC is provided for this purpose. This circuit is controlled by the digital signal processing circuit and it will not be more detailed since it is not the subject of the present invention.
  • the signals transposed to the first intermediate frequency are transmitted from the amplifier A3 to a second mixer ML2 which transposes them again around a second intermediate frequency.
  • the second intermediate frequency is the difference between the first intermediate frequency and a second local frequency OL2 produced by the frequency synthesizer FS.
  • the second local frequency OL2 is a frequency of the order of 120 to 150 MHz and the second intermediate frequency may be from 1 to 50 MHz.
  • a filter FL3 which can be internal to the integrated circuit, allows the signals centered around the second intermediate frequency to pass, with a sufficient bandwidth to take into account the variations in frequency of satellite signals due to the Doppler effect, and sufficient for be able to pass signals centered around an intermediate frequency of 1 MHz as well as signals centered around a frequency of 50 MHz.
  • the FL3 filter can be a low pass filter.
  • the output signals of the filter FL3 are applied to the fourth amplifier A4, then, through a decoupling capacitor C, to an analog-digital converter ADC.
  • the converter provides digital signals on outputs S1, S2, S3 (in this example the signals are coded in three bits) representing the amplitude of signal samples analog signals received from the satellite and transposed around the second intermediate frequency. Sampling is done at a frequency Fech which comes from the frequency synthesizer FS, but which in certain cases could come from outside the integrated circuit.
  • the converter must have a sampling frequency greater than twice the maximum frequency of the signals to be converted. However, the converter can hardly have a sampling frequency greater than 50 MHz. Consequently, when the second intermediate frequency is relatively high (for example above 25 MHz), a third frequency transposition must be made.
  • This third frequency transposition can be done with a third mixer and a third local frequency OL3.
  • the sampling frequency Fech of the ADC converter constitutes this third local frequency so that the converter performs this third frequency transposition itself.
  • the analog-digital converter plays when necessary, in addition to its role of conversion proper, a role of last frequency transposition in the processing chain of the analog signal.
  • this last frequency transpositin uses as local frequency OL3 the sampling frequency F ec f- ,.
  • the three local frequencies are produced by a frequency synthesizer FS, the operation of which is synchronized by a stable reference frequency F re f supplied by a pilot oscillator not shown, external to the integrated circuit (in principle a quartz oscillator).
  • the synthesizer can also use for its operation an FL4 filter external to the integrated circuit.
  • Figure 2 schematically recalls the operation of a frequency synthesizer operating with a phase control loop and frequency dividers.
  • the reference frequency F r ⁇ f of the pilot oscillator is applied to an input of a phase comparator CMP of which another input receives a frequency submultiple of the first local frequency OL1.
  • the phase comparator produces slots whose width represents the phase difference between the frequencies present on the two inputs.
  • These slots are integrated and filtered in a phase loop filter FL4 and produce a control voltage of a voltage controlled oscillator (VCO).
  • VCO voltage controlled oscillator
  • the oscillator produces a frequency depending on the control voltage it receives. This frequency is divided by a first frequency divider DF1.
  • the control loop continuously adjusts the control voltage of the oscillator to keep the two frequencies received by the phase comparator synchronous, i.e. the pilot frequency F re f and the output frequency of the first divider .
  • the frequency OL1 produced by the synthesizer is the frequency of the VCO oscillator.
  • the servo therefore maintains this frequency equal to N1 times the pilot frequency, N1 being the division ratio of the first divider DF1.
  • the output of the oscillator VCO, at frequency OL1 is applied to another frequency divider DF2, of ratio N2, to produce the frequency OL2.
  • a third frequency divider DF3 of ratio N3, in this example receives the output of the second divider and produces the frequency OL3 which will preferably be directly the sampling frequency F ec
  • N1, N2 and N3 are whole numbers.
  • the difficulty lies, as has been explained, in the choice of the division ratios N1, N2 and N3, linked moreover to the choice of the pilot frequency F re f, in order to make the integrated circuit as universal as possible, it is to say as independent as possible of the type of receiver (GPS or GLONASS or mixed) and of the application that one wants to make of it (use of frequencies L1 only, or frequencies L1 and L2).
  • the remarkable values of N1 according to the invention are mainly 140 and 143.
  • the frequency synthesizer is therefore preferably designed so that the division ratio N1 can be controlled from one or more terminals of the analog integrated circuit, so that the ratio can be modified by an electrical control signal, depending of the desired application.
  • N1 like N2 and N3 moreover
  • the control is electric and made by access terminals to the integrated circuit.
  • the modification of the value of N1 is made by definitive configuration of the integrated circuit in a final manufacturing step, for example by blowing one or more fuses for routing signals. This late configuration, which determines the value N1 (and / or N2 or N3) can be done for example during the wafer test of integrated circuits during manufacture.
  • N1 must take only two possible values (140 and 143), and if the control is electrical, a single control pad is sufficient (one control bit) to control the divider DF1. If N1 is to take three or four values, two wires are required. One solution however consists in using three control pads (3 bits therefore eight possible values) to choose any value N1 among the integers from 136 to 143 inclusive.
  • OL2 143 MHz F2 ranges from 24 MHz to 47 MHz OL3 ⁇ 47.666 MHz F3 ranges from 0.666 MHz to 23.666 MHz

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

L'invention concerne les récepteurs de positionnement par satellite. Elle concerne plus précisément le circuit analogique de réception de signaux de satellites, qui reçoit ces signaux d'une antenne. Le circuit analogique comprend des circuits de transposition de fréquence et un convertisseur analogique-numérique (CAN). Pour faire la transposition de fréquence, le circuit comporte au moins deux diviseurs de fréquence (DF1, DF2), dont le premier est programmable pour fournir au moins les rapports de division suivants: 140 et 143, et de préférence l'un des rapports suivants: 137, 140, 142, 143. L'autre diviseur est de préférence apte à prendre l'un des rapports de division suivants: 10 et 11. Et un troisième diviseur (DF3) peut prendre les rapports 3, 5, 7 ou 8. Ces choix de rapports de division remarquables permettent qu'une seule topographie de circuit intégré analogique permette un grand nombre d'applications possibles, au lieu qu'un circuit spécifique soit réalisé pour chaque application. Les applications possibles sont des récepteurs civils et/ou militaires, fonctionnant sur la constellation GPS ou sur la constellation GLONASS, et ceci malgré les évolutions de fréquence d'émission prévisibles pour la constellation GLONASS dans le futur.

Description

CIRCUIT DE TRAITEMENT ANALOGIQUE DE SIGNAL POUR RECEPTEUR DE POSITIONNEMENT PAR SATELLITE
L'invention concerne les récepteurs de positionnement par satellite tels que les récepteurs GPS (Global Positionning System) ou GLONASS (Global Navigation Satellite System).
Ces systèmes utilisent une constellation de satellites qui tournent autour de la terre sur des orbites très précisément déterminées, c'est-à-dire qu'on peut connaître à tout instant la position d'un satellite quelconque. Les satellites émettent des signaux radiofréquences contenant des données de navigation et des codes qui permettent d'identifier chaque satellite. Ces codes modulent en phase (modulation BPSK) une fréquence porteuse. Un récepteur, au sol ou sur un véhicule terrestre, aérien ou maritime, peut recevoir les signaux de plusieurs satellites simultanément, calculer précisément sa distance à chacun des satellites, et en déduire sa position précise en latitude, longitude, et altitude, dans un repère terrestre. Il peut en déduire aussi la date et l'heure précise de la réception dans le repère temporel du système. Il peut enfin en déduire, par des mesures doppler, son propre vecteur vitesse dans le repère terrestre (cas d'un récepteur monté sur un véhicule mobile).
Le système GPS, comme le système GLONASS, utilise deux bandes de fréquences radio distinctes correspondant respectivement à une application civile (fréquences L1 ) et une application militaire (fréquences L2). Pour le système GPS, il n'y a qu'une fréquence L1 , égale à 1575,42 MHz et qu'une fréquence L2, égale à 1227,60 MHz. Pour le système GLONASS, il y a une fréquence L1 différente pour chaque satellite de la constellation, et, également, une fréquence L2 différente pour chaque satellite; on peut considérer que la bande L1 de Glonass, compte tenu de son état actuel et de ses évolutions futures, s'étend de 1590 MHz à 1620 MHz. La bande L2 s'étend entre 1238 et 1265 MHz. La détection des signaux d'un satellite se fait en recherchant un code de modulation de phase présent dans le signal radio. Les signaux du satellite sont reçus par une antenne et envoyés à un circuit analogique qui transpose la fréquence radio modulée en une fréquence plus basse modulée de la même manière, et qui convertit en numérique le signal transposé avant de l'envoyer à un circuit de traitement numérique de signal. C'est le circuit de traitement numérique qui détecte la présence du code, en le corrélant avec un code identique généré localement, et qui déduit, à partir de la position temporelle du code local, des informations de pseudo- distances permettant ensuite de déterminer la position du récepteur.
On comprendra que le circuit analogique doit permettre de transposer la fréquence du signal radio, sans perdre sa modulation, jusqu'à une fréquence suffisamment basse pour que le signal transposé puisse être traité dans le circuit de traitement numérique de signal. Ce dernier est un circuit intégré à base de silicium dont la fréquence de travail est limitée à quelques dizaines de mégahertz.
Un des buts de l'invention est de concevoir les circuits internes du récepteur d'une manière telle qu'il soit facile d'adapter un même circuit à la réalisation de récepteurs de types différents et d'applications différentes. Par "type de récepteur", on entend le fait que le récepteur est spécialisé pour le système GPS ou spécialisé pour le système GLONASS, ou encore mixte, c'est-à-dire capable de recevoir au choix les signaux de l'un ou l'autre des deux systèmes.
Par "application", on entend principalement le fait que le récepteur peut recevoir seulement les signaux de la bande de fréquence civile L1 ou au contraire peut recevoir aussi les signaux de la bande L2.
On voudrait donc, pour réduire les coûts de dévelopement des récepteurs, que les circuits internes de ces récepteurs soient capables, dans le cas le plus simple, de fonctionner uniquement en système GPS sur la fréquence civile L1 , ou, dans le cas le plus compliqué, de fonctionner avec les bandes L1 et L2 du système GPS et du système GLONASS. Et bien sûr, ces circuits devraient aussi pouvoir servir pour toutes les applications intermédiaires, par exemple un récepteur uniquement civil (fréquences L1 ) susceptible de recevoir aussi bien des signaux GPS que des signaux GLONASS. Des circuits de traitement numérique de signal peuvent être conçus pour fonctionner aussi bien avec des satellites GLONASS qu'avec des satellites GPS, bien que les solutions pour y parvenir ne soient pas simples. L'invention concerne le circuit analogique de transposition de fréquence et de conversion analogique-numérique qui précède les circuits de traitement numérique de signal. Un but de l'invention est de faciliter la réalisation de la transposition de fréquence en rendant cette réalisation la plus indépendante possible du type de récepteur et de l'application envisagée. Pour des raisons tenant à la protection contre les perturbations créées par les signaux radioélectriques de toute nature qui transitent dans l'atmosphère, il faut effectuer des filtrages très sélectifs des signaux reçus, et ceci impose alors d'effectuer plusieurs transpositions de fréquences. Ces transpositions successives permettent de passer progressivement de la fréquence radio à une fréquence acceptable dans le circuit de traitement numérique.
A titre d'exemple, on peut utiliser deux changements successifs de fréquence pour passer de la fréquence L1 du GPS (1575,42 MHz) à une fréquence intermédiaire de l'ordre de quelques centaines de MHz, puis à une fréquence de l'ordre de 20 MHz.
On a déjà proposé, pour réduire le nombre d'oscillateurs locaux nécessaires pour faire la transposition de fréquence, dans le cas d'un GPS fonctionnant à la fois sur la fréquence L1 et sur la fréquence L2, de choisir comme fréquence intermédiaire une fréquence égale à environ 175 MHz, car alors le même oscillateur local, à une fréquence médiane entre L1 et L2 (environ 1400 MHz) peut servir pour transposer en fréquence à la fois les signaux à fréquence L1 et les signaux à fréquence L2; les signaux transposés peuvent alors passer dans les mêmes circuits (notamment les filtres) puisqu'ils sont dans la même bande étroite de fréquences autour de 175 MHz.
Par ailleurs, comme cela est bien connu, la transposition de fréquence se fait en principe par un mélangeur qui reçoit d'une part un signal à transposer et d'autre part le signal d'un oscillateur local; l'oscillateur local est réalisé à partir d'un oscillateur pilote, d'un diviseur de fréquence, et d'une boucle asservie en phase; un même oscillateur pilote peut alors servir pour réaliser plusieurs oscillateurs locaux, si on utilise plusieurs diviseurs de fréquence.
Enfin, pour ce qui concerne l'invention, on considérera que la dernière étape de transposition de fréquence peut s'effectuer soit dans un mélangeur (comme expliqué ci-dessus), soit dans le convertisseur analogique-numérique qui établit finalement le signal à destination du circuit de traitement numérique de signal. En effet, lorsque la fréquence d'échantillonnage Fe d'un convertisseur est inférieure au double de la fréquence centrale Fc du spectre du signal reçu par le convertisseur, le phénomène de repliement de spectre, bien connu dans les systèmes échantillonnés, fait que la fréquence du signal de sortie du convertisseur a un spectre centré autour de la fréquence différence Fe-Fc, ce qui est l'équivalent d'une transposition de fréquence de Fc à Fe-Fc.
On propose selon l'invention un circuit analogique de réception de signaux de satellites, comprenant des circuits de transposition de fréquence et un convertisseur analogique-numérique, caractérisé en ce que le circuit analogique comporte, pour faire la transposition de fréquence, au moins deux diviseurs de fréquence, dont le premier au moins est programmable pour fournir au moins les rapports de division suivants : 140 et 143. On a trouvé que ces rapports offraient des possibilités remarquables pour permettre de choisir librement, sans changer de circuit et avec une programmation simple, le type de récepteur et l'application qu'on veut en faire parmi plusieurs types et applications différentes.
La programmation est particulièrement facile si le diviseur possède une entrée de commande électrique du rapport de division pour fournir le rapport choisi en fonction du signal établi sur cette entrée. Un simple bit de commande permet de choisir la valeur 140 ou 143.
De préférence, le deuxième diviseur a alors un rapport de division égal à 10 et il y a un troisième diviseur de rapport de 3. Mais le troisième diviseur est de préférence lui aussi programmable pour permettre de choisir, de préférence par une commande électrique, au moins l'un des trois rapports suivants : 3, 5, ou 7.
Pour élargir la gamme d'applications possibles sans changer la structure du circuit analogique, on s'arrange de préférence pour que le premier diviseur soit programmable pour avoir les valeurs 140, 143, et 137. Pour élargir encore, il peut être programmable pour fournir une quatrième valeur 142. Mais le premier diviseur peut également être programmable pour fournir toutes les valeurs entières entre 137 et 143, ou même entre 136 et 143. Le troisième diviseur peut être programmable pour fournir également un rapport de division égal à 8.
Enfin, le deuxième diviseur peut être programmé pour fournir la valeur 10 ou la valeur 11, mais il n'est pas nécessaire de prévoir une commande séparée pour ce diviseur, la commande du troisième diviseur étant suffisante, associée à un décodeur très simple, pour déterminer le rapport du deuxième diviseur en fonction du rapport imposé au troisième diviseur : comme on le verra, la valeur 11 pour le deuxième diviseur sera en principe systématiquement associée à la valeur 8 pour le troisième.
D'une manière pratique, on prévoira de préférence que le circuit comporte trois diviseurs, et des moyens pour permettre d'obtenir au moins l'une des combinaisons de rapports de division suivantes, où N1 , N2, et N3 désignent les rapports de division du premier, du deuxième, et du troisième diviseur respectivement : N1 = 137 N2 = 10 N3 = 3 N1=140 N2 = 10 N3 = 3 N1=140 N2 = 10 N3 = 7 N1=143 N2 = 10 N3 = 5 N1=140 N2 = 10 N3 = 5 N1=143 N2 = 10 N3 = 3 N1=140 N2 = 11 N3 = 8 N1=142 N2 = 10 N3 = 5
Ces combinaisons sont en effet celles qui offrent les meilleures possibilités pratiques d'utilisation du circuit analogique.
Les diviseurs de fréquence qui sont programmables peuvent être commandés indépendamment les uns des autres, mais on peut aussi prévoir à l'intérieur du circuit analogique un décodeur simple, à trois commandes d'entrée, pour sélectionner une combinaison de trois rapports de division parmi huit combinaisons possibles correspondant à des utilisations particulières prédéterminées du récepteur. Le décodeur a alors des sorties pour commander séparément les différents diviseurs. D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels : - la figure 1 représente la constitution générale d'un circuit analogique de réception de signaux de satellites, avec un synthétiseur de fréquences fournissant trois fréquences destinées à faire des transpositions de fréquence;
- la figure 2 représente la constitution du synthétiseur de fréquence selon l'invention.
Sur la figure 1 , on a représenté dans un cadre pointillé 10 les éléments de circuit qui font partie d'un circuit intégré analogique conçu pour effectuer la réception des signaux de satellites et pour fournir à un autre circuit intégré (non représenté), appelé circuit de traitement numérique de signal, des signaux numériques à une fréquence acceptable pour ce dernier circuit. Les signaux numériques fournis conservent la modulation de phase pseudo-aléatoire des signaux reçus des satellites.
Les signaux radiofréquence des satellites, reçus à travers une antenne de réception et éventuellement amplifiés par un préamplificateur non représenté, extérieur au circuit intégré 10, sont appliqués à une entrée RF du circuit intégré.
Dans le circuit intégré, les signaux radiofréquence passent dans un amplificateur A1 puis dans un premier mélangeur ML1 effectuant une première transposition de fréquence. Le mélangeur ML1 reçoit une fréquence locale OL1 d'un synthétiseur de fréquence FS qui fournit les différentes fréquences locales nécessaires aux transpositions de fréquence effectuées dans le circuit intégré. Le mélangeur produit des signaux dont la fréquence est la différence entre les fréquences présentes sur ses entrées. A la sortie du mélangeur ML1 , les signaux sont filtrés par un filtre FL1 pour ne conserver que les fréquences centrées autour de la différence entre la fréquence radio reçue (1200 MHz à 1600 MHz environ) et la fréquence locale OL1 (1350 à 1450 MHz environ). Cette différence est de 150 à 200 MHz environ et le filtre FL1 est un filtre passe-bande laissant passer uniquement les signaux dans cette dernière bande. Le filtre FL1 est de préférence extérieur au circuit intégré, comme cela est représenté, et ceci pour des raisons de faisabilité.
Les signaux ainsi filtrés sont des signaux transposés autour d'une première fréquence intermédiaire qui est la différence entre la fréquence nominale reçue du satellite et la fréquence locale OL1. Ils conservent la modulation de phase du signal satellite. Ces signaux reviennent dans le circuit intégré et sont à nouveau amplifiés dans un amplificateur A2, puis ils passent dans un deuxième filtre FL2, extérieur au circuit intégré, puis reviennent dans un amplificateur A3 du circuit intégré. Les amplificateurs A2 et A3, ainsi qu'un amplificateur A4 mentionné plus loin, sont de préférence des amplificateurs à gain commandé, et un circuit de commande automatique de gain CAG est prévu à cet effet. Ce circuit est commandé par le circuit de traitement numérique de signal et il ne sera pas plus détaillé car il ne fait pas l'objet de la présente invention. Les signaux transposés à la première fréquence intermédiaire sont transmis de l'amplificateur A3 à un deuxième mélangeur ML2 qui les transpose à nouveau autour d'une deuxième fréquence intermédiaire. La deuxième fréquence intermédiaire est la différence entre la première fréquence intermédiaire et une deuxième fréquence locale OL2 produite par le synthétiseur de fréquence FS.
La deuxième fréquence locale OL2 est une fréquence de l'ordre de 120 à 150 MHz et la deuxième fréquence intermédiaire pourra être de 1 à 50 MHz.
Un filtre FL3, qui peut être interne au circuit intégré, laisse passer les signaux centrés autour de la deuxième fréquence intermédiaire, avec une bande passante suffisante pour prendre en compte les variations de fréquence de signaux satellites dues à l'effet Doppler, et suffisante pour pouvoir laisser passer aussi bien les signaux centrés autour d'une fréquence intermédiaire de 1 MHz que les signaux centrés autour d'une fréquence de 50 MHz. Le filtre FL3 peut être un filtre passe-bas.
Les signaux de sortie du filtre FL3 sont appliqués au quatrième amplificateur A4, puis, à travers une capacité de découplage C, à un convertisseur analogique-numérique CAN. Le convertisseur fournit sur des sorties S1 , S2, S3 des signaux numériques (dans cet exemple les signaux sont codés sur trois bits) représentant l'amplitude d'échantillons de signaux analogiques reçus du satellite et transposés autour de la deuxième fréquence intermédiaire. L'échantillonnage se fait à une fréquence Fech qui provient du synthétiseur de fréquence FS, mais qui dans certains cas pourrait provenir de l'extérieur du circuit intégré. Dans le cas général, le convertisseur doit avoir une fréquence d'échantillonnage supérieure à deux fois la fréquence maximale des signaux à convertir. Cependant, le convertisseur peut difficilement avoir une fréquence d'échantillonnage supérieure à 50 MHz. Par conséquent, lorsque la deuxième fréquence intermédiaire est relativement élevée (par exemple au dessus de 25 MHz), il faut faire une troisième transposition de fréquence.
Cette troisième transposition de fréquence peut être faite avec un troisième mélangeur et une troisième fréquence locale OL3. Cependant, on peut également considérer que la fréquence d'échantillonnage Fech du convertisseur CAN constitue cette troisième fréquence locale de sorte que le convertisseur effectue lui-même cette troisième transposition de fréquence. Ceci résulte du phénomène connu de repliement de spectre des signaux échantillonnés lorsque la fréquence d'échantillonnage est inférieure au double de la fréquence des signaux à échantillonner : lorsque le spectre de fréquence du signal à échantillonner est centré autour d'une fréquence Fc (en l'occurence la deuxième fréquence intermédiaire), le signal de sortie après échantillonnage à la fréquence Fech est le même que si on avait au préalable effectué une transposition de fréquence de Fc à Fed-j-Fc.
Par conséquent, on considérera pour cette invention que le convertisseur analogique-numérique joue lorsque cela est nécessaire, outre son rôle de conversion proprement dit, un rôle de dernière transposition de fréquence dans la chaîne de traitement du signal analogique. Et cette dernière transpositin de fréquence utilise comme fréquence locale OL3 la fréquence d'échantillonnage Fecf-,.
Les trois fréquences locales sont produites par un synthétiseur de fréquence FS dont le fonctionnement est synchronisé par une fréquence de référence stable Fref fournie par un oscillateur pilote non représenté, extérieur au circuit intégré (en principe un oscillateur à quartz). Le synthétiseur peut par ailleurs utiliser pour son fonctionnement un filtre FL4 extérieur au circuit intégré. La figure 2 rappelle schématiquement le fonctionnement d'un synthétiseur de fréquences fonctionnant avec une boucle d'asservissement de phase et des diviseurs de fréquence. La fréquence de référence Ff de l'oscillateur pilote est appliquée à une entrée d'un comparateur de phase CMP dont une autre entrée reçoit une fréquence sous-multiple de la première fréquence locale OL1. Le comparateur de phase produit des créneaux dont la largeur représente le déphasage entre les fréquences présentes sur les deux entrées. Ces créneaux sont intégrés et filtrés dans un filtre de boucle de phase FL4 et produisent une tension de commande d'un oscillateur commandé par une tension (VCO). L'oscillateur produit une fréquence dépendant de la tension de commande qu'il reçoit. Cette fréquence est divisée par un premier diviseur de fréquence DF1. La boucle d'asservissement ajuste en permanence la tension de commande de l'oscillateur pour maintenir synchrones les deux fréquences reçues par le comparateur de phase, c'est-à-dire la fréquence pilote Fref et la fréquence de sortie du premier diviseur. La fréquence OL1 produite par le synthétiseur est la fréquence de l'oscillateur VCO. L'asservissement maintient donc cette fréquence égale à N1 fois la fréquence pilote, N1 étant le rapport de division du premier diviseur DF1. La sortie de l'oscillateur VCO, à fréquence OL1 , est appliquée à un autre diviseur de fréquence DF2, de rapport N2, pour produire la fréquence OL2. Un troisième diviseur de fréquence DF3 de rapport N3, reçoit dans cet exemple la sortie du deuxième diviseur et produit la fréquence OL3 qui sera de préférence directement la fréquence d'échantillonnage Fec|-,. N1 , N2 et N3 sont des nombres entiers.
La difficulté réside, comme on l'a expliqué, dans le choix des rapports de division N1 , N2 et N3, liés d'ailleurs au choix de la fréquence pilote Fref, pour rendre le circuit intégré le plus universel possible, c'est-à-dire le plus indépendant possible du type de récepteur (GPS ou GLONASS ou mixte) et de l'application qu'on veut en faire (usage des fréquences L1 seulement, ou des fréquences L1 et L2).
Les valeurs remarquables de N1 selon l'invention sont principalement 140 et 143.
N2 prend de préférence la valeur 10. Si N3 ne doit prendre qu'une valeur, c'est la valeur 3. Mais N3 peut de préférence prendre l'une des trois valeurs suivantes : 3, 5, ou 7. Une quatrième valeur est également intéressante, à savoir la valeur 8. Dans ce dernier cas, on prévoit que N2 peut prendre l'une des deux valeurs 10 et 11 , la valeur 11 étant choisie lorsque N3 = 8. Enfin, la valeur N1 = 137 s'avère également intéressante en plus des valeurs 140 et 143, et, plus rarement, la valeur 142.
Le synthétiseur de fréquence est donc conçu de préférence de telle sorte que le rapport de division N1 soit commandable à partir d'une ou plusieurs bornes du circuit intégré analogique, de manière que le rapport puisse être modifié par un signal électrique de commande, en fonction de l'application désirée. On pourrait envisager que N1 (comme N2 et N3 d'ailleurs) soit programmable par masque (lors de la fabrication du circuit) plutôt que par une commande électrique; dans ce cas on aboutit à des circuits intégrés très légèrement différents selon l'application désirée. Il est cependant préférable que la commande soit électrique et faite par des bornes d'accès au circuit intégré. On pourrait aussi envisager que la modification de valeur de N1 soit faite par configuration définitive du circuit intégré à une étape finale de fabrication, par exemple en grillant un ou plusieurs fusibles de routage de signaux. Cette configuration tardive, qui détermine la valeur N1 (et/ou N2 ou N3) peut être faite par exemple lors du test sur tranche des circuits intégrés en cours de fabrication.
Si N1 doit prendre seulement deux valeurs possibles (140 et 143), et si la commande est électrique, un seul plot de commande suffit (un bit de commande) pour commander le diviseur DF1. Si N1 doit prendre trois ou quatre valeurs, il faut deux fils. Une solution consiste cependant à utiliser trois plots de commande (3 bits donc huit valeurs possibles) pour choisir une valeur N1 quelconque parmi les entiers de 136 à 143 inclus.
N3 prend de préférence trois valeurs possibles, et éventuellement une quatrième. Deux plots de commande sont donc souhaitables. N2 peut être soit fixe (N2 = 10) soit commandé par un plot pour obtenir soit la valeur 10 soit la valeur 11. Cependant, comme N2 prendra la valeur 11 dès lors que N3 prendra la valeur 8, on peut se dispenser de plot de commande de N2. Un simple petit décodeur placé sur les fils de commande du diviseur DF3 détectera la commande correspondant à N3 = 8 et commandera alors le diviseur DF2 pour lui faire prendre le rapport de division N2 = 11.
Enfin, plutôt que de prévoir trois plots d'entrée pour la commande de N1, et deux pour la commande de N3, on peut prévoir trois plots de commande (trois bits donc huit possibilités) pour commander globalement, grâce à un décodage simple prévu dans le circuit intégré des combinaisons particulières de N1, N2, et N3; par exemple la combinaison N1 = 140, N2 •= 10, et N3 = 3 correspondrait à un état particulier du groupe de trois plots de commande. Les paragraphes ci-après expliquent en détail l'utilisation de l'invention en donnant les valeurs de N1 , N2, N3 pour les différentes applications envisagées, avec la fréquence pilote Fref qui correspond à chaque cas. La valeur de la fréquence pilote peut en effet être quelconque mais elle influe directement sur les choix des rapports de division. On a trouvé qu'en utilisant seulement les deux fréquences pilotes 10 MHz et 10,23 MHz avec les différents rapports de division ci-dessus on aboutissait au moins aux possibilités des paragraphes suivants (les plus intéressantes). On comprendra qu'avec d'autres fréquences pilotes convenablement choisies on élargit encore la gamme des possibilités. Pour chaque cas on donnera la fréquence d'horloge de référence à utiliser, les rapports de division N1 , N2, N3, le type de récepteur et son utilisation. On donnera ensuite, d'abord pour les fréquences L1 puis pour les fréquences L2 : les fréquences d'oscillateur local OL1 , OL2 et OL3 produites par le synthétiseur de fréquences, les fréquences intermédiaires F1 , F2, et la fréquence F3 qui en résultent (ou les bandes de fréquences dans le cas de GLONASS).
1.
Fref = 10,23 MHz N1 = 137 N2 = 10 N3 = 3
Récepteur GPS, usage civil et militaire avec fréquences L1 et L2 a) pour la fréquence L1 : fréquence fondamentale à 1575,42 MHz
LO1 = 1401 ,51 F1 = 173,91 HMz LO2 = 140,151 MHz F2 = 33,759 MHz OL3 = 46,717 MHz F3 = 12,958 MHz b) pour la fréquence L2 : fréquence fondamentale à 1227,60 MHz OL1 = 1401,51 MHz F1 = 173,91 MHz OL2 = 140,151 MHz F2 = 33,759 MHz
OL3 = 46,717 MHz F3 = 12,958 MHz
2.
Fref=10MHz N1 =140 N2 = 10 N3 = 3
Récepteur GPS, usage civil et militaire avec fréquence L1 et L2 a) pour la fréquence L1 : fréquence fondamentale à 1575,42 MHz OL1 = 1400 MHz F1 = 175,42 MHz OL2 = 140MHz F2 = 35,42 MHz OL3 ~ 46,667 MHz F3 z 1 ,247 MHz b) pour la fréquence L2 :
OL1 = 1400 MHz F1 = 172,40 MHz OL2 = 140 MHz F2 = 32,40 MHz OL3 = 46,667 MHz F3 ~ 17,267 MHz
3.
Fref=10MHz
N1 =140 N2 = 10 N3 = 7 Récepteur GPS standard civil avec usage de L1 seulement fréquence fondamentale 1575,42 MHz
OL1 = 1400 MHz F1 = 175,42 MHz
OL2 = 140 MHz F2 = 35,42 MHz
OL3 = 20 MHz F3 = 15,42 MHz
4.
Fref=10MHz
N1 =143 N2 = 10 N3 = 5
Récepteur GLONASS civil pour les années après 1998 où la bande L1 ira de 1598 MHz à 1610 MHz fréquences fondamentales : 1598 MHz à 1610 MHz OL1 = 1430 MHz F1 va de 168 MHz à 180 MHz
OL2 = 143 MHz F2 va de 25 MHz à 37 MHz
OL3 = 28,6 MHz F3 va de 0 MHz à 8,4 MHz
5.
Fref = 10 MHz
N1 = 140 N2 = 10 N3 = 5
Récepteur GPS standard civil utilisant la fréquence L1 OL1 = 1400 MHz F1 = 175,42 MHz
OL2 = 140 MHz F2 = 35,42 MHz
OL3 = 28 MHz F3 = 7,42 MHz
6. Fref = 10 MHz
N1 = 143 N2 = 10 N3 = 3
Récepteur GLONASS militaire utilisant les fréquences L1 et L2 a) fréquences L1 de 1598 MHz à 1620 MHz OL1 = 1430 MHz F1 va de 168 MHz à 190 MHz OL2 = 143 MHz F2 va de 25 MHz à 47 MHz
OL3 z 47,667 MHz F3 va de 0,666 MHz à 22,666MHz b) fréquences L2 de 1240 à 1263
OL1 = 1430 MHz F1 va de 167 MHz à 190 MHz
OL2 = 143 MHz F2 va de 24 MHz à 47 MHz OL3 ~ 47,666 MHz F3 va de 0,666 MHz à 23,666MHz
7.
Fref = 10 MHz
N1 = 140 N2 = 11 N3 = 8 GPS civil bas de gamme
Fréquence fondamendale : 1575,42 MHz
OL1 = 1400 MHz F1 = 175,42 MHz
OL2 = 127,272 MHz F2 = 48,148 MHz
OL3 = 15,909 MHz F3 = 32,24 MHz 8.
Fref = 10 MHz
N1 = 142 N2 = 10 N3 = 5 Récepteur GLONASS civil futur utilisant la bande de fréquence L1 après l'année 2005 fréquences L1 allant de 1598 à 1605 OL1 = 1420 MHz F1 va de 178 MHz à 185MHz
OL2 = 142 MHz F2 va de 36 MHz à 43MHz OL3 = 28,4 MHz F3 va de 7,6MHz à 14,6 MHz
Ainsi, quelques combinaisons simples de valeurs des trois diviseurs N1 , N2, N3, combinées pour la plupart d'entre elles avec l'utilisation d'une fréquence de référence de 10 MHz (particulièrement facile à se procurer), permettent d'assurer huit utilisations possibles du circuit sans rien changer à celui-ci (les filtres à fréquences intermédiaires en particulier peuvent être les mêmes pour tous les circuits).

Claims

REVENDICATIONS
1. Circuit analogique de réception de signaux de satellites, comprenant des circuits de transposition de fréquence et un convertisseur analogique- numérique (CAN), caractérisé en ce que le circuit analogique comporte, pour faire la transposition de fréquence, au moins deux diviseurs de fréquence (DF1, DF2), dont le premier est programmable pour fournir au moins les rapports de division suivants : 140 et 143.
2. Circuit analogique selon la revendication 1 , caractérisé en ce que les rapports de division peuvent être choisis à l'aide d'une commande électrique du rapport de division.
3. Circuit analogique selon l'une des revendications 1 et 2, caractérisé en ce que le deuxième diviseur a un rapport de division égal à 10 et le circuit comporte un troisième diviseur de rapport de 3.
4. Circuit analogique selon l'une des revendications 1 et 2, caractérisé en ce que le deuxième diviseur a un rapport de division égal à 10 et le circuit comporte un troisième diviseur de rapport programmable permettant de choisir au moins l'un des trois rapports suivants : 3, 5, ou 7.
5. Circuit analogique selon l'une des revendications précédentes, caractérisé en ce que le premier diviseur est programmable pour avoir les valeurs 140, 143, et 137
6. Circuit analogique selon la revendication 5, caractérisé en ce que le premier diviseur peut fournir également la valeur 142.
7. Circuit analogique selon la revendication 5, caractérisé en ce que le premier diviseur est programmable pour fournir toutes les valeurs entières entre 137 et 143, ou entre 136 et 143.
8. Circuit analogique selon l'une des revendications 3 et 4, caractérisé en ce que le troisième diviseur peut fournir la valeur de division 8 et le deuxième peut fournir la valeur de division 11.
9. Circuit analogique selon la revendication 1 , caractérisé en ce qu'il comporte un troisième diviseur et des moyens pour permettre d'obtenir au moins l'une des combinaisons de rapports de division suivantes, où N1 , N2, et N3 désignent les rapports de division du premier, du deuxième, et du troisième diviseur respectivement :
N1 =137 N2 = 10 N3 = 3
N1 =140 N2 = 10 N3 = 3
N1 =140 N2 = 10 N3 = 7
N1 =143 N2 = 10 N3 = 5
N1 = 140 N2 = 10 N3 = 5
N1 = 143 N2 = 10 N3 = 3
N1 = 140 N2 = 11 N3 = 8
N1 = 142 N2 = 10 N3 = 5
PCT/FR1998/000175 1997-01-31 1998-01-30 Circuit de traitement analogique de signal pour recepteur de positionnement par satellite WO1998034340A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/355,327 US6345177B1 (en) 1997-01-31 1998-01-30 Signal analog processing circuit for satellite positioning receiver
EP98905466A EP0960473B1 (fr) 1997-01-31 1998-01-30 Circuit de traitement analogique de signal pour recepteur de positionnement par satellite
CA002278667A CA2278667A1 (fr) 1997-01-31 1998-01-30 Circuit de traitement analogique de signal pour recepteur de positionnement par satellite
DE69802780T DE69802780T2 (de) 1997-01-31 1998-01-30 Schaltung zur analogsignalverarbeitung für empfänger von satellitenpositionssignalen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/01075 1997-01-31
FR9701075A FR2759220B1 (fr) 1997-01-31 1997-01-31 Circuit de traitement analogique de signal pour recepteur de positionnement par satellite

Publications (1)

Publication Number Publication Date
WO1998034340A1 true WO1998034340A1 (fr) 1998-08-06

Family

ID=9503172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000175 WO1998034340A1 (fr) 1997-01-31 1998-01-30 Circuit de traitement analogique de signal pour recepteur de positionnement par satellite

Country Status (6)

Country Link
US (1) US6345177B1 (fr)
EP (1) EP0960473B1 (fr)
CA (1) CA2278667A1 (fr)
DE (1) DE69802780T2 (fr)
FR (1) FR2759220B1 (fr)
WO (1) WO1998034340A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852676A1 (de) * 1998-11-16 2000-05-25 Bosch Gmbh Robert Vorrichtung zur Frequenzsynchronisation in einem Nachrichtenübertragungssystem
FR2829638B1 (fr) * 2001-09-07 2003-12-12 Thales Sa Procede et dispositif d'antiparasitage, en reception, d'un signal radioelectrique a large bande
FR2832878B1 (fr) * 2001-11-27 2004-02-13 Thales Sa Procede de detection et de traitement de signaux pulses dans un signal radioelectrique
FR2833784B1 (fr) * 2001-12-18 2004-02-13 Thales Sa Procede d'antibrouillage pour recepteur de signaux radioelectriques a spectre etale
US20040043745A1 (en) * 2002-08-30 2004-03-04 Richard Najarian Integrated GPS receiver architecture
FR2857101B1 (fr) * 2003-07-01 2007-01-05 Thales Sa Procede de rejection d'interferences perturbant la reception d'un signal de transmission et dispositif
FR2867619B1 (fr) * 2004-03-12 2006-06-23 Thales Sa Dispositif de decalage de frequence dans un chemin optique a source laser pulsee
DE602004009034T2 (de) * 2004-04-08 2008-06-19 Stmicroelectronics N.V. Verfahren zur Regelung der Leistung des Ausgangssignals eines Verstärkersystems, und entsprechendes System
JP4467446B2 (ja) * 2005-02-10 2010-05-26 Necエレクトロニクス株式会社 高周波ic及びgps受信機
DE102005053723A1 (de) * 2005-11-10 2007-05-24 Rohde & Schwarz Gmbh & Co. Kg Schaltung zur Signalaufbereitung mit gemeinsamen Oszillator
WO2023186851A1 (fr) * 2022-03-28 2023-10-05 Fh Münster Système de réception pour un système mondial de navigation par satellite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2623784A1 (de) * 1975-05-30 1976-12-02 Sanyo Electric Co Ueberlagerungsempfaenger mit digital steuerbarem normalfrequenzgenerator
EP0285252A2 (fr) * 1987-02-27 1988-10-05 British Aerospace Public Limited Company Démodulateur numérique
US4851787A (en) * 1988-08-18 1989-07-25 Avantek, Inc. Low noise frequency synthesizer
EP0351156A1 (fr) * 1988-07-14 1990-01-17 Ashtech Inc. Récepteur d'un système de détermination de position du type GPS comportant des sections à fréquence radio et à traitement numérique
GB2289809A (en) * 1991-07-16 1995-11-29 Symmetricom Inc A double superhet radio receiver

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739695B1 (fr) * 1995-10-06 1997-11-07 Sextant Avionique Recepteur large bande a mesure de distance par signaux de code pseudo-aleatoire
FR2741173B1 (fr) * 1995-11-10 1997-12-05 Sextant Avionique Multiplieur rapide pour multiplier un signal numerique par un signal periodique
FR2742612B1 (fr) * 1995-12-15 1998-02-06 Sextant Avionique Procede et circuit de reception de signaux de positionnement par satellites avec elimination des erreurs de multitrajets

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2623784A1 (de) * 1975-05-30 1976-12-02 Sanyo Electric Co Ueberlagerungsempfaenger mit digital steuerbarem normalfrequenzgenerator
EP0285252A2 (fr) * 1987-02-27 1988-10-05 British Aerospace Public Limited Company Démodulateur numérique
EP0351156A1 (fr) * 1988-07-14 1990-01-17 Ashtech Inc. Récepteur d'un système de détermination de position du type GPS comportant des sections à fréquence radio et à traitement numérique
US4851787A (en) * 1988-08-18 1989-07-25 Avantek, Inc. Low noise frequency synthesizer
GB2289809A (en) * 1991-07-16 1995-11-29 Symmetricom Inc A double superhet radio receiver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHESTER D B ET AL: "SINGLE CHIP DIGITAL DOWN CONVERTER SIMPLIFIES RF DSP APPLICATIONS", RF DESIGN, vol. 15, no. 12, pages 39 - 40, 42 - 46, XP000361671 *

Also Published As

Publication number Publication date
CA2278667A1 (fr) 1998-08-06
US6345177B1 (en) 2002-02-05
EP0960473B1 (fr) 2001-12-05
DE69802780D1 (de) 2002-01-17
FR2759220B1 (fr) 1999-04-23
FR2759220A1 (fr) 1998-08-07
DE69802780T2 (de) 2002-08-08
EP0960473A1 (fr) 1999-12-01

Similar Documents

Publication Publication Date Title
US7561638B2 (en) Demodulation apparatus and receiving apparatus
US6856794B1 (en) Monolithic GPS RF front end integrated circuit
EP0960473B1 (fr) Circuit de traitement analogique de signal pour recepteur de positionnement par satellite
EP0767388B1 (fr) Récepteur large bande à mesure de distance par signaux de code pseudo-aléatoire
EP3190711B1 (fr) Récepteur rf à poursuite de fréquence
US20070105495A1 (en) Satellite navigation receiver signal processing architecture
EP0624959A1 (fr) Récepteur radio FM comprenant un circuit de suréchantillonnage
EP1079514A1 (fr) Synthétiseur de fréquence à boucle de phase
EP2239860B1 (fr) Récepteur de signaux à modulation fsk à grande sensbilité à faible débit
US5402442A (en) Receiving device for receiving and demodulating spread spectrum-modulated GPS wave
FR2786056A1 (fr) Procede de reglage d'un emetteur recepteur multibande de telephonie mobile et telephone mobile ainsi obtenu
EP1833171A1 (fr) Dispositif de réception et/ou d'émission de signaux radiofréquences à réduction du bruit
EP1360781A1 (fr) Satellite a liaison de telemesure, suivi et telecommande
EP1039628A1 (fr) Emetteur radiofréquence à fort degré d'intégration et avec annulation d'image, éventuellement auto-calibrée
EP1427099B1 (fr) Procédé de réduction de la non-linéarité d'ordre deux d'un dispositif de transposition de fréquence et dispositif correspondant
EP0790729B1 (fr) Dispositif de correction de bruit de phase dans un récepteur numérique
CH702685B1 (fr) Récepteur à modulation de fréquence, notamment pour une application RDS.
EP0737868B1 (fr) Boucle à verrouillage de délai pour utilisation dans un récepteur de signaux GPS
WO1999006850A1 (fr) Recepteur pour echantillonnage direct
EP1303061B1 (fr) Système de télécommunication à faible rayonnement électromagnétique non-essentiel
FR3043289A1 (fr) Dispositif recepteur de signaux radiofrequence, procede de reglage pour un tel dispositif et programme d'ordinateur correspondant
CN111988050B (zh) 基于射频直接采样的soc芯片采样率选择方法及装置
EP1477004B1 (fr) Modulateur de frequence pour transmission numeriques
FR3106216A1 (fr) Procédé de fourniture d’un service de temps et/ou de positionnement, dispositif régénérateur, dispositif récepteur et serveur de temps correspondants.
WO2004036750A2 (fr) Dispositif radiofrequence du type a frequence intermediare nulle ou quasi-nulle minimisant la modulation frequentielle parasite appliqueee a un oscillateur local integre

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998905466

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2278667

Country of ref document: CA

Ref country code: CA

Ref document number: 2278667

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09355327

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998905466

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998905466

Country of ref document: EP