WO1998033180A1 - Recorded information reproducing device, speed control method, and disc controller - Google Patents

Recorded information reproducing device, speed control method, and disc controller Download PDF

Info

Publication number
WO1998033180A1
WO1998033180A1 PCT/JP1997/001919 JP9701919W WO9833180A1 WO 1998033180 A1 WO1998033180 A1 WO 1998033180A1 JP 9701919 W JP9701919 W JP 9701919W WO 9833180 A1 WO9833180 A1 WO 9833180A1
Authority
WO
WIPO (PCT)
Prior art keywords
disk
constant
information
control
speed
Prior art date
Application number
PCT/JP1997/001919
Other languages
French (fr)
Japanese (ja)
Inventor
Munehiro Nishioka
Hideaki Sato
Hiroshi Tadokoro
Kazuya Hara
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1998033180A1 publication Critical patent/WO1998033180A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/20Driving; Starting; Stopping; Control thereof
    • G11B19/26Speed-changing arrangements; Reversing arrangements; Drive-transfer means therefor

Definitions

  • the present invention relates to a technology for switching the rotation of a disk having an information signal recorded on a spiral track at a constant linear velocity to a constant angular velocity or a constant linear velocity, and in particular, to eccentricity, surface runout, and a recording line for each disk. It relates to technology that optimizes switching between constant angular velocity (CAV) and constant linear velocity (CLV) speed control for speed variations.
  • CAV constant angular velocity
  • CLV constant linear velocity
  • the present invention is effective for high-speed and stable access to an optical disc such as a data CD—R0M (Compact Disk-Read Only Memory) in which the read speed of recorded information is higher than that of an audio CD.
  • CD—R0M Compact Disk-Read Only Memory
  • a disk reproducing apparatus such as a CD-R ⁇ M in which an information signal is recorded on a spiral track at a constant linear velocity reads the information signal by scanning the spiral track with a pickup while rotating the disk.
  • disc playback devices such as CD-ROMs played at a constant linear speed by drawing a stream of audio CDs.
  • control is performed so that the rotation speed of the disk is made slower on the outside of the disk than on the inside, and the rotation speed of the disk is increased on the outside of the disk, so that the linear read speed due to the big-up operation is kept constant.
  • the speed of reading recorded information from a disc typified by CD-R0M will be 8x to 16x, and even 20x, the standard linear speed of the audio CD standard. Is done. Double speed of linear speed is high
  • the angular velocity of the disk when accessing the inside of the disk is remarkably increased as the disk is accessed. If the angular velocity of the disk is too high, the vibration of the disk due to the eccentricity or runout of the disk becomes too large, and the big-bub servos such as tracking servos and focusing servos cannot be used. As a result, the pickup cannot follow the track, the reproduction operation becomes unstable, and the reproduction becomes impossible.
  • Japanese Unexamined Patent Publication No. Hei 7-31208 discloses a technique for determining the CAV control or the CLV control in accordance with the data request content from an external device and setting the operation mode of the system.
  • the factors that determine the maximum speed of reading from the disk include the maximum rotation speed of the disk which can stably scan the track by the pickup, or the maximum angular speed (which is not possible for the disk) that can be handled by the pickup servo.
  • the limit operating frequency includes the upper limit of the frequency band of the preamplifier and the upper limit of the operation speed of error correction such as ECC. This limit operating frequency determines the limit of the speed at which the recorded information is read (the signal read limit speed).
  • the signal reading limit speed can be grasped as a linear speed that is twice as fast as the recording linear speed of the general disk.
  • Fig. 4 shows that the change in the rotational speed of the disk in the radial direction during CLV control of the CD-ROM (the linear velocity during information recording is 1.3 [m / s]) is 1 Example for 6x speed Have been.
  • the limit of the readout linear speed (linear speed of scanning by the pickup) determined from the limit operating frequency of the processing circuit for the recorded information is 8 If the speed is equivalent to double speed (the rotation speed of the innermost track is 100 [rps] or less), CLV control at 8x speed must be adopted.
  • the disk shown by Pi at 66 [rps] CAV control The linear velocity limit is exceeded for tracks closer to the outer circumference than the radial position of the disk, and the limit angular velocity is exceeded for tracks closer to the inner circumference than the radial position of the disk indicated by Pi with 16x CLV control.
  • the disc rotation is controlled within the capability range by either CLV or CAV, the reading speed of the recorded information is limited by the angular speed limit and the linear speed limit (more precisely, the signal reading limit speed). ) Significantly lower than both.
  • the present inventors perform CAV control near the limit of the angular velocity near the inner periphery of the disk, and perform CLV control near the limit of the linear velocity near the outer periphery of the disk.
  • the signal processing circuit can fully utilize its capabilities near the limits of angular speed and linear speed. And found that the recorded information could be read at the highest speed. That is, the inner circumference Starts playback of a disc on which information is recorded from CAV to the outer circumference in CAV. Since the circumference of the track becomes longer in proportion to the diameter, the linear velocity at the time of reading becomes gradually higher as the reading track advances toward the outer periphery of the disk. Switch to CLV control when the read linear velocity reaches the limit of linear velocity.
  • the limit of the angular velocity at which the disk starts to vibrate undesirably depends not only on the performance of the disk motor, but also on the eccentricity and runout of the disk.
  • the constant linear velocity for recording information on a disc is, for example, in the range of 1.2 [m / s] to 1.4 [m / s] in the CD-ROM standard.
  • the angular velocity limit is equally dependent on velocity variations. For this reason, it is not possible to accurately determine the point at which the control between CAV and CLV is switched so as not to exceed the performance limit without considering such individual differences of the disks.
  • An object of the present invention is to make it possible to easily perform switching control between CAV and CLV when reading recorded information on a disc by using both CAV control and CLV control.
  • Another object of the present invention is to provide a method for reading recorded information on a disc by using both CAV control and CLV control, such as eccentricity of the disc and deviation of the disc.
  • the purpose is to be able to accurately and easily grasp the point at which CAV and CLV control is switched in consideration of individual differences.
  • Still another object of the present invention is to increase the speed of operation by sufficiently exhibiting the maximum operation performance of a motor for rotating a disk and a circuit for processing signal information read from the disk. It is in.
  • CAV control is performed on the inner circumference side of the disk, and CLV control is performed on the outer circumference side.
  • Switching between CAV control and CLV control is performed at a point where the linear velocity read by CAV control substantially matches the linear velocity read by CLV control. I do.
  • control data for determining the switching point between the CAV control and the CLV control is set inside the recording information reproducing apparatus, and information generated based on a read signal from the disc during a disc reproducing operation. It is determined whether or not the scanning position by the pick-up has reached the switching point determined by the control data, and when it reaches the switching point, switching between the CLV control and the CAV control is performed.
  • the first invention determines arrival at the target value data using a synchronization signal such as a frame synchronization signal
  • the second invention uses absolute position information (absolute time information or absolute time information) such as A time. (Also referred to as time information).
  • absolute position information absolute time information or absolute time information
  • a time Also referred to as time information.
  • the training period the operation period for detecting the characteristics of the disk prior to the start of the reproducing operation by the recording information reproducing apparatus
  • an information signal is recorded on the disk at a constant linear velocity at a predetermined bit cycle.
  • the recorded information on an audio CD disc is obtained by sampling, quantizing, and encoding audio information.
  • a synchronization pattern is provided at the beginning of the frame format.
  • the standard frequency of one frame is absolute, such as 7.35 KHz (the bit period or bit rate is approximately 230 ns accordingly), but there is an allowable range for the linear writing speed. It has been done. Even if the write linear velocity fluctuates within the allowable range, if the rotation of the disc is controlled so that the detection frequency of the synchronization pattern becomes the standard frequency and the recording information is read, the recording information is automatically recorded at the linear velocity at the time of recording. Can be read.
  • CD-ROMs for overnight use also conform to the above standards. When playing back a CD-ROM at 8x speed, if the disc rotation is controlled so that the detection frequency of the sync pattern is 8 times the standard frequency, the recorded information is read and processed at a constant linear velocity. be able to.
  • the present invention focuses on the fact that the bit cycle defined by the standard frequency is constant irrespective of the variation in the linear writing speed, and when reading the signal information from the disk by pick-up, Using the frequency of the synchronization signal obtained in a cycle proportional to the reading speed (for example, the detection frequency of the synchronization signal), the rotation control of the motor is changed from CAV to CLV. Switch.
  • the frequency at which the above switching is performed depends on the limit rotation speed of the disc model that can stably scan the spiral track by pick-up, and the amplifier and digital for processing the signal information read from the disc. It can be determined in consideration of the limit operating frequency of the signal processing circuit and the like.
  • CAV control is performed at a constant angular speed close to the limit rotation speed.
  • the CLV control is performed, for example, by controlling the detection frequency of the frame synchronization pattern to a double speed value (for example, 16) of the signal reading with respect to the standard speed.
  • the limit angular velocity is, for example, 66 [rps] shown by Pj in FIG. 4
  • the limit operation frequency follows the processing of the read signal at a constant linear velocity of 16 times as illustrated in FIG.
  • switching from CAV to CLV is indicated by Pi in FIG. Perform in position.
  • the switching is performed when the frequency of the synchronization signal reaches a target frequency for keeping the reading linear velocity constant. For example, according to FIG. 4, when the detection frequency of the frame synchronization pattern becomes a multiple of the signal reading speed (16 times) of the standard speed, the control is switched from CAV to CLV. Switching from CLV to CAV is performed when the rotational angular velocity of the disk reaches the constant angular velocity.
  • the frequency of the synchronization signal obtained from the read signal depends on the frequency of the read. It may be monitored whether the target frequency reaches a constant linear velocity. Variations in the linear writing speed of the disk do not affect the frequency detection of the synchronization signal. While variations in the write linear velocity are allowed, the actual linear velocity that changes sequentially under CAV control does not have to be calculated. According to Thus, it is possible to accurately and easily grasp the point at which the control between CAV and CLV is switched. As a result, the means for rotating and scanning the disk and the circuit for processing the signal information read from the disk can be fully utilized to achieve the maximum operating performance, and the speed of the signal reading operation or the reproducing operation can be increased.
  • the switching point from CAV to CLV can be roughly predicted from the critical performance such as the critical angular velocity and critical linear velocity.
  • the prediction point can be specified from the absolute time information or the absolute address information obtained from the record information. Predictable points in time will have errors within the allowed linear velocity variation. It is sufficient to determine whether or not the frequency of the synchronization signal reaches the target frequency for keeping the reading linear velocity constant within a range that can cover the error.
  • the prediction range in which the error can be covered is specified in advance using absolute time information or absolute address information read from the recorded information, and absolute When the time information or the absolute address information becomes the lower limit of the specified range, the determination can be started.
  • the synchronization signal may be a synchronization signal other than the frame synchronization signal. It may be a synchronous clock signal generated by a PLL circuit for identifying the pulse width of the information signal read from the disk as data.
  • the recording information reproducing apparatus has a register unit for storing information for specifying a switching point between the control of constant angular velocity and the control of constant linear velocity, and the information generated based on the information signal read from the disc and the information By comparing the information set in the register means with the constant linear velocity control or the constant angular velocity control.
  • the speed control means of the recording information reproducing apparatus includes a register for setting the target rotational speed data of the disk for controlling the angular velocity constant and the target frequency data for controlling the linear velocity constant.
  • the speed control means determines whether or not the angular velocity under the control of the constant linear velocity has reached the target angular velocity of the constant angular velocity by comparing the rotational speed of the disk with the target rotational speed data, Using the result of the determination, the constant linear velocity control can be switched to the constant angular velocity control.
  • the velocity control means determines that the linear velocity under the constant angular velocity control has reached the target linear velocity with the constant linear velocity.
  • the maximum rotational speed of the disk in terms of the follow-up performance of the pickup servo is affected by the state of the disk such as eccentricity and runout.
  • the speed control means for controlling the rotation of the disk at a constant angular speed or a constant reading linear speed by pick-up the rotation of the disk is controlled by the aforementioned method.
  • the maximum rotational speed of the disk is set to the limit of the capacity according to the individual differences, and the difference between CAV and CLV is determined.
  • the switching point can be controlled. Therefore, it is possible to optimize the switching point between the constant angular velocity and the constant linear velocity speed control with respect to the eccentricity, surface runout, and variation of the recording linear velocity for each disk, and read the data from the disk rotating the disk or the disk.
  • the maximum operational performance of the circuit that processes the signal information can be fully exhibited, and the speed of the signal reading operation or the reproducing operation can be increased.
  • the absolute position information of the track included in the information signal recorded on the spiral track can be used as the switching information.
  • a CD-ROM disc uses absolute position information as absolute time information from the start of the innermost track to the end of the outermost track.
  • DVD includes absolute address information as absolute position information.
  • the switching time between CAV and CLV When the switching time between CAV and CLV is managed by absolute position information, the switching time causes unwanted vibration on the disk and the It is determined by the limit angular velocity before the signal cannot be responded and the signal read limit speed determined based on the limit operation frequency of the amplifier and digital signal processing circuit for processing the signal information read from the disk.
  • the signal reading limit speed is understood as double speed of the recording linear speed of the disk.
  • the switching position information on the track is determined in advance based on the track position at which the rotation of the disk reaches the limit angular velocity. Then, it is monitored whether or not the absolute position information sequentially read from the speed-controlled disk reaches the switching position information.
  • the constant angular velocity control is applied to the constant linear velocity control.
  • the constant speed control is switched to the constant angular speed control.
  • the switching position information is obtained, for example, by obtaining a half-disc of the disk reaching the limit angular velocity when the disk is rotated at a constant linear velocity at a predetermined multiple of the measured disk recording linear velocity, and the radius and the maximum of the disk are obtained. Time information obtained by dividing the area of the disk between the radius of the inner track and the product of the track pitch and the recording linear velocity can be used.
  • the switching point between CAV and CLV is specified by the absolute position information
  • the actual read bit rate of the information signal is monitored and changes every moment, as in the case of switching control using the read linear velocity under CAV speed control.
  • the switching control can be performed accurately and easily, compared to a method of calculating the actual linear velocity and calculating the actual linear velocity, which has a large error.
  • the limit angular velocity is set during the training period after detecting the mounting of the disc.
  • the measurement may be performed in accordance with the state of eccentricity and surface runout specific to the disk, or may be obtained as a double speed maximum angular speed that is guaranteed in advance. In the former case, for example, the disk is gradually accelerated while monitoring the amplitude of the pickup servo signal for the spiral track, and the angular velocity of the disk when the amplitude of the peak-up error signal reaches a predetermined value. Can be defined as the limiting angular velocity.
  • the limit angular velocity can be set to a point at the limit of the capacity according to the individual difference.
  • the recording information reproducing apparatus for realizing the speed control controls the rotation of the disk at a constant angular velocity on the inner peripheral side of the disk, and picks up on the outer peripheral side of the disk.
  • Speed control means for controlling the rotation speed of the disk so as to keep the reading linear velocity constant, and the speed control means controls the linear velocity under the constant angular velocity control to reach the linear velocity under the constant linear velocity control.
  • a switching means for storing the absolute position information of the disc as switching position information, the absolute position information generated based on the information signal read from the disc, and the switching position information set in the registration means. By comparing the magnitudes of the two, the control with constant linear velocity or the control with constant angular velocity is selected.
  • FIG. 1 shows the switching between CAV control and CLV control using the frame synchronization signal.
  • FIG. 3 is a block diagram of an example of a replaceable CD-ROM playback device.
  • FIG. 2 is an explanatory view schematically showing the relationship between the disk radial position and the disk rotation speed when driving the disk by switching between CAV control and CLV control.
  • FIG. 3 is an explanatory diagram showing states of a frame synchronization signal and a disk rotation frequency signal in each of the CAV control and the CLV control.
  • FIG. 4 is an explanatory diagram exemplifying a change in the number of rotations of the disk according to the radial position during the CLV control of the CD-ROM from a standard speed to a 16-times speed.
  • FIG. 5 is an explanatory diagram of an allowable range regarding a linear velocity of information recording on a CD-ROM disc.
  • FIG. 6 is an explanatory diagram showing the relationship between the linear velocity of recorded information and the reproduction time on a CD-ROM disc.
  • FIG. 7 is an explanatory diagram of a frame format of recorded information on a CD-ROM disc.
  • FIG. 8 is an explanatory diagram of a subcode frame format on a CD-ROM disc.
  • Fig. 9 is an illustration of the Q-code frame format in CD-ROM.
  • FIG. 10 is a block diagram of a CD-R0M reproducing apparatus in which the function of the CAV speed error detection circuit in FIG.
  • FIG. 11 is an explanatory diagram showing a CAV control state focusing on the subvolume of the CD-ROM reproducing apparatus of FIG.
  • FIG. 12 is an explanatory diagram showing a CLV control state focusing on the subvolume of the CD-ROM reproducing apparatus of FIG.
  • FIG. 1 is a block diagram showing an example of a CD-R 0 M playback device that is enabled.
  • FIG. 14 is an explanatory diagram showing an example of a calculation process for acquiring switching position information.
  • FIG. 15 is an explanatory diagram showing an example of a method for acquiring a recording linear velocity.
  • FIG. 16 is an explanatory diagram showing an example of a state in which the switching time between the CAV control and the CLV control is different depending on the limit angular velocity and the recording linear velocity.
  • FIG. 17 is a flowchart of a process of acquiring the limit angular velocity from the table and calculating the switching position information.
  • FIG. 18 is a flowchart of a process of measuring the limit angular velocity and calculating switching position information.
  • FIG. 19 is a flowchart in the case where the switching position information is acquired using the table during the training period every time the disc is mounted.
  • FIG. 20 is a block diagram of a CD-R0M reproducing apparatus in which the function of the CAV speed error detecting circuit in FIG. 13 is realized by a micro computer.
  • CD-ROM disk 1 (hereinafter simply referred to as disk 1) has information recorded on spiral tracks at a constant linear velocity (Constant Linear Velocity).
  • the unit of the recording format is called a frame FRM.
  • a frame synchronization pattern exists first, followed by, for example, a subcode, data overnight, parity, data, and so on.
  • One frame is defined as 588 channel bits.
  • the information contained in the frame is particularly restricted However, a modulation method called EFM (Eight to Fourteen Modulation) is adopted. This EFM is a process for converting data of 8 bits per symbol into 14 bits.
  • Disc 1 conforms to the standard for audio CDs, and the recorded information on audio CDs is obtained by sampling, quantizing, and encoding audio information.
  • the synchronization pattern located at the head of the frame format can be detected at 7.35 kHz. That is, the detection frequency of the frame synchronization pattern is compared with the reference frequency (7.35 KHz) to control the rotation speed of the disk 1. For example, if it takes 7 ⁇ ⁇ r1 track scanning distance to demodulate 10 frames of data on a track of radius r 1 shown in Fig. 7 (B), then a track of radius r 2 requires 10 frames. Requires a track scan distance of 7 ⁇ ⁇ r 1 for demodulation of the data.
  • the subcode following the frame synchronization pattern is assigned to eight channels of P, Q,, S, T, U, V, and W, and each content is completed in 98 frames. I do. That is, the information of eight channels, P, Q, R, S, T, U, V, W, is meaningful only for 98 frames.
  • the first two bits S0 and S1 of the eight subcode channels are A subcode synchronization signal indicating the beginning of the code.
  • the subcode P channel (P code) is used as a data cue signal.
  • the subcode Q channel (Q code) records time information and control information, which are examples of absolute position information described later.
  • the R to W channels record graphic information.
  • FIG. 9 shows an example of the Q code format (Q code frame format) of Q1 to Q96.
  • the control gives a distinction whether the data of the frame is audio information or data.
  • the address has four bits Q5 to Q8, and when the 4-bit (code) power is s (000 1), the Q code frame format shown in FIG. 9 is obtained.
  • TN ⁇ indicates the track number to which the 98 frame belongs. That is, the track can be distinguished into one or more areas by the track number TN #.
  • X indicates a region obtained by further subdividing TN0.
  • MIN, SEC, and FRAME indicate the relative time (time within the track number) from the start of the area of the track number indicated by TNO to the 98th frame.
  • MIN indicates minutes
  • SEC indicates seconds
  • FRAME indicates 0/75 seconds to 74/75 seconds
  • AMIN, ASEC, and AFR AME indicate the absolute time (A time) from the program start position of the track (0 minutes 0 seconds).
  • the A time is an example of the absolute position information.
  • AMIN indicates minutes
  • ASEC indicates seconds
  • AFR AME indicates 0/75 seconds to 74/75 seconds.
  • 0 is a delimiter code.
  • the absolute time (A time) as the absolute position information from the program start position of the track ( ⁇ minute 0 second) can be obtained by demodulating the Q code in the subcode of 98 frames on disk 1. be able to.
  • the program start position is the start position of the first frame of recording information such as audio information.
  • the standard specification regarding the linear velocity of the disc 1 allows a width of 1.2 m / sec to 1.4 m / sec, and the linear velocity is determined when the disc 1 is manufactured.
  • the A time and the time in the track number are times according to the write linear velocity determined in the manufacturing stage.
  • the frame synchronization pattern must appear at 7.35 KHz as described above.
  • the difference in linear velocity is manifested as a difference in the physical length of one frame on a track, and the lower the linear velocity, the higher the information recording density. For example, as shown in Fig.
  • the A-time at a radius of 58 mm of the outermost track of disk 1 is 74 minutes at a linear velocity of 1.2 m / sec and 64 minutes at a linear velocity of 1.4 m / sec. .
  • the A time is different due to the difference in the linear velocity.
  • the rotation of the disc 1 is controlled by servo control of the rotation of the disc 1 using the frame synchronization pattern. There is no hindrance to control at a constant speed.
  • FIG. 1 shows a block diagram of a CD-ROM playback device.
  • the CD-ROM reproducing device shown in FIG. 1 is a device for reproducing the information of the disk 1, and is interfaced with a host device 9 such as a personal computer.
  • the one indicated by 8 controls the entire CD-ROM playback device.
  • This is a micro-computer that constitutes a system controller for operation. Data information obtained by reading from the disk 1 and performing signal processing is provided to the host device 9 via a CD-ROM decoder 6.
  • the disk 1 is rotated by a spindle motor 2 and information recorded on the disk 1 is read out using a pickup 3 moved in the radial direction of the disk 1. As the rotation speed of spindle motor 2 increases, the signal reading speed by pickup must also increase.
  • the rotational speed of the spindle motor 2 has a limit, and if it exceeds this limit, the spindle motor 2 will generate undesired vibration. If undesired vibrations occur in the spindle motor 2, tracking servos, etc., cannot respond. Also, if the angular velocity of the disk is too high, the vibration of the disk due to the eccentricity and runout of the disk becomes too large, and the tracking servo and the like cannot cope. Thus, there is a limit to the maximum angular velocity of the disk when reading signal information from the disk 1.
  • the pickup 3 is configured to irradiate the disk 1 with laser light from a semiconductor laser source via an objective lens or the like (not shown), receive the reflected light by a light receiving unit including a photodiode, and perform photoelectric conversion. .
  • Pickup 3 is a focusing mechanism that moves the objective lens in the depth direction to focus the objective lens on the disc signal surface, and a tracking actuator that moves the objective lens along the track TRK. Prepare for the evening. Since the operating range of the tracking operation is limited, a thread mode (not shown) is provided to move the entire pickup 3 in the radial direction of the disc 1.
  • the information signal read from the pickup 3 is supplied to a signal detection and shaping circuit 4 including a high-frequency amplifier as a preamplifier, a waveform shaping circuit, and a data slice circuit.
  • High frequency amplifier exceeds the upper limit of its frequency band Can not work.
  • the upper limit is the operation limit of the amplifier.
  • the signal detection and shaping circuit 4 outputs an EFM signal 58, a focus error signal FER, and a tracking error signal TER based on the input signal information.
  • the tracking error signal TER is a frequency signal having an amplitude corresponding to the relative position between the pickup 3 and the track
  • the focus error signal FER is a frequency signal having an amplitude corresponding to the relative distance between the objective lens and the disk signal surface. is there.
  • the amplitude of the signals T ER and F ER is proportional to the magnitude of the deviation from the track and the deviation from the optimum depth of focus.
  • the pickup servo circuit 11 generates a pickup servo control signal 80 for canceling the deviation based on the focus error signal F ER and the tracking error signal T ER.
  • the pickup servo control is a focusing servo and a tracking servo.
  • the focusing servo controls the objective lens so that the relative distance between the objective lens and the disc signal surface is kept constant with respect to the runout of the disc 1, and the disc signal surface is located within the focal depth of the laser beam. Operation.
  • the tracking servo is a control for accurately tracing the laser beam of the pickup 3 along the track TRK even when the disk 1 rotates eccentrically.
  • the pickup servo circuit 11 controls the thread feed of the pickup 3. Thread feed is performed by controlling the movement of a track (not shown) to forcibly cause the pickup 3 to jump from the current track position to another desired track position. is there.
  • the pickup 3 becomes an eccentric or out-of-plane disk 1. It can also follow the track. However, as the rotation of the disk 1 increases, the repetition period of the eccentricity and the runout becomes shorter, and the amplitudes of the tracking error signal TER and the focus error signal FER increase. If the rotation of the disk 1 is too high, the amplitude of the tracking error signal TER and the focus error signal FER will be too large, and the tracking and focus servo will not be able to cope.
  • the digital signal processing circuit 5 includes, but is not limited to, a PLL circuit 50, a demodulation circuit 51, a data control circuit 52, a RAM 53, a subcode processing circuit 54, a pickup servo circuit 11, And a spindle sensor circuit 7.
  • the PLL circuit 50 is a circuit for identifying the pulse width of the EFM signal 58 that has been sliced overnight as the data, and outputs a bit clock 56 and an EFM data 57. ? ] ⁇
  • the operation reference clock signal of the circuit 50 is given from a crystal oscillation circuit (not shown).
  • the frequency of the bit clock 56 changes according to the frequency of the EFM signal 58, that is, the speed at which the recording information is read from the disk 1 (read linear speed).
  • the changing point of EFM de 57 is synchronized with the bit clock 56.
  • the bit clock 56 is used as a synchronization signal for determining the operation speed of the subsequent demodulation circuit 51, subcode processing circuit 54, data control circuit 52, and the like.
  • the signal processing speed in the digital signal processing circuit 5 is changed to follow the speed of reading recorded information from the disk. If the reading speed exceeds the limit, the digital signal processing circuit 5 cannot perform the following operation.
  • a circuit portion that does not need to follow the signal reading speed is operated in synchronization with a predetermined clock signal obtained by dividing the oscillation output of the crystal oscillation circuit (not shown).
  • the demodulation circuit 51 demodulates the EFM data 57.
  • Data control circuit 5 2 receives the demodulated frame data and parity, corrects the error, extracts data from the error-corrected information in accordance with the information format of the disk 1, and extracts the extracted data information as CD-ROM data.
  • the CD-ROM decoder 6 further performs an error correction specific to the CD-ROM format for the input data on the input data and transfers the error-corrected data information to the host device 9. Then, the data is converted to a predetermined data format and output.
  • the RAM 53 is used as a work area of the data control circuit 52 or a data storage area.
  • the sub-code processing circuit 54 receives the information of the frame sub-code area output from the demodulation circuit 51 and supplies the microcomputer 8 with an 8-channel sub-code signal SIG1 every 98 frames.
  • the microcomputer 8 can recognize the head of the subcode using, for example, the subcode synchronization signals S0 and S1, and recognize the A time from the Q code every 98 frames. it can.
  • SIG1 includes subcode synchronization signals S0, S1 and other eight channels (P, Q, R, S, T, U, V, W).
  • the ⁇ time recognized in this way is used for calculation of linear velocity and track jumping.
  • the microcomputer 8 gives a Q code to the host device 9, for example, so that the host device 9 can display the current playback time based on the A time.
  • the CLV speed error detection circuit 70 receives the frame synchronization signal from the demodulation circuit 51.
  • the spindle servo circuit 7 controls the frequency based on the servo error signal SIG3 when the motor control at a constant linear velocity is instructed by the speed control mode instruction signal SIG4 output from the microcomputer 8.
  • the driver control signal SIG 6 of the driver 10 is controlled so as to cancel the difference. By this negative feedback control, the rotation of the spindle motor 2 can be controlled such that the linear velocity of the recording information readout by the big group 3 is constant. As illustrated in FIG.
  • the frame synchronization signal SIG2 is set to a constant frequency, and the frequency of the rotation frequency signal SIG7 is reduced as it approaches the outer circumference.
  • the data indicating the target frequency is read from, for example, the ROM 82 and set in the register REG 1 of the microcomputer 8.
  • the setting data can be regarded as data indicating a double speed value such as 16 times speed.
  • the CLV speed error detection circuit 70 receives the target frequency data SIG 8 corresponding to the double speed value data from the register REG 1 and sets the frequency of the frame synchronization signal SIG 2 to a frequency twice as high as the reference frequency. Then, it outputs the signal SIG 3 of the sensor vowel.
  • the motor driver 10 has a generator that outputs a rotation frequency signal SIG 7 corresponding to the rotation speed of the spindle motor 2. This frequency signal SIG 7 is given to the CAV speed error detection circuit 71.
  • the CAV speed error detection circuit 71 detects the rotation angular speed (rotation speed) of the spindle motor 2 based on the frequency signal SIG7.
  • the CAV speed error detection circuit 71 generates a difference between the angular speed detected from the frequency signal SIG 7 and the target angular speed when the spindle servo circuit 7 is instructed to control the motor at a constant angular speed by the speed control mode instruction signal SIG 4. Outputs the corresponding servo error signal SIG5.
  • the CAV speed error detection circuit 71 cancels the difference between the angular velocities based on the servo error signal SIG5 when the motor control instruction with the constant angular velocity is received by the speed control mode instruction signal SIG4. Control the drive control signal SIG 6 of the motor driver 10. With this negative feedback control, the spin 2 can be rotated at a constant angular velocity. As illustrated in FIG. 3, under the CAV control, the frequency of the frame synchronization signal SIG2 increases as it approaches the outer periphery of the disk, and the rotation frequency signal SIG7 has a constant frequency.
  • the data indicating the target angular velocity is set in the register REG2 as a limit angular velocity detected according to, for example, a process described later.
  • the CAV speed error detection circuit 71 receives the target angular velocity data SIG 9 from the register REG 2 and outputs the servo error signal SIG 5 by comparing with the angular velocity of the rotation frequency signal SIG 7. .
  • the speed control of the disk 1 for reading the information signal from the disk 1 can be CAV control or CLV control.
  • the switching point between the CAV control and the CLV control is a point where the reading linear velocity by the CAV control and the reading linear velocity by the CLV control mutually match, as exemplified in FIG.
  • the target frequency data is limited so that the playback capacity can be used to the fullest according to the individual difference of the disc and the hardware capacity of the CD-ROM playback device.
  • Set the target angular velocity data to register REG2.
  • the target angular velocity data is based on the individual difference of the disk such as the eccentricity and runout of the disk 1, and furthermore, depending on the maximum rotation capacity of the spindle 2 and the disk 2, the disk 1 generates an undesired vibration and the tracking servo ⁇ Determined in consideration of the limit angular velocity before the focusing servo cannot respond.
  • the target frequency data is calculated based on the maximum recording linear velocity that can be reproduced in accordance with the capabilities (such as the maximum operating frequency) of the signal detection and shaping circuit 4 and the digital signal processing circuit 5. It is determined as a double speed with respect to the recording linear velocity of 1. This target frequency is not affected by the individual difference of the disc 1.
  • the CD-ROM playback device shown in FIG. 1 uses the frame synchronization signal SIG2 to detect the switching position. In the CD-ROM reproducing apparatus shown in FIG. 13 described later, the A time is used for detecting the switching position.
  • the target angular velocity data is affected by individual differences of disks such as eccentricity and runout. Therefore, it is optimal to determine the target angular velocity data by actually measuring the effects of eccentricity and runout when the disk 1 is rotated.
  • the target angular velocity data is determined in advance in consideration of the allowable range for the eccentricity and runout of the disk and the disk motor's two rotation capabilities, stored in the ROM 82, and the above-described R0M82 is used for each reproduction operation. You may load it to Regis Evening REG 2.
  • the determination of the target angular velocity data is performed by, for example, the microcomputer 8 during the training period after the detection of the mounting of the disk 1. That is, the microcomputer 8 monitors the amplitude of the tracking error signal TER and the focus error signal FER so as to determine the limit angular velocity so that the state of eccentricity and runout inherent to the disk can be considered.
  • the rotation of 1 is accelerated, and the angular velocity (for example, the number of revolutions per second) of the disk when one of the amplitude of the tracking error signal TER and the focus error signal FER reaches a predetermined value is detected as the limit angular velocity.
  • the detected limit angular velocity is stored in the register REG2 of Microcomputer Night8.
  • the predetermined values of the amplitudes of the tracking error signal TER and the focus error signal FER are amplitudes at which the tracking and focusing servos cannot be handled, and can be uniquely determined by the servo control capability. This The predetermined value of the amplitude is not particularly limited, but the value read from the ROM 82 and set in the register REG3 is used.
  • the mounting of the disk 1 can be detected by a change in the output of an optical sensor that detects that the disk 1 is mounted on the tray.
  • the microcomputer 8 shown in Fig. 1 implements the control logic for switching between CAV and CLV, and implements the imaginary counters CNT1, CNT2, REG1, REG2, REG6 to REG8, and the comparator. It is realized by overnight CMP 1 to CMP 4 and the switching judgment unit LOG. These control logics are realized by a CPU (Central Processing Unit), a CPU operation program, and peripheral circuits built into the microcomputer.
  • the ROM 82 stores an operation program of the CPU, constant data, and the like.
  • the RAM 83 is used as a work area of the CPU or a temporary storage area of data.
  • the target frequency data set in the register REG 1 is actually double speed value data with respect to the standard speed, and the double speed data which is within the maximum operating frequency of the signal detection and shaping circuit 4 and the digital signal processing circuit is high speed. Value data.
  • the target angular velocity data set in the register REG2 is the data measured as described above or data read from the ROM 82. For example, if the critical linear velocity of a CD-ROM playback device is a linear velocity equivalent to 16 times speed and the critical angular velocity is 66 [rps], the register RE G 1 has 16 times The double speed value data corresponding to the speed is set, and the register value REG 2 is set to 66 [rps].
  • the evening counter CN T1 counts and outputs the number of cycles of the frame synchronization signal SIG2 every period of the reference frequency of 7.35 KHz. For example, if the frame synchronization signal has a frequency corresponding to 16 ⁇ speed, the count value 16 is output every cycle of the 7.35 KHz reference frequency.
  • the CMP1 comparator compares the output of the imaginary counter CNT1 with the set value of the register EG1 and determines that the output value of the imaginary counter CNT1 is equal to or greater than the set value of the register REG1. Assert control signal ⁇ 1. For example, when the double speed value of the register REG 1 is 16 times faster, the target frequency is 16 times the reference frequency.
  • the switching determination unit LOG instructs the servo circuit 7 to perform CAV control
  • the frequency of the frame synchronization signal SIG 2 reaches the target frequency for CLV control according to the assertion state of the control signal ⁇ 1.
  • the CLV control is instructed to the servo circuit 7 by the speed control mode instruction signal SIG4. As a result, the control of the spindle 2 is switched from CAV to CLV.
  • the evening counter CN T2 counts and outputs the number of cycles of the rotation frequency signal SIG7, for example, every second.
  • the comparator CMP 2 compares the output of the timer counter CNT 2 with the set value of the register REG 2, and when the output value of the CNT 2 is equal to or greater than the set value of the register REG 2, the control signal is output. Assert ⁇ 2.
  • the switching determination unit LOG determines whether the angular velocity of the disk 1 (the number of revolutions per second) reaches the target angular velocity for the CAV control depending on the assertion state of the control signal ⁇ 2. Is detected, CAV control is instructed to the servo circuit 7 by the speed control mode instruction signal SIG4.
  • the control of spindle motor 2 is switched from CLV to CAV.
  • recording of information on the disk 1 is performed from the inner periphery to the outer periphery of the disk. Therefore, the need to switch from CLV control to CAV control arises in the case of a track jump. .
  • the switching of the speed control from 8 to (: 1 ⁇ V) occurs not only during a track jump, but also during the reading operation to be reproduced.
  • the switching point between the CAV control and the CLV control is performed at the radial position indicated by Pi in FIG.
  • the determination at the time of switching only requires a comparison and determination operation with the target frequency at a constant linear velocity or the target angular velocity at a constant angular velocity. Variations in the writing linear velocity with respect to the disk 1 have no effect on the frequency detection of the frame synchronization signal SIG2.
  • the spindle motor 2 for rotating the disk 1 and the circuits 4 and 5 for processing the information signal read from the disk 1 can be operated at the upper limit of the performance limit, and the operation performance of those circuits is sufficiently exhibited.
  • the speed of the signal reading operation or the reproducing operation can be increased.
  • ATG is based on the subcode signal SIG 1 It is a logical means to grasp the system.
  • the register REG 6 holds the A time recognized by the logic means ATG.
  • the switching determination unit L0G asserts the control signal ⁇ 3 when the control signal ⁇ 1 is asserted during the reading operation of the data to be reproduced (when it is not a track jump), and registers the signal. Evening REG 6 latches the A time as switching position information.
  • the comparator CMP3 asserts the control signal 04 when the A-time generated by the logic means ATG is equal to or longer than the A-time latched by the register REG6.
  • the switching judgment unit L0G monitors the control signal ⁇ 4 instead of the control signals 01, 02 and replaces the control signal ⁇ 4, unless the disk is replaced. Switches between CAV control and CLV control according to the ⁇ 4 assert state and negated state.
  • the switching point from CAV to CLV can be roughly predicted from the critical performance such as the critical angular velocity and critical linear velocity.
  • the prediction time can be specified by the A time acquired from the record information. Predictable points in time will have errors within the accepted linear velocity variation. If the comparison and judgment operation for switching between CAV and CLV is performed within a range where the error can be covered, the load on the microcomputer 8 for speed control can be reduced.
  • the variation range of the linear velocity is considered as the error range.
  • the limit linear velocity and the limit angular velocity can be determined in advance from the performance of the hardware of the CD-ROM playback device. For example, in FIG. 5, assuming that the limit angular velocity is 66 [rps] and the limit linear velocity is a linear velocity equivalent to 16 times speed, some margin is taken for the range E1 of variation of the write linear velocity, and The range indicated by E2 in the figure is the range of the error. If the limit linear velocity and the limit angular velocity are determined, the lower limit and upper limit A times A i and A j of the error range E 2 can be predicted in advance.
  • a time A obtained in advance in that way i and A j are set in the register REG 7 and REG 8 of the microcomputer 8.
  • the microcomputer 8 can grasp the current A time based on the subcode signal SIG1.
  • Comparator evening CMP 4 determines whether the current A-time is between the lower limit A-time A i and the upper limit A-time A j stored in Regis evening REG 7, If so, assert control signal 5.
  • the switching determination unit L 0 G causes the comparators CMP 1 and CMP 2 to perform a comparison operation when the control signal 5 is asserted. Even with such processing, it is possible to accurately and easily grasp the point at which the control between CAV and CLV is switched, as described above. In particular, the switching process is further simplified because the determination period of the frequency and angular velocity for detecting the switching point between CAV and CLV can be shortened.
  • the register setting is performed. This can be handled using the A times A i and A j of G 7 and RE G 8. That is, when the A time at the jump destination track is a time before the A time A i at the lower limit of the error range, the control of the spindle motor 2 is forcibly switched to C AV. Similarly, when the A time at the jump destination track is later than the A time A j at the upper limit of the error range, the control of the spindle motor 2 is forcibly switched to the CLV control.
  • the speed control may not use the CMP 3 and CMP 4 during the comparison. Further, either the comparator CMP3 or the comparator CMP4 may be used together with the comparators CMP1 and CMP2.
  • FIG. 10 shows the function of the CAV speed error detection circuit 71 by microcontroller.
  • This shows the CD-R0M playback device realized by View8. That is, the CAV speed error detection circuit 71 shown in FIG.
  • the peak observer 11 is not shown.
  • Other configurations are the same as those in FIG. 1, and thus detailed description is omitted.
  • the reading of the information signal from the disk 1 can be performed by CAV control or CLV control.
  • Fig. 11 shows the CAV control state focusing on the servo loop of the configuration shown in Fig. 10.
  • CAV control is performed in the loop of the motor driver 10, micro computer 8, and servo circuit 7. .
  • FIG. 12 shows the CLV control state focusing on the servo loop of the configuration shown in FIG. 10, which includes a dryino'10, a signal detection and shaping circuit 4, a digital signal processing circuit 5, and a servo circuit 7.
  • CLV control is performed in the loop.
  • the microcomputer 8 receives the frame synchronization signal SIG 2 even under CAV control, and determines whether the frequency of the frame synchronization signal SIG 2 reaches the target frequency for CLV control. Monitor.
  • the target frequency is obtained from the double speed value set in the register REG1. For example, when the double speed value data indicates 16 times speed, the target frequency is 16 times the reference frequency.
  • the microcomputer 8 When the microcomputer 8 instructs the servo circuit 7 to perform the CAV control, and detects that the frequency of the frame synchronization signal SEG2 reaches the target frequency for CLV control, the microcomputer 8 issues a speed control mode instruction signal. SIG 4 instructs the servo circuit to perform CLV control. As a result, control of spindle motor 2 is switched from CAV to CLV. Also, the microcomputer 8 receives the frequency signal SIG7 even under the CLV control, and monitors whether the rotation speed of the motor obtained from the frequency signal SIG7 reaches the target angular speed of the CAV control. .
  • the target frequency is the data set in the register REG2. Get from the evening.
  • the microcomputer 8 instructs the servo circuit 7 to perform CLV control and detects that the motor rotation speed obtained from the frequency signal SIG 7 reaches the target angular speed
  • the microcomputer 8 issues a speed control mode instruction signal SIG. 4 instructs the servo circuit to perform CAV control.
  • the control of Spindlemo 2 is switched from CLV to CAV.
  • the determination at the time of switching between the CAV control and the CLV control can be performed simply by comparing the frequency of the synchronization signal such as the frame synchronization signal SIG2 with the target frequency, or comparing the angular velocity of the disk with the target angular velocity. Variations in the writing linear velocity with respect to the disk have no effect on the frequency detection of the synchronization signal.
  • the actual linear velocity that changes every moment according to the radius of the scanning position under CAV control is obtained by sequential calculation It must be monitored, but in the case of the present invention there is no need at all.
  • the processing is complicated and time-consuming, and therefore, a calculation error that cannot be ignored occurs.
  • the processing is simple and the error is small. Therefore, it is possible to accurately and easily grasp the point at which the control between CAV and CLV is switched. As a result, it is possible to operate the spindle motor 2 for rotating the disk 1 and the circuits 4 and 5 for processing the signal information read from the disk 1 at the upper limit of the performance limit, and to sufficiently operate the circuits. It is possible to realize a high speed signal reading operation or reproducing operation.
  • FIG. 13 shows a CD-ROM playback device employing such control.
  • the CD-ROM playback device shown in the figure like the CD-ROM playback device described above, controls the speed of the disc when reading information signals from the disc 1 between CAV control and CLV control. You can switch with. At this time, the switching time point between CAV control and CLV control is managed or controlled by the A time.
  • the same circuit elements as those in FIG. 1 are denoted by the same reference numerals.
  • FIG. 13 includes a CPU 84, a ROM 85 in which an operation program of the CPU 84 and constant data are stored, a work area of the CPU 84, and a temporary storage area for data.
  • RAM 83 registers REG1 to REG6, and peripheral circuits not shown.
  • the signal reading limit speed is determined based on the limit operating frequency of the digital signal processing circuit 5 or the like.
  • the signal reading limit speed is grasped as a double speed of the recording linear speed of the disc 1, such as 16 times speed.
  • the predetermined double speed of the recording linear velocity is determined in consideration of the upper limit of the signal processing speed in the digital signal processing circuit 5, the upper limit of the operating frequency band in the signal detection and shaping circuit 4, and the like. As described above, the upper limit of the signal processing speed and the upper limit of the operating frequency band determine the upper limit of the signal reading linear speed (signal reading limit speed) by the pickup.
  • the predetermined double speed of the recording linear speed is a signal reading linear speed determined within a range not exceeding the signal reading limit speed, and is a linear speed of a predetermined double speed with respect to the recording linear speed (standard linear speed).
  • FIG. 14 shows an example of a process for obtaining switching position information for specifying the switching time.
  • the processing shown in the figure is performed by the microcomputer 8 during the training period after the attachment of the disk 1 is detected.
  • the limit angular speed is detected (S1). That is, the microcomputer 8 monitors the amplitudes of the tracking error signal TER and the focus error signal FER in order to determine the limit angular velocity so that the state of eccentricity and runout inherent to the disk can be considered.
  • the rotation of the disk 1 is accelerated, and the angular velocity of the disk when either one of the tracking error signal TER and the focus error signal FER reaches a predetermined value is detected as the limit angular speed.
  • the detected limit angular velocity is stored in the register REG 2 of the microcomputer 8.
  • the predetermined values of the amplitudes of the tracking error signal TER and the focus error signal FER are amplitudes at which the tracking and focusing servos cannot be handled, and can be uniquely determined by the servo control ability.
  • the predetermined value of the amplitude is read from the power ROM which is not particularly limited, and the value set in the register REG 3 is used. If the limit angular velocity is determined in this way, there is no eccentricity or runout.
  • the individual difference of each disk can be considered, and the limit angular velocity can be set at the very limit according to the individual difference.
  • the mounting of the disk can be detected by a change in the output of an optical sensor that detects that the disk 1 is mounted on the tray, though not particularly shown in the drawing.
  • the recording linear velocity of the disk is measured (S2).
  • the recording linear velocity can be measured, for example, by the method shown in FIG.
  • n positive integer, for example, 1 track jump is performed, and the jump destination A is detected, as shown in Fig. 15 Calculate the linear velocity using the following equation (3-1).
  • the jump positions are A time 1 [X minutes ⁇ Y + ZZ75 ⁇ seconds] and A time 2 [X minutes ⁇ Y + (Z + 1) / 7 5 ⁇ seconds].
  • the above equation (3-1) indicates that the spiral (track) length from the position of the A time 0 to the jump position JP 1 is represented by the A time 0
  • the error in linear velocity detection can be minimized when the time required to scan the track from the position of the jump position to the jump position JP1 can be minimized, but in actuality, A time 3 that can be detected from the Q code is used.
  • the A-TIME in the notation (3-1) is the A-time that can be read immediately after jumping one track from the A-time 0, and is A-time 3 according to FIG.
  • the technology described may be employed.
  • the recording linear velocity of the disk thus detected is stored in the register REG 4 of the microcomputer 8.
  • the radius of the disk reaching the limit angular velocity when the disk 1 is rotated at a constant linear velocity at a predetermined multiple speed of the measured disk recording linear velocity is acquired (S3).
  • the microcomputer 8 performs, for example, the calculation shown by the equation (3-2) in FIG. 14 to obtain the disk radius.
  • “set C LVn double speed” is a double speed value, and means a value “16” if the predetermined double speed of the recording linear speed is 16 times the recording linear speed.
  • the microphone computer 8 sets the value of “setting CL Vn double speed” from the register REG 1 and the value of “recording linear speed” from the register REG 4 to “rotational speed (limit angular speed)”. From Regis Evening Reg 2.
  • the disk radius (the radius of the disk 1 at the switching position) calculated based on them is stored in the register REG5 of the microcomputer c .
  • the switching position information for switching between CAV and CLV is obtained based on the calculation represented by the equation (3-3) (S4).
  • the contents of the calculation of the equation (3-3) are as follows: the disk radius (the value of REG 5) obtained in step S 3 and the innermost radius of the disk 1 (the radius of the innermost track in a precise expression) Is divided by the product of the track pitch and the recording linear velocity to obtain time information.
  • This time information is the time on the track starting from the A time 0 (0 minutes 0 seconds), and the A time closest to this is used to specify the switching point between CLV and CAV. Switching position information.
  • the track pitch and the innermost radius are known according to the disc 1 standard.
  • the disc radius is obtained from the value of REG5, and the measured recording linear velocity is obtained from the value of REG4.
  • the calculated switching position information is stored in the register REG 6 of the microphone computer 8. If the limit angular velocity (rotation speed per second) obtained in step S1 is, for example, the angular velocity at point Pa in FIG. 16, as shown in FIG. 16, the predetermined multiple of the measurement recording linear velocity is 16 ⁇ . At this time, when the recording linear velocity measured in step S2 is 1.4 [m / s], the switching position information is the A time of Pb3. Similarly, when the measured recording linear velocity is 1.3 [m / s], the switching position information is the A time of Pb2, and the measured recording linear velocity is 1.2 [m / s]. ], The switching position information is the A time of Pb1.
  • FIG. 17 shows another example of processing for acquiring the A time for specifying the switching time. That is, in step S5, the limit angular velocity is determined as the maximum angular velocity of the double speed guaranteed by the child.
  • the microcontroller Pyu-Yu calculates the limit angular velocity by the equation (3-4).
  • “set C A V n double speed” means a double speed value of the guaranteed performance described above, and is set to “8” when the speed is eight times higher.
  • the set linear velocity means the recording linear velocity of the guaranteed performance.
  • step S11 assuming that the switching position information is the A time of Pb2 in FIG. 16, the microcomputer 8 determines that the A time of the sequentially supplied subcode is included in the switching position information. Determine if it will arrive.
  • the microcomputer 8 instructs the spindle control circuit 7 to perform CAV control and detects a state in which the A-time matches the switching position information
  • the microcomputer 8 uses the speed control mode instruction signal SIG 4 to control the spindle control.
  • Instruct circuit 7 to perform CLV control.
  • the control of spindle motor 2 is switched from CAV to CLV.
  • the microcomputer 8 When the microcomputer 8 detects a state in which the A time coincides with the switching position information under the CLV control (in this case, caused by a track jump), the microcomputer 8 performs a speed control mode instruction signal SIG. 4 instructs the spindle servo circuit 7 to perform CAV control. As a result, the control of spindle motor 2 is switched from CLV to CAV.
  • the calculation of the switching time performed in the steps S 3 and S 4 can be replaced with the processing using a data table. For example, if the reading linear velocity is fixed at 16 times the recording linear velocity, the switching time is stored in advance with the limit angular velocity and the measured linear velocity as parameters as shown in step S12 of Fig. 19. Prepare the switching time table shown in the table and record the limit angular velocity obtained in step S1 and the disc obtained in step S2. Obtain the switching time corresponding to the recording line speed from the switching time table. According to this, the calculation time for acquiring the switching time can be reduced.
  • Other processes are the same as those in FIG. 18, and the same processes are denoted by the same reference numerals and detailed description thereof will be omitted.
  • the method described in Fig. 17 does not determine the limit angular velocity by directly considering the individual difference of each disk such as eccentricity and runout, so after obtaining the switching point of CAV and CLV, If it is saved, the switching time does not have to be calculated every time the disk is replaced.
  • the method of step S12 in FIG. 19 can be adopted.
  • FIG. 20 shows a CD-R ⁇ M reproducing apparatus in which the function of the CAV speed error detecting circuit 71 is realized by a microcomputer 8. That is, the CAV speed error detection circuit 71 of FIG. 20 is built in the microcomputer 8. Other configurations are the same as those in FIG. 13, and thus detailed description is omitted.
  • Switching position information for specifying the mutual switching point between CAV and CLV control is determined in advance. At that time, the limit angular velocity before the pick-up servo cannot respond due to undesired vibration of the disc 1, the signal detection and shaping circuit 4 for processing the signal information read from the disc, and the digital signal processing Consider a signal reading limit speed determined based on a limit operating frequency of the circuit 5 or the like.
  • the switching position information is determined based on the track position at which the disk reaches the limit angular velocity when it is assumed that the disk is rotated at a predetermined linear velocity (the speed before the signal reading limit velocity) at a constant linear velocity at a predetermined speed. It is the position information on the track.
  • Judgment at the time of switching between CAV control and CLV control during playback operation Is performed by comparing and determining whether or not the absolute position information matches the switching position information.
  • the actual linear velocity that changes every moment according to the radius of the scanning position under CAV control is calculated sequentially. Observe and monitor, but in the case of the above judgment method, there is no necessity.
  • the processing is complicated and time-consuming, and therefore, a calculation error that cannot be ignored occurs.
  • the process of comparing and determining the absolute position information such as the A time and the switching position information is simple and has few errors. Therefore, it is possible to accurately and easily grasp the point at which the control between CAV and CLV is switched.
  • the limit angular velocity can be set to a point at the limit of the capability according to the individual difference.
  • a disc on which signal information is recorded at a constant linear velocity is not limited to a CD-ROM, but an LD (laser disc), MD (mini disc), LV (laser vision), CDV (compact disc video) or DVD (
  • the disc may be a disc conforming to a standard such as a digital video disc.
  • the present invention can be applied to such disk speed control. Wear.
  • the digital signal processing circuit 5 and the spindle servo circuit 7 may be formed of a one-chip semiconductor integrated circuit, or may be built in a microcomputer 8 to form a one-chip disk controller LSI. It is.
  • the double speed value has been described as 16 times. However, it is needless to say that the present invention can be applied to a case of a double speed value of 20 times or more. Also, depending on the type of disc, ID information such as an absolute address on the disc can be used as absolute position information instead of the A time.
  • the measurement of the critical angular velocity of the disk is not limited to the method performed by the microcomputer based on TERR and FER, and can be changed as appropriate.
  • the present invention can be widely applied to an apparatus for reproducing recorded information of a disc on which signal information is recorded at a constant linear velocity, such as a CD-ROM, LD, MD, LV, CDV, or DVD. .

Abstract

The rotation of a disc is so controlled as to have a constant angular velocity (CAV) in the inner region of the disc and as to have a constant linear reading velocity (CLV) for reading by a pickup in the outer region of the disc. The control mode is switched between the CAV control and the CLV control at the position where the angular reading velocity in accordance with the CAV control agree with the linear reading velocity in accordance with the CLV control. Control data for determining the switching position between the CAV control and the CLV control are set in a recorded information reproducing device. Making reference to frame synchronization signals, etc., which are generated in accordance with reading signals which are obtained from the disc in a reproducing operation, it is judged whether or not the scanning position of the pickup reaches the switching position determined by the control data. When it does, the control mode is switched from the CLV control to the CAV control. In order to allow the target values to reflect the variations in eccentricity and surface instability of the discs, the target data can be obtained by utilizing a training period. With this constitution, the maximum rotational speed of the disc is set as high as possible in accordance with the variations of the discs to switch the CAV control and the CLV control easily.

Description

明 細 書 記録情報再生装置、 速度制御方法及びディスクコン トローラ 技術分野  Description Recorded information reproducing apparatus, speed control method, and disk controller
本発明は、螺旋状トラックに情報信号が線速度一定に記録されたディ スクの回転を角速度一定又は線速度一定に切り換え制御する技術に係 り、 特に、 ディスク毎の偏心、 面ぶれ及び記録線速度のばらつきに対し て角速度一定 (CAV) と線速度一定 (CLV) の速度制御の切り換え を最適化する技術に関する。例えば本発明は、 オーディオ用 CDに比べ て記録情報の読み取り速度が高速化されるデータ用 C D— R 0 M (Compact Disk - Read Only Memory) などの光ディスクを高速且つ安 定にアクセスするのに有効な技術に関するものである。 背景技術  The present invention relates to a technology for switching the rotation of a disk having an information signal recorded on a spiral track at a constant linear velocity to a constant angular velocity or a constant linear velocity, and in particular, to eccentricity, surface runout, and a recording line for each disk. It relates to technology that optimizes switching between constant angular velocity (CAV) and constant linear velocity (CLV) speed control for speed variations. For example, the present invention is effective for high-speed and stable access to an optical disc such as a data CD—R0M (Compact Disk-Read Only Memory) in which the read speed of recorded information is higher than that of an audio CD. Technology. Background art
螺旋状トラックに情報信号が線速度一定に記録された C D— R〇 M のようなディスクの再生装置は、ディスクを回転させながらピックアツ プで螺旋状トラックを走査して情報信号を読み取る。 CD— ROMのよ うなディスクの再生装置は、当初オーディオ用 CDの流れを汲んで線速 度一定で再生するものであった。 すなわち、 ディスクの外側では内側に 対してディスクの回転速度を遅く し、内側では外側に対してディスクの 回転速度を速くする制御を行って、ビックアップによる読み取り線速度 を一定に制御する。  A disk reproducing apparatus such as a CD-R〇M in which an information signal is recorded on a spiral track at a constant linear velocity reads the information signal by scanning the spiral track with a pickup while rotating the disk. Initially, disc playback devices such as CD-ROMs played at a constant linear speed by drawing a stream of audio CDs. In other words, control is performed so that the rotation speed of the disk is made slower on the outside of the disk than on the inside, and the rotation speed of the disk is increased on the outside of the disk, so that the linear read speed due to the big-up operation is kept constant.
CD— R 0Mに代表されるディスクから記録情報を読み出す速度は、 オーディオ用 CD規格の標準線速度に対して、 8倍速から 1 6倍速、 更 には 20倍速へと高速化されることが予測される。線速度の倍速が高速 化されるに従ってディスクの内側をアクセスするときのディスクの角 速度は格段に高速化される。 ディスクの角速度が高速過ぎると、 ディス クの偏心や面ぶれによるディスクの振動が大きくなり過ぎ、 トラツキン グサ一ボゃフオーカシングサーボなどのビックァッブザーボが対応で きなくなる。 これによつて、 ピックアップがトラックに追従できなくな り、 再生動作が不安定になり、 更には再生不能になる。 It is predicted that the speed of reading recorded information from a disc typified by CD-R0M will be 8x to 16x, and even 20x, the standard linear speed of the audio CD standard. Is done. Double speed of linear speed is high The angular velocity of the disk when accessing the inside of the disk is remarkably increased as the disk is accessed. If the angular velocity of the disk is too high, the vibration of the disk due to the eccentricity or runout of the disk becomes too large, and the big-bub servos such as tracking servos and focusing servos cannot be used. As a result, the pickup cannot follow the track, the reproduction operation becomes unstable, and the reproduction becomes impossible.
このため、 読み出し線速度の倍速がある値 (例えば 1 6倍) 以上の場 合には、前記ビックアツプサ一ボが対応できる限界の角速度で角速一定 の速度制御を行うものがある。例えば、 特開平 7 - 3 1 2 0 1 8号公報 には、外部デバイスからのデータ要求内容に応じて C A V制御又は C L V制御を決定してシステムの動作モードを設定する技術が記載されて いる。  For this reason, when the double speed of the readout linear velocity is equal to or more than a certain value (for example, 16 times), there is a method in which the angular velocity is controlled at a constant angular velocity at a limit angular velocity that can be handled by the big up-servo. For example, Japanese Unexamined Patent Publication No. Hei 7-31208 discloses a technique for determining the CAV control or the CLV control in accordance with the data request content from an external device and setting the operation mode of the system.
前記ディスクに対する読み出しの最高速度を決定する要因としては、 ピックアップによる トラックの走査を安定的に行うことができるディ スクモ一夕の最高回転速度、若しくはピックアツプサーボが対応できる 限界の角速度(ディスクに不所望な振動が生ずる手前の角速度)の他に、 ディスクから読出した記録情報に対する処理回路の最高動作速度(限界 動作周波数) がある。 限界動作周波数としては、 プリアンプの周波数帯 域の上限や、 E C Cなどの誤り訂正の動作速度の上限等がある。 この限 界動作周波数は、 記録倩報を読み出す速度の限界(信号読み取り限界速 度) を決定する。 信号読み取り限界速度は、 大凡ディスクの記録線速度 の倍速の線速度として把握できる。  The factors that determine the maximum speed of reading from the disk include the maximum rotation speed of the disk which can stably scan the track by the pickup, or the maximum angular speed (which is not possible for the disk) that can be handled by the pickup servo. In addition to the angular velocity just before the desired vibration occurs, there is the maximum operating speed (limit operating frequency) of the processing circuit for the recorded information read from the disk. The limit operating frequency includes the upper limit of the frequency band of the preamplifier and the upper limit of the operation speed of error correction such as ECC. This limit operating frequency determines the limit of the speed at which the recorded information is read (the signal read limit speed). The signal reading limit speed can be grasped as a linear speed that is twice as fast as the recording linear speed of the general disk.
双方の限界を考慮すれば、限界の低い方に合わせてディスクの回転を 制御しなければならない。例えば、 第 4図には C D— R O Mの C L V制 御時 (情報記録時の線速度が 1 . 3 〔m/ s〕 ) における半径方向によ るディスクの回転数の変化が、標準速から 1 6倍速の場合について例示 されている。 ディスクモー夕の限界回転速度が 1 0◦ 〔r p s =回転/ 秒〕であるとき、 記録情報に対する処理回路の限界動作周波数から決定 される読み出し線速度(ピックアップによる走査の線速度)の限界が 8 倍速相当 (最内周トラックでの回転速度は 1 0 0 〔r p s〕 以下) なら ば、 8倍速での C L V制御を採用しなければならない。限界動作周波数 から決定される読み出し線速度の限界が 8倍速相当の回路は、回転速度 が 1 0 0 〔r p s〕で読み取られた記録情報を処理しきれないからであ る。 一方、 線速度の限界が 1 6倍速相当 (最内周トラックでの回転速度 は約 1 3 0 〔 r p s〕 ) であっても、 限界の角速度が 5 0 〔 r p s〕 の 場合には、 5 0 〔r p s〕近傍の C A V方式で記録情報を読み取らなけ ればならない。 Given both limits, the disk rotation must be controlled to the lower limit. For example, Fig. 4 shows that the change in the rotational speed of the disk in the radial direction during CLV control of the CD-ROM (the linear velocity during information recording is 1.3 [m / s]) is 1 Example for 6x speed Have been. When the limit rotation speed of the disk motor is 10 ° [rps = rotation / second], the limit of the readout linear speed (linear speed of scanning by the pickup) determined from the limit operating frequency of the processing circuit for the recorded information is 8 If the speed is equivalent to double speed (the rotation speed of the innermost track is 100 [rps] or less), CLV control at 8x speed must be adopted. This is because a circuit whose readout linear velocity limit determined by the limit operating frequency is equivalent to 8 × speed cannot process recorded information read at a rotational speed of 100 [rps]. On the other hand, even if the linear velocity limit is equivalent to 16 times speed (the rotational speed of the innermost track is about 130 [rps]), if the limit angular velocity is 50 [rps], 50 The recorded information must be read using the CAV method near [rps].
ところ力 限界の角速度が例えば第 4図の P jで示される 6 6 〔r p s〕 で、 線速度の限界が 1 6倍速相当の場合、 6 6 〔r p s〕 の C A V 制御では P iで示されるディスクの半径方向位置よりも外周寄りの ト ラックで線速度の限界を超え、 1 6倍速の C L V制御では P iで示され るディスクの半径方向位置よりも内周寄りの トラックで限界の角速度 を超えてしまう。 この場合に、 C L Vまたは C A Vの何れか一方でディ スクの回転を能力範囲内で制御する場合には、記録情報の読み取り速度 は、 角速度の限界と線速度の限界 (正確には信号読み取り限界速度) の 双方を大きく下まわってしまう。  However, if the angular velocity at the force limit is, for example, 66 [rps] shown by Pj in Fig. 4 and the linear velocity limit is equivalent to 16x speed, the disk shown by Pi at 66 [rps] CAV control The linear velocity limit is exceeded for tracks closer to the outer circumference than the radial position of the disk, and the limit angular velocity is exceeded for tracks closer to the inner circumference than the radial position of the disk indicated by Pi with 16x CLV control. Would. In this case, if the disc rotation is controlled within the capability range by either CLV or CAV, the reading speed of the recorded information is limited by the angular speed limit and the linear speed limit (more precisely, the signal reading limit speed). ) Significantly lower than both.
そこで本発明者は、 そのような場合に、 ディスクの内周寄りでは角速 度の限界直近で C A V制御を行い、ディスクの外周寄りでは線速度の限 界直近で C L V制御を行い、例えば第 4図の P iで示される位置を境に C A Vと C L Vの速度制御を切り換えれば、角速度の限界と線速度の限 界との直近で信号処理回路ゃモ一夕の能力を余すところなく発揮させ て、 最も高速に記録情報を読み取れることを見出した。 すなわち、 内周 から外周へ向けて情報が記録されているディスクを C A Vで再生開始 する。 トラックの円周は直径に比例して長くなるので、 読み出しトラッ クがディスクの外周寄りに進むにしたがって読み出し時の線速度はだ んだん速くなる。読み出し線速度が線速度の限界ぎりぎりに達したとき、 C L V制御に切り換えるようにする。 Therefore, in such a case, the present inventors perform CAV control near the limit of the angular velocity near the inner periphery of the disk, and perform CLV control near the limit of the linear velocity near the outer periphery of the disk. By switching the speed control between CAV and CLV at the position indicated by Pi in the figure, the signal processing circuit can fully utilize its capabilities near the limits of angular speed and linear speed. And found that the recorded information could be read at the highest speed. That is, the inner circumference Starts playback of a disc on which information is recorded from CAV to the outer circumference in CAV. Since the circumference of the track becomes longer in proportion to the diameter, the linear velocity at the time of reading becomes gradually higher as the reading track advances toward the outer periphery of the disk. Switch to CLV control when the read linear velocity reaches the limit of linear velocity.
しかしながら、ディスクが不所望に振動開始する前記角速度の限界は ディスクモー夕の性能だけでなく、ディスクの偏心や面ぶれにも依存す る。 更に、 ディスクの情報記録の一定線速度は、 例えば C D— R O Mの 規格では 1 . 2 〔m/ s〕 〜 1 . 4 〔m/ s〕 の範囲が許容されている から、それに応じた読み出し線速度のばらつきにも角速度の限界は同じ く依存する。 このため、 そのようなディスクの個体差を考慮しなければ、 性能限界を超えないように C A Vと C L Vの制御を切り換える時点を 正確に決定することはできない。  However, the limit of the angular velocity at which the disk starts to vibrate undesirably depends not only on the performance of the disk motor, but also on the eccentricity and runout of the disk. Furthermore, the constant linear velocity for recording information on a disc is, for example, in the range of 1.2 [m / s] to 1.4 [m / s] in the CD-ROM standard. The angular velocity limit is equally dependent on velocity variations. For this reason, it is not possible to accurately determine the point at which the control between CAV and CLV is switched so as not to exceed the performance limit without considering such individual differences of the disks.
また、 角速度と線速度の限界を画定したとき、 C A Vと C L Vとの制 御を切り換える時点を読出し線速度で判定しょうとすると、 C A V再生 中に情報信号の実際の読み出しビッ 卜レートを監視して、読み出し線速 度を把握しなければならない。 C A V制御では線速度が刻一刻と変化す るので、 その演算には比較的時間を要し、 しかも無視し得ない演算誤差 も予想される。 C A V制御下で刻一刻と変化される読み出し線速度の演 算に比較的大きな誤差が予想される場合には、モータや信号処理回路の 限界の性能を十分に発揮させることができない。  In addition, when the limits of angular velocity and linear velocity are defined, if the point at which control of CAV and CLV is switched is determined based on the read linear velocity, the actual read bit rate of the information signal is monitored during CAV reproduction. In addition, the readout linear velocity must be known. In CAV control, the linear velocity changes every moment, so the calculation requires a relatively long time, and a calculation error that cannot be ignored is expected. If a relatively large error is expected in the calculation of the readout linear velocity, which changes every moment under CAV control, the performance of the limit of the motor and the signal processing circuit cannot be fully exhibited.
本発明の目的は、 C A V制御及び C L V制御を併用してディスクの記 録情報を読み取るときに C A Vと C L Vとの切り換え制御を簡単に行 うことができるようにすることである。  An object of the present invention is to make it possible to easily perform switching control between CAV and CLV when reading recorded information on a disc by using both CAV control and CLV control.
本発明の別の目的は、 C A V制御及び C L V制御を併用してディスク の記録情報を読み取るとき、ディスクの偏心や面ぶれなどのディスクの 個体差を考慮して、 C A Vと C L V制御を切り換える時点を正確且つ簡 単に把握することができるようにすることである。 Another object of the present invention is to provide a method for reading recorded information on a disc by using both CAV control and CLV control, such as eccentricity of the disc and deviation of the disc. The purpose is to be able to accurately and easily grasp the point at which CAV and CLV control is switched in consideration of individual differences.
本発明の更に別の目的は、ディスクを回転させるモー夕やディスクか ら読み取った信号情報を処理する回路の限界の動作性能を十分に発揮 させて動作の高速化を図ることができるようにすることにある。  Still another object of the present invention is to increase the speed of operation by sufficiently exhibiting the maximum operation performance of a motor for rotating a disk and a circuit for processing signal information read from the disk. It is in.
本発明の前記ならびにその他の目的と新規な特徴は本明細書の以下 の記述から明らかにされるであろう。 発明の開示  The above and other objects and novel features of the present invention will become apparent from the following description of the present specification. Disclosure of the invention
本発明は、 デイスクの内周側では C A V制御とし、 外周側では C L V 制御とし、 C A V制御による読み出し線速度が C L V制御による読み出 し線速度に大凡一致する地点で C A V制御と C L V制御との切り換え を行う。 このとき、 C A V制御と C L V制御との切り換え地点を決定す るための制御データを記録情報再生装置の内部に設定し、ディスクの再 生動作中にディスクからの読み取り信号に基づいて生成される情報を 参照しながら、前記制御データによって決定される切り換え地点にピッ クアップによる走査位置が到達したかを判定し、到達したときに C L V 制御と C A V制御とを切り換えるものである。  According to the present invention, CAV control is performed on the inner circumference side of the disk, and CLV control is performed on the outer circumference side. Switching between CAV control and CLV control is performed at a point where the linear velocity read by CAV control substantially matches the linear velocity read by CLV control. I do. At this time, control data for determining the switching point between the CAV control and the CLV control is set inside the recording information reproducing apparatus, and information generated based on a read signal from the disc during a disc reproducing operation. It is determined whether or not the scanning position by the pick-up has reached the switching point determined by the control data, and when it reaches the switching point, switching between the CLV control and the CAV control is performed.
第 1の発明は、前記目標値データへの到達をフレーム同期信号のよう な同期信号を利用して判定し、 第 2の発明は、 Aタイムのような絶対位 置情報(絶対時間情報又は絶対時刻情報とも称する) を利用して判定す る。 目標値データにディスクの個体差を反映させるために、 卜レーニン グ期間(記録情報再生装置による再生動作の開始に先立ってディスクの 特性などを検出する動作期間) を利用して、 その目標値デ一夕を取得す ることができる。  The first invention determines arrival at the target value data using a synchronization signal such as a frame synchronization signal, and the second invention uses absolute position information (absolute time information or absolute time information) such as A time. (Also referred to as time information). In order to reflect the individual difference of the disk in the target value data, the training period (the operation period for detecting the characteristics of the disk prior to the start of the reproducing operation by the recording information reproducing apparatus) is used to obtain the target value data. You can get an overnight.
第 1の発明による、同期信号を用いた C A V制御と C L V制御の切り 換えについて説明する。 Switching between CAV control and CLV control using a synchronization signal according to the first invention The replacement will be described.
すなわち、ディスクには情報信号が所定のビッ ト周期で線速度一定に 記録されている。例えば、 オーディォ用の CDディスクの記録情報は、 音声情報の標本化、 量子化、 符号化によって得られたものである。 前記 CDの規格では、 標本化周波数は 44. Ι ΚΗζとされ、 1フレームに 6個の標本化データを含むようにされている。 したがって、 ディスクへ の信号情報の書き込みは、 1フレームが 44. 1 KH z/6 = 7. 35 KHzとなるように線速度一定で行われている。 そして、 フレームフォ 一マツ 卜の先頭には同期パターンが設けられている。ディスクから記録 情報を読み出すときは、 前記同期パターンを 7. 35 KH zで検出でき るようにデイスクの回転を制御すれば、ピックァップによる読み取り線 速度を一定にできる。 CDの規格上、 1フレームの標準周波数は 7. 3 5 K H z (これに応じてビッ ト周期もしくはビッ トレートは約 230 n s )のように絶対であるが、 書き込み線速度には許容範囲が認められて いる。書き込み線速度が許容範囲内でばらついても、 前記同期パターン の検出周波数が標準周波数になるようにディスクを回転制御して記録 情報の読み出しを行えば、自動的に記録時の線速度で記録情報の読み出 しを行うことができる。デ一夕用の CD— ROMも上記規格に準拠して いる。 デ一夕用 CD— ROMを 8倍速で再生する場合、 前記同期パター ンの検出周波数が標準周波数の 8倍になるようにディスクを回転制御 すれば、 記録情報を線速度一定で読み出して処理することができる。 本発明では、上記標準周波数で規定されるようなビッ ト周期は書き込 み線速度のばらつきとは無関係に一定であることに着目し、ピックアツ プでディスクから信号情報を読み取るとき、信号情報の読み取り速度に 比例したサイクルで得られる同期信号の周波数(例えば前記同期パ夕一 ンの検出周波数) を利用して、 モー夕の回転制御を CAVから C L Vに 切り換える。 That is, an information signal is recorded on the disk at a constant linear velocity at a predetermined bit cycle. For example, the recorded information on an audio CD disc is obtained by sampling, quantizing, and encoding audio information. According to the CD standard, the sampling frequency is 44. Ι 、, and one frame contains six pieces of sampled data. Therefore, writing of signal information to the disk is performed at a constant linear velocity so that one frame is 44.1 KHz / 6 = 7.35 KHz. A synchronization pattern is provided at the beginning of the frame format. When reading the recorded information from the disk, if the rotation of the disk is controlled so that the synchronization pattern can be detected at 7.35 KHz, the reading linear velocity by the pickup can be kept constant. According to the CD standard, the standard frequency of one frame is absolute, such as 7.35 KHz (the bit period or bit rate is approximately 230 ns accordingly), but there is an allowable range for the linear writing speed. It has been done. Even if the write linear velocity fluctuates within the allowable range, if the rotation of the disc is controlled so that the detection frequency of the synchronization pattern becomes the standard frequency and the recording information is read, the recording information is automatically recorded at the linear velocity at the time of recording. Can be read. CD-ROMs for overnight use also conform to the above standards. When playing back a CD-ROM at 8x speed, if the disc rotation is controlled so that the detection frequency of the sync pattern is 8 times the standard frequency, the recorded information is read and processed at a constant linear velocity. be able to. The present invention focuses on the fact that the bit cycle defined by the standard frequency is constant irrespective of the variation in the linear writing speed, and when reading the signal information from the disk by pick-up, Using the frequency of the synchronization signal obtained in a cycle proportional to the reading speed (for example, the detection frequency of the synchronization signal), the rotation control of the motor is changed from CAV to CLV. Switch.
上記切り換えを行うときの周波数は、ピックアツプによる螺旋状卜ラ ックの走査を安定に行うことができるディスクモ一夕の限界回転速度 と、ディスクから読み取った信号情報を処理するためのアンプやディジ タル信号処理回路などの限界動作周波数とを考慮して決定することが できる。 C A V制御は限界回転速度に近い一定角速度で行う。 C L V制 御は、 例えば、 フレーム同期パターンの検出周波数を、 標準速に対する 信号読み取りの倍速値(例えば 1 6 )倍に制御することによって行うこ とになる。 このとき、 限界の角速度が例えば第 4図の P jで示される 6 6 〔r p s〕 のとき、 限界動作周波数が第 4図に例示される 1 6倍速の 一定線速度による読み取り信号の処理に追従できる周波数ならば(限界 動作周波数に基づいて決定される読み出し線速度の限界 (限界線速度) が 1 6倍速相当ならば) 、 C A Vから C L Vへの切り換えは、 第 4図の P iで示される位置で行う。 その切り換えは、 前記同期信号の周波数が 前記読み取り線速度を一定にするときの目的周波数に到達するとき行 う。 例えば第 4図に従えば、 フレーム同期パターンの検出周波数が、 標 準速に対する信号読み取りの倍速値倍 ( 1 6倍) になったとき、 C A V から C L Vに切り換え制御する。 C L Vから C A Vへの切り換えは、 前 記ディスクの回転角速度が前記一定の角速度に到達するとき行う。 このように、 C A V制御及び C L V制御を併用してディスクの記録情 報を読み取るとき、ディスクの回転制御を C A Vから C L Vに切り換え るには、読み出し信号から得られる前記同期信号の周波数が前記読み取 り線速度一定の目的周波数に到達するかを監視すればよい。ディスクの 書き込み線速度のばらつきは前記同期信号の周波数検出には影響しな い。 書き込み線速度のばらつきが許容されている中で、 C A V制御下で 逐次変化する実際の線速度を演算によって求めなくてもよい。したがつ て、 C A Vと C L Vとの制御を切り換える時点を正確且つ簡単に把握す ることができる。 これにより、 ディスクを回転させて走査する手段ゃデ ィスクから読み取った信号情報を処理する回路の限界の動作性能を十 分に発揮させて、信号読み取り動作もしくは再生動作の高速化を実現で ぎる。 The frequency at which the above switching is performed depends on the limit rotation speed of the disc model that can stably scan the spiral track by pick-up, and the amplifier and digital for processing the signal information read from the disc. It can be determined in consideration of the limit operating frequency of the signal processing circuit and the like. CAV control is performed at a constant angular speed close to the limit rotation speed. The CLV control is performed, for example, by controlling the detection frequency of the frame synchronization pattern to a double speed value (for example, 16) of the signal reading with respect to the standard speed. At this time, when the limit angular velocity is, for example, 66 [rps] shown by Pj in FIG. 4, the limit operation frequency follows the processing of the read signal at a constant linear velocity of 16 times as illustrated in FIG. If the frequency is possible (if the limit (limit linear speed) of the readout linear velocity determined based on the limit operating frequency is equivalent to 16 times speed), switching from CAV to CLV is indicated by Pi in FIG. Perform in position. The switching is performed when the frequency of the synchronization signal reaches a target frequency for keeping the reading linear velocity constant. For example, according to FIG. 4, when the detection frequency of the frame synchronization pattern becomes a multiple of the signal reading speed (16 times) of the standard speed, the control is switched from CAV to CLV. Switching from CLV to CAV is performed when the rotational angular velocity of the disk reaches the constant angular velocity. As described above, when switching the disc rotation control from CAV to CLV when reading the recording information of the disc by using both the CAV control and the CLV control, the frequency of the synchronization signal obtained from the read signal depends on the frequency of the read. It may be monitored whether the target frequency reaches a constant linear velocity. Variations in the linear writing speed of the disk do not affect the frequency detection of the synchronization signal. While variations in the write linear velocity are allowed, the actual linear velocity that changes sequentially under CAV control does not have to be calculated. According to Thus, it is possible to accurately and easily grasp the point at which the control between CAV and CLV is switched. As a result, the means for rotating and scanning the disk and the circuit for processing the signal information read from the disk can be fully utilized to achieve the maximum operating performance, and the speed of the signal reading operation or the reproducing operation can be increased.
C A Vから C L Vへの切り換え時点は前記限界角速度や限界線速度 のような限界性能から大凡予測できる。 その予測時点は、 記録情報から 取得される絶対時間情報又は絶対アドレス情報から特定できる。予測可 能な時点は、許容された線速度のばらつきの範囲で誤差を持つことにな る。 その誤差をカバーできる範囲で、 前記同期信号の周波数が前記読み 取り線速度一定のための目的周波数に到達するかの判定を行えば充分 である。内周部から外周部に向けて信号情報が記録されているデノスク の場合、記録情報から読み取られた絶対時間情報又は絶対ァドレス情報 を用いてその誤差をカバ一できる予測範囲を予め特定し、絶対時間情報 又は絶対ァドレス情報が前記特定された範囲の下限になったとき、前記 判定を開始するようにできる。  The switching point from CAV to CLV can be roughly predicted from the critical performance such as the critical angular velocity and critical linear velocity. The prediction point can be specified from the absolute time information or the absolute address information obtained from the record information. Predictable points in time will have errors within the allowed linear velocity variation. It is sufficient to determine whether or not the frequency of the synchronization signal reaches the target frequency for keeping the reading linear velocity constant within a range that can cover the error. In the case of a de nosque in which signal information is recorded from the inner circumference to the outer circumference, the prediction range in which the error can be covered is specified in advance using absolute time information or absolute address information read from the recorded information, and absolute When the time information or the absolute address information becomes the lower limit of the specified range, the determination can be started.
C L Vから C A Vへの切り換え時点も上記同様であり、前記ディスク の回転角速度が前記角速度一定のための目的角速度に到達するかを判 定する動作は、記録情報から読み取られた絶対時間情報又は絶対ァドレ ス情報が誤差をカバ一できる予測範囲の上限になったとき開始すれば よい。  The same is true at the time of switching from CLV to CAV, and the operation for determining whether the rotational angular velocity of the disk reaches the target angular velocity for keeping the angular velocity constant is based on absolute time information or absolute address read from recorded information. It should be started when the source information reaches the upper limit of the prediction range in which the error can be covered.
前記同期信号は、 フレーム同期信号以外の同期信号でもよい。デイス クから読み取られた前記情報信号のパルス幅をデータとして識別する ための P L L回路によって生成される同期クロック信号であってもよ い。  The synchronization signal may be a synchronization signal other than the frame synchronization signal. It may be a synchronous clock signal generated by a PLL circuit for identifying the pulse width of the information signal read from the disk as data.
上記とは別の観点に立てば、第 1の発明による速度制御を実現する記 録情報再生装置は、角速度一定の制御と線速度一定の制御との切り換え 地点を特定する情報を記憶するレジス夕手段を有し、ディスクから読み 取った情報信号に基づいて生成される情報と前記レジスタ手段に設定 された情報とを比較することにより、線速度一定の制御又は角速度一定 の制御を選択することになる。 From another viewpoint, the speed control according to the first invention is realized. The recording information reproducing apparatus has a register unit for storing information for specifying a switching point between the control of constant angular velocity and the control of constant linear velocity, and the information generated based on the information signal read from the disc and the information By comparing the information set in the register means with the constant linear velocity control or the constant angular velocity control.
更に詳しくは、 記録情報再生装置の速度制御手段は、 角速度を一定に 制御するためのディスクの目的回転速度データと線速度を一定に制御 するための目的周波数デ一夕とが設定されるレジス夕手段を有し、角速 度一定の速度制御下における線速度が線速度一定の目的線速度に達し たか否かを、ピックアツプから読み取った情報信号の読み取り速度に同 期する同期信号の周波数と前記レジス夕手段に設定された目的周波数 デ一夕とを比較することによって判定し、 その判定結果を用いて、 角速 度一定の制御を線速度一定の制御切り換えるものである。  More specifically, the speed control means of the recording information reproducing apparatus includes a register for setting the target rotational speed data of the disk for controlling the angular velocity constant and the target frequency data for controlling the linear velocity constant. Means for determining whether the linear velocity under the constant angular velocity constant velocity control has reached the target linear velocity constant linear velocity and the frequency of the synchronization signal synchronized with the reading speed of the information signal read from the pickup. The control is performed by comparing the target frequency data set in the register means with the target frequency data, and using the result of the determination, the control of constant angular velocity is switched to the control of constant linear velocity.
このとき、 前記速度制御手段は、 線速度一定の制御下における角速度 が角速度一定の目的角速度に達したか否かを、ディスクの回転速度と目 的回転速度データとを比較することによって判定し、その判定結果を用 いて、線速度一定の制御を角速度一定の制御に切り換えることができる また、 前記速度制御手段は、 角速度一定の速度制御下における線速度 が線速度一定の目的線速度に達した状態を判定して角速度一定の制御 を線速度一定の制御切り換えたとき、ディスクから読み取った情報信号 によって生成した トラックの絶対位置情報を切り換え位置情報として 取得し、取得した切換え位置情報とディスクの読み取り情報から生成さ れた絶対位置情報との大小関係に基づいて、角速度一定の制御又は線速 度一定の制御を選択することができる。  At this time, the speed control means determines whether or not the angular velocity under the control of the constant linear velocity has reached the target angular velocity of the constant angular velocity by comparing the rotational speed of the disk with the target rotational speed data, Using the result of the determination, the constant linear velocity control can be switched to the constant angular velocity control.In addition, the velocity control means determines that the linear velocity under the constant angular velocity control has reached the target linear velocity with the constant linear velocity. When switching from constant angular velocity control to constant linear velocity control by judging the state, the absolute position information of the track generated by the information signal read from the disk is acquired as switching position information, and the acquired switching position information and disk reading are obtained. Based on the magnitude relationship with the absolute position information generated from the information, it is possible to select either constant angular velocity control or constant linear velocity control. Can.
次に第 2の発明による、 トラック上の絶対位置情報を利用した C A V 制御と C L V制御の切り換えについて説明する。 ピックアツプサーボの追従性という点でディスクの最高回転速度は ディスクの偏心や面ぶれなどの状態によって影響される。そのような影 響を受ける最高回転速度を C A Vと C L V制御の切り換え時点に反映 させるため、ディスクの回転を角速度一定又はピックアツプによる読み 取り線速度一定に制御する速度制御手段は、ディスクの回転を前記線速 度一定にすると仮定したとき、ディスクの角速度がディスクに不所望な 振動の起きる手前の限界角速度に到達するときのトラック位置に基づ いて決定される切換え情報を取得し、この切り換え情報で特定される状 態を検出したとき前記線速度一定と角速度一定の速度制御を相互に切 り換えるものとする。 Next, switching between CAV control and CLV control using absolute position information on a track according to the second invention will be described. The maximum rotational speed of the disk in terms of the follow-up performance of the pickup servo is affected by the state of the disk such as eccentricity and runout. In order to reflect the maximum rotation speed affected by such an influence at the time of switching between the CAV and CLV control, the speed control means for controlling the rotation of the disk at a constant angular speed or a constant reading linear speed by pick-up, the rotation of the disk is controlled by the aforementioned method. Assuming that the linear velocity is constant, switching information determined based on the track position when the angular velocity of the disk reaches the limit angular velocity before undesired vibration occurs on the disk is obtained, and this switching information is used. When the specified state is detected, the constant linear velocity and the constant angular velocity control are switched to each other.
このように、偏心や面ぶれなどの個々のディスクの個体差を考慮する ことにより、その個体差に応じてディスクの最高回転速度を能力ぎりぎ りの地点に設定して、 C A Vと C L Vとの切り換え地点を制御すること ができる。 従って、 ディスク毎の偏心、 面ぶれ及び記録線速度のばらつ きに対して角速度一定と線速度一定の速度制御の切り換え時点を最適 化することができ、ディスクを回転させるモー夕やディスクから読み取 つた信号情報を処理する回路の限界の動作性能を十分に発揮させて、信 号読み取り動作もしくは再生動作の高速化を実現できる。  In this way, by taking into account the individual differences of individual disks such as eccentricity and runout, the maximum rotational speed of the disk is set to the limit of the capacity according to the individual differences, and the difference between CAV and CLV is determined. The switching point can be controlled. Therefore, it is possible to optimize the switching point between the constant angular velocity and the constant linear velocity speed control with respect to the eccentricity, surface runout, and variation of the recording linear velocity for each disk, and read the data from the disk rotating the disk or the disk. The maximum operational performance of the circuit that processes the signal information can be fully exhibited, and the speed of the signal reading operation or the reproducing operation can be increased.
更に詳しい態様としては、 前記切り換え情報として例えば、 螺旋状ト ラックに記録された情報信号に含まれる トラックの絶対位置情報を利 用できる。例えば C D— R O Mディスクは最内周トラヅクの起点から最 外周トラックの終点に至るまでの絶対的な時間情報としての絶対位置 情報を利用する。 D V Dは絶対的なア ドレス情報を絶対位置情報として 含む。  As a more detailed aspect, for example, the absolute position information of the track included in the information signal recorded on the spiral track can be used as the switching information. For example, a CD-ROM disc uses absolute position information as absolute time information from the start of the innermost track to the end of the outermost track. DVD includes absolute address information as absolute position information.
C A Vと C L Vの切り換え時点を絶対位置情報で管理する場合、切り 換え時点は、ディスクに不所望な振動を生じてビックアップサーボが対 応できなくなる手前の限界角速度と、ディスクから読み取った信号情報 を処理するためのアンプやディジタル信号処理回路などの限界動作周 波数に基づいて決まる信号読み取り限界速度とによって決定する。信号 読み取り限界速度は、ディスクの記録線速度に対する倍速として把握す る。 When the switching time between CAV and CLV is managed by absolute position information, the switching time causes unwanted vibration on the disk and the It is determined by the limit angular velocity before the signal cannot be responded and the signal read limit speed determined based on the limit operation frequency of the amplifier and digital signal processing circuit for processing the signal information read from the disk. The signal reading limit speed is understood as double speed of the recording linear speed of the disk.
切り換え時点を把握するために、ディスクに不所望な振動を生じてァ クチェ—夕によるピックアツプサーボが対応できなくなる手前の限界 角速度を取得し、 所定の倍速(信号読み取り限界速度としてのディスク の記録線速度に対する倍速)の一定線速度でディスクを回転させたとき ディスクの回転が前記限界角速度に至る トラック位置に基づいて決定 される トラック上での切換え位置情報を予め取得する。 そして、 速度制 御されたディスクから順次読み取った絶対位置情報が前記切換え位置 情報に到達するかを監視し、 到達を検出したとき、 角速度一定の速度制 御は線速度一定の速度制御に、線速度一定の速度制御は角速度一定の速 度制御に切換える。  In order to grasp the switching time point, obtain the limit angular velocity just before the disk becomes unviable due to undesired vibration and cannot respond to pick-up servo by evening, and a predetermined double speed (recording of the disk as signal limit speed) When the disk is rotated at a constant linear velocity (double the linear velocity), the switching position information on the track is determined in advance based on the track position at which the rotation of the disk reaches the limit angular velocity. Then, it is monitored whether or not the absolute position information sequentially read from the speed-controlled disk reaches the switching position information. When the arrival is detected, the constant angular velocity control is applied to the constant linear velocity control. The constant speed control is switched to the constant angular speed control.
前記切換え位置情報は、 例えば、 測定されたディスク記録線速度の所 定倍速で線速度一定にディスクを回転するとしたときに限界角速度に 到達するディスクの半怪を取得し、この半径とディスクの最内周トラッ クの半径との間のディスクの面積を、 トラックのピッチと前記記録線速 度との積で除算して得られる時間情報とすることができる。  The switching position information is obtained, for example, by obtaining a half-disc of the disk reaching the limit angular velocity when the disk is rotated at a constant linear velocity at a predetermined multiple of the measured disk recording linear velocity, and the radius and the maximum of the disk are obtained. Time information obtained by dividing the area of the disk between the radius of the inner track and the product of the track pitch and the recording linear velocity can be used.
C A Vと C L Vの切り換え時点を絶対位置情報で特定するから、 C A V速度制御下の読み出し線速度によって切り換えを制御する場合のよ うに、情報信号の実際の読み出しビッ トレートを監視して刻一刻と変化 する実際の線速度を演算して求めるという演算時間と誤差の大きな手 法に比べて、 切り換え制御を正確且つ容易に行うことができる。  Since the switching point between CAV and CLV is specified by the absolute position information, the actual read bit rate of the information signal is monitored and changes every moment, as in the case of switching control using the read linear velocity under CAV speed control. The switching control can be performed accurately and easily, compared to a method of calculating the actual linear velocity and calculating the actual linear velocity, which has a large error.
前記限界角速度は、ディスクの装着検出後のトレーニング期間にその ディスク固有の偏心及び面ぶれの状態に応じて測定してもよいし、或い は、 予め保証された倍速の最高角速度として取得してもよい。前者の場 合、 例えば、 前記螺旋状トラックに対するピックアップサ一ボエラ一信 号の振幅を監視しながら徐々にディスク加速し、ピヅクアツプサ一ボェ ラー信号の振幅が所定値に到達したときのディスクの角速度を前記限 界角速度とすることができる。このように限界角速度を決定するとき、 偏心や面ぶれなどの個々のディスクの個体差を考慮すると、その個体差 に応じて限界角速度を能力ぎりぎりの地点に設定できる。 The limit angular velocity is set during the training period after detecting the mounting of the disc. The measurement may be performed in accordance with the state of eccentricity and surface runout specific to the disk, or may be obtained as a double speed maximum angular speed that is guaranteed in advance. In the former case, for example, the disk is gradually accelerated while monitoring the amplitude of the pickup servo signal for the spiral track, and the angular velocity of the disk when the amplitude of the peak-up error signal reaches a predetermined value. Can be defined as the limiting angular velocity. When determining the limit angular velocity in this way, considering the individual difference of each disk such as eccentricity and runout, the limit angular velocity can be set to a point at the limit of the capacity according to the individual difference.
上記により、 ディスク毎の偏心、 面ぶれ及び記録線速度のばらつきに 対して角速度一定と線速度一定の速度制御の切り換え時点を最適化す ることができる。 したがって、 ディスクを回転させるモ一夕ゃデノ スク から読み取った信号情報を処理する回路の限界の動作性能を十分に発 揮させて、 信号読み取り動作もしくは再生動作の高速化を実現できる。 上記とは別の観点に立てば、第 2の発明による速度制御を実現する記 録情報再生装置は、前記ディスクの内周側ではディスクの回転を角速度 一定に制御し、ディスクの外周側ではピックアツプによる読み取り線速 度一定にディスクの回転速度を制御する速度制御手段を有し、前記速度 制御手段は、角速度一定の速度制御下における線速度が線速度一定の制 御下における線速度に達するときのディスクの絶対位置情報を切り換 え位置情報として格納するレジス夕手段を有し、ディスクから読み取つ た情報信号に基づいて生成される絶対位置情報と前記レジス夕手段に 設定された切り換え位置情報との大小を比較することにより、線速度一 定の制御又は角速度一定の制御を選択するものである。 図面の簡単な説明  As described above, it is possible to optimize the switching point of the speed control at the constant angular velocity and the constant linear velocity with respect to the eccentricity, the runout and the variation of the recording linear velocity for each disk. Therefore, it is possible to sufficiently develop the limit operation performance of the circuit for processing the signal information read from the disk disk rotating disk, thereby realizing a high-speed signal reading operation or reproducing operation. From a different viewpoint, the recording information reproducing apparatus for realizing the speed control according to the second invention controls the rotation of the disk at a constant angular velocity on the inner peripheral side of the disk, and picks up on the outer peripheral side of the disk. Speed control means for controlling the rotation speed of the disk so as to keep the reading linear velocity constant, and the speed control means controls the linear velocity under the constant angular velocity control to reach the linear velocity under the constant linear velocity control. A switching means for storing the absolute position information of the disc as switching position information, the absolute position information generated based on the information signal read from the disc, and the switching position information set in the registration means. By comparing the magnitudes of the two, the control with constant linear velocity or the control with constant angular velocity is selected. BRIEF DESCRIPTION OF THE FIGURES
第 1図はフレーム同期信号を用いて C A V制御と C L V制御を切り 換え可能にした CD— ROM再生装置の一例プロック図である。 Fig. 1 shows the switching between CAV control and CLV control using the frame synchronization signal. FIG. 3 is a block diagram of an example of a replaceable CD-ROM playback device.
第 2図は C A V制御と C LV制御を切り換えてディスクを駆動する ときのディスクの半径位置とディスクの回転数との関係を概略的に示 す説明図である。  FIG. 2 is an explanatory view schematically showing the relationship between the disk radial position and the disk rotation speed when driving the disk by switching between CAV control and CLV control.
第 3図は C A V制御と C L V制御の各々におけるフレーム同期信号 及びディスクの回転周波数信号の状態を示す説明図である。  FIG. 3 is an explanatory diagram showing states of a frame synchronization signal and a disk rotation frequency signal in each of the CAV control and the CLV control.
第 4図は CD— R OMの C LV制御時における半径方向位置に応じ たディスクの回転数の変化を標準速から 1 6倍速の場合について例示 した説明図である。  FIG. 4 is an explanatory diagram exemplifying a change in the number of rotations of the disk according to the radial position during the CLV control of the CD-ROM from a standard speed to a 16-times speed.
第 5図は CD— R OMディスクにおける情報記録の線速度に関する 許容範囲の説明図である。  FIG. 5 is an explanatory diagram of an allowable range regarding a linear velocity of information recording on a CD-ROM disc.
第 6図は CD— R OMディスクにおける記録情報の線速度と再生時 間との関係を示す説明図である。  FIG. 6 is an explanatory diagram showing the relationship between the linear velocity of recorded information and the reproduction time on a CD-ROM disc.
第 7図は CD— R OMディスクにおける記録情報のフレームフォー マツ 卜の説明図である。  FIG. 7 is an explanatory diagram of a frame format of recorded information on a CD-ROM disc.
第 8図は CD— R OMディスクにおけるサブコードフレームフォー マツ 卜の説明図である。  FIG. 8 is an explanatory diagram of a subcode frame format on a CD-ROM disc.
第 9図は CD— R OMにおける Qコードフレームフォーマッ トの説 明図である。  Fig. 9 is an illustration of the Q-code frame format in CD-ROM.
第 1 0図は第 1図において CAV速度誤差検出回路の機能をマイク 口コンビユー夕で実現した C D— R 0 M再生装置のプロック図である。 第 1 1図は第 1 0図の CD— R OM再生装置のサ一ボル一プに着目 した C A V制御状態を示す説明図である。  FIG. 10 is a block diagram of a CD-R0M reproducing apparatus in which the function of the CAV speed error detection circuit in FIG. FIG. 11 is an explanatory diagram showing a CAV control state focusing on the subvolume of the CD-ROM reproducing apparatus of FIG.
第 1 2図は第 1 0図の C D— R OM再生装置のサ一ボル一プに着目 した C LV制御状態を示す説明図である。  FIG. 12 is an explanatory diagram showing a CLV control state focusing on the subvolume of the CD-ROM reproducing apparatus of FIG.
第 1 3図は Aタイムを用いて C A V制御と C LV制御を切り換え可 能にした C D— R 0 M再生装置の一例ブロック図である。 Fig. 13 shows switching between CAV control and CLV control using A time FIG. 1 is a block diagram showing an example of a CD-R 0 M playback device that is enabled.
第 1 4図は切り換え位置情報を取得する演算処理の一例を示す説明 図である。  FIG. 14 is an explanatory diagram showing an example of a calculation process for acquiring switching position information.
第 1 5図は記録線速度を取得する手法の一例を示す説明図である。 第 1 6図は限界角速度及び記録線速度に応じて C A V制御と C L V 制御との切換え時点が相異される状態の一例を示す説明図である。 第 1 7図は限界角速度をテーブルから取得して切り換え位置情報を 演算する処理のフローチヤ一トである。  FIG. 15 is an explanatory diagram showing an example of a method for acquiring a recording linear velocity. FIG. 16 is an explanatory diagram showing an example of a state in which the switching time between the CAV control and the CLV control is different depending on the limit angular velocity and the recording linear velocity. FIG. 17 is a flowchart of a process of acquiring the limit angular velocity from the table and calculating the switching position information.
第 1 8図は限界角速度を測定して切り換え位置情報を演算する処理 のフローチャートである。  FIG. 18 is a flowchart of a process of measuring the limit angular velocity and calculating switching position information.
第 1 9図はディスクが装着される毎にそのトレーニング期間で切り 換え位置情報をテーブルを利用して取得する場合のフローチャートで ある。  FIG. 19 is a flowchart in the case where the switching position information is acquired using the table during the training period every time the disc is mounted.
第 2 0図は第 1 3図において C A V速度誤差検出回路の機能をマイ クロコンピュー夕で実現した C D— R 0 M再生装置のブロック図であ る。 発明を実施するための最良の形態  FIG. 20 is a block diagram of a CD-R0M reproducing apparatus in which the function of the CAV speed error detecting circuit in FIG. 13 is realized by a micro computer. BEST MODE FOR CARRYING OUT THE INVENTION
《C D— R O Mディスク》  << CD-ROM disc >>
C D— R O Mディスク 1 (以下単にディスク 1 とも称する) は、 第 6 図に示されるように、 螺旋状トラックに線速度一定 (Constant Linear Velocity) で情報が記録されている。記録フォーマツ 卜の単位はフレー ム F R Mと呼ばれ、 第 7図の (A ) に示されるように、 最初にフレーム 同期パターンが存在し、 それに続けて例えばサブコード、 デ一夕、 パリ ティー、 デ一夕、 パリティ一の各領域が有る。 1フレームは 5 8 8チヤ ネルビッ トと規定されている。 フレームに含まれる情報は、 特に制限さ れないが、 EFM (Eight to Fourteen Modulation) と称する変調方式 が採用されている。 この E FMは、 1シンボル 8ビヅ 卜のデ一夕を 14 ビッ トに変換する処理である。更に変換後の,直流成分を除去するために 3ビヅ 卜のマージンビッ トが付加され、 NR Z I変調が行われている。 1フレームの前記デ一夕は、 12シンボルずつに分けられて格納されて いる。 第 7図の (A) に示されるフレームフォ一マツ 卜の各領域の下に 示された数値は対応領域のチャネルビッ ト数である。ディスク 1はォ一 ディォ用の CDの規格に準じており、オーディォ用の CDの記録情報は 音声情報の標本化、 量子化、 符号化によって得られるものである。 この ときの標本化周波数は 44. 1 KH zであり、 1フレームに 6個の標本 化デ一夕を含むようにされている。 したがって、 ディスク 1における線 速度一定の書き込み制御は、 1フレームが 44. 1 KH z/6 = 7. 3 5 KH zとなるように行われている。 書き込み線速度(記録線速度とも 称する) と同じ線速度一定の CLV制御では、 前記フレームフォーマツ 卜の先頭に位置する同期パターンを 7.35 KH zで検出できるように する。 すなわち、 フレーム同期パターンの検出周波数を基準周波数 ( 7. 35 KH z ) と比較してディスク 1の回転速度制御を行う。 例えば、 第 7図の (B )に示される半径 r 1のトラックで 10フレームのデータを 復調するのに 7Γ · r 1のトラック走査距離を要する場合、 半径 r 2のト ラックにおいても 10フレーム分のデ一夕の復調のために 7Γ · r 1のト ラック走査距離を必要とする。 As shown in Fig. 6, CD-ROM disk 1 (hereinafter simply referred to as disk 1) has information recorded on spiral tracks at a constant linear velocity (Constant Linear Velocity). The unit of the recording format is called a frame FRM. As shown in (A) of FIG. 7, a frame synchronization pattern exists first, followed by, for example, a subcode, data overnight, parity, data, and so on. One night, there is a parity one area. One frame is defined as 588 channel bits. The information contained in the frame is particularly restricted However, a modulation method called EFM (Eight to Fourteen Modulation) is adopted. This EFM is a process for converting data of 8 bits per symbol into 14 bits. Further, a 3-bit margin bit is added to remove the DC component after the conversion, and NRZI modulation is performed. The data of one frame is stored by being divided into 12 symbols. The numerical value shown under each area of the frame format shown in (A) of FIG. 7 is the number of channel bits in the corresponding area. Disc 1 conforms to the standard for audio CDs, and the recorded information on audio CDs is obtained by sampling, quantizing, and encoding audio information. The sampling frequency at this time is 44.1 KHz, and one frame includes six sampling frequencies. Therefore, the writing control at a constant linear velocity on the disk 1 is performed so that one frame is 44.1 KHz / 6 = 7.35 KHz. In CLV control with the same linear velocity as the writing linear velocity (also referred to as recording linear velocity), the synchronization pattern located at the head of the frame format can be detected at 7.35 kHz. That is, the detection frequency of the frame synchronization pattern is compared with the reference frequency (7.35 KHz) to control the rotation speed of the disk 1. For example, if it takes 7Γ · r1 track scanning distance to demodulate 10 frames of data on a track of radius r 1 shown in Fig. 7 (B), then a track of radius r 2 requires 10 frames. Requires a track scan distance of 7Γ · r 1 for demodulation of the data.
前記フレーム同期パターンに続くサブコードは、第 8図に示されるよ うに、 P, Q, , S, T, U, V, Wの 8チャネルが割り当てられて おり、 夫々の内容は 98フレームで完結する。 即ち、 P, Q, R, S , T, U, V, Wの 8チャネルの情報は 98フレーム分揃って初めて意味 を成す。 サブコードの 8チャネルの先頭 2ビッ ト S 0 , S 1はサブコー ドの先頭を意味するサブコード同期信号を構成する。サブコード Pチヤ ネル ( Pコード) はデータの頭出し信号とされる。 サブコード Qチヤネ ル(Qコード) は後述の絶対位置情報の一例である時刻情報そして制御 情報が記録されている。 R~Wチャネルはグラフィ ヅク情報が記録され ている。 As shown in Fig. 8, the subcode following the frame synchronization pattern is assigned to eight channels of P, Q,, S, T, U, V, and W, and each content is completed in 98 frames. I do. That is, the information of eight channels, P, Q, R, S, T, U, V, W, is meaningful only for 98 frames. The first two bits S0 and S1 of the eight subcode channels are A subcode synchronization signal indicating the beginning of the code. The subcode P channel (P code) is used as a data cue signal. The subcode Q channel (Q code) records time information and control information, which are examples of absolute position information described later. The R to W channels record graphic information.
第 9図には Q 1〜Q 96の Qコードのフォ一マツ ト(Qコードフレ一 ムフォ一マッ ト) の一例が示される。 コン トロールは、 フレームの前記 デ一夕が音声情報かデ一夕情報かの区別を与える。ァドレスは Q 5〜Q 8の 4ビッ トを有し、 その 4ビッ ト (コード) 力 s (000 1) のとき、 第 9図の Qコ一ドフレームフォーマツ トとなる。 TN〇は当該 98フレ ームが属する トラック番号を示す。すなわち トラックはトラック番号 T N〇によって単数又は複数の領域に区別可能にされている。 Xは、 TN 0を更に細分化した領域を示す。 M I N、 SEC, 及び FRAMEは T NOによって示される トラヅク番号の領域の起点から当該 98フレー ムまでの相対的な時刻 (トラック番号内時刻) を示す。 M I Nは分、 S E Cは秒、 FRAMEは 0/75秒〜 74/75秒を示す。 AMI N、 A S E C、 及び A F R AMEはトラヅクのプログラム開始位置( 0分 0 秒) からの絶対的な時刻 (Aタイム) を示す。 この Aタイムは、 絶対位 置情報の一例とされる。 AMI Nは分、 A S E Cは秒、 A F R AMEは 0/75秒〜 74/75秒を示す。 0は区切りコードである。 ここで、 前記 FRAME、 AFRAMEの値は、 98フレーム毎の単位時間を最 小単位とする時間である。 すなわち、 1フレームは 7. 35 KHZであ り、 98フレームの時間は、 ( 1/7. 35 KHZ) - 98= 1/75 秒となるからである。 したがって、 MI N、 SEC、 及び FRAMEか ら認識可能なトラック番号時刻、 AMI N、 ASE C、 及び A F R AM Eから認識可能な Aタイムは、 98フレーム毎の時間 ( 1 /75秒) と される。 FIG. 9 shows an example of the Q code format (Q code frame format) of Q1 to Q96. The control gives a distinction whether the data of the frame is audio information or data. The address has four bits Q5 to Q8, and when the 4-bit (code) power is s (000 1), the Q code frame format shown in FIG. 9 is obtained. TN〇 indicates the track number to which the 98 frame belongs. That is, the track can be distinguished into one or more areas by the track number TN #. X indicates a region obtained by further subdividing TN0. MIN, SEC, and FRAME indicate the relative time (time within the track number) from the start of the area of the track number indicated by TNO to the 98th frame. MIN indicates minutes, SEC indicates seconds, and FRAME indicates 0/75 seconds to 74/75 seconds. AMIN, ASEC, and AFR AME indicate the absolute time (A time) from the program start position of the track (0 minutes 0 seconds). The A time is an example of the absolute position information. AMIN indicates minutes, ASEC indicates seconds, and AFR AME indicates 0/75 seconds to 74/75 seconds. 0 is a delimiter code. Here, the values of FRAME and AFRAME are times in which the unit time of every 98 frames is the minimum unit. That is, one frame is 7.35 KHZ, and the time of 98 frames is (1 / 7.35 KHZ)-98 = 1/75 second. Therefore, the track number time that can be recognized from MIN, SEC, and FRAME, and the A time that can be recognized from AMIN, ASE C, and AFR AME are the time for every 98 frames (1/75 second). Is done.
したがってディスク 1では 9 8フレーム分のサブコ一ドの中の Qコ —ドを復調することによって トラックのプログラム開始位置 (◦分 0 秒) からの絶対位置情報としての絶対時刻 (Aタイム) を知ることがで きる。 プログラム開始位置とは、 音声情報等の記録情報の先頭フレーム の開始位置である。  Therefore, the absolute time (A time) as the absolute position information from the program start position of the track (◦ minute 0 second) can be obtained by demodulating the Q code in the subcode of 98 frames on disk 1. be able to. The program start position is the start position of the first frame of recording information such as audio information.
このときディスク 1の線速度に関する規格仕様には 1. 2 m/s e c 〜 1. 4 m/s e cの幅が許容されており、 線速度はディスク 1の製造 時に決定される。前記 Aタイム及びトラック番号内時刻は、 製造段階で 決定された書込み線速度に従った時間とされている。但し何れの線速度 であっても前述のようにフレーム同期パターンは 7. 3 5 K H zで出現 されなければならない。線速度の相違は、 トラック上における 1フレー ムの物理的な長さの相違として顕在化され、 線速度が遅い程、 情報の記 録密度が高いことになる。例えば、 第 6図に示されるようにディスク 1 の最外周のトラックの半径 5 8 mmにおける Aタイムは、 線速度 1. 2 m/ s e cでは 74分、 1. 4 m/ s e cでは 64分となる。 このよう にディスク 1では同じ半径位置であっても線速度の違いによって A夕 ィムが相違される。ディスク 1にそのような線速度の相違があっても、 螺旋状のトラック TRKを連続して再生する場合には前記フレーム同 期パターンを用いてディスク 1の回転をサ一ボ制御することにより線 速度一定のコン トロールを行うのに何等支障はない。  At this time, the standard specification regarding the linear velocity of the disc 1 allows a width of 1.2 m / sec to 1.4 m / sec, and the linear velocity is determined when the disc 1 is manufactured. The A time and the time in the track number are times according to the write linear velocity determined in the manufacturing stage. However, at any linear velocity, the frame synchronization pattern must appear at 7.35 KHz as described above. The difference in linear velocity is manifested as a difference in the physical length of one frame on a track, and the lower the linear velocity, the higher the information recording density. For example, as shown in Fig. 6, the A-time at a radius of 58 mm of the outermost track of disk 1 is 74 minutes at a linear velocity of 1.2 m / sec and 64 minutes at a linear velocity of 1.4 m / sec. . As described above, in the disk 1, even at the same radial position, the A time is different due to the difference in the linear velocity. Even if there is such a difference in the linear velocity in the disc 1, when the spiral track TRK is continuously reproduced, the rotation of the disc 1 is controlled by servo control of the rotation of the disc 1 using the frame synchronization pattern. There is no hindrance to control at a constant speed.
《CD— ROM再生装置》  《CD-ROM playback device》
第 1図には CD— ROM再生装置のプロック図が示される。同図に示 される CD— ROM再生装置は、前記ディスク 1の情報を再生する装置 であって、パーソナルコンピュー夕等のホス ト装置 9とイン夕フェース される。 8で示されるものは、 CD— ROM再生装置を全体的に制御す るためのシステムコン トローラを構成するマイクロコンピュ一夕であ る。ディスク 1から読み取られ信号処理されて得られるデータ情報は、 C D— R O Mデコーダ 6を介して前記ホス ト装置 9に与えられる。 前記ディスク 1はスピン ドルモ一夕 2によって回転駆動され、デイス ク 1に記録された情報は該ディスク 1の半径方向に移動されるピック アップ 3を用いて読み出される。スピンドルモー夕 2の回転速度が速く なるに従ってピックァップによる信号読み取り速度も速く しなければ ならない。 スピン ドルモー夕 2の回転速度には限界があり、 この限界を 超えると、 スピン ドルモータ 2は不所望な振動を生ずることになる。ス ピン ドルモー夕 2に不所望な振動が生ずると トラッキングサ一ボなど が対応できなくなる。 また、 ディスクの角速度が速過ぎると、 ディスク の偏心や面ぶれによるディスクの振動が大きくなり過ぎ、 トラッキング サーボなどが対応できなくなる。 このように、 ディスク 1から信号情報 を読み取るときのディスクの最高角速度には限界がある。 FIG. 1 shows a block diagram of a CD-ROM playback device. The CD-ROM reproducing device shown in FIG. 1 is a device for reproducing the information of the disk 1, and is interfaced with a host device 9 such as a personal computer. The one indicated by 8 controls the entire CD-ROM playback device. This is a micro-computer that constitutes a system controller for operation. Data information obtained by reading from the disk 1 and performing signal processing is provided to the host device 9 via a CD-ROM decoder 6. The disk 1 is rotated by a spindle motor 2 and information recorded on the disk 1 is read out using a pickup 3 moved in the radial direction of the disk 1. As the rotation speed of spindle motor 2 increases, the signal reading speed by pickup must also increase. The rotational speed of the spindle motor 2 has a limit, and if it exceeds this limit, the spindle motor 2 will generate undesired vibration. If undesired vibrations occur in the spindle motor 2, tracking servos, etc., cannot respond. Also, if the angular velocity of the disk is too high, the vibration of the disk due to the eccentricity and runout of the disk becomes too large, and the tracking servo and the like cannot cope. Thus, there is a limit to the maximum angular velocity of the disk when reading signal information from the disk 1.
ピヅクアップ 3は、半導体レーザ源からのレーザ光を図示しない対物 レンズ等を介してディスク 1に照射し、その反射光をフォ トダイォ一ド からなる受光部で受けて光電変換するように構成されている。ピックァ ップ 3は対物レンズの焦点をディスク信号面に合わせるために該レン ズを深度方向に移動させるフオーカシングァクチエー夕と、対物レンズ を トラック T R Kに沿って移動させるための トラッキングァクチェ一 夕とを備える。 トラッキングァクチェ一夕による稼動範囲には限りがあ るため、ピックアップ 3全体をディスク 1の半径方向に移動させるため に図示を省略するスレッ ドモ一夕が設けられている。  The pickup 3 is configured to irradiate the disk 1 with laser light from a semiconductor laser source via an objective lens or the like (not shown), receive the reflected light by a light receiving unit including a photodiode, and perform photoelectric conversion. . Pickup 3 is a focusing mechanism that moves the objective lens in the depth direction to focus the objective lens on the disc signal surface, and a tracking actuator that moves the objective lens along the track TRK. Prepare for the evening. Since the operating range of the tracking operation is limited, a thread mode (not shown) is provided to move the entire pickup 3 in the radial direction of the disc 1.
前記ピックァップ 3から読み出された情報信号はプリアンプとして の高周波アンプ、 波形整形回路、 データスライス回路を備えた信号検出 整形回路 4に与えられる。高周波アンプはその周波数帯域の上限を超え て動作することはできない。その上限が当該アンプの動作限界である。 信号検出整形回路 4は、入力された信号情報に基づいて E F M信号 5 8、 フォーカスエラ一信号 F E R及びトラッキングエラ一信号 T E Rを出 力する。 The information signal read from the pickup 3 is supplied to a signal detection and shaping circuit 4 including a high-frequency amplifier as a preamplifier, a waveform shaping circuit, and a data slice circuit. High frequency amplifier exceeds the upper limit of its frequency band Can not work. The upper limit is the operation limit of the amplifier. The signal detection and shaping circuit 4 outputs an EFM signal 58, a focus error signal FER, and a tracking error signal TER based on the input signal information.
前記フォーカスエラ一信号 F E R及びトラッキングエラ一信号 T E The focus error signal F E R and the tracking error signal T E
Rは、ビックアツプサーボ回路 1 1及びマイクロコンピュー夕 8に供給 される。 トラヅキングエラ一信号 T E Rはピックァヅプ 3と トラックと の相対位置に応じた振幅を持つ周波数信号であり、フォーカスエラ一信 号 F E Rは対物レンズとディスク信号面との相対距離に応じた振幅を 持つ周波数信号である。 特に制限されないが、 それら信号 T E R , F E Rの振幅は、 トラックからのずれ、 最適焦点深度からのずれの大きさに 比例する。 ピックアップサ一ボ回路 1 1は、 フォーカスエラ一信号 F E R及びトラッキングエラ一信号 T E Rに基づいて、前記ずれを相殺する ためのピックアツプサーボ制御信号 8 0を生成する。このピックアップ サ一ボ制御は、 フォーカシングサ一ボと トラヅキングサ一ボである。 フ オーカシングサーボは、 ディスク 1の面振れに対し、 対物レンズとディ スク信号面との相対距離を一定に保ち、ディスク信号面がレーザビーム の焦点深度内に位置するように対物レンズを制御する動作である。 トラ ヅキングサ一ボは、ディスク 1が偏心回転してもピックアップ 3のレ一 ザビームを トラック T R Kに沿って正確にトレースさせる制御である。 その他にピックァヅプサ一ボ回路 1 1は、ピックァヅプ 3のスレッ ド送 りを制御する。 スレツ ド送りは、 図示を省略するスレツ ドモ一夕を制御 してピックァヅプ 3を強制的に現在のトラック位置から所望の別のト ラック位置にジャンプさせるためのピックアップ 3のトラヅク橫断移 動制御である。 R is supplied to the big-up servo circuit 11 and the microcomputer 8. The tracking error signal TER is a frequency signal having an amplitude corresponding to the relative position between the pickup 3 and the track, and the focus error signal FER is a frequency signal having an amplitude corresponding to the relative distance between the objective lens and the disk signal surface. is there. Although not particularly limited, the amplitude of the signals T ER and F ER is proportional to the magnitude of the deviation from the track and the deviation from the optimum depth of focus. The pickup servo circuit 11 generates a pickup servo control signal 80 for canceling the deviation based on the focus error signal F ER and the tracking error signal T ER. The pickup servo control is a focusing servo and a tracking servo. The focusing servo controls the objective lens so that the relative distance between the objective lens and the disc signal surface is kept constant with respect to the runout of the disc 1, and the disc signal surface is located within the focal depth of the laser beam. Operation. The tracking servo is a control for accurately tracing the laser beam of the pickup 3 along the track TRK even when the disk 1 rotates eccentrically. In addition, the pickup servo circuit 11 controls the thread feed of the pickup 3. Thread feed is performed by controlling the movement of a track (not shown) to forcibly cause the pickup 3 to jump from the current track position to another desired track position. is there.
これにより、 ピックアップ 3は、 偏心或いは面ぶれしたディスク 1に 対してもそのトラックに追従移動できる。但し、 ディスク 1の回転が速 くなると、偏心や面ぶれの繰返し周期が短くなつて トラッキングエラ一 信号 T E R及びフォーカスエラ一信号 F E Rの振幅が大きくなる。ディ スク 1の回転が高速過ぎると トラッキングエラ一信号 T E R及びフォ 一カスエラー信号 F E Rの振幅が大きくなり過ぎて、 トラッキング及び フォーカスサーボが対応しきれなくなってしまう。 As a result, the pickup 3 becomes an eccentric or out-of-plane disk 1. It can also follow the track. However, as the rotation of the disk 1 increases, the repetition period of the eccentricity and the runout becomes shorter, and the amplitudes of the tracking error signal TER and the focus error signal FER increase. If the rotation of the disk 1 is too high, the amplitude of the tracking error signal TER and the focus error signal FER will be too large, and the tracking and focus servo will not be able to cope.
前記ディジタル信号処理回路 5は、 特に制限されないが、 P L L回路 5 0、 復調回路 5 1、 デ一夕制御回路 5 2、 R A M 5 3、 サブコ一ド処 理回路 5 4、 ピックアップサーボ回路 1 1、 及びスピン ドルサ一ボ回路 7を含んでいる。  The digital signal processing circuit 5 includes, but is not limited to, a PLL circuit 50, a demodulation circuit 51, a data control circuit 52, a RAM 53, a subcode processing circuit 54, a pickup servo circuit 11, And a spindle sensor circuit 7.
前記 P L L回路 5 0は、デ一夕スライスされた E F M信号 5 8のパル ス幅をデ一夕として識別するための回路であり、ビッ トクロヅク 5 6と E F Mデ一夕 5 7を出カする。? ]^回路5 0の動作基準クロック信号 は図示を省略する水晶発振回路から与えられる。ビッ トクロック 5 6の 周波数は、 E F M信号 5 8の周波数、 すなわち、 ディスク 1から記録情 報を読み取る速度 (読み取り線速度) に追従して変化される。 E F Mデ 一夕 5 7の変化点はビッ トクロック 5 6に同期される。ビッ トクロック 5 6は、 後段の復調回路 5 1、 サブコ一ド処理回路 5 4、 データ制御回 路 5 2などの動作速度を決定するための同期信号として利用される。す なわち、 ディジ夕ル信号処理回路 5における信号処理速度は、 ディスク から記録情報を読み取る速度に追従して変化される。読み取り速度が限 界を超えると、 ディジ夕ル信号処理回路 5は追従動作できなくなる。尚、 信号読み取り速度に追従動作する必要のない回路部分は、前記図示を省 略する水晶発振回路の発振出力を分周した所定のクロック信号に同期 動作されることになる。  The PLL circuit 50 is a circuit for identifying the pulse width of the EFM signal 58 that has been sliced overnight as the data, and outputs a bit clock 56 and an EFM data 57. ? ] ^ The operation reference clock signal of the circuit 50 is given from a crystal oscillation circuit (not shown). The frequency of the bit clock 56 changes according to the frequency of the EFM signal 58, that is, the speed at which the recording information is read from the disk 1 (read linear speed). The changing point of EFM de 57 is synchronized with the bit clock 56. The bit clock 56 is used as a synchronization signal for determining the operation speed of the subsequent demodulation circuit 51, subcode processing circuit 54, data control circuit 52, and the like. That is, the signal processing speed in the digital signal processing circuit 5 is changed to follow the speed of reading recorded information from the disk. If the reading speed exceeds the limit, the digital signal processing circuit 5 cannot perform the following operation. A circuit portion that does not need to follow the signal reading speed is operated in synchronization with a predetermined clock signal obtained by dividing the oscillation output of the crystal oscillation circuit (not shown).
前記復調回路 5 1は E F Mデ一夕 5 7を復調する。データ制御回路 5 2は復調されたフレームのデータ及びパリティーを受けて誤り訂正を 行い、 更に誤り訂正された情報から、 ディスク 1の情報フォーマツ 卜に 従ってデ一夕情報を取り出し、取り出したデータ情報を C D—R O Mデ コーダ 6に供給する。 C D— R O Mデコーダ 6は、 入力デ一夕に対して デ一夕用の C D— R O Mフォーマツ 卜に固有のエラ一訂正を更に行い、 エラ一訂正されたデータ情報をホス 卜装置 9に転送するために所定の デ一夕フォーマッ トに変換し、 これを出力する。 R A M 5 3はデータ制 御回路 5 2の作業領域若しくはデーター時記憶領域として利用される。 前記サブコード処理回路 5 4は復調回路 5 1から出力されるフレー ムのサブコード領域の情報を受け取って、 9 8フレーム毎に 8チャネル のサブコ一ド信号 S I G 1をマイクロコンピュータ 8に与える。これに よってマイクロコンピュー夕 8は、 例えばサブコ一ド同期信号 S 0, S 1にてサブコ一ドの先頭を認識し、 また、 9 8フレーム毎に Qコードか ら Aタイムを認識することができる。 S I G 1はサブコード同期信号 S 0, S 1及びその他の 8チャネル (P , Q , R , S , T, U , V, W ) を含んでいる。 そのようにして認識された Αタイムは、 線速度の演算や トラックジヤンプなどに利用される。 尚、 マイクロコンピュ一夕 8は例 えば Qコードをホス ト装置 9に与え、これによつてホス ト装置 9は A夕 ィムに基づいて現在の再生時刻を表示したりすることができる。 The demodulation circuit 51 demodulates the EFM data 57. Data control circuit 5 2 receives the demodulated frame data and parity, corrects the error, extracts data from the error-corrected information in accordance with the information format of the disk 1, and extracts the extracted data information as CD-ROM data. Supply to coder 6. The CD-ROM decoder 6 further performs an error correction specific to the CD-ROM format for the input data on the input data and transfers the error-corrected data information to the host device 9. Then, the data is converted to a predetermined data format and output. The RAM 53 is used as a work area of the data control circuit 52 or a data storage area. The sub-code processing circuit 54 receives the information of the frame sub-code area output from the demodulation circuit 51 and supplies the microcomputer 8 with an 8-channel sub-code signal SIG1 every 98 frames. As a result, the microcomputer 8 can recognize the head of the subcode using, for example, the subcode synchronization signals S0 and S1, and recognize the A time from the Q code every 98 frames. it can. SIG1 includes subcode synchronization signals S0, S1 and other eight channels (P, Q, R, S, T, U, V, W). The Α time recognized in this way is used for calculation of linear velocity and track jumping. The microcomputer 8 gives a Q code to the host device 9, for example, so that the host device 9 can display the current playback time based on the A time.
C L V速度誤差検出回路 7 0は復調回路 5 1からフレーム同期パ夕 The CLV speed error detection circuit 70 receives the frame synchronization signal from the demodulation circuit 51.
—ンの検出信号 (フレーム同期信号) S I G 2を受け、 その検出周波数 を 7 . 3 5 K H zの基準周波数の所定倍 (例えば 1 6倍) の目的周波数 と比較し、その差分に相当するサーボエラー信号 S I G 3を出力する。 スピンドルサ一ボ回路 7は、マイクロコンピュータ 8が出力する速度制 御モード指示信号 S I G 4によって線速度一定のモー夕制御が指示さ れているとき、 前記サーボエラー信号 S I G 3に基づいて、 前記周波数 の差分を相殺するようにモ一夕 ドライバ 1 0の駆動制御信号 S I G 6 をコントロールする。 この負帰還制御により、 ビックァヅプ 3による記 録情報の読み出し線速度が一定となるようにスピン ドルモ一夕 2の回 転を制御することができる。第 3図に例示されるように、 C L V制御が 行われると、 前記フレーム同期信号 S I G 2は一定周波数にされ、 回転 周波数信号 S I G 7は外周に近付くほど周波数が低くされる。前記目的 周波数を示すデータは、マイクロコンピュー夕 8のレジス夕 R E G 1に 例えば R O M 8 2から読み出されて設定される。 この例に従えば、 その 設定デ一夕は、 1 6倍速のような倍速値を指示するデータとみなすこと ができる。 C L V速度誤差検出回路 7 0は、 その倍速値データに応ず る目的周波数デ一夕 S I G 8をレジス夕 R E G 1から受け取り、フレ一 ム同期信号 S I G 2の周波数を基準周波数の倍速値倍の周波数と比較 して、 サ一ボエラ一信号 S I G 3を出力する。 -Detected signal (frame synchronization signal) SIG2, compares the detected frequency with a target frequency that is a predetermined multiple (for example, 16 times) of the 7.35 KHz reference frequency, and calculates the servo corresponding to the difference. Outputs error signal SIG3. The spindle servo circuit 7 controls the frequency based on the servo error signal SIG3 when the motor control at a constant linear velocity is instructed by the speed control mode instruction signal SIG4 output from the microcomputer 8. The driver control signal SIG 6 of the driver 10 is controlled so as to cancel the difference. By this negative feedback control, the rotation of the spindle motor 2 can be controlled such that the linear velocity of the recording information readout by the big group 3 is constant. As illustrated in FIG. 3, when the CLV control is performed, the frame synchronization signal SIG2 is set to a constant frequency, and the frequency of the rotation frequency signal SIG7 is reduced as it approaches the outer circumference. The data indicating the target frequency is read from, for example, the ROM 82 and set in the register REG 1 of the microcomputer 8. According to this example, the setting data can be regarded as data indicating a double speed value such as 16 times speed. The CLV speed error detection circuit 70 receives the target frequency data SIG 8 corresponding to the double speed value data from the register REG 1 and sets the frequency of the frame synchronization signal SIG 2 to a frequency twice as high as the reference frequency. Then, it outputs the signal SIG 3 of the sensor vowel.
前記モー夕 ドライバ 1 0は、スピンドルモー夕 2の回転速度に応じた 回転周波数信号 S I G 7を出力するジェネレータを有する。この周波数 信号 S I G 7は C A V速度誤差検出回路 7 1に与えられる。 C A V速 度誤差検出回路 7 1は、その周波数信号 S I G 7に基づいてスピン ドル モー夕 2の回転角速度 (回転速度) を検出する。 C A V速度誤差検出 回路 7 1は、スピン ドルサーボ回路 7が速度制御モード指示信号 S I G 4によって角速度一定のモータ制御が指示されているとき、前記周波数 信号 S I G 7から検出した角速度と目的角速度との差分に相当するサ —ボエラー信号 S I G 5を出力する。 C A V速度誤差検出回路 7 1は、 速度制御モ一ド指示信号 S I G 4によって角速度一定のモータ制御の 指示を受けているときは、前記サーボエラー信号 S I G 5に基づいて、 角速度の差分を相殺するようにモー夕 ドライバ 1 0の駆動制御信号 S I G 6をコン トロールする。 この負帰還制御により、 スピン ドルモー夕 2を角速度一定で回転させることができる。第 3図に例示されるように C A V制御下では、フレーム同期信号 S I G 2はディスクの外周に近付 くほど周波数が高くされ、回転周波数信号 S I G 7は一定周波数とされ る。前記目的角速度を示すデ一夕は、 例えば後述する処理に従って検出 された限界角速度としてレジス夕 R E G 2に設定される。 C A V速度 誤差検出回路 7 1は、レジス夕 R E G 2からその目的角速度デ一夕 S I G 9を受け取り、回転周波数信号 S I G 7の角速度と比較することによ つて、 前記サ一ボエラー信号 S I G 5を出力する。 The motor driver 10 has a generator that outputs a rotation frequency signal SIG 7 corresponding to the rotation speed of the spindle motor 2. This frequency signal SIG 7 is given to the CAV speed error detection circuit 71. The CAV speed error detection circuit 71 detects the rotation angular speed (rotation speed) of the spindle motor 2 based on the frequency signal SIG7. The CAV speed error detection circuit 71 generates a difference between the angular speed detected from the frequency signal SIG 7 and the target angular speed when the spindle servo circuit 7 is instructed to control the motor at a constant angular speed by the speed control mode instruction signal SIG 4. Outputs the corresponding servo error signal SIG5. The CAV speed error detection circuit 71 cancels the difference between the angular velocities based on the servo error signal SIG5 when the motor control instruction with the constant angular velocity is received by the speed control mode instruction signal SIG4. Control the drive control signal SIG 6 of the motor driver 10. With this negative feedback control, the spin 2 can be rotated at a constant angular velocity. As illustrated in FIG. 3, under the CAV control, the frequency of the frame synchronization signal SIG2 increases as it approaches the outer periphery of the disk, and the rotation frequency signal SIG7 has a constant frequency. The data indicating the target angular velocity is set in the register REG2 as a limit angular velocity detected according to, for example, a process described later. The CAV speed error detection circuit 71 receives the target angular velocity data SIG 9 from the register REG 2 and outputs the servo error signal SIG 5 by comparing with the angular velocity of the rotation frequency signal SIG 7. .
《C A Vと C L Vの切り換え制御の基本》  《Basic control of switching between CAV and CLV》
上述のようにディスク 1から情報信号を読み取るためのディスク 1 の速度制御は、 C A V制御又は C L V制御とすることができる。 C A V 制御と C L V制御との切換え地点は、 第 2図に例示されるように、 C A V制御による読み取り線速度と、 C L V制御による読み取り線速度とが 相互に一致する地点である。当該地点において速度制御を切り換えるた めの前提として、ディスクの個体差や C D— R O M再生装置のハードウ エアの能力に応じて再生能力を最大限に利用できるようにする限度い つぱいの、 目的周波数データをレジス夕 R E G 1に設定し、 目的角速度 データをレジスタ R E G 2に設定する。 即ち、 目的角速度データは、 デ イスク 1の偏心や面ぶれなどのディスクの個体差、更にはスピン ドルモ —夕 2の最大回転能力に応じて、デイスク 1に不所望な振動を生じて 卜 ラッキングサーボゃフオーカシングサ一ボが対応できなくなる手前の 限界角速度を考慮して決定される。 目的周波数データは、 信号検出整形 回路 4及びディジ夕ル信号処理回路 5の能力 (最高動作周波数など) に 従って再生可能な最大限の記録線速度を考慮し、 例えば、 1 6倍速のよ うなディスク 1の記録線速度に対する倍速として決定される。この目的 周波数デ一夕は、 ディスク 1の前記個体差には影響されない。 第 1図に示される C D— R O M再生装置では前記切り換え位置の検 出に前記フレーム同期信号 S I G 2を利用する。後述する第 1 3図の C D— R O M再生装置では前記切り換え位置の検出に前記 Aタイムを利 用する。 As described above, the speed control of the disk 1 for reading the information signal from the disk 1 can be CAV control or CLV control. The switching point between the CAV control and the CLV control is a point where the reading linear velocity by the CAV control and the reading linear velocity by the CLV control mutually match, as exemplified in FIG. As a prerequisite for switching the speed control at the point, the target frequency data is limited so that the playback capacity can be used to the fullest according to the individual difference of the disc and the hardware capacity of the CD-ROM playback device. Set the target angular velocity data to register REG2. In other words, the target angular velocity data is based on the individual difference of the disk such as the eccentricity and runout of the disk 1, and furthermore, depending on the maximum rotation capacity of the spindle 2 and the disk 2, the disk 1 generates an undesired vibration and the tracking servo決定 Determined in consideration of the limit angular velocity before the focusing servo cannot respond. The target frequency data is calculated based on the maximum recording linear velocity that can be reproduced in accordance with the capabilities (such as the maximum operating frequency) of the signal detection and shaping circuit 4 and the digital signal processing circuit 5. It is determined as a double speed with respect to the recording linear velocity of 1. This target frequency is not affected by the individual difference of the disc 1. The CD-ROM playback device shown in FIG. 1 uses the frame synchronization signal SIG2 to detect the switching position. In the CD-ROM reproducing apparatus shown in FIG. 13 described later, the A time is used for detecting the switching position.
《目的角速度データの決定》  《Determination of target angular velocity data》
目的角速度データは前述の通り偏心や面ぶれなどのディスクの個体 差に影響される。 したがって、 ディスク 1を回転したときの偏心や面ぶ れの影響を実際に測定して目的角速度データを決定するのが最適であ る。 或いは、 ディスクの偏心や面ぶれに対する許容範囲とディスクモー 夕 2回転能力とを考慮して予め目的角速度データを決定し R O M 8 2 に格納しておき、再生動作毎に R 0 M 8 2から前記レジス夕 R E G 2に ロードするようにしてもよい。  As described above, the target angular velocity data is affected by individual differences of disks such as eccentricity and runout. Therefore, it is optimal to determine the target angular velocity data by actually measuring the effects of eccentricity and runout when the disk 1 is rotated. Alternatively, the target angular velocity data is determined in advance in consideration of the allowable range for the eccentricity and runout of the disk and the disk motor's two rotation capabilities, stored in the ROM 82, and the above-described R0M82 is used for each reproduction operation. You may load it to Regis Evening REG 2.
ここで、ディスク 1を回転したときの偏心や面ぶれの影響を実際に測 定して目的角速度データを決定する手法を説明する。目的角速度データ の決定は、 例えば、 ディスク 1の装着検出後のトレーニング期間にマイ クロコンピュー夕 8が行う。 すなわち、 ディスク固有の偏心及び面ぶれ の状態を考慮できるように、前記マイクロコンピュー夕 8は限界角速度 を判定するため、前記トラッキングエラ一信号 T E R及びフオーカスェ ラ一信号 F E Rの振幅を監視しながらディスク 1の回転を加速し、 トラ ヅキングエラ一信号 T E R及びフォ一カスエラー信号 F E Rの何れか 一方の振幅が所定値に到達したときのディスクの角速度(例えば毎秒の 回転数) を前記限界角速度として検出する。検出された限界角速度はマ ィクロコンピュ一夕 8のレジス夕 R E G 2に格納される。 トラッキング エラー信号 T E R及びフォーカスエラー信号 F E Rの振幅の前記所定 値とは、 トラッキング及びフォーカシングサ一ボが対応できなくなる振 幅であり、 サ一ボ制御能力によって一義的に決定することができる。 こ の振幅の所定値は、 特に制限されないが、 ROM 82から読み出されて レジスタ RE G 3に設定されたものが利用される。このように限界角速 度を决定すれば、偏心や面ぶれなどの個々のディスクの個体差を考慮で き、その個体差に応じて限界角速度を能力ぎりぎりの地点に設定できる c 尚、 ディスク 1の装着検出は、 特に図示はしないが、 トレ一にディスク 1が載置されたことを検出する光学センサの出力の変化などによって 行うことができる。 Here, a method for determining the target angular velocity data by actually measuring the effects of eccentricity and runout when the disk 1 is rotated will be described. The determination of the target angular velocity data is performed by, for example, the microcomputer 8 during the training period after the detection of the mounting of the disk 1. That is, the microcomputer 8 monitors the amplitude of the tracking error signal TER and the focus error signal FER so as to determine the limit angular velocity so that the state of eccentricity and runout inherent to the disk can be considered. The rotation of 1 is accelerated, and the angular velocity (for example, the number of revolutions per second) of the disk when one of the amplitude of the tracking error signal TER and the focus error signal FER reaches a predetermined value is detected as the limit angular velocity. The detected limit angular velocity is stored in the register REG2 of Microcomputer Night8. The predetermined values of the amplitudes of the tracking error signal TER and the focus error signal FER are amplitudes at which the tracking and focusing servos cannot be handled, and can be uniquely determined by the servo control capability. This The predetermined value of the amplitude is not particularly limited, but the value read from the ROM 82 and set in the register REG3 is used. Thus deciding the limit angle speed, the can in consideration of individual differences of the individual disk such as eccentricity and surface wobbling, Note c can be set to point ability barely limit angular velocity according to the individual difference, the disk 1 Although not specifically shown, the mounting of the disk 1 can be detected by a change in the output of an optical sensor that detects that the disk 1 is mounted on the tray.
《フレーム同期信号を利用した C A Vと C L Vの切り換え制御》  《CAV and CLV switching control using frame synchronization signal》
先ず、第 1図に基づいてフレーム同期信号を利用した CAVと C LV の切り換え制御について説明する  First, control of switching between CAV and CLV using a frame synchronization signal will be described with reference to FIG.
第 1図に示されるマイクロコンピュー夕 8は、 CAVと C LVの切り 換え制御論理を、 夕イマカウン夕 CNT 1 , CNT 2、 レジス夕 RE G 1 , REG 2, REG 6〜RE G 8、 コンパレ一夕 CMP 1 ~CMP 4 及び切り換え判定部 L OGによって実現する。 それら制御論理は、 マイ クロコンピュー夕 8に内蔵された C P U (Central Processing Unit: 中央処理装置)、 CPUの動作プログラム及び周辺回路によって実現さ れている。 尚、 前記 ROM 8 2は CPUの動作プログラムや定数デ一夕 などを格納する。 RAM 83は C P Uのワーク領域若しくはデータの一 時記憶領域として利用される。  The microcomputer 8 shown in Fig. 1 implements the control logic for switching between CAV and CLV, and implements the imaginary counters CNT1, CNT2, REG1, REG2, REG6 to REG8, and the comparator. It is realized by overnight CMP 1 to CMP 4 and the switching judgment unit LOG. These control logics are realized by a CPU (Central Processing Unit), a CPU operation program, and peripheral circuits built into the microcomputer. The ROM 82 stores an operation program of the CPU, constant data, and the like. The RAM 83 is used as a work area of the CPU or a temporary storage area of data.
前記レジス夕 RE G 1に設定される目的周波数データは、実際には標 準速に対する倍速値データとされ、信号検出整形回路 4及びディジ夕ル 信号処理回路の最高動作周波数以内のもつとも高速な倍速値データで ある。 また、 前記レジスタ RE G 2に設定される目的角速度デ一夕は前 記計測されたデ一夕、または R OM 82から読出されたデータである。 例えば、 CD— ROM再生装置の限界線速度が 1 6倍速相当の線速度で、 限界角速度が 6 6 〔r p s〕 であるとき、 レジス夕 RE G 1には 1 6倍 速に応ずる倍速値データが設定され、 レジス夕 RE G 2には 66 〔r p s〕 に相当するデ一夕が設定される。 The target frequency data set in the register REG 1 is actually double speed value data with respect to the standard speed, and the double speed data which is within the maximum operating frequency of the signal detection and shaping circuit 4 and the digital signal processing circuit is high speed. Value data. The target angular velocity data set in the register REG2 is the data measured as described above or data read from the ROM 82. For example, if the critical linear velocity of a CD-ROM playback device is a linear velocity equivalent to 16 times speed and the critical angular velocity is 66 [rps], the register RE G 1 has 16 times The double speed value data corresponding to the speed is set, and the register value REG 2 is set to 66 [rps].
前記夕イマカウン夕 CN T 1は前記 7.35 KH zの基準周波数の周 期毎に前記フレーム同期信号 S I G 2のサイクル数を計数して出力す る。例えばフレーム同期信号が 16倍速に相当する周波数であれば、 前 記 7. 35 KH zの基準周波数の周期毎に計数値 16を出力する。 コン パレ一夕 CMP 1は前記夕イマカウン夕 C N T 1の出力と前記レジス 夕 EG 1の設定値とを比較し、夕イマカウン夕 CNT 1の出力値が前記 レジス夕 R E G 1の設定値以上であるとき制御信号 ø 1をアサ一トす る。例えばレジス夕 RE G 1の倍速値デ一夕が 1 6倍速を意味するとき、 目的周波数は前記基準周波数の 16倍の周波数である。切り換え判定部 LOGは、 サ一ボ回路 7に CAV制御を指示したとき、 制御信号 ø 1の アサ一ト状態によってフレーム同期信号 S I G 2の周波数が CLV制 御のための前記目的周波数に到達するのを検出すると、速度制御モ一ド 指示信号 S I G4によってサ一ボ回路 7に CLV制御を指示する。これ により、スピン ドルモ一夕 2の制御は C AVから C L Vに切り換えられ る。  The evening counter CN T1 counts and outputs the number of cycles of the frame synchronization signal SIG2 every period of the reference frequency of 7.35 KHz. For example, if the frame synchronization signal has a frequency corresponding to 16 × speed, the count value 16 is output every cycle of the 7.35 KHz reference frequency. The CMP1 comparator compares the output of the imaginary counter CNT1 with the set value of the register EG1 and determines that the output value of the imaginary counter CNT1 is equal to or greater than the set value of the register REG1. Assert control signal ø1. For example, when the double speed value of the register REG 1 is 16 times faster, the target frequency is 16 times the reference frequency. When the switching determination unit LOG instructs the servo circuit 7 to perform CAV control, the frequency of the frame synchronization signal SIG 2 reaches the target frequency for CLV control according to the assertion state of the control signal ø1. , The CLV control is instructed to the servo circuit 7 by the speed control mode instruction signal SIG4. As a result, the control of the spindle 2 is switched from CAV to CLV.
前記夕イマカウン夕 CN T 2は、例えば 1秒毎に前記回転周波数信号 S I G 7のサイクル数を計数して出力する。コンパレータ CMP 2は前 記タイマカウンタ CNT 2の出力と前記レジス夕 RE G 2の設定値と を比較し、夕イマカウン夕 CNT 2の出力値が前記レジス夕 R E G 2の 設定値以上であるとき制御信号 ø 2をアサ一卜する。切り換え判定部 L OGは、 サーボ回路 7に CLV制御を指示したとき、 制御信号 ø 2のァ サート状態によってディスク 1の角速度(毎秒の回転数) が C AV制御 のための目的角速度に到達するのを検出すると、速度制御モ一ド指示信 号 S I G 4によってサーボ回路 7に CAV制御を指示する。これにより、 スピンドルモ一夕 2の制御は C L Vから C A Vに切り換えられる。この 例の場合、ディスク 1に対する情報の記録はディスクの内周部から外周 部に向けて行われている。 したがって、 C L V制御から C A V制御への 切換えの必要性は、 トラックジャンプの場合に生ずる。 。八 から(: 1^ Vへの速度制御の切換えは、 トラックジャンプはもとより、 再生すべき デ一夕の読み取り動作中にも生ずる。 The evening counter CN T2 counts and outputs the number of cycles of the rotation frequency signal SIG7, for example, every second. The comparator CMP 2 compares the output of the timer counter CNT 2 with the set value of the register REG 2, and when the output value of the CNT 2 is equal to or greater than the set value of the register REG 2, the control signal is output. Assert ø2. When the CLV control is instructed to the servo circuit 7, the switching determination unit LOG determines whether the angular velocity of the disk 1 (the number of revolutions per second) reaches the target angular velocity for the CAV control depending on the assertion state of the control signal ø2. Is detected, CAV control is instructed to the servo circuit 7 by the speed control mode instruction signal SIG4. This allows The control of spindle motor 2 is switched from CLV to CAV. In this example, recording of information on the disk 1 is performed from the inner periphery to the outer periphery of the disk. Therefore, the need to switch from CLV control to CAV control arises in the case of a track jump. . The switching of the speed control from 8 to (: 1 ^ V) occurs not only during a track jump, but also during the reading operation to be reproduced.
上述のレジス夕 R E G 1 , R E G 2に対する設定状態で C D— R O M 再生装置を動作させた場合、 C A V制御と C L V制御の切り換え時点は 図 4の P iで示される半径位置で行われることになる。切り換え時点の 判定は、 前述の説明から明らかなように、 線速度一定の目的周波数や角 速度一定の目的角速度との比較判定動作だけで済む。ディスク 1に対す る書き込み線速度のばらつきは前記フレ一ム同期信号 S I G 2の周波 数検出には一切影響しない。ばらつきが許容されている書き込み線速度 に着目して切り換え時点を判断しょうとする場合には C A V制御下に おいて走査位置の半径に応じて刻一刻と変化される実際の線速度を逐 次演算によって求めて監視しなければならないが、上記判定手法の場合 にはその必要は全くない。逐次変化する実際の線速度を演算で求める場 合、 その処理は複雑で時間を要し、 それ故に無視し得ない演算誤 7 も:: E ずる。 目的周波数や目的角速度との比較判定動作の場合には、 その処理 は簡単で誤差も少ない。 したがって、 C A Vと C L Vとの制御を切り換 える時点を正確且つ簡単に把握することができる。 これにより、 デイス ク 1を回転させるスピン ドルモー夕 2やディスク 1から読み取った情 報信号を処理する回路 4 , 5を性能限界の上限で動作させることができ、 それら回路の動作性能を十分に発揮させて、信号読み取り動作もしくは 再生動作の高速化を実現することできる。  When the CD-ROM reproducing device is operated in the above-described settings for the registers REG1 and REG2, the switching point between the CAV control and the CLV control is performed at the radial position indicated by Pi in FIG. As is clear from the above description, the determination at the time of switching only requires a comparison and determination operation with the target frequency at a constant linear velocity or the target angular velocity at a constant angular velocity. Variations in the writing linear velocity with respect to the disk 1 have no effect on the frequency detection of the frame synchronization signal SIG2. When trying to determine the switching time by focusing on the linear writing speed where variation is allowed, the actual linear speed that changes every moment according to the radius of the scanning position under CAV control is calculated sequentially However, in the case of the above judgment method, there is no necessity. When calculating the actual linear velocity that changes sequentially, the processing is complicated and time-consuming, and therefore, there is also a calculation error 7 that cannot be ignored. In the case of the comparison judgment operation with the target frequency or the target angular velocity, the processing is simple and the error is small. Therefore, it is possible to accurately and easily grasp the point at which the control between CAV and CLV is switched. As a result, the spindle motor 2 for rotating the disk 1 and the circuits 4 and 5 for processing the information signal read from the disk 1 can be operated at the upper limit of the performance limit, and the operation performance of those circuits is sufficiently exhibited. Thus, the speed of the signal reading operation or the reproducing operation can be increased.
第 1図において A T Gはサブコ一ド信号 S I G 1 に基づいて Aタイ ムを把握するための論理手段である。レジス夕 R E G 6は前記論理手段 A T Gで認識された Aタイムを保持する。切り換え判定部 L 0 Gは、 再 生すべきデ一夕の読み取り動作中 (トラックジャンプでないとき) に、 前記制御信号 ø 1がアサ一トされると、制御信号 ø 3をアサート してレ ジス夕 R E G 6に Aタイムを切り換え位置情報としてラッチさせる。コ ンパレ一夕 C M P 3は、 論理手段 A T Gで生成される Aタイムが、 レジ ス夕 R E G 6にラヅチされている Aタイム以上になると、制御信号 0 4 をアサ一卜する。切り換え判定部 L 0 Gは、 一旦制御信号 ø 3をアサ一 トした後は、 ディスクの交換が行われない限り、 制御信号 0 1、 0 2の 代わりに制御信号 ø 4を監視し、制御信号 ø 4のアサ一ト状態とネゲー ト状態に応じて C A V制御と C L V制御とを切り換える。 In FIG. 1, ATG is based on the subcode signal SIG 1 It is a logical means to grasp the system. The register REG 6 holds the A time recognized by the logic means ATG. The switching determination unit L0G asserts the control signal ø3 when the control signal ø1 is asserted during the reading operation of the data to be reproduced (when it is not a track jump), and registers the signal. Evening REG 6 latches the A time as switching position information. The comparator CMP3 asserts the control signal 04 when the A-time generated by the logic means ATG is equal to or longer than the A-time latched by the register REG6. After asserting the control signal ø3 once, the switching judgment unit L0G monitors the control signal ø4 instead of the control signals 01, 02 and replaces the control signal ø4, unless the disk is replaced. Switches between CAV control and CLV control according to the ø4 assert state and negated state.
C A Vから C L Vへの切り換え時点は前記限界角速度や限界線速度 のような限界性能から大凡予測できる。 その予測時点は、 記録情報から 取得される前記 Aタイムによって特定できる。 予測可能な時点は、 許容 された線速度のばらつきの範囲で誤差を持つことになる。その誤差を力 バ一できる範囲で、 C A Vと C L Vの切り換えのための比較判定動作を 行うようにすれば、速度制御のためのマイクロコンピュー夕 8の負担を 軽減できる。  The switching point from CAV to CLV can be roughly predicted from the critical performance such as the critical angular velocity and critical linear velocity. The prediction time can be specified by the A time acquired from the record information. Predictable points in time will have errors within the accepted linear velocity variation. If the comparison and judgment operation for switching between CAV and CLV is performed within a range where the error can be covered, the load on the microcomputer 8 for speed control can be reduced.
前記誤差範囲としては線速度のばらつき範囲を考慮する。前記限界線 速度と限界角速度は C D— R O M再生装置のハ一ドウエアの性能から 予め決定することができる。 例えば、 第 5図において、 限界角速度を 6 6 〔r p s〕 、 限界線速度を 1 6倍速相当の線速度とすると、 書き込み 線速度のばらつきの範囲 E 1に対してある程度の余裕を採って、同図の E 2で示される範囲を前記誤差の範囲とする。限界線速度と限界角速度 が決定されれば、 前記誤差範囲 E 2の下限及び上限の Aタイム A i, A j も予じめ得ることができる。そのようにして予め得られた Aタイム A i , A j をマイクロコンピュー夕 8のレジス夕 R E G 7 , R E G 8に設 定しておく。前述の通り、 マイクロコンピュータ 8はサブコ一ド信号 S I G 1に基づいて現在の Aタイムを把握することができる。コンパレー 夕 CMP 4は、現在の Aタイムがレジス夕 RE G 7に格納されている下 限の Aタイム A iと上限の Aタイム A j との間に入っているかを判定 し、 間に入っている場合には、 制御信号 5をアサートする。 切り換え 判定部 L 0 Gは、 制御信号 5のアサ一ト状態において、 コンパレータ CMP 1 , CMP 2に比較動作をさせる。 このような処理によっても、 上記同様に C A Vと C L Vとの制御を切り換える時点を正確且つ簡単 に把握することができる。特に、 CAVと C LVとの切り換え時点を検 出するための周波数や角速度の判定期間を短くできるので、切り換え処 理は更に簡単になる。 The variation range of the linear velocity is considered as the error range. The limit linear velocity and the limit angular velocity can be determined in advance from the performance of the hardware of the CD-ROM playback device. For example, in FIG. 5, assuming that the limit angular velocity is 66 [rps] and the limit linear velocity is a linear velocity equivalent to 16 times speed, some margin is taken for the range E1 of variation of the write linear velocity, and The range indicated by E2 in the figure is the range of the error. If the limit linear velocity and the limit angular velocity are determined, the lower limit and upper limit A times A i and A j of the error range E 2 can be predicted in advance. A time A obtained in advance in that way i and A j are set in the register REG 7 and REG 8 of the microcomputer 8. As described above, the microcomputer 8 can grasp the current A time based on the subcode signal SIG1. Comparator evening CMP 4 determines whether the current A-time is between the lower limit A-time A i and the upper limit A-time A j stored in Regis evening REG 7, If so, assert control signal 5. The switching determination unit L 0 G causes the comparators CMP 1 and CMP 2 to perform a comparison operation when the control signal 5 is asserted. Even with such processing, it is possible to accurately and easily grasp the point at which the control between CAV and CLV is switched, as described above. In particular, the switching process is further simplified because the determination period of the frequency and angular velocity for detecting the switching point between CAV and CLV can be shortened.
前記誤差範囲だけで C A Vと C L Vとの切り換え時点の監視動作を 行う場合、 前記誤差範囲外へのトラックジャンプの結果、 C AV制御と C LV制御を切り換える必要が生じたときは、前記レジス夕 RE G 7, RE G 8の Aタイム A i, A jを用いて対処できる。 すなわち、 ジヤン プ先トラックでの Aタイムが前記誤差範囲下限の Aタイム A iよりも 手前の時刻であるときはスピン ドルモ一夕 2の制御を強制的に C A V に切り換える。 同様に、 ジャンプ先トラックでの Aタイムが前記誤差範 囲上限の Aタイム A j よりも後の時刻であるときはスピン ドルモー夕 2の制御を強制的に C L V制御に切り換える。  When performing the monitoring operation at the time of switching between CAV and CLV only in the error range, when it is necessary to switch between CAV control and CLV control as a result of a track jump outside the error range, the register setting is performed. This can be handled using the A times A i and A j of G 7 and RE G 8. That is, when the A time at the jump destination track is a time before the A time A i at the lower limit of the error range, the control of the spindle motor 2 is forcibly switched to C AV. Similarly, when the A time at the jump destination track is later than the A time A j at the upper limit of the error range, the control of the spindle motor 2 is forcibly switched to the CLV control.
尚、 前記速度制御にはコンパレ一夕 CMP 3 , CMP 4を用いないよ うにしてもよい。 また、 コンパレータ CMP 1 , CMP 2 と共にコンパ レー夕 CMP 3又はコンパレー夕 CMP 4の何れか一方を用いるよう にしてもよい。  It should be noted that the speed control may not use the CMP 3 and CMP 4 during the comparison. Further, either the comparator CMP3 or the comparator CMP4 may be used together with the comparators CMP1 and CMP2.
第 1 0図には前記 C A V速度誤差検出回路 7 1の機能をマイクロコ ンビュ一夕 8によって実現した C D— R 0 M再生装置が示される。すな わち、第 1図の C A V速度誤差検出回路 7 1がマイクロコンピュータ 8 に内蔵されている。 また、 第 1 0図ではピヅクアツブザーボ 1 1は図示 が省略されている。その他の構成は第 1図と同様であるので詳細な説明 は省略する。第 1 0図の C D— R O M再生装置においても上記同様に、 ディスク 1からの情報信号の読み取りは C A V制御または C L V制御 とすることができる。第 1 1図には第 1 0図の構成によるサーボループ に着目した C A V制御状態が示され、 モー夕 ドライバ 1 0、 マイクロコ ンピュー夕 8およびサ一ボ回路 7のループで C A V制御が行われる。第 1 2図には第 1 0図の構成によるサ一ボループに着目した C L V制御 状態が示され、 モ一夕 ドライノ' 1 0、 信号検出整形回路 4、 ディ ジタル 信号処理回路 5及びサーボ回路 7のループで C L V制御が行われる。 第 1 0図の構成においても、 前記マイクロコンピュー夕 8は、 C A V 制御下でも前記フレーム同期信号 S I G 2を受け、フレーム同期信号 S I G 2の周波数が C L V制御のための目的周波数に到達するかを監視 する。目的周波数は前記レジスタ R E G 1に設定された倍速値デ一夕か ら取得する。例えば倍速値データが 1 6倍速を意味するとき、 目的周波 数は前記基準周波数の 1 6倍の周波数である。マイクロコンピュー夕 8 は、 サーボ回路 7に C A V制御を指示したとき、 フレーム同期信号 S ェ G 2の周波数が C L V制御のための前記目的周波数に到達するのを検 出すると、速度制御モード指示信号 S I G 4によってサーボ回路に C L V制御を指示する。 これにより、 スピン ドルモー夕 2の制御は C A Vか ら C L Vに切り換えられる。 また、 前記マイクロコンピュー夕 8は、 C L V制御下でも前記周波数信号 S I G 7を受け、その周波数信号 S I G 7から得られるモ一夕の回転速度が C A V制御の目的角速度に到達す るかを監視する。目的周波数は前記レジスタ R E G 2に設定されたデー 夕から取得する。 マイクロコンピュー夕 8は、 サ一ボ回路 7に C L V制 御を指示したとき、周波数信号 S I G 7から得られるモー夕回転速度が 前記目的角速度に到達するのを検出すると、速度制御モード指示信号 S I G 4によってサーボ回路に C A V制御を指示する。 これにより、 スピ ン ドルモ一夕 2の制御は C L Vから C A Vに切り換えられる。 FIG. 10 shows the function of the CAV speed error detection circuit 71 by microcontroller. This shows the CD-R0M playback device realized by View8. That is, the CAV speed error detection circuit 71 shown in FIG. In addition, in FIG. 10, the peak observer 11 is not shown. Other configurations are the same as those in FIG. 1, and thus detailed description is omitted. Similarly, in the CD-ROM reproducing apparatus shown in FIG. 10, the reading of the information signal from the disk 1 can be performed by CAV control or CLV control. Fig. 11 shows the CAV control state focusing on the servo loop of the configuration shown in Fig. 10. CAV control is performed in the loop of the motor driver 10, micro computer 8, and servo circuit 7. . FIG. 12 shows the CLV control state focusing on the servo loop of the configuration shown in FIG. 10, which includes a dryino'10, a signal detection and shaping circuit 4, a digital signal processing circuit 5, and a servo circuit 7. CLV control is performed in the loop. In the configuration of FIG. 10 as well, the microcomputer 8 receives the frame synchronization signal SIG 2 even under CAV control, and determines whether the frequency of the frame synchronization signal SIG 2 reaches the target frequency for CLV control. Monitor. The target frequency is obtained from the double speed value set in the register REG1. For example, when the double speed value data indicates 16 times speed, the target frequency is 16 times the reference frequency. When the microcomputer 8 instructs the servo circuit 7 to perform the CAV control, and detects that the frequency of the frame synchronization signal SEG2 reaches the target frequency for CLV control, the microcomputer 8 issues a speed control mode instruction signal. SIG 4 instructs the servo circuit to perform CLV control. As a result, control of spindle motor 2 is switched from CAV to CLV. Also, the microcomputer 8 receives the frequency signal SIG7 even under the CLV control, and monitors whether the rotation speed of the motor obtained from the frequency signal SIG7 reaches the target angular speed of the CAV control. . The target frequency is the data set in the register REG2. Get from the evening. When the microcomputer 8 instructs the servo circuit 7 to perform CLV control and detects that the motor rotation speed obtained from the frequency signal SIG 7 reaches the target angular speed, the microcomputer 8 issues a speed control mode instruction signal SIG. 4 instructs the servo circuit to perform CAV control. As a result, the control of Spindlemo 2 is switched from CLV to CAV.
C A V制御と C L V制御の切換え制御にフレーム同期信号 S I G 2 を用いる上記第 1図及び第 1 0図の C D— R O M再生装置によれば、以 下の作用効果を得る。  According to the CD-ROM reproducing apparatus shown in FIGS. 1 and 10 using the frame synchronization signal SIG 2 for switching control between CAV control and CLV control, the following operational effects are obtained.
C A V制御と C L V制御の切り換え時点の判定は、フレーム同期信 S I G 2などの同期信号の周波数を目的周波数と比較し、或いはデイス クの角速度を目的角速度と比較するだけで済む。ディスクに対する書き 込み線速度のばらつきは前記同期信号の周波数検出には一切影響しな い。ばらつきが許容されている書き込み線速度に着目して切り換え時点 を判断しょうとする場合には C A V制御下において走査位置の半径に 応じて刻一刻と変化される実際の線速度を逐次演算によって求めて監 視しなければならないが、 本発明の場合にはその必要は全くない。逐次 変化する実際の線速度を演算で求める場合、その処理は複雑で時間を要 し、 それ故に無視し得ない演算誤差も生ずる。 目的周波数や目的角速度 との比較判定動作の場合には、 その処理は簡単で誤差も少ない。 したが つて、 C A Vと C L Vとの制御を切り換える時点を正確且つ簡単に把握 することができる。 これにより、 ディスク 1を回転させるスピン ドルモ 一夕 2やディスク 1から読み取った信号情報を処理する回路 4, 5など を性能限界の上限で動作させることができ、それら回路の動作性能を十 分に発揮させて、信号読み取り動作もしくは再生動作の高速化を実現す ることできる。  The determination at the time of switching between the CAV control and the CLV control can be performed simply by comparing the frequency of the synchronization signal such as the frame synchronization signal SIG2 with the target frequency, or comparing the angular velocity of the disk with the target angular velocity. Variations in the writing linear velocity with respect to the disk have no effect on the frequency detection of the synchronization signal. When trying to determine the switching point by paying attention to the writing linear velocity where variation is allowed, the actual linear velocity that changes every moment according to the radius of the scanning position under CAV control is obtained by sequential calculation It must be monitored, but in the case of the present invention there is no need at all. When calculating the actual linear velocity that changes sequentially, the processing is complicated and time-consuming, and therefore, a calculation error that cannot be ignored occurs. In the case of the comparison judgment operation with the target frequency or the target angular velocity, the processing is simple and the error is small. Therefore, it is possible to accurately and easily grasp the point at which the control between CAV and CLV is switched. As a result, it is possible to operate the spindle motor 2 for rotating the disk 1 and the circuits 4 and 5 for processing the signal information read from the disk 1 at the upper limit of the performance limit, and to sufficiently operate the circuits. It is possible to realize a high speed signal reading operation or reproducing operation.
《 Aタイムを利用した C A Vと C L Vの切り換え制御》 次に、 Aタイムを利用した CAVと C LVの切り換え制御について説 明する。第 1 3図にはそのような制御を採用した CD— ROM再生装置 が示される。同図に示される CD— R OM再生装置はいままで説明した CD-RO M再生装置と同様に、ディスク 1からの情報信号の読み取り に際してのディスクの速度制御を CAV制御と C LV制御との間で切 り換えることができる。 このとき、 C A V制御と C L V制御の切り換え 時点は前記 Aタイムによって管理もしくは制御する。第 1 3図において 第 1図と同一の回路要素には同一符号を付してある。第 1 3図に され るマイクロコンピュー夕 8は、 CPU 84、 この CPU 84の動作プロ グラムや定数デ一夕等が格納された ROM 8 5、 CPU 84の作業領域 又はデータの一時記憶領域とされる RAM 8 3、 レジス夕 RE G 1〜R E G 6、 及び図示を省略する周辺回路を有する。 《Switching control between CAV and CLV using A-time》 Next, switching control between CAV and CLV using A-time will be described. FIG. 13 shows a CD-ROM playback device employing such control. The CD-ROM playback device shown in the figure, like the CD-ROM playback device described above, controls the speed of the disc when reading information signals from the disc 1 between CAV control and CLV control. You can switch with. At this time, the switching time point between CAV control and CLV control is managed or controlled by the A time. In FIG. 13, the same circuit elements as those in FIG. 1 are denoted by the same reference numerals. The microcomputer 8 shown in FIG. 13 includes a CPU 84, a ROM 85 in which an operation program of the CPU 84 and constant data are stored, a work area of the CPU 84, and a temporary storage area for data. RAM 83, registers REG1 to REG6, and peripheral circuits not shown.
切り換え時点は、ディスク 1に不所望な振動を生じて トラッキングサ —ボゃフォーカシングサ一ボが対応できなくなる手前の限界角速度と、 ディスクから読み取った信号情報を処理するための信号検出整形回路 4やディジタル信号処理回路 5などの限界動作周波数に基づいて決定 される信号読み取り限界速度とによって決定する。信号読み取り限界速 度は、 1 6倍速のようにディスク 1の記録線速度に対する倍速として把 握する。  At the time of switching, the limit angular velocity before the tracking servo is unable to respond due to undesired vibration of the disk 1 and the signal detection and shaping circuit 4 for processing the signal information read from the disk, The signal reading limit speed is determined based on the limit operating frequency of the digital signal processing circuit 5 or the like. The signal reading limit speed is grasped as a double speed of the recording linear speed of the disc 1, such as 16 times speed.
CAV制御と CLV制御の切り換え地点を決定するには、ディスク 1 に不所望な振動を生じて トラッキングサーボやフォーカシングサーボ が対応できなくなる手前の限界角速度を取得し、記録線速度の所定倍速 (信号読み取り限界速度に基づいて決定される)の一定線速度でデイス クを回転させると仮定したときディスクの回転が前記限界角速度に到 達する トラック位置に基づいて決定される トラック上での切換え位置 情報を予め取得する。 そして、 速度制御されたディスク 1から順次読み 取った Aタイムが前記切換え位置情報に到達するかを監視し、到達を検 出したとき、 C A V制御は C L V制御に、 C L V制御は C A V制御に切 換える。 上記記録線速度の所定倍速は、 ディジ夕ル信号処理回路 5にお ける信号処理速度の上限や信号検出整形回路 4における動作周波数帯 域の上限などを考慮して決定される。このように信号処理速度の上限や 動作周波数帯域の上限は、ピックァップによる信号読み取り線速度の上 限 (信号読み取り限界速度) を決定する。 上記記録線速度の所定倍速は、 前記信号読み取り限界速度を超えない範囲で決定された信号読み取り 線速度であり、 記録線速度 (標準線速度) に対する所定倍速の線速度と される。 To determine the switching point between CAV control and CLV control, obtain the limit angular velocity before the tracking servo or focusing servo cannot respond due to the occurrence of undesired vibration on Disk 1, and obtain a predetermined multiple of the recording linear velocity (signal reading). (Determined on the basis of the limit speed), it is assumed that the disk is rotated at a constant linear velocity. When the rotation of the disk reaches the limit angular speed, the switching position information on the track is determined on the basis of the track position. get. Then, sequentially read from the speed-controlled disk 1 It monitors whether the taken A-time reaches the switching position information, and when the arrival is detected, switches the CAV control to the CLV control and the CLV control to the CAV control. The predetermined double speed of the recording linear velocity is determined in consideration of the upper limit of the signal processing speed in the digital signal processing circuit 5, the upper limit of the operating frequency band in the signal detection and shaping circuit 4, and the like. As described above, the upper limit of the signal processing speed and the upper limit of the operating frequency band determine the upper limit of the signal reading linear speed (signal reading limit speed) by the pickup. The predetermined double speed of the recording linear speed is a signal reading linear speed determined within a range not exceeding the signal reading limit speed, and is a linear speed of a predetermined double speed with respect to the recording linear speed (standard linear speed).
第 1 4図には前記切り換え時点を特定する切換え位置情報を取得す る処理の一例が示される。同図に示される処理はデイスク 1の装着検出 後のトレーニング期間にマイクロコンピュータ 8が行う。先ず限界角速 度を検出する ( S 1 ) 。 すなわち、 ディスク固有の偏心及び面ぶれの状 態を考慮できるように、前記マイクロコンピュー夕 8は限界角速度を判 定するため、前記トラッキングエラー信号 T E R及びフオーカスエラー 信号 F E Rの振幅を監視しながらディスク 1の回転を加速し、 卜ラツキ ングエラ一信号 T E R及びフォ一カスエラ一信号 F E Rの何れか -方 の振幅が所定値に到達したときのディスクの角速度を前記限界角速度 として検出する。検出された限界角速度はマイクロコンピュー夕 8のレ ジス夕 R E G 2に格納される。 トラッキングエラ一信号 T E R及びフォ 一カスエラー信号 F E Rの振幅の前記所定値とは、 トラッキング及びフ オーカシングサーボが対応できなくなる振幅であり、サーボ制御能力に よって一義的に決定することができる。 この振幅の所定値は、 特に制限 されない力 R O Mから読み出されてレジス夕 R E G 3に設定されたも のが利用される。 このように限界角速度を决定すれば、 偏心や面ぶれな どの個々のディスクの個体差を考慮でき、その個体差に応じて限界角速 度を能力ぎりぎりの地点に設定できる。 尚、 ディスクの装着検出は、 上 記同様、 特に図示はしないが、 トレーにディスク 1が載置されたことを 検出する光学センサの出力の変化によって行うことができる。 FIG. 14 shows an example of a process for obtaining switching position information for specifying the switching time. The processing shown in the figure is performed by the microcomputer 8 during the training period after the attachment of the disk 1 is detected. First, the limit angular speed is detected (S1). That is, the microcomputer 8 monitors the amplitudes of the tracking error signal TER and the focus error signal FER in order to determine the limit angular velocity so that the state of eccentricity and runout inherent to the disk can be considered. The rotation of the disk 1 is accelerated, and the angular velocity of the disk when either one of the tracking error signal TER and the focus error signal FER reaches a predetermined value is detected as the limit angular speed. The detected limit angular velocity is stored in the register REG 2 of the microcomputer 8. The predetermined values of the amplitudes of the tracking error signal TER and the focus error signal FER are amplitudes at which the tracking and focusing servos cannot be handled, and can be uniquely determined by the servo control ability. The predetermined value of the amplitude is read from the power ROM which is not particularly limited, and the value set in the register REG 3 is used. If the limit angular velocity is determined in this way, there is no eccentricity or runout. The individual difference of each disk can be considered, and the limit angular velocity can be set at the very limit according to the individual difference. As described above, the mounting of the disk can be detected by a change in the output of an optical sensor that detects that the disk 1 is mounted on the tray, though not particularly shown in the drawing.
次にディスクの記録線速度を測定する ( S 2 ) 。 記録線速度の測定は 例えば第 1 5図に示される手法で行うことができる。 すなわち、 デイス ク 1の半径が既知のプログラム開始位置 ( 0分0秒) から n (正の整数 例えば 1 ) トラックジャンプして、 ジャンプ先の A夕ィムを検出し、 第 1 5図に示される式 ( 3— 1 ) を用いて線速度を算出する。 第 1 5図に おいて Aタイム 0 〔 0分 0秒〕 を起点に 1 トラックジャンプしたとき、 ジヤンプ位置は Aタイム 1 〔X分 {Y + ZZ7 5 }秒〕 と Aタイム 2 〔X 分 {Y+ ( Z + 1 ) /7 5 } 秒〕 との間の地点 J P 1 とされる。 ここで、 X, Υ, Zは第 9図の Qコ一ドフレームフォ一マツ トとの対応では、 X = AM I N、 Y = AS E C、 Z二 AFRAME ' 7 5 と等価とされる。 Aタイムは前述の通り 1/7 5秒刻みで検出可能であるから、 Aタイム 0 〔0分 0秒〕 を起点に 1 トラックジャンプした後に最初に検出可能な Aタイムは、 Aタイム 3 〔X分 {Y + ( Z + 2 ) /7 5 } 秒〕 とされる c 前記式 ( 3— 1 ) は、 Aタイム 0の位置からジャンプ位置 J P 1までの 螺旋 (トラック) 長を、 Aタイム 0の位置からジャンプ位置 J P 1まの トラック走査に要する時間で除したとき、線速度の検出誤差を最小限と することができるが、 実際には、 Qコードから検出可能な Aタイム 3を 用いるため、 式 ( 3— 1 ) の演算にて取得される線速度にはある程度の 誤差がある。 記式 ( 3— 1 ) における A— T I MEは、 Aタイム 0から 1 トラックジャンプした直後に読み取ることができる Aタイムであり、 第 1 5図に従えば Aタイム 3である。記録線速度を更に高精度に検出す るには、 特にその説明は省略する力 特開平 8 - 2 9 7 9 1 4号公報に 記載の技術を採用すればよい。このようにして検出されたディスクの記 録線速度はマイクロコンピュー夕 8のレジス夕 R E G 4に格納される。 次に、測定されたディスク記録線速度の所定倍速で線速度一定にディ スク 1を回転するとしたときに限界角速度に到達するディスクの半径 を取得する ( S 3 ) 。 マイクロコンビュ一夕 8はディスク半径を求める ために例えば第 1 4図の式 ( 3— 2 ) で示される演算を行う。 式 ( 3— 2 ) において 「設定 C LVn倍速」 は倍速値であり、 前記記録線速度の 所定倍速が記録線速度の 1 6倍速であるなら値 「 1 6」 を意味する。 マ イク口コンピュータ 8は、 式 ( 3— 2 ) において 「設定 C L Vn倍速」 の値をレジス夕 RE G 1より、 「記録線速度」 の値をレジスタ R E G 4 より、 「回転数 (限界角速度) 」 の値をレジス夕 RE G 2より得る。 そ れらに基づいて演算されたディスク半径(切り換え位置におけるデイス ク 1の半径)はマイクロコンピュー夕のレジスタ RE G 5に格納される c そして、 最後に、 マイクロコンピュータ 8は、 第 1 4図の式( 3— 3 ) で示される演算をに基づいて、 CAVと C LVを切り換える切換え位置 情報を取得する ( S 4 ) 。 同式 ( 3— 3 ) の演算内容は、 ステツプ S 3 で求めたディスク半径 (RE G 5の値) とディスク 1の最内周半径 (精 密に表現すれば最内周トラックの半径) との間のディスクの面積を、 卜 ラックのピッチと前記記録線速度との積で除算して時間情報を取得す る。 この時間情報は、 Aタイム 0 〔 0分 0秒〕 を起点にしたときのトラ ック上での時刻であり、これに最も近い Aタイムが C L Vと C AVの切 り換え時点を特定するための切換え位置情報とされる。尚、式( 3— 3 ) において トラックピツチ、最内周半径はディスク 1の規格によって既知 である。 ディスク半径はレジス夕 R E G 5の値から、 測定記録線速度は レジス夕 R E G 4の値から得る。演算された切り換え位置情報はマイク 口コンピュータ 8のレジス夕 RE G 6に格納される。 ステップ S 1で求められた限界角速度 (毎秒回転数) を例えば第 1 6 図の点 P aの角速度とすると、 第 1 6図に示されるように、 測定記録線 速度に対する所定倍速が 1 6倍速のとき、前記ステップ S 2で測定され た記録線速度が 1 . 4 〔m/ s〕 であるときの切換え位置情報は P b 3 の Aタイムとされる。 同様に、 測定された記録線速度が 1 . 3 〔m/ s〕 であるときの切換え位置情報は P b 2の Aタイムとされ、測定された記 録線速度が 1 . 2 〔m/ s〕 であるときの切換え位置情報は P b 1の A タイムとされる。 Next, the recording linear velocity of the disk is measured (S2). The recording linear velocity can be measured, for example, by the method shown in FIG. In other words, from the program start position (0 minute 0 second) where the radius of disk 1 is known, n (positive integer, for example, 1) track jump is performed, and the jump destination A is detected, as shown in Fig. 15 Calculate the linear velocity using the following equation (3-1). In Fig. 15, when one track jumps from A time 0 [0 minutes 0 seconds], the jump positions are A time 1 [X minutes {Y + ZZ75} seconds] and A time 2 [X minutes { Y + (Z + 1) / 7 5} seconds]. Here, in the correspondence with the Q-code frame format in FIG. 9, X, Υ, and Z are equivalent to X = AM IN, Y = ASEAN, and Z-AFRAME '75. Since the A time can be detected in 1/7 5 second increments as described above, the first detectable A time after jumping one track from the A time 0 (0 minute 0 second) is A time 3 (X Min (Y + (Z + 2) / 7 5} seconds] c The above equation (3-1) indicates that the spiral (track) length from the position of the A time 0 to the jump position JP 1 is represented by the A time 0 The error in linear velocity detection can be minimized when the time required to scan the track from the position of the jump position to the jump position JP1 can be minimized, but in actuality, A time 3 that can be detected from the Q code is used. However, there is some error in the linear velocity obtained by the calculation of equation (3-1). The A-TIME in the notation (3-1) is the A-time that can be read immediately after jumping one track from the A-time 0, and is A-time 3 according to FIG. In order to detect the recording linear velocity with higher accuracy, the power of omitting the description is disclosed in Japanese Patent Application Laid-Open No. 8-2799714. The technology described may be employed. The recording linear velocity of the disk thus detected is stored in the register REG 4 of the microcomputer 8. Next, the radius of the disk reaching the limit angular velocity when the disk 1 is rotated at a constant linear velocity at a predetermined multiple speed of the measured disk recording linear velocity is acquired (S3). The microcomputer 8 performs, for example, the calculation shown by the equation (3-2) in FIG. 14 to obtain the disk radius. In the formula (3-2), “set C LVn double speed” is a double speed value, and means a value “16” if the predetermined double speed of the recording linear speed is 16 times the recording linear speed. In the formula (3-2), the microphone computer 8 sets the value of “setting CL Vn double speed” from the register REG 1 and the value of “recording linear speed” from the register REG 4 to “rotational speed (limit angular speed)”. From Regis Evening Reg 2. The disk radius (the radius of the disk 1 at the switching position) calculated based on them is stored in the register REG5 of the microcomputer c . The switching position information for switching between CAV and CLV is obtained based on the calculation represented by the equation (3-3) (S4). The contents of the calculation of the equation (3-3) are as follows: the disk radius (the value of REG 5) obtained in step S 3 and the innermost radius of the disk 1 (the radius of the innermost track in a precise expression) Is divided by the product of the track pitch and the recording linear velocity to obtain time information. This time information is the time on the track starting from the A time 0 (0 minutes 0 seconds), and the A time closest to this is used to specify the switching point between CLV and CAV. Switching position information. Note that, in the equation (3-3), the track pitch and the innermost radius are known according to the disc 1 standard. The disc radius is obtained from the value of REG5, and the measured recording linear velocity is obtained from the value of REG4. The calculated switching position information is stored in the register REG 6 of the microphone computer 8. If the limit angular velocity (rotation speed per second) obtained in step S1 is, for example, the angular velocity at point Pa in FIG. 16, as shown in FIG. 16, the predetermined multiple of the measurement recording linear velocity is 16 ×. At this time, when the recording linear velocity measured in step S2 is 1.4 [m / s], the switching position information is the A time of Pb3. Similarly, when the measured recording linear velocity is 1.3 [m / s], the switching position information is the A time of Pb2, and the measured recording linear velocity is 1.2 [m / s]. ], The switching position information is the A time of Pb1.
第 1 7図には前記切り換え時点を特定する Aタイムを取得する別の 処理例が示される。 すなわち、 ステップ S 5において、 子め保証された 倍速の最高角速度として前記限界角速度を決定する。例えば図示される ように、ディスク 1に不所望な振動を生じない正常動作が保証された性 能、 例えば記録線速度 1 . 3 〔m/ s〕 における 8倍速のような性能に 従って、 マイクロコンピュー夕は、 式 ( 3— 4 ) によって限界角速度を 演算する。 式 ( 3— 4 ) において 「設定 C A V n倍速」 は前記保証され た性能の倍速値を意味し、 8倍速ならば値 「8」 とされる。 設定線速度 は前記保証された性能の記録線速度を意味する。その他の処理は第 1 4 図と同じであり、同一処理内容には同一符号を付してその詳細な説明を 省略する。第 1 7図のように予め保証された倍速の最高角速度として前 記限界角速度を決定する場合には、 式 ( 3— 4 ) の演算を行う代わりに、 性能に応じた限界角速度のデータテーブルを用意し、 式 ( 3— 2 ) の演 算では当該デ一夕テーブルの限界角速度を用いるようにすることも " J 能である。  FIG. 17 shows another example of processing for acquiring the A time for specifying the switching time. That is, in step S5, the limit angular velocity is determined as the maximum angular velocity of the double speed guaranteed by the child. For example, as shown in the figure, according to the performance guaranteed for normal operation that does not cause undesired vibration on the disk 1, for example, the performance such as 8 × speed at a recording linear velocity of 1.3 [m / s], the microcontroller Pyu-Yu calculates the limit angular velocity by the equation (3-4). In the equation (3-4), “set C A V n double speed” means a double speed value of the guaranteed performance described above, and is set to “8” when the speed is eight times higher. The set linear velocity means the recording linear velocity of the guaranteed performance. Other processes are the same as those in FIG. 14, and the same processes are denoted by the same reference numerals and detailed description thereof will be omitted. As shown in Fig. 17, when determining the above-mentioned limit angular velocity as the maximum angular velocity of the double speed guaranteed in advance, instead of performing the calculation of equation (3-4), a data table of the limit angular velocity according to the performance is used. It is also possible to use the limit angular velocity of the data table in the calculation of equation (3-2).
第 1 4図で説明したように、偏心や面ぶれなどの個々のデイスクの個 体差を考慮して限界角速度を決定して C A Vと C L Vの切り換え時点 を取得する手法を採用する場合には、 第 1 8図に示されるように、 ディ スク 1の交換を検出する毎に切り換え時点を求めることが最良である。 すなわち、 ディスク 1の交換 (すなわちディスクの装着) を検出すると ( S 1 0 ) 、 前述の通り振動の起こらない限界角速度を測定し ( S 1 ) 、 次にディスク 1の記録線速度を測定し (S 2 ) 、 それらに基づいて切り 換え時間を演算する ( S 3 , S 4) 。 トレーニング期間にそれら処理を 行った後、 ディスクの再生が開始され、 計算された切り換え時点を境に CAVと C LVの制御が切り換えられる (S 1 1 ) 。 As described in Fig. 14, when the method of determining the limit angular velocity in consideration of the individual difference of each disk such as eccentricity and runout and acquiring the switching point between CAV and CLV is adopted, As shown in Figure 18, It is best to determine the switching time each time a replacement of the disk 1 is detected. That is, when the replacement of the disk 1 (that is, the mounting of the disk) is detected (S10), the limit angular velocity at which vibration does not occur is measured as described above (S1), and then the recording linear velocity of the disk 1 is measured (S10). S 2), and calculates the switching time based on them (S 3, S 4). After performing these processes during the training period, playback of the disc is started, and the control of CAV and CLV is switched at the calculated switching point (S11).
前記ステツプ S 1 1の処理において、切換え位置情報を第 1 6図の P b 2の Aタイムとすると、 マイクロコンピュー夕 8は、 逐次供給される サブコ一ドの Aタイムが前記切換え位置情報に到達するかを判定する。 マイクロコンピュー夕 8は、スピン ドルサ一ボ回路 7に C A V制御を指 示したとき、 Aタイムが前記切換え位置情報に一致する状態を検出する と、速度制御モード指示信号 S I G 4によってスピン ドルサ一ボ回路 7 に C L V制御を指示する。 これにより、 スピンドルモー夕 2の制御は C A Vから C LVに切り換えられる。 また、 前記マイクロコンピュー夕 8 は、 CLV制御下において、 Aタイムが前記切換え位置情報に一致する 状態を検出すると (この例の場合にはトラックジヤンプによって生ず る)、 速度制御モード指示信号 S I G 4によってスピン ドルサーボ回路 7に C A V制御を指示する。 これにより、 スピン ドルモー夕 2の制御は C LVから CAVに切り換えられる。  In the process of step S11, assuming that the switching position information is the A time of Pb2 in FIG. 16, the microcomputer 8 determines that the A time of the sequentially supplied subcode is included in the switching position information. Determine if it will arrive. When the microcomputer 8 instructs the spindle control circuit 7 to perform CAV control and detects a state in which the A-time matches the switching position information, the microcomputer 8 uses the speed control mode instruction signal SIG 4 to control the spindle control. Instruct circuit 7 to perform CLV control. As a result, the control of spindle motor 2 is switched from CAV to CLV. When the microcomputer 8 detects a state in which the A time coincides with the switching position information under the CLV control (in this case, caused by a track jump), the microcomputer 8 performs a speed control mode instruction signal SIG. 4 instructs the spindle servo circuit 7 to perform CAV control. As a result, the control of spindle motor 2 is switched from CLV to CAV.
前記ステツプ S 3 , S 4で行う切り換え時間の計算は、 データテ一ブ ルを用いる処理に代えることができる。例えば、 読み取り線速度を記録 線速度に対する 1 6倍速に固定した場合、第 1 9図のステップ S 1 2に 示されるように、限界角速度と測定線速度をパラメ一夕として予め切り 換え時間が記憶されている切り換え時間テーブルを用意し、ステツプ S 1で取得された限界角速度とステツプ S 2で取得されたディスクの記 録線速度に対応される切り換え時間を切り換え時間テーブルから取得 する。 これによれば、 切り換え時間を取得するための演算時間を短縮で きる。 その他の処理は第 1 8図と同じであり、 同一処理内容には同一符 号を付してその詳細な説明を省略する。 The calculation of the switching time performed in the steps S 3 and S 4 can be replaced with the processing using a data table. For example, if the reading linear velocity is fixed at 16 times the recording linear velocity, the switching time is stored in advance with the limit angular velocity and the measured linear velocity as parameters as shown in step S12 of Fig. 19. Prepare the switching time table shown in the table and record the limit angular velocity obtained in step S1 and the disc obtained in step S2. Obtain the switching time corresponding to the recording line speed from the switching time table. According to this, the calculation time for acquiring the switching time can be reduced. Other processes are the same as those in FIG. 18, and the same processes are denoted by the same reference numerals and detailed description thereof will be omitted.
第 1 7図で説明した手法は、偏心や面ぶれなどの個々のディスクの個 体差を直接考慮して限界角速度を決定しないから、 C A Vと C L Vの切 り換え時点を取得した後、 それを保存しておけば、 ディスクを交換する たびに毎回、 切り換え時間を演算しなくてもよい。第 1 7図においても 第 1 9図のステップ S 1 2の手法を採用することができる。  The method described in Fig. 17 does not determine the limit angular velocity by directly considering the individual difference of each disk such as eccentricity and runout, so after obtaining the switching point of CAV and CLV, If it is saved, the switching time does not have to be calculated every time the disk is replaced. In FIG. 17, the method of step S12 in FIG. 19 can be adopted.
第 2 0図には前記 C A V速度誤差検出回路 7 1の機能をマイクロコ ンピュー夕 8によって実現した C D— R〇M再生装置が示される。すな わち、第 2 0図の C A V速度誤差検出回路 7 1がマイクロコンピュー夕 8に内蔵される。その他の構成は第 1 3図と同様であるので詳細な説明 は省略する。  FIG. 20 shows a CD-R〇M reproducing apparatus in which the function of the CAV speed error detecting circuit 71 is realized by a microcomputer 8. That is, the CAV speed error detection circuit 71 of FIG. 20 is built in the microcomputer 8. Other configurations are the same as those in FIG. 13, and thus detailed description is omitted.
以上説明した C D— R 0 M再生装置によれば、以下の作用効果を得る ことができる。  According to the CD-R0M reproducing apparatus described above, the following operational effects can be obtained.
C A Vと C L V制御との相互切り換え時点を特定するための切換え 位置情報を予め決定しておく。 その際に、 ディスク 1に不所望な振動を 生じてピックアツプサ一ボが対応できなくなる手前の限界角速度と、デ イスクから読み取った信号情報を処理するための信号検出整形回路 4 やディジ夕ル信号処理回路 5などの限界動作周波数に基づいて决まる 信号読み取り限界速度とを考慮する。切換え位置情報は、 記録線速度の 所定倍速(前記信号読み取り限界速度の手前の速度)で線速度一定にデ イスクを回転すると仮定したとき前記限界角速度に到達する 卜ラック 位置に基づいて決定される トラック上での位置情報とされる。再生動作 中における C A V制御と C L V制御の切り換え時点の判定は、 Aタイム のような絶対位置情報が切換え位置情報に一致するか否かの比較判定 動作によって行う。ばらつきが許容されている書き込み線速度に着目し て切り換え時点を判断しょうとする場合には C A V制御下において走 査位置の半径に応じて刻一刻と変化される実際の線速度を逐次演算に よって求めて監視しなければならないが、上記判定手法の場合にはその 必要は全くない。逐次変化する実際の線速度を演算で求める場合、 その 処理は複雑で時間を要し、 それ故に無視し得ない演算誤差も生ずる。 A タイムのような絶対位置情報と切換え位置情報との比較判定処理は簡 単で誤差も少ない。 したがって、 C A Vと C L Vとの制御を切り換える 時点を正確且つ簡単に把握することができる。 Switching position information for specifying the mutual switching point between CAV and CLV control is determined in advance. At that time, the limit angular velocity before the pick-up servo cannot respond due to undesired vibration of the disc 1, the signal detection and shaping circuit 4 for processing the signal information read from the disc, and the digital signal processing Consider a signal reading limit speed determined based on a limit operating frequency of the circuit 5 or the like. The switching position information is determined based on the track position at which the disk reaches the limit angular velocity when it is assumed that the disk is rotated at a predetermined linear velocity (the speed before the signal reading limit velocity) at a constant linear velocity at a predetermined speed. It is the position information on the track. Judgment at the time of switching between CAV control and CLV control during playback operation Is performed by comparing and determining whether or not the absolute position information matches the switching position information. When trying to determine the switching time by paying attention to the writing linear velocity where variation is allowed, the actual linear velocity that changes every moment according to the radius of the scanning position under CAV control is calculated sequentially. Observe and monitor, but in the case of the above judgment method, there is no necessity. When calculating the actual linear velocity that changes sequentially, the processing is complicated and time-consuming, and therefore, a calculation error that cannot be ignored occurs. The process of comparing and determining the absolute position information such as the A time and the switching position information is simple and has few errors. Therefore, it is possible to accurately and easily grasp the point at which the control between CAV and CLV is switched.
限界角速度を決定するとき、偏心や面ぶれなどの個々のディスク 1の 個体差を考慮することにより、その個体差に応じて限界角速度を能力ぎ りぎりの地点に設定できる。  When determining the limit angular velocity, by considering the individual differences of the individual disks 1 such as eccentricity and runout, the limit angular velocity can be set to a point at the limit of the capability according to the individual difference.
上記により、 ディスク 1毎の偏心、 面ぶれ及び記録線速度のばらつき に対して C A Vと C L Vの速度制御の切り換え時点を最適化すること ができる。 したがって、 スピン ドルモー夕 2やディスク 1から読み取つ た信号情報を処理する回路 4、 5の限界の動作性能を十分に発揮させて、 信号読み取り動作もしくは再生動作の高速化を実現することできる。 以上本発明者によってなされた発明を具体的に説明した力 本発明は それに限定されるものではなく、 その要旨を逸脱しない範囲において 種々変更可能であることは言うまでもない。  As described above, it is possible to optimize the switching point of the speed control between CAV and CLV with respect to the eccentricity, surface runout, and variation of the recording linear speed for each disk 1. Therefore, it is possible to realize the maximum operation performance of the circuits 4 and 5 for processing the signal information read from the spindle motor 2 and the disk 1, thereby realizing high-speed signal reading operation or reproduction operation. The power which specifically described the invention made by the present inventor The present invention is not limited to this, and it goes without saying that various modifications can be made without departing from the scope of the invention.
例えば、線速度一定で信号情報が記録されたデイスクは C D— R O M に限定されず、 L D (レーザディスク) 、 M D (ミニディスク) 、 L V (レーザビジョン) 、 C D V (コンパク トディスクビデオ) 或いは D V D (ディジ夕ルビデオディスク)等の規格に準拠したディスクであって もよい。そのようなディスクの速度制御にも本発明を適用することがで きる。 また、 上記説明はディスクに記録された信号情報を再生する場合 に着目した説明に終始一貫したが、書き込み機能も備えた装置に本発明 を適用できることは言うまでもない。 For example, a disc on which signal information is recorded at a constant linear velocity is not limited to a CD-ROM, but an LD (laser disc), MD (mini disc), LV (laser vision), CDV (compact disc video) or DVD ( The disc may be a disc conforming to a standard such as a digital video disc. The present invention can be applied to such disk speed control. Wear. Although the above description is consistent throughout the description focusing on the case of reproducing signal information recorded on a disk, it goes without saying that the present invention can be applied to an apparatus having a writing function.
また、前記ディジ夕ル信号処理回路 5及びスピン ドルサーボ回路 7を 1チップの半導体集積回路で構成したり、更にマイクロコンピュータ 8 も内蔵して 1チップのディ スク用コン トローラ L S Iとすることも可 能である。  Further, the digital signal processing circuit 5 and the spindle servo circuit 7 may be formed of a one-chip semiconductor integrated circuit, or may be built in a microcomputer 8 to form a one-chip disk controller LSI. It is.
また、 上記説明は倍速値を 16倍で説明したが、 20倍、 更にはそれ 以上の倍速値の場合にも本発明を適用できることは言うまでもない。 また、 ディスクの種類によっては、 Aタイムの代わりに、 ディスク上 での絶対ァドレスのような I D情報を絶対位置情報として用いること ができる。  In the above description, the double speed value has been described as 16 times. However, it is needless to say that the present invention can be applied to a case of a double speed value of 20 times or more. Also, depending on the type of disc, ID information such as an absolute address on the disc can be used as absolute position information instead of the A time.
また、 ディスクの限界角速度の測定は、 マイクロコンピュー夕が T E R, FERに基づいて行う手法に限定されず、 適宜変更することができ る 産業上の利用可能性  In addition, the measurement of the critical angular velocity of the disk is not limited to the method performed by the microcomputer based on TERR and FER, and can be changed as appropriate.
以上のように、 本発明は、 CD— ROM、 LD、 MD、 LV、 CDV 或いは D VD等の線速度一定で信号情報が記録されたディスクの記録 情報を再生する装置に広く適用することができる。  As described above, the present invention can be widely applied to an apparatus for reproducing recorded information of a disc on which signal information is recorded at a constant linear velocity, such as a CD-ROM, LD, MD, LV, CDV, or DVD. .

Claims

請 求 の 範 囲 The scope of the claims
1 .螺旋状トラックに倩報信号が線速度一定に記録されたディスクをピ ックアツプで走査して前記情報信号を読み取り、読み取った情報信号 からデ一夕を再生する記録情報再生装置であって、 1. A recording information reproducing apparatus for scanning a disc on which a linear signal is recorded at a constant linear velocity on a spiral track by reading up the information signal and reproducing the data from the read information signal,
前記ディスクの内周側ではディスクの回転を角速度一定に制御し、 ディスクの外周側ではピックアップによる読み取り線速度一定にデ ィスクの回転速度を制御する速度制御手段を有し、  On the inner peripheral side of the disk, there is provided speed control means for controlling the rotation of the disk at a constant angular velocity, and on the outer peripheral side of the disk, controlling the rotational speed of the disk at a constant linear reading speed by a pickup.
前記速度制御手段は、角速度一定の制御と線速度一定の制御との切 り換え地点を特定する情報を記憶するレジス夕手段を有し、ディスク から読み取った情報信号に基づいて生成される情報と前記レジス夕 手段に設定された情報とを比較することにより、線速度一定の制御又 は角速度一定の制御を選択するものであることを特徴とする記録情 報再生装置。  The speed control means includes a register for storing information for specifying a switching point between the constant angular velocity control and the constant linear velocity control, and includes information generated based on an information signal read from a disk. The recording information reproducing apparatus is characterized in that a constant linear velocity control or a constant angular velocity control is selected by comparing the information set in the register means.
2 .螺旋状トラックに情報信号が線速度一定に記録されたデイスクをピ ックアツブで走査して前記情報信号を読み取り、読み取った情報信号 からデ一夕を再生する記録情報再生装置であって、 2.A recorded information reproducing apparatus for scanning a disk having an information signal recorded at a constant linear velocity on a spiral track by a pick-up to read the information signal, and reproducing the data from the read information signal,
前記ディスクの内周側ではディスクの回転を角速度- 定に制御し、 ディスクの外周側ではピックァップによる読み取り線速度一定にデ イスクの回転速度を制御する速度制御手段を有し、  Speed control means for controlling the rotation of the disk at a constant angular velocity on the inner peripheral side of the disk, and controlling the rotational speed of the disk at a constant reading linear velocity by pick-up on the outer peripheral side of the disk;
前記速度制御手段は、角速度を一定に制御するためのディスクの目 的回転速度デ一夕と線速度を一定に制御するための目的周波数デー 夕とが設定されるレジス夕手段を有し、角速度一定の速度制御下にお ける線速度が線速度一定の目的線速度に達したか否かを、 ピックアツ プから読み取った情報信号の読み取り速度に同期する同期信号の周 波数と前記レジス夕手段に設定された目的周波数デ一夕とを比較す ることによって判定し、 その判定結果を用いて、 角速度一定の制御を 線速度一定の制御切り換えるものであることを特徴とする記録情報 再生装置。The speed control means includes a register means for setting a target rotation speed data of the disk for controlling the angular velocity constant and a target frequency data for controlling the linear velocity constant, Whether the linear velocity under the constant velocity control has reached the target linear velocity or not is determined by the frequency of the synchronization signal synchronized with the reading speed of the information signal read from the pickup and the registration means. Compare with the set target frequency A recording information reproducing apparatus characterized in that constant angular velocity control is switched to constant linear velocity control using the result of the determination.
. 前記速度制御手段は、 線速度一定の制御下における角速度が角速度 一定の目的角速度に達したか否かを、ディスクの回転速度と目的回転 速度データとを比較することによって判定し、その判定結果を用いて、 線速度一定の制御を角速度一定の制御に切り換えるものであること を特徴とする請求の範囲第 2項に記載の記録情報再生装置。The speed control means determines whether or not the angular velocity under the constant linear velocity control has reached the constant angular velocity target angular velocity by comparing the disk rotational velocity with the target rotational velocity data, and the determination result 3. The recording information reproducing apparatus according to claim 2, wherein the control for switching the constant linear velocity to the constant angular velocity control is performed using the control.
. 前記速度制御手段は、 角速度一定の速度制御下における線速度が線 速度一定の目的線速度に達した状態を判定して角速度一定の制御を 線速度一定の制御切り换えたとき、ディスクから読み取った情報信号 によって生成した トラックの絶対位置情報を切り換え位置情報とし て取得し、取得した切換え位置情報とディスクの読み取り情報から生 成された絶対位置情報との大小関係に基づいて、角速度一定の制御又 は線速度一定の制御を選択するものであることを特徴とする請求の 範囲第 2項に記載の記録情報再生装置。 The speed control means determines a state in which the linear velocity under the constant angular velocity constant speed control has reached a target linear velocity with constant linear velocity, and when the control of constant angular velocity is switched to the control with constant linear velocity, reads from the disk. The absolute position information of the track generated by the obtained information signal is acquired as the switching position information, and the constant angular velocity is controlled based on the magnitude relationship between the acquired switching position information and the absolute position information generated from the information read from the disc. 3. The recording information reproducing apparatus according to claim 2, wherein a control for keeping the linear velocity constant is selected.
.螺旋状トラックに情報信号が線速度一定に記録されたディスクをピ ックアツプで走査して前記情報信号を読み取り、読み取った情報信号 からデータを再生する記録情報再生装置であって、  A recording information reproducing apparatus for reading a disk with an information signal recorded on a spiral track at a constant linear velocity by picking up the information signal and reproducing data from the read information signal,
前記ディスクの内周側ではディスクの回転を角速度一定に制御し、 ディスクの外周側ではピックアップによる読み取り線速度一定にデ イスクの回転速度を制御する速度制御手段を有し、  On the inner peripheral side of the disk, there is provided speed control means for controlling the rotation of the disk at a constant angular velocity, and on the outer peripheral side of the disk, controlling the rotational speed of the disk at a constant linear reading speed by a pickup.
前記速度制御手段は、角速度一定の速度制御下における線速度が線 速度一定の制御下における線速度に達するときのディスクの絶対位 置情報を切り換え位置情報として格納するレジス夕手段を有し、ディ スクから読み取った情報信号に基づいて生成される絶対位置情報と 前記レジス夕手段に設定された切り換え位置情報との大小を比較す ることにより、線速度一定の制御又は角速度一定の制御を選択するも のであることを特徴とする記録情報再生装置。 The speed control means includes register means for storing absolute position information of the disk as switching position information when the linear velocity under the constant angular velocity control reaches the linear velocity under the constant linear velocity control; Absolute position information generated based on the information signal read from the disk The recording information reproducing apparatus is characterized in that control of constant linear velocity or control of constant angular velocity is selected by comparing magnitude with switching position information set in the register means.
6 .螺旋状トラックに情報信号が所定のビッ ト周期で線速度一定に記録 されたディスクをピックアップで走査して前記情報信号を読み取り、 読み取った情報信号からデータを再生する記録情報再生装置におい て、前記ディスクの回転を角速度一定又はピックァヅプによる読み取 り線速度一定に切り換えて制御する速度制御方法であって、 6. In a recording information reproducing apparatus for reading the information signal by scanning a disk in which an information signal is recorded at a constant linear velocity at a predetermined bit cycle on a spiral track by a pickup, and reproducing data from the read information signal. A speed control method for controlling the rotation of the disk by switching the rotation to a constant angular velocity or a constant reading linear velocity by a pickup;
角速度一定から線速度一定への速度制御の切り換え時点を、前記情 報信号の読み取り速度に同期した同期信号の周波数が線速度一定の 目的周波数に到達するかを監視して検出し、  The switching point of the speed control from the constant angular velocity to the constant linear velocity is detected by monitoring whether the frequency of the synchronization signal synchronized with the reading speed of the information signal reaches the target frequency with the constant linear velocity, and
線速度一定から角速度一定への速度制御の切り換え時点を、デイス クの回転速度が角速度一定の目的角速度に到達するかを監視して検 出することを特徴とする速度制御方法。  A speed control method characterized in that a switching point of the speed control from a constant linear velocity to a constant angular velocity is detected by monitoring whether the rotational speed of the disk reaches a target angular velocity with a constant angular velocity.
7 .螺旋状トラックに情報信号が所定のビッ ト周期で線速度一定に記録 されたディスクをピックアツプで走査して前記情報信号を読み取り、 読み取つた情報信号からデータを再生する記録情報再生装置であつ て、 7. A recording information reproducing apparatus for reading a disc having a spiral track on which an information signal is recorded at a constant linear velocity at a predetermined bit cycle by a pickup, reading the information signal, and reproducing data from the read information signal. hand,
前記ディスクの回転を角速度一定又はピックアツプによる読み取 り線速度一定に切り換えて制御する速度制御手段を有し、  Speed control means for controlling the rotation of the disk by switching to a constant angular velocity or a constant read linear velocity by pick-up,
この速度制御手段は、情報信号の読み取り速度に応じた周波数の同 期信号を検出すると共に、 ディスクの回転角速度を検出し、 角速度一 定から読み取り線速度一定への切り換えを、前記同期信号の周波数が 前記読み取り線速度一定の目的周波数に到達するとき行い、読み取り 線速度一定から角速度一定への切り換えを、前記ディスクの回転角速 度が前記角速度一定の目的角速度に到達するとき行うものであるこ とを特徴とする記録情報再生装置。The speed control means detects a synchronization signal having a frequency corresponding to the reading speed of the information signal, detects the rotational angular speed of the disk, and switches from a constant angular speed to a constant reading linear speed by changing the frequency of the synchronization signal. Is performed when the target frequency at the constant reading linear velocity is reached, and the switching from the constant reading linear velocity to the constant angular velocity is performed when the rotational angular velocity of the disk reaches the target angular velocity at the constant angular velocity. And a recorded information reproducing apparatus.
. 前記速度制御手段は、 ディスクを角速度一定で回転制御するとき、 記録情報から読み取られた絶対位置情報が所定値以上であることを 条件に、前記同期信号の周波数が前記読み取り線速度一定の目的周波 数に到達するかを判定するものであることを特徴とする請求の範囲 第 7項記載の記録情報再生装置。  When controlling the rotation of the disk at a constant angular velocity, the speed control means adjusts the frequency of the synchronization signal to the constant reading linear velocity on condition that the absolute position information read from the recording information is equal to or greater than a predetermined value. 8. The recorded information reproducing apparatus according to claim 7, wherein the apparatus determines whether or not the frequency reaches the frequency.
. 前記速度制御手段は、 ディスクを線速度一定で回転制御するとき、 記録情報から読み取られた絶対位置情報が所定値以下であることを 条件に、前記ディスクの回転角速度が前記角速度一定の目的角速度に 到達するかを判定するものであることを特徴とする請求の範囲第 7 項又は第 8項記載の記録情報再生装置。  When controlling the rotation of the disk at a constant linear velocity, the speed control means sets the rotational angular velocity of the disk to the target angular velocity at the constant angular velocity, provided that the absolute position information read from the recording information is equal to or less than a predetermined value. 9. The recording information reproducing apparatus according to claim 7, wherein the recording information reproducing apparatus is configured to determine whether or not the recording information is reached.
1 0 . 前記同期信号は、 前記情報信号の単位フレーム毎に含まれるフレ —ム同期パターンの読み取りサイクルに同期するフレーム同期信号 であることを特徴とする請求の範囲第 7項記載の記録情報再生装置。 1 1 . 前記同期信号は、 ディスクから読み取られた前記情報信号のパル ス幅をデ一夕として識別するための P L L回路によって生成される 同期クロック信号であることを特徴とする請求の範囲第 7項記載の 記録情報再生装置。  10. The recorded information reproduction according to claim 7, wherein the synchronization signal is a frame synchronization signal synchronized with a reading cycle of a frame synchronization pattern included in each unit frame of the information signal. apparatus. 11. The synchronization signal according to claim 7, wherein the synchronization signal is a synchronization clock signal generated by a PLL circuit for identifying a pulse width of the information signal read from a disk as a delay. The recorded information reproducing device described in the item.
1 2 . 前記速度制御手段は、 前記読み取り線速度一定の回転制御では、 前記情報信号の単位フレーム毎に含まれるフレーム同期パターンの 読み取りサイクルに同期するフレーム同期信号の周波数を目的周波 数に一致させるようにディスクの回転をフィ一ドノ、ヅク制御し、前記 角速度一定の回転制御では、検出した前記回転角速度を一定させるよ うにディスクの回転を制御するものであることを特徴とする請求の 範囲第 7項記載の記録情報再装置。  12. The speed control means adjusts the frequency of a frame synchronization signal synchronized with a reading cycle of a frame synchronization pattern included in each unit frame of the information signal to the target frequency in the rotation control at a constant reading linear velocity. In this manner, the rotation of the disk is subjected to a feedback control, and the rotation of the disk is controlled so that the detected rotation angular velocity is constant in the rotation control with the constant angular velocity. Item 7. The recorded information re-apparatus according to Item 7.
1 3 . 前記目的角速度は、 ピックアップによる螺旋状トラックの走査を 安定に行うことができるディスクモー夕の限界速度に基づいて決定 される角速度であり、 前記目的周波数は、 ディスクから読み取った I主 報信号を処理する回路の限界動作周波数に基づいて決定される線速 度に対応する周波数であることを特徴とする請求の範囲第 7項記載 の記録情報再生装置。 1 3. The target angular velocity is determined by scanning the spiral track by the pickup. An angular velocity determined based on a limit speed of a disk mode that can be performed stably, and the target frequency is a line determined based on a limit operating frequency of a circuit that processes an I information signal read from a disk. 8. The recorded information reproducing apparatus according to claim 7, wherein the frequency is a frequency corresponding to the speed.
4 .螺旋状トラックに情報信号が所定のビッ ト周期で線速度一定に記 録されたディスクの走査によって前記情報信号を読み取って再生す るためのディスクコン トローラであって、前記ディスクの回転を角速 度一定又はピックアツプによる読み取り線速度一定に切り換え制御 すると共に、 ディジタル信号処理回路と、 サ一ボ回路と、 制御回路と を備え、 4. A disk controller for reading and reproducing the information signal by scanning the disk in which the information signal is recorded at a constant linear velocity at a predetermined bit cycle on the spiral track, and controls the rotation of the disk. It controls switching to constant angular velocity or constant reading linear velocity by pick-up, and includes a digital signal processing circuit, servo circuit, and control circuit.
前記ディジ夕ル信号処理回路は、前記ディスクから読み取られた前 記情報信号のパルス幅をデータとして識別し、識別されたデータを復 調し、 復調されたデ一夕から制御情報及びデ一夕情報を取得し、 前記 情報信号の読み取り速度に応じた周波数を持つ同期信号の周波数と 目的周波数との誤差から生成した速度誤差信号を読み取り線速度 -定のディスク回転制御のために前記サ一ボ回路に与えるものであり、 前記制御回路は、 ディスクの回転角速度を検出し、 目的角速度との 誤差信号を角速度一定のディスク回転制御のために前記サーボ回路 に与えると共に、前記速度誤差検出回路に角速度一定のディスク回転 制御を指示したとき、前記同期信号の周波数が前記読み取り線速度一 定のための目的周波数に到達することを条件に前記サ一ボ回路に角 速度一定のディスク回転制御を線速度一定のディスク回転制御に切 り換える指示を与え、前記サーボ回路に読み取り線速度一定のデイス ク回転制御を指示したとき、前記ディスクの回転角速度が前記角速度 一定のための目的角速度に到達することを条件に前記サーボ回路に 読み取り線速度一定のディスク回転制御を角速度一定のデイスク回 転制御に切り換える指示を与えるものであることを特徴とするディ スクコン トローラ。 The digital signal processing circuit identifies the pulse width of the information signal read from the disk as data, demodulates the identified data, and starts demodulating the control information and the demodulated data. Information is obtained, and a speed error signal generated from an error between a frequency of a synchronization signal having a frequency corresponding to a reading speed of the information signal and a target frequency is read. The control circuit detects the rotational angular velocity of the disk, and supplies an error signal from the target angular velocity to the servo circuit for controlling the disk rotation at a constant angular velocity. When a certain disc rotation control is instructed, the above-mentioned sub signal is provided on condition that the frequency of the synchronizing signal reaches a target frequency for fixing the reading linear velocity. When the servo circuit is instructed to switch the disk rotation control with constant angular velocity to the disk rotation control with constant linear velocity, and when the servo circuit is instructed to perform disk rotation control with constant reading linear velocity, the rotation angular velocity of the disk is reduced. The servo circuit is provided on condition that the angular velocity reaches a target angular velocity for constant. A disk controller for giving an instruction to switch from a disk rotation control with a constant reading linear velocity to a disk rotation control with a constant angular velocity.
5 .螺旋状トラックに情報信号が所定のビッ ト周期で線速度一定に記 録されたディスクの走査によって前記情報信号を読み取って再生す るためのディスクコン トローラであって、前記ディスクの回転を角速 度一定又はピックアツプによる読み取り線速度一定に切り換え制御 する制御回路と、 ディジタル信号処理回路とを備え、  5. A disk controller for reading and reproducing the information signal by scanning a disk in which an information signal is recorded at a constant linear velocity at a predetermined bit cycle on a spiral track, and controls the rotation of the disk. A control circuit for controlling switching to a constant angular velocity or a constant reading linear velocity by pick-up, and a digital signal processing circuit;
前記ディジ夕ル信号処理回路は、前記ディスクから読み取られた前 記情報信号のパルス幅をデ一夕として識別し、識別されたデータを復 調し、 復調されたデータから制御情報及びデータ情報を取得し、 前記 情報信号の読み取り速度に応じた周波数を持つ同期信号の周波数と 目的周波数との誤差から生成した第 1の速度誤差信号を読み取り線 速度一定のディスク回転制御のために形成すると共に、ディスクの回 転角速度と目的角速度との誤差から生成した第 2の速度誤差信号を 角速度一定のディスク回転制御のために形成し、  The digitizing signal processing circuit identifies the pulse width of the information signal read from the disk as data, demodulates the identified data, and extracts control information and data information from the demodulated data. Acquiring and forming a first speed error signal generated from an error between a frequency of a synchronization signal having a frequency corresponding to a reading speed of the information signal and a target frequency for controlling disk rotation at a constant reading linear speed; A second speed error signal generated from an error between the disk rotation angular speed and the target angular speed is formed for disk rotation control with a constant angular speed,
前記制御回路は、前記ディジタル信号処理回路に前記第 2の速度誤 差信号を用いた角速度一定のディスク回転制御を指示したとき、 前記 同期信号の周波数が前記読み取り線速度一定のための目的周波数に 到達することを条件に前記ディジタル信号処理回路に線速度一定の ディスク回転制御への切り換えを指示し、前記ディジ夕ル信号処理回 路に前記第 1の速度誤差信号を用いた線速度一定のディスク回転制 御を指示したとき、前記ディスクの回転角速度が前記角速度一定のた めの目的角速度に到達することを条件に前記ディ ジ夕ル信号処理回 路に角速度一定のディスク回転制御への切り換えを指示するもので あることを特徴とするディスクコン トローラ。 The control circuit, when instructing the digital signal processing circuit to control the disk rotation at a constant angular velocity using the second velocity error signal, sets the frequency of the synchronization signal to the target frequency for the constant reading linear velocity. The digital signal processing circuit is instructed to switch to disk rotation control with a constant linear velocity on condition that the disk speed is reached, and a disk with a constant linear velocity using the first velocity error signal is sent to the digital signal processing circuit. When the rotation control is instructed, the digital signal processing circuit switches the disk rotation control to the constant angular velocity control on the condition that the rotational angular velocity of the disk reaches the target angular velocity for the constant angular velocity. A disc controller characterized by instructions.
6 .螺旋状トラックに情報信号が線速度一定に記録されたデイスクを ピックァップで走査して前記情報信号を読み取り、読み取つた情報信 号からデ一夕を再生する記録情報再生装置において、前記ディスクの 回転を角速度一定又はピックアツプによる読み取り線速度一定に切 り換えて制御する速度制御方法であって、 6. In a recorded information reproducing apparatus for reading the information signal by scanning a disk having an information signal recorded at a constant linear velocity on a spiral track by a pickup, and reproducing the data from the read information signal, A speed control method for controlling rotation by switching the rotation to a constant angular velocity or a constant reading linear velocity by pick-up,
前記ディスクに不所望な振動が起きる手前の限界角速度を取得す る第 1ステップと、前記ディスクに記録された情報の記録線速度を取 得する第 2ステップと、 前記第 2ステツプで取得した線速度の所定倍 速で線速度一定にディスクを回転すると仮定したとき前記第 1 ステ ップで取得した限界角速度に到達する 卜ラック位置に基づいて決定 される トラック上での切換え位置情報を取得する第 3ステツプと、 を 卜レーニング動作期間に含み、  A first step of obtaining a limit angular velocity just before undesired vibration occurs in the disk, a second step of obtaining a recording linear velocity of information recorded on the disk, and a linear velocity obtained in the second step Assuming that the disk is rotated at a constant linear velocity at a predetermined multiple of, the switching position information on the track determined based on the track position that reaches the limit angular velocity obtained in the first step is obtained. 3 steps and are included in the training operation period,
記録情報の再生動作期間には、前記第 1ステツプで取得した限界角 速度でディスクを角速度一定に速度制御する第 4ステツプと、前記第 2ステップで取得した線速度の所定倍速でディスクを線速度一定に速 度制御する第 5ステップと、速度制御されたディスクから順次読み取 つた絶対位置情報と前記第 3 ステップで取得された切換え位置†it報 との大小関係を判別し、その判別結果に従って角速度一定の速度制御 と線速度一定の速度制御とを切り換える第 6 ステップとを含むこと を特徴とする速度制御方法。  During the reproduction operation of the recorded information, a fourth step of controlling the disk at a constant angular velocity at the limit angular velocity obtained in the first step, and a linear velocity of the disk at a predetermined multiple of the linear velocity obtained in the second step. The fifth step of constant speed control, and the magnitude relationship between the absolute position information sequentially read from the speed-controlled disk and the switching position Δit information obtained in the third step is determined, and the angular velocity is determined according to the determination result. A speed control method, comprising: a sixth step of switching between constant speed control and constant linear speed control.
7 . 前記第 1ステップは、 前記螺旋状トラックに対するピックアップ サ一ボエラ一信号の振幅を監視しながらディスクの角速度を徐々増 し、前記ビックアツプサーボエラ一信号の振幅が所定値に到達したと きのディスクの角速度を前記限界角速度とすることを特徴とする請 求の範囲第 1 6項記載の速度制御方法。  7. The first step is to gradually increase the angular velocity of the disk while monitoring the amplitude of the pick-up servo error signal for the spiral track, and when the amplitude of the big up servo error signal reaches a predetermined value. 17. The speed control method according to claim 16, wherein the angular velocity of the disk is set to the limit angular velocity.
8 . 前記第 3ステップは、 前記第 2ステップで取得した線速度の前記 所定倍速で線速度一定にディスクを回転すると仮定したとき前記第 1 ステップで取得した限界角速度に到達するディスクの半径を取得し、 この半径とディスクの最内周トラックの半径との間のディスクの面 積を、 トラックのピッチと前記第 2ステップで取得した線速度との積 で除算して得られる時間情報を前記切換え位置情報とすることを特 徴とする請求の範囲第 1 6項又は 1 7項記載の速度制御方法。 8. The third step is the step of calculating the linear velocity obtained in the second step. Assuming that the disk is rotated at a predetermined linear speed and a constant linear velocity, the radius of the disk reaching the limit angular velocity obtained in the first step is obtained, and the radius of the disk between this radius and the radius of the innermost track of the disk is obtained. 17. The switching position information according to claim 16, wherein time information obtained by dividing an area by a product of a track pitch and a linear velocity obtained in the second step is used as the switching position information. The speed control method described in paragraph 7.
9 .情報信号が螺旋状トラックに線速度一定に記録されたディスクを ピックァップで走査して前記情報信号を読み取り、読み取った情報信 号からデ一夕を再生する記録情報再生装置であって、  9.A recorded information reproducing apparatus which scans a disc having an information signal recorded on a spiral track at a constant linear velocity by a pickup to read the information signal, and reproduces data from the read information signal,
前記ディスクの回転を角速度一定又はピゾクアツプによる読み取 り線速度一定に制御する速度制御手段を有し、  Speed control means for controlling the rotation of the disk to a constant angular speed or a constant linear reading speed by pi-zup;
前記速度制御手段は、ディスクの回転を前記線速度一定にすると仮 定したとき、ディスクの角速度がディスクに不所望な振動の起きる手 前の限界角速度に到達するときの トラック位置に基づいて決定され る切換え位置情報を取得し、 この切り換え位置情報で特定される位置 とピックアップによる走査位置との前後関係に基づいて前記線速度 一定と角速度一定の速度制御を相互に切り換えるものであることを 特徴とする記録情報再生装置。  The speed control means is determined based on a track position at which the angular velocity of the disk reaches a limit angular velocity before an undesired vibration occurs in the disk, assuming that the rotation of the disk is constant at the linear velocity. The constant linear velocity and the constant angular velocity control are mutually switched based on the front-rear relationship between the position specified by the switching position information and the scanning position by the pickup. Recording information reproducing device.
0 .複数フレーム毎に絶対位置情報を含む情報信号が螺旋状トラック に線速度一定に記録されたディスクをピックアツプで走査して前記 情報信号を読み取り、読み取った情報信号からデータを再生する記録 情報再生装置であって、  0. A disc in which an information signal containing absolute position information is recorded on a spiral track at a constant linear velocity for each of a plurality of frames is scanned by a pickup, the information signal is read, and data is reproduced from the read information signal. A device,
前記ディスクの回転を角速度一定又はピックアツプによる読み取 り線速度一定に制御すると共に、読み取られた情報信号から所定の絶 対位置情報を検出したとき、前記線速度一定と角速度一定の速度制御 を相互に切り換える速度制御手段を有し、 前記所定の絶対位置情報は、ディスクの回転を前記線速度一定にす ると仮定したとき、ディスクの角速度がディスクに不所望な振動の起 きる手前の限界角速度に到達するときのトラック位置に基づいて決 定される切換え位置情報であることを特徴とする記録情報再生装置。 The rotation of the disk is controlled to a constant angular velocity or a constant linear velocity read out by pick-up, and when predetermined absolute position information is detected from the read information signal, the speed control for the constant linear velocity and the constant angular velocity are mutually performed. It has speed control means for switching, The predetermined absolute position information is based on a track position at which the angular velocity of the disk reaches a limit angular velocity before an undesired vibration occurs on the disk, assuming that the rotation of the disk is constant at the linear velocity. Recording information reproducing apparatus, characterized in that the switching position information is determined by the switching position information.
2 1 . 前記速度制御手段は、 ディスクの装着を検出すると、 前記ディス クに不所望な振動が起きる手前の限界角速度と前記ディスクに記録 された情報の記録線速度とを演算すると共に、取得された線速度の所 定倍速で線速度一定にディスクを回転すると仮定したときに前記限 界角速度に到達する トラック上の位置に基づいて決定される切換え 位置情報を取得するものであることを特徴とする請求の範囲第 2 0 項記載の記録情報再生装置。 21. Upon detecting the mounting of the disk, the speed control means calculates and obtains the limit angular velocity just before undesired vibration occurs in the disk and the recording linear velocity of the information recorded on the disk. The switching position information determined based on the position on the track that reaches the limit angular velocity when the disk is rotated at a constant linear velocity at a constant linear velocity. 21. The recorded information reproducing apparatus according to claim 20, wherein
2 2 .複数フレーム毎に絶対位置情報を含む情報信号が螺旋状卜ラック に線速度一定に記録されたデイスクをピックアツプで走査して前記 情報信号を読み取り、読み取った情報信号からデータを再生する記録 情報再生装置であって、 2 2.Recording to read the information signal by picking up a disk on which information signals including absolute position information are recorded at a constant linear velocity on a spiral track for each of a plurality of frames, and to reproduce data from the read information signals An information reproducing apparatus,
前記ディスクの回転を角速度一定又はピックアツプによる読み取 り線速度一定に切り換えて制御する速度制御手段を有し、  Speed control means for controlling the rotation of the disk by switching to a constant angular velocity or a constant read linear velocity by pick-up,
前記速度制御手段は、前記デイスクに不所望な振動が起きる手前の 限界角速度を記憶する第 1記憶手段と、前記ディスクに記録された情 報の記録線速度を記憶する第 2記憶手段と、 前記第 2記憶手段に記憶 された線速度の所定倍速で線速度一定にディスクを回転すると仮定 したとき前記第 1 第記憶手段が保有する限界角速度に到達する トラ ック位置に基づいて決定される切換え位置情報を記憶する第 3 記憶 手段とを有し、 前記第 1記憶手段に記憶された回転速度でディスクを 角速度一定に速度制御すると共に、前記第 2記憶手段に記憶された線 速度の前記所定倍速でディスクを線速度一定に速度制御し、速度制御 されたディスクから順次読み取った絶対位置情報が前記第 3 記憶手 段に記憶された切換え位置情報に到達するかを監視し、到達するとき、 角速度一定の速度制御を線速度一定の速度制御に、線速度一定の速度 制御を角速度一定の速度制御に切換え制御するものであることを特 徴とする記録情報再生装置。 The speed control means includes: first storage means for storing a limit angular velocity before an undesired vibration occurs on the disk; second storage means for storing a recording linear velocity of information recorded on the disk; When it is assumed that the disk is rotated at a constant linear velocity at a predetermined multiple of the linear velocity stored in the second storage means, the switching determined based on the track position reaching the limit angular velocity held by the first storage means A third storage means for storing position information, wherein the speed of the disk is controlled to a constant angular velocity with the rotation speed stored in the first storage means, and the predetermined linear velocity stored in the second storage means is provided. Speed control of the disc at a constant linear speed at double speed, speed control It is monitored whether the absolute position information sequentially read from the read disks reaches the switching position information stored in the third storage means. When the absolute position information reaches the switching position information, the constant angular velocity control is changed to a constant linear velocity control. A recording information reproducing apparatus characterized in that speed control at a constant linear velocity is switched to speed control at a constant angular velocity.
3 . 前記所定倍速は、 ディスクから読み取った情報信号を再生する回 路の限界の信号処理速度に基づいて決まる信号読み取り速度である ことを特徴とする請求の範囲第 2 2項記載の記録情報再生装置。  3. The recorded information reproduction according to claim 22, wherein the predetermined speed is a signal reading speed determined based on a limit signal processing speed of a circuit for reproducing an information signal read from a disk. apparatus.
4 .複数フレーム毎に絶対位置情報を含む情報信号が螺旋状トラック に線速度一定に記録されたディスクの走査によって前記情報信号を 読み取って再生するためのディスクコン トローラであって、ディジ夕 ル信号処理回路と、 サ一ボ回路と、 制御回路とを備え、  4. A disk controller for reading and reproducing the information signal by scanning a disk in which an information signal including absolute position information is recorded on a spiral track at a constant linear velocity for each of a plurality of frames. A processing circuit, a servo circuit, and a control circuit,
前記ディスクの装着を検出したとき前記制御回路は、前記ディスク に不所望な振動が起きる手前の限界角速度と前記ディスクに記録さ れた情報の記録線速度とを取得すると共に、取得された記録線速度の 所定倍速で線速度一定にディスクを回転すると仮定したとき前 d限 界角速度に到達する トラック位置に基づいて決定される トラック上 での切換え位置情報を取得するものであり、  When detecting the mounting of the disk, the control circuit obtains a limit angular velocity just before undesired vibration occurs in the disk and a recording linear velocity of information recorded on the disk, and obtains the obtained recording line. When the disk is rotated at a constant linear velocity at a predetermined multiple of the velocity, the switching position information on the track, which is determined based on the track position that reaches the limit angular velocity before d, is acquired.
前記ディジ夕ル信号処理回路は、前記ディスクから読み取られた前 記情報信号のパルス幅をデータとして識別し、識別されたデ一夕を復 調し、 復調されたデータから制御情報及びデータ情報を取得し、 前記 情報信号の読み取り速度に応じた周波数を持つ同期信号の周波数と 目的周波数との誤差から生成した速度誤差信号を読み取り線速度 - 定のディスク回転制御のために前記サ一ボ回路に与えると共に、前記 制御情報を前記制御回路に与えるものであり、  The digital signal processing circuit identifies the pulse width of the information signal read from the disk as data, demodulates the identified data, and extracts control information and data information from the demodulated data. A speed error signal generated from an error between a frequency of a synchronization signal having a frequency corresponding to the reading speed of the information signal and a target frequency is read, and the servo circuit is read to the servo circuit for linear speed-constant disk rotation control. And providing the control information to the control circuit.
前記制御回路は更に、 ディスクの回転角速度を検出し、 目的角速度 との誤差信号を角速度一定のディスク回転制御のために前記サーボ 回路に与えると共に、前記制御情報から生成される絶対位置情報と前 記切換え位置情報との大小を判別し、その判別結果に応じて角速度一 定又は線速度一定の速度制御を切り換えるものであることを特徴と するディスクコントローラ。 The control circuit further detects a rotational angular velocity of the disk, and calculates a target angular velocity. Is supplied to the servo circuit for controlling the disk rotation at a constant angular velocity, and the magnitude of the absolute position information generated from the control information and the switching position information is discriminated, and according to the discrimination result, A disk controller for switching between constant angular velocity and constant linear velocity control.
5 .複数フレーム毎に絶対位置情報を含む情報信号が螺旋状トラック に線速度一定に記録されたディスクの走査によって前記情報信号を 読み取って再生するためのディスクコントローラであって、ディジ夕 ル信号処理回路と制御回路とを備え、  5. A disk controller for reading and reproducing the information signal by scanning a disk in which an information signal including absolute position information is recorded on a spiral track at a constant linear velocity for each of a plurality of frames, and a digital signal processing. Circuit and a control circuit,
前記ディスクの装着を検出したとき前記制御回路は、前記ディスク に不所望な振動が起きる手前の限界角速度と前記ディスクに記録さ れた情報の記録線速度とを取得すると共に、取得された記録線速度の 所定倍速で線速度一定にディスクを回転すると仮定したとき前記限 界角速度に到達する トラック位置に基づいて決定される トラック上 での切換え位置情報を取得するものであり、  When detecting the mounting of the disk, the control circuit obtains a limit angular velocity just before undesired vibration occurs in the disk and a recording linear velocity of information recorded on the disk, and obtains the obtained recording line. Assuming that the disk is rotated at a constant linear velocity at a predetermined multiple speed of the velocity, switching position information on the track determined based on the track position reaching the limit angular velocity is obtained.
前記ディジ夕ル信号処理回路は、前記デイスクから読み取られた前 記情報信号のパルス幅をデータとして識別し、識別されたデ一夕を復 調し、 復調されたデータから制御情報及びデータ情報を取得し、 前記 情報信号の読み取り速度に応じた周波数を持つ同期信号の周波数と 目的周波数との誤差から生成した第 1の速度誤差信号を形成し、且つ、 ディスクの回転角速度を検出して目的角速度との誤差から生成した 第 2の速度誤差信号を角速度一定のディスク回転制御のために形成 し、  The digital signal processing circuit identifies the pulse width of the information signal read from the disk as data, demodulates the identified data, and extracts control information and data information from the demodulated data. Obtaining a first speed error signal generated from an error between a frequency of a synchronization signal having a frequency corresponding to a reading speed of the information signal and a target frequency, and detecting a rotational angular speed of the disk to obtain a target angular speed The second speed error signal generated from the error with
前記制御回路は更に、前記ディジタル信号処理回路から制御情報の 供給を受け、 この制御情報から トラック上の走査位置を示す絶対位置 情報を生成し、生成された絶対位置情報と前記切換え位置情報との大 小を判別し、その判別結果に応じて角速度一定又は線速度一定の速度 制御を切り換えるものであることを特徴とするディスクコン ト口一 ラ。 The control circuit further receives supply of control information from the digital signal processing circuit, generates absolute position information indicating a scanning position on a track from the control information, and generates an absolute position information of the generated absolute position information and the switching position information. Big A disc controller characterized in that it discriminates small and switches speed control with constant angular velocity or constant linear velocity according to the discrimination result.
PCT/JP1997/001919 1997-01-27 1997-06-06 Recorded information reproducing device, speed control method, and disc controller WO1998033180A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/12307 1997-01-27
JP1230797 1997-01-27
JP9/18414 1997-01-31
JP1841497 1997-01-31

Publications (1)

Publication Number Publication Date
WO1998033180A1 true WO1998033180A1 (en) 1998-07-30

Family

ID=26347890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001919 WO1998033180A1 (en) 1997-01-27 1997-06-06 Recorded information reproducing device, speed control method, and disc controller

Country Status (1)

Country Link
WO (1) WO1998033180A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262474A (en) * 1985-09-11 1987-03-19 Fujitsu Ltd Optical disk device
JPH0581759A (en) * 1991-09-19 1993-04-02 Matsushita Electric Ind Co Ltd Disk reproducing device
JPH0689506A (en) * 1992-09-10 1994-03-29 Hitachi Ltd Device reproducing disk
JPH06180845A (en) * 1992-12-15 1994-06-28 Hitachi Ltd Data reproducing device
JPH07235126A (en) * 1994-02-24 1995-09-05 Canon Inc Electronic apparatus, system usint the same and control method therefor
JPH07312018A (en) * 1994-05-17 1995-11-28 Toshiba Corp Optical disk reproducing system
JPH07312011A (en) * 1994-05-18 1995-11-28 Toshiba Corp Disk reproducing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262474A (en) * 1985-09-11 1987-03-19 Fujitsu Ltd Optical disk device
JPH0581759A (en) * 1991-09-19 1993-04-02 Matsushita Electric Ind Co Ltd Disk reproducing device
JPH0689506A (en) * 1992-09-10 1994-03-29 Hitachi Ltd Device reproducing disk
JPH06180845A (en) * 1992-12-15 1994-06-28 Hitachi Ltd Data reproducing device
JPH07235126A (en) * 1994-02-24 1995-09-05 Canon Inc Electronic apparatus, system usint the same and control method therefor
JPH07312018A (en) * 1994-05-17 1995-11-28 Toshiba Corp Optical disk reproducing system
JPH07312011A (en) * 1994-05-18 1995-11-28 Toshiba Corp Disk reproducing system

Similar Documents

Publication Publication Date Title
US6317399B1 (en) Disk drive device and method of setting rotational speed thereof
JPH1069709A (en) Method and device for reproducing data
JPH1083615A (en) Method for reproducing data and device therefor
JP3442243B2 (en) Data reproduction method and apparatus
JP3882383B2 (en) Method for reproducing disk-shaped storage medium
US6246650B1 (en) Method and apparatus for high speed data reproduction
JP2003346369A (en) Optical recording/reproducing device and tilt control method
WO1998033180A1 (en) Recorded information reproducing device, speed control method, and disc controller
JPH11120687A (en) Optical disk device
JPH09128877A (en) Disk device
KR100305731B1 (en) Servo control method for compensating eccentricity of optical disc
JP2516053Y2 (en) Optical disc player
KR100263069B1 (en) Apparatus and method for controlling spindle motor
JPH1027421A (en) Device for reproducing disk and method therefor
JP4003345B2 (en) Disk drive device
JP2536029Y2 (en) Spindle motor servo circuit for optical disk drive
JPS61107569A (en) Deflection adjustment device
KR970005354B1 (en) Reproducing apparatus of optical magneto disk
JP3674544B2 (en) Optical disk playback device
JP2004118912A (en) Optical disk drive and control method thereof
JP2001126395A (en) Information reproducing device and information reproducing method
JPH11213412A (en) Amplitude adjusting device for tracking error signal, and optical disk device
JPH10199131A (en) Disk reading device
JP2003178478A (en) Data reproducing apparatus
JPH1027418A (en) Method for reproducing data and device therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase