WO1998029911A1 - Nonaqueous electrolyte battery and manufacture of sealing plate thereof - Google Patents

Nonaqueous electrolyte battery and manufacture of sealing plate thereof Download PDF

Info

Publication number
WO1998029911A1
WO1998029911A1 PCT/JP1997/004679 JP9704679W WO9829911A1 WO 1998029911 A1 WO1998029911 A1 WO 1998029911A1 JP 9704679 W JP9704679 W JP 9704679W WO 9829911 A1 WO9829911 A1 WO 9829911A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing plate
aqueous electrolyte
electrolyte battery
exhaust hole
metal foil
Prior art date
Application number
PCT/JP1997/004679
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Yoshizawa
Kazunori Haraguchi
Takuya Nakajima
Takashi Takeuchi
Yoshitaka Matsumasa
Kikuo Senoo
Takafumi Fujii
Mamoru Iida
Kenji Mizuno
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP03340697A external-priority patent/JP3584656B2/en
Priority claimed from JP17343797A external-priority patent/JP3550953B2/en
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO1998029911A1 publication Critical patent/WO1998029911A1/en
Priority to US09/139,482 priority Critical patent/US6132900A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery explosion-proof mechanism using a non-aqueous electrolyte such as an organic electrolyte, and a method for manufacturing a sealing plate provided with an explosion-proof safety valve therefor.
  • lithium secondary batteries typified by long-life, high-energy-density lithium-ion secondary batteries have been actively developed and widely adopted as built-in power supplies for driving these devices.
  • thin rectangular batteries which are particularly suitable for thinning equipment and have a large space effect, are gaining importance.
  • Lithium ion secondary batteries are composed of a composite oxide of lithium and a transition metal element as a positive electrode active material, graphite-based carbon as a negative electrode active material, an organic electrolyte solution that is an organic solvent solution of a lithium salt as an electrolyte, and a lithium ion conductor.
  • This is a battery system that uses a non-aqueous electrolyte such as a solid electrolyte.
  • lithium ions are released from the lithium-containing composite oxide of the positive electrode upon charging and eluted into the electrolyte, and at the same time, the same electrochemical equivalent of lithium ions is absorbed from the electrolyte into the carbon of the negative electrode. .
  • lithium ions are occluded in the positive electrode to become a lithium-containing composite oxide, and lithium ions are repeatedly released from the negative electrode, as opposed to during charging. Because of this behavior, lithium ion rechargeable batteries were identified as rocking chair batteries. Lee.
  • the composite of lithium and at least one transition metal element selected from the group of cobalt, nickel and manganese exhibiting a high electrode potential is used for the positive electrode.
  • Oxides are commonly used as active materials.
  • lithium-ion secondary batteries have the advantage of being extremely high in the energy density per unit volume as well as the energy density per unit weight, among the battery systems currently in practical use.
  • an organic electrolyte is used, so in the case of an external short circuit or overdischarge involving overcharge or reverse charge, the flowing current raises the battery temperature and evaporates or decomposes the solvent in the organic electrolyte.
  • the internal pressure of the battery suddenly and abnormally increased, and not only did the battery container rupture and leaked, but also there was a risk of a fire accident if current continued to flow.
  • an overcharge and overdischarge prevention circuit is usually built in a battery pack consisting of a plurality of cells, and the internal pressure of the battery is reduced.
  • an explosion-proof safety valve was activated to release the high-pressure gas in the battery to the atmosphere, and a PTC element was provided in each cell to prevent excessive current from flowing.
  • a lead plate of an electrode plate is attached in advance to an explosion-proof valve that deforms as the internal pressure increases, and the internal pressure reaches a predetermined value.
  • the present invention relates to a small battery having a small sealing plate area, particularly a thin battery having a rectangular or long cross section. Explosion-proof, highly productive and highly reliable circular lithium-ion rechargeable batteries with a relatively simple sealing plate that operates accurately without sacrificing discharge capacity It is intended to provide a non-aqueous electrolyte battery provided with a safety valve for use. Disclosure of the invention
  • the same metal as the cell container is provided at the upper edge of the opening of the metal bottomed cell container containing a battery element composed of a non-aqueous electrolyte and an electrode group composed of a positive electrode and a negative electrode through a separator.
  • the sealing between the cell container and the sealing plate is integrated by laser welding with the sealing plate made of glass fitted, and the through hole provided in the center of the sealing plate is electrolyte-resistant and electric.
  • a metal rivet also serving as a terminal is inserted and fixed via an insulating synthetic resin gasket, and at least one exhaust hole is provided between the terminal and the peripheral edge of the sealing plate.
  • the aluminum foil when aluminum is used for the metal foil that closes the exhaust hole forming the safety valve for explosion-proof, the aluminum foil is fixed in a state that it protrudes outward toward the outside of the cell, or When nickel, stainless steel or nickel-plated steel is used as the metal foil, the reliability of the operation of the safety valve for explosion-proof is improved by forming a thin pattern in advance on the metal foil that blocks the exhaust hole. Thus, in small non-aqueous electrolyte batteries, it is possible to completely prevent rupture accidents.
  • FIG. 1 is a longitudinal sectional view of a prismatic lithium ion secondary battery according to one embodiment of the present invention.
  • FIG. 2 shows an external plan view of a prismatic lithium ion secondary battery according to the present invention.
  • FIG. 3 shows an example of an enlarged sectional view of an explosion-proof safety valve section of an aluminum lid plate and a sealing plate made of metal foil according to the present invention.
  • FIG. 4 is a flow chart for continuously manufacturing a sealing plate according to the present invention. It is an example.
  • FIG. 5 is a perspective view of a band-shaped cladding plate for a sealing plate obtained by pressure bonding and integrating a cover plate and a metal foil, which are base materials of the sealing plate according to the present invention.
  • FIG. 6 is an external perspective view of a continuous strip hoop material for supplying a sealing plate according to the present invention.
  • FIG. 1 is a longitudinal sectional view of a thin to square lithium ion secondary battery according to one embodiment of the present invention.
  • an aluminum sealing plate 2 is fitted to the upper edge of the opening of a bottomed rectangular cell container 1 made of aluminum, and the fitting portions 3 are integrated by laser-welding to be liquid-tight. And it is hermetically sealed.
  • the sealing plate 2 is molded so that its center is concavely indented inward, and the through holes provided are coated with a sealant made of a mixture of blown asphalt and mineral oil.
  • a gasket 4 made of an electrically insulating synthetic resin is attached to the body.
  • a nickel or nickel-plated steel rivet 5 also serving as a negative electrode terminal is inserted into the gasket 4, and the tip of the rivet 5 is caulked while the nickel or nickel-plated steel washer 6 is fitted to the lower part of the rivet 5. Secure and seal liquid-tight and air-tight.
  • the gasket 4 was molded integrally with the sealing plate 2 by injection molding.
  • An elliptical exhaust hole 7 is provided between the negative electrode terminal 5 and the outer edge of the long side of the sealing plate 2, and an aluminum foil 8 is crimped and integrated on the inner surface of the sealing plate 2. The exhaust port 7 is closed by the aluminum foil 8 to form an explosion-proof safety valve.
  • One positive electrode and one negative electrode are wound through a separator 9 composed of a microporous polyethylene film, and the outermost circumference is wrapped with separator, forming an electrode group 10 having an oval cross section.
  • the aluminum positive electrode lead plate 11 of the electrode group 10 and the inner surface of the sealing plate 2 were connected and fixed by spot welding using a laser beam, and the nickel negative electrode lead plate 12 and the washer 6 were connected and fixed by resistance welding. ing.
  • the sealing plate 2 is provided with a liquid injection hole 13 .After a predetermined amount of the organic electrolyte is injected, an aluminum lid 14 is fitted into the liquid injection hole 13, and then the sealing plate 2 and the lid 1 are formed. 4 A sealed battery can be completed if it is sealed liquid-tight and air-tight.
  • the positive electrode is composed of 100 parts by weight of a composite oxide of lithium and cobalt (LiCoO 2) as an active material, 3 parts by weight of acetylene black as a conductive agent, and polytetrafluoroethylene (solid) as a binder. (10 parts by weight)
  • a base prepared by kneading a displaced solution and applied to both sides of a core aluminum foil, dried, cut into a predetermined size after pressurizing a roll.
  • An aluminum positive electrode lead plate 11 is welded to the aluminum foil of the positive electrode core material.
  • the negative electrode paste prepared by kneading 100 parts by weight of graphite-based carbon powder of the negative electrode material and a dispersion solution of styrene butene rubber (solid content: 5 parts by weight) with a binder copper foil was used. It is coated on both sides, dried, roll-pressed, and cut to a specified size. A negative electrode lead plate 12 made of nickel is welded to the copper foil of the core material of the negative electrode.
  • the organic electrolyte for example, lithium hexafluorophosphate (L i PF 6) 1. O mo 1 is mixed with ethylene carbonate (EC) and getyl carbonate (DEC) in a molar ratio of 1: 3.
  • the organic electrolyte it is used at a concentration of 1.0 liter dissolved in a solvent.
  • a liquid injection device equipped with a three-way cock. First, the pressure inside the cell is reduced by a vacuum pump, and the cock is switched to inject the liquid.
  • the organic electrolyte passes through the introduction groove 16 shown in FIG. 1 and firstly between the inner wall of the prismatic cell container 1 and the outer periphery of the electrode group 10 shown in the plan view of the prismatic battery in FIG. It accumulates in the space 17 formed. Therefore, there is an advantage that the organic electrolyte does not overflow and wet the injection hole 13 to make it difficult to perform welding in a later process.
  • the organic electrolyte collected in the space 17 is sequentially absorbed and fixed in the electrode group 10.
  • the electrode group 10 described here was wound so as to have an oval cross section, the present invention provides a plurality of positive electrodes and a plurality of positive electrodes via a separator like a general rectangular cell.
  • the present invention can be applied to the case of an electrode group composed of a negative electrode.
  • FIG. 1 shows a state where the central portion of the sealing plate 2 is drawn and formed so as to be concavely recessed toward the inside of the cell.
  • the gasket was made of polypropylene resin
  • FIG. 1 shows a state in which the aluminum foil 8 is crimped only to the portion that closes the exhaust hole 7, but the aluminum foil is applied not only to the exhaust hole 7 but also to the entire inner surface of the sealing plate 2. 8 may be crimped to form a clad plate.
  • polypropylene resin is often used as the gasket material because of its excellent injection moldability and low cost.
  • the compression ratio of the polypropylene gasket at the time of caulking is conventionally adjusted to be 50 to 70%.
  • the gasket material be an electrolyte-resistant material that is relatively stable thermally.
  • the diameter of the rivet forming the negative electrode terminal is extremely small, so that the gasket when caulking the rivet is used.
  • the compressibility of the material It is desirable to lower it to about 30%.
  • the shape of the exhaust hole with respect to the operating pressure of an explosion-proof safety valve in which a metal foil was pressure-bonded and integrated with the exhaust hole provided in the sealing plate according to the present invention was examined.
  • a method of punching using a mold is industrially adopted as an exhaust hole opening process.
  • Mold maintenance From the viewpoint of productivity and productivity, we excluded complex shapes such as triangles and stars as exhaust holes, and focused on four types of circular, elliptical, square, and rectangular shapes to examine variations in the operating pressure of explosion-proof safety valves. Each 100 sealing plates were examined. Table 3 shows the results.
  • the shape of the vent hole of the explosion-proof safety valve must be all elliptical, as confirmed in Example 3. It becomes difficult.
  • the safety valve operates with a small variation.
  • the aluminum vent plate material which is the base material of the sealing plate, and the aluminum foil are pressurized using a roller, and the cladding process is used to integrate them.
  • a safety valve is formed.
  • the aluminum foil closing the exhaust hole changes from a flat state to a state in which the aluminum foil bulges outward.
  • the roll is pressed excessively, the aluminum foil breaks and breaks, and the exhaust hole is not blocked, so that an explosion-proof safety valve cannot be formed.
  • non-aqueous electrolyte batteries such as lithium-ion secondary batteries
  • non-aqueous electrolyte batteries are required to be highly reliable under severe environmental conditions as power supplies for portable equipment.
  • these batteries were left in a hot and humid state for a long period of time, some batteries were found to leak organic electrolyte from around the explosion-proof safety valve.
  • a sealing plate was prepared, in which an organic anticorrosive coating consisting of coal tar pitch and dicerin was previously formed on the outer surface of the aluminum foil closing the exhaust hole of the explosion-proof safety valve.
  • 50 cells each of a prismatic lithium ion secondary battery were trial-produced, and were left in a charged state at 60 ° C. and a relative humidity of 90% for 3 power months.
  • Table 5 shows the results of visually examining the leakage rate of the battery after standing.
  • non-hygroscopic, chemically stable and highly plastic materials such as a mixture of bron bitumen and mineral oil, a sealant applied to the gasket surface, are also effective as organic anticorrosives It is.
  • Examples 1 to 5 are examples in which the cell container, the lid plate, and the sealing plate made of metal foil are all made of aluminum and have positive polarity. Further, the present invention has been described in detail with an example in which a terminal made of a rivet and a washer that are hermetically sealed via a gasket at the center of the sealing plate are usually made of nickel or nickel-plated steel and have a negative polarity. However, in the battery design, it is necessary to consider the necessity of reversing the polarity in the same cell structure shown in these embodiments.
  • the cell container, the lid plate, and the sealing plate made of metal foil are all made of nickel, stainless steel, or nickel-plated steel, have negative polarity, and have a rivet that is sealed and fixed at the center of the sealing plate via a gasket.
  • the terminal and the washer are made of aluminum and have a positive polarity.
  • the present invention can be similarly implemented in batteries having the opposite polarity to those in Examples 1 to 5, and can achieve the same effects.
  • the cell container and the lid plate of the sealing plate substrate are made of nickel, stainless steel or nickel-plated steel plate, and the exhaust holes provided on at least one side of the positive electrode terminal made of aluminum rivets are closed.
  • the explosion-proof safety valve closed with a metal foil made of nickel, stainless steel or nickel-plated steel has a problem that it is difficult to break to a predetermined gas pressure unless it is made thinner than the aluminum foil described in Examples 1 to 5. Occurs.
  • the burr generated on the lower surface of the lid plate of the exhaust hole punched from above the nickel-plated steel lid plate with a thickness of 0.6 mm Utilizing and integrating the nickel foil by projection welding and sealing. A thin horseshoe-shaped pattern was provided by engraving so as to be close to the inner circumference of the exhaust hole of the nickel foil. The effect of such marking was evaluated from the variation width of the valve operating pressure. Table 6 shows the results.
  • Such a means is effective even when the cell container, the lid plate, and the sealing plate made of metal foil in Examples 1 to 5 are all made of aluminum, particularly when the diameter of the exhaust hole is small. become.
  • the positive and negative electrode groups were placed on the sealing plate provided with a terminal consisting of a rivet and washer, an explosion-proof safety valve and a liquid injection hole at the center of the sealing plate via a gasket.
  • the electrode group is inserted and housed in a symmetrical bottomed cell container, and a sealing plate is fitted to the upper edge of the opening of the cell container.
  • the sealing plate to which the electrode group is connected and fixed is not necessarily left-right symmetric, so that in the subsequent steps, the semi-finished cells whose right and left are different move through the steps. This causes problems in process control and productivity.
  • the lid plate of the sealing plate base material is formed into a band-shaped hoop material, and Parts such as explosion-proof safety valves, liquid injection holes, and terminals are placed continuously, and all of the safety valve pinholes and inspections for the set minimum operating pressure are also performed continuously, and finally cut. If the battery is supplied as it is to the battery assembly process, the semi-finished battery whose left and right arrangement is reversed as described above will not flow to the process, and a highly reliable sealing plate can be manufactured with excellent productivity. Will be possible.
  • FIG. 4 is an example of a flowchart for continuously manufacturing a sealing plate according to the present invention.
  • the continuous manufacturing process of the sealing plate will be described with reference to the flowchart of FIG.
  • exhaust holes 7 are punched and provided at regular intervals in an aluminum lid hoop member 2 having a predetermined width and a predetermined thickness (for example, 0.6 mm).
  • a predetermined thickness for example, 0.03 mm
  • the aluminum foil is pressed and integrated between two rollers. Apply cladding (see Fig. 5). During this cladding process, the cover plate is slightly rolled and stretched, so excessive pressing must be avoided.
  • pilot holes 18 for positioning these processes are punched at regular intervals by a punching method.
  • a center portion of the sealing plate is drawn by a press using a mold so as to be concavely concave downward, and then a rivet insertion hole and a liquid injection hole 13 are opened by a punching method.
  • the synthetic resin for gasket 4 is molded into the rivet insertion hole by injection molding and fixed integrally with the sealing plate.
  • the sealing plate continuously manufactured with the hoop material is conveyed to the battery assembling step and punched out one after another with the pilot hole 18 as a guide.
  • the present invention has been described in detail with reference to a thin rectangular lithium ion secondary battery as an example, the present invention is not limited to this battery system. That is, the present invention uses various lithium primary batteries using an organic electrolyte, thionyl chloride as a positive electrode active material, a lithium primary battery in which a solid electrolyte is formed on a metal lithium negative electrode surface, and metal lithium or a lithium alloy as a negative electrode. Like other lithium secondary batteries, it can be applied to all non-aqueous electrolyte batteries in which the cell internal pressure rises abnormally due to an external short circuit, overcharge and overdischarge accompanied by reverse charge.
  • the structure of the present invention can be widely applied not only to rectangular batteries, but also to batteries having an oval cross section, a thin cylindrical shape, and a small sealing plate area.
  • examples are given of the use of aluminum for bottomed cell containers, lid plates, metal foils, rivets, washers, etc.
  • other than metal foil is not limited to pure aluminum.
  • a 300-series A1-Mn-based alloy, a 400-series A1-Si-based alloy it does not prevent thinning of housing materials such as cell containers and lid plates with materials having high mechanical strength and corrosion resistance, such as aluminum alloys such as A0-A1 Mg alloys of 0 series. .
  • the present invention relates to a battery in which a metal-made bottomed cell container is fitted with a sealing plate made of the same metal as the cell container at the upper edge of the opening, and the space between them is sealed by laser welding.
  • the through hole provided in the center of the sealing plate has electrolytic resistance and electrical insulation.
  • a metal rivet that doubles as a terminal is inserted and fixed via a gasket made of synthetic resin with an edge, and at least one exhaust hole is provided between the terminal and the peripheral edge of the sealing plate.
  • This is a non-aqueous electrolyte battery equipped with an explosion-proof safety valve whose exhaust hole is closed by pressing metal foil on the inner surface of the lid plate, which is a material. It can completely prevent the rupture of small batteries whose mold or cross section is oval or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

A structure of an explosion-proof safety valve of a compact nonaqueous electrolyte battery, such as, a lithium ion secondary battery, which is thin and rectangular or has an elliptic cross section with a small sealing plate area, and manufacture of a sealing plate. By reliably actuating the explosion-proof valve with a simple structure and without sacrificing the capacity, the safety of the battery is to be ensured. An aperture upper edge portion of a metallic bottomed cell container and a peripheral edge portion of a metallic sealing plate are hermetically sealed by laser welding. A through-hole is provided at a center portion of the sealing plate, and a rivet which also functions as a terminal is clamped, hermetically sealed and fixed through a gasket. An exhaust hole is provided between the terminal and the peripheral edge portion of the sealing plate, and this exhaust hole is closed by a metal foil, thus providing the explosion-proof safety valve. With such a simple structure, the valve operates accurately to prevent fault. Also, this sealing plate is continuously manufactured in a hoop-like shape.

Description

明 細 書 非水電解質電池およびその封口板の製造方法 技術分野  Description Non-aqueous electrolyte battery and method for producing sealing plate
本発明は有機電解液のような非水電解質を用いる電池の防爆機構およびその ための防爆用安全弁を備えた封口板の製造法に係る。 背景技術  The present invention relates to a battery explosion-proof mechanism using a non-aqueous electrolyte such as an organic electrolyte, and a method for manufacturing a sealing plate provided with an explosion-proof safety valve therefor. Background art
近年、 エレクトロニクス技術の進歩に伴い、 電子機器の高機能化とともに、 小型軽量化と低消費電力化が可能になった。 その結果、 各種民生用ポータブル 機器が開発、 実用化され、 それらの市場規模が急速に拡大しつつある。 それら の代表例として、 カムコーダ、 ノートブック形パソコン、 携帯電話等があげら れる。  In recent years, with the advancement of electronics technology, it has become possible to reduce the size and weight and to reduce power consumption, as well as to enhance the functions of electronic devices. As a result, various portable portable devices have been developed and put into practical use, and their market scale is rapidly expanding. Typical examples are camcorders, notebook computers, and mobile phones.
そして、 これらの機器のさらなる小型軽量化とともに作動時間の長期化に対 する要望が継続的に求められている。 このような要望からこれらの機器の駆動 用内蔵電源として、 長寿命で、 エネルギー密度が高いリチウムイオン二次電池 に代表されるリチウム二次電池が積極的に開発され、 数多く採用されている。 このような動向のなかで特に機器の薄型化に適し、 かつスペース効果が高い薄 形の角型電池が重要視されている。  There is a continuing demand for smaller and lighter devices and longer operating times. In response to such demands, lithium secondary batteries typified by long-life, high-energy-density lithium-ion secondary batteries have been actively developed and widely adopted as built-in power supplies for driving these devices. Under these circumstances, thin rectangular batteries, which are particularly suitable for thinning equipment and have a large space effect, are gaining importance.
リチウムイオン二次電 は、 正極活物質としてリチウムと遷移金属元素との 複合酸化物を、 負極活物質として黒鉛系の炭素を、 電解質のリチウム塩の有機 溶媒溶液である有機電解液やリチウムイオン伝導体である固体電解質等の非水 電解質を用いる電池系である。 この電池は、 まず充電により正極のリチウムを 含む複合酸化物からリチウムイオンが放出されて電解液中に溶出すると同時に、 同じ電気化学当量のリチウムイオンが電解液中から負極の炭素中に吸蔵される。 放電時には充電時とは逆に、 リチウムイオンが正極に吸蔵されてリチウムを含 む複合酸化物となり、 負極からリチウムィオンが放出されることを繰り返す。 このような挙動からリチウムィォン二次電池のことをロッキングチェアバッテ リーと称する場合がある。 Lithium ion secondary batteries are composed of a composite oxide of lithium and a transition metal element as a positive electrode active material, graphite-based carbon as a negative electrode active material, an organic electrolyte solution that is an organic solvent solution of a lithium salt as an electrolyte, and a lithium ion conductor. This is a battery system that uses a non-aqueous electrolyte such as a solid electrolyte. In this battery, lithium ions are released from the lithium-containing composite oxide of the positive electrode upon charging and eluted into the electrolyte, and at the same time, the same electrochemical equivalent of lithium ions is absorbed from the electrolyte into the carbon of the negative electrode. . At the time of discharging, lithium ions are occluded in the positive electrode to become a lithium-containing composite oxide, and lithium ions are repeatedly released from the negative electrode, as opposed to during charging. Because of this behavior, lithium ion rechargeable batteries were identified as rocking chair batteries. Lee.
炭素負極の電位は金属リチウムの電極電位に近似しているので、 正極には高 い電極電位を示すコバルト、 ニッケルおよびマンガンの群から選ばれた少なく とも 1種の遷移金属元素とリチウムとの複合酸化物が一般に活物質として用い られる。  Since the potential of the carbon negative electrode is close to the electrode potential of metallic lithium, the composite of lithium and at least one transition metal element selected from the group of cobalt, nickel and manganese exhibiting a high electrode potential is used for the positive electrode. Oxides are commonly used as active materials.
これらのリチウムイオン二次電池は、 現在実用化されている電池系のなかで、 単位体積当りのエネルギー密度は勿論、 特に、 単位重量当りのエネルギー密度 が抜群に高い長所を有している。 しかし、 多くの場合有機電解液を使用してい るので、 外部短絡や過充電や逆充電を伴う過放電の場合、 流れる電流により電 池温度が上昇するとともに有機電解液中の溶媒が蒸発または分解して、 電池内 圧が急激かつ異常に上昇し、 電池容器が破裂して漏液するだけでなく、 電流が 流れ続けた場合、 発火事故を起こす危険性があった。  These lithium-ion secondary batteries have the advantage of being extremely high in the energy density per unit volume as well as the energy density per unit weight, among the battery systems currently in practical use. However, in many cases, an organic electrolyte is used, so in the case of an external short circuit or overdischarge involving overcharge or reverse charge, the flowing current raises the battery temperature and evaporates or decomposes the solvent in the organic electrolyte. As a result, the internal pressure of the battery suddenly and abnormally increased, and not only did the battery container rupture and leaked, but also there was a risk of a fire accident if current continued to flow.
そこで、 上記したように電池内圧の急激かつ異常な上昇や発火事故を未然に 防止するために、 通常複数のセルからなるバッテリーパック内に過充電および 過放電防止回路を内蔵させるとともに、 電池内圧が上昇した場合、 防爆用安全 弁が作動して電池内の高圧ガスを大気中に放出する防爆機構および過大電流が 流れ続けないように P T C素子を各セルに設けていた。 しかし、 これらの手段 を講じても、 電池の安全性を完璧に確保することは難しかった。 そこで例えば 特開平 2— 1 1 2 1 5 1号公報にも開示されているように、 内圧の上昇に伴い 変形する防爆弁に、 極板のリード板を予め取り付けておき、 所定内圧に達した ときに、 防爆弁が変形し取り付けたリード板が千切れるか防爆弁から剥離する ことにより電流が遮断される機構が提案された。 この機構は外部短絡や過充電 や逆充電を伴う過放電等によるセル内圧の上昇を利用して、 電流を遮断するの で、 破裂や発火等の事故を未然に防止する手段として原理的に優れている。 特 に寸法が比較的大きい円筒型や角型の電池においては有効な機構といえる。 し かし、 薄形の角型電池や細い円筒型電池のように、 封口板の面積が小さい小型 電池の場合には、 作動圧がばらつき、 信頼性と生産性との両面から適用できな い欠点があった。  Therefore, in order to prevent a sudden and abnormal rise in the internal pressure of the battery and a fire accident as described above, an overcharge and overdischarge prevention circuit is usually built in a battery pack consisting of a plurality of cells, and the internal pressure of the battery is reduced. When it rose, an explosion-proof safety valve was activated to release the high-pressure gas in the battery to the atmosphere, and a PTC element was provided in each cell to prevent excessive current from flowing. However, even with these measures, it was difficult to ensure battery safety perfectly. Therefore, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2-111121, a lead plate of an electrode plate is attached in advance to an explosion-proof valve that deforms as the internal pressure increases, and the internal pressure reaches a predetermined value. At times, a mechanism has been proposed in which the explosion-proof valve is deformed and the attached lead plate breaks or peels off from the explosion-proof valve, thereby interrupting the current. This mechanism cuts off the current by utilizing the rise in the internal pressure of the cell caused by external short-circuiting, overdischarging accompanied by overcharging and reverse charging, etc. ing. In particular, it can be said to be an effective mechanism for cylindrical or square batteries with relatively large dimensions. However, small batteries with a small sealing plate area, such as thin rectangular batteries and thin cylindrical batteries, have varying operating pressures and cannot be applied in terms of both reliability and productivity. There were drawbacks.
本発明は、 封口板面積が小さい小型電池、 特に薄形で角型または横断面が長 円形のリチウムイオン二次電池において、 放電容量を犠牲にすることなく、 的 確に弁作動する比較的簡易な構造の封口板を採用することにより、 生産性が優 れ、 かつ信頼性が高い防爆用安全弁を備えた非水電解液電池を提供するもので ある。 発明の開示 The present invention relates to a small battery having a small sealing plate area, particularly a thin battery having a rectangular or long cross section. Explosion-proof, highly productive and highly reliable circular lithium-ion rechargeable batteries with a relatively simple sealing plate that operates accurately without sacrificing discharge capacity It is intended to provide a non-aqueous electrolyte battery provided with a safety valve for use. Disclosure of the invention
本発明は、 セパレー夕を介して正極と負極とにより構成された電極群と非水 電解質とからなる電池要素を収容した金属製有底セル容器の開口上縁部に、 セ ル容器と同じ金属製の封口板を嵌着した状態でこれらセル容器と封口板間をレ 一ザ一溶接により一体化して密封口し、 封口板中央部に設けられた貫通孔には 耐電解液性でかつ電気絶縁性の合成樹脂製のガスケッ卜を介して端子を兼ねる 金属製リベットが挿入、 固定されるとともに、 その端子と封口板の周縁部との 間に少なくとも 1個の排気孔を設け、 封口板の基材である蓋板の内面の少なく とも排気孔の周辺部に金属箔を圧着一体化することにより排気孔を閉塞した防 爆用安全弁を備えた非水電解質電池である。  According to the present invention, the same metal as the cell container is provided at the upper edge of the opening of the metal bottomed cell container containing a battery element composed of a non-aqueous electrolyte and an electrode group composed of a positive electrode and a negative electrode through a separator. The sealing between the cell container and the sealing plate is integrated by laser welding with the sealing plate made of glass fitted, and the through hole provided in the center of the sealing plate is electrolyte-resistant and electric. A metal rivet also serving as a terminal is inserted and fixed via an insulating synthetic resin gasket, and at least one exhaust hole is provided between the terminal and the peripheral edge of the sealing plate. This is a non-aqueous electrolyte battery equipped with an explosion-proof safety valve that closes the exhaust hole by press-fitting and integrating metal foil on at least the periphery of the exhaust hole on the inner surface of the lid plate that is the base material.
さらに具体的には、 防爆用安全弁を形成する排気孔を閉塞する金属箔にアル ミニゥムを用いた場合、 このアルミニウム箔がセルの外方に向って凸状に膨出 した状態で固定するかまたは金属箔としてニッケル、 不銹鋼またはニッケル鍍 鋼材を用いた場合には、 排気孔を閉塞している金属箔の部分に予め肉薄のバタ ーンを形成させることにより防爆用安全弁の作動の信頼性を向上させて小型の 非水電解質電池において、. 破裂事故を完璧に防止し得るようにしたものである。 図面の簡単な説明  More specifically, when aluminum is used for the metal foil that closes the exhaust hole forming the safety valve for explosion-proof, the aluminum foil is fixed in a state that it protrudes outward toward the outside of the cell, or When nickel, stainless steel or nickel-plated steel is used as the metal foil, the reliability of the operation of the safety valve for explosion-proof is improved by forming a thin pattern in advance on the metal foil that blocks the exhaust hole. Thus, in small non-aqueous electrolyte batteries, it is possible to completely prevent rupture accidents. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明による 1実施例である角型リチウムイオン二次電池の縦断 面図を示す。  FIG. 1 is a longitudinal sectional view of a prismatic lithium ion secondary battery according to one embodiment of the present invention.
第 2図は、 本発明による角型リチウムイオン二次電池の外観平面図を示す。 第 3図は本発明によるアルミニウム製の蓋板および金属箔からなる封口板の 防爆用安全弁部の拡大断面図の 1例を示す。  FIG. 2 shows an external plan view of a prismatic lithium ion secondary battery according to the present invention. FIG. 3 shows an example of an enlarged sectional view of an explosion-proof safety valve section of an aluminum lid plate and a sealing plate made of metal foil according to the present invention.
第 4図は本発明による封口板を連続的に製造するためのフローチャートの 1 例である。 FIG. 4 is a flow chart for continuously manufacturing a sealing plate according to the present invention. It is an example.
第 5図は本発明による封口板の基材である蓋板と金属箔とを圧着一体化した 封口板用帯状クラッド板の斜視図を示す。  FIG. 5 is a perspective view of a band-shaped cladding plate for a sealing plate obtained by pressure bonding and integrating a cover plate and a metal foil, which are base materials of the sealing plate according to the present invention.
第 6図は本発明による封口板供給用連続帯状フープ材の外観斜視図を示す。 発明を実施するための最良の形態  FIG. 6 is an external perspective view of a continuous strip hoop material for supplying a sealing plate according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例について図面および表を参照しながら詳細に説明する。 <実施例 1 >  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings and tables. <Example 1>
第 1図は本発明による 1実施例である薄形から角型のリチウムイオン二次電 池の縦断面図である。 第 1図において、 アルミニウム製の有底角型セル容器 1 の開口上縁部にアルミニウム製封口板 2が嵌着され、 それらの嵌合部 3はレ一 ザ一溶接により一体化され、 液密かつ気密に密封口されている。 封口板 2には その中央部が内方へ凹状にへこむように成型した後、 設けられた貫通孔にはブ ロンアスファルトと鉱物油の混合物からなる封止剤を塗布した耐電解液性でか つ電気絶縁性の合成樹脂製のガスケット 4がー体に取り付けられている。 この ガスケット 4に、 負極端子を兼ねるニッケルまたはニッケル鍍鋼製のリベッ卜 5を挿入し、 リベット 5の下部にニッケルまたはニッケル鍍鋼板製ワッシャー 6を嵌合させたまま、 リベット 5の先端をかしめて固定し、 液密かつ気密に密 封する。 なお、 ガスケット 4は射出成型により封口板 2と一体成型する方法を 採用した。 負極端子 5と封口板 2の長辺側の外縁との間に楕円形の排気孔 7を 設け、 封口板 2の内面にアルミニウム箔 8を圧着一体化する。 排気孔 7がアル ミニゥム箔 8により閉塞されて、 防爆用安全弁が形成される。 微多孔性ポリエ チレンフィルムからなるセパレ一夕 9を介して各 1枚の正極および負極を捲回 し、 最外周をセパレ一夕で包んで横断面が長円形の電極群 1 0が構成される。 この電極群 1 0のアルミニウム製正極リード板 1 1と封口板 2の内面とをレー ザ一ビームによるスポット溶接により、 また、 ニッケル製負極リード板 1 2と ワッシャー 6とを抵抗溶接により接続固定している。 封口板 2には注液孔 1 3 が設けられており、 有機電解液を所定量注液後注液孔 1 3にアルミニウム製蓋 体 1 4を嵌着させた後封口板 2と蓋体 1 4間の嵌合部 1 5をレーザ一溶接によ り液密かつ気密に密封口すれば角型電池は完成する。 FIG. 1 is a longitudinal sectional view of a thin to square lithium ion secondary battery according to one embodiment of the present invention. In FIG. 1, an aluminum sealing plate 2 is fitted to the upper edge of the opening of a bottomed rectangular cell container 1 made of aluminum, and the fitting portions 3 are integrated by laser-welding to be liquid-tight. And it is hermetically sealed. The sealing plate 2 is molded so that its center is concavely indented inward, and the through holes provided are coated with a sealant made of a mixture of blown asphalt and mineral oil. A gasket 4 made of an electrically insulating synthetic resin is attached to the body. A nickel or nickel-plated steel rivet 5 also serving as a negative electrode terminal is inserted into the gasket 4, and the tip of the rivet 5 is caulked while the nickel or nickel-plated steel washer 6 is fitted to the lower part of the rivet 5. Secure and seal liquid-tight and air-tight. The gasket 4 was molded integrally with the sealing plate 2 by injection molding. An elliptical exhaust hole 7 is provided between the negative electrode terminal 5 and the outer edge of the long side of the sealing plate 2, and an aluminum foil 8 is crimped and integrated on the inner surface of the sealing plate 2. The exhaust port 7 is closed by the aluminum foil 8 to form an explosion-proof safety valve. One positive electrode and one negative electrode are wound through a separator 9 composed of a microporous polyethylene film, and the outermost circumference is wrapped with separator, forming an electrode group 10 having an oval cross section. . The aluminum positive electrode lead plate 11 of the electrode group 10 and the inner surface of the sealing plate 2 were connected and fixed by spot welding using a laser beam, and the nickel negative electrode lead plate 12 and the washer 6 were connected and fixed by resistance welding. ing. The sealing plate 2 is provided with a liquid injection hole 13 .After a predetermined amount of the organic electrolyte is injected, an aluminum lid 14 is fitted into the liquid injection hole 13, and then the sealing plate 2 and the lid 1 are formed. 4 A sealed battery can be completed if it is sealed liquid-tight and air-tight.
正極は活物質のリチウムとコバルトとの複合酸化物 (L i C o O 2) 1 0 0 重 量部と、導電剤のアセチレンブラック 3重量部と、結着剤のポリ 4フッ化工 チレン (固形分 1 0重量部) デイスパージヨン溶液とを混練して調製したベー ストを芯材のアルミニウム箔の両面に塗着、 乾燥し、 ロール加圧後所定寸法に 裁断したものである。 正極の芯材のアルミニウム箔にはアルミニウム製正極リ —ド板 1 1が溶接されている。  The positive electrode is composed of 100 parts by weight of a composite oxide of lithium and cobalt (LiCoO 2) as an active material, 3 parts by weight of acetylene black as a conductive agent, and polytetrafluoroethylene (solid) as a binder. (10 parts by weight) A base prepared by kneading a displaced solution and applied to both sides of a core aluminum foil, dried, cut into a predetermined size after pressurizing a roll. An aluminum positive electrode lead plate 11 is welded to the aluminum foil of the positive electrode core material.
負極は負極材料の黒鉛系炭素粉末 1 0 0重量部に結着剤のスチレンブ夕ジェ ンゴム (固形分 5重量部) ディスパ一ジョン溶液とを混練して調製したペース トを芯材の銅箔の両面に塗着、 乾燥し、 ロール加圧後所定寸法に裁断したもの である。 負極の芯材の銅箔にはニッケル製負極リード板 1 2が溶接されている。 有機電解液としては、 例えば電解質の 6フッ化リン酸リチウム (L i P F 6) 1 . O m o 1をエチレンカーボネート (E C ) とジェチルカーボネート (D E C) との m o 1比で 1 : 3の混合溶媒に溶解して 1 . 0リットルにした濃度の ものが用いられる。 有機電解液は 3方コックを備えた注液装置を用い、 まずセ ル内を真空ポンプにより減圧し、 コックを切り換えて注液する。 有機電解液は 第 1図に示される導入溝 1 6を経て、 まず第 2図の角型電池の平面図に示され る角型セル容器 1の内壁と電極群 1 0の外周との間に形成される空間部 1 7に 溜まる。 そのため、 有機電解液が溢れて注液孔 1 3を濡らし、 後工程の溶接を し難くすることがなくなる利点がある。 空間部 1 7に溜まった有機電解液は逐 次電極群 1 0内に吸収固吏される。 なお、 ここで述べた電極群 1 0は横断面が 長円形になるように捲回構成したが、 本発明は一般の角型セルのように、 セパ レ一夕を介して複数枚の正極および負極により構成された電極群の場合にも適 用可能である。  For the negative electrode, paste prepared by kneading 100 parts by weight of graphite-based carbon powder of the negative electrode material and a dispersion solution of styrene butene rubber (solid content: 5 parts by weight) with a binder copper foil was used. It is coated on both sides, dried, roll-pressed, and cut to a specified size. A negative electrode lead plate 12 made of nickel is welded to the copper foil of the core material of the negative electrode. As the organic electrolyte, for example, lithium hexafluorophosphate (L i PF 6) 1. O mo 1 is mixed with ethylene carbonate (EC) and getyl carbonate (DEC) in a molar ratio of 1: 3. It is used at a concentration of 1.0 liter dissolved in a solvent. For the organic electrolyte, use a liquid injection device equipped with a three-way cock. First, the pressure inside the cell is reduced by a vacuum pump, and the cock is switched to inject the liquid. The organic electrolyte passes through the introduction groove 16 shown in FIG. 1 and firstly between the inner wall of the prismatic cell container 1 and the outer periphery of the electrode group 10 shown in the plan view of the prismatic battery in FIG. It accumulates in the space 17 formed. Therefore, there is an advantage that the organic electrolyte does not overflow and wet the injection hole 13 to make it difficult to perform welding in a later process. The organic electrolyte collected in the space 17 is sequentially absorbed and fixed in the electrode group 10. Although the electrode group 10 described here was wound so as to have an oval cross section, the present invention provides a plurality of positive electrodes and a plurality of positive electrodes via a separator like a general rectangular cell. The present invention can be applied to the case of an electrode group composed of a negative electrode.
第 1図において、 封口板 2の中央部をセルの内方に向って凹状にへこませる ように絞り成型加工した状態を示した。 このような絞り成型加工の有無につい て、 セル容器と封口板間のレ一ザ一溶接時の熱的影響について、 各 5 0セルの 試作した角型リチウムイオン二次電池について、 レーザ一溶接後のガスケット を目視により観察した変形率と、 充電状態で 8 5 で 3日間静置後の漏液率と を調べた。 なお、 ガスケットにはポリプロピレン樹脂を用いた, FIG. 1 shows a state where the central portion of the sealing plate 2 is drawn and formed so as to be concavely recessed toward the inside of the cell. Regarding the presence or absence of such drawing process, the thermal effect of laser welding between the cell container and the sealing plate, the prototype square lithium-ion secondary battery of 50 cells each, The deformation rate of the gasket was visually observed, and the leakage rate after standing for 3 days at 85 in the charged state. Was examined. The gasket was made of polypropylene resin,
Figure imgf000008_0001
Figure imgf000008_0001
第 1表から明らかなように、 封口板中央部をセルの内方に向って凹状にへこ ませるように絞り成型加工することにより、 レーザー溶接時の熱的影響が軽減 される効果が明らかである。 また、 このように凹状に絞り成型加工することに より、 セル内圧上昇時の封口板の耐圧強度の向上も期待される。  As is evident from Table 1, the effect of reducing the thermal effects during laser welding is apparent by forming the central part of the sealing plate by drawing so that it does not dent inward toward the inside of the cell. is there. In addition, it is expected that the pressure resistance of the sealing plate when the internal pressure of the cell rises can be improved by forming the concave drawing process in this manner.
第 1図においては、 排気孔 7を閉塞する部分だけにアルミニウム箔 8を圧着 している状態を示しているが、 排気孔 7の部分だけでなく、 封口板 2の内面全 体にアルミ ニウム箔 8 を圧着 してク ラ ッ ド板に してもよ い。 ぐ実施例 2 >  FIG. 1 shows a state in which the aluminum foil 8 is crimped only to the portion that closes the exhaust hole 7, but the aluminum foil is applied not only to the exhaust hole 7 but also to the entire inner surface of the sealing plate 2. 8 may be crimped to form a clad plate. Example 2>
実施例 1において試作セルに用いたガスケットと同様に、 従来、 負極活物質 として金属リチウム、 正極活物質に二酸化マンガン、 フッ化黒鉛など、 非水電 解質として有機電解液を用いる一般的なリチウム一次電池において、 ガスケッ ト材料として、 射出成型性が優れ、 低コストであるので、 通常ポリプロピレン 樹脂を用いる場合が多い。 かしめ封口時のポリプロピレン製ガスケッ卜の圧縮 率は従来 5 0〜7 0 %になるように調整されている。  In the same manner as in the gasket used for the prototype cell in Example 1, a conventional lithium primary battery using metal lithium as the negative electrode active material, manganese dioxide, graphite fluoride, etc. as the positive electrode active material, and an organic electrolyte as the nonaqueous electrolyte In batteries, polypropylene resin is often used as the gasket material because of its excellent injection moldability and low cost. The compression ratio of the polypropylene gasket at the time of caulking is conventionally adjusted to be 50 to 70%.
本発明において、 セル容器と封口板との間をレーザ一溶接により密封口して いるので、 ガスケットが加熱される影響について配慮する必要がある。 したが つて、 本発明においては、 ガスケット材料としては耐電解液性で、 熱的に比較 的安定な材料であることが望まれる。 また、 本発明のように薄形で角型電池の ように封口板の面積が小さい小型電池の場合、 負極端子を形成するリベッ卜の 径が非常に小さくなるので、 リベッ卜のかしめ時のガスケッ卜材料の圧縮率は 3 0 %程度まで低くすることが望ましい。 そこで、 まず既存のデ一夕を参照し て約 2 0種類の各種合成樹脂のなかから耐電解液性のポリプロピレン (P P ) 、 ポリエチレンテレフ夕レート (P E T) およびポリフエ二レンスルフイ ド (P P S ) の 3種を選び出した。 これら 3種の合成樹脂のガスケット材料としての 適性について、 第 1図および第 2図に示される実施例 1と同じ角型リチウムィ オン二次電池を試作し、 充電状態の各 5 0セルについて、 熱衝撃試験後の漏液 率により評価した。 In the present invention, since the gap between the cell container and the sealing plate is sealed by laser welding, it is necessary to consider the effect of heating the gasket. Therefore, in the present invention, it is desired that the gasket material be an electrolyte-resistant material that is relatively stable thermally. Also, in the case of a small battery such as a thin battery having a small sealing plate area such as a rectangular battery as in the present invention, the diameter of the rivet forming the negative electrode terminal is extremely small, so that the gasket when caulking the rivet is used. The compressibility of the material It is desirable to lower it to about 30%. First of all, referring to existing data, from among about 20 types of synthetic resins, three types of electrolyte-resistant polypropylene (PP), polyethylene terephthalate (PET) and polyphenylene sulfide (PPS) I picked the seed. Regarding the suitability of these three types of synthetic resins as gasket materials, the same prismatic lithium-ion secondary battery as in Example 1 shown in FIGS. 1 and 2 was prototyped, and 50 cells in the charged state were heated. Evaluation was made based on the liquid leakage rate after the impact test.
熱衝撃試験は、 まず一 5 0 で 1 h静置し、 次いで 1 0 0でで 1 h放置する ことを 1サイクルとして、 1 0 0 0サイクル繰り返した。 それらの結果を第 2 表に示す。  The thermal shock test was repeated for 100 cycles, with one cycle of standing at 150 for 1 h and then standing at 100 for 1 h. Table 2 shows the results.
第 2 表  Table 2
Figure imgf000009_0001
第 2表から、 セル容器と封口板との間をレーザ一溶接により密封口する本発 明による非水電解質電池において、 封口板中央部の端子を兼ねるリベットをか しめて密封するガスケッ卜材料としては、 耐熱性も優れた P P S樹脂を用いる ことにより耐漏液性が向上することがわかる。 なお、 各樹脂によるガスケット の圧縮率は同じ密封度になるように調整した。
Figure imgf000009_0001
From Table 2, it can be seen that the gasket material used for the non-aqueous electrolyte battery of the present invention, which seals the gap between the cell container and the sealing plate by laser welding, with a rivet that also functions as a terminal at the center of the sealing plate, by caulking. It can be seen that the use of PPS resin, which has excellent heat resistance, improves liquid leakage resistance. The compression ratio of the gasket made of each resin was adjusted so as to have the same degree of sealing.
<実施例 3 > <Example 3>
本発明による封口板に設けられた排気孔に金属箔を圧着一体化した防爆用安 全弁の作動圧に対する排気孔の形状について検討した。 通常、 排気孔開け加工 としては、 金型を用いて打ち抜く方法が工業的に採用されている。 金型の保守 や生産性の面から排気孔の形状としては三角形や星形のように複雑なものは除 外し、 円形、 楕円形、 正方形、 長方形の 4種にしぼって防爆用安全弁の作動圧 のばらつきを試料各 1 0 0個の封口板について調べた。 それらの結果を第 3表 に示す。 The shape of the exhaust hole with respect to the operating pressure of an explosion-proof safety valve in which a metal foil was pressure-bonded and integrated with the exhaust hole provided in the sealing plate according to the present invention was examined. Normally, a method of punching using a mold is industrially adopted as an exhaust hole opening process. Mold maintenance From the viewpoint of productivity and productivity, we excluded complex shapes such as triangles and stars as exhaust holes, and focused on four types of circular, elliptical, square, and rectangular shapes to examine variations in the operating pressure of explosion-proof safety valves. Each 100 sealing plates were examined. Table 3 shows the results.
第 3 表  Table 3
Figure imgf000010_0001
Figure imgf000010_0001
なお、 封口板の基材であるアルミニウム製蓋板材 (0 . 6 mm厚) とアルミ 二ゥム箔 (0 . 0 3 mm厚) とをローラーを用い、 加圧してクラッド加工した。 安全弁の作動圧は、 アルミニウム箔の厚さと排気孔の形状により大きく影響さ れる。 同じ厚さのアルミニウム箔の場合、 排気孔の形状により安全弁の作動圧 が大きくばらつくことが第 3表からわかる。 楕円形の場合、 円弧の小さい部分 でアルミニウム箔が選択的に破断されていた。 したがって、 封口板の形状およ び寸法の両面から、 許されるならば排気孔の形状は楕円形にすることが望まし い。  An aluminum lid plate (0.6 mm thick) and aluminum foil (0.3 mm thick), which are the base materials of the sealing plate, were pressed and clad using a roller. The operating pressure of the safety valve is greatly affected by the thickness of the aluminum foil and the shape of the exhaust hole. Table 3 shows that in the case of aluminum foil of the same thickness, the operating pressure of the safety valve varies greatly depending on the shape of the exhaust hole. In the case of the elliptical shape, the aluminum foil was selectively broken at the small part of the arc. Therefore, it is desirable to make the shape of the exhaust hole elliptical, if possible, from both aspects of the shape and dimensions of the sealing plate.
<実施例 4 >  <Example 4>
角型電池がさらに薄形化し、 封口板寸法が小さくなつた場合、 防爆用安全弁 の排気孔の形状を実施例 3で確かめられたように、 すべて楕円形にすることは 困難になる。 If the prismatic battery becomes thinner and the size of the sealing plate becomes smaller, the shape of the vent hole of the explosion-proof safety valve must be all elliptical, as confirmed in Example 3. It becomes difficult.
そこで、 排気孔の形状が高精度でかつ加工し易い円形にした場合、 ばらつき が小さく的確に安全弁が作動することが望まれる。  Therefore, when the shape of the exhaust hole is made circular with high precision and easy to process, it is desirable that the safety valve operates with a small variation.
前述したように、 封口板の基材であるアルミニウム製蓋板材とアルミニウム 箔とをローラーを用いて加圧して一体化するクラッド加工により、 排気孔をァ ルミ二ゥム箔により閉塞して防爆用安全弁が形成される。 この口一ラーによる 加圧力を加減することにより、 排気孔を閉塞しているアルミニウム箔がフラッ 卜な状態から外方へ凸状に膨出した状態まで変化する。 しかし、 過度にロール 加圧した場合、 アルミニウム箔は千切れて破断状態になるので、 排気孔は閉塞 されないので、 防爆用安全弁が形成不能になる。  As described above, the aluminum vent plate material, which is the base material of the sealing plate, and the aluminum foil are pressurized using a roller, and the cladding process is used to integrate them. A safety valve is formed. By increasing or decreasing the pressure applied by the nozzle, the aluminum foil closing the exhaust hole changes from a flat state to a state in which the aluminum foil bulges outward. However, when the roll is pressed excessively, the aluminum foil breaks and breaks, and the exhaust hole is not blocked, so that an explosion-proof safety valve cannot be formed.
そこで、 封口板の排気孔をアルミニウム箔で閉塞した構造の防爆用安全弁に ついて、 第 1図に示されるように、 アルミニウム箔がフラットの状態と、 第 3 図の拡大断面図の 8 aで示されるように、 排気孔を閉塞するアルミニウム等の 金属箔がセルの外方に向って凸状に膨出した状態との 2種類の防爆用安全弁に ついて、 作動圧のばらつきを試料各 1 0 0個の封口板について調べた。 それら の結果を第 4表に示す。  Therefore, for an explosion-proof safety valve with a structure in which the exhaust hole of the sealing plate is closed with aluminum foil, as shown in Fig. 1, the aluminum foil is in a flat state, and is indicated by 8a in the enlarged sectional view of Fig. 3. As shown in the figure, the variation in operating pressure was measured for each of the two types of explosion-proof safety valves, in which the metal foil of aluminum or the like that closes the exhaust hole bulged convexly outward of the cell. Each sealing plate was examined. Table 4 shows the results.
第 4 表  Table 4
Figure imgf000011_0001
第 4表から明らかなように、 排気孔を閉塞しているアルミニウム箔がセルの 外方に向って凸状に膨出した場合の方が、 防爆用安全弁の作動圧のばらつきが 小さくなつた。 この場合実施例 3における排気孔の形状を楕円形にした場合と 遜色なく、 却って優れた結果が得られた。 その理由は明らかではないが、 凸状 に膨出したアルミニウム箔内面全体にセル内のガス圧が均一にかかり、 アルミ 二ゥム箔と排気孔内周間の線状圧着部における破断が均等になることによると 推察される。
Figure imgf000011_0001
As is evident from Table 4, the variation in the operating pressure of the explosion-proof safety valve was smaller when the aluminum foil closing the exhaust hole bulged convexly outward of the cell. In this case, the shape of the exhaust hole in Example 3 is made elliptical. On the contrary, excellent results were obtained. The reason is not clear, but the gas pressure in the cell is evenly applied to the entire inner surface of the aluminum foil that bulges out in a convex shape, and the breakage in the linear crimping section between the aluminum foil and the inner circumference of the exhaust hole is even. It is presumed that it will be.
ぐ実施例 5 > Example 5>
ポータブル機器用電源として、 リチウムイオン二次電池をはじめ各種非水電 解質電池に対し、 過酷な環境条件下において、 高信頼性であることが要求され る。 これらの電池を高温多湿の状態で長期間放置した場合、 防爆用安全弁の付 近から有機電解液がセル内から漏出する電池が認められた。  As non-aqueous electrolyte batteries, such as lithium-ion secondary batteries, are required to be highly reliable under severe environmental conditions as power supplies for portable equipment. When these batteries were left in a hot and humid state for a long period of time, some batteries were found to leak organic electrolyte from around the explosion-proof safety valve.
そこで、 封口板の排気孔を閉塞して.いるアルミニウム箔の外面に吸湿性がな く、 化学的に安定で、 可塑性のコールタール、 ワセリン、 アスファルト等を有 機溶剤に溶解させた溶液を少量塗布した後溶剤をとばし、 有機系防食剤の塗膜 で被覆した効果について検討した。  Therefore, a small amount of a solution in which organic tar, vaseline, asphalt, etc., which is chemically stable and has no hygroscopicity, is dissolved in an organic solvent is used. After application, the solvent was skipped and the effect of coating with an organic anticorrosive coating film was examined.
まず、 防爆用安全弁の排気孔を閉塞しているアルミニウム箔の外面に、 予め コールタールピッチおよびヮセリンからなる有機系防食剤塗膜を形成させた封 口板を用意した。 実施例 1と同じ条件で角型リチウンイオン二次電池を各 5 0 セル試作し、 充電状態で、 6 0 で相対湿度 9 0 %の高温多湿状態で 3力月間 放置した。 放置後の電池の漏液率を目視により調べた結果を第 5表に示す。  First, a sealing plate was prepared, in which an organic anticorrosive coating consisting of coal tar pitch and dicerin was previously formed on the outer surface of the aluminum foil closing the exhaust hole of the explosion-proof safety valve. Under the same conditions as in Example 1, 50 cells each of a prismatic lithium ion secondary battery were trial-produced, and were left in a charged state at 60 ° C. and a relative humidity of 90% for 3 power months. Table 5 shows the results of visually examining the leakage rate of the battery after standing.
5 表 有機系防食剤 漏 液 率 (%:) なし 1 0 コールタールピッチ 2 ヮセリン 2 第 5表から明らかなように、 有機系防食剤からなる塗膜を防爆用安全弁のァ ルミ二ゥム箔の外面に設けることにより、 アルミニウム箔が腐食され難くなる ので、 非水電解質電池を高温多湿状態で長期間おいても漏液し難くなつたもの と考えられる。 5 Table Organic anticorrosives Leakage rate (% :) None 10 Coal tar pitch 2 Serine 2 As is evident from Table 5, by providing a coating made of an organic anticorrosive on the outer surface of the aluminum foil of the explosion-proof safety valve, the aluminum foil is less likely to corrode. It is considered that the liquid did not easily leak even after prolonged humid conditions.
コールタールピッチ、 ワセリン以外にガスケット表面に塗布する封止剤のブ ロンアスファルトと鉱物油の混合物のように、 吸湿性がなく、 化学的に安定で、 可塑性が高いものも有機系防食剤として有効である。  In addition to coal tar pitch and petrolatum, non-hygroscopic, chemically stable and highly plastic materials, such as a mixture of bron bitumen and mineral oil, a sealant applied to the gasket surface, are also effective as organic anticorrosives It is.
実施例 1乃至 5においては、 セル容器、 蓋板と金属箔からなる封口板がすべ てアルミニウム製で正極極性の場合の例である。 また、 封口板の中央部にガス ケットを介して、 密封固定されるリベットからなる端子とワッシャーとは通常 ニッケルまたはニッケル鍍鋼製で、 負極極性とした例によって、 本発明につい て詳述した。 しかし、 電池設計上、 これら実施例で示した同様なセル構造で、 極性を逆にする必要性も考慮しておかなければならない。 すなわち、 セル容器、 蓋板と金属箔からなる封口板がすべて二ッケル、 不銹鋼または二ッケル鍍鋼製 で、 負極極性であり、 封口板中央部にガスケットを介して密封固定されるリベ ットからなる端子とワッシャーとがアルミニゥム製で正極極性にした場合であ る。 本発明は実施例 1乃至 5における場合と逆の極性にした電池においても、 同様に実施可能で、 同様な効果を奏し得るものである。  Examples 1 to 5 are examples in which the cell container, the lid plate, and the sealing plate made of metal foil are all made of aluminum and have positive polarity. Further, the present invention has been described in detail with an example in which a terminal made of a rivet and a washer that are hermetically sealed via a gasket at the center of the sealing plate are usually made of nickel or nickel-plated steel and have a negative polarity. However, in the battery design, it is necessary to consider the necessity of reversing the polarity in the same cell structure shown in these embodiments. In other words, the cell container, the lid plate, and the sealing plate made of metal foil are all made of nickel, stainless steel, or nickel-plated steel, have negative polarity, and have a rivet that is sealed and fixed at the center of the sealing plate via a gasket. The terminal and the washer are made of aluminum and have a positive polarity. The present invention can be similarly implemented in batteries having the opposite polarity to those in Examples 1 to 5, and can achieve the same effects.
ぐ実施例 6 > Example 6>
前述したように、 セル容器および封口板基材の蓋板をニッケル、 不銹鋼また はニッケル鍍鋼板で作製し、 アルミニウム製リベットからなる正極端子の少な くとも片側に設けられた排気孔を閉塞するようにニッケル、 不銹鋼またはニッ ケル鍍鋼からなる金属箔で閉塞する防爆用安全弁においては、 実施例 1乃至 5 で述べたアルミニウム箔の場合よりさらに薄くしないと所定ガス圧までに破断 し難い問題点が生ずる。 しかし、 ニッケル、 不銹鋼またはニッケル鈹鋼製の金 属箔をアルミニウム箔より薄く圧延することは工業的に困難である。 そこで封 口板の排気孔を閉塞するこれらの金属箔に刻印等の方法で予め例えば、 馬蹄形 状の肉薄パターンを設けてその効果を検証した。 すなわち、 0 . 6 mm厚の二 ッケル鈹鋼板製蓋板の上方から打ち抜かれた排気孔の蓋板下面に生じたバリを 利用してニッケル箔をプロジェクション溶接により一体化して密封する。 この 二ッケル箔の排気孔の内周に近接するように馬蹄形状の肉薄のパターンを刻印 で設けた。 このような刻印の効果を弁作動圧のばらつき幅から評価した。 それ らの結果を第 6表に示す。 As described above, the cell container and the lid plate of the sealing plate substrate are made of nickel, stainless steel or nickel-plated steel plate, and the exhaust holes provided on at least one side of the positive electrode terminal made of aluminum rivets are closed. The explosion-proof safety valve closed with a metal foil made of nickel, stainless steel or nickel-plated steel has a problem that it is difficult to break to a predetermined gas pressure unless it is made thinner than the aluminum foil described in Examples 1 to 5. Occurs. However, it is industrially difficult to roll metal foil made of nickel, stainless steel or nickel-steel thinner than aluminum foil. Therefore, for example, a thin horseshoe-shaped pattern was provided in advance on these metal foils that block the exhaust holes of the sealing plate by engraving or the like to verify the effect. That is, the burr generated on the lower surface of the lid plate of the exhaust hole punched from above the nickel-plated steel lid plate with a thickness of 0.6 mm Utilizing and integrating the nickel foil by projection welding and sealing. A thin horseshoe-shaped pattern was provided by engraving so as to be close to the inner circumference of the exhaust hole of the nickel foil. The effect of such marking was evaluated from the variation width of the valve operating pressure. Table 6 shows the results.
第 6 表  Table 6
Figure imgf000014_0001
Figure imgf000014_0001
第 6表から明らかなように、 刻印等の手段により排気孔内の金属箔に肉薄の パターンを設けることにより、 防爆用安全弁の作動圧を低下させるとともにば らっきを低減できることがわかる。  As is evident from Table 6, by providing a thin pattern on the metal foil in the exhaust hole by means such as engraving, it can be seen that the operating pressure of the explosion-proof safety valve can be reduced and the dispersion can be reduced.
なお、 このような手段は、 実施例 1乃至 5におけるセル容器と蓋板と金属箔 からなる封口板がすべてアルミニウム製である場合にも、 特に排気孔の径が小 さい場合に、 有効な手段になる。  Such a means is effective even when the cell container, the lid plate, and the sealing plate made of metal foil in Examples 1 to 5 are all made of aluminum, particularly when the diameter of the exhaust hole is small. become.
<実施例 7 > <Example 7>
角型電池を構成するに当って、 ガスケッ卜を介して封口板の中央部にリベッ 卜とワッシャーとからなる端子、 防爆用安全弁および注液孔を設けた封口板に、 電極群を正、 負極リード板を溶接して固定したのち、 左右対称の有底セル容器 内に電極群を挿入して収容し、 セル容器の開口上縁部に封口板を嵌着する。 こ の場合、 電極群を接続固定した封口板は必ずしも左右対称ではないので、 それ 以降の工程で、 左右が相違する半完成セルが工程を移動することになる。 この ようなことは工程管理面および生産性の面で問題が生ずる。 したがって、 封口 板を形成するに当り、 封口板基材の蓋板を帯状のフープ材にし、 これに、 逐次 防爆用安全弁、 注液孔、 端子等の部品を連続的に載置し、 安全弁の金属箔のピ ンホールおよび設定された下限の作動圧の検査等も全数連続的に行い、 最終的 に裁断してそのまま電池の組み立て工程に供給されれば前述したような左右の 配置が逆になる半完成電池が工程に流れることもなくなるとともに信頼性が高 い封口板を優れた生産性で製造することが可能になる。 In constructing the prismatic battery, the positive and negative electrode groups were placed on the sealing plate provided with a terminal consisting of a rivet and washer, an explosion-proof safety valve and a liquid injection hole at the center of the sealing plate via a gasket. After welding and fixing the lead plate, the electrode group is inserted and housed in a symmetrical bottomed cell container, and a sealing plate is fitted to the upper edge of the opening of the cell container. In this case, the sealing plate to which the electrode group is connected and fixed is not necessarily left-right symmetric, so that in the subsequent steps, the semi-finished cells whose right and left are different move through the steps. This causes problems in process control and productivity. Therefore, in forming the sealing plate, the lid plate of the sealing plate base material is formed into a band-shaped hoop material, and Parts such as explosion-proof safety valves, liquid injection holes, and terminals are placed continuously, and all of the safety valve pinholes and inspections for the set minimum operating pressure are also performed continuously, and finally cut. If the battery is supplied as it is to the battery assembly process, the semi-finished battery whose left and right arrangement is reversed as described above will not flow to the process, and a highly reliable sealing plate can be manufactured with excellent productivity. Will be possible.
第 4図は本発明による封口板を連続製造するためのフローチャートの 1例で ある。 以下、 第 4図のフローチヤ一トを参照しながら、 封口板の連続的な製造 工程を説明する。  FIG. 4 is an example of a flowchart for continuously manufacturing a sealing plate according to the present invention. Hereinafter, the continuous manufacturing process of the sealing plate will be described with reference to the flowchart of FIG.
まず、 所定幅で所定厚 (例えば 0 . 6 mm) のアルミニウム製蓋板用フープ 材' 2に一定間隔で排気孔 7を打ち抜いて設ける。 次いで、 排気孔 7を設けた蓋 板用フープ材の片面に、 所定厚 (例えば 0 . 0 3 mm) のアルミニウム箔を重 ねた状態で、 2本のローラ一間を通して加圧して一体化するクラッド加工を施 す (第 5図参照) 。 このクラッド加工時に、 蓋板材が若干圧延されて延伸する ので、 過度の加圧は避けなければならない。  First, exhaust holes 7 are punched and provided at regular intervals in an aluminum lid hoop member 2 having a predetermined width and a predetermined thickness (for example, 0.6 mm). Next, in a state where an aluminum foil having a predetermined thickness (for example, 0.03 mm) is overlapped on one surface of the hoop material for the lid plate provided with the exhaust hole 7, the aluminum foil is pressed and integrated between two rollers. Apply cladding (see Fig. 5). During this cladding process, the cover plate is slightly rolled and stretched, so excessive pressing must be avoided.
次いで、 各工程における加工、 各種部品を取り付ける工程および最終工程と して、 各単セルの組み立て部品として個々の封口板に打ち抜き法等で裁断して 切り離すに際し、 位置決めすることは極めて重要である。 これら工程の位置決 め用のパイロット孔 1 8を一定間隔で打ち抜き法により開ける。  Next, in the processing in each process, the process of attaching various components, and the final process, positioning is extremely important when cutting and separating individual sealing plates by punching or the like as assembly components of each single cell. Pilot holes 18 for positioning these processes are punched at regular intervals by a punching method.
次に封口板の中央部に金型を用いてプレスにより下方に向って凹状にへこむ ように絞り成型加工した後リベット揷入用孔と注液孔 1 3とを打抜き法により 開ける。  Next, a center portion of the sealing plate is drawn by a press using a mold so as to be concavely concave downward, and then a rivet insertion hole and a liquid injection hole 13 are opened by a punching method.
リベット揷入用孔にガスケッ卜 4用の合成樹脂を射出成型法によりモールド 成型して封口板と一体に固定する。  The synthetic resin for gasket 4 is molded into the rivet insertion hole by injection molding and fixed integrally with the sealing plate.
次に、 防爆用安全弁のピンホールおよび作動下限圧検査を全数行った後モー ルド成型により取り付けられたガスケッ卜のリベットを挿入する中心部分に封 止剤であるブロンアスファルトと鉱物油とを有機溶剤で溶かした塗料を塗布す る。 溶剤がとんだ後、 ニッケルまたはニッケル鍍鋼製リベット 5をガスケット 4の中央孔に揷入し、 リベッ卜の下部にワッシャーを嵌合させたままリベット の下端をかしめて端子 5を密封状態で形成させる (第 6図参照) 。 上記した各 工程はパイロット孔 1 8を基準に進められる。 Next, the pinholes of the explosion-proof safety valve and the minimum operating pressure of the explosion-proof valve were all tested, and then the sealing agent bron asphalt and mineral oil were added to the central part of the gasket attached by molding to insert the rivet. Apply the paint that has been melted. After the solvent has melted, insert a rivet 5 made of nickel or nickel-plated steel into the center hole of the gasket 4 and crimp the lower end of the rivet while fitting the washer to the lower part of the rivet to form the terminal 5 in a sealed state. (See Figure 6). Each of the above The process proceeds on the basis of pilot holes 18.
以上のようにフープ材のまま連続的に製造された封口板は電池の組み立てェ 程に搬送され、 パイロット孔 1 8をガイドにして次々に打ち抜かれて使用され る。 以上本発明について、 薄形で角型のリチウムイオン二次電池を例に詳述 したが、 本発明はこの電池系に限定されるものではない。 すなわち、 本発明は 有機電解液を用いる各種リチウム一次電池をはじめ塩化チオニールを正極活物 質に用い、 金属リチウム負極表面に固体電解質が形成されるリチウム一次電池 および金属リチウムやリチウム合金を負極に用いる他のリチウム二次電池のよ うに、 外部短絡、 過充電および逆充電を伴う過放電等によってセル内圧が異常 に上昇する非水電解質電池全般にわたって適用可能である。  As described above, the sealing plate continuously manufactured with the hoop material is conveyed to the battery assembling step and punched out one after another with the pilot hole 18 as a guide. Although the present invention has been described in detail with reference to a thin rectangular lithium ion secondary battery as an example, the present invention is not limited to this battery system. That is, the present invention uses various lithium primary batteries using an organic electrolyte, thionyl chloride as a positive electrode active material, a lithium primary battery in which a solid electrolyte is formed on a metal lithium negative electrode surface, and metal lithium or a lithium alloy as a negative electrode. Like other lithium secondary batteries, it can be applied to all non-aqueous electrolyte batteries in which the cell internal pressure rises abnormally due to an external short circuit, overcharge and overdischarge accompanied by reverse charge.
また本発明の構造は角型電池だけでなく、 横断面が長円形の電池、 細い円筒 型等封口板面積が小さし ^小型電池に幅広く適用できる。  In addition, the structure of the present invention can be widely applied not only to rectangular batteries, but also to batteries having an oval cross section, a thin cylindrical shape, and a small sealing plate area.
なお、 本発明においては寸法上、 防爆機能を完璧にすることを主眼において いるので、 過充電のように電流が流れ続けた場合の発火事故は防止できない。 各セルまたはバッテリーパックに別途 P T C素子を内蔵させるか複数セルから なるバッテリーパック内に過充電および、 過放電防止回路を付属させることを 前提としている。  Note that, in the present invention, since the main purpose is to perfect the explosion-proof function in terms of dimensions, it is not possible to prevent a fire accident when current continues to flow such as overcharging. It is assumed that a separate PTC element is built in each cell or battery pack, or that an overcharge and overdischarge prevention circuit is included in a battery pack consisting of multiple cells.
さらに、 有底のセル容器、 蓋板材、 金属箔、 リベット、 ワッシャー等にアル ミニゥムを用いる例を示したが、 金属箔以外は純アルミニウムに限定されない ことについても付記する。 すなわち、 さらなる電池の軽量化と高容量化をはか るために、 例えば、 3 0 0 0系の A 1— M n系合金、 4 0 0 0系の A 1— S i 系合金、 5 0 0 0系の A 1 一 M g系合金等のアルミニウム合金のように機械的 強度が高く、 かつ耐食性の材料により、 セル容器、 蓋板等のハウジング材を肉 薄化することを妨げるものではない。 産業上の利用可能性  In addition, examples are given of the use of aluminum for bottomed cell containers, lid plates, metal foils, rivets, washers, etc. However, it should be noted that other than metal foil is not limited to pure aluminum. In other words, in order to further reduce the weight and increase the capacity of the battery, for example, a 300-series A1-Mn-based alloy, a 400-series A1-Si-based alloy, It does not prevent thinning of housing materials such as cell containers and lid plates with materials having high mechanical strength and corrosion resistance, such as aluminum alloys such as A0-A1 Mg alloys of 0 series. . Industrial applicability
以上のように本発明は、 金属製の有底セル容器の開口上縁部にセル容器と同 じ金属製の封口板を嵌着した状態でこれらの間をレーザー溶接により密封口し た電池であって、 封口板の中央部に設けられた貫通孔には耐電解液性で電気絶 縁性の合成樹脂製のガスケットを介して端子を兼ねる金属製リベッ卜が挿入、 固定されるとともに、 端子と封口板の周縁部との間に少なくとも 1個の排気孔 を設け、 封口板の基材である蓋板の内面に金属箔を圧着させることにより排気 孔を閉塞した防爆用安全弁を備えた非水電解質電池であって、 弁作動の信頼性 を飛躍的に向上させ、 薄形で角型または横断面が長円形等の小型電池の破裂事 故を完璧に防止し得るものである。 As described above, the present invention relates to a battery in which a metal-made bottomed cell container is fitted with a sealing plate made of the same metal as the cell container at the upper edge of the opening, and the space between them is sealed by laser welding. The through hole provided in the center of the sealing plate has electrolytic resistance and electrical insulation. A metal rivet that doubles as a terminal is inserted and fixed via a gasket made of synthetic resin with an edge, and at least one exhaust hole is provided between the terminal and the peripheral edge of the sealing plate. This is a non-aqueous electrolyte battery equipped with an explosion-proof safety valve whose exhaust hole is closed by pressing metal foil on the inner surface of the lid plate, which is a material. It can completely prevent the rupture of small batteries whose mold or cross section is oval or the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . セパレー夕を介して正極と負極とにより構成された電極群と非水電解質と からなる電池要素を収容した金属製有底セル容器の開口上縁部に、 金属製封口 板を嵌着した状態で、 前記セル容器と封口板間とをレーザー溶接により一体化 して密封口し、 前記封口板中央部に設けられた貫通孔には耐電解液性で電気絶 縁性の合成樹脂製のガスケットを介して端子を兼ねる金属製リベッ卜が挿入、 固定されるとともに、 前記端子と前記封口板の周縁部との間に少なくとも 1個 の排気孔を設け、 前記封口板の基材である蓋板の内面の少なくとも前記排気孔 の周辺部に金属箔を圧着一体化することにより前記排気孔を閉塞した防爆用安 全弁を備えた非水電解質電池。  1. A metal sealing plate was fitted to the upper edge of the metal bottomed cell container containing the battery element composed of the positive electrode and the negative electrode and the non-aqueous electrolyte through the separator. In this state, the cell container and the sealing plate are integrated by laser welding to form a sealed opening, and a through hole provided at the center of the sealing plate is made of a synthetic resin made of an electrolytic solution-resistant and electrically insulating. A metal rivet also serving as a terminal is inserted and fixed via a gasket, and at least one exhaust hole is provided between the terminal and a peripheral portion of the sealing plate. A lid serving as a base material of the sealing plate A non-aqueous electrolyte battery provided with an explosion-proof safety valve in which the exhaust hole is closed by press-fitting a metal foil onto at least the peripheral portion of the exhaust hole on the inner surface of the plate.
2 . 封口板中央部に設けられた貫通孔の周囲がセルの内方に向って凹状にへこ むように絞り成型加工された請求の範囲第 1項に記載の非水電解質電池。  2. The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte battery is formed by drawing so that the periphery of a through-hole provided in the center of the sealing plate is concavely recessed toward the inside of the cell.
3 . ガスケットがポリフエ二レンスルフィ ド樹脂からなる請求の範囲第 1項に 記載の非水電解質電池。  3. The non-aqueous electrolyte battery according to claim 1, wherein the gasket is made of a polyphenylene sulfide resin.
4 . 封口板に、 ガスケットと一体化した端子および排気孔を金属箔により閉塞 した防爆用安全弁を備えるとともに、 少なくとも 1個の注液孔を設け、 注液後、 前記注液孔を密封した請求の範囲第 1項に記載の非水電解質電池。  4. The sealing plate is provided with a gasket-integrated terminal and an explosion-proof safety valve in which the exhaust hole is closed with metal foil, and at least one injection hole is provided. After the injection, the injection hole is sealed. 2. The non-aqueous electrolyte battery according to item 1.
5 . 封口板に設けた排気孔の形状を楕円形にした請求の範囲第 1項に記載の非 水電解質電池。  5. The non-aqueous electrolyte battery according to claim 1, wherein the shape of the exhaust hole provided in the sealing plate is elliptical.
6 . 端子を兼ねるリベットの下端をかしめることにより、 それ自体が加圧され るとともに、 ガスケットを押圧して密封する金属製ワッシャーが配置され、 前 記ワッシャーと前記ワッシャーと同じ極性の電極群からの一方のリ一ド板を電 気的に接続した請求の範囲第 1項に記載の非水電解質電池。  6. By caulking the lower end of the rivet that also serves as a terminal, the rivet itself is pressurized, and a metal washer that presses and seals the gasket is arranged. From the washer and the electrode group of the same polarity as the washer 2. The non-aqueous electrolyte battery according to claim 1, wherein one of the lead plates is electrically connected.
7 . セル容器と封口板を構成する蓋板とがアルミニウムまたはアルミニウム合 金製で、 金属箔がアルミニウム製であり、 リベットとワッシャーがニッケルま たはニッケル鍍鋼製である請求の範囲第 1項に記載の非水電解質電池。  7. The cell container and the lid plate constituting the sealing plate are made of aluminum or aluminum alloy, the metal foil is made of aluminum, and the rivets and washers are made of nickel or nickel-plated steel. 3. The non-aqueous electrolyte battery according to 1.
8 . セル容器と封口板を構成する蓋板と金属箔とがニッケル、 不銹鋼または二 ッケル鍍鋼製であり、 リベッ卜とワッシャーとがアルミニウムまたはアルミ二 ゥム合金製である請求の範囲第 1項または第 6項に記載の非水電解質電池。8. The lid plate and metal foil that constitute the cell container and the sealing plate are made of nickel, stainless steel or nickel-plated steel, and the rivet and washer are made of aluminum or aluminum alloy. 7. The non-aqueous electrolyte battery according to claim 1, which is made of a lithium alloy.
9 . 封口板の排気孔を閉塞する金属箔がセルの外方に向って凸状に膨出するよ うにした防爆用安全弁を備えた請求の範囲第 1項に記載の非水電解質電池。9. The non-aqueous electrolyte battery according to claim 1, further comprising an explosion-proof safety valve in which a metal foil for closing an exhaust hole of a sealing plate protrudes outwardly from the cell.
1 0 . 封口板の排気孔を閉塞した金属箔に、 前記排気孔の内周に近接するよう に肉薄の所定パターンを形成させた請求の範囲第 1項に記載の非水電解質電池。10. The non-aqueous electrolyte battery according to claim 1, wherein a thin predetermined pattern is formed on the metal foil that closes the exhaust hole of the sealing plate so as to approach the inner periphery of the exhaust hole.
1 1 . 封口板の排気孔を閉塞した金属箔の外面を、 吸湿性がなく、 化学的に安 定で、 可塑性の有機系防食剤からなる塗膜により被覆した請求の範囲第 1 , 7, 8, 9項または第 1 0項のいずれかに記載の非水電解質電池。 1 1. Claims 1, 7, and 7 in which the outer surface of the metal foil that has closed the exhaust hole of the sealing plate is coated with a coating made of a non-hygroscopic, chemically stable and plastic organic anticorrosive. 10. The non-aqueous electrolyte battery according to any one of items 8, 9 and 10.
1 2 . 封口板の基材である蓋板となる金属製フープ材に一定間隔で排気孔を設 ける工程と、 前記蓋板材の片面に金属箔を圧着一体化してクラッド板とするこ とにより前記排気孔を前記金属箔で閉塞する工程と、 フープ状のクラッド板の 中央部に貫通孔を一定間隔で設ける工程と、 前記貫通孔に耐電解液性で電気絶 縁性の合成樹脂をモールド成型によりガスケットを形成させる工程と、 前記ガ スケッ卜表面に封止剤の塗膜を形成させた後前記ガスケッ卜の中央孔に端子を 兼ねるリベットを挿入し、 前記リベットをかしめて密封する工程とにより連続 した封口板のフープ材とし、 前記封口板のフープ材を最終工程で裁断して個別 の単セル用封口板とし、 電池の組み立て工程に順次連続的に供給する非水電解 質電池用封口板の製造方法。  12. A step of providing exhaust holes at regular intervals in a metal hoop material serving as a lid plate, which is the base material of the sealing plate, and pressing and integrating metal foil on one surface of the lid plate material to form a clad plate. A step of closing the exhaust hole with the metal foil, a step of providing through holes at regular intervals in the center of the hoop-shaped clad plate, and a step of molding a synthetic resin having electrolytic resistance and electrical insulation into the through holes. Forming a gasket by molding; forming a coating of a sealant on the gasket surface, inserting a rivet also serving as a terminal into a central hole of the gasket, and caulking and sealing the rivet. In the final process, the hoop material of the sealing plate is cut into individual single-cell sealing plates, and the non-aqueous electrolyte battery sealing material is supplied sequentially to the battery assembly process. Plate manufacturing method.
1 3 . 蓋板材と金属箔とからなるフープ状クラッド板の中央部に設けられた貫 通孔の周囲を前記蓋板材側から凹状にへこむように絞り成型加工した後、 前記 貫通孔にモールド成型によりガスケットを形成させる工程に移行する請求の範 囲第 1 2項に記載の非水電解質電池用封口板の製造方法。  13 3. After drawing around the through hole provided in the center of the hoop-shaped clad plate made of the cover plate material and the metal foil so as to be concavely recessed from the cover plate material side, mold forming into the through hole 13. The method for producing a sealing plate for a non-aqueous electrolyte battery according to claim 12, wherein the method shifts to a step of forming a gasket according to claim 12.
1 4 . ガスケッ卜がポリフエ二レンスルフィ ドからなる請求の範囲第 1 2項に 記載の非水電解質電池用封口板の製造方法。  14. The method for producing a sealing plate for a non-aqueous electrolyte battery according to claim 12, wherein the gasket is made of polyphenylene sulfide.
1 5 . 蓋板材と金属箔とからなるフープ状クラッド板の中央部に貫通孔を設け ると同時に注液孔を形成する請求の範囲第 1 2項に記載の非水電解質電池用封 口板の製造方法。  15. The sealing plate for a non-aqueous electrolyte battery according to claim 12, wherein a through hole is formed at the center of a hoop-shaped clad plate made of a lid plate material and a metal foil, and a liquid injection hole is formed at the same time. Manufacturing method.
1 6 . 排気孔の形状を楕円形にした請求の範囲第 1 2項に記載の非水電解質電 池用封口板の製造方法。 16. The method for producing a sealing plate for a non-aqueous electrolyte battery according to claim 12, wherein the shape of the exhaust hole is elliptical.
1 7 . 端子を兼ねるリベットの下方に金属製ワッシャーを嵌合させた状態で、 前記リベッ卜の下端をかしめることによりガスケットを介して端子を密封状態 で固定した請求の範囲第 1項に記載の非水電解質電池用封口板の製造方法。17. The terminal according to claim 1, wherein the terminal is fixed in a sealed state via a gasket by caulking a lower end of the rivet with a metal washer fitted below the rivet also serving as a terminal. 17. Method for producing a sealing plate for a non-aqueous electrolyte battery.
1 8 . フープ状蓋板材がアルミニウムまたはアルミニウム合金製で、 金属箔が アルミニウム製であり、 リベッ卜とワッシャーとがニッケルまたはニッケル鍍 鋼製である請求の範囲第 1 2項に記載の非水電解質電池用封口板の製造方法。18. The nonaqueous electrolyte according to claim 12, wherein the hoop-shaped cover plate is made of aluminum or an aluminum alloy, the metal foil is made of aluminum, and the rivet and the washer are made of nickel or nickel-plated steel. 18. A method for manufacturing a battery sealing plate.
1 9 . フープ状蓋板材と金属箔とが、 ニッケル、 不銹鋼またはニッケル鍍鋼製 であり、 リベッ卜とワッシャーがアルミニウムまたはアルミニウム合金製であ る請求の範囲第 1 2項に記載の非水電解質電池用封口板の製造方法。 19. The non-aqueous electrolyte according to claim 12, wherein the hoop-shaped lid plate material and the metal foil are made of nickel, stainless steel or nickel-plated steel, and the rivet and the washer are made of aluminum or an aluminum alloy. A method for manufacturing a battery sealing plate.
2 0 . 排気孔を閉塞して防爆用安全弁を形成する金属箔が上方に向って凸状に 膨出している請求の範囲第 1 2項に記載の非水電解質電池用封口板の製造方法。 20. The method for producing a sealing plate for a non-aqueous electrolyte battery according to claim 12, wherein the metal foil forming the explosion-proof safety valve by closing the exhaust hole bulges upwardly in a convex shape.
2 1 . 排気孔を閉塞して防爆用安全弁を形成する金属箔に、 前記排気孔の内周 に近接するように肉薄の所定パターンを形成させた請求の範囲第 1 2項に記載 の非水電解質電池用封口板の製造方法。 21. The non-aqueous water according to claim 12, wherein a thin predetermined pattern is formed on the metal foil forming the explosion-proof safety valve by closing the exhaust hole so as to be close to the inner periphery of the exhaust hole. A method for producing a sealing plate for an electrolyte battery.
2 2 . 排気孔を閉塞して防爆用安全弁を形成する金属箔の外面を、 吸湿性がな く、 化学的に安定で、 可塑性の有機系防食剤からなる塗膜により被覆した請求 の範囲第 1 2, 1 8, 1 9, 2 0項または第 2 1項のいずれかに記載の非水電 解質電池用封口板の製造方法。  22. The outer surface of the metal foil forming the explosion-proof safety valve by closing the exhaust hole is coated with a coating made of a plastic organic anticorrosive that is chemically stable without moisture absorption. 12. The method for producing a sealing plate for a non-aqueous electrolyte battery according to any one of paragraphs 12, 18, 19, 20, and 21.
PCT/JP1997/004679 1996-12-25 1997-12-18 Nonaqueous electrolyte battery and manufacture of sealing plate thereof WO1998029911A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/139,482 US6132900A (en) 1996-12-25 1998-08-25 Method of production of non-aqueous electrolyte battery and seal plate thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8/344841 1996-12-25
JP34484196 1996-12-25
JP9/33406 1997-02-18
JP03340697A JP3584656B2 (en) 1996-12-25 1997-02-18 Method of manufacturing sealing plate for prismatic nonaqueous electrolyte battery
JP9/173437 1997-06-30
JP17343797A JP3550953B2 (en) 1997-06-30 1997-06-30 Non-aqueous electrolyte battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/139,482 Continuation-In-Part US6132900A (en) 1996-12-25 1998-08-25 Method of production of non-aqueous electrolyte battery and seal plate thereof

Publications (1)

Publication Number Publication Date
WO1998029911A1 true WO1998029911A1 (en) 1998-07-09

Family

ID=27288056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004679 WO1998029911A1 (en) 1996-12-25 1997-12-18 Nonaqueous electrolyte battery and manufacture of sealing plate thereof

Country Status (1)

Country Link
WO (1) WO1998029911A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528897B1 (en) * 1999-01-22 2005-11-16 삼성에스디아이 주식회사 Cap assembly used in secondary battery
CN112615091A (en) * 2020-12-30 2021-04-06 武汉富航精密工业有限公司 Injection molding assembly method of secondary battery top cover assembly and top cover assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077665B2 (en) * 1986-06-19 1995-01-30 松下電器産業株式会社 Manufacturing method of safety valve device for battery
JPH07211305A (en) * 1994-01-14 1995-08-11 Japan Storage Battery Co Ltd Organic electrolyte battery
JPH0831429A (en) * 1994-07-21 1996-02-02 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte battery
JPH0845488A (en) * 1994-08-02 1996-02-16 Japan Storage Battery Co Ltd Sealed type battery
JPH0877999A (en) * 1994-08-31 1996-03-22 Japan Storage Battery Co Ltd Battery
JPH08171898A (en) * 1994-12-16 1996-07-02 Fuji Elelctrochem Co Ltd Rectangular electrochemical element equipped with explosion-proof safety device and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077665B2 (en) * 1986-06-19 1995-01-30 松下電器産業株式会社 Manufacturing method of safety valve device for battery
JPH07211305A (en) * 1994-01-14 1995-08-11 Japan Storage Battery Co Ltd Organic electrolyte battery
JPH0831429A (en) * 1994-07-21 1996-02-02 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte battery
JPH0845488A (en) * 1994-08-02 1996-02-16 Japan Storage Battery Co Ltd Sealed type battery
JPH0877999A (en) * 1994-08-31 1996-03-22 Japan Storage Battery Co Ltd Battery
JPH08171898A (en) * 1994-12-16 1996-07-02 Fuji Elelctrochem Co Ltd Rectangular electrochemical element equipped with explosion-proof safety device and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528897B1 (en) * 1999-01-22 2005-11-16 삼성에스디아이 주식회사 Cap assembly used in secondary battery
CN112615091A (en) * 2020-12-30 2021-04-06 武汉富航精密工业有限公司 Injection molding assembly method of secondary battery top cover assembly and top cover assembly
CN112615091B (en) * 2020-12-30 2023-06-23 武汉富航精密工业有限公司 Injection molding assembly method of secondary battery top cover assembly and top cover assembly

Similar Documents

Publication Publication Date Title
US6132900A (en) Method of production of non-aqueous electrolyte battery and seal plate thereof
US7572544B2 (en) Sealed rechargeable battery
US6406815B1 (en) Compact lithium ion battery and method of manufacturing
US6413668B1 (en) Lithium ion battery and container
KR101131258B1 (en) Housing for a sealed electrochemical battery cell
JP6538650B2 (en) Cylindrical sealed battery
US7655353B2 (en) Battery
CN100440602C (en) Cylindrical lithium rechargeable battery and method for fabricating the same
JP5137291B2 (en) Lithium ion secondary battery
JP4124756B2 (en) Sealed battery
US20040126650A1 (en) Electrode assembly for lithium ion cell and lithium cell using the same
US20030162088A1 (en) Coin-shaped battery
KR101074780B1 (en) Cap assembly, can, and secondary battery using the same
JP2003317805A (en) Cylindrical lithium ion secondary cell, and manufacturing method of the same
JP2004273139A (en) Lithium secondary battery
KR20040022716A (en) Cylindrical type lithium secondary battery and the fabrication method of the same
US8263245B2 (en) Cap assembly and secondary battery using the same
JP3584656B2 (en) Method of manufacturing sealing plate for prismatic nonaqueous electrolyte battery
KR102486134B1 (en) Cylindrical-type Battery Comprising Gasket- Washer for High-effective Sealing
JP2006080066A (en) Lithium-ion secondary battery
US20220285764A1 (en) Secondary battery
KR20060097485A (en) Assembly method for secondary battery
JP2008204839A (en) Sealing plate for cylindrical battery cell
KR101174919B1 (en) Lithium rechargeable battery
KR20080018471A (en) Rechageable battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09139482

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase