WO1998029030A1 - Pressure-sensing stent - Google Patents
Pressure-sensing stent Download PDFInfo
- Publication number
- WO1998029030A1 WO1998029030A1 PCT/IL1997/000447 IL9700447W WO9829030A1 WO 1998029030 A1 WO1998029030 A1 WO 1998029030A1 IL 9700447 W IL9700447 W IL 9700447W WO 9829030 A1 WO9829030 A1 WO 9829030A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stent
- ultrasound
- flow
- coil
- blood
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6867—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
- A61B5/6876—Blood vessel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0031—Implanted circuitry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
- A61B5/02158—Measuring pressure in heart or blood vessels by means inserted into the body provided with two or more sensor elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0265—Measuring blood flow using electromagnetic means, e.g. electromagnetic flowmeter
- A61B5/027—Measuring blood flow using electromagnetic means, e.g. electromagnetic flowmeter using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6862—Stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/06—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/028—Microscale sensors, e.g. electromechanical sensors [MEMS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0001—Means for transferring electromagnetic energy to implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/16831—Monitoring, detecting, signalling or eliminating infusion flow anomalies
- A61M2005/16863—Occlusion detection
Definitions
- the present invention relates to the field of vascular measurement, and in particular to measuring parameters relating to blood flow through a vascular stent.
- Atherosclerosis narrowing of the blood vessels, is a common disease of advancing age.
- angioplasty a balloon is inserted into the narrowed portion of the blood vessel and inflated, thereby widening the lumen.
- a stent is inserted into the blood vessel at the widened location to support the vessel (which may have been damaged by the angioplasty) and to maintain an open lumen.
- a portion of the circulatory system may be replaced with a tissue graft or with a graft manufactured of biocompatible materials.
- Newer stents are radio-opaque, and are visible under fluoroscopy, which aids in guiding them into position.
- U.S. patent 5,522,394 the disclosure of which is incorporated herein by reference, describes an implantable probe for measuring blood flow velocity.
- U.S. patent 5,205,292 the disclosure of which is incorporated herein by reference, describes an implantable probe for measuring blood flow velocity and other physiological parameters, which is attached to the outside of a blood vessel.
- U.S. Patent 4,109,644 the disclosure of which is incorporated herein by reference, describes an implantable wireless ultrasound probe which is powered by external electromagnetic induction and transmits outside the body, via electromagnetic radiation, a signal indicative of ultrasound signals received by the probe.
- the flow is irradiated with ultrasonic waves at a given frequency.
- the reflection of the ultrasound from the flow is shifted by the Doppler effect to a different frequency from the transmitted frequency. Since the Doppler shift is linearly related to the flow velocity, the velocity can be determined by analyzing the frequency spectrum of the reflection.
- Another type of ultrasound flow meter is the transit time flow meters, which takes advantage of a difference in propagation velocity between upstream propagation and downstream propagation of ultrasound waves. Waves traveling in the direction of flow move faster than waves which travel in a direction opposite the flow.
- Electromagnetic flow meters use the well-known property that a voltage potential develops across a conductor moving in a magnetic field. To generate an EMF in a blood vessel, it is surrounded by an induction coil, which generates a magnetic field on the blood vessel. The voltage ⁇ that develops on the blood is measured on the blood vessel rather than on the blood.
- Miniature transmitters suitable for implantation in the human body for transmission of physiological parameters are well known in the art.
- the sensor includes a transmitter, which includes a coil coupled to the pressure sensor, such that a ferrite moves axially within the coil in response to changes in pressure, so as to cause a variation in the inductance of the coil and frequency-modulate the radiation that the coil transmits, such a transmitter is also described in U.S. Patent 5,497,147, the disclosure of which is incorporated herein by reference.
- a pressure sensor into the vascular system, such as into an artificial heart valve, but recommends against placing a pressure sensor inside the blood stream due to the obstruction caused by the pressure sensor and by the danger of forming blood clots.
- Chapter 10 of Mackay, pp. 298-315 describes various methods of passive transmission, wherein the energy for sensing and transmission is provided by an outside source.
- a transmitter using a tunnel diode, two capacitors and a coil is described, in which one capacitor stores energy during a charging phase and releases the energy to an oscillator which includes the other capacitor, the coil and the tunnel diode.
- the transmitted frequency is offset from the received frequency.
- the stent is implanted in a blood vessel of a subject.
- the stent includes no active power source, such as a battery, but rather receives power from an externally applied electromagnetic field.
- a stent for implantation in a blood vessel in the body of a subject, comprises a flow parameter sensor and a transmitter.
- the flow parameter sensor measures a rate of flow of blood through the vessel, and the transmitter transmits signals responsive to the flow parameter sensor's measurement.
- the signals are received and analyzed by a receiver outside the body, either continuously or intermittently, to determine whether flow through the vessel is occluded and, if so, to what extent.
- the flow parameter sensor and transmitter are powered by a battery, which is preferably mechanically fixed to the stent.
- the battery is preferably a primary battery, of a type known in the art.
- the battery may be a rechargeable battery, and the stent may further have recharging circuitry associated therewith, for example, inductively-coupled recharging circuitry, as is known in the art.
- the flow parameter sensor and transmitter are powered by electrical energy received from a source outside the body, and are active only when a suitable source of such energy is brought into proximity with the body.
- the stent comprises a resilient coil, made of electrically-conductive material and coupled at both ends to circuitry associated with the flow parameter sensor and/or the transmitter.
- the energy source outside the body generates a time- varying magnetic field in a vicinity of the coil, which field is preferably generally aligned with a central axis thereof, thus causing an electrical current to flow in the coil and provide energy to the flow parameter sensor and/or transmitter.
- the flow parameter sensor comprises an electromagnetic sensor.
- a magnetic field preferably a DC magnetic field in a direction generally perpendicular to the long axis of the stent, is applied to the stent by a magnetic field generator outside the body.
- the stent comprises only non-magnetic materials, so as not to distort the lines of magnetic field.
- the stent comprises ferro-magnetic materials which concentrate the magnetic filed at a region adjacent electrodes which measure the induced potential. It should be noted that magnets are generally undesirable in a stent as they may cause damage to local tissues by the chronic presence of an induced potential.
- the flow parameter sensor comprises at least one pressure sensor, which generates signals responsive to pulsatile pressure changes in the blood vessel due to beating of the subject's heart.
- the relative pulsatile pressure change generally increases immediately upstream of a constriction in the blood vessel or within the stent.
- the Woodcock article describes a method for assessing collateral circulation by analyzing two, spaced apart, flow measurements. In a preferred embodiment of the present invention, this is achieved using two spaced apart implanted stents and a single controller which receives signals indicative of flow from both stents.
- the at least one pressure sensor comprises at least two such sensors, arrayed along the length of the stent. Any significant variation in the pulsatile pressure change from one of the sensors to another is generally indicative of a constriction in the stent.
- the at least one pressure sensor comprises a pressure-to-frequency transducer.
- This transducer preferably comprises a flexible, resilient diaphragm fixed within a radial outer wall of the stent, so that the diaphragm expands radially outward in response to pressure increases within the stent and can also contract inward when the pressure in the stent decreases.
- the diaphragm is circumferentially surrounded by an electrical coil, fixed to the wall or contained within the wall material, which coil forms a part of a resonant circuit.
- a magnetic core preferably a ferrite, is fixed to the diaphragm, so that when the diaphragm expands or contracts, the core is displaced relative to the coil, thus varying the inductance of the coil in proportion to the pressure within the stent.
- a time-varying electromagnetic excitation field is generated in a vicinity of the stent, preferably by a field generator, such as a coil, external to the body.
- the field which preferably has a frequency at or near a resonant frequency of the resonant circuit, causes an electrical current to flow in the coil and thus in the resonant circuit.
- the coil radiates an electromagnetic response field having a variable characteristic, such as a phase shift or decay frequency relative to the excitation field, dependent on the varying inductance of the coil.
- the response field is detected by a receiver outside the body, which analyzes the variable characteristic thereof to measure changes of pressure within the stent.
- the resonant circuit comprises a tunnel diode and a capacitor, coupled in series with the coil.
- the coil, tunnel diode and capacitor are preferably fixed to an outer surface of the stent and interconnected using surface-mounted printed circuit technology.
- the excitation field is alternately switched on and off, preferably in a square wave pattern.
- the response field will rise and fall in response to the square wave pattern, wherein the fall of the response field will have a characteristic, variable frequency dependent on the variable inductance of the coil.
- the resonant circuit including the coil and diaphragm-mounted core, constitutes both the flow parameter sensor and the transmitter of the present invention.
- the resonant circuit receives electrical power from the excitation field, without the need for a power source to be implanted with the stent.
- the at least one pressure sensor may comprise a pressure sensor of any suitable type known in the art, for example, a piezoelectric pressure transducer.
- the transmitter may comprise any suitable miniature, implantable transmitter circuit known in the art.
- the flow parameter sensor comprises one or more ultrasound-responsive devices, positioned along the length of or, preferably, at the ends of the stent.
- the flow parameter sensor comprises a transit-time sensor, wherein the ultrasound-responsive devices comprise a pair of ultrasound transducers, positioned at opposite ends of the stent.
- a first one of the transducers, at the upstream end of the stent, is driven to emit ultrasound signals into the blood stream flowing through the stent.
- These signals are detected by the second transducer, at the downstream end of the stent, and the downstream transit time, from the first to the second transducer, is measured.
- the second transducer is driven to emit ultrasound signals, the first transducer detects them, and the upstream transit time, from the second to the first transducer, is measured.
- the difference between the upstream and downstream transit times is generally proportional to the speed of blood flow through the stent.
- the speed of blood flow will generally vary according to a pulsatile waveform, synchronized with the beating of the heart. Changes in this waveform may be indicative of an occlusion in or near the stent.
- the flow parameter sensor comprises a Doppler flow meter.
- the ultrasound-responsive devices preferably comprise a miniature Doppler ultrasound transducer, which is fixed to the stent and generates frequency-shift signals indicative of blood velocity in the stent.
- the Doppler measurement may be made using a Doppler ultrasound system outside the body, preferably a Doppler imaging system, as is known in the art.
- the stent is preferably acoustically matched to the blood and the blood vessel, so that it does not impede the progress of the ultrasound system.
- only a portion of the stent is made transparent to ultrasound.
- the Doppler system is aimed at a location adjacent the stent, preferably, based on an image or on reflections from the stent.
- the ultrasound-responsive devices associated with the stent comprise ultrasound transponders or other ultrasound markers, known in the art, such as air-filled bubbles.
- two such devices are positioned at opposite ends of the stent or fixed to the blood vessel, one upstream and one downstream from the stent, at suitable, known distances therefrom.
- the Doppler ultrasound system detects the positions of the devices, thereby defining precisely the location and orientation of the stent.
- the position and orientation thus defined are used in optimally aiming a transducer of the Doppler system with respect to the stent to maximize the Doppler signal therefrom and/or to correct the Doppler measurements for the angle thus determined of the transducer relative to the stent.
- the flow parameter sensor comprises a bioimpedance measurement device.
- This device comprises at least one pair of electrodes, at mutually-opposing radial positions along the length of the stent.
- Each such pair of electrodes is used to measure electrical impedance, as is known in the art, across a diameter of the stent at the axial position of the pair.
- an occlusion of the stent at or adjacent to the axial position of the pair will generally cause the impedance between the pair to increase.
- changes in impedance between one pair of electrodes and/or substantial variations in impedance between two such pairs at different axial positions along the stent may be indicative of occlusion of the stent.
- the stent also includes sensors of other types known in the art, for example, pH and other chemical sensors, temperature sensors and oxygen saturation sensors.
- these sensors are fabricated on or in the stent or on a preferably flexible thin film attached to the stent, more preferably using silicon microcircuit technology.
- flow measurements made by the flow parameter sensor involve receiving and analyzing pulsatile flow-responsive signals, such as pressure signals, which are synchronized with the heart beat. Therefore, when such signals are to be received from the stent, the subject's ECG is preferably monitored, as well, in order to give a baseline synchronization signal.
- the ECG signal is useful in identifying the time of diastole, in order to calibrate the flow-responsive signals to the minimal or near-zero flow at this time.
- the ECG can also be used in determining a range of motion of the stent, relative to an externally-applied RF or magnetic field, due to the movement of the heart as it beats.
- blood flow in the coronary arteries is not properly synchronized with the heart beat, resulting in low perfusion of the heart tissue.
- the ECG can be taken together with the flow-responsive signals from the stent to identify and diagnose such conditions.
- the preferred embodiments described herein make reference to arterial stents, it will be appreciated that principles of the present invention may generally be applied to other types of stents, such as urinary stents for implantation in the urethra, as well as to other implantable flow-through devices, such as implantable cardiac-assist pumps.
- implantable apparatus for measuring a fluid flow in the body of a subject including: a stent, having a generally cylindrical radial outer wall and a central lumen; a flow parameter sensor fixed to the stent, which measures a parameter relating to a rate of blood flow through the stent; and a transmitter, which transmits signals responsive to the measured parameter to a receiver outside the body.
- the flow parameter sensor includes a pair of electrodes, in communication with the lumen.
- the electrodes are placed in radially-opposing positions along the outer wall.
- the flow parameter sensor measures a magnetohydrodynamic potential across the lumen.
- the flow parameter sensor measures an electrical impedance across the lumen.
- the flow parameter sensor includes at least one pressure sensor.
- the at least one pressure sensor includes a plurality of pressure sensors along the length of the stent.
- the pressure sensor includes a pressure-to- frequency transducer.
- the flow parameter sensor includes at least one ultrasound-responsive device.
- the at least one ultrasound-responsive device includes two ultrasound transducers, each fixed in a known relation to a respective end of the stent.
- the two ultrasound transducers function as ultrasound transponders.
- the flow parameter sensor measures a transit time of ultrasound signals through the stent.
- the flow parameter sensor measures a Doppler shift of ultrasound signals reflected from a fluid flowing in the lumen.
- the transmitter further receives energy from an electromagnetic field, and supplies the energy to the flow parameter sensor.
- the transmitter includes a coil fixed to the stent.
- the coil is helically-disposed within the outer wall of the stent, along the length thereof.
- the coil includes resilient material.
- the flow parameter sensor includes: a flexible diaphragm, fixed within the outer wall of the stent so as to expand radially outward in response to a pressure increase in the lumen; and a deflection sensor, which generates signals responsive to expansion of the diaphragm.
- the deflection sensor includes: a magnetic core fixed to the diaphragm; and an electrical coil, circumferentially surrounding the diaphragm and the coil, so that movement of the core due to expansion of the diaphragm causes a change in the inductance of the coil, responsive to the pressure increase.
- the transmitter includes: the electrical coil; and circuitry coupled to the coil, having a resonant frequency dependent on the inductance of the coil, where the coil receives energy from an electromagnetic field and radiates energy substantially at the resonant frequency.
- the apparatus includes an implantable capsule, which supplies energy to the flow parameter sensor.
- the capsule contains the transmitter.
- the apparatus includes memory circuitry within the capsule, for storing measurements made by the flow parameter sensor.
- a method for measuring blood flow in the body of a subject including: implanting a stent, to which a transmitter is coupled, in a blood vessel in the body; and receiving signals from the transmitter, responsive to blood flow through the stent.
- the method includes irradiating the body with an electromagnetic field, to provide energy to the stent.
- the method includes receiving an ECG signal from the subject, and using the ECG signal in analyzing the blood flow signals received from the transmitter.
- the method includes applying a magnetic field to the body in a vicinity of the stent, in a direction generally transverse to the flow of blood through the stent; and measuring an electrical potential across the stent, along a transverse axis thereof generally perpendicular to the direction of the magnetic field, where receiving signals from the transmitter includes receiving signals responsive to the electrical potential.
- the method includes measuring a bioimpedance across the stent, wherein receiving signals from the transmitter includes receiving signals responsive to the bioimpedance.
- the method includes measuring a pressure in the stent, wherein receiving signals from the transmitter includes receiving signals responsive to the pressure.
- the method includes detecting ultrasonic signals from blood flowing in the stent, wherein receiving signals from the transmitter includes receiving signals responsive to the detected ultrasonic signals.
- detecting ultrasonic signals includes measuring a transit time of ultrasound waves passing through the stent.
- detecting ultrasonic signals includes measuring a Doppler shift of ultrasound waves reflected from the blood.
- a method for measuring blood flow in a stent implanted in a blood vessel in the body of a subject including: implanting two ultrasound markers along the blood vessel, each marker in a known spatial relation to a respective end of the stent; determining respective positions of the markers relative to an ultrasound probe; aligning the probe with a long axis of the stent using the determined positions of the markers; and receiving and analyzing Doppler ultrasound signals from blood flowing in the stent.
- implanting the two ultrasound markers includes fixing the markers to the stent.
- implanting the two markers includes implanting two ultrasound transponders.
- implanting the two markers includes implanting two ultrasound frequency doublers.
- determining the positions of the markers includes forming an ultrasound image of a portion of the body that contains the stent.
- a method for fabricating a stent including: forming at least a portion of the stent from non-conducting material; fixing electronic components to the portion ; and printing strips of conducting material on a surface of the portion to interconnect the components.
- the non-conducting materials include polyimide plastic.
- printing the strips on the surface includes transferring an image of the strips to the surface by photolithography.
- Fig. 1A is a schematic, sectional illustration of a blood vessel, partly occluded by a stenosis
- Fig. IB is a schematic, sectional illustration showing a stent, in accordance with a preferred embodiment of the present invention, implanted in the blood vessel of Fig. 1A;
- Fig. 2 is a schematic, partially cutaway illustration of a stent including an electromagnetic flow sensor, in accordance with a preferred embodiment of the present invention
- Fig. 3 is a schematic illustration showing a system useful in receiving and analyzing signals responsive to blood flow through the stent of Fig. 2, which is implanted in a blood vessel of a subject, in accordance with a preferred embodiment of the present invention
- Fig. 4A is an electronic block diagram, schematically illustrating circuitry associated with the stent of Fig. 2, in accordance with a preferred embodiment of the present invention
- Fig. 4B is an electronic block diagram, schematically illustrating circuitry associated with the stent of Fig. 2, in accordance with an alternative preferred embodiment of the present invention
- Fig. 5A is a schematic illustration showing a battery-powered stent and an accompanying capsule, implanted in the body of a subject, in accordance with a preferred embodiment of the present invention
- Fig. 5B is a schematic illustration of the capsule of Fig. 5 A, showing circuitry contained within the capsule, in accordance with a preferred embodiment of the present invention
- Fig. 6 is a schematic illustration of a stent including a plurality of pressure sensors, in accordance with a preferred embodiment of the present invention.
- Figs. 7A and 7B are schematic, sectional illustrations showing a pressure sensor comprising a flexible diaphragm within the wall of a stent, in accordance with a preferred embodiment of the present invention, in low-pressure (Fig. 7A) and high-pressure (Fig. 7B) positions;
- Fig. 8 is a schematic electrical circuit diagram, illustrating a sensor and transceiver circuit for use in conjunction with the pressure sensor of Figs. 7A and 7B, in accordance with a preferred embodiment of the present invention.
- Fig. 9 is a schematic illustration of a stent including ultrasound-responsive devices for use in ultrasonic measurement of blood flow through the stent, in accordance with a preferred embodiment of the present invention.
- FIG. 1A is a schematic, sectional illustration of a blood vessel 20, generally an artery, which is partially occluded by a stenosis 22.
- a stenosis 22 As is known in the art, such stenoses are commonly treated by percutaneously inserting and inflating a balloon at the tip of a catheter (not shown in the figures) at the point of stenosis 22, so as to expand vessel 20 approximately back to its normal diameter.
- Other methods of angioplasty known in the art, may also be used for this purpose.
- a stent 24 is implanted in the vessel at the location of stenosis 22.
- Stent 24 is preferably implanted in vessel 20 by inserting the stent percutaneously and passing it through the vascular system with the assistance of a suitable catheter, as is known in the art.
- the stent may be implanted surgically, for example, during open heart surgery.
- stent 24 includes a flow parameter sensor, for sensing blood flow through the stent, and a transmitter, for transmitting signals from the flow parameter sensor to a receiver outside the body of a subject in whose blood vessel 20 stent 24 has been implanted.
- Stent 24 preferably comprises non-conducting, non-magnetic, biocompatible, plastic material, such as polyimide, as is well known in the art.
- Fig. 2 schematically illustrates, in cutaway view, a preferred embodiment of the present invention in which stent 24 includes circuitry 26 for electromagnetic measurement and transmission of blood flow.
- Stent circuitry 26 includes a pair of electrodes 28 and 30, opposingly situated on or within radial wall 32 of stent 24.
- Electrodes 28 and 30 are in electrical contact with blood passing through lumen 34 of stent 24, as illustrated particularly with regard to electrode 30.
- Circuitry 26 further includes a modulator 36, which is coupled to electrodes 28 and 30, preferably via printed wiring lines 38, which are printed onto radial wall 32 using photolithography processes known in the art.
- circuitry 26 further includes a helical coil 40, which is electrically coupled to modulator 36.
- modulator 36 comprises a frequency modulator.
- Coil 40 acts as an antenna to receive RF energy from an external source and to transmit modulated RF signals to an external receiver, as will be described below.
- the coil comprises resilient, electrically conductive material, such as medical-grade, preferably non-magnetic stainless steel, electrically insulated from the blood in lumen 34.
- coil 40 serves both as the receiving/transmitting antenna for circuitry 26 and as a mechanical strengthening element for stent 24. More preferably, coil 40 may comprise a shape memory material, such as Nitinol, which enables stent 24 to be radially collapsed during insertion into vessel 20 and expanded when in place, as is known in the art.
- shape memory material such as Nitinol
- a magnetic field, B preferably a DC magnetic field
- the magnetic field is applied in a direction transverse to the blood flow through the stent, indicated by arrow 42, and generally perpendicular to an axis defined by electrodes 28 and 30.
- This magnetic field causes a potential difference to develop and an electrical current to flow between electrodes 28 and 30, proportional to the blood flow rate.
- This potential difference or current is received by modulator 36, which modulates the signal transmitted by coil 40 so as to transmit information regarding this potential difference to a receiver outside the body, as will be described below.
- FIG. 3 is a schematic illustration showing a system for measuring the rate of blood flow through stent 24, which is implanted in a blood vessel of a subject 44.
- a pair of DC magnets 46 for example, Helmholtz coils, produce the magnetic field B shown in Fig. 2.
- the magnetic field generated by magnets 46 has substantially constant field strength of at least 0.1 T in the region of the subject's body, so that the proportionality of the current flowing between electrodes 28 and 30 to the blood flow rate is substantially unaffected by lateral movement of the subject within the region.
- V _9vl, where v is the velocity of the blood and 1 is the distance between the electrodes. Potential V develops at a direction orthogonal to B and v.
- the magnetic field and subject 44 are mutually aligned so that the potential or current measured between electrodes 28 and 30 is maximized. These maximum flow measurements are compared with previous maximum flow measurements, in order to eliminate or at least reduce variations in flow readings due to variations in the angular orientation of stent 24 relative to the field.
- magnets 46 may be AC magnets, producing a time-varying magnetic field
- the potential or current measured between electrodes 28 and 30 will have a similar time variation to that of the field.
- This time variation may be used, as is known in the art, in phase-sensitive detection and analysis of the signal, so as to reduce noise and compensate for movement during the flow measurement.
- a transmitter 47 transmits an RF electromagnetic field, which is received by coil 40 in the stent and provides electrical energy to circuitry 26, as described above.
- the modulated signal transmitted by the coil is received by a receiver 48, which demodulates and analyzes the signal to determine the rate of blood flow.
- the rate of blood flood in stent 24 will not be constant, particularly when blood vessel 20 in which the stent is implanted is an artery, but will rather increase and decrease in pulsatile fashion, in response to the beating of the subject's heart. Therefore, as shown in Fig. 3, an ECG monitor 49 preferably detects the ECG of subject 44 while the blood flow rate is being measured, and ECG data are conveyed from monitor 49 to receiver 48. These data enable the receiver to more readily detect the pulsatile increase and decrease in the modulation of the signal transmitted by coil 40 and thus more accurately determine the blood flow rate.
- the ECG signals are preferably also used to identify the time of diastole, so that a minimum or zero-flow baseline measurement may be made at this time. Such measurements are preferably made and recorded over an extended period, in order to detect any drift in the baseline.
- Fig. 4A is an electrical block diagram illustrating elements and principles of operation of circuitry 26 described above, in accordance with a preferred embodiment of the present invention.
- Coil 40 receives energy from an external RF field at a frequency f, causing a current to flow between coil 40 and modulator 36.
- the modulator includes a power supply 50, which receives and rectifies a portion of the current flowing from the coil, so as to provide power to a preamplifier 52 and a mixer 56.
- Electrodes 28 and 30 are coupled to the inputs of preamplifier 52, which amplifies a potential difference or a current signal generated in response to blood flow in lumen 34 between the electrodes.
- the amplified signal from preamplifier 52 is fed to a voltage-to-frequency converter 54, which generates a modulation frequency ⁇ f, responsive to the electrode signal.
- converter 54 Preferably, converter 54 generates a non-zero baseline frequency even when the potential difference between electrodes 28 and 30 is substantially zero, so that receiver 48 will be able to receive and measure at least a baseline signal whenever stent 24 is in the vicinity of transmitter 47 and receiver 48.
- the modulation frequency ⁇ f is fed back to mixer 56, which receives the current at frequency f from coil 40 and outputs a modulated current at frequency f+ ⁇ f back to the coil.
- the coil re-radiates a field at frequency f+ ⁇ , which is received and de-modulated by an external receiver.
- modulator 36 as shown in Fig. 4 A (as well as in Fig. 4B, to be described below) is a frequency modulator, other types of modulators, known in the art, may be used in its stead, for example, phase modulators, amplitude modulators and pulse width modulators. If modulator 36 comprises an amplitude modulator, it preferably operates by coded amplitude modulation, so as to avoid erroneous readings due to spurious amplitude variations, for example, resulting from variations in the orientation of stent 24 relative to receiver 48.
- modulator 36 is fabricated using microcircuit technology, as is known in the art. More preferably, modulator 36 comprises a single, custom-designed integrated circuit. Further preferably, modulator 36 or its components are assembled on a flexible thin film printed circuit, which is preferably encapsulated in or on surface 32 of stent 24. It will be understood that Fig. 4A represents a simplified, schematic design, and that other suitable circuit designs, known in the art, may be used instead. Specifically, although modulator 36 is shown and described as a frequency modulator, other modulation schemes known in the art may also be used, for example, amplitude, phase or pulse-width modulation. Fig.
- FIG. 4B is an electrical block diagram illustrating circuitry 26 in accordance with an alternative preferred embodiment of the present invention, in which electrodes 28 and 30 are used to detect bioimpedance across blood vessel 20, rather than magnetic-field-induced current or potential, as was described above.
- the elements of circuitry 26 shown in Fig. 4B are generally the same as those shown in Fig. 4 A, except that in Fig. 4B modulator 36 includes a constant-amplitude, preferably AC current source 58, connected between electrodes 28 and 30.
- the current source which receives power from rectifier 50, causes a potential to develop between the electrodes proportional to an electrical impedance therebetween, in accordance with Ohm's law, i.e., at constant-amplitude current, the resultant amplitude of the potential gives a direct measure of the impedance.
- This potential is amplified by preamplifier 52 and input to voltage-to-frequency converter 54, as described above.
- the operation of this preferred embodiment is dependent on the difference in impedance that generally exists between the blood and solid substances that make up stenoses.
- blood is a liquid electrolyte solution having generally low impedance
- stenoses typically comprise solidified lipids having high impedance. Referring to Fig. 1 A, it will thus be appreciated that the impedance measured across blood vessel 20 along axis 62, passing through stenosis 22, will be significantly higher than that measured along axis 64, where the vessel or stent is clear of stenoses.
- the impedance measured between the electrodes i.e., the potential measured between the electrodes for a given current
- Such an impedance increase can be taken to indicate that flow through the stent has been constricted. If the degree of constriction is known, based on the impedance increase, it can be used to correct calculations of flow volume through the stent to account for the constriction.
- Stent 24 may further include other sensors, of other types known in the art, for example, pressure sensors, as will be described in greater detail below, pH and other chemical sensors, temperature sensors and oxygen saturation sensors.
- these sensors are fabricated on or in the stent using silicon microcircuit technology and are integrated with circuitry 26, so that signals from the sensors are transmitted by coil 40 to receiver 48 along with the flow-related signals.
- circuitry 26 receives electrical power only from external transmitter 47.
- Stent 24 includes no power source of its own, and circuitry 26 is inactive except when in a vicinity of operating transmitter 47.
- circuitry 26 electrical power is supplied to circuitry 26 by a battery.
- the battery is preferably built into stent 24, and more preferably is contained within modulator 36.
- circuitry 26 can provide a continuous reading of flow through the stent, by measurement of bioimpedance, for example, as described above, or by means of other measurement methods to be described below.
- circuitry 26 may read the flow intermittently in single measurements or short bursts, preferably at regular intervals or alternatively, triggered by an outside signal applied to the circuitry.
- This autonomous-reading stent is preferably used in conjunction with a receiver on or adjacent to the subject's body so as to provide a continuous or intermittent record of flow through the stent, as well as other parameters measured by additional sensors, as described above. It may be particularly useful in monitoring the subject's status during the period immediately following stent implantation, for a time as long as the useful life of the battery.
- Fig. 5A illustrates schematically an alternative preferred embodiment of the present invention, wherein the battery is contained in a separate compartment, preferably in a capsule 70 implanted under the skin of subject 44, similar to capsules known in the art for use in conjunction with cardiac pacemakers, for example.
- Capsule 70 is connected by wires 72 to stent
- Fig. 5B is a schematic illustration showing elements contained in capsule 70, in accordance with a preferred embodiment of the present invention.
- Capsule 70 contains all or a portion of the elements of modulator 36, as well as an antenna 74 for transmitting signals to a receiver outside the body, such as receiver 48, in place of coil 40.
- the battery is preferably a rechargeable battery 76, and the capsule includes inductive recharging circuitry 78, as is known in the art. Battery 76 is recharged by application of an external electromagnetic field to capsule 70, from which energy is received by antenna 74 and is rectified and supplied to the battery by circuitry 78.
- Capsule 70 may further include memory 80, coupled to modulator 36, for receiving and storing data regarding blood flow through stent 24 and other parameters.
- Memory 80 preferably preserves a continuous record of the data, which record is then transmitted to the receiver outside the body upon command. It will be understood that battery 76 is connected to provide electrical power to modulator 36 and memory 80, as well as to stent 24, although these connections are not shown in Fig. 5B for the sake of simplicity of illustration.
- blood flow through stent 24 is measured by sensing electrical characteristics related to the flow.
- the flow sensing function of the stent is accomplished by measuring other flow-related parameters, such as fluid pressure.
- fluid pressure In accordance with well-known principles of fluid dynamics, upstream of an occlusion in a blood vessel, the pressure will be high. In the area of the occlusion and downstream therefrom, the pressure decreases. Pressure variations may thus be used as indicators of corresponding variations in flow rate. It will be appreciated that pressure within a blood vessel, and particularly within an artery, is generally not constant, but rather varies in pulsatile fashion, driven by the beating of the heart.
- pressure measurements or pressure comparisons are described in the context of the present patent application, they will be generally understood to refer to measurements or comparisons of systolic (peak) pressure or, preferably, of the difference between systolic and diastolic pressures at a given location along the blood vessel or stent. In some preferred embodiments of the present invention, however, pressure measurements are made at higher sampling rates, for example, at intervals of a few milliseconds, so that pressure waveforms may be derived and compared.
- Fig. 6 is a schematic illustration showing stent 24 in accordance with a preferred embodiment of the present invention based on pressure measurement.
- a plurality of pressure sensors 84 are placed at different axial positions along the length of the stent, so as to measure the pressure at each of the positions. Variations in pressure from one sensor to another, or variations over time in the difference between systolic and diastolic pressures at one or more of the sensors, may generally be indicative of the development and growth of occlusions in lumen 34 of stent 24.
- Sensors 84 are coupled to modulator 36, and the pressure measurements made by the sensors are transmitted to a receiver outside the body, as described herein with regard to other preferred embodiments.
- Sensors 84 may comprise any suitable type of pressure sensors known in the art, for example, piezoelectric sensors or, alternatively, micro-machined silicon strain gages, such as produced by Lucas Novasensor of Fremont, California.
- Figs. 7A and 7B schematically illustrate, in sectional view, a portion of stent 24 in accordance with a preferred embodiment of the present invention in which pressure sensor 84 comprises a moving diaphragm-type sensor. Multiple sensors of this type may preferably be placed along the length of stent 24, as described above.
- Fig. 7A shows sensor 84 during diastole, at relatively low pressure inside lumen 34
- Fig. 7B shows the sensor during systole, at increased pressure and flow rate, as indicated schematically by arrow 90.
- Sensor 84 comprises a flexible diaphragm 92, comprising, for example, silicone rubber or other biocompatible, resilient material known in the art, fixed within wall 32 of stent 24.
- Diaphragm 92 is surrounded circumferentially by an inductance coil 94, which is electrically coupled to elements of modulator 36 to form a resonant circuit having a characteristic frequency dependent on the inductance of the coil, as will be described below.
- a ferrite core 98 is fixed to diaphragm 92, within coil 94. All the elements of sensor 84 and associated circuitry are preferably fabricated on or within wall 32 using methods of microcircuit and/or thin film technology known in the art.
- a cap 95 preferably covers the elements of sensor 84 and ensures that diaphragm 92 may expand outward without encountering resistance from the blood vessel in which stent 24 is implanted.
- diaphragm 92 expands radially outwards with respect to wall 32, thus displacing ferrite 98 relative to coil 94 by a distance proportional to the pressure increase.
- This displacement causes a proportional change in the inductance of the coil, which alters the characteristic frequency of the resonant circuit.
- a receiver outside the body of the subject such as receiver 48 (shown in Fig. 3), receives signals transmitted by stent 24 and analyzes frequency changes in the signals, in order to measure the pressure change at sensor 84.
- a strain gauge may be mounted on diaphragm 92, so as to generate signals responsive to the displacement of the diaphragm.
- Fig. 8 is a schematic diagram illustrating a resonant oscillator circuit 100 including coil 94 and elements of modulator 36, for use in conjunction with sensor 84 shown in Figs. 7A and 7B, in accordance with a preferred embodiment of the present invention.
- Circuit 100 is a tunnel diode oscillator circuit, as is known in the art, and comprises, in addition to coil 94, capacitors 102 and 104 and a tunnel diode 106, suitably biased so as to operate in a negative resistance regime, as is known in the art.
- Coil 94 preferably includes 10-30 turns of diameter 1 mm, so that its baseline inductance LQ (assuming ferrite core 98 to be centered in the coil) is approximately 2-3 ⁇ H.
- circuit 100 oscillates at a baseline resonant frequency frj given generally by:
- Fig. 9 schematically illustrates, in sectional view, still another preferred embodiment of the present invention, in which stent 24 includes ultrasound transducers 112 and 114 at respective downstream and upstream ends of the stent, for use in measuring the rate of blood flow through lumen 34.
- transducers 112 and 1 14 are contained within wall 32 of stent 24, in communication with the lumen.
- transducers 112 and 114 may be separate from stent 24 and held in place at respective positions along a blood vessel in which the stent is implanted, each of the transducers at a known distance from its respective end of the stent.
- transducers 1 12 and 1 14 are coupled to circuitry 110, which serves some or all of the functions of receiving energy from an external source, as described above, driving the transducers, receiving flow-responsive signals from the transducers, and transmitting the signals to an external receiver.
- circuitry 110 and transducers 112 and 114 function as a transit-time flow meter.
- Circuitry 110 drives downstream transducer 112 to emit ultrasonic waves into lumen 34. These waves are received by upstream transducer 114, after an upstream transit time dependent on the (fixed) distance between the two transducers and the velocity of blood flow through the lumen.
- transducer 114 is driven to emit and transducer 112 receives, after a downstream transit time, ultrasonic waves. The difference between the longer upstream and the shorter downstream transit times is indicative of the blood flow velocity in lumen 34.
- circuitry 1 10 and at least one of transducers 112 and 114 function as a Doppler ultrasound flow meter.
- the at least one of transducers 112 and 114 is aimed inward, into lumen 34, so as to emit and receive ultrasonic waves primarily along respective radiation axes at predetermined, acute angles to the longitudinal axis of stent 24.
- the Doppler frequency shift of the waves received by the at least one of the transducers is indicative of the blood flow velocity in the lumen adjacent to the transducer.
- measurements of blood flow velocity in accordance with preferred embodiments of the present invention illustrated by Fig. 9, are repeated periodically over an extended period of time.
- Increased flow velocity measured by one of the transducers 112 or 114 will generally indicate that there is an occlusion developing in the stent or the blood vessel upstream of the transducer, whereas decreased flow velocity may indicate an occlusion developing downstream. Any significant difference between the velocities measured by transducers 112 and 114 will generally be indicative of an occlusion developing within stent 24.
- the Doppler ultrasound measurement of blood flow velocity in and near stent 24 is made using an external Doppler ultrasound system, preferably a Doppler imaging system, as is known in the art.
- transducers 112 and 114 function as ultrasonic transponders, thus serving as fiduciary marks so that a user of the external Doppler system can locate exactly the ends of stent 24 and determine the probe's angle relative to the stent axis.
- the fiduciary marks enable the user to align the probe for optimal signal/noise ratio and to maintain proper alignment even if the subject or his internal organs shift during measurement.
- the transponders operate as frequency doublers, as are known in the art, so as to mark the ends of the stent more clearly.
- the transponders may be replaced by other types of ultrasound markers, such as hollow bubbles, that give sharp peak reflections, as are known in the art.
- stents in accordance with the present invention may advantageously used for both short-term, generally continuous monitoring and long-term, intermittent monitoring of flow through the stent.
- flow-responsive signals may be received from the stent to observe changes in blood flow during exercise, for example.
- long-term monitoring successive measurements over a period of time may be stored and compared, in order to follow changes in an occlusion upstream, downstream or within the stent.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Hematology (AREA)
- Radiology & Medical Imaging (AREA)
- Physiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Materials For Medical Uses (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52980198A JP4011631B2 (en) | 1997-01-03 | 1997-12-31 | Pressure sensitive stent |
EP97950365A EP0904009B1 (en) | 1997-01-03 | 1997-12-31 | Pressure-sensing stent |
IL12593297A IL125932A (en) | 1997-01-03 | 1997-12-31 | Pressure sensing stent |
AU53386/98A AU717916B2 (en) | 1997-01-03 | 1997-12-31 | Pressure-sensing stent |
DE69724781T DE69724781T2 (en) | 1997-01-03 | 1997-12-31 | STENT FOR MEASURING PRESSURE |
CA002247943A CA2247943C (en) | 1997-01-03 | 1997-12-31 | Pressure-sensing stent |
US09/057,634 US6053873A (en) | 1997-01-03 | 1998-04-09 | Pressure-sensing stent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3470197P | 1997-01-03 | 1997-01-03 | |
US60/034,701 | 1997-01-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998029030A1 true WO1998029030A1 (en) | 1998-07-09 |
Family
ID=21878059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IL1997/000447 WO1998029030A1 (en) | 1997-01-03 | 1997-12-31 | Pressure-sensing stent |
Country Status (9)
Country | Link |
---|---|
US (1) | US6053873A (en) |
EP (1) | EP0904009B1 (en) |
JP (1) | JP4011631B2 (en) |
AU (1) | AU717916B2 (en) |
CA (1) | CA2247943C (en) |
DE (1) | DE69724781T2 (en) |
ES (1) | ES2208963T3 (en) |
IL (1) | IL125932A (en) |
WO (1) | WO1998029030A1 (en) |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2333044A (en) * | 1998-01-08 | 1999-07-14 | Microsense Cardiovascular Sys | Method and device for fixation of a sensor in a bodily lumen |
WO2000013585A1 (en) * | 1998-09-04 | 2000-03-16 | Wolfe Research Pty. Ltd. | Medical implant system |
WO2000019888A1 (en) * | 1998-10-05 | 2000-04-13 | The Regents Of The University Of California | Implantable medical sensor system |
GB2344053A (en) * | 1998-11-30 | 2000-05-31 | Imperial College | Stents for blood vessels |
WO2000032105A1 (en) * | 1998-11-25 | 2000-06-08 | Ball Semiconductor, Inc. | Monitor for interventional procedures |
WO2000032092A1 (en) * | 1998-11-25 | 2000-06-08 | Ball Semiconductor, Inc. | Intraluminal monitoring system |
US6092530A (en) * | 1999-03-24 | 2000-07-25 | The B.F. Goodrich Company | Remotely interrogated implant device with sensor for detecting accretion of biological matter |
EP1034738A1 (en) | 1999-03-11 | 2000-09-13 | Biosense, Inc. | Position sensing based on ultrasound emission |
EP1039831A1 (en) * | 1997-11-25 | 2000-10-04 | George E. Cimochowski | Endoluminal implant with parameter sensing capability |
US6170488B1 (en) | 1999-03-24 | 2001-01-09 | The B. F. Goodrich Company | Acoustic-based remotely interrogated diagnostic implant device and system |
WO2001012092A1 (en) * | 1999-08-14 | 2001-02-22 | The B.F. Goodrich Company | Remotely interrogated diagnostic implant device with electrically passive sensor |
WO2001019239A1 (en) * | 1999-09-17 | 2001-03-22 | Endoluminal Therapeutics, Inc. | Sensing, interrogating, storing, telemetering and responding medical implants |
US6206835B1 (en) | 1999-03-24 | 2001-03-27 | The B. F. Goodrich Company | Remotely interrogated diagnostic implant device with electrically passive sensor |
US6237398B1 (en) | 1997-12-30 | 2001-05-29 | Remon Medical Technologies, Ltd. | System and method for monitoring pressure, flow and constriction parameters of plumbing and blood vessels |
US6277078B1 (en) | 1999-11-19 | 2001-08-21 | Remon Medical Technologies, Ltd. | System and method for monitoring a parameter associated with the performance of a heart |
US6331163B1 (en) | 1998-01-08 | 2001-12-18 | Microsense Cardiovascular Systems (1196) Ltd. | Protective coating for bodily sensor |
US6431175B1 (en) | 1997-12-30 | 2002-08-13 | Remon Medical Technologies Ltd. | System and method for directing and monitoring radiation |
US6475170B1 (en) | 1997-12-30 | 2002-11-05 | Remon Medical Technologies Ltd | Acoustic biosensor for monitoring physiological conditions in a body implantation site |
US6486588B2 (en) | 1997-12-30 | 2002-11-26 | Remon Medical Technologies Ltd | Acoustic biosensor for monitoring physiological conditions in a body implantation site |
US6504286B1 (en) | 1997-12-30 | 2003-01-07 | Remon Medical Technologies Ltd. | Piezoelectric transducer |
JP2003501167A (en) * | 1999-06-03 | 2003-01-14 | マルティル・インストゥルメンツ・ベスローテン・フェンノートシャップ | Method, apparatus and catheter for measuring blood characteristics such as blood viscosity in vivo |
AU758015B2 (en) * | 1998-09-04 | 2003-03-13 | Wolfe Research Pty Ltd | Medical implant system |
US6802811B1 (en) | 1999-09-17 | 2004-10-12 | Endoluminal Therapeutics, Inc. | Sensing, interrogating, storing, telemetering and responding medical implants |
US7025778B2 (en) | 2002-06-07 | 2006-04-11 | Endovascular Technologies, Inc. | Endovascular graft with pressure, temperature, flow and voltage sensors |
US7261733B1 (en) | 2002-06-07 | 2007-08-28 | Endovascular Technologies, Inc. | Endovascular graft with sensors design and attachment methods |
US20070282172A1 (en) * | 2003-12-15 | 2007-12-06 | Christopher Toumazou | Implantable Surface Acoustic Wave Devices for Long Term Clinical Monitoring |
US7488345B2 (en) | 2002-06-07 | 2009-02-10 | Endovascular Technologies, Inc. | Endovascular graft with pressor and attachment methods |
US7708705B2 (en) | 2002-07-03 | 2010-05-04 | Given Imaging Ltd. | System and method for sensing in-vivo stress and pressure |
US7918800B1 (en) | 2004-10-08 | 2011-04-05 | Endovascular Technologies, Inc. | Aneurysm sensing devices and delivery systems |
US8372139B2 (en) | 2001-02-14 | 2013-02-12 | Advanced Bio Prosthetic Surfaces, Ltd. | In vivo sensor and method of making same |
US8437862B2 (en) | 2011-03-29 | 2013-05-07 | Medtronic, Inc. | Magnetic field detection using magnetohydrodynamic effect |
US8467882B2 (en) | 2011-03-29 | 2013-06-18 | Medtronic, Inc. | Magnetic field detection using magnetohydrodynamic effect |
US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
US8852099B2 (en) | 2004-09-17 | 2014-10-07 | Cardiac Pacemakers, Inc. | Systems and methods for deriving relative physiologic measurements |
US8915957B2 (en) | 2004-03-11 | 2014-12-23 | Alcatel Lucent | Drug delivery stent |
US8920414B2 (en) | 2004-09-10 | 2014-12-30 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US9125666B2 (en) | 2003-09-12 | 2015-09-08 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US9125667B2 (en) | 2004-09-10 | 2015-09-08 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US9277955B2 (en) | 2010-04-09 | 2016-03-08 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US9308374B2 (en) | 2006-07-21 | 2016-04-12 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
EP2967928A4 (en) * | 2013-03-14 | 2016-08-31 | Univ Utah Res Found | Stent with embedded pressure sensors |
US9456756B2 (en) | 2011-01-30 | 2016-10-04 | Guided Interventions, Llc | System for detection of blood pressure using a pressure sensing guide wire |
US9486270B2 (en) | 2002-04-08 | 2016-11-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for bilateral renal neuromodulation |
US9629560B2 (en) | 2015-04-06 | 2017-04-25 | Thomas Jefferson University | Implantable vital sign sensor |
US9693708B2 (en) | 2007-05-04 | 2017-07-04 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Systems and methods for wireless transmission of biopotentials |
US9731141B2 (en) | 2007-06-14 | 2017-08-15 | Cardiac Pacemakers, Inc. | Multi-element acoustic recharging system |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US10022538B2 (en) | 2005-12-09 | 2018-07-17 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US10029092B2 (en) | 2004-10-20 | 2018-07-24 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US10293190B2 (en) | 2002-04-08 | 2019-05-21 | Medtronic Ardian Luxembourg S.A.R.L. | Thermally-induced renal neuromodulation and associated systems and methods |
EP3498152A1 (en) | 2017-12-15 | 2019-06-19 | Koninklijke Philips N.V. | Implant device for in-body monitoring |
WO2019115819A1 (en) | 2017-12-15 | 2019-06-20 | Koninklijke Philips N.V. | Implant device for in-body monitoring |
US10335043B2 (en) | 2015-04-06 | 2019-07-02 | Thomas Jefferson University | Implantable vital sign sensor |
US10335280B2 (en) | 2000-01-19 | 2019-07-02 | Medtronic, Inc. | Method for ablating target tissue of a patient |
EP3539462A1 (en) | 2018-03-16 | 2019-09-18 | Koninklijke Philips N.V. | Device for intra-vascular monitoring |
US10589130B2 (en) | 2006-05-25 | 2020-03-17 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US10806352B2 (en) | 2016-11-29 | 2020-10-20 | Foundry Innovation & Research 1, Ltd. | Wireless vascular monitoring implants |
US10806428B2 (en) | 2015-02-12 | 2020-10-20 | Foundry Innovation & Research 1, Ltd. | Implantable devices and related methods for heart failure monitoring |
US11000195B2 (en) | 2015-04-06 | 2021-05-11 | Thomas Jefferson University | Implantable vital sign sensor |
US11039813B2 (en) | 2015-08-03 | 2021-06-22 | Foundry Innovation & Research 1, Ltd. | Devices and methods for measurement of Vena Cava dimensions, pressure and oxygen saturation |
US11206992B2 (en) | 2016-08-11 | 2021-12-28 | Foundry Innovation & Research 1, Ltd. | Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore |
US11330987B2 (en) | 2015-04-06 | 2022-05-17 | Thomas Jefferson University | Implantable vital sign sensor |
US11564596B2 (en) | 2016-08-11 | 2023-01-31 | Foundry Innovation & Research 1, Ltd. | Systems and methods for patient fluid management |
US11701018B2 (en) | 2016-08-11 | 2023-07-18 | Foundry Innovation & Research 1, Ltd. | Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore |
US11779238B2 (en) | 2017-05-31 | 2023-10-10 | Foundry Innovation & Research 1, Ltd. | Implantable sensors for vascular monitoring |
US11944495B2 (en) | 2017-05-31 | 2024-04-02 | Foundry Innovation & Research 1, Ltd. | Implantable ultrasonic vascular sensor |
Families Citing this family (341)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE252349T1 (en) * | 1994-09-15 | 2003-11-15 | Visualization Technology Inc | SYSTEM FOR POSITION DETECTION USING A REFERENCE UNIT ATTACHED TO A PATIENT'S HEAD FOR USE IN THE MEDICAL FIELD |
US6743180B1 (en) * | 1997-08-15 | 2004-06-01 | Rijksuniversiteit Leiden | Pressure sensor for use in an artery |
US20020120200A1 (en) * | 1997-10-14 | 2002-08-29 | Brian Brockway | Devices, systems and methods for endocardial pressure measurement |
US6231516B1 (en) * | 1997-10-14 | 2001-05-15 | Vacusense, Inc. | Endoluminal implant with therapeutic and diagnostic capability |
US6033366A (en) * | 1997-10-14 | 2000-03-07 | Data Sciences International, Inc. | Pressure measurement device |
US6409674B1 (en) * | 1998-09-24 | 2002-06-25 | Data Sciences International, Inc. | Implantable sensor with wireless communication |
US6585763B1 (en) * | 1997-10-14 | 2003-07-01 | Vascusense, Inc. | Implantable therapeutic device and method |
US20060064135A1 (en) * | 1997-10-14 | 2006-03-23 | Transoma Medical, Inc. | Implantable pressure sensor with pacing capability |
US6296615B1 (en) | 1999-03-05 | 2001-10-02 | Data Sciences International, Inc. | Catheter with physiological sensor |
SE514944C2 (en) * | 1997-12-30 | 2001-05-21 | Lars Sunnanvaeder | Apparatus for the therapeutic treatment of a blood vessel |
US20030036746A1 (en) | 2001-08-16 | 2003-02-20 | Avi Penner | Devices for intrabody delivery of molecules and systems and methods utilizing same |
US6206914B1 (en) * | 1998-04-30 | 2001-03-27 | Medtronic, Inc. | Implantable system with drug-eluting cells for on-demand local drug delivery |
FR2778547B1 (en) * | 1998-05-18 | 2000-10-06 | Commissariat Energie Atomique | MEASUREMENT OF ONE OR MORE PHYSICAL PARAMETERS BY A MEDICAL PROBE |
GB9816011D0 (en) | 1998-07-22 | 1998-09-23 | Habib Nagy A | Monitoring treatment using implantable telemetric sensors |
GB9817078D0 (en) | 1998-08-05 | 1998-10-07 | Habib Nagy A | Device for liver surgery |
US6872187B1 (en) | 1998-09-01 | 2005-03-29 | Izex Technologies, Inc. | Orthoses for joint rehabilitation |
US7549960B2 (en) | 1999-03-11 | 2009-06-23 | Biosense, Inc. | Implantable and insertable passive tags |
US7174201B2 (en) * | 1999-03-11 | 2007-02-06 | Biosense, Inc. | Position sensing system with integral location pad and position display |
US7558616B2 (en) * | 1999-03-11 | 2009-07-07 | Biosense, Inc. | Guidance of invasive medical procedures using implantable tags |
US7590441B2 (en) * | 1999-03-11 | 2009-09-15 | Biosense, Inc. | Invasive medical device with position sensing and display |
US6308715B1 (en) * | 1999-03-24 | 2001-10-30 | Pmd Holdings Corp. | Ultrasonic detection of restenosis in stents |
US6309350B1 (en) | 1999-05-03 | 2001-10-30 | Tricardia, L.L.C. | Pressure/temperature/monitor device for heart implantation |
US7416537B1 (en) * | 1999-06-23 | 2008-08-26 | Izex Technologies, Inc. | Rehabilitative orthoses |
US6287253B1 (en) * | 1999-06-25 | 2001-09-11 | Sabolich Research & Development | Pressure ulcer condition sensing and monitoring |
US6361554B1 (en) * | 1999-06-30 | 2002-03-26 | Pharmasonics, Inc. | Methods and apparatus for the subcutaneous delivery of acoustic vibrations |
US6387116B1 (en) | 1999-06-30 | 2002-05-14 | Pharmasonics, Inc. | Methods and kits for the inhibition of hyperplasia in vascular fistulas and grafts |
US6440059B1 (en) * | 1999-10-14 | 2002-08-27 | Cimex Biotech Lc | Magnetohydrodynamic cardiac assist device |
ES2232412T3 (en) * | 2000-03-21 | 2005-06-01 | Radi Medical Systems Ab | PASSIVE BIOTELEMETRY. |
US6953476B1 (en) | 2000-03-27 | 2005-10-11 | Neovasc Medical Ltd. | Device and method for treating ischemic heart disease |
IL153753A0 (en) * | 2002-12-30 | 2003-07-06 | Neovasc Medical Ltd | Varying-diameter vascular implant and balloon |
WO2003028522A2 (en) | 2001-03-27 | 2003-04-10 | Neovasc Medical Ltd. | Flow reducing implant |
US8133698B2 (en) | 2000-05-15 | 2012-03-13 | Silver James H | Sensors for detecting substances indicative of stroke, ischemia, infection or inflammation |
US7006858B2 (en) * | 2000-05-15 | 2006-02-28 | Silver James H | Implantable, retrievable sensors and immunosensors |
US6442413B1 (en) * | 2000-05-15 | 2002-08-27 | James H. Silver | Implantable sensor |
US7181261B2 (en) | 2000-05-15 | 2007-02-20 | Silver James H | Implantable, retrievable, thrombus minimizing sensors |
US7769420B2 (en) * | 2000-05-15 | 2010-08-03 | Silver James H | Sensors for detecting substances indicative of stroke, ischemia, or myocardial infarction |
IL143418A (en) * | 2000-05-31 | 2004-09-27 | Given Imaging Ltd | Measurement of electrical characteristics of tissue |
AU2000254982A1 (en) * | 2000-06-20 | 2002-01-02 | Intellicardia, Inc. | Instrumented stent |
US6802857B1 (en) * | 2000-10-11 | 2004-10-12 | Uab Research Foundation | MRI stent |
US6638231B2 (en) | 2000-12-18 | 2003-10-28 | Biosense, Inc. | Implantable telemetric medical sensor and method |
US6652464B2 (en) | 2000-12-18 | 2003-11-25 | Biosense, Inc. | Intracardiac pressure monitoring method |
US6746404B2 (en) * | 2000-12-18 | 2004-06-08 | Biosense, Inc. | Method for anchoring a medical device between tissue |
US6658300B2 (en) | 2000-12-18 | 2003-12-02 | Biosense, Inc. | Telemetric reader/charger device for medical sensor |
US6636769B2 (en) | 2000-12-18 | 2003-10-21 | Biosense, Inc. | Telemetric medical system and method |
US6783499B2 (en) | 2000-12-18 | 2004-08-31 | Biosense, Inc. | Anchoring mechanism for implantable telemetric medical sensor |
DE10103503A1 (en) | 2001-01-26 | 2002-08-14 | Fraunhofer Ges Forschung | Endoluminal expandable implant with integrated sensors |
US6673104B2 (en) * | 2001-03-15 | 2004-01-06 | Scimed Life Systems, Inc. | Magnetic stent |
SE0101917D0 (en) * | 2001-05-31 | 2001-05-31 | St Jude Medical | A blood flow measuring apparatus |
US6890303B2 (en) * | 2001-05-31 | 2005-05-10 | Matthew Joseph Fitz | Implantable device for monitoring aneurysm sac parameters |
US20020183628A1 (en) * | 2001-06-05 | 2002-12-05 | Sanford Reich | Pressure sensing endograft |
US6702847B2 (en) * | 2001-06-29 | 2004-03-09 | Scimed Life Systems, Inc. | Endoluminal device with indicator member for remote detection of endoleaks and/or changes in device morphology |
US7097658B2 (en) * | 2001-08-22 | 2006-08-29 | Hasan Semih Oktay | Flexible MEMS actuated controlled expansion stent |
GB2373058B (en) * | 2001-09-18 | 2003-02-19 | Tayside Flow Technologies Ltd | Spiral flow testing |
US20060030913A1 (en) * | 2002-01-18 | 2006-02-09 | Apsara Medical Corporation | System, method and apparatus for evaluating tissue temperature |
US6855115B2 (en) * | 2002-01-22 | 2005-02-15 | Cardiomems, Inc. | Implantable wireless sensor for pressure measurement within the heart |
US7699059B2 (en) * | 2002-01-22 | 2010-04-20 | Cardiomems, Inc. | Implantable wireless sensor |
US7060075B2 (en) * | 2002-07-18 | 2006-06-13 | Biosense, Inc. | Distal targeting of locking screws in intramedullary nails |
EP1545303A4 (en) * | 2002-08-07 | 2008-02-13 | Cardiomems Inc | Implantable wireless sensor for blood pressure measurement within an artery |
US7147604B1 (en) | 2002-08-07 | 2006-12-12 | Cardiomems, Inc. | High Q factor sensor |
WO2004014474A1 (en) * | 2002-08-08 | 2004-02-19 | Neovasc Medical Ltd. | Flow reducing implant |
GB0220514D0 (en) * | 2002-09-04 | 2002-10-09 | Depuy Int Ltd | Acetabular cup spacer arrangement |
US6918873B1 (en) * | 2002-09-19 | 2005-07-19 | Millar Instruments, Inc. | Inverted sensor module |
US7118531B2 (en) | 2002-09-24 | 2006-10-10 | The Johns Hopkins University | Ingestible medical payload carrying capsule with wireless communication |
US8111165B2 (en) * | 2002-10-02 | 2012-02-07 | Orthocare Innovations Llc | Active on-patient sensor, method and system |
US7686762B1 (en) * | 2002-10-03 | 2010-03-30 | Integrated Sensing Systems, Inc. | Wireless device and system for monitoring physiologic parameters |
US7211048B1 (en) * | 2002-10-07 | 2007-05-01 | Integrated Sensing Systems, Inc. | System for monitoring conduit obstruction |
US8512252B2 (en) * | 2002-10-07 | 2013-08-20 | Integrated Sensing Systems Inc. | Delivery method and system for monitoring cardiovascular pressures |
US7866322B2 (en) * | 2002-10-15 | 2011-01-11 | Given Imaging Ltd. | Device, system and method for transfer of signals to a moving device |
US7344505B2 (en) * | 2002-10-15 | 2008-03-18 | Transoma Medical, Inc. | Barriers and methods for pressure measurement catheters |
DE50211409D1 (en) * | 2002-11-11 | 2008-01-31 | Schiller Ag | Method and device for detecting and processing an ECG signal |
EP1578260B1 (en) * | 2002-12-16 | 2012-10-24 | Given Imaging Ltd. | Device, system and method for selective activation of in vivo sensors |
US7452334B2 (en) * | 2002-12-16 | 2008-11-18 | The Regents Of The University Of Michigan | Antenna stent device for wireless, intraluminal monitoring |
WO2004058105A2 (en) * | 2002-12-16 | 2004-07-15 | The Regents Of The University Of Michigan | Assembly and planar structure for use therein which is expandable into a 3-d structure such as a stent and device for making the planar structure |
JP2006516421A (en) * | 2003-01-16 | 2006-07-06 | ガリル メディカル リミテッド | Apparatus, system and method for detecting and locating occlusions in blood vessels |
JP2006517117A (en) * | 2003-01-16 | 2006-07-20 | ガリル メディカル リミテッド | Apparatus, system, and method for detecting, locating, and identifying plaque-induced stenosis of blood vessels |
US20040215067A1 (en) * | 2003-04-24 | 2004-10-28 | Stiger Mark L. | Flow sensor device for endoscopic third ventriculostomy |
AU2004236588B2 (en) | 2003-05-12 | 2009-07-09 | Cheetah Medical, Inc. | System, method and apparatus for measuring blood flow and blood volume |
US7082336B2 (en) * | 2003-06-04 | 2006-07-25 | Synecor, Llc | Implantable intravascular device for defibrillation and/or pacing |
US8239045B2 (en) * | 2003-06-04 | 2012-08-07 | Synecor Llc | Device and method for retaining a medical device within a vessel |
EP1633434B1 (en) * | 2003-06-04 | 2014-11-19 | Synecor | Intravascular electrophysiological system |
US7617007B2 (en) * | 2003-06-04 | 2009-11-10 | Synecor Llc | Method and apparatus for retaining medical implants within body vessels |
EP1643906A2 (en) | 2003-06-12 | 2006-04-12 | University of Utah Research Foundation | Apparatus, systems and methods for diagnosing carpal tunnel syndrome |
IL162740A (en) * | 2003-06-26 | 2010-06-16 | Given Imaging Ltd | Device, method and system for reduced transmission imaging |
US7613497B2 (en) * | 2003-07-29 | 2009-11-03 | Biosense Webster, Inc. | Energy transfer amplification for intrabody devices |
US7295877B2 (en) | 2003-07-31 | 2007-11-13 | Biosense Webster, Inc. | Encapsulated sensor with external antenna |
EP1660908A1 (en) * | 2003-08-26 | 2006-05-31 | Koninklijke Philips Electronics N.V. | System and method for ultrasound pulse shaping and output power adjustment using multiple drive pulses |
US8870787B2 (en) * | 2003-09-16 | 2014-10-28 | Cardiomems, Inc. | Ventricular shunt system and method |
US8026729B2 (en) | 2003-09-16 | 2011-09-27 | Cardiomems, Inc. | System and apparatus for in-vivo assessment of relative position of an implant |
US7466120B2 (en) * | 2004-11-01 | 2008-12-16 | Cardiomems, Inc. | Communicating with an implanted wireless sensor |
AU2004274005A1 (en) * | 2003-09-16 | 2005-03-31 | Cardiomems, Inc. | Implantable wireless sensor |
US7245117B1 (en) * | 2004-11-01 | 2007-07-17 | Cardiomems, Inc. | Communicating with implanted wireless sensor |
AU2004273998A1 (en) * | 2003-09-18 | 2005-03-31 | Advanced Bio Prosthetic Surfaces, Ltd. | Medical device having mems functionality and methods of making same |
GB0322766D0 (en) * | 2003-09-29 | 2003-10-29 | Emcision Ltd | Surgical resection device |
US20050165317A1 (en) * | 2003-11-04 | 2005-07-28 | Turner Nicholas M. | Medical devices |
US7416530B2 (en) * | 2003-11-04 | 2008-08-26 | L & P 100 Limited | Medical devices |
US6868731B1 (en) * | 2003-11-20 | 2005-03-22 | Honeywell International, Inc. | Digital output MEMS pressure sensor and method |
EP1701766A2 (en) * | 2003-12-12 | 2006-09-20 | Synecor, LLC | Implantable medical device having pre-implant exoskeleton |
US20050137646A1 (en) * | 2003-12-22 | 2005-06-23 | Scimed Life Systems, Inc. | Method of intravascularly delivering stimulation leads into brain |
US8060207B2 (en) | 2003-12-22 | 2011-11-15 | Boston Scientific Scimed, Inc. | Method of intravascularly delivering stimulation leads into direct contact with tissue |
US7572228B2 (en) * | 2004-01-13 | 2009-08-11 | Remon Medical Technologies Ltd | Devices for fixing a sensor in a lumen |
WO2005067392A2 (en) * | 2004-01-20 | 2005-07-28 | Topspin Medical (Israel) Ltd. | Mri probe for prostate imaging |
US20050182342A1 (en) * | 2004-02-13 | 2005-08-18 | Medtronic, Inc. | Monitoring fluid flow in the gastrointestinal tract |
US7295875B2 (en) * | 2004-02-20 | 2007-11-13 | Boston Scientific Scimed, Inc. | Method of stimulating/sensing brain with combination of intravascularly and non-vascularly delivered leads |
US7590454B2 (en) * | 2004-03-12 | 2009-09-15 | Boston Scientific Neuromodulation Corporation | Modular stimulation lead network |
US7177702B2 (en) | 2004-03-12 | 2007-02-13 | Scimed Life Systems, Inc. | Collapsible/expandable electrode leads |
US20050203600A1 (en) | 2004-03-12 | 2005-09-15 | Scimed Life Systems, Inc. | Collapsible/expandable tubular electrode leads |
US20050267569A1 (en) * | 2004-03-27 | 2005-12-01 | Gary Barrett | Non-invasive detection of in-stent stenosis and drug elution |
US7998060B2 (en) * | 2004-04-19 | 2011-08-16 | The Invention Science Fund I, Llc | Lumen-traveling delivery device |
US8024036B2 (en) * | 2007-03-19 | 2011-09-20 | The Invention Science Fund I, Llc | Lumen-traveling biological interface device and method of use |
US9011329B2 (en) * | 2004-04-19 | 2015-04-21 | Searete Llc | Lumenally-active device |
US8353896B2 (en) | 2004-04-19 | 2013-01-15 | The Invention Science Fund I, Llc | Controllable release nasal system |
US8337482B2 (en) * | 2004-04-19 | 2012-12-25 | The Invention Science Fund I, Llc | System for perfusion management |
US7857767B2 (en) * | 2004-04-19 | 2010-12-28 | Invention Science Fund I, Llc | Lumen-traveling device |
US7850676B2 (en) | 2004-04-19 | 2010-12-14 | The Invention Science Fund I, Llc | System with a reservoir for perfusion management |
US9801527B2 (en) * | 2004-04-19 | 2017-10-31 | Gearbox, Llc | Lumen-traveling biological interface device |
US8092549B2 (en) * | 2004-09-24 | 2012-01-10 | The Invention Science Fund I, Llc | Ciliated stent-like-system |
US8361013B2 (en) * | 2004-04-19 | 2013-01-29 | The Invention Science Fund I, Llc | Telescoping perfusion management system |
US20050245840A1 (en) * | 2004-04-28 | 2005-11-03 | Medtronic, Inc. | Implantable urinary tract monitor |
US8412348B2 (en) * | 2004-05-06 | 2013-04-02 | Boston Scientific Neuromodulation Corporation | Intravascular self-anchoring integrated tubular electrode body |
DE102004023526A1 (en) * | 2004-05-13 | 2005-12-08 | Osypka, Peter, Dr.-Ing. | Container support for closing blood vessels within patient has at least one measuring instrument for detecting medical characteristic |
US7605852B2 (en) * | 2004-05-17 | 2009-10-20 | Micron Technology, Inc. | Real-time exposure control for automatic light control |
WO2005117737A2 (en) * | 2004-06-04 | 2005-12-15 | The Regents Of The University Of Michigan | Electromagnetic flow sensor device |
US10195464B2 (en) * | 2004-06-24 | 2019-02-05 | Varian Medical Systems, Inc. | Systems and methods for treating a lung of a patient using guided radiation therapy or surgery |
US7286879B2 (en) | 2004-07-16 | 2007-10-23 | Boston Scientific Scimed, Inc. | Method of stimulating fastigium nucleus to treat neurological disorders |
US20070292478A1 (en) | 2004-08-30 | 2007-12-20 | Popowski Youri | Medical Implant Provided with Inhibitors of Atp Synthesis |
US8750983B2 (en) | 2004-09-20 | 2014-06-10 | P Tech, Llc | Therapeutic system |
US7887579B2 (en) * | 2004-09-29 | 2011-02-15 | Merit Medical Systems, Inc. | Active stent |
US20060084861A1 (en) * | 2004-10-18 | 2006-04-20 | Topspin Medical (Isreal) Ltd. | Magnet and coil configurations for MRI probes |
US20060084866A1 (en) * | 2004-10-18 | 2006-04-20 | Gadi Lewkonya | Expanding imaging probe |
US7650186B2 (en) * | 2004-10-20 | 2010-01-19 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US7532933B2 (en) | 2004-10-20 | 2009-05-12 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
WO2006055547A2 (en) * | 2004-11-15 | 2006-05-26 | Izex Technologies, Inc. | Instrumented orthopedic and other medical implants |
US8308794B2 (en) * | 2004-11-15 | 2012-11-13 | IZEK Technologies, Inc. | Instrumented implantable stents, vascular grafts and other medical devices |
US7813808B1 (en) | 2004-11-24 | 2010-10-12 | Remon Medical Technologies Ltd | Implanted sensor system with optimized operational and sensing parameters |
JP5121011B2 (en) * | 2004-11-24 | 2013-01-16 | レモン メディカル テクノロジーズ リミテッド | Implantable medical device incorporating an acoustic transducer |
US20060122522A1 (en) * | 2004-12-03 | 2006-06-08 | Abhi Chavan | Devices and methods for positioning and anchoring implantable sensor devices |
US7522962B1 (en) | 2004-12-03 | 2009-04-21 | Remon Medical Technologies, Ltd | Implantable medical device with integrated acoustic transducer |
US8048141B2 (en) * | 2004-12-07 | 2011-11-01 | Boston Scientific Scimed, Inc. | Medical device that signals lumen loss |
US7937160B2 (en) * | 2004-12-10 | 2011-05-03 | Boston Scientific Neuromodulation Corporation | Methods for delivering cortical electrode leads into patient's head |
US10390714B2 (en) | 2005-01-12 | 2019-08-27 | Remon Medical Technologies, Ltd. | Devices for fixing a sensor in a lumen |
US7775966B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US8066759B2 (en) * | 2005-02-04 | 2011-11-29 | Boston Scientific Scimed, Inc. | Resonator for medical device |
US8267954B2 (en) | 2005-02-04 | 2012-09-18 | C. R. Bard, Inc. | Vascular filter with sensing capability |
US20060174712A1 (en) * | 2005-02-10 | 2006-08-10 | Cardiomems, Inc. | Hermetic chamber with electrical feedthroughs |
US7647836B2 (en) * | 2005-02-10 | 2010-01-19 | Cardiomems, Inc. | Hermetic chamber with electrical feedthroughs |
CA2597264C (en) * | 2005-02-15 | 2017-07-25 | Cheetah Medical Ltd. | System, method and apparatus for measuring blood flow and blood volume |
EP1871226A2 (en) * | 2005-02-16 | 2008-01-02 | Transoma Medical, Inc. | Impedance based sensor for monitoring leakage in abdominal aortic aneurism stent graft |
US7756579B2 (en) * | 2005-02-22 | 2010-07-13 | Depuy International Ltd. | Implantable sensor |
US7609074B2 (en) * | 2005-02-24 | 2009-10-27 | Sunsweet Growers, Inc. | Electronic moisture tester |
US7699770B2 (en) | 2005-02-24 | 2010-04-20 | Ethicon Endo-Surgery, Inc. | Device for non-invasive measurement of fluid pressure in an adjustable restriction device |
US8066629B2 (en) | 2005-02-24 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Apparatus for adjustment and sensing of gastric band pressure |
US7775215B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device positioning and obtaining pressure data |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US7927270B2 (en) | 2005-02-24 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | External mechanical pressure sensor for gastric band pressure measurements |
US8016744B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | External pressure-based gastric band adjustment system and method |
US8118749B2 (en) * | 2005-03-03 | 2012-02-21 | Cardiomems, Inc. | Apparatus and method for sensor deployment and fixation |
US8021307B2 (en) | 2005-03-03 | 2011-09-20 | Cardiomems, Inc. | Apparatus and method for sensor deployment and fixation |
US7595469B2 (en) * | 2005-05-24 | 2009-09-29 | Boston Scientific Scimed, Inc. | Resonator for medical device |
IL176231A (en) * | 2005-06-14 | 2010-12-30 | Given Imaging Ltd | Modulator and method for producing a modulated signal |
US9861836B2 (en) * | 2005-06-16 | 2018-01-09 | Biosense Webster, Inc. | Less invasive methods for ablation of fat pads |
US7621036B2 (en) * | 2005-06-21 | 2009-11-24 | Cardiomems, Inc. | Method of manufacturing implantable wireless sensor for in vivo pressure measurement |
CA2613241A1 (en) | 2005-06-21 | 2007-01-04 | Cardiomems, Inc. | Method of manufacturing implantable wireless sensor for in vivo pressure measurement |
DE102005034167B4 (en) * | 2005-07-21 | 2012-01-26 | Siemens Ag | Device and method for determining a position of an implant in a body |
US8862243B2 (en) | 2005-07-25 | 2014-10-14 | Rainbow Medical Ltd. | Electrical stimulation of blood vessels |
US20110118773A1 (en) * | 2005-07-25 | 2011-05-19 | Rainbow Medical Ltd. | Elliptical device for treating afterload |
US7279664B2 (en) * | 2005-07-26 | 2007-10-09 | Boston Scientific Scimed, Inc. | Resonator for medical device |
US7304277B2 (en) * | 2005-08-23 | 2007-12-04 | Boston Scientific Scimed, Inc | Resonator with adjustable capacitor for medical device |
US7570998B2 (en) * | 2005-08-26 | 2009-08-04 | Cardiac Pacemakers, Inc. | Acoustic communication transducer in implantable medical device header |
US7615012B2 (en) * | 2005-08-26 | 2009-11-10 | Cardiac Pacemakers, Inc. | Broadband acoustic sensor for an implantable medical device |
US7524282B2 (en) * | 2005-08-29 | 2009-04-28 | Boston Scientific Scimed, Inc. | Cardiac sleeve apparatus, system and method of use |
US7742815B2 (en) | 2005-09-09 | 2010-06-22 | Cardiac Pacemakers, Inc. | Using implanted sensors for feedback control of implanted medical devices |
US7749265B2 (en) * | 2005-10-05 | 2010-07-06 | Kenergy, Inc. | Radio frequency antenna for a wireless intravascular medical device |
US7146861B1 (en) * | 2005-10-18 | 2006-12-12 | Honeywell International Inc. | Disposable and trimmable wireless pressure sensor |
US7423496B2 (en) * | 2005-11-09 | 2008-09-09 | Boston Scientific Scimed, Inc. | Resonator with adjustable capacitance for medical device |
WO2007066343A2 (en) * | 2005-12-08 | 2007-06-14 | Dan Furman | Implantable biosensor assembly and health monitoring system |
IL185609A0 (en) * | 2007-08-30 | 2008-01-06 | Dan Furman | Multi function senssor |
US8050774B2 (en) | 2005-12-22 | 2011-11-01 | Boston Scientific Scimed, Inc. | Electrode apparatus, systems and methods |
US20070156085A1 (en) * | 2005-12-30 | 2007-07-05 | Schulhauser Randal C | Implantable perfusion sensor |
WO2007081741A2 (en) * | 2006-01-04 | 2007-07-19 | Massachusetts Institute Of Technology | Implantable wireless fluid flow monitoring system |
US8060214B2 (en) | 2006-01-05 | 2011-11-15 | Cardiac Pacemakers, Inc. | Implantable medical device with inductive coil configurable for mechanical fixation |
US20070236213A1 (en) * | 2006-03-30 | 2007-10-11 | Paden Bradley E | Telemetry method and apparatus using magnetically-driven mems resonant structure |
US7937161B2 (en) | 2006-03-31 | 2011-05-03 | Boston Scientific Scimed, Inc. | Cardiac stimulation electrodes, delivery devices, and implantation configurations |
US8870742B2 (en) | 2006-04-06 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | GUI for an implantable restriction device and a data logger |
US8152710B2 (en) | 2006-04-06 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Physiological parameter analysis for an implantable restriction device and a data logger |
US8936629B2 (en) | 2006-04-12 | 2015-01-20 | Invention Science Fund I Llc | Autofluorescent imaging and target ablation |
US9198563B2 (en) | 2006-04-12 | 2015-12-01 | The Invention Science Fund I, Llc | Temporal control of a lumen traveling device in a body tube tree |
US20080172073A1 (en) * | 2006-06-16 | 2008-07-17 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Active blood vessel sleeve |
US8163003B2 (en) * | 2006-06-16 | 2012-04-24 | The Invention Science Fund I, Llc | Active blood vessel sleeve methods and systems |
JP5241714B2 (en) | 2006-07-07 | 2013-07-17 | プロテウス デジタル ヘルス, インコーポレイテッド | Smart parenteral delivery system |
US7912548B2 (en) * | 2006-07-21 | 2011-03-22 | Cardiac Pacemakers, Inc. | Resonant structures for implantable devices |
EP2043740A2 (en) * | 2006-07-21 | 2009-04-08 | Cardiac Pacemakers, Inc. | Ultrasonic transducer for a metallic cavity implanted medical device |
US7955268B2 (en) | 2006-07-21 | 2011-06-07 | Cardiac Pacemakers, Inc. | Multiple sensor deployment |
US8290600B2 (en) | 2006-07-21 | 2012-10-16 | Boston Scientific Scimed, Inc. | Electrical stimulation of body tissue using interconnected electrode assemblies |
US20080051879A1 (en) * | 2006-08-23 | 2008-02-28 | Cook Incorporated | Methods of treating venous valve related conditions with a flow-modifying implantable medical device |
US7643879B2 (en) | 2006-08-24 | 2010-01-05 | Cardiac Pacemakers, Inc. | Integrated cardiac rhythm management system with heart valve |
US20080058772A1 (en) * | 2006-08-31 | 2008-03-06 | Robertson Timothy L | Personal paramedic |
US8676349B2 (en) | 2006-09-15 | 2014-03-18 | Cardiac Pacemakers, Inc. | Mechanism for releasably engaging an implantable medical device for implantation |
JP5156749B2 (en) * | 2006-09-15 | 2013-03-06 | カーディアック ペースメイカーズ, インコーポレイテッド | Implantable sensor anchor |
US20080071248A1 (en) * | 2006-09-15 | 2008-03-20 | Cardiac Pacemakers, Inc. | Delivery stystem for an implantable physiologic sensor |
US20080077440A1 (en) * | 2006-09-26 | 2008-03-27 | Remon Medical Technologies, Ltd | Drug dispenser responsive to physiological parameters |
US20080081965A1 (en) * | 2006-09-29 | 2008-04-03 | Philometron, Inc. | Foreign body response detection in an implanted device |
US20080108904A1 (en) * | 2006-11-08 | 2008-05-08 | Cardiac Pacemakers, Inc. | Implant for securing a sensor in a vessel |
US20080154116A1 (en) * | 2006-12-22 | 2008-06-26 | Duensing G Randy | Method and apparatus for obtaining electrocardiogram (ECG) signals |
US20080154141A1 (en) * | 2006-12-26 | 2008-06-26 | Cardiac Pacemakers, Inc. | Intravascular Flow Sensor |
US8876725B2 (en) * | 2007-02-23 | 2014-11-04 | Cheetah Medical, Inc. | Method and system for estimating exercise capacity |
US9095271B2 (en) | 2007-08-13 | 2015-08-04 | Cheetah Medical, Inc. | Dynamically variable filter |
WO2008107899A1 (en) * | 2007-03-07 | 2008-09-12 | Cheetah Medical Ltd. | Method and system for monitoring sleep |
JP2008237642A (en) * | 2007-03-28 | 2008-10-09 | Terumo Corp | Hemodynamics monitoring system |
ATE548967T1 (en) * | 2007-04-19 | 2012-03-15 | Cheetah Medical Inc | METHOD AND APPARATUS FOR PREDICTING ELECTROCHEMICAL DISSOCIATION |
US8204599B2 (en) | 2007-05-02 | 2012-06-19 | Cardiac Pacemakers, Inc. | System for anchoring an implantable sensor in a vessel |
US20080283066A1 (en) * | 2007-05-17 | 2008-11-20 | Cardiac Pacemakers, Inc. | Delivery device for implantable sensors |
US8825161B1 (en) | 2007-05-17 | 2014-09-02 | Cardiac Pacemakers, Inc. | Acoustic transducer for an implantable medical device |
US7677107B2 (en) * | 2007-07-03 | 2010-03-16 | Endotronix, Inc. | Wireless pressure sensor and method for fabricating wireless pressure sensor for integration with an implantable device |
DE102007038801A1 (en) * | 2007-08-17 | 2009-02-19 | Biotronik Crm Patent Ag | Implantable pressure measuring device and arrangement for internal pressure measurement in a blood vessel |
US8478378B2 (en) * | 2007-09-04 | 2013-07-02 | The Regents Of The University Of California | Devices, systems and methods to detect endothelialization of implantable medical devices |
US8744544B2 (en) * | 2007-10-17 | 2014-06-03 | Integrated Sensing Systems, Inc. | System having wireless implantable sensor |
EP2211974A4 (en) | 2007-10-25 | 2013-02-27 | Proteus Digital Health Inc | Fluid transfer port information system |
WO2009067463A1 (en) | 2007-11-19 | 2009-05-28 | Proteus Biomedical, Inc. | Body-associated fluid transport structure evaluation devices |
US8187163B2 (en) | 2007-12-10 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Methods for implanting a gastric restriction device |
US8100870B2 (en) | 2007-12-14 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Adjustable height gastric restriction devices and methods |
CN102036619B (en) | 2007-12-21 | 2014-07-23 | 微排放器公司 | A system and method of detecting implant detachment |
JP5366974B2 (en) * | 2007-12-21 | 2013-12-11 | マイクロベンション インコーポレイテッド | System and method for determining the position of a separation zone of a separable implant |
US8377079B2 (en) | 2007-12-27 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Constant force mechanisms for regulating restriction devices |
US8142452B2 (en) | 2007-12-27 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8192350B2 (en) | 2008-01-28 | 2012-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for measuring impedance in a gastric restriction system |
US8337389B2 (en) | 2008-01-28 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Methods and devices for diagnosing performance of a gastric restriction system |
US8591395B2 (en) | 2008-01-28 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Gastric restriction device data handling devices and methods |
US8538535B2 (en) | 2010-08-05 | 2013-09-17 | Rainbow Medical Ltd. | Enhancing perfusion by contraction |
US9005106B2 (en) * | 2008-01-31 | 2015-04-14 | Enopace Biomedical Ltd | Intra-aortic electrical counterpulsation |
US20100305392A1 (en) * | 2008-01-31 | 2010-12-02 | Enopace Biomedical Ltd. | Thoracic aorta and vagus nerve stimulation |
US8626299B2 (en) * | 2008-01-31 | 2014-01-07 | Enopace Biomedical Ltd. | Thoracic aorta and vagus nerve stimulation |
US8626290B2 (en) | 2008-01-31 | 2014-01-07 | Enopace Biomedical Ltd. | Acute myocardial infarction treatment by electrical stimulation of the thoracic aorta |
US7844342B2 (en) | 2008-02-07 | 2010-11-30 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using light |
US8221439B2 (en) | 2008-02-07 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using kinetic motion |
US8114345B2 (en) | 2008-02-08 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US8725260B2 (en) | 2008-02-11 | 2014-05-13 | Cardiac Pacemakers, Inc | Methods of monitoring hemodynamic status for rhythm discrimination within the heart |
US8591532B2 (en) | 2008-02-12 | 2013-11-26 | Ethicon Endo-Sugery, Inc. | Automatically adjusting band system |
US8369960B2 (en) | 2008-02-12 | 2013-02-05 | Cardiac Pacemakers, Inc. | Systems and methods for controlling wireless signal transfers between ultrasound-enabled medical devices |
US8057492B2 (en) | 2008-02-12 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Automatically adjusting band system with MEMS pump |
US8034065B2 (en) | 2008-02-26 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8233995B2 (en) | 2008-03-06 | 2012-07-31 | Ethicon Endo-Surgery, Inc. | System and method of aligning an implantable antenna |
US8187162B2 (en) | 2008-03-06 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Reorientation port |
US20090247887A1 (en) * | 2008-03-28 | 2009-10-01 | David Hull | Flow measurement in grafts |
FR2930712B1 (en) * | 2008-04-30 | 2011-11-11 | Senseor | DEVICE FOR PRESSURE MEASURING AND / OR TEMPERATURE RESPONSIBLE REMOTEABLE IN THE BIOLOGICAL ENVIRONMENT |
WO2009132396A1 (en) * | 2008-05-02 | 2009-11-05 | Commonwealth Scientific And Industrial Research Organisation | Method and apparatus for determining the pressure of a fluid |
WO2009140782A1 (en) * | 2008-05-23 | 2009-11-26 | Tecpharma Licensing Ag | Pressure monitor in a modular administering device |
US20100010612A1 (en) * | 2008-07-09 | 2010-01-14 | Daniel Gelbart | Lumen diameter and stent apposition sensing |
WO2010008936A1 (en) | 2008-07-15 | 2010-01-21 | Cardiac Pacemakers, Inc. | Implant assist apparatus for acoustically enabled implantable medical device |
WO2010019773A2 (en) * | 2008-08-13 | 2010-02-18 | Proteus Biomedical, Inc. | Smart stent |
US20100069763A1 (en) * | 2008-09-16 | 2010-03-18 | Assaf Govari | Intravascular pressure sensor |
JP5465252B2 (en) | 2008-10-10 | 2014-04-09 | カーディアック ペースメイカーズ, インコーポレイテッド | System and method for determining cardiac output using pulmonary artery pressure measurements |
WO2010059291A1 (en) * | 2008-11-19 | 2010-05-27 | Cardiac Pacemakers, Inc. | Assessment of pulmonary vascular resistance via pulmonary artery pressure |
CA2748868C (en) * | 2009-01-12 | 2018-09-25 | Purdue Research Foundation | Miniature stent-based implantable wireless monitoring devices |
WO2010093489A2 (en) | 2009-02-13 | 2010-08-19 | Cardiac Pacemakers, Inc. | Deployable sensor platform on the lead system of an implantable device |
US20100222878A1 (en) * | 2009-02-27 | 2010-09-02 | Thoratec Corporation | Blood pump system with arterial pressure monitoring |
US8562507B2 (en) | 2009-02-27 | 2013-10-22 | Thoratec Corporation | Prevention of aortic valve fusion |
US20100222633A1 (en) * | 2009-02-27 | 2010-09-02 | Victor Poirier | Blood pump system with controlled weaning |
US20100222635A1 (en) * | 2009-02-27 | 2010-09-02 | Thoratec Corporation | Maximizing blood pump flow while avoiding left ventricle collapse |
US8449444B2 (en) * | 2009-02-27 | 2013-05-28 | Thoratec Corporation | Blood flow meter |
US8088091B2 (en) * | 2009-03-09 | 2012-01-03 | New Jersey Institute Of Technology | No clog shunt using a compact fluid drag path |
EP2413786B1 (en) * | 2009-03-31 | 2015-05-20 | Given Imaging, Inc., | Method of determining body exit of an ingested capsule |
EP3847959B1 (en) * | 2009-06-26 | 2024-09-11 | Cianna Medical, Inc. | System for localizing markers or tissue structures within a body |
US9386942B2 (en) | 2009-06-26 | 2016-07-12 | Cianna Medical, Inc. | Apparatus, systems, and methods for localizing markers or tissue structures within a body |
US20110054333A1 (en) * | 2009-08-28 | 2011-03-03 | Stentronics, Inc. | Stent Flow Sensor |
US20110077718A1 (en) * | 2009-09-30 | 2011-03-31 | Broadcom Corporation | Electromagnetic power booster for bio-medical units |
WO2011053246A1 (en) * | 2009-10-30 | 2011-05-05 | Agency For Science, Technology And Research | Implantable device for detecting variation in fluid flow rate |
DE102009054319A1 (en) * | 2009-11-24 | 2011-05-26 | Mhm Harzbecher Medizintechnik Gmbh | Measuring device for detecting the propagation velocity of pulse waves and method for determining the flow volume flow of a discontinuous pump |
US8945010B2 (en) | 2009-12-23 | 2015-02-03 | Covidien Lp | Method of evaluating constipation using an ingestible capsule |
EP2531096A4 (en) | 2010-02-01 | 2013-09-11 | Proteus Digital Health Inc | Two-wrist data gathering system |
JP5841951B2 (en) | 2010-02-01 | 2016-01-13 | プロテウス デジタル ヘルス, インコーポレイテッド | Data collection system |
US9237961B2 (en) * | 2010-04-23 | 2016-01-19 | Medtronic Vascular, Inc. | Stent delivery system for detecting wall apposition of the stent during deployment |
EP2618863B1 (en) | 2010-09-24 | 2016-11-09 | Thoratec Corporation | Generating artificial pulse |
AU2011305243A1 (en) | 2010-09-24 | 2013-04-04 | Thoratec Corporation | Control of circulatory assist systems |
US8922633B1 (en) | 2010-09-27 | 2014-12-30 | Given Imaging Ltd. | Detection of gastrointestinal sections and transition of an in-vivo device there between |
US8965079B1 (en) | 2010-09-28 | 2015-02-24 | Given Imaging Ltd. | Real time detection of gastrointestinal sections and transitions of an in-vivo device therebetween |
US8864676B2 (en) | 2010-10-29 | 2014-10-21 | Medtronic Vascular, Inc. | Implantable medical sensor and fixation system |
US8475372B2 (en) | 2010-10-29 | 2013-07-02 | Medtronic Vascular, Inc. | Implantable medical sensor and fixation system |
US8649863B2 (en) | 2010-12-20 | 2014-02-11 | Rainbow Medical Ltd. | Pacemaker with no production |
US20130041454A1 (en) * | 2011-02-09 | 2013-02-14 | Business Expectations Llc | Sensor Actuated Stent |
US8727996B2 (en) | 2011-04-20 | 2014-05-20 | Medtronic Vascular, Inc. | Delivery system for implantable medical device |
WO2013035092A2 (en) | 2011-09-09 | 2013-03-14 | Enopace Biomedical Ltd. | Wireless endovascular stent-based electrodes |
US8855783B2 (en) | 2011-09-09 | 2014-10-07 | Enopace Biomedical Ltd. | Detector-based arterial stimulation |
US8939905B2 (en) | 2011-09-30 | 2015-01-27 | Medtronic, Inc. | Antenna structures for implantable medical devices |
US9386991B2 (en) | 2012-02-02 | 2016-07-12 | Rainbow Medical Ltd. | Pressure-enhanced blood flow treatment |
US9351648B2 (en) | 2012-08-24 | 2016-05-31 | Medtronic, Inc. | Implantable medical device electrode assembly |
US9801721B2 (en) * | 2012-10-12 | 2017-10-31 | St. Jude Medical, Cardiology Division, Inc. | Sizing device and method of positioning a prosthetic heart valve |
WO2014100795A1 (en) | 2012-12-21 | 2014-06-26 | Hunter William L | Stent graft monitoring assembly and method of use thereof |
CN105050491B (en) * | 2013-01-24 | 2017-07-11 | 格拉夫特沃克斯有限责任公司 | For measuring the method and apparatus through the stream of tube chamber |
CN117982278A (en) * | 2013-03-15 | 2024-05-07 | 卡纳里医疗公司 | Bracket monitoring assembly and use method thereof |
US9324145B1 (en) | 2013-08-08 | 2016-04-26 | Given Imaging Ltd. | System and method for detection of transitions in an image stream of the gastrointestinal tract |
CN105899166B (en) | 2013-11-06 | 2018-07-06 | 伊诺佩斯生医有限公司 | The intravascular electrode based on stent of radio-type |
WO2015089175A1 (en) | 2013-12-11 | 2015-06-18 | The Board Of Regents Of The University Of Texas System | Devices and methods for parameter measurement |
CN106535811A (en) | 2014-01-24 | 2017-03-22 | 伊卢森特医药公司 | Systems and methods comprising localization agents |
US20160000590A1 (en) * | 2014-04-07 | 2016-01-07 | Washington University | Intravascular Device |
CN110101927B (en) | 2014-04-15 | 2021-10-08 | Tc1有限责任公司 | Method and system for controlling a blood pump |
WO2015183893A1 (en) * | 2014-05-29 | 2015-12-03 | Jeffrey Labelle | Sensor-stents |
EP3160395A4 (en) | 2014-06-25 | 2018-08-08 | Canary Medical Inc. | Devices, systems and methods for using and monitoring heart valves |
CA2992263A1 (en) | 2014-06-25 | 2015-12-30 | Canary Medical Inc. | Devices, systems and methods for using and monitoring tubes in body passageways |
KR101765557B1 (en) | 2015-02-27 | 2017-08-23 | 서울대학교산학협력단 | Bioresorbable Electronic Stent |
US9924905B2 (en) | 2015-03-09 | 2018-03-27 | Graftworx, Inc. | Sensor position on a prosthesis for detection of a stenosis |
US10226193B2 (en) | 2015-03-31 | 2019-03-12 | Medtronic Ps Medical, Inc. | Wireless pressure measurement and monitoring for shunts |
US9757574B2 (en) | 2015-05-11 | 2017-09-12 | Rainbow Medical Ltd. | Dual chamber transvenous pacemaker |
US10603195B1 (en) | 2015-05-20 | 2020-03-31 | Paul Sherburne | Radial expansion and contraction features of medical devices |
US9987425B2 (en) | 2015-06-22 | 2018-06-05 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and sensor contact elements |
US10010668B2 (en) | 2015-06-22 | 2018-07-03 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and a force sensor |
US9993594B2 (en) * | 2015-06-22 | 2018-06-12 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and rotor position sensors |
US9878095B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and multiple sensor contact elements |
US9879668B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and an optical sensor |
CA2995855C (en) * | 2015-09-02 | 2024-01-30 | Edwards Lifesciences Corporation | Spacer for securing a transcatheter valve to a bioprosthetic cardiac structure |
WO2017059228A1 (en) | 2015-10-02 | 2017-04-06 | Elucent Medical, Inc. | Signal tag detection components, devices, and systems |
US9730764B2 (en) | 2015-10-02 | 2017-08-15 | Elucent Medical, Inc. | Signal tag detection components, devices, and systems |
US11833034B2 (en) | 2016-01-13 | 2023-12-05 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
PL241268B1 (en) | 2016-07-06 | 2022-08-29 | Kołtowski Łukasz Indywidualna Specjalistyczna Praktyka Lekarska | Intravascular blood pressure sensor |
EP3496623B1 (en) | 2016-08-12 | 2023-11-01 | Elucent Medical, Inc. | Surgical device guidance and monitoring systems |
WO2018049412A1 (en) | 2016-09-12 | 2018-03-15 | Graftworx, Inc. | Wearable device with multimodal diagnostics |
CA3053497A1 (en) | 2017-02-24 | 2018-08-30 | Endotronix, Inc. | Wireless sensor reader assembly |
US11615257B2 (en) | 2017-02-24 | 2023-03-28 | Endotronix, Inc. | Method for communicating with implant devices |
EP3592209B1 (en) * | 2017-03-09 | 2020-09-16 | Koninklijke Philips N.V. | Measuring a property in a body |
US10881320B2 (en) * | 2017-12-05 | 2021-01-05 | Boston Scientific Scimed, Inc. | Implantable medical sensors and related methods of use |
DE102018206754A1 (en) | 2018-05-02 | 2019-11-07 | Kardion Gmbh | Method and device for determining the temperature at a surface and use of the method |
DE102018206725A1 (en) | 2018-05-02 | 2019-11-07 | Kardion Gmbh | Receiving unit, transmitting unit, energy transmission system and method for wireless energy transmission |
US10278779B1 (en) | 2018-06-05 | 2019-05-07 | Elucent Medical, Inc. | Exciter assemblies |
DE102018208931A1 (en) * | 2018-06-06 | 2019-12-12 | Kardion Gmbh | Apparatus for determining cardiac output for a cardiac assist system, cardiac assistive system and method for determining cardiac output |
DE102018208927A1 (en) * | 2018-06-06 | 2019-12-12 | Kardion Gmbh | An implantable device for determining a fluid volume flow through a blood vessel |
US20200093397A1 (en) * | 2018-09-24 | 2020-03-26 | Apn Health, Llc | Determining catheter-tip 3d location and orientation using fluoroscopy and impedance measurements |
AU2019353156A1 (en) | 2018-10-05 | 2021-05-13 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US11918325B2 (en) | 2018-10-26 | 2024-03-05 | Koninklijke Philips N.V. | Pulse wave velocity measurement system |
US12114863B2 (en) | 2018-12-05 | 2024-10-15 | Microvention, Inc. | Implant delivery system |
CN113395931A (en) * | 2018-12-12 | 2021-09-14 | 爱德华兹生命科学公司 | Cardiac implant device with integrated pressure sensing |
CA3127324A1 (en) | 2019-01-23 | 2020-07-30 | Neovasc Medical Ltd. | Covered flow modifying apparatus |
US20200268256A1 (en) * | 2019-02-27 | 2020-08-27 | Medtronic, Inc. | Injectable biocompatible sensor system for measuring and communicating physiological data |
CN113692249A (en) * | 2019-03-07 | 2021-11-23 | 普罗赛普特生物机器人公司 | Implant for continuous patient monitoring and smart therapy |
WO2020191216A1 (en) | 2019-03-19 | 2020-09-24 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
EP3952730A4 (en) * | 2019-04-12 | 2023-01-18 | Ulink Labs, Inc. | Systems, devices, and methods for wireless monitoring |
US11717642B2 (en) | 2020-04-24 | 2023-08-08 | Covidien Lp | Catheter including one or more sensors |
US20210330231A1 (en) * | 2020-04-24 | 2021-10-28 | Covidien Lp | Catheter including one or more sensors |
AU2021273801A1 (en) * | 2020-05-19 | 2022-12-22 | Coravie Medical, Inc. | Injectable hemodynamic monitoring devices, systems and methods |
US11744498B2 (en) | 2020-07-17 | 2023-09-05 | Covidien Lp | Catheter system |
WO2022047393A1 (en) | 2020-08-31 | 2022-03-03 | Shifamed Holdings, Llc | Prosthetic delivery system |
EP4039173A1 (en) * | 2021-02-04 | 2022-08-10 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Cardiovascular monitoring system |
US11400299B1 (en) | 2021-09-14 | 2022-08-02 | Rainbow Medical Ltd. | Flexible antenna for stimulator |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4656463A (en) | 1983-04-21 | 1987-04-07 | Intelli-Tech Corporation | LIMIS systems, devices and methods |
US5027107A (en) | 1988-07-06 | 1991-06-25 | Hitachi, Ltd. | Frequency sensor |
US5073781A (en) | 1990-01-31 | 1991-12-17 | Texas Instruments Deutschland Gmbh | Transponder |
US5105829A (en) | 1989-11-16 | 1992-04-21 | Fabian Carl E | Surgical implement detector utilizing capacitive coupling |
US5205292A (en) | 1991-06-03 | 1993-04-27 | Applied Biometric, Inc. | Removable implanted device |
US5226421A (en) * | 1992-03-06 | 1993-07-13 | Cardiometrics, Inc. | Doppler elongate flexible member having an inflatable balloon mounted thereon |
US5271410A (en) * | 1991-04-01 | 1993-12-21 | Baxter International Inc. | Catheter with rapid response thermistor and method |
US5293399A (en) | 1986-11-05 | 1994-03-08 | R. Audemars Sa | Identification system |
US5483826A (en) | 1989-12-20 | 1996-01-16 | Tjs Development Corporation, Inc. | Remotely actuated pressure sensor responsive to an actuating signal |
US5497147A (en) | 1993-06-21 | 1996-03-05 | Microstrain, Company | Differential variable reluctance transducer |
US5522394A (en) | 1993-06-15 | 1996-06-04 | Zurbruegg; Heinz R. | Implantable measuring probe for measuring the flow velocity of blood in humans and animals |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3734083A (en) * | 1970-09-22 | 1973-05-22 | Univ California | Electromagnetic catheter velometer-flow meter |
US4109644A (en) * | 1977-01-12 | 1978-08-29 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | Miniature implantable ultrasonic echosonometer |
JPS58149733A (en) * | 1982-03-03 | 1983-09-06 | 日本光電工業株式会社 | Probe of electromagnetic blood flow meter |
JPS6185020U (en) * | 1984-11-12 | 1986-06-04 | ||
JPH03502412A (en) * | 1988-01-25 | 1991-06-06 | ベイラー・カレッジ・オブ・メディシン | Implantable and removable biosensor probe |
JPH0693885B2 (en) * | 1990-05-31 | 1994-11-24 | 日本光電工業株式会社 | Electromagnetic blood flow probe |
JP3041837B2 (en) * | 1991-02-20 | 2000-05-15 | 東洋紡績株式会社 | Blood flow measurement method and artificial heart drive system |
US5306294A (en) * | 1992-08-05 | 1994-04-26 | Ultrasonic Sensing And Monitoring Systems, Inc. | Stent construction of rolled configuration |
JPH06261872A (en) * | 1993-03-11 | 1994-09-20 | Toyobo Co Ltd | Method for measuring blood volume and instrument therefor |
US5873835A (en) * | 1993-04-29 | 1999-02-23 | Scimed Life Systems, Inc. | Intravascular pressure and flow sensor |
JP3381968B2 (en) * | 1993-07-09 | 2003-03-04 | 株式会社東芝 | Ultrasound diagnostic equipment |
GB2287375B (en) * | 1994-03-11 | 1998-04-15 | Intravascular Res Ltd | Ultrasonic transducer array and method of manufacturing the same |
EP1658808A1 (en) * | 1994-09-02 | 2006-05-24 | Volcano Corporation | Microminiature pressure sensor and guidewire using the same |
JPH08101083A (en) * | 1994-09-29 | 1996-04-16 | Olympus Optical Co Ltd | Insertion tube mounting piezoelectric oscillator module |
NL9401690A (en) * | 1994-10-13 | 1996-05-01 | Industrial Res Bv | Body-implantable stent. |
-
1997
- 1997-12-31 EP EP97950365A patent/EP0904009B1/en not_active Expired - Lifetime
- 1997-12-31 CA CA002247943A patent/CA2247943C/en not_active Expired - Fee Related
- 1997-12-31 DE DE69724781T patent/DE69724781T2/en not_active Expired - Fee Related
- 1997-12-31 JP JP52980198A patent/JP4011631B2/en not_active Expired - Fee Related
- 1997-12-31 WO PCT/IL1997/000447 patent/WO1998029030A1/en active IP Right Grant
- 1997-12-31 AU AU53386/98A patent/AU717916B2/en not_active Ceased
- 1997-12-31 ES ES97950365T patent/ES2208963T3/en not_active Expired - Lifetime
- 1997-12-31 IL IL12593297A patent/IL125932A/en not_active IP Right Cessation
-
1998
- 1998-04-09 US US09/057,634 patent/US6053873A/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4656463A (en) | 1983-04-21 | 1987-04-07 | Intelli-Tech Corporation | LIMIS systems, devices and methods |
US5293399A (en) | 1986-11-05 | 1994-03-08 | R. Audemars Sa | Identification system |
US5027107A (en) | 1988-07-06 | 1991-06-25 | Hitachi, Ltd. | Frequency sensor |
US5105829A (en) | 1989-11-16 | 1992-04-21 | Fabian Carl E | Surgical implement detector utilizing capacitive coupling |
US5483826A (en) | 1989-12-20 | 1996-01-16 | Tjs Development Corporation, Inc. | Remotely actuated pressure sensor responsive to an actuating signal |
US5073781A (en) | 1990-01-31 | 1991-12-17 | Texas Instruments Deutschland Gmbh | Transponder |
US5271410A (en) * | 1991-04-01 | 1993-12-21 | Baxter International Inc. | Catheter with rapid response thermistor and method |
US5205292A (en) | 1991-06-03 | 1993-04-27 | Applied Biometric, Inc. | Removable implanted device |
US5226421A (en) * | 1992-03-06 | 1993-07-13 | Cardiometrics, Inc. | Doppler elongate flexible member having an inflatable balloon mounted thereon |
US5522394A (en) | 1993-06-15 | 1996-06-04 | Zurbruegg; Heinz R. | Implantable measuring probe for measuring the flow velocity of blood in humans and animals |
US5497147A (en) | 1993-06-21 | 1996-03-05 | Microstrain, Company | Differential variable reluctance transducer |
Non-Patent Citations (1)
Title |
---|
See also references of EP0904009A4 |
Cited By (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1039831A1 (en) * | 1997-11-25 | 2000-10-04 | George E. Cimochowski | Endoluminal implant with parameter sensing capability |
EP1039831A4 (en) * | 1997-11-25 | 2001-03-14 | Inc Vascusense | Endoluminal implant with parameter sensing capability |
US6504286B1 (en) | 1997-12-30 | 2003-01-07 | Remon Medical Technologies Ltd. | Piezoelectric transducer |
US6486588B2 (en) | 1997-12-30 | 2002-11-26 | Remon Medical Technologies Ltd | Acoustic biosensor for monitoring physiological conditions in a body implantation site |
US6475170B1 (en) | 1997-12-30 | 2002-11-05 | Remon Medical Technologies Ltd | Acoustic biosensor for monitoring physiological conditions in a body implantation site |
US6431175B1 (en) | 1997-12-30 | 2002-08-13 | Remon Medical Technologies Ltd. | System and method for directing and monitoring radiation |
US6237398B1 (en) | 1997-12-30 | 2001-05-29 | Remon Medical Technologies, Ltd. | System and method for monitoring pressure, flow and constriction parameters of plumbing and blood vessels |
GB2333044B (en) * | 1998-01-08 | 2003-05-07 | Microsense Cardiovascular Sys | Device for fixation of a sensor in a bodily lumen |
GB2333044A (en) * | 1998-01-08 | 1999-07-14 | Microsense Cardiovascular Sys | Method and device for fixation of a sensor in a bodily lumen |
US6331163B1 (en) | 1998-01-08 | 2001-12-18 | Microsense Cardiovascular Systems (1196) Ltd. | Protective coating for bodily sensor |
JP2002524124A (en) * | 1998-09-04 | 2002-08-06 | ウルフ リサーチ プロプライエタリー リミテッド | Medical implantation system |
AU758015B2 (en) * | 1998-09-04 | 2003-03-13 | Wolfe Research Pty Ltd | Medical implant system |
WO2000013585A1 (en) * | 1998-09-04 | 2000-03-16 | Wolfe Research Pty. Ltd. | Medical implant system |
EP1117982A4 (en) * | 1998-09-29 | 2004-07-28 | Remon Medical Technologies Ltd | System and method for monitoring pressure, flow and constriction parameters of plumbing and blood vessels |
EP1117982A1 (en) * | 1998-09-29 | 2001-07-25 | Remon Medical Technologies Ltd. | System and method for monitoring pressure, flow and constriction parameters of plumbing and blood vessels |
WO2000019888A1 (en) * | 1998-10-05 | 2000-04-13 | The Regents Of The University Of California | Implantable medical sensor system |
WO2000032092A1 (en) * | 1998-11-25 | 2000-06-08 | Ball Semiconductor, Inc. | Intraluminal monitoring system |
US6264611B1 (en) | 1998-11-25 | 2001-07-24 | Ball Semiconductor, Inc. | Monitor for interventional procedures |
WO2000032105A1 (en) * | 1998-11-25 | 2000-06-08 | Ball Semiconductor, Inc. | Monitor for interventional procedures |
GB2344053A (en) * | 1998-11-30 | 2000-05-31 | Imperial College | Stents for blood vessels |
EP1034738A1 (en) | 1999-03-11 | 2000-09-13 | Biosense, Inc. | Position sensing based on ultrasound emission |
US6330885B1 (en) | 1999-03-24 | 2001-12-18 | Pmd Holdings Corporation | Remotely interrogated implant device with sensor for detecting accretion of biological matter |
US6206835B1 (en) | 1999-03-24 | 2001-03-27 | The B. F. Goodrich Company | Remotely interrogated diagnostic implant device with electrically passive sensor |
US6170488B1 (en) | 1999-03-24 | 2001-01-09 | The B. F. Goodrich Company | Acoustic-based remotely interrogated diagnostic implant device and system |
US6092530A (en) * | 1999-03-24 | 2000-07-25 | The B.F. Goodrich Company | Remotely interrogated implant device with sensor for detecting accretion of biological matter |
JP4737902B2 (en) * | 1999-06-03 | 2011-08-03 | マルティル・インストゥルメンツ・ベスローテン・フェンノートシャップ | Method, apparatus and catheter for measuring blood properties such as blood viscosity in vivo |
JP2003501167A (en) * | 1999-06-03 | 2003-01-14 | マルティル・インストゥルメンツ・ベスローテン・フェンノートシャップ | Method, apparatus and catheter for measuring blood characteristics such as blood viscosity in vivo |
WO2001012092A1 (en) * | 1999-08-14 | 2001-02-22 | The B.F. Goodrich Company | Remotely interrogated diagnostic implant device with electrically passive sensor |
US6802811B1 (en) | 1999-09-17 | 2004-10-12 | Endoluminal Therapeutics, Inc. | Sensing, interrogating, storing, telemetering and responding medical implants |
WO2001019239A1 (en) * | 1999-09-17 | 2001-03-22 | Endoluminal Therapeutics, Inc. | Sensing, interrogating, storing, telemetering and responding medical implants |
US6277078B1 (en) | 1999-11-19 | 2001-08-21 | Remon Medical Technologies, Ltd. | System and method for monitoring a parameter associated with the performance of a heart |
US10335280B2 (en) | 2000-01-19 | 2019-07-02 | Medtronic, Inc. | Method for ablating target tissue of a patient |
US8372139B2 (en) | 2001-02-14 | 2013-02-12 | Advanced Bio Prosthetic Surfaces, Ltd. | In vivo sensor and method of making same |
US9433515B2 (en) | 2001-02-14 | 2016-09-06 | Advanced Bio Prosthetic Surfaces, Ltd. | In vivo sensor and method of making same |
US10660528B2 (en) | 2001-02-14 | 2020-05-26 | Vactronix Scientific, Llc | Method of using an in vivo sensor having differential material properties |
US10293190B2 (en) | 2002-04-08 | 2019-05-21 | Medtronic Ardian Luxembourg S.A.R.L. | Thermally-induced renal neuromodulation and associated systems and methods |
US9486270B2 (en) | 2002-04-08 | 2016-11-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for bilateral renal neuromodulation |
US7025778B2 (en) | 2002-06-07 | 2006-04-11 | Endovascular Technologies, Inc. | Endovascular graft with pressure, temperature, flow and voltage sensors |
US7261733B1 (en) | 2002-06-07 | 2007-08-28 | Endovascular Technologies, Inc. | Endovascular graft with sensors design and attachment methods |
US7488345B2 (en) | 2002-06-07 | 2009-02-10 | Endovascular Technologies, Inc. | Endovascular graft with pressor and attachment methods |
US7708705B2 (en) | 2002-07-03 | 2010-05-04 | Given Imaging Ltd. | System and method for sensing in-vivo stress and pressure |
US10188457B2 (en) | 2003-09-12 | 2019-01-29 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation |
US9510901B2 (en) | 2003-09-12 | 2016-12-06 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation |
US9125666B2 (en) | 2003-09-12 | 2015-09-08 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
USRE48970E1 (en) * | 2003-12-15 | 2022-03-15 | Ip2Ipo Innovations Limited | Implantable surface acoustic wave devices for long term clinical monitoring |
US8764677B2 (en) * | 2003-12-15 | 2014-07-01 | Imperial College Innovations Ltd. | Implantable surface acoustic wave devices for long term clinical monitoring |
US20070282172A1 (en) * | 2003-12-15 | 2007-12-06 | Christopher Toumazou | Implantable Surface Acoustic Wave Devices for Long Term Clinical Monitoring |
USRE47681E1 (en) | 2003-12-15 | 2019-11-05 | Ip2Ipo Innovations Limited | Implantable surface acoustic wave devices for long term clinical monitoring |
US8915957B2 (en) | 2004-03-11 | 2014-12-23 | Alcatel Lucent | Drug delivery stent |
US9125667B2 (en) | 2004-09-10 | 2015-09-08 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US8939970B2 (en) | 2004-09-10 | 2015-01-27 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US8920414B2 (en) | 2004-09-10 | 2014-12-30 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US8852099B2 (en) | 2004-09-17 | 2014-10-07 | Cardiac Pacemakers, Inc. | Systems and methods for deriving relative physiologic measurements |
US7918800B1 (en) | 2004-10-08 | 2011-04-05 | Endovascular Technologies, Inc. | Aneurysm sensing devices and delivery systems |
US10850092B2 (en) | 2004-10-20 | 2020-12-01 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US10029092B2 (en) | 2004-10-20 | 2018-07-24 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US12076164B2 (en) | 2005-12-09 | 2024-09-03 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US11154247B2 (en) | 2005-12-09 | 2021-10-26 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US10022538B2 (en) | 2005-12-09 | 2018-07-17 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US11766219B2 (en) | 2005-12-09 | 2023-09-26 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US10589130B2 (en) | 2006-05-25 | 2020-03-17 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US10426952B2 (en) | 2006-07-21 | 2019-10-01 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US9662487B2 (en) | 2006-07-21 | 2017-05-30 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US9308374B2 (en) | 2006-07-21 | 2016-04-12 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US12102822B2 (en) | 2006-07-21 | 2024-10-01 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US11338130B2 (en) | 2006-07-21 | 2022-05-24 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US10213252B2 (en) | 2006-10-18 | 2019-02-26 | Vessix, Inc. | Inducing desirable temperature effects on body tissue |
US10413356B2 (en) | 2006-10-18 | 2019-09-17 | Boston Scientific Scimed, Inc. | System for inducing desirable temperature effects on body tissue |
US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
US9693708B2 (en) | 2007-05-04 | 2017-07-04 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Systems and methods for wireless transmission of biopotentials |
US9731141B2 (en) | 2007-06-14 | 2017-08-15 | Cardiac Pacemakers, Inc. | Multi-element acoustic recharging system |
US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
US9277955B2 (en) | 2010-04-09 | 2016-03-08 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US9456756B2 (en) | 2011-01-30 | 2016-10-04 | Guided Interventions, Llc | System for detection of blood pressure using a pressure sensing guide wire |
US8467882B2 (en) | 2011-03-29 | 2013-06-18 | Medtronic, Inc. | Magnetic field detection using magnetohydrodynamic effect |
US8437862B2 (en) | 2011-03-29 | 2013-05-07 | Medtronic, Inc. | Magnetic field detection using magnetohydrodynamic effect |
US9999528B2 (en) | 2013-03-14 | 2018-06-19 | University Of Utah Research Foundation | Stent with embedded pressure sensors |
EP2967928A4 (en) * | 2013-03-14 | 2016-08-31 | Univ Utah Res Found | Stent with embedded pressure sensors |
US10806428B2 (en) | 2015-02-12 | 2020-10-20 | Foundry Innovation & Research 1, Ltd. | Implantable devices and related methods for heart failure monitoring |
US10905393B2 (en) | 2015-02-12 | 2021-02-02 | Foundry Innovation & Research 1, Ltd. | Implantable devices and related methods for heart failure monitoring |
US11330987B2 (en) | 2015-04-06 | 2022-05-17 | Thomas Jefferson University | Implantable vital sign sensor |
US10413200B2 (en) | 2015-04-06 | 2019-09-17 | Thomas Jefferson University | Implantable vital sign sensor |
US10602936B2 (en) | 2015-04-06 | 2020-03-31 | Thomas Jefferson University | Implantable vital sign sensor |
US11000195B2 (en) | 2015-04-06 | 2021-05-11 | Thomas Jefferson University | Implantable vital sign sensor |
US10335043B2 (en) | 2015-04-06 | 2019-07-02 | Thomas Jefferson University | Implantable vital sign sensor |
US9629560B2 (en) | 2015-04-06 | 2017-04-25 | Thomas Jefferson University | Implantable vital sign sensor |
US11445924B2 (en) | 2015-04-06 | 2022-09-20 | Thomas Jefferson University | Implantable vital sign sensor |
US11039813B2 (en) | 2015-08-03 | 2021-06-22 | Foundry Innovation & Research 1, Ltd. | Devices and methods for measurement of Vena Cava dimensions, pressure and oxygen saturation |
US11206992B2 (en) | 2016-08-11 | 2021-12-28 | Foundry Innovation & Research 1, Ltd. | Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore |
US11564596B2 (en) | 2016-08-11 | 2023-01-31 | Foundry Innovation & Research 1, Ltd. | Systems and methods for patient fluid management |
US11701018B2 (en) | 2016-08-11 | 2023-07-18 | Foundry Innovation & Research 1, Ltd. | Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore |
US10806352B2 (en) | 2016-11-29 | 2020-10-20 | Foundry Innovation & Research 1, Ltd. | Wireless vascular monitoring implants |
US11779238B2 (en) | 2017-05-31 | 2023-10-10 | Foundry Innovation & Research 1, Ltd. | Implantable sensors for vascular monitoring |
US11944495B2 (en) | 2017-05-31 | 2024-04-02 | Foundry Innovation & Research 1, Ltd. | Implantable ultrasonic vascular sensor |
US11564582B2 (en) | 2017-12-15 | 2023-01-31 | Koninklijke Philips N.V. | Implant device for in-body monitoring |
WO2019115819A1 (en) | 2017-12-15 | 2019-06-20 | Koninklijke Philips N.V. | Implant device for in-body monitoring |
EP3498152A1 (en) | 2017-12-15 | 2019-06-19 | Koninklijke Philips N.V. | Implant device for in-body monitoring |
WO2019175401A1 (en) | 2018-03-16 | 2019-09-19 | Koninklijke Philips N.V. | Device for in-body monitoring |
EP3539462A1 (en) | 2018-03-16 | 2019-09-18 | Koninklijke Philips N.V. | Device for intra-vascular monitoring |
Also Published As
Publication number | Publication date |
---|---|
CA2247943C (en) | 2008-04-29 |
IL125932A0 (en) | 1999-04-11 |
IL125932A (en) | 2003-06-24 |
DE69724781D1 (en) | 2003-10-16 |
US6053873A (en) | 2000-04-25 |
JP4011631B2 (en) | 2007-11-21 |
AU5338698A (en) | 1998-07-31 |
DE69724781T2 (en) | 2004-07-01 |
CA2247943A1 (en) | 1998-07-09 |
EP0904009A1 (en) | 1999-03-31 |
EP0904009B1 (en) | 2003-09-10 |
ES2208963T3 (en) | 2004-06-16 |
EP0904009A4 (en) | 2000-04-05 |
JP2000507142A (en) | 2000-06-13 |
AU717916B2 (en) | 2000-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU717916B2 (en) | Pressure-sensing stent | |
US11666746B2 (en) | Medical product comprising a functional element for the invasive use in a patient's body | |
US11779238B2 (en) | Implantable sensors for vascular monitoring | |
US5967986A (en) | Endoluminal implant with fluid flow sensing capability | |
US6092530A (en) | Remotely interrogated implant device with sensor for detecting accretion of biological matter | |
CA2539261C (en) | Implantable wireless sensor | |
EP1026984B1 (en) | Ultrasonic sensors for monitoring the condition of a vascular graft | |
US7211048B1 (en) | System for monitoring conduit obstruction | |
US20050015014A1 (en) | Implantable wireless sensor for pressure measurement within the heart | |
EP1210012A1 (en) | Ultrasonic monitoring of cardiac valvular flow condition | |
AU2013263860A1 (en) | Implantable wireless sensor | |
WO2002000118A2 (en) | Pressure gradient measurement for detection of shunt stenosis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK DK EE EE ES FI FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 53386/98 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2247943 Country of ref document: CA Ref country code: CA Ref document number: 2247943 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997950365 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: 1997950365 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 53386/98 Country of ref document: AU |
|
WWG | Wipo information: grant in national office |
Ref document number: 1997950365 Country of ref document: EP |