WO1998022988A1 - Separator for lead-acid battery and method for manufacturing the same - Google Patents

Separator for lead-acid battery and method for manufacturing the same Download PDF

Info

Publication number
WO1998022988A1
WO1998022988A1 PCT/JP1997/004255 JP9704255W WO9822988A1 WO 1998022988 A1 WO1998022988 A1 WO 1998022988A1 JP 9704255 W JP9704255 W JP 9704255W WO 9822988 A1 WO9822988 A1 WO 9822988A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
weight
sheet
inorganic powder
separator
Prior art date
Application number
PCT/JP1997/004255
Other languages
French (fr)
Japanese (ja)
Inventor
Toshikazu Senoo
Masaki Shoji
Kunio Tabata
Kenzo Sakata
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP8310489A external-priority patent/JPH10154500A/en
Priority claimed from JP9237368A external-priority patent/JPH1186829A/en
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Publication of WO1998022988A1 publication Critical patent/WO1998022988A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a lead-acid battery and a method for producing the same, and more particularly, to a separator for a lead-acid battery having low electric resistance and excellent oxidation resistance, and particularly suitable for an automobile and a method for producing the same. . Background art
  • Lead-acid battery separators for automobiles are required to have low electric resistance and excellent oxidation resistance.
  • a separation a slurry obtained by mixing a synthetic resin powder or a silica-based inorganic powder with it and suspending it in water is used as a porous material such as a nonwoven fabric.
  • Separator impregnated in a hydrophilic base sheet JP-A-57-95071, JP-A-6-237675
  • lipophilic polymer fibers Abstract Separator impregnated with a water-soluble oil emulsion (Japanese Patent Publication No. 416,462), or synthetic resin emulsion made by imparting viscous properties to a sheet mainly composed of glass fiber. Is known (Japanese Patent Application Laid-Open No. Sho 60-130550).
  • a separator having a rib for the purpose of satisfying the above requirements as a lead storage battery separator, a bag-shaped separator is used, and the separator material is bent at predetermined intervals.
  • Separate unit having a plurality of line-ribs in which a chevron-shaped convex portion is formed inside the bag in a vertical direction Japanese Patent Application Laid-Open No. 3-127448. I-like seno ,.
  • a separator having a plurality of so-called pipe-shaped ribs in which pipe-shaped protrusions made of a thermoplastic resin are formed at predetermined intervals on one side of a base material of the separator Japanese Patent Laid-Open No. 63-51010) 4 No. 6
  • Japanese Patent Laid-Open No. 63-51010 Japanese Patent Laid-Open No. 63-51010
  • One of the main roles of the ribs in Separete is to secure the necessary space between the electrodes in the battery to maintain the required amount of electrolyte.
  • the electric power is insufficient due to insufficient strength.
  • the electrode group pressure in the pond causes deformation such as crushing of the line rib, and the space required for holding the electrolyte is insufficient.
  • the present inventors have studied diligently to solve the above-mentioned problems, obtain a separation for a lead storage battery having low electric resistance and excellent oxidation resistance, and have been manufactured by a wet papermaking method and have a large number of constituent fibers.
  • a separator made of a laminated sheet having the above-described coating layer formed on the surface opposite to the convex portion formed on one surface of the porous substrate sheet. Has low electrical resistance As a result, they found that they had excellent oxidation resistance and the like, and completed the present invention.
  • the present invention is intended to solve the problems associated with the prior art as described above, and is a sheet-shaped or bag-shaped separator for a lead storage battery having low electric resistance and excellent oxidation resistance, and its production. It aims to provide a method. Disclosure of the invention
  • the lead-acid battery separator according to the present invention comprises:
  • a convex portion may be provided on one or both surfaces of the laminated sheet ( ⁇ ).
  • projections may be formed continuously or discontinuously on substantially the same line, A plurality of protrusions formed continuously or discontinuously on the same straight line may be formed at predetermined intervals in the width direction.
  • Such a convex portion may be formed in a rib shape by hot-melt type resin, or may be formed by embossing the porous base sheet (I).
  • a porous base sheet (I) is embossed.
  • the convex portion is formed on one surface of the porous substrate sheet (I) on the surface opposite to the surface on which the convex portion is formed. Separation evening where ( ⁇ ) is formed.
  • the laminated sheet (m) may be formed in a bag shape.
  • the porous base sheet (I) As the porous base sheet (I),
  • a sheet consisting of is preferably used.
  • the dry basis weight of the coating layer ( ⁇ ) is in the range of 5 to 50 g / m 2 .
  • the coating layer ( ⁇ ) has an inorganic powder (d) of 30 to 90% by weight ⁇ %
  • the acidic polymer (e) preferably comprises 10 to 70% by weight
  • the inorganic powder (d) constituting the coating layer ( ⁇ ) has an average particle size of 10 ⁇ m or less.
  • Inorganic powder having a specific surface area of 100 to 250 m 2 / g (i) 100 to 90% by weight, an average particle diameter of 1 to 30 m, and a specific surface area of 0 It is preferably a mixture with inorganic powder of 1 to 50 m 2 / g (ii) 90 to 10% by weight.
  • the average pore size of the laminated sheet ( ⁇ ) is preferably in the range of 0.1 to 10 ⁇ m.
  • the method for producing a separation battery for a lead storage battery according to the present invention includes:
  • a paste-like mixed solution prepared by adding water so that the solid content concentration of the inorganic powder (d) and the acid-resistant polymer (e) is 10 to 70% by weight is added to the porous substrate sheet. It is characterized in that it is applied on at least one side of the sheet (I) and dried to form a coating layer ( ⁇ ) to form a laminated sheet (m).
  • the porous substrate sheet (I) is a porous substrate sheet
  • the porous base sheet (I) preferably has a porosity of 50% or more and an average pore diameter of 0.5 to 20 m.
  • the mixing ratio [(d) / (e)] of the inorganic powder (d) and the acid-resistant polymer (e) constituting the solid content in the paste-like mixture is 30 Z70 to 90. / 10 is preferred.
  • the laminated sheet ( ⁇ ) having the convex portions formed on the surface is formed, for example, by forming the coating layer ( ⁇ ) on at least one surface of the porous base sheet (I) and forming a laminated sheet (m). After the production, a linear rib can be bonded and formed on one or both sides of the laminated sheet (m) using a hot melt type resin.
  • the porous substrate sheet is produced by a wet papermaking method.
  • the bonding of the composite adhesive fiber (g) constituting the porous base sheet (I) It is preferable to perform the heat treatment at a temperature not lower than the temperature and not higher than the melting point of the synthetic pulp (a) or at a temperature at which the binder (h) exhibits an adhesive force.
  • the laminated sheet (m) having the convex portions formed on the surface is manufactured by manufacturing the porous substrate sheet (I) by a wet papermaking method and then using an embossing roll to form the porous substrate sheet (I). On the sheet (I), an embossing process for forming a substantially linear convex portion continuously or discontinuously is performed.
  • the solid content of the inorganic powder (d) and the acid-resistant polymer (e) is 10 to 70% on the surface of the porous substrate sheet (I) opposite to the surface on which the projections are formed. It can be obtained by applying a paste-like mixed solution prepared by adding water to a concentration of water and drying it to form a coating layer ( ⁇ ).
  • the composite substrate is made of a composite adhesive fiber (g) constituting the porous substrate sheet (I) at an adhesion temperature or higher and synthesized.
  • the heat treatment is performed at a temperature lower than the melting point of the pulp (a) or at a temperature at which the binder (h) exhibits an adhesive force, and then the embossed roll is used to form a porous substrate sheet (I). , Embossing to form almost linear projections,
  • the solid content concentration of the inorganic powder (d) and the acid-resistant polymer (e) is 10 to 70 on the surface of the porous substrate sheet (I) opposite to the surface on which the projections are formed. It is preferable to apply a paste-like mixed solution prepared by adding water so as to have a weight%, and then dry to form a coating layer ( ⁇ ) to form a laminated sheet ( ⁇ ).
  • the laminated sheet (m) having the convex portions formed on the surface is the laminated sheet (m).
  • it can also be obtained by embossing using an embossing roll to form a substantially linear projection continuously or discontinuously.
  • the laminated sheets ( ⁇ ) obtained by the above-described manufacturing method are overlapped, and one end thereof is sealed to form one opening. It can be a bag.
  • FIG. 1 is a schematic view showing an example of a coating apparatus used for forming a coating layer ( ⁇ ) on the surface of a porous substrate sheet (I) in the present invention.
  • FIG. 2 is a cross-sectional view showing an example of a laminated sheet (m) in which a rib is formed on the surface of a porous substrate sheet (I).
  • FIGS. 3, 4 and 5 show that the coating layer ( ⁇ ) is formed on one side of the porous substrate sheet (I) on which the protrusions are formed by embossing, on the side opposite to the protrusions. It is sectional drawing which shows the example of a laminated sheet. BEST MODE FOR CARRYING OUT THE INVENTION
  • the lead storage battery separator according to the present invention comprises a laminated sheet (m) having a coating layer ( ⁇ ) formed on one or both sides of a porous substrate sheet (I).
  • Porous substrate sheet (I) is manufactured by a wet paper-making method, and is composed of a synthetic pulp (a), an acid-resistant inorganic powder (b) and Z or acid-resistant inorganic fiber (c). And, if necessary, a synthetic fiber (f) and / or a composite adhesive fiber (g), and a binder having a melting point lower than the melting point of the synthetic pulp (a) or a decomposition temperature (a). h).
  • the synthetic pulp (a) used in the present invention it is preferable that fibers constituting the pulp are in a multi-branched state and have acid resistance.
  • a synthetic pulp (a) specifically,
  • Ethylene and other oligomers such as polyethylene homopolymers such as polyethylene and polypropylene, or ethylene-propylene copolymers, ethylene-tributene copolymers, and ethylene 4-methyl-1-pentene copolymers
  • polyolefin-based synthetic pulp containing polyolefin as a main component consisting of a copolymer with styrene, polystyrene, polymethylmethacrylate, polyacrylonitrile, vinyl chloride resin, vinylidene chloride Synthetic pulp mainly composed of polymers such as resin, nylon, polyester, and polyfluoroethylene can be used.
  • polyolefin synthetic pulp is preferably used because it is excellent in acid resistance and inexpensive.
  • polyolefins ethylene-based polymers and propylene-based polymers are preferably used from the viewpoint of acid resistance.
  • “acid resistance” means acid resistance to sulfuric acid aqueous solution, which is an electrolyte solution for lead-acid batteries.
  • Synthetic pulp that does not undergo shape change or chemical change even when immersed in sulfuric acid aqueous solution specifically for the pulp, a synthetic pulp having an acid resistance value of 0.6% or less specified in JISC 222 is preferable.
  • synthetic pulp (a) exhibits a large adhesive strength.
  • MFR ASTM D 1238, 190 ° C, 2.16 kg load
  • the weight (MFR; ASTM D 1238, 230; C, 2.16 kg load) should be 30 g / 10 minutes or less, and preferably 0.1 to 20 g / 10 minutes.
  • the constituent fibers have many branches, and the average fiber length is preferably 0.1 to 10 mm.
  • the entanglement between the fibers is sufficient, so that the sheet can be easily formed and a uniform porous substrate sheet ( I) can be easily obtained.
  • the freeness of synthetic pulp (a) is 1.0 to 20.0 seconds / g, especially 2.0 to 10.0 seconds / g. I prefer that there be.
  • a porous substrate sheet (I) having sufficient strength, having appropriate voids, and having good liquid permeability is used. Can be obtained.
  • the synthetic pulp (a) used in the present invention is known per se. For example, as described in detail in Encyclopedia of Chemical Technology 3rd ed. Is manufactured.
  • wet papermaking refers to a method of papermaking using water or various solvents, and is not particularly limited. Preferred examples of the method include a solution flush or an emulsion flash. After performing a flash, A method of performing a beating process and the like are included.
  • the synthetic pulp (a) used in the present invention is a pulp used for so-called paper or sheet production. Since the constituent fibers have a multi-branched structure, the fibers are entangled with each other when formed into a sheet. However, the void forms a complicated passage. On the other hand, webs composed of single fibers such as nonwoven fabrics have a pore structure that is essentially different from synthetic pulp (a), and nonwoven fabrics have relatively large through-holes and a straight structure. Therefore, when a coating liquid containing the inorganic powder (d) and the acid-resistant polymer (e) is applied, a large amount of the coating layer ( ⁇ ) formed enters between the fibers and the laminated sheet
  • the effect of the coating layer ( ⁇ ) for controlling the pore diameter of ( ⁇ ) is impaired, and if the coating layer ( ⁇ ) is made thicker to produce the effect as the coating layer, the effect will be lost. There is a problem that the resistance increases, and the object of the present invention cannot be achieved.
  • Synthetic pulp (a) is synthetic pulp (a), acid-resistant inorganic powder (b), acid-resistant inorganic fiber (c), synthetic fiber (f), composite adhesive fiber (g) and binder (h) It is preferably used in an amount of 5 to 70% by weight, particularly preferably 10 to 50% by weight, based on the total amount of 100% by weight.
  • acid-resistant inorganic powder (b) used in the present invention include synthetic silica, silica earth, and silicon. Powders such as monolite, alumina, zeolite and the like can be mentioned. Of these, synthetic silica is preferably used.
  • These acid-resistant inorganic powders (b) can be used alone. Alternatively, two or more kinds can be used in combination.
  • the “acid resistance” of the acid-resistant inorganic powder (b) has the same meaning as described above, and the acid-resistant inorganic powder (b) changes its shape and chemical even when immersed in an aqueous sulfuric acid solution. It is an inorganic powder that does not cause a specific change, specifically, an inorganic powder having an acid resistance value of 0.6% or less specified in JISC 222.
  • Acid-resistant inorganic powder (b) includes synthetic pulp (a), acid-resistant inorganic powder (b), acid-resistant inorganic fiber (c), synthetic fiber (f), composite adhesive fiber (g) and It is preferably used in an amount of 5 to 60% by weight, particularly preferably 10 to 50% by weight, based on 100% by weight of the binder (h).
  • acid-resistant inorganic fiber (c) used in the present invention include glass fiber, silica fiber, and alumina silicate fiber. Of these, glass fibers are preferably used.
  • These acid-resistant inorganic fibers (ji) can be used alone or in combination of two or more.
  • the “acid resistance” of the acid-resistant inorganic fiber (c) has the same meaning as described above, and the acid-resistant inorganic fiber (c) has a shape change and a chemical change even when immersed in a sulfuric acid aqueous solution.
  • Inorganic fibers that do not cause water specifically, inorganic fibers having an acid resistance value of 0.6% or less specified in JISC 222.
  • Acid-resistant inorganic fiber (c) is synthetic pulp (a), acid-resistant inorganic powder (b), acid-resistant inorganic fiber (c), synthetic fiber (f), composite adhesive fiber It is used in an amount of preferably 5 to 60% by weight, particularly preferably 10 to 50% by weight, based on 100% by weight of the total amount of the fiber (g) and the binder (h).
  • synthetic fiber (f) used as required in the present invention include polyamide (nylon), polyethylene terephthalate (PET), and polypropylene (PP). And a fiber made of a synthetic resin such as polyethylene (PE).
  • These synthetic fibers (f) can be used alone or in combination of two or more.
  • the synthetic fiber (f) used in the present invention preferably has a melting point higher than the melting point of the binder (h) or the bonding temperature of the composite adhesive fiber (g). It is preferable to have excellent acid resistance as described above.
  • Synthetic fiber (f) is used as a reinforcing component to increase the rigidity and strength of the base sheet.
  • an adhesive fiber combining a high melting point component and a low melting point component for example, polypropylene (PP) / polyethylene (PE) , Polyethylene Adhesive fibers having a side-by-side type / core-sheath type structure by a combination of terephthalate (PET) / low-melting point PET and the like are listed.
  • the low-melting-point component is disposed outside.
  • These composite adhesive fibers (g) can be used alone or in combination of two or more.
  • the bonding temperature of the composite adhesive fiber (g) is 10 ° C higher than the lowest of the melting point or decomposition temperature of synthetic pulp (a) and the melting point or decomposition temperature of synthetic fiber (f). It is desirable that it is lower than this.
  • the composite adhesive fiber (g) is used as a reinforcing component to increase the rigidity and strength of the base sheet, similarly to the synthetic fiber (f), and the synthetic pulp (a) 100% by weight of acid-resistant inorganic powder (b), acid-resistant inorganic fiber (c), synthetic fiber (f), composite adhesive fiber (g) and binder-(h) It is preferably used in an amount of 5 to 50% by weight, particularly preferably 10 to 40% by weight.
  • the effect as the binder (h) described later is also exerted at the same time, so that the binder (h) is not used. It is not necessary to use it, but in order to further increase the strength, it is preferable to use the binning (h) together.
  • the binder (h) used as necessary in the present invention is intended to bind pulp, fiber, and inorganic powder to give strength to the porous base sheet (I).
  • a heat-bonding binder is used, which exhibits an adhesive force at a temperature lower than the melting point or decomposition temperature of the synthetic pulp (a).
  • Examples of such a heat bonding type binder include polyethylene, polypropylene, and other polyolefins having a melting point lower than the melting point of synthetic pulp (a), polystyrene, polymethyl methacrylate, and polyacryl. Examples include rilonitrile, vinylidene chloride resin, nylon and polyester.
  • the form of the binder (h) is, for example,
  • the core has a melting point higher than the melting point of the synthetic pulp (a), and the sheath has the melting point of the synthetic pulp (a).
  • Polyolefin resin powder low melting polyester powder, vinyl chloride resin powder, epoxy resin powder, or emulsion thereof; natural or synthetic rubber latex; and
  • Examples include acrylic resin emulsions.
  • binders (h) can be used alone or in combination of two or more.
  • the melting point of the binder (h) is the melting point or decomposition temperature of the synthetic pulp (a) or the melting point or decomposition temperature of the high melting point of the composite adhesive fiber (g) out of the melting point or decomposition temperature of the synthetic fiber (f). It is desirable that the temperature be lower than the lowest temperature by 10 ° C or more.
  • the binder (h) is an amorphous polymer such as rubber
  • the temperature at which the amorphous polymer softens and exhibits adhesiveness may be used as a guide for the heat treatment temperature.
  • Binder (h) is synthetic pulp (a), acid-resistant inorganic powder (b), acid-resistant inorganic fiber (c), synthetic fiber (f), composite adhesive fiber (g) And 100% by weight or less, preferably 0.5 to 10% by weight, particularly preferably 1 to 5% by weight, based on the total amount of 100% by weight of the binder (h). Used.
  • the porous substrate sheet (I) used in the present invention comprises synthetic pulp (a), acid-resistant inorganic powder (b) and Z or acid-resistant inorganic fiber (c), and if necessary, synthetic fiber. (F) and a warm-formed article formed from Z or the composite adhesive fiber (g) and a binder (h).
  • the porous base sheet (I) made of In particular, synthetic pulp (a) 10 to 50% by weight, acid-resistant inorganic powder (b) and Z or acid-resistant inorganic fiber (f) 10 to 50 weight 0 , synthetic fiber (f) and A porous base sheet (I) comprising 10 to 40% by weight of a composite adhesive fiber (g) and 0.5 to 10% by weight of a binder (h) is preferred.
  • the porous substrate sheet (I) produced by the wet papermaking method using each of the above components has a porosity of 50% or more and an average pore diameter of 0.5 to 20 m. It is preferable that the maximum pore diameter is 200 m or less.
  • the porosity is determined by the apparent volume of the sample as V and the weight of the sample as the density of the material.
  • VQ volume obtained by dividing by degrees
  • the average pore size of the porous base sheet (I) is smaller than 0.5 Zm, it becomes difficult to produce the sheet by a wet paper-making method, and furthermore, the electrical resistance of the obtained separator becomes high.
  • the inorganic powder (d) and the acid-resistant material are attached to one or both surfaces of the porous substrate sheet (I).
  • the coating layer (() containing the reactive polymer (e) is formed, it is difficult to control the laminated sheet (II) with a small pore size and uniformity.
  • porous base sheet (I) if the maximum pore diameter of the porous base sheet (I) exceeds 200 m, it is not desirable because the active material dropped from the electrode may slip and cause a short. Preparation of porous substrate sheet (I)
  • the porous base sheet (I) may be, for example, the above-mentioned synthetic pulp (a) and at least one kind of acid-resistant inorganic powder (b) or acid-resistant inorganic fiber (c), if necessary.
  • a mixture containing at least one of the synthetic fiber (f) or the composite adhesive fiber (g) and the binder (h) is dispersed in a medium such as water and wet-processed. Preparation Is done.
  • a warmed sheet of the above mixture is papered on a net.
  • This wet sheet may be dewatered only, or dewatered and lightly pressed.
  • the dehydrated sheet is sent to a drying step, and is preferably dried with a hot air oven using a hot air oven or a drum type dryer.
  • the dried sheet is heat-treated following the drying step.
  • This heat treatment is also preferably performed in a hot air oven or a drum type dryer. Drying and heat treatment may be performed simultaneously.
  • This heat treatment is performed at a temperature not lower than the bonding temperature of the composite adhesive fiber (g) and not higher than the melting point of the synthetic pulp (a), or not lower than the melting point of the binder (h) and not higher than the melting point of the synthetic pulp (a).
  • a temperature of In particular, at a temperature of 5 ° C or higher than the bonding temperature of the composite adhesive fiber (g) and 5 ° C or lower than the melting point of the synthetic pulp (a), or 5 ° C or higher than the melting point of the binder (h)
  • the heat treatment is preferably performed at a temperature of 5 ° C or less from the melting point of the synthetic pulp (a).
  • the insulator (h) is an amorphous polymer such as rubber
  • heat treatment is performed at the bonding temperature. It is desirable that this heat treatment be performed before the formation of the next coating layer ( ⁇ ) or before the formation of the projections in order to impart mechanical strength to the porous base sheet (I).
  • the “bonding temperature” of the composite adhesive fiber (g) refers to a temperature at which the low melting point component is melted, and the amorphous polymer is softened to develop an adhesive force.
  • the porous base sheet (I) produced by the wet papermaking described above has a thickness force of '0.05 to ensure the electrical characteristics required for the separator and the adaptability to battery assembly. I. 0 mm, preferable properly is in the range of 0. 1 ⁇ 0. 4 mm, density of 0. 1 ⁇ 0. 6 g / cm 3, is favored properly 0. 2 ⁇ 0. 4 g / cm 3
  • the porous base sheet (I) Before forming the coating layer ( ⁇ ) described later on one or both sides of the porous base sheet (I), the porous base sheet (I) is provided with convex portions on one or both sides of the porous base sheet (I). Can be formed.
  • the method of forming the protrusion include a so-called rib formation method and a method of forming a protrusion by embossing. The method of forming these parts will be described later.
  • the porous substrate sheet (I) may have an application layer ( ⁇ ) containing an inorganic powder (d) and an acid-resistant polymer (e) on one or both sides thereof.
  • the coating layer ( ⁇ ) may be provided on the surface of the porous substrate sheet (I) opposite to the surface on which the projections are formed.
  • the inorganic powder (d) forming the coating layer ( ⁇ ) is preferably an acid-resistant synthetic or natural silica-based, alumina-based or silica-alumina-based inorganic powder.
  • examples include powders of silica earth, synthetic silica, fused aluminum, powder and zeolite.
  • These inorganic powders (d) can be used alone or in combination of two or more. These inorganic powders (d) is laid preferred that the specific surface area measured by the BET method is in the range of 0. 1 ⁇ 2 5 0 m 2 Z g, average particle size 3 0 m or less of the inorganic powder (D) is preferably used.
  • the average particle size is 10 m or less, and the specific surface area is 100 to 250.
  • the inorganic powder (ii) it is more preferable to use a mixture of at least two kinds of inorganic powders (d) having different particle diameters and specific surface areas.
  • the inorganic powder (d) a mixture of the inorganic powder (i) of 10 to 90% by weight and the inorganic powder (ii) of 90 to 10% by weight is preferable.
  • the inorganic powder (i) alone tends to cause cracks in the coating layer ( ⁇ ⁇ ⁇ ) due to too large specific surface area, and the inorganic powder (ii) alone tends to increase the electrical resistance. is there.
  • the porous substrate sheet (I) has If the voids are filled, penetrating pores will not be formed, and if the specific surface area is greater than 250 m 2 / g or the average particle size is less than 0.1 m, apply. Therefore, it becomes difficult to maintain a paste state having a necessary viscosity.
  • the coating layer ( ⁇ ) having flexibility and no cracking can be formed, and the coating layer ( ⁇ ⁇ ⁇ ) having appropriate electric resistance can be formed with a relatively small basis weight.
  • the “average particle size” is the average particle size measured by the Coulter Counter-1 measuring device using the Elect-Mouth Zone Method, and the particle size distribution is the normal particle size distribution of the powder by wet or dry classification. It is.
  • the acid-resistant polymer (e) that forms the coating layer ( ⁇ ) is a synthetic resin having a glass transition temperature (Tg) of ⁇ 50 to 80 ° C, which is excellent in acid resistance and oxidation resistance. Although a rubber-like material is used, a polymer having a glass transition temperature (T g ) in the range of -5 to 70 ° C. is preferred because it is easily available. Specific examples of such preferred acid-resistant polymer (e) include:
  • Acrylic resin such as methyl methacrylate
  • Olefin-based or gen-based polymers such as polyethylene, polypropylene and polybutadiene;
  • Polymers such as polystyrene, polyacrylonitrile, polyvinyl chloride, styrene-butadiene rubber, and nitrylbutadiene rubber are exemplified.
  • These acid-resistant polymers (e) can be used alone or in combination of two or more.
  • the “acid resistance” of the acid-resistant polymer (e) has the same meaning as described above, and the acid-resistant polymer (e) undergoes shape change and chemical change even when immersed in an aqueous sulfuric acid solution.
  • Polymers having no acid resistance specifically, those having an acid resistance value of 0.6% or less as specified in JISC 222.
  • These acid-resistant polymers (e) are mixed with water together with the inorganic powder (d) when forming the coating layer ( ⁇ ), and used as a paste-like mixed solution. It is preferable to be in the emulsion or dispersion state.
  • This coating layer ( ⁇ ) is usually made of a paste-like mixed solution prepared by adding water to the inorganic powder (d) and the acid-resistant polymer (e), and the porous base material having no convex portions formed thereon. It is convex on the surface of the sheet (I), on the surface opposite to the surface on which the ribs of the porous substrate sheet (I) are formed, or by embossing the porous substrate sheet (I). It can be formed by applying a coater to the surface opposite to the surface on which the portion is formed, that is, the concave surface, and then drying. For example, in a coating apparatus as shown in FIG.
  • a porous substrate sheet 1 is simultaneously coated with a coating bar coater 4 and a guide roll 5.
  • the paste-like mixed solution 2 is applied to one surface of the porous substrate sheet 1 through the gap, and then dried, whereby the coating layer 6 can be formed.
  • (I) can be immersed in the paste-like mixture to form a coating layer ( ⁇ ) (so-called impregnation coating method).
  • the coating layer ( ⁇ ) it is preferable to form the coating layer ( ⁇ ) by using all over the glass.
  • the solid content of the inorganic powder (d) and the acid-resistant polymer (e) is 10 to 70% by weight.
  • the moisture is in the range of 30 to 90% by weight.
  • the inorganic powder (d) is preferably in the range of 30 to 90% by weight
  • the acid-resistant polymer (e) is preferably in the range of 10 to 70% by weight.
  • the viscosity of the paste-like mixed solution is 500 to 100,000 cPs (25 ° C.) from the viewpoint of ensuring adhesion to the porous substrate sheet (I). It is preferable to be within the range.
  • the viscosity within the above range cannot be obtained only by mixing the inorganic powder (d), the acid-resistant polymer (e) and water, and the porous base sheet (I) If the adhesiveness of the rubber is insufficient, a thickener may be added in addition to these components.
  • thickener examples include sodium polyacrylate, carboxymethyl cellulose, gelatin, polyvinyl alcohol, and the like.
  • the coating layer ( ⁇ ) formed on the surface opposite to the surface on which the projections are formed by the embossing of the porous substrate sheet (I), ie, the concave surface has a dry basis weight of l to 200. g Z cm 2 , preferably 2 ⁇ :! OO gcm 2 , more preferably in the range of 5 to 50 gZm 2 .
  • the coating layer ( ⁇ ) is formed so that the dry basis weight is within the above range, the electric resistance value is within the appropriate range for the separation, and the laminated sheet ( ⁇ ) with improved oxidation resistance is obtained. can get.
  • the projections in the porous base sheet (I) are usually formed by a projection forming method called a rib forming method or an embossing method.
  • a projection forming method called a rib forming method or an embossing method.
  • the laminated sheet (m) on which the convex portions are formed include: (1) As shown in FIG. 2, the porous base sheet 1 has ribs 8 formed on the surface thereof.
  • Laminated sheet 7 consisting of base sheet 1 and coating layer 6, (2) As shown in FIGS. 3, 4, and 5, a porous base sheet 1 having convex portions formed by enbossing.
  • a laminated sheet 7 in which a coating layer 6 is formed on one surface opposite to the convex portion is exemplified.
  • a coating layer ( ⁇ ) containing an inorganic powder (d) and an acid-resistant polymer (e) on at least one surface of the porous base sheet (I) At least one of the surface of the coating layer ( ⁇ ) and the surface of the porous substrate sheet (I), or one surface of the porous substrate sheet (I) before forming the coating layer ( ⁇ ), Preferably, a plurality of ribs, for example, a substantially linear rib, may be formed.
  • the ribs By forming the ribs, diffusion of the electrolytic solution and release of gas generated from the electrodes can be improved. In addition, the formation of the ribs makes it difficult for the porous substrate sheet (I) to directly contact the electrode. — (I) is less susceptible to oxidative degradation due to electrode reactions.
  • the shape and height of the rib are not particularly limited.
  • the ribs are usually formed on the same straight line continuously or discontinuously in a straight line, and a plurality of ribs are formed at predetermined intervals in the width direction, or are continuous or discontinuous on the same meander. It is formed in a meandering shape.
  • the height of the rib may be about 0.2 to 2 mm, and the interval may be about 3 to 30 mm.
  • the material constituting the rib is not particularly limited as long as it has acid resistance and is not oxidized and deteriorated by oxygen gas generated from the electrode.
  • An acid-resistant hot-melt resin is preferably used.
  • acid-resistant hot-melt resins include polyolefin-based, polyamide-based, polyester-based, ethylene-vinyl acetate copolymer-based, thermoplastic rubber-based, polyurethane-based, and epoxy-based resins. Are mentioned. These hot methylolates may be used alone or in combination of two or more.
  • a polyolefin resin having excellent oxidation resistance is preferred, and in particular, atactic polypropylene (APP) and a polyolefin resin containing polyethylene as a main component are preferred.
  • APP atactic polypropylene
  • a polyolefin resin containing polyethylene as a main component are preferred.
  • the content of these hot melt resins is not particularly limited in the composition of the ribs, but is not less than 50% by weight from the viewpoint of ease of work such as coating. It is preferable to
  • thermoplastic resin such as isotactic polypropylene (IPP), low molecular weight polypropylene wax or low molecular weight polyethylene wax can be blended with the hot melt type resin.
  • an inorganic powder such as synthetic resin can be blended with the hot melt type resin in place of these thermoplastic resins, and further, such an inorganic powder can be mixed with the thermoplastic resin. It can be blended with hot melt type resin.
  • thermoplastic resins and inorganic powders are usually blended with the hot melt resin in a ratio of 5 to 50% by weight.
  • the surface of the porous base sheet (I) before forming the coating layer ( ⁇ ) or the surface of the porous base sheet (I) layer of the laminated sheet (m) or the coating layer ( )) is formed substantially continuously on the same straight line or discontinuously in a substantially straight line, and a plurality of forces are formed at predetermined intervals in the width direction.
  • a continuous or discontinuous meandering shape on the same meandering, and a plurality of forces formed at predetermined intervals in the width direction, or a plurality of hemispherical or frustoconical shapes Preferably, it is formed in
  • the height of the protrusions formed by embossing and the distance between the protrusions are not particularly limited.
  • the height of the convex portions is usually 0.2 to 0.2.
  • the distance may be about 2 mm, and the interval may be about 3 to 30 mm.
  • the diameter should be about 1 to 10 mm and the height of the projections should be about 0.2 to 2 mm, and the interval should be about 3 to 50 mm.
  • the embossing of the porous base sheet (I) or the laminated sheet ( ⁇ ) is generally performed by passing these sheets between a pair of embossing rolls.
  • the combination of the embossing rolls used is not particularly limited as long as the shape of the convex portion can be added, and is not particularly limited.
  • a metal convex roll and a metal concave roll, and a metal convex roll may be used.
  • Examples include a combination of a rubber concave roll, a metal convex roll and a rubber flat roll, a metal convex roll and a paper concave roll, a metal convex roll and a paper flat roll, and the like.
  • the conditions for embossing differ depending on the combination of the embossing rolls and the physical properties of the porous base sheet (I) or the laminated sheet ( ⁇ ), but the porous substrate sheet (I) or the laminated sheet (I) m) is preferably carried out under conditions where the physical properties of the material do not change as much as possible before and after embossing.
  • the roll temperature is from room temperature to 150 ° C, and the nip pressure between the rolls is 1 to 30 kg Z cm.
  • the embossing is performed under the condition that the sheet feed speed is in the range of about 1 to 5 Om / min.
  • a convex portion can be formed more easily by a method of forming a convex portion by embossing with an embossing roll than by the above-described rib forming method.
  • the coating layer ( ⁇ ) on the concave surface of the porous base sheet (I) formed by embossing the strength of the protrusions formed by embossing is increased, and practically, It is possible to provide a lead storage battery with sufficient strength.
  • the separator for a lead storage battery according to the present invention is a sheet-like separator using the laminated sheet (m) as it is, which is composed of the laminated sheet (m) on which the above-mentioned projections may be formed. It may be evening, or it may be a bag-shaped separation that was used in a bag.
  • the average pore size of the laminated sheet (m) used in the separation for a lead storage battery according to the present invention is preferably in the range of 0.1 to 10 m to improve the electric resistance value and the oxidation resistance. Preferred in point. That is, the average pore size
  • the porosity of the laminated sheet (m) is preferably 50% or more in order to reduce electric resistance.
  • the lead storage battery separator composed of the laminated sheet (m) according to the present invention usually has the following performance.
  • the anode and cathode can be electrically isolated as insulators.
  • the separator for a lead storage battery according to the present invention is useful as a separator for an open storage battery, and is particularly preferable as a separator for an automotive storage battery.
  • the bag-shaped separator is, for example, a laminated sheet having no projections. (m) are overlapped or folded back and overlapped, and the other side end except for one side end is bonded by a fusion seal using ultrasonic waves or heating, or a mechanical seal such as gear crimping, etc. m)) in the form of a bag.
  • the laminated sheet (m) should have the surface on which the convex portion is formed or the surface on which the convex portion is not formed inward.
  • the other side end except for one side end is formed into a bag by a fusion seal using ultrasonic waves or heating, or a mechanical seal using gear crimping, etc. By forming, a bag-like separator can be obtained.
  • the surface on which the convex portion such as a rib is formed is overlapped so as to come to the inside of the bag, or folded back and overlapped. It may be superimposed on the outside of the bag, or may be folded back and superimposed.
  • the anode plate when the anode plate is placed in a bag-shaped separator made of laminated sheets (m), make sure that the ribs and other protrusions are inside the bag-shaped separator.
  • the protrusions such as ribs are located outside the bag-shaped separator.
  • silica earth 45 weight%
  • the acid-resistant polymer (e) has a glass transition point (T g) of 1.5% by weight of a solid content of an acrylic resin emulsion having a glass transition point (T g) of 70 ° C. -5 ° C styrene-butadiene copolymer latex (SBR) 3% by weight of emulsion as solids,
  • a paste-like mixed solution (viscosity: 400 cps (25 ° C.)) consisting of 0.5% by weight of sodium polyacrylate and 75% by weight of water was prepared as a thickener.
  • This base-like mixed solution was applied to one surface of the porous substrate sheet using the application apparatus shown in FIG. 1, and then heated and dried at 150 ° C. to obtain a dry basis weight of 4 A coating layer of 0 g Z m 2 was formed.
  • the paste-like mixed solution 2 is supplied to the mixing tank 3 in the coating apparatus, and at the same time, the porous substrate sheet 1 is simultaneously coated with the coating bar 4 and the guide roll 5. Between the two.
  • Thickness measured according to JISC 222
  • Oxidation resistance time An anode plate and a cathode plate are placed in a test container, and a 50 mm x 50 mm Seno and temperature sample is set between them. Load was applied. In this state, 100 ml of sulfuric acid aqueous solution (specific gravity at 20: 1.3) was put into the vessel, and a DC current of 2.5 A was passed at 50 ° C, and the terminal voltage between both electrodes was 2 The time during which 6 V or less or the voltage difference dropped 0.2 V within 2 hours was measured, and this was defined as the oxidation resistance time.
  • inorganic powder (d) 10% by weight of synthetic silica having an average particle size of 1 m and a specific surface area of 220 m 2 / g, an average particle size of 15 ⁇ m, and a specific surface area of 2 m 2 / g Kay Sou soil 6 wt%, average particle diameter 3 m, a specific surface area of 3 m 2 Roh 'g Pas one line preparative 4% by weight of,
  • the acid-resistant polymer (e) has a glass transition point (T g) of 70% at 70 ° C as a solid content of 2% by weight as a solid, and a glass transition point (T g).
  • T g glass transition point
  • -Paste-like mixture consisting of 2.5% by weight of SBR emulsion at 5 ° C as solids, 0.5% by weight of sodium polyacrylate as a thickener, and 75% by weight of water ⁇ 1 ⁇ 2
  • a liquid viscosity 450 000 cPs (25 ° C) was prepared.
  • Example A-1 Formation of coating layer and formation of rib
  • One side of the same porous substrate sheet as in Example A-1 was applied using the coating apparatus shown in Fig. 1 in the same manner as in Example A-1, and then heated and dried at 150 ° C.
  • a coating layer having a dry basis weight of 20 gm 2 was formed.
  • composite heat-bonding fiber composed of polypropylene and polyethylene (melting point: 110 ° C) as the composite adhesive fiber (g), and styrene as the binder (h)
  • synthetic silica having an average particle diameter of 1 ⁇ m and a specific surface area of 220 m 2 /10% by weight, an average particle diameter of 15 m, and a specific surface area of 2 m 2 , 'g 18% by weight
  • the acid-resistant polymer (e) has a glass transition point (Tg) of -5 ° C. 11.5% by weight of BR emulsion as solids,
  • a paste-like mixture (viscosity: 500 cps (25)) consisting of 0.5% by weight of sodium polyacrylate and 60% by weight of water was prepared as a thickener. .
  • This paste-like mixed solution was applied to one surface of the porous substrate sheet using the coating apparatus shown in FIG. 1 in the same manner as in Example A-1.
  • Example 2 The resultant was dried by heating at ° C to form a coating layer having a dry basis weight of 45 g nom 2 .
  • synthetic silica having an average particle size of 1 ⁇ m and a specific surface area of 220 m 2 / g 8 weight 11 , an average particle size of 15 ⁇ m, and a specific surface area of 2 m 2 / 20% by weight of g
  • an acrylic resin having a glass transition point (Tg) of -5 ° C is 3.5% by weight as a solid content, and the glass transition point (Tg) is 3.5% by weight.
  • Coating layer and rib formation One side of the same porous substrate sheet as in Example A-3 was coated using the coating apparatus shown in FIG. 1 in the same manner as in Example A-1, and then dried by heating at 150 ° C. A coating layer having a basis weight of 25 gm 2 was formed.
  • a porous base sheet As a porous base sheet, a nonwoven fabric made of polyester fiber having a basis weight of 40 g nom 2 , a thickness of 0.2 mm, and a density of 0.2 g Z cm 3 was used.
  • Thickness mm 0.25 0.25 0.20 0.20 0.20 0.25 Acrylema Dry basis weight (gZm 2 ) 40 20 45 25 1 00 Revolution impregnation Rib formation Yes Yes Yes Yes Yes Yes Electric resistance
  • Example B-1 As is clear from Table 1, the separation of this example has lower electric resistance and extremely excellent oxidation resistance as compared with the comparative example.
  • Example B-1 As is clear from Table 1, the separation of this example has lower electric resistance and extremely excellent oxidation resistance as compared with the comparative example.
  • synthetic pulp (a) polyethylene synthetic pulp (manufactured by Mitsui Petrochemical Industries, Ltd., trade name SWPEST-2, melting point: 135 ° C) 30% by weight ⁇ %
  • a binder (h) a styrene-butadiene copolymer rubber binder (manufactured by Nippon Zeon Co., Ltd., trade name: Nipol LX430), a sheet consisting of 2% by weight, is formed by a wet papermaking method. , followeded by drying and heat treatment through a drum dryer set at 125 ° C,
  • inorganic powder (d) 10% by weight of synthetic silica having an average particle size of 1 ⁇ m and a specific surface area of 220 m 2 / g, an average particle size of 15 ⁇ m, and a specific surface area of 2 m 2 / g g of diatomaceous earth 5% by weight
  • acid-resistant polymer (e) an acrylic resin emulsion (Polytron FX—2210) manufactured by Asahi Kasei Kogyo Co., Ltd., having a solid content of 10% by weight, and
  • a paste-like mixed solution (viscosity: 40000 cPs (25 ° C)) consisting of 75% by weight of water was prepared.
  • the metal convex roll temperature is 130 ° C
  • the nip pressure between the rolls is 10 kg / cm
  • the base sheet feeding speed Under the condition of 5 m / 'minute, the embossing was performed by passing the porous substrate sheet between the two embossed mouths.
  • a plurality of linear convex portions continuous on the same straight line could be formed at intervals of 10 mm.
  • the total thickness of the porous base sheet including the embossed protrusions was 1.0 mm.
  • the paste-like mixed solution was applied to the embossed concave side of the embossed sheet obtained as described above using the application device shown in FIG. 1 in the same manner as in Example A-1.
  • Acryl Resin Emulsion As an acid-resistant polymer, Acryl Resin Emulsion (made by Asahi Kasei Corporation, trade name: Polytron FX-2210) has a solid content of 8 weight 0 and a glass transition point (T g) — 5 ° C styrene-butadiene copolymer latex (SBR) Paste-like liquid mixture consisting of 2% by weight of solids and 75% by weight of water (viscosity of 400 c P s (25 ° C.)) was prepared.
  • T g glass transition point
  • SBR styrene-butadiene copolymer latex
  • Example B Using the same porous substrate sheet as in 1, using two embossing rolls composed of a combination of a metal convex roll and a paper concave roll, the metal convex roll temperature was set at 135 ° C and the roll was rolled. Embossing is performed by passing a porous substrate sheet between the two embossing ports under the conditions of a nip pressure of 5 kg Z cm and a substrate sheet feeding speed of 5 m / min. Done. By this embossing, a plurality of linear projections continuous on the same straight line could be formed at intervals of 10 mm. The total thickness of the porous base sheet including the embossed protrusions was 0.8 mm.
  • the embossed sheet was coated on the concave side of the embossed sheet using the coating apparatus shown in FIG. 1 in the same manner as in Example A-1, then dried by heating at 150 ° C. to obtain a dry basis weight of 45 g /
  • a lead-acid battery separator having an average pore diameter of 2 m and a separator for a lead-acid battery having an average pore diameter of 1 m were obtained. Separator characteristics of the obtained separator were measured by the above method. The results are shown in Table 2.
  • inorganic powder (d) 7% by weight of synthetic silica having an average particle size of 1 nm and a specific surface area of 220 m 2 / g, an average particle size of 15 ⁇ m and a specific surface area of 2 m 2 Zg 8% by weight
  • an acrylic resin emulsion (Polytron F X—2 210) manufactured by Asahi Kasei Kogyo Co., Ltd., having a solid content of 10% by weight, and
  • a paste-like mixed solution (viscosity: 400 cps (25 ° C.)) consisting of 75% by weight of water was prepared.
  • embossing rolls consisting of a combination of a metal convex roll and a paper concave roll
  • the metal convex roll temperature was 130 ° C
  • the nip pressure between the rolls was 10 kg Z cm
  • Embossing was performed by passing the porous substrate sheet between two embossing rolls under the conditions of a feed speed of 5 mZ.
  • the total thickness of the porous base sheet including the embossed protrusions was 1.0 mm.
  • the paste-like mixture was applied to the embossed concave side of the embossed sheet using the application apparatus shown in FIG. 1 in the same manner as in Example A-1, and then dried by heating at 150 ° C.
  • an inorganic powder (d) As an inorganic powder (d), a 7% by weight synthetic silica having an average particle size of 1 ⁇ m and a specific surface area of 220 m 2 /, a gay particle having an average particle size of 15 m and a specific surface area of 2 m 2 Zg 8% by weight of soil
  • acrylic resin emulsion (trade name: Polytron FX—2210, manufactured by Asahi Kasei Kogyo Co., Ltd.) is 5% by weight as a solid content, and has a glass transition point.
  • T g 5 ° C styrene-butadiene copolymer latex (SBR) 5% by weight as solid content of emulsion, and
  • a paste-like mixed solution (viscosity: 40000 cPs (25 ° C)) consisting of 75% by weight of water was prepared.
  • a metal convex roll was used.
  • embossing rolls which are a combination of a concave roll made of paper, a metal convex roll temperature of 135 ° C, a nip pressure between rolls of 5 kgcm, and a substrate sheet feed speed of 5 m / min.
  • an embossing process was performed by passing a porous substrate sheet between two embossing holes.
  • the total thickness of the porous base sheet including the embossed protrusions was 0.8 mm.
  • the paste-like mixture was applied to the embossed concave side of the embossed sheet using the coating apparatus shown in FIG. 1 in the same manner as in Example A-1, and then dried by heating at 150 ° C. , two kinds of coating layer having a dry basis weight of 5 O g Zm 2 and 1 0 0 g / m 2 was formed, the average pore size of 2 m lead acid battery separator Isseki and average pore size of 1 mu m lead acid battery separator evening of I got Separation characteristics of the obtained separation were measured by the above method. The results are shown in Table 2.
  • the metal convex roll temperature was 130 ° C. C
  • the porous substrate sheet including the embossed protrusions The total thickness of the bird was 1. O mm.
  • a lead-acid battery was constructed using each separator of Examples A-1 to 4 and Examples B-1 to 4, and a battery life test (SAEJ240Cycle) was performed.
  • Example B-1 Example B-2 Example B-3 Example B-4 Comparative Example B-1 Comparative Example _ _2
  • the separator of this example has a low electric resistance, and has extremely excellent oxidation resistance as compared with the comparative example in which only embossing is performed.

Abstract

A separator for lead-acid battery is constituted of a synthetic pulp in which texture of constituent fibers is complicated, and a laminated sheet (III) forming a coated layer (II) of an inorganic powder and an acid-proof polymer at least on one surface of a porous substrate sheet (I), comprising an acid-proof inorganic powder and an acid-proof inorganic fiber, and manufactured by a wet papermaking process. The separator can be formed of a sheet-like or a bag-like laminated sheet, and it is possible to form projecting sections on at least one surface of the sheet (III) or no projecting section on the surfaces of the sheet (III). In a method for manufacturing the separator, the laminated sheet (III) is manufactured in such a way that the porous substrate sheet (I) is prepared by a wet papermaking process by scattering the synthetic pulp in which texture of constituent fibers is complicated and acid-proof inorganic powder and/or acid-proof inorganic fibers in a medium, and the coated layer (II) is formed by coating a pasty mixed solution prepared by adding water to the inorganic powder and acid-proof polymer to at least one surface of the sheet (I) and drying the solution so that the solid content percentage amounts to 10-70 wt.%. The above-mentioned projecting sections can be formed through an embossing process or rib forming process. When this invention is used, a separator for lead-acid battery having a lower electrical resistance and an excellent acid-proof can be obtained, and a sheet-like or bag-like separator having projecting sections on at least one surface of the laminated sheet (III) or having no projecting section on the surfaces of the sheet (III) can be obtained.

Description

*H » 鉛蓄電池用セパレ一タおよびその製造方法 枝 術 分 野  * H »Separator for lead-acid battery and its manufacturing method
本発明は、 鉛蓄電池用セパレ一タおよびその製造方法に関し、 さ らに詳しく は、 電気抵抗が低く、 耐酸化性に優れ、 特に自動車用に 好適な鉛蓄電池用セパレ一タおよびその製造方法に関する。 背 景 ¾ 術  The present invention relates to a separator for a lead-acid battery and a method for producing the same, and more particularly, to a separator for a lead-acid battery having low electric resistance and excellent oxidation resistance, and particularly suitable for an automobile and a method for producing the same. . Background art
自動車用の鉛蓄電池用セパレータは、 電気抵抗が低く、 耐酸化性 に優れるこ とが要求されている。 これらの要求を満たすこ とを目的 と したセパレ一夕と して、 合成樹脂粉末またはこれにシ リ 力系無機 粉末を混合して、 水に懸濁させたスラ リ ーを、 不織布等の多孔性基 材シ一 卜に含浸させたセパレ一タ (特開昭 5 7 - 9 5 0 7 1号公報、 特開平 6 - 2 3 6 7 5 2号公報) や、 親油性ポリマ一繊維を含む抄 造体に水溶性のオイルェマルジヨ ンを含浸させたセパレ一タ (特公 平 4 一 6 1 4 6 2号公報) 、 あるいはガラス繊維を主体と したシー 卜に增粘性を付与した合成樹脂ェマルジヨ ンを含浸させたセパレ一 夕 (特開昭 6 0 — 1 3 0 0 5 0号公報) が知られている。  Lead-acid battery separators for automobiles are required to have low electric resistance and excellent oxidation resistance. In order to meet these requirements, as a separation, a slurry obtained by mixing a synthetic resin powder or a silica-based inorganic powder with it and suspending it in water is used as a porous material such as a nonwoven fabric. Separator impregnated in a hydrophilic base sheet (JP-A-57-95071, JP-A-6-237675) and lipophilic polymer fibers Abstract Separator impregnated with a water-soluble oil emulsion (Japanese Patent Publication No. 416,462), or synthetic resin emulsion made by imparting viscous properties to a sheet mainly composed of glass fiber. Is known (Japanese Patent Application Laid-Open No. Sho 60-130550).
多孔性基材シ一 卜への無機粉体と合成樹脂との混合物の塗工層を 形成したセパレ一タでは、 塗工層形成による電気抵抗の増大は避け られないが、 上記の特開昭 5 7 - 9 5 0 7 1号公報ゃ特開平 6 - 2 3 6 7 5 2号公報に開示された、 不織布や織布を多孔性基材シー ト と して用いたセパレ一タでは、 耐酸化性を改善するために、 無機粉 体と合成樹脂との混合物からなる塗工層の坪量を 5 0〜 1 5 0 g / m 2 という ように大き く しなければならないため、 電気抵抗が大き く なり過ぎる。 In a separator in which a coating layer of a mixture of an inorganic powder and a synthetic resin is formed on a porous substrate sheet, an increase in electric resistance due to the formation of the coating layer is inevitable. No. 5 7-950 7 1 ゃ Non-woven fabric or woven fabric disclosed in Japanese Patent Application Laid-Open No. 6-2 36572 And the separators one data using to, in order to improve the oxidation resistance, the basis weight of the coating layer comprising a mixture of an inorganic powder and a synthetic resin such as 5 0~ 1 5 0 g / m 2 The electrical resistance becomes too large because it must be increased.
また、 特公平 4 — 6 1 4 6 2号公報や特開昭 6 0 - 1 3 0 0 5 0 号公報に開示された、 抄造体シ一 トに合成樹脂ェマルジョ ンを含浸 させたセパレー夕も同様に、 合成樹脂ェマルジョ ンの含浸による電 気抵抗の増大は避けられないが、 大幅な耐酸化性改善の効果を発現 するために、 多量の合成樹脂ェマルジヨ ンを必要とするため、 電気 抵抗が大き く なり過ぎる。  Separate paper sheets impregnated with synthetic resin emulsions, disclosed in Japanese Patent Publication No. 4-6146 and Japanese Patent Application Laid-Open No. 60-15050, are also disclosed. Similarly, an increase in electrical resistance due to the impregnation of the synthetic resin emulsion is inevitable, but a large amount of synthetic resin emulsion is required in order to significantly improve the oxidation resistance. Too big.
したがって、 これらのセパレ一夕は、 鉛蓄電池用セパレ一夕と し ての上記要求は十分に満たされていない。  Therefore, these separations have not sufficiently satisfied the above requirements as separations for lead-acid batteries.
また、 鉛蓄電池用セパレータと しての上記要求を満たすことを目 的と したリ ブを有するセパレ一タと して、 袋状のセパレー夕であつ て、 セパレ一タ基材を所定間隔で折り曲げて山形形状の凸部を袋の 内側に縦方向に形成した複数のライ ンリ ブ (l ine - r i b ) を有するセ パレ一夕 (特開平 3 - 1 2 7 4 4 8号公報) 、 およびシ一 ト状セノ、。 レータ基材の片面に、 所定間隔で熱可塑性樹脂からなるパイプ状の 凸部を縦方向に形成した、 いわゆるパイプ状リ ブを複数本有するセ パレ一夕 (特開昭 6 3 — 5 1 0 4 6号公報) が知られている。  Further, as a separator having a rib for the purpose of satisfying the above requirements as a lead storage battery separator, a bag-shaped separator is used, and the separator material is bent at predetermined intervals. Separate unit having a plurality of line-ribs in which a chevron-shaped convex portion is formed inside the bag in a vertical direction (Japanese Patent Application Laid-Open No. 3-127448). I-like seno ,. A separator having a plurality of so-called pipe-shaped ribs in which pipe-shaped protrusions made of a thermoplastic resin are formed at predetermined intervals on one side of a base material of the separator (Japanese Patent Laid-Open No. 63-51010) 4 No. 6) is known.
セパレ一夕における上記リ ブの主な役割の一つは、 電池内の電極 間に必要な電解液量を保持するために、 その空間を確保することに ある。 しかしながら、 上記特開平 3 — 1 2 7 4 4 8号公報に開示さ れたライ ン リ ブを有する袋状セパレ一夕では、 強度不足のため、 電 池内の極板群圧等により、 ライ ン リ ブが潰れる等の変形を生じて、 電解液保持に必要な空間の確保が不十分である。 One of the main roles of the ribs in Separete is to secure the necessary space between the electrodes in the battery to maintain the required amount of electrolyte. However, in the case of the bag-shaped separator having a line rib disclosed in the above-mentioned Japanese Patent Application Laid-Open Publication No. 3-127428, the electric power is insufficient due to insufficient strength. The electrode group pressure in the pond causes deformation such as crushing of the line rib, and the space required for holding the electrolyte is insufficient.
その改良品として、 上記形状のライ ンリブと合成樹脂を縦方向に 盛りつけて形成したリ ブを袋の内側に形成した袋状セパレ一タが提 案されている (特開平 3 — 1 3 8 8 5 5号公報) 。 しかしながら、 この袋状セパレ一タは、 電解液保持に必要な空間の確保の点では改 良されているものの、 セパレータ基材そのものには改良が加えられ ておらず、 鉛蓄電池用セパレー夕と しての耐酸化性の要求を十分に 満たすことができない。  As an improved product, a bag-shaped separator in which a rib formed by embedding a line rib of the above shape and a synthetic resin in the vertical direction is formed inside the bag has been proposed (JP-A-3-13888). No. 55). However, although this bag-shaped separator has been improved in terms of securing the space required to hold the electrolyte, the separator substrate itself has not been improved, and it is used as a separator for lead-acid batteries. Cannot meet all the requirements of oxidation resistance.
また、 上記特開昭 6 3 - 5 1 0 4 6号公報で提案されているパイ プ状リブを有するセパレ一夕においても、 リ ブ内部に空間があるた め、 リブが変形しやすく、 電解液保持に必要な空間の確保が不十分 である。 さ らに、 このタイプのセパレータは、 特開平 3 — 1 3 8 8 5 5号公報で提案されているセパレ一タと同様に、 セパレ一タ基材 そのものには改良が加えられておらず、 耐酸化性に優れたセパレー 夕と しての要求を十分に満たすこ とができない。  In addition, even in the separators having pipe-like ribs proposed in Japanese Patent Application Laid-Open No. 63-51046, the ribs are easily deformed due to the space inside the ribs, and Insufficient space for holding liquid. Further, this type of separator has not been improved in the separator substrate itself, as in the separator proposed in Japanese Patent Application Laid-Open No. HEI 3-138855. It is not possible to fully satisfy the requirements of a separator with excellent oxidation resistance.
本発明者らは、 上記問題を解決し、 電気抵抗が低く、 耐酸化性に 優れた鉛蓄電池用セパレ一夕を得るために鋭意研究し、 湿式抄造法 により製造され、 かつ、 構成繊維が多分岐状態にある合成パルプと、 耐酸性無機粉体および/または耐酸性無機繊維とからなる多孔性基 材シ一 卜の少なく とも片面に、 無機粉体と耐酸性重合体とを含む塗 布層が形成された積層シ一 卜からなるセパレータ、 および上記多孔 性基材シー 卜の一方の表面に形成された凸部と反対側の表面に、 上 記塗布層を形成した積層シー トからなるセパレータは電気抵抗が低 く、 耐酸化性に優れているこ と等を見出し、 本発明を完成するに至 つた。 The present inventors have studied diligently to solve the above-mentioned problems, obtain a separation for a lead storage battery having low electric resistance and excellent oxidation resistance, and have been manufactured by a wet papermaking method and have a large number of constituent fibers. A coating layer containing an inorganic powder and an acid-resistant polymer on at least one side of a porous substrate sheet made of a synthetic pulp in a branched state and acid-resistant inorganic powder and / or acid-resistant inorganic fiber. And a separator made of a laminated sheet having the above-described coating layer formed on the surface opposite to the convex portion formed on one surface of the porous substrate sheet. Has low electrical resistance As a result, they found that they had excellent oxidation resistance and the like, and completed the present invention.
本発明は、 上記のような従来技術に伴う問題を解決しょう とする ものであって、 電気抵抗が低く、 耐酸化性に優れたシ— 卜状、 袋状 等の鉛蓄電池用セパレータおよびその製造方法を提供することを目 的と している。 発 明 の 開 示  SUMMARY OF THE INVENTION The present invention is intended to solve the problems associated with the prior art as described above, and is a sheet-shaped or bag-shaped separator for a lead storage battery having low electric resistance and excellent oxidation resistance, and its production. It aims to provide a method. Disclosure of the invention
本発明に係る鉛蓄電池用セパレ一 卜は、  The lead-acid battery separator according to the present invention comprises:
構成繊維が多分岐状態にある合成パルプ ( a ) と、 耐酸性無機粉 体 ( b ) および/または耐酸性無機繊維 ( c ) とからなり、 湿式抄 造法により製造された多孔性基材シ一 ト ( I ) の少なく とも片面に、 無機粉体 ( d ) と耐酸性重合体 ( e ) とを含む塗布層 ( Π ) が形成 された積層シー ト (m) からなることを特徴と している。  A porous base material made of a synthetic pulp (a) in which the constituent fibers are in a multi-branched state and an acid-resistant inorganic powder (b) and / or an acid-resistant inorganic fiber (c), which is produced by a wet papermaking method. It is characterized by comprising a laminated sheet (m) in which a coating layer (Π) containing an inorganic powder (d) and an acid-resistant polymer (e) is formed on at least one surface of the sheet (I). ing.
本発明に係る鉛蓄電池用セパレータは、 前記積層シー ト ( ΠΙ ) の 片面または両面に、 凸部が設けられていてもよい。 たとえば前記積 層シ一 ト (m) の多孔性基材シ一 ト ( I ) 層の表面に、 ほぼ同一直 線上に凸部が連続または不連続に形成されていてもよいし、 また、 ほぼ同一直線上に連続または不連続に形成された凸部が複数個、 幅 方向に所定間隔をおいて形成されていてもよい。  In the separator for a lead storage battery according to the present invention, a convex portion may be provided on one or both surfaces of the laminated sheet (ΠΙ). For example, on the surface of the porous base sheet (I) layer of the laminated sheet (m), projections may be formed continuously or discontinuously on substantially the same line, A plurality of protrusions formed continuously or discontinuously on the same straight line may be formed at predetermined intervals in the width direction.
このような凸部は、 ホッ トメル ト型樹脂でリ ブ状に接着形成され ていてもよいし、 また、 前記多孔性基材シー ト ( I ) のエンボス加 ェにより形成されていてもよい。 このような鉛蓄電池用セパレ一タ の一例と して、 多孔性基材シー ト ( I ) のエンボス加工によってそ の片面にほぼ同一直線上に凸部が連続または不連続に形成されてい るとともに、 多孔性基材シ一 卜 ( I ) の凸部が形成された面と反対 側の表面に、 前記塗布層 ( Π ) が形成されているセパレー夕が挙げ られる。 Such a convex portion may be formed in a rib shape by hot-melt type resin, or may be formed by embossing the porous base sheet (I). As an example of such a separator for a lead storage battery, a porous base sheet (I) is embossed. The convex portion is formed on one surface of the porous substrate sheet (I) on the surface opposite to the surface on which the convex portion is formed. Separation evening where (セ) is formed.
また、 前記積層シー ト ( m ) は、 袋状に形成されていてもよい。 前記多孔性基材シー ト ( I ) と しては、  Further, the laminated sheet (m) may be formed in a bag shape. As the porous base sheet (I),
合成パルプ ( a ) 5〜 7 0重量%と、  Synthetic pulp (a) 5 to 70% by weight,
耐酸性無機粉体 ( b ) および Zまたは耐酸性無機繊維 ( c ) 5〜 6 0重量%と、  Acid resistant inorganic powder (b) and Z or acid resistant inorganic fiber (c) 5 to 60% by weight,
合成繊維 ( f ) および/または複合型接着性繊維 ( g ) 5〜 5 0 重量%と  5 to 50% by weight of synthetic fiber (f) and / or composite adhesive fiber (g)
からなるシー ト、 および A sheet consisting of
合成パルプ ( a ) 5〜 7 0重量%と、  Synthetic pulp (a) 5 to 70% by weight,
耐酸性無機粉体 ( b ) および/または耐酸性無機繊維 ( c ) 5〜 6 0重量%と、  Acid resistant inorganic powder (b) and / or acid resistant inorganic fiber (c) 5 to 60% by weight,
合成繊維 ( f ) および/または複合型接着性繊維 ( g ) 5〜 5 0 重量%と、  5 to 50% by weight of the synthetic fiber (f) and / or the composite adhesive fiber (g);
合成パルプ ( a ) の融点もしく は分解温度より も低い融点を有す、 または前記温度で接着力を発現するバイ ンダー ( h ) 0. 5〜 1 0 重量%と  A binder (h) having a melting point lower than the melting point or the decomposition temperature of the synthetic pulp (a), or a binder (h) exhibiting an adhesive force at the above-mentioned temperature of 0.5 to 10% by weight;
からなるシ一 卜が好ま しく用いられる。 A sheet consisting of is preferably used.
前記塗布層 ( Π ) の乾燥坪量は、 5〜 5 0 g /m 2 の範囲内にあ るこ とが特に好ま しい。 It is particularly preferable that the dry basis weight of the coating layer (Π) is in the range of 5 to 50 g / m 2 .
また、 塗布層 ( Π ) は、 無機粉体 ( d ) 3 0〜 9 0重量 <%と、 耐 酸性重合体 ( e ) 1 0〜 7 0重量%とからなることが好ま しく、 塗 布層 ( Π ) を構成する無機粉体 ( d ) は、 平均粒径が 1 0 β m以下 であ り、 かつ比表面積が 1 0 0 〜 2 5 0 m 2 / gである無機粉体 ( i ) 1 0〜 9 0重量%と、 平均粒径が 1 〜 3 0 mであり、 かつ 比表面積が 0. 1 〜 5 0 m2 / gである無機粉体 (ii) 9 0〜 1 0 重量%との混合物であることが好ま しい。 The coating layer (Π) has an inorganic powder (d) of 30 to 90% by weight <%, The acidic polymer (e) preferably comprises 10 to 70% by weight, and the inorganic powder (d) constituting the coating layer (Π) has an average particle size of 10 βm or less. Inorganic powder having a specific surface area of 100 to 250 m 2 / g (i) 100 to 90% by weight, an average particle diameter of 1 to 30 m, and a specific surface area of 0 It is preferably a mixture with inorganic powder of 1 to 50 m 2 / g (ii) 90 to 10% by weight.
前記積層シー ト ( ΙΠ ) の平均孔径は、 0. l 〜 1 0 ^ mの範囲内 にあることが好ま しい。  The average pore size of the laminated sheet (ΙΠ) is preferably in the range of 0.1 to 10 ^ m.
本発明に係る鉛蓄電池用セパレ一夕の製造方法は、  The method for producing a separation battery for a lead storage battery according to the present invention includes:
構成繊維が多分岐状態にある合成パルプ ( a ) と、 耐酸性無機粉 体 ( b ) および Zまたは耐酸性無機繊維 ( c ) とを媒体中に分散さ せて湿式抄造法により多孔性基材シ一 ト ( I ) を調製し、  The synthetic pulp (a) in which the constituent fibers are in a multi-branched state, the acid-resistant inorganic powder (b) and Z or the acid-resistant inorganic fiber (c) are dispersed in a medium, and the porous base material is formed by a wet papermaking method. Prepare sheet (I),
次いで、 無機粉体 ( d ) と耐酸性重合体 ( e ) の固形分濃度が 1 0〜 7 0重量%となるように水を加えて調製したペース ト状混合液 を該多孔性基材シ一 ト ( I ) の少な く とも片面に塗布し、 乾燥して 塗布層 ( Π ) を形成し積層シー ト ( m ) とすることを特徴と してい る。  Next, a paste-like mixed solution prepared by adding water so that the solid content concentration of the inorganic powder (d) and the acid-resistant polymer (e) is 10 to 70% by weight is added to the porous substrate sheet. It is characterized in that it is applied on at least one side of the sheet (I) and dried to form a coating layer (Π) to form a laminated sheet (m).
前記多孔性基材シー 卜 ( I ) は、  The porous substrate sheet (I) is
合成パルプ ( a ) 5〜 7 0重量°''0と、  Synthetic pulp (a) 5 ~ 70 weight ° '' 0,
耐酸性無機粉体 ( b ) および/または耐酸性無機繊維 ( c ) 5〜 6 0重量%と、  Acid resistant inorganic powder (b) and / or acid resistant inorganic fiber (c) 5 to 60% by weight,
合成繊維 ( f ) および Zまたは複合型接着性繊維 ( g ) 5〜 5 0 重量%と  5 to 50% by weight of synthetic fiber (f) and Z or composite type adhesive fiber (g)
から形成されている力、、 あるいは 合成パルプ ( a ) 5〜 7 0重量%と、 The force formed from, or Synthetic pulp (a) 5 to 70% by weight,
耐酸性無機粉体 ( b ) および/または耐酸性無機繊維 ( c ) 5〜 6 0重量%と、  Acid resistant inorganic powder (b) and / or acid resistant inorganic fiber (c) 5 to 60% by weight,
合成繊維 ( f ) および/または複合型接着性繊維 ( g ) 5〜 5 0 重量%と、  5 to 50% by weight of the synthetic fiber (f) and / or the composite adhesive fiber (g);
合成パルプ ( a ) の融点もしく は分解温度より も低い融点を有す、 または前記温度で接着力を発現するバイ ンダー ( h ) 0. 5〜 1 0 重量%と  A binder (h) having a melting point lower than the melting point or the decomposition temperature of the synthetic pulp (a), or a binder (h) exhibiting an adhesive force at the above-mentioned temperature of 0.5 to 10% by weight;
から形成されていることが好ま しい。 It is preferably formed from
前記多孔性基材シー ト ( I ) は、 空隙率 5 0 %以上、 平均孔径 0. 5〜 2 0 mであるこ とが好ま しい。  The porous base sheet (I) preferably has a porosity of 50% or more and an average pore diameter of 0.5 to 20 m.
前記ペース ト状混合液中の固形分を構成する無機粉体 ( d ) と耐 酸性重合体 ( e ) との混合割合 〔 ( d ) / ( e ) 〕 は、 3 0 Z 7 0 〜 9 0 / 1 0であるこ とが好ま しい。  The mixing ratio [(d) / (e)] of the inorganic powder (d) and the acid-resistant polymer (e) constituting the solid content in the paste-like mixture is 30 Z70 to 90. / 10 is preferred.
前記ペース ト状混合液をコーターを用いて多孔性基材シ一 卜 ( I ) の少な く と も片面に塗布することが好ま しい。  It is preferable to apply the paste-like mixed solution to at least one surface of the porous base sheet (I) using a coater.
凸部が表面に形成された積層シ一 卜 ( Π) は、 たとえば前記多孔 性基材シ一 ト ( I ) の少なく とも片面に前記塗布層 ( Π ) を形成し て積層シー ト (m) を製造した後、 この積層シー ト (m) の片面ま たは両面に、 ホッ トメルト型樹脂を用いて線状のリ ブを接着形成す ることにより得ることができる。  The laminated sheet (Π) having the convex portions formed on the surface is formed, for example, by forming the coating layer (Π) on at least one surface of the porous base sheet (I) and forming a laminated sheet (m). After the production, a linear rib can be bonded and formed on one or both sides of the laminated sheet (m) using a hot melt type resin.
本発明においては、 湿式抄造法によって前記多孔性基材シー ト In the present invention, the porous substrate sheet is produced by a wet papermaking method.
( I ) を製造した後、 あるいは前記積層シー ト (ΙΠ) を製造した後、 多孔性基材シー ト ( I ) を構成する複合型接着性繊維 ( g ) の接着 温度以上かつ合成パルプ ( a ) の融点以下の温度で、 も し く はバイ ンダ一 ( h ) が接着力を発現する温度で熱処理を施すことが好ま し い。 After the production of (I) or the production of the laminated sheet (ΙΠ), the bonding of the composite adhesive fiber (g) constituting the porous base sheet (I) It is preferable to perform the heat treatment at a temperature not lower than the temperature and not higher than the melting point of the synthetic pulp (a) or at a temperature at which the binder (h) exhibits an adhesive force.
また、 凸部が表面に形成された積層シー ト ( m ) は、 湿式抄造法 によつて前記多孔性基材シ一 卜 ( I ) を製造した後、 エンボスロー ルを用いて多孔性基材シ一 卜 ( I ) 上に、 ほぼ直線状の凸部を連続 または不連続に形成させるェンボス加工を施し、  Further, the laminated sheet (m) having the convex portions formed on the surface is manufactured by manufacturing the porous substrate sheet (I) by a wet papermaking method and then using an embossing roll to form the porous substrate sheet (I). On the sheet (I), an embossing process for forming a substantially linear convex portion continuously or discontinuously is performed.
次いで、 多孔性基材シー ト ( I ) の凸部が形成された面と反対側 の表面に、 無機粉体 ( d ) と耐酸性重合体 ( e ) の固形分濃度が 1 0〜 7 0重量%となるように水を加えて調製したペース ト状混合液 を塗布し、 乾燥して塗布層 ( Π ) を形成することにより得ること力 できる。  Next, the solid content of the inorganic powder (d) and the acid-resistant polymer (e) is 10 to 70% on the surface of the porous substrate sheet (I) opposite to the surface on which the projections are formed. It can be obtained by applying a paste-like mixed solution prepared by adding water to a concentration of water and drying it to form a coating layer (Π).
この方法では、 湿式抄造法によって前記多孔性基材シー ト ( I ) を製造した後、 多孔性基材シー ト ( I ) を構成する複合型接着性繊 維 ( g ) の接着温度以上かつ合成パルプ ( a ) の融点以下の温度で、 もしく はバイ ンダー ( h ) が接着力を発現する温度で熱処理を施し、 その後、 エンボスロールを用いて多孔性基材シ一 卜 ( I ) 上に、 ほ ぼ直線状の凸部を形成させるエンボス加工を施し、  In this method, after the porous substrate sheet (I) is produced by a wet papermaking method, the composite substrate is made of a composite adhesive fiber (g) constituting the porous substrate sheet (I) at an adhesion temperature or higher and synthesized. The heat treatment is performed at a temperature lower than the melting point of the pulp (a) or at a temperature at which the binder (h) exhibits an adhesive force, and then the embossed roll is used to form a porous substrate sheet (I). , Embossing to form almost linear projections,
次いで、 多孔性基材シー ト ( I ) の凸部が形成された面と反対側 の表面に、 無機粉体 ( d ) と耐酸性重合体 ( e ) の固形分濃度が 1 0〜 7 0重量%となるように水を加えて調製したペース ト状混合液 を塗布し、 乾燥して塗布層 ( Π ) を形成し積層シ一 卜 ( ΠΙ ) とする ことが好ま しい。  Next, the solid content concentration of the inorganic powder (d) and the acid-resistant polymer (e) is 10 to 70 on the surface of the porous substrate sheet (I) opposite to the surface on which the projections are formed. It is preferable to apply a paste-like mixed solution prepared by adding water so as to have a weight%, and then dry to form a coating layer (Π) to form a laminated sheet (ΠΙ).
また、 凸部が表面に形成された積層シー ト ( m ) は、 前記積層シ — ト (m ) を製造した後、 エンボスロールを用いてほぼ直線状の凸 部を連続または不連続に形成させるエンボス加工を施して得るこ と もできる。 Further, the laminated sheet (m) having the convex portions formed on the surface is the laminated sheet (m). — After manufacturing (g), it can also be obtained by embossing using an embossing roll to form a substantially linear projection continuously or discontinuously.
本発明に係る鉛蓄電池用セパレー夕の製造方法では、 上記のよう な製造方法により得られた積層シー ト ( πι) を重ね合わせ、 その側 端部をシールして一つの開口部を形成し、 袋状とすることができる。 闵面の簡単な説明  In the method for manufacturing a separator for a lead storage battery according to the present invention, the laminated sheets (πι) obtained by the above-described manufacturing method are overlapped, and one end thereof is sealed to form one opening. It can be a bag. A brief description of the screen
図 1 は、 本発明において、 多孔性基材シー ト ( I ) の表面に、 塗 布層 ( π ) を形成するのに用いられる塗布装置の一例を示す概略図 である。  FIG. 1 is a schematic view showing an example of a coating apparatus used for forming a coating layer (π) on the surface of a porous substrate sheet (I) in the present invention.
図 2は、 多孔性基材シー ト ( I ) の表面に リ ブが形成されている 積層シ一 卜 (m) の一例を示す断面図である。  FIG. 2 is a cross-sectional view showing an example of a laminated sheet (m) in which a rib is formed on the surface of a porous substrate sheet (I).
また、 図 3、 図 4および図 5は、 エンボス加工により凸部が形成 された多孔性基材シー ト ( I ) の凸部とは反対側の片面に塗布層 ( Π ) が形成されている積層シー 卜の例を示す断面図である。 発明 実施するための最良の形態  Also, FIGS. 3, 4 and 5 show that the coating layer (Π) is formed on one side of the porous substrate sheet (I) on which the protrusions are formed by embossing, on the side opposite to the protrusions. It is sectional drawing which shows the example of a laminated sheet. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る鉛蓄電池用セパレ一夕およびその製造方法に ついて具体的に説明する。  Hereinafter, a separation battery for a lead storage battery according to the present invention and a method for manufacturing the same will be specifically described.
本発明に係る鉛蓄電池用セパレ一夕は、 多孔性基材シー ト ( I ) の片面または両面に、 塗布層 ( π ) が形成された積層シー ト ( m ) からなる。  The lead storage battery separator according to the present invention comprises a laminated sheet (m) having a coating layer (π) formed on one or both sides of a porous substrate sheet (I).
く多孔性基材シ一 ト ( I ) 、 上記多孔性基材シー ト ( I ) は、 湿式抄造法によ り製造され、 力、 つ、 合成パルプ ( a ) と、 耐酸性無機粉体 ( b ) および Zまたは耐 酸性無機繊維 ( c ) と、 必要に応じて合成繊維 ( f ) および/また は複合型接着性繊維 ( g ) と、 さ らに合成パルプ ( a ) の融点も し く は分解温度より も低い融点を有するバイ ンダー ( h ) とからなる。 Porous substrate sheet (I), The porous substrate sheet (I) is manufactured by a wet paper-making method, and is composed of a synthetic pulp (a), an acid-resistant inorganic powder (b) and Z or acid-resistant inorganic fiber (c). And, if necessary, a synthetic fiber (f) and / or a composite adhesive fiber (g), and a binder having a melting point lower than the melting point of the synthetic pulp (a) or a decomposition temperature (a). h).
合成パルプ ( a )  Synthetic pulp (a)
本発明で用いられる合成パルプ ( a ) は、 パルプを構成する繊維 が多分岐状態にあって、 耐酸性を有することが好ま しい。 このよう な合成パルプ ( a ) と しては、 具体的には、  In the synthetic pulp (a) used in the present invention, it is preferable that fibers constituting the pulp are in a multi-branched state and have acid resistance. As such a synthetic pulp (a), specifically,
ポリエチレン、 ポリプロ ピレン等のォレフィ ン単独重合体、 ある いはエチレン · プロピレン共重合体、 エチレン · 卜ブテン共重合体、 エチレン . 4-メチル-1- ペンテン共重合体等のエチレンと他の ォレフィ ンとの共重合体からなるポリオレフィ ンを主成分とするポ リオレフイ ン系合成パルプのほか、 ポリ スチレン、 ポリ メチルメ タ ク リ レー ト、 ポリ アク リ ロニ ト リル、 塩化ビニル樹脂、 塩化ビ二リ デン樹脂、 ナイ ロ ン、 ポリエステル、 ポリ フルォロエチレン等の重 合体を主成分とする合成パルプが挙げられる。 中でも、 ポ リオレフ ィ ン系合成パルプが耐酸性に優れ、 しかも安価であるこ とから好適 に用いられる。 ポリオレフィ ンの中でも、 耐酸性の点からエチレン 系重合体、 プロピレン系重合体が好適に使用される。  Ethylene and other oligomers such as polyethylene homopolymers such as polyethylene and polypropylene, or ethylene-propylene copolymers, ethylene-tributene copolymers, and ethylene 4-methyl-1-pentene copolymers In addition to polyolefin-based synthetic pulp containing polyolefin as a main component consisting of a copolymer with styrene, polystyrene, polymethylmethacrylate, polyacrylonitrile, vinyl chloride resin, vinylidene chloride Synthetic pulp mainly composed of polymers such as resin, nylon, polyester, and polyfluoroethylene can be used. Among them, polyolefin synthetic pulp is preferably used because it is excellent in acid resistance and inexpensive. Among polyolefins, ethylene-based polymers and propylene-based polymers are preferably used from the viewpoint of acid resistance.
ここに、 「耐酸性」 とは、 鉛畜電池用電解液である硫酸水溶液に 対する耐酸性を意味し、 硫酸水溶液に浸潰しても形状変化や化学的 変化を起こさない合成パルプ、 具体的には、 J I S C 2 2 0 2で 規定されている耐酸性の値が 0. 6 %以下の合成パルプが好ま しい。 また、 袋状セパレ一タ作製時にヒー ト シール加工を行なう場合に は、 合成パルプ ( a ) は、 大きな接着強度を示す点で、 エチレン系 重合体の場合は、 メ ノレ ト フ ロー レ一 卜 (M F R ; ASTM D 1238, 190 °C、 2.16kg荷重) が 1 0 g / 1 0分以下、 好ま しく は 0. 1〜 5 g Z 1 0分、 プロピレン系重合体の場合は、 メノレ 卜フローレ一 ト (M F R ; ASTM D 1238, 230。C、 2.16kg荷重) が 3 0 g / 1 0分以下、 好ま しく は 0. 1 〜 2 0 g / 1 0分であるこ とが好ま しい。 Here, “acid resistance” means acid resistance to sulfuric acid aqueous solution, which is an electrolyte solution for lead-acid batteries. Synthetic pulp that does not undergo shape change or chemical change even when immersed in sulfuric acid aqueous solution, specifically For the pulp, a synthetic pulp having an acid resistance value of 0.6% or less specified in JISC 222 is preferable. In addition, when heat sealing is performed at the time of producing a bag-shaped separator, synthetic pulp (a) exhibits a large adhesive strength. (MFR; ASTM D 1238, 190 ° C, 2.16 kg load) is 10 g / 10 min or less, preferably 0.1 to 5 g Z 10 min. For propylene-based polymer, The weight (MFR; ASTM D 1238, 230; C, 2.16 kg load) should be 30 g / 10 minutes or less, and preferably 0.1 to 20 g / 10 minutes.
また、 合成パルプ ( a ) は、 その構成繊維が多 く の分岐を有し、 その平均繊維長は 0. 1〜 1 0 mmであるこ とが好ま しい。 平均繊 維長が上記範囲内にある合成パルプ ( a ) を用いると、 繊維間の絡 み合いが十分になされるため、 シー ト化が容易で、 しかも、 均質な 多孔性基材シー ト ( I ) を容易に得るこ とができる。  In the synthetic pulp (a), the constituent fibers have many branches, and the average fiber length is preferably 0.1 to 10 mm. When synthetic pulp (a) having an average fiber length within the above range is used, the entanglement between the fibers is sufficient, so that the sheet can be easily formed and a uniform porous substrate sheet ( I) can be easily obtained.
さ らに、 合成パルプ ( a ) の濾水度 (測定法 : J I S P 8 1 2 1 ) は、 1. 0〜 2 0. 0秒/ g、 特に 2. 0〜 1 0. 0秒/ gで あるこ とが好ま しい。 濾水度が上記範囲内にある合成パルプを用い ると、 十分な強度を有し、 しかも、 適度な空隙を有しており、 液透 過性が良好な多孔性基材シー ト ( I ) を得ることができる。  Furthermore, the freeness of synthetic pulp (a) (measurement method: JISP 8121) is 1.0 to 20.0 seconds / g, especially 2.0 to 10.0 seconds / g. I prefer that there be. When a synthetic pulp having a freeness within the above range is used, a porous substrate sheet (I) having sufficient strength, having appropriate voids, and having good liquid permeability is used. Can be obtained.
本発明で用いられる合成パルプ ( a ) は、 それ自体は公知のもの でありヽ たとえば Encyclopedia of Chemical Technology 3rd ed. Vol.19 p.420〜425 に詳細に説明されているように湿式抄造によつ て製造される。  The synthetic pulp (a) used in the present invention is known per se. For example, as described in detail in Encyclopedia of Chemical Technology 3rd ed. Is manufactured.
こ こ に、 「湿式抄造」 とは、 水または各種溶媒を用いて抄造され る方法で、 特に限定されるものではないが、 好ま しい方法と しては、 溶液フラ ッ シュ も しく はェマルジヨ ンフラ ッ シュを行なつた後に、 叩解処理をする方法などが挙げられる。 Here, the term "wet papermaking" refers to a method of papermaking using water or various solvents, and is not particularly limited. Preferred examples of the method include a solution flush or an emulsion flash. After performing a flash, A method of performing a beating process and the like are included.
本発明で用いられる合成パルプ ( a ) は、 いわゆる紙ないしシー 卜製造に使用されるパルプで、 構成繊維は多分岐型の構造であるた め、 シー ト状に形成したときに繊維は互いに絡み合い、 その空隙は 複雑な通路を形成している。 一方、 不織布等の単繊維から成るゥェ ブは、 孔構造が合成パルプ ( a ) と本質的に異なっており、 不織布 は、 貫通孔が比較的大き く、 かつ、 ス ト レー トな構造のため、 無機 粉体 ( d ) と耐酸性重合体 ( e ) とを含む塗布液を塗布したとき、 形成される塗布層 ( Π ) が繊維間に大量に入り込み、 積層シー ト The synthetic pulp (a) used in the present invention is a pulp used for so-called paper or sheet production. Since the constituent fibers have a multi-branched structure, the fibers are entangled with each other when formed into a sheet. However, the void forms a complicated passage. On the other hand, webs composed of single fibers such as nonwoven fabrics have a pore structure that is essentially different from synthetic pulp (a), and nonwoven fabrics have relatively large through-holes and a straight structure. Therefore, when a coating liquid containing the inorganic powder (d) and the acid-resistant polymer (e) is applied, a large amount of the coating layer (Π) formed enters between the fibers and the laminated sheet
( ΠΙ ) の孔径を制御する塗布層 ( Π ) と しての効果を損なう ことに なる し、 塗布層と しての効果を生じさせるために塗布層 ( Π ) を厚 く した場合には電気抵抗が高く なるという問題があり、 本発明の目 的を達成することはできない。 The effect of the coating layer (Π) for controlling the pore diameter of (ΠΙ) is impaired, and if the coating layer (Π) is made thicker to produce the effect as the coating layer, the effect will be lost. There is a problem that the resistance increases, and the object of the present invention cannot be achieved.
合成パルプ ( a ) は、 合成パルプ ( a ) 、 耐酸性無機粉体 ( b ) 、 耐酸性無機繊維 ( c ) 、 合成繊維 ( f ) 、 複合型接着性繊維 ( g ) およびバイ ンダー ( h ) の合計量 1 0 0重量%に対して、 好ま し く は 5〜 7 0重量%、 特に好ま しく は 1 0〜 5 0重量%の量で用いら れる。  Synthetic pulp (a) is synthetic pulp (a), acid-resistant inorganic powder (b), acid-resistant inorganic fiber (c), synthetic fiber (f), composite adhesive fiber (g) and binder (h) It is preferably used in an amount of 5 to 70% by weight, particularly preferably 10 to 50% by weight, based on the total amount of 100% by weight.
耐酸性無機粉体 ( b )  Acid-resistant inorganic powder (b)
本発明で用いられる耐酸性無機粉体 ( b ) としては、 具体的には、 合成シ リ カ、 ケイ ソゥ土、 ノ、。一ライ ト、 アルミナ、 ゼォライ ト等の 粉体が挙げられる。 これらの中では、 合成シ リカが好ま し く 用いら れる。  Specific examples of the acid-resistant inorganic powder (b) used in the present invention include synthetic silica, silica earth, and silicon. Powders such as monolite, alumina, zeolite and the like can be mentioned. Of these, synthetic silica is preferably used.
これらの耐酸性無機粉体 ( b ) は、 1種単独で用いるこ とができ る し、 また 2種以上組み合わせて用いること もできる。 These acid-resistant inorganic powders (b) can be used alone. Alternatively, two or more kinds can be used in combination.
ここに、 耐酸性無機粉体 ( b ) の 「耐酸性」 とは、 前記したと同 様の意味であり、 耐酸性無機粉体 ( b ) は、 硫酸水溶液に浸潰して も形状変化や化学的変化を起こさない無機粉体、 具体的には、 J I S C 2 2 0 2で規定されている耐酸性の値が 0. 6 %以下の無機 粉体である。  Here, the “acid resistance” of the acid-resistant inorganic powder (b) has the same meaning as described above, and the acid-resistant inorganic powder (b) changes its shape and chemical even when immersed in an aqueous sulfuric acid solution. It is an inorganic powder that does not cause a specific change, specifically, an inorganic powder having an acid resistance value of 0.6% or less specified in JISC 222.
耐酸性無機粉体 ( b ) は、 合成パルプ ( a ) 、 耐酸性無機粉体 ( b ) 、 耐酸性無機繊維 ( c ) 、 合成繊維 ( f ) 、 複合型接着性繊 維 ( g ) およびバイ ンダー ( h ) の合計量 1 0 0重量 ¾に対して、 好ま しく は 5〜 6 0重量%、 特に好ま しく は 1 0〜 5 0重量%の量 で用いられる。  Acid-resistant inorganic powder (b) includes synthetic pulp (a), acid-resistant inorganic powder (b), acid-resistant inorganic fiber (c), synthetic fiber (f), composite adhesive fiber (g) and It is preferably used in an amount of 5 to 60% by weight, particularly preferably 10 to 50% by weight, based on 100% by weight of the binder (h).
耐酸性無機繊維 ( c )  Acid-resistant inorganic fiber (c)
本発明で用いられる耐酸性無機繊維 ( c ) としては、 具体的には、 ガラス繊維、 シリ カ繊維、 アルミ ナシリ ゲー ト繊維などが挙げられ る。 これらの中では、 ガラス繊維が好ま しく 用いられる。  Specific examples of the acid-resistant inorganic fiber (c) used in the present invention include glass fiber, silica fiber, and alumina silicate fiber. Of these, glass fibers are preferably used.
これらの耐酸性無機繊維 ( じ ) は、 1種単独で用いるこ とができ る し、 また 2種以上組み合わせて用いること もできる。  These acid-resistant inorganic fibers (ji) can be used alone or in combination of two or more.
ここに、 耐酸性無機繊維 ( c ) の 「耐酸性」 とは、 前記したと同 様の意味であり、 耐酸性無機繊維 ( c ) は、 硫酸水溶液に浸潰して も形状変化や化学的変化を起こさない無機繊維、 具体的には、 J I S C 2 2 0 2で規定されている耐酸性の値が 0. 6 %以下の無機 繊維である。  Here, the “acid resistance” of the acid-resistant inorganic fiber (c) has the same meaning as described above, and the acid-resistant inorganic fiber (c) has a shape change and a chemical change even when immersed in a sulfuric acid aqueous solution. Inorganic fibers that do not cause water, specifically, inorganic fibers having an acid resistance value of 0.6% or less specified in JISC 222.
耐酸性無機繊維 ( c ) は、 合成パルプ ( a ) 、 耐酸性無機粉体 ( b ) 、 耐酸性無機繊維 ( c ) 、 合成繊維 ( f ) 、 複合型接着性繊 維 ( g ) およびバイ ンダー ( h ) の合計量 1 0 0重量 ¾に対して、 好ま しく は 5〜 6 0重量%、 特に好ま し く は 1 0〜 5 0重量%の量 で用いられる。 Acid-resistant inorganic fiber (c) is synthetic pulp (a), acid-resistant inorganic powder (b), acid-resistant inorganic fiber (c), synthetic fiber (f), composite adhesive fiber It is used in an amount of preferably 5 to 60% by weight, particularly preferably 10 to 50% by weight, based on 100% by weight of the total amount of the fiber (g) and the binder (h).
合成繊維 ( f )  Synthetic fiber (f)
本発明で必要に応じて用いられる合成繊維 ( f ) と しては、 具体 的には、 ポ リ ア ミ ド (ナイ ロ ン) 、 ポ リ エチレ ンテレフタ レ一 卜 ( P E T ) , ポリプロピレン ( P P ) 、 ポリエチレン ( P E ) など の合成樹脂からなる繊維等が挙げられる。  Specific examples of the synthetic fiber (f) used as required in the present invention include polyamide (nylon), polyethylene terephthalate (PET), and polypropylene (PP). And a fiber made of a synthetic resin such as polyethylene (PE).
これらの合成繊維 ( f ) は、 1 種単独で用いるこ とができる し、 また 2種以上組み合わせて用いることもできる。  These synthetic fibers (f) can be used alone or in combination of two or more.
本発明で用いられる合成繊維 ( f ) と しては、 バイ ンダー ( h ) の融点または複合型接着性繊維 ( g ) の接着温度より も高い融点を 持っていることが好ま しく、 さらには前述したような耐酸性に優れ ていることが好ま しい。  The synthetic fiber (f) used in the present invention preferably has a melting point higher than the melting point of the binder (h) or the bonding temperature of the composite adhesive fiber (g). It is preferable to have excellent acid resistance as described above.
合成繊維 ( f ) は、 基材シー トと しての剛性や強度をアップする ために補強成分と して用いられ、 合成パルプ ( a ) 、 耐酸性無機粉 体 ( b ) 、 耐酸性無機繊維 ( c ) 、 合成繊維 ( f ) 、 複合型接着性 繊維 ( g ) およびバイ ンダー ( h ) の合計量 1 0 0重量%に対して、 好ま しく は 5〜 5 0重量%、 特に好ま し く は 1 0〜 4 0重量%の量 で用いられる。  Synthetic fiber (f) is used as a reinforcing component to increase the rigidity and strength of the base sheet. Synthetic pulp (a), acid-resistant inorganic powder (b), acid-resistant inorganic fiber (C), synthetic fiber (f), conjugate adhesive fiber (g) and binder (h), based on a total amount of 100% by weight, preferably 5 to 50% by weight, particularly preferably Is used in an amount of 10 to 40% by weight.
複合型接着性繊維 ( g )  Composite adhesive fiber (g)
本発明で必要に応じて用いられる複合型接着性繊維 ( g ) と して は、 高融点成分と低融点成分とを組み合わせた接着性繊維、 たとえ ばポリ プロ ピレン ( P P ) /ポリエチレン ( P E ) 、 ポリエチレン テレフタ レ一 ト ( P E T) /低融点 P E T等の組合せによるサイ ド バイサイ ド型ゃ芯鞘型の構造を有する接着性繊維などが挙げられる。 この複合型繊維では、 低融点成分が外側に配置されている。 As the composite adhesive fiber (g) used as required in the present invention, an adhesive fiber combining a high melting point component and a low melting point component, for example, polypropylene (PP) / polyethylene (PE) , Polyethylene Adhesive fibers having a side-by-side type / core-sheath type structure by a combination of terephthalate (PET) / low-melting point PET and the like are listed. In this composite fiber, the low-melting-point component is disposed outside.
これらの複合型接着性繊維 ( g ) は、 1種単独で用いるこ とがで きる し、 また 2種以上組み合わせて用いるこ ともできる。  These composite adhesive fibers (g) can be used alone or in combination of two or more.
この複合型接着性繊維 ( g ) の接着温度は、 合成パルプ ( a ) の 融点または分解温度、 合成繊維 ( f ) の融点または分解温度のうち、 最も低い温度より もさ らに 1 0 °C以上低いこ とが望ま しい。  The bonding temperature of the composite adhesive fiber (g) is 10 ° C higher than the lowest of the melting point or decomposition temperature of synthetic pulp (a) and the melting point or decomposition temperature of synthetic fiber (f). It is desirable that it is lower than this.
複合型接着性繊維 ( g ) は、 上記合成繊維 ( f ) と同様、 基材シ — 卜 と しての剛性や強度をァップするために補強成分と して用いら れ、 合成パルプ ( a ) 、 耐酸性無機粉体 ( b ) 、 耐酸性無機繊維 ( c ) 、 合成繊維 ( f ) 、 複合型接着性繊維 ( g ) およびバイ ンダ - ( h ) の合計量 1 0 0重量%に対して、 好ま しく は 5〜 5 0重量 %、 特に好ま しく は 1 0〜 4 0重量%の量で用いられる。  The composite adhesive fiber (g) is used as a reinforcing component to increase the rigidity and strength of the base sheet, similarly to the synthetic fiber (f), and the synthetic pulp (a) 100% by weight of acid-resistant inorganic powder (b), acid-resistant inorganic fiber (c), synthetic fiber (f), composite adhesive fiber (g) and binder-(h) It is preferably used in an amount of 5 to 50% by weight, particularly preferably 10 to 40% by weight.
なお、 複合型接着性繊維 ( g ) が用いられる場合には、 後述のバ イ ンダ一 ( h ) と しての効果も同時に発揮するので、 さ らにバイ ン ダ一 ( h ) を用いな く てもよいが、 より強度アップするためにはバ イ ング一 ( h ) を併用する方が好ま しい。  When the composite adhesive fiber (g) is used, the effect as the binder (h) described later is also exerted at the same time, so that the binder (h) is not used. It is not necessary to use it, but in order to further increase the strength, it is preferable to use the binning (h) together.
ンダ一 (h )  Daichi (h)
本発明で必要に応じて用いられるバイ ンダー ( h ) は、 パルプ、 繊維、 無機粉体を結合し、 多孔性基材シー ト ( I ) に強度を与える ことを目的と している。 本発明では、 前記合成パルプ ( a ) の融点 も しく は分解温度より も低い温度で接着力が発現する熱接着型バイ ンダ一が使用される。 このような熱接着型バイ ンダ一と しては、 合成パルプ ( a ) の融 点より も低い融点を持つポリエチレン、 ポリ プロピレン等のポリオ レフイ ン、 ポリ スチレン、 ポリ メチルメ タク リ レー ト、 ポリ アク リ ロニ ト リル、 塩化ビニリデン樹脂、 ナイ ロン、 ポリエステルなどが 挙げられる。 The binder (h) used as necessary in the present invention is intended to bind pulp, fiber, and inorganic powder to give strength to the porous base sheet (I). In the present invention, a heat-bonding binder is used, which exhibits an adhesive force at a temperature lower than the melting point or decomposition temperature of the synthetic pulp (a). Examples of such a heat bonding type binder include polyethylene, polypropylene, and other polyolefins having a melting point lower than the melting point of synthetic pulp (a), polystyrene, polymethyl methacrylate, and polyacryl. Examples include rilonitrile, vinylidene chloride resin, nylon and polyester.
また、 バイ ンダー ( h ) の形態と しては、 たとえば  Also, the form of the binder (h) is, for example,
上記合成パルプ ( a ) と原料を同じく する各種合成繊維 ; 前記したように、 芯の部分が合成パルプ ( a ) の融点よ り も高い 融点を有し、 鞘の部分が合成パルプ ( a ) の融点よ り も低い融点を 有する、 いわゆる芯鞘型の複合繊維 ;  Various synthetic fibers having the same raw material as the synthetic pulp (a); as described above, the core has a melting point higher than the melting point of the synthetic pulp (a), and the sheath has the melting point of the synthetic pulp (a). A so-called core-sheath composite fiber having a lower melting point than the melting point;
ポリオレフイ ン系樹脂粉末、 低融点ポリエステル粉末、 塩化ビニ ル樹脂粉末、 エポキシ樹脂粉末、 またはそれらのェマルジヨ ン ; 天然あるいは合成ゴムラテックス ; および  Polyolefin resin powder, low melting polyester powder, vinyl chloride resin powder, epoxy resin powder, or emulsion thereof; natural or synthetic rubber latex; and
ァク リル系樹脂ェマルジョ ンなどが挙げられる。  Examples include acrylic resin emulsions.
これらのバイ ンダー ( h ) は、 1種単独で用いることができる し、 また 2種以上組み合わせて用いることもできる。  These binders (h) can be used alone or in combination of two or more.
バイ ンダー ( h ) の融点は、 合成パルプ ( a ) の融点または分解 温度、 合成繊維 ( f ) の融点または分解温度のうち、 複合型接着性 繊維 ( g ) の高融点のものの融点または分解温度のうち最も低い温 度より もさ らに 1 0 °C以上低いこ とが望ま しい。 バイ ンダー ( h ) がゴムのような非晶性重合体である場合には、 非晶性重合体が軟化 して接着性を発現する温度を熱処理温度の目安とすればよい。  The melting point of the binder (h) is the melting point or decomposition temperature of the synthetic pulp (a) or the melting point or decomposition temperature of the high melting point of the composite adhesive fiber (g) out of the melting point or decomposition temperature of the synthetic fiber (f). It is desirable that the temperature be lower than the lowest temperature by 10 ° C or more. When the binder (h) is an amorphous polymer such as rubber, the temperature at which the amorphous polymer softens and exhibits adhesiveness may be used as a guide for the heat treatment temperature.
バイ ンダー ( h ) は、 合成パルプ ( a ) 、 耐酸性無機粉体 ( b ) 、 耐酸性無機繊維 ( c ) 、 合成繊維 ( f ) 、 複合型接着性繊維 ( g ) およびバイ ンダ一 ( h ) の合計量 1 0 0重量%に対して、 1 0重量 %以下、 好ま しく は 0. 5〜 1 0重量%、 特に好ま しく は 1 〜 5重 量%の量で用いられる。 多孔性基材シ一 卜 ( I ) Binder (h) is synthetic pulp (a), acid-resistant inorganic powder (b), acid-resistant inorganic fiber (c), synthetic fiber (f), composite adhesive fiber (g) And 100% by weight or less, preferably 0.5 to 10% by weight, particularly preferably 1 to 5% by weight, based on the total amount of 100% by weight of the binder (h). Used. Porous substrate sheet (I)
本発明で用いられる多孔性基材シ一 卜 ( I ) は、 合成パルプ ( a ) と、 耐酸性無機粉体 ( b ) および Zまたは耐酸性無機繊維 ( c ) と、 必要に応じて合成繊維 ( f ) および Zまたは複合型接着性繊維 ( g ) と、 さ らにバイ ンダー ( h ) とから形成された温式抄造体である。 中でも、 合成パルプ ( a ) 5 〜 7 0重量%と、 耐酸性無機粉体 ( b ) および Zまたは耐酸性無機繊維 ( c ) 5〜 6 0重量 <¾と、 合 成繊維 ( f ) および または複合型接着性繊維 ( g ) 5〜 5 0重量 %と、 該合成パルプ ( a ) の融点もしく は分解温度より も低い融点 を有するバイ ンダ一 ( h ) 0〜 1 0重量%とを含んでなる多孔性基 材シー ト ( I ) が好ま しい。 特に、 合成パルプ ( a ) 1 0 〜 5 0重 量%と、 耐酸性無機粉体 ( b ) および Zまたは耐酸性無機繊維 ( じ ) 1 0〜 5 0重量0 と、 合成繊維 ( f ) および/または複合型接着性 繊維 ( g ) 1 0〜 4 0重量%と、 バイ ンダ一 ( h ) 0. 5〜 1 0重 量%とを含んでなる多孔性基材シー ト ( I ) が好ま しい。 The porous substrate sheet (I) used in the present invention comprises synthetic pulp (a), acid-resistant inorganic powder (b) and Z or acid-resistant inorganic fiber (c), and if necessary, synthetic fiber. (F) and a warm-formed article formed from Z or the composite adhesive fiber (g) and a binder (h). Among them, synthetic pulp (a) 5 to 70% by weight, acid-resistant inorganic powder (b) and Z or acid-resistant inorganic fiber (c) 5 to 60 weight <¾, synthetic fiber (f) and or 5 to 50% by weight of the composite adhesive fiber (g) and 0 to 10% by weight of a binder (h) having a melting point lower than the melting point or decomposition temperature of the synthetic pulp (a). The porous base sheet (I) made of In particular, synthetic pulp (a) 10 to 50% by weight, acid-resistant inorganic powder (b) and Z or acid-resistant inorganic fiber (f) 10 to 50 weight 0 , synthetic fiber (f) and A porous base sheet (I) comprising 10 to 40% by weight of a composite adhesive fiber (g) and 0.5 to 10% by weight of a binder (h) is preferred. New
また、 上記のような各成分を用いて湿式抄造法により製造される 多孔性基材シ一 卜 ( I ) は、 空隙率が 5 0 %以上、 平均孔径が 0. 5〜 2 0 mであるこ とが好ま しく、 最大孔径が 2 0 0 m以下で あることが望ま しい。  The porous substrate sheet (I) produced by the wet papermaking method using each of the above components has a porosity of 50% or more and an average pore diameter of 0.5 to 20 m. It is preferable that the maximum pore diameter is 200 m or less.
この空隙率は、 試料の見かけの体積を V、 試料の重さを材料の密 度で割って求めた体積を V Q と したとき、 下式によって求めた値で ある。 The porosity is determined by the apparent volume of the sample as V and the weight of the sample as the density of the material. When the volume obtained by dividing by degrees is VQ, this is the value obtained by the following equation.
空隙率 (%) = { (V - V。) ZV } x l 0 0  Porosity (%) = {(V-V.) ZV} x l 0 0
平均孔径および最大孔径は、 「パームポロメータ一」 (POROUS The average pore size and the maximum pore size are as shown in “POROUS
MATERIALS, INC 製) を用いて、 A S TM F 3 1 6 - 8 6に基づい て測定した値である。 MATERIALS, INC.), Based on ASTM F316-86.
多孔性基材シー ト ( I ) の平均孔径が 0. 5 Z mより小さ く なる と、 湿式抄造法での製造が困難になり、 しかも、 得られるセパレ一 夕の電気抵抗が高く なる。  If the average pore size of the porous base sheet (I) is smaller than 0.5 Zm, it becomes difficult to produce the sheet by a wet paper-making method, and furthermore, the electrical resistance of the obtained separator becomes high.
また、 多孔性基材シ一 ト ( I ) の平均孔径が 2 0 / mより も大き く なると、 多孔性基材シ一 卜 ( I ) の片面または両面に、 無機粉体 ( d ) と耐酸性重合体 ( e ) とを含む塗布層 ( Π ) を形成するとき に、 積層シー ト ( II ) の孔径を小さ く均一にコ ン ト ロールするこ と が困難になる。  When the average pore size of the porous substrate sheet (I) is larger than 20 / m, the inorganic powder (d) and the acid-resistant material are attached to one or both surfaces of the porous substrate sheet (I). When the coating layer (() containing the reactive polymer (e) is formed, it is difficult to control the laminated sheet (II) with a small pore size and uniformity.
ちなみに、 多孔性基材シー ト ( I ) の最大孔径が 2 0 0 mを超 えると、 電極から脱落した活物質がすり抜けてショー トの原因にな るこ とが考えられるので望ま しく ない。 多孔性基材シ一 ト ( I ) の調製  Incidentally, if the maximum pore diameter of the porous base sheet (I) exceeds 200 m, it is not desirable because the active material dropped from the electrode may slip and cause a short. Preparation of porous substrate sheet (I)
上記多孔性基材シー ト ( I ) は、 たとえば上述した合成パルプ ( a ) と、 耐酸性無機粉体 ( b ) または耐酸性無機繊維 ( c ) の少 なく とも 1種と、 必要に応じて、 合成繊維 ( f ) または複合型接着 性繊維 ( g ) の少なく とも 1種と、 さ らにバイ ンダー ( h ) とを含 む混合物を水等の媒体中に分散させ、 湿式抄造することにより調製 される。 The porous base sheet (I) may be, for example, the above-mentioned synthetic pulp (a) and at least one kind of acid-resistant inorganic powder (b) or acid-resistant inorganic fiber (c), if necessary. A mixture containing at least one of the synthetic fiber (f) or the composite adhesive fiber (g) and the binder (h) is dispersed in a medium such as water and wet-processed. Preparation Is done.
この湿式抄造では、 ネッ ト上に上記混合物の温潤シー トが抄き上 げられる。 この湿潤シー トは、 脱水のみ、 または脱水および軽いプ レス脱水が行なわれる。 脱水されたシー トは、 乾燥工程に送られ、 好ま しく は熱風炉を用いて熱風乾燥、 または ドラム型乾燥機を用い て乾燥される。  In this wet papermaking, a warmed sheet of the above mixture is papered on a net. This wet sheet may be dewatered only, or dewatered and lightly pressed. The dehydrated sheet is sent to a drying step, and is preferably dried with a hot air oven using a hot air oven or a drum type dryer.
本発明においては、 この乾燥工程に続き、 乾燥したシー トを熱処 理することが好ま しい。 この熱処理もまた熱風炉、 または ドラム型 乾燥機で行なわれることが好ま しい。 乾燥と熱処理とは同時に行な つてもよい。  In the present invention, it is preferable that the dried sheet is heat-treated following the drying step. This heat treatment is also preferably performed in a hot air oven or a drum type dryer. Drying and heat treatment may be performed simultaneously.
この熱処理は、 複合型接着性繊維 ( g ) の接着温度以上かつ合成 パルプ ( a ) の融点以下の温度で、 もしく はバイ ンダー ( h ) の融 点以上かつ合成パルプ ( a ) の融点以下の温度で行なわれる。 特に 複合型接着性繊維 ( g ) の接着温度より 5 °C以上、 かつ合成パルプ ( a ) の融点より 5 °C以下の温度で、 も しく はバイ ンダー ( h ) の 融点より 5 °C以上、 かつ合成パルプ ( a ) の融点より 5 °C以下の温 度で熱処理を行なう こ とが好ま しい。 ノくイ ンダ一 ( h ) がゴムのよ うな非晶性重合体の場合には、 その接着温度で熱処理が行なわれる。 この熱処理は、 次の塗布層 ( Π ) の形成前に、 あるいは凸部形成前 に行なっておく方が、 多孔性基材シー ト ( I ) の機械強度付与の上 で望ま しい。  This heat treatment is performed at a temperature not lower than the bonding temperature of the composite adhesive fiber (g) and not higher than the melting point of the synthetic pulp (a), or not lower than the melting point of the binder (h) and not higher than the melting point of the synthetic pulp (a). At a temperature of In particular, at a temperature of 5 ° C or higher than the bonding temperature of the composite adhesive fiber (g) and 5 ° C or lower than the melting point of the synthetic pulp (a), or 5 ° C or higher than the melting point of the binder (h) The heat treatment is preferably performed at a temperature of 5 ° C or less from the melting point of the synthetic pulp (a). When the insulator (h) is an amorphous polymer such as rubber, heat treatment is performed at the bonding temperature. It is desirable that this heat treatment be performed before the formation of the next coating layer (形成) or before the formation of the projections in order to impart mechanical strength to the porous base sheet (I).
ここに、 複合型接着性繊維 ( g ) の 「接着温度」 とは、 その低融 点成分が溶融して、 また非晶性重合体が軟化して接着力を発現する 温度を指す。 上記湿式抄造により製造された多孔性基材シー ト ( I ) は、 セパ レ一タに必要な電気的特性と電池組立適応性を確保する上で、 厚さ 力、' 0. 0 5〜 : I . 0 mm、 好ま しく は 0. 1 〜 0. 4 mmの範囲内 にあり、 密度が 0. 1 〜 0. 6 g/ c m3 、 好ま しく は 0. 2〜 0. 4 g / c m 3 の範囲内にあり、 最大孔径が 2 0 0 ^ m以下'、 好ま し く は 1 0 0 m以下の範囲にある多孔性基材シー ト ( I ) が好適で ある。 Here, the “bonding temperature” of the composite adhesive fiber (g) refers to a temperature at which the low melting point component is melted, and the amorphous polymer is softened to develop an adhesive force. The porous base sheet (I) produced by the wet papermaking described above has a thickness force of '0.05 to ensure the electrical characteristics required for the separator and the adaptability to battery assembly. I. 0 mm, preferable properly is in the range of 0. 1 ~ 0. 4 mm, density of 0. 1 ~ 0. 6 g / cm 3, is favored properly 0. 2~ 0. 4 g / cm 3 The porous base sheet (I) having a maximum pore diameter of 200 m or less, preferably 100 m or less, is suitable.
上記多孔性基材シー ト ( I ) は、 その片面または両面に後述する 塗布層 ( Π ) を形成する前に、 多孔性基材シー ト ( I ) の片面ある いは両面に、 凸部を形成することができる。 この凸部形成法と して は、 たとえば、 いわゆる リブ形成法とエンボス加工による凸部形成 法が挙げられる。 これらの ώ部形成法については、 後述する。  Before forming the coating layer (Π) described later on one or both sides of the porous base sheet (I), the porous base sheet (I) is provided with convex portions on one or both sides of the porous base sheet (I). Can be formed. Examples of the method of forming the protrusion include a so-called rib formation method and a method of forming a protrusion by embossing. The method of forming these parts will be described later.
く塗布層 ( π ) ヽ  Coating layer (π) ヽ
本発明においては、 多孔性基材シー ト ( I ) の片面または両面に、 無機粉体 ( d ) と耐酸性重合体 ( e ) とを含む塗布層 ( Π ) を有し ていてもよいし、 また多孔性基材シー 卜 ( I ) の凸部が形成された 面と反対側の表面に、 この塗布層 ( Π ) を有していてもよい。  In the present invention, the porous substrate sheet (I) may have an application layer (Π) containing an inorganic powder (d) and an acid-resistant polymer (e) on one or both sides thereof. The coating layer (Π) may be provided on the surface of the porous substrate sheet (I) opposite to the surface on which the projections are formed.
無機粉体 ( d )  Inorganic powder (d)
塗布層 ( Π ) を形成する無機粉体 ( d ) と しては、 耐酸性の合成 または天然のシ リ カ系、 アルミナ系、 シ リ カ一アルミナ系の無機粉 体が好ま し く、 たとえばケイ ソゥ土、 合成シ リ カ、 電融アルミ ナ、 パ一ライ 卜、 ゼォライ ト等の粉体が挙げられる。  The inorganic powder (d) forming the coating layer (層) is preferably an acid-resistant synthetic or natural silica-based, alumina-based or silica-alumina-based inorganic powder. Examples include powders of silica earth, synthetic silica, fused aluminum, powder and zeolite.
これらの無機粉体 ( d ) は、 1 種単独で、 または 2種以上組み合 わせて用いることができる。 これら無機粉体 ( d ) は、 B E T法で測定された比表面積が 0. 1 〜 2 5 0 m 2 Z gの範囲内にあることが好ま しく、 平均粒径 3 0 m以下の無機粉体 ( d ) が好ま しく用いられる。 特に塗布層 ( Π ) の多孔性を確保するためおよび塗布層 ( Π ) のひび割れを抑制する ために、 平均粒径が 1 0 m以下であり、 かつ、 比表面積が 1 0 0 〜 2 5 0 m 2 / gである無機粉体 ( i ) と、 平均粒径が 1 〜 3 0 〃 mであり、 比表面積が 0. :! 〜 5 0 m 2 / gである無機粉体 ( i i ) の少なく とも粒径および比表面積が異なる 2種以上の無機粉体 ( d ) を混合して使用するのがより好ま しい。 たとえば無機粉体 ( d ) と しては、 無機粉体 ( i ) 1 0〜 9 0重量%と、 無機粉体 (ii) 9 0 〜 1 0重量%との混合物が好ま しい。 These inorganic powders (d) can be used alone or in combination of two or more. These inorganic powders (d) is laid preferred that the specific surface area measured by the BET method is in the range of 0. 1 ~ 2 5 0 m 2 Z g, average particle size 3 0 m or less of the inorganic powder (D) is preferably used. In particular, in order to ensure the porosity of the coating layer (Π) and to suppress cracking of the coating layer (Π), the average particle size is 10 m or less, and the specific surface area is 100 to 250. m 2 / g of the inorganic powder (i) and the average particle diameter of 1 to 30 μm and the specific surface area of 0 :! to 50 m 2 / g of the inorganic powder (ii) It is more preferable to use a mixture of at least two kinds of inorganic powders (d) having different particle diameters and specific surface areas. For example, as the inorganic powder (d), a mixture of the inorganic powder (i) of 10 to 90% by weight and the inorganic powder (ii) of 90 to 10% by weight is preferable.
上記の平均粒径と比表面積の異なる無機粉体 ( d ) の混合物を用 いることにより、 物性面でバラ ンスのとれた鉛蓄電池用セパレ一夕 を得ることができる。 ちなみに、 無機粉体 ( i ) のみでは、 比表面 積が大き過ぎるために塗布層 ( Π ) にひび割れを生じやすいし、 ま た無機粉体 (ii) のみでは、 電気抵抗が大き く なる傾向にある。 ま た、 無機粉体 〔 d ) の比表面積が 0. 1 m 2 ノ gよ り小さいか、 あ るいは平均粒径が 3 0 mより大きいと、 多孔性基材シー ト ( I ) の持つ空隙が充填されてしまい、 貫通した孔が形成されに く く なる し、 また、 比表面積が 2 5 0 m2 / gより大きいか、 あるいは平均 粒径が 0. 1 mより小さいと、 塗布するために必要な粘度をもつ ペース ト状態を保持し難く なる。 By using a mixture of the inorganic powders (d) having different average particle diameters and specific surface areas, it is possible to obtain a separation battery for lead-acid batteries that is balanced in physical properties. Incidentally, the inorganic powder (i) alone tends to cause cracks in the coating layer (る た め) due to too large specific surface area, and the inorganic powder (ii) alone tends to increase the electrical resistance. is there. If the specific surface area of the inorganic powder (d) is smaller than 0.1 m 2 ng or the average particle size is larger than 30 m, the porous substrate sheet (I) has If the voids are filled, penetrating pores will not be formed, and if the specific surface area is greater than 250 m 2 / g or the average particle size is less than 0.1 m, apply. Therefore, it becomes difficult to maintain a paste state having a necessary viscosity.
このようなことから、 上記の無機粉体 ( i ) と無機粉体 (ii) と を混合して使用するこ とが好ま しい。 このような混合使用を採用す れば、 柔軟性があって、 ひび割れが生じるこ とのな く、 しかも、 適 度な電気抵抗を持つ塗布層 ( Π ) が比較的小さい坪量で形成するこ とができる。 For this reason, it is preferable to use a mixture of the above inorganic powder (i) and inorganic powder (ii). Adopt such mixed use Then, the coating layer (Π) having flexibility and no cracking can be formed, and the coating layer (を 持 つ) having appropriate electric resistance can be formed with a relatively small basis weight.
ここに、 「平均粒径」 とは、 エレク ト 口ゾーン法による測定装置 「コールターカウンタ一」 で測定される平均粒径であり、 その粒度 分布は湿式または乾式分級による粉体の通常の粒度分布である。  Here, the “average particle size” is the average particle size measured by the Coulter Counter-1 measuring device using the Elect-Mouth Zone Method, and the particle size distribution is the normal particle size distribution of the powder by wet or dry classification. It is.
耐酸性重合体 ( e )  Acid-resistant polymer (e)
塗布層 ( Π ) を形成する耐酸性重合体 ( e ) と しては、 耐酸性、 耐酸化性に優れたガラス転移温度 ( T g ) がー 5 0〜 8 0 °Cの範囲 の合成樹脂ないしゴム状体が使用されるが、 ガラス転移温度 ( T g ) がー 5〜 7 0 °Cの範囲の重合体が入手が容易な点で好ま しい。 この ような好ま しい耐酸性重合体 ( e ) としては、 具体的には、 The acid-resistant polymer (e) that forms the coating layer (Π) is a synthetic resin having a glass transition temperature (Tg) of −50 to 80 ° C, which is excellent in acid resistance and oxidation resistance. Although a rubber-like material is used, a polymer having a glass transition temperature (T g ) in the range of -5 to 70 ° C. is preferred because it is easily available. Specific examples of such preferred acid-resistant polymer (e) include:
ポリ メチルメ タク リ レー 卜等のアク リル樹脂 ;  Acrylic resin such as methyl methacrylate;
ポリエチレン、 ポリ プロピレン、 ポリ ブタジエン等のォレフィ ン 系ないしジェン系重合体 ;  Olefin-based or gen-based polymers such as polyethylene, polypropylene and polybutadiene;
ポリ スチレン、 ポリ アク リノレスチレン、 ポリ塩化ビニル、 スチレ ン一ブタジエンラバ一、 ニ ト リルブタジエンラバ一等の重合体など が挙げられる。  Polymers such as polystyrene, polyacrylonitrile, polyvinyl chloride, styrene-butadiene rubber, and nitrylbutadiene rubber are exemplified.
これらの耐酸性重合体 ( e ) は、 1種単独で用いることができる し、 また 2種以上組み合わせて用いることができる。  These acid-resistant polymers (e) can be used alone or in combination of two or more.
ここに、 耐酸性重合体 ( e ) の 「耐酸性」 とは、 前述した通りの 意味であり、 耐酸性重合体 ( e ) は、 硫酸水溶液に浸漬しても形状 変化や化学的変化を起こさない重合体、 具体的には、 J I S C 2 2 0 2で規定されている耐酸性の値が 0. 6 %以下の重合体である。 これらの耐酸性重合体 ( e ) は、 塗布層 ( Π ) を形成する際に、 無機粉体 ( d ) とともに、 水と混合してペース ト状混合液と して使 用されるため、 水性エマルジョ ンまたはディ スパージョ ンの状態で あることが好ま しい。 Here, the “acid resistance” of the acid-resistant polymer (e) has the same meaning as described above, and the acid-resistant polymer (e) undergoes shape change and chemical change even when immersed in an aqueous sulfuric acid solution. Polymers having no acid resistance, specifically, those having an acid resistance value of 0.6% or less as specified in JISC 222. These acid-resistant polymers (e) are mixed with water together with the inorganic powder (d) when forming the coating layer (Π), and used as a paste-like mixed solution. It is preferable to be in the emulsion or dispersion state.
塗布層 ( Π ) の形成  Formation of coating layer (Π)
この塗布層 ( Π ) は、 通常、 無機粉体 ( d ) と耐酸性重合体 ( e ) に水を加えて調製したペース ト状混合液を、 凸部が形成されていな い多孔性基材シー ト ( I ) の表面に、 あるいは多孔性基材シー ト ( I ) のリ ブが形成されている面と反対側の表面に、 あるいは多孔 性基材シー ト ( I ) のエンボス加工により凸部が形成された面と反 対側の表面すなわち凹面に、 コ一ターにて塗布した後、 乾燥するこ とにより形成するこ とができる。 たとえば図 1 に示すような塗布装 置において、 ペース ト状混合液 2を混合槽 3 に供給しながら、 同時 に多孔性基材シ一 ト 1 をコ一ティ ングバーコ一ター 4 と案内ロール 5 との間に通して、 多孔性基材シ一 卜 1 の片面に、 ペース ト状混合 液 2を塗布、 乾燥することにより、 塗布層 6を形成するこ とができ る。  This coating layer (Π) is usually made of a paste-like mixed solution prepared by adding water to the inorganic powder (d) and the acid-resistant polymer (e), and the porous base material having no convex portions formed thereon. It is convex on the surface of the sheet (I), on the surface opposite to the surface on which the ribs of the porous substrate sheet (I) are formed, or by embossing the porous substrate sheet (I). It can be formed by applying a coater to the surface opposite to the surface on which the portion is formed, that is, the concave surface, and then drying. For example, in a coating apparatus as shown in FIG. 1, while supplying a paste-like mixture 2 to a mixing tank 3, a porous substrate sheet 1 is simultaneously coated with a coating bar coater 4 and a guide roll 5. The paste-like mixed solution 2 is applied to one surface of the porous substrate sheet 1 through the gap, and then dried, whereby the coating layer 6 can be formed.
また、 これらの凸部が形成されていてもよい多孔性基材シー 卜 Further, a porous substrate sheet on which these convex portions may be formed.
( I ) を、 上記ペース ト状混合液中に浸潰して塗布層 ( π ) を形成 することもできる (いわゆる含浸塗布法) 。 (I) can be immersed in the paste-like mixture to form a coating layer (π) (so-called impregnation coating method).
本発明においては、 コ一夕一を用いて塗布層 ( Π ) を形成するこ とが好ま しい。  In the present invention, it is preferable to form the coating layer (Π) by using all over the glass.
塗布層 ( Π ) の形成に使用されるペース ト状混合液と しては、 無 機粉体 ( d ) と耐酸性重合体 ( e ) の固形分が 1 0〜 7 0重量%の 範囲内にあり、 水分が 3 0〜 9 0重量%の範囲内にあるこ とが好ま しい。 固形分と しては、 無機粉体 ( d ) が 3 0〜 9 0重量 ¾の範囲 内にあり、 耐酸性重合体 ( e ) が 1 0〜 7 0重量%の範囲内にある ことが好ま しい。 固形分が上記範囲内にあるペース ト状混合液を用 いると、 無機粉体 ( d ) 間の接着性に優れ、 しかも、 多孔性基材シ 一 卜 ( I ) の多孔性を損なわずに塗布層 ( Π ) を形成することがで きる。 As the paste-like mixture used for forming the coating layer (Π), the solid content of the inorganic powder (d) and the acid-resistant polymer (e) is 10 to 70% by weight. Preferably, the moisture is in the range of 30 to 90% by weight. As the solid content, the inorganic powder (d) is preferably in the range of 30 to 90% by weight, and the acid-resistant polymer (e) is preferably in the range of 10 to 70% by weight. New The use of a paste-like liquid mixture having a solid content within the above range provides excellent adhesion between the inorganic powders (d) and also does not impair the porosity of the porous substrate sheet (I). A coating layer (Π) can be formed.
このペース ト状混合液の粘度は、 多孔性基材シ一 卜 ( I ) との接 着性確保の点から、 5 0 0〜 1 0 , 0 0 0 c P s ( 2 5 °C ) の範囲 内にあるこ とが好ま しい。  The viscosity of the paste-like mixed solution is 500 to 100,000 cPs (25 ° C.) from the viewpoint of ensuring adhesion to the porous substrate sheet (I). It is preferable to be within the range.
ペース ト状混合液の調製において、 無機粉体 ( d ) と耐酸性重合 体 ( e ) と水との混合だけでは、 上記範囲内の粘度が得られず、 多 孔性基材シー ト ( I ) との接着性が不十分な場合には、 これらの成 分の他に、 増粘剤を添加することができる。  In the preparation of the paste-like mixture, the viscosity within the above range cannot be obtained only by mixing the inorganic powder (d), the acid-resistant polymer (e) and water, and the porous base sheet (I) If the adhesiveness of the rubber is insufficient, a thickener may be added in addition to these components.
増粘剤と しては、 具体的には、 ポリ アク リル酸ソ一ダ、 カルボキ シメ チルセルロース、 ゼラチン、 ポ リ ビニルアルコールな どが用い られる。  Specific examples of the thickener include sodium polyacrylate, carboxymethyl cellulose, gelatin, polyvinyl alcohol, and the like.
上記の多孔性基材シー ト ( I ) のエンボス加工により凸部が形成 された面と反対側の表面、 すなわち凹面に形成される塗布層 ( Π ) は、 乾燥坪量が l 〜 2 0 0 g Z c m2 、 好ま しく は 2〜 :! O O g c m2 、 さ らに好ま しく は 5〜 5 0 gZm2 の範囲内にあること力 好ま しい。 乾燥坪量が上記範囲内になるように塗布層 ( Π ) を形成 すると、 電気抵抗値がセパレ一夕と して適正な範囲であり、 耐酸化 性が改善された積層シー ト ( ΠΙ ) が得られる。 本発明者らの実験によれば、 塗布層 ( Π ) が形成された積層シー ト ( m ) の平均孔径を 0. 1 〜 1 0 ^ m程度に揃える こ とによ り、 適度な電気抵抗と耐酸性を発揮するセパレー夕が得られることが判 明した。 The coating layer (Π) formed on the surface opposite to the surface on which the projections are formed by the embossing of the porous substrate sheet (I), ie, the concave surface, has a dry basis weight of l to 200. g Z cm 2 , preferably 2 ~ :! OO gcm 2 , more preferably in the range of 5 to 50 gZm 2 . When the coating layer (Π) is formed so that the dry basis weight is within the above range, the electric resistance value is within the appropriate range for the separation, and the laminated sheet (酸化) with improved oxidation resistance is obtained. can get. According to the experiments of the present inventors, by setting the average pore size of the laminated sheet (m) on which the coating layer (Π) is formed to be about 0.1 to 10 ^ m, an appropriate electric resistance can be obtained. It was found that a separé evening exhibiting acid resistance was obtained.
く凸部形成法ヽ  Convex part forming method
上記のよう に して得られた凸部が形成されていない積層シー ト Laminated sheet without protrusions obtained as described above
(m ) 、 および上述した多孔性基材シー ト ( I ) における凸部形成 は、 通常、 リ ブ形成法またはエンボス加工法と呼ばれる凸部形成法 によ り行なわれる。 凸部が形成されている積層シー ト ( m ) と して は、 たとえば ( 1 ) 図 2に示すように、 多孔性基材シー ト 1の表面 にリ ブ 8が形成されている、 多孔性基材シー 卜 1 と塗布層 6 とから なる積層シー ト 7、 ( 2 ) 図 3、 図 4および図 5のように、 ェンボ ス加工により凸部が形成された多孔性基材シ一 卜 1 の凸部とは反対 側の片面に塗布層 6が形成されている積層シー ト 7が挙げられる。 (m) and the projections in the porous base sheet (I) are usually formed by a projection forming method called a rib forming method or an embossing method. Examples of the laminated sheet (m) on which the convex portions are formed include: (1) As shown in FIG. 2, the porous base sheet 1 has ribs 8 formed on the surface thereof. Laminated sheet 7 consisting of base sheet 1 and coating layer 6, (2) As shown in FIGS. 3, 4, and 5, a porous base sheet 1 having convex portions formed by enbossing. A laminated sheet 7 in which a coating layer 6 is formed on one surface opposite to the convex portion is exemplified.
リ ブ形成法  Rib forming method
本発明においては、 上記多孔性基材シー ト ( I ) の少な く とも片 面に、 無機粉体 ( d ) と耐酸性重合体 ( e ) とを含む塗布層 ( Π ) を形成した後、 塗布層 ( Π ) 表面および多孔性基材シ一 ト ( I ) 層 表面の少な く とも一方に、 または塗布層 ( Π ) を形成する前の多孔 性基材シー ト ( I ) の片面に、 好ま しく は複数個のリブたとえばほ ぼ直線状のリ ブを形成してもよい。  In the present invention, after forming a coating layer (Π) containing an inorganic powder (d) and an acid-resistant polymer (e) on at least one surface of the porous base sheet (I), At least one of the surface of the coating layer (Π) and the surface of the porous substrate sheet (I), or one surface of the porous substrate sheet (I) before forming the coating layer (層), Preferably, a plurality of ribs, for example, a substantially linear rib, may be formed.
リ ブの形成によ り、 電解液の拡散や電極から発生するガスの放出 を良好にすることができる。 また、 リブの形成によ り、 多孔性基材 シー ト ( I ) が直接電極と接触しにく く なるために、 多孔性基材シ — ト ( I ) は、 電極反応による酸化劣化を受けにく く なる。 By forming the ribs, diffusion of the electrolytic solution and release of gas generated from the electrodes can be improved. In addition, the formation of the ribs makes it difficult for the porous substrate sheet (I) to directly contact the electrode. — (I) is less susceptible to oxidative degradation due to electrode reactions.
リブの形状および高さは、 特に限定されるものではない。 リブは、 通常、 ほぼ同一直線上に連続も しく は不連続に直線状に形成され、 また幅方向に所定間隔をおいて複数個形成されるか、 あるいは同一 蛇行上に連続もしく は不連続に蛇行状に形成される。 リブの高さは、 0 . 2 〜 2 m m程度であればよ く、 その間隔は、 3 〜 3 0 m m程度 でよい。  The shape and height of the rib are not particularly limited. The ribs are usually formed on the same straight line continuously or discontinuously in a straight line, and a plurality of ribs are formed at predetermined intervals in the width direction, or are continuous or discontinuous on the same meander. It is formed in a meandering shape. The height of the rib may be about 0.2 to 2 mm, and the interval may be about 3 to 30 mm.
また、 リ ブを構成する材質は、 耐酸性を有し、 電極から発生する 酸素ガスによる酸化劣化を受けない材料であれば、 特に限定される ものではないが、 耐酸性の熱可塑性樹脂、 特に耐酸性のホッ トメル 卜型樹脂が好ま しく用いられる。  The material constituting the rib is not particularly limited as long as it has acid resistance and is not oxidized and deteriorated by oxygen gas generated from the electrode. An acid-resistant hot-melt resin is preferably used.
耐酸性のホッ トメル ト型樹脂と しては、 ポリオレフイ ン系、 ポリ ア ミ ド系、 ポリエステル系、 エチレン一酢酸ビニル共重合体系、 熱 可塑性ゴム系、 ポリ ウレタ ン系、 エポキシ系等の樹脂などが挙げら れる。 これらのホッ トメノレ 卜型樹脂は、 1種単独で用いることがで きる し、 また 2種以上組み合わせて用いるこ とができる。  Examples of acid-resistant hot-melt resins include polyolefin-based, polyamide-based, polyester-based, ethylene-vinyl acetate copolymer-based, thermoplastic rubber-based, polyurethane-based, and epoxy-based resins. Are mentioned. These hot methylolates may be used alone or in combination of two or more.
これらの樹脂の中でも、 耐酸化性に優れているポ リオレフィ ン系 樹脂が好ま し く、 と りわけァタクチッ クポリ プロ ピレン ( A P P ) やポ リエチレンを主成分とするポリオレフイ ン系樹脂が好ま しく 用 いられる。  Among these resins, a polyolefin resin having excellent oxidation resistance is preferred, and in particular, atactic polypropylene (APP) and a polyolefin resin containing polyethylene as a main component are preferred. Can be
これらホッ トメル ト型樹脂は、 特にリ ブ構成材料中に占める配合 量が制限されるものではないが、 塗布などの作業性のし易さ等の点 から 5 0重量%以上の割合で配合されることが好ま しい。  The content of these hot melt resins is not particularly limited in the composition of the ribs, but is not less than 50% by weight from the viewpoint of ease of work such as coating. It is preferable to
また、 ホッ 卜メル ト型樹脂の耐酸化性や機械的強度を向上させる ために、 ァイソタクチッ クポリプロピレン ( I P P ) 、 低分子量ポ リ プロピレンワ ッ クスあるいは低分子量ポリエチレンワ ッ ク ス等の 熱可塑性樹脂を、 ホッ トメル 卜型樹脂に配合するこ とができる。 ま た、 これらの熱可塑性樹脂の代わりに合成シ リ 力等の無機粉体をホ ッ トメル ト型樹脂に配合することができる し、 さ らに、 このような 無機粉体を熱可塑性樹脂とともに、 ホッ トメル ト型樹脂に配合する ことができる。 It also improves the oxidation resistance and mechanical strength of the hot melt resin. For this purpose, a thermoplastic resin such as isotactic polypropylene (IPP), low molecular weight polypropylene wax or low molecular weight polyethylene wax can be blended with the hot melt type resin. In addition, an inorganic powder such as synthetic resin can be blended with the hot melt type resin in place of these thermoplastic resins, and further, such an inorganic powder can be mixed with the thermoplastic resin. It can be blended with hot melt type resin.
これらの熱可塑性樹脂および無機粉体は、 通常 5 〜 5 0 重量 ¾の 割合でホッ 卜メル ト型樹脂に配合される。  These thermoplastic resins and inorganic powders are usually blended with the hot melt resin in a ratio of 5 to 50% by weight.
ェンボス加工による凸部形成法  Convex part forming method by embossing
本発明においては、 塗布層 ( Π ) 形成前の多孔性基材シー ト( I ) 表面に、 または積層シー ト ( m ) の多孔性基材シー ト ( I ) 層表面 も しく は塗布層 ( Π ) 表面に、 エンボス加工により形成される ώ部 は、 ほぼ同一直線上に連続もしく は不連続にほぼ直線状に形成され、 また幅方向に所定間隔をおいて複数個形成される力、、 あるいは同一 蛇行上に連続も しく は不連続に蛇行状に形成され、 また幅方向に所 定間隔をおいて複数個形成される力、、 あるいは複数個の半球状も し く は円錐台状に形成されることが好ま しい。  In the present invention, the surface of the porous base sheet (I) before forming the coating layer (層) or the surface of the porous base sheet (I) layer of the laminated sheet (m) or the coating layer ( )) The 表面 part formed by embossing on the surface is formed substantially continuously on the same straight line or discontinuously in a substantially straight line, and a plurality of forces are formed at predetermined intervals in the width direction. Or a continuous or discontinuous meandering shape on the same meandering, and a plurality of forces formed at predetermined intervals in the width direction, or a plurality of hemispherical or frustoconical shapes Preferably, it is formed in
エンボス加工により形成された凸部の高さとその間隔は、 特に限 定されるものではない。 ほぼ同一直線上または同一蛇行上に連続も しく は不連続にほぼ直線状または蛇行状に形成された凸部が所定間 陽において複数個ある場合、 通常、 凸部の高さが 0 . 2 〜 2 m m程 度であればよ く、 その間隔は 3 〜 3 0 m m程度でよい。  The height of the protrusions formed by embossing and the distance between the protrusions are not particularly limited. In the case where there are a plurality of convex portions formed on the same straight line or the same meandering continuously or discontinuously in a substantially linear or meandering shape in a predetermined interval, the height of the convex portions is usually 0.2 to 0.2. The distance may be about 2 mm, and the interval may be about 3 to 30 mm.
また、 凸部の形状が、 複数個の半球状または円錐台状の場合、 通 常、 直径が 1 〜 1 0 mm程度で、 凸部の高さが 0. 2〜 2 mm程度 であればよ く、 その間隔は 3〜 5 0 m m程度でよい。 In addition, when the shape of the protrusion is a plurality of hemispheres or truncated cones, Usually, the diameter should be about 1 to 10 mm and the height of the projections should be about 0.2 to 2 mm, and the interval should be about 3 to 50 mm.
多孔性基材シー ト ( I ) または積層シ一 卜 ( ΠΙ ) のエンボス加工 は、 一般に、 これらのシー トを一対のエンボスロール間を通過させ るこ とにより行なわれる。  The embossing of the porous base sheet (I) or the laminated sheet (ΠΙ) is generally performed by passing these sheets between a pair of embossing rolls.
使用されるエンボスロールの組み合わせは、 上記凸部の形状の加 ェが可能であればよ く、 特に限定される ものではないが、 たとえば 金属製凸ロールと金属製凹ロール、 金属製凸ロールとゴム製凹ロー ル、 金属製凸ロールとゴム製平ロール、 金属製凸ロールとペーパー 製凹ロール、 金属製凸ロールとペーパー製平ロール等の組み合わせ が挙げられる。  The combination of the embossing rolls used is not particularly limited as long as the shape of the convex portion can be added, and is not particularly limited. For example, a metal convex roll and a metal concave roll, and a metal convex roll may be used. Examples include a combination of a rubber concave roll, a metal convex roll and a rubber flat roll, a metal convex roll and a paper concave roll, a metal convex roll and a paper flat roll, and the like.
エンボス加工時の条件は、 エンボスロールの組み合わせ、 および 多孔性基材シー ト ( I ) または積層シー ト ( ΙΠ ) の物性により異な るが、 多孔性基材シー ト ( I ) または積層シー ト ( m ) の物性がェ ンボス加工前後でなるべく変化しない条件で行なうのが好ま し く、 通常は、 ロール温度が室温〜 1 5 0 °Cであり、 ロール間ニップ圧が 1 〜 3 0 k g Z c m2 であり、 シ一 ト送り速度が 1 〜 5 O m/分程 度の範囲の条件でエンボス加工が行なわれる。 The conditions for embossing differ depending on the combination of the embossing rolls and the physical properties of the porous base sheet (I) or the laminated sheet (ΙΠ), but the porous substrate sheet (I) or the laminated sheet (I) m) is preferably carried out under conditions where the physical properties of the material do not change as much as possible before and after embossing. Usually, the roll temperature is from room temperature to 150 ° C, and the nip pressure between the rolls is 1 to 30 kg Z cm. The embossing is performed under the condition that the sheet feed speed is in the range of about 1 to 5 Om / min.
上記リ ブ形成法より も、 エンボスロールによるエンボス加工によ る凸部形成法の方が、 凸部を容易に形成できるメ リ ッ トがある。 し かも、 エンボス加工により形成された多孔性基材シー ト ( I ) の凹 面に塗布層 ( Π ) を形成することにより、 エンボス加工により形成 された凸部の強度が高ま り、 実用上十分な強度を持つ鉛蓄電池用セ パレ一夕を提供するこ とができる。 く セノ レ一タ There is a merit that a convex portion can be formed more easily by a method of forming a convex portion by embossing with an embossing roll than by the above-described rib forming method. In addition, by forming the coating layer (Π) on the concave surface of the porous base sheet (I) formed by embossing, the strength of the protrusions formed by embossing is increased, and practically, It is possible to provide a lead storage battery with sufficient strength. Ku Seno Reta
本発明に係る鉛蓄電池用セパレ一タは、 上記のような凸部が形成 されていてもよい積層シー ト ( m ) からなるカ^ この積層シー ト ( m ) をそのまま用いたシー ト状セパレー夕であってもよいし、 ま た袋状にして用いた袋状セパレ一夕であってもよい。  The separator for a lead storage battery according to the present invention is a sheet-like separator using the laminated sheet (m) as it is, which is composed of the laminated sheet (m) on which the above-mentioned projections may be formed. It may be evening, or it may be a bag-shaped separation that was used in a bag.
本発明に係る鉛蓄電池用セパレ一夕に用いられる積層シー ト (m) の平均孔径は、 0. 1〜 1 0 mの範囲内にあることが電気抵抗値、 および耐酸化性の改善効果の点で好ま しい。 すなわち、 平均孔径が The average pore size of the laminated sheet (m) used in the separation for a lead storage battery according to the present invention is preferably in the range of 0.1 to 10 m to improve the electric resistance value and the oxidation resistance. Preferred in point. That is, the average pore size
0. 1 inより小さいと、 セパレー夕の電気抵抗値が高く なり、 ま た平均孔径が 1 を超えると、 耐酸化性の改善効果が小さい。 また、 この積層シー ト (m) の空隙率は、 電気抵抗を小さ く するた めに 5 0 %以上であることが好ま しい。 If it is less than 0.1 in, the electrical resistance of the separator increases, and if it exceeds 1, the effect of improving oxidation resistance is small. The porosity of the laminated sheet (m) is preferably 50% or more in order to reduce electric resistance.
本発明に係る積層シー ト (m) からなる鉛蓄電池用セパレ一夕は、 通常、 次のような性能を有している。  The lead storage battery separator composed of the laminated sheet (m) according to the present invention usually has the following performance.
(1) 絶縁物と して陽極と陰極を電気的に隔離するこ とができる。 (1) The anode and cathode can be electrically isolated as insulators.
(2) 電解液の拡散が良く、 電気抵抗が低い。 (2) Good diffusion of electrolyte and low electric resistance.
(3) 耐酸性、 耐熱性に優れている。  (3) Excellent acid resistance and heat resistance.
(4) 電池組立時および実用時に必要な機械的強度を有している。 (4) It has the mechanical strength necessary for battery assembly and practical use.
(5) 電池性能に有害な物質を溶出しない。 (5) Does not elute substances harmful to battery performance.
したがって、 本発明に係る鉛蓄電池用セパレ一タは、 開放型蓄電 池のセパレー夕と して有用であり、 特に自動車用蓄電池のセパレ一 夕と して好ま しい。  Therefore, the separator for a lead storage battery according to the present invention is useful as a separator for an open storage battery, and is particularly preferable as a separator for an automotive storage battery.
袋状セパレ一夕  Overnight Separation
袋状セパレー夕は、 たとえば凸部が形成されていない積層シ一 卜 ( m ) を重ね合わせ、 あるいは折り返して重ね合わせ、 一つの側端 部を除き他の側端部を超音波や加熱等による融着シール、 あるいは 歯車圧着等によるメ カニカルシールなどによって積層シ一 ト ( m ) を袋状に形成することにより得られる。 The bag-shaped separator is, for example, a laminated sheet having no projections. (m) are overlapped or folded back and overlapped, and the other side end except for one side end is bonded by a fusion seal using ultrasonic waves or heating, or a mechanical seal such as gear crimping, etc. m)) in the form of a bag.
また、 凸部が形成されている積層シー ト ( m ) の場合には、 たと えば積層シー ト ( m ) を凸部が形成されている面または凸部が形成 されていない面を内側にく るように重ね合わせ、 あるいは折り返し て重ね合わせ、 一つの側端部を除き他の側端部を超音波や加熱等に よる融着シール、 あるいは歯車圧着等によるメカニカルシールなど によつて袋状に形成することにより、 袋状セパレータを得ること力 できる。  Further, in the case of a laminated sheet (m) having a convex portion, for example, the laminated sheet (m) should have the surface on which the convex portion is formed or the surface on which the convex portion is not formed inward. The other side end except for one side end is formed into a bag by a fusion seal using ultrasonic waves or heating, or a mechanical seal using gear crimping, etc. By forming, a bag-like separator can be obtained.
このように、 積層シー ト ( π ) を袋状に形成するに際し、 リ ブ等 の凸部が形成されている面を袋の内側に く るように重ね合わせ、 あ るいは折り返して重ね合わせてもよいし、 また、 袋の外側に く るよ うに重ね合わせ、 あるいは折り返して重ね合わせてもよい。 たとえ ば鉛蓄電池において、 陽極板を積層シー ト ( m ) から形成された袋 状セパレー夕の中に入れるときは、 リ ブ等の凸部が袋状セパレ一夕 の内側に く るようにすることが好ま しく、 また陰極板を袋状セパレ 一夕の中に入れるときは、 リ ブ等の凸部が袋状セパレ一夕の外側に く るようにすることが好ま しい。  As described above, when forming the laminated sheet (π) into a bag shape, the surface on which the convex portion such as a rib is formed is overlapped so as to come to the inside of the bag, or folded back and overlapped. It may be superimposed on the outside of the bag, or may be folded back and superimposed. For example, in a lead-acid battery, when the anode plate is placed in a bag-shaped separator made of laminated sheets (m), make sure that the ribs and other protrusions are inside the bag-shaped separator. When the cathode plate is placed in the bag-shaped separator, it is preferable that the protrusions such as ribs are located outside the bag-shaped separator.
袋状セパレー夕の構造の一例は、 本出願人の出願に係る特開平 9 一 1 9 9 1 0 1号公報に詳し く 開示されている。 発明の効果 本発明によれば、 電気抵抗が低く、 耐酸化性に優れた鉛蓄電池用 のシー ト状、 袋状等のセパレ一夕を提供することができ、 少な く と も一方の表面に凸部が形成されているシー ト状および袋状のセパレ —夕、 ならびに凸部が全く形成されていないシー ト状および袋状の セパレ一夕を提供することができる。 実施例 An example of the structure of the bag-shaped separator is disclosed in detail in Japanese Patent Application Laid-Open No. 1991/1991 filed by the present applicant. The invention's effect According to the present invention, it is possible to provide a sheet-like or bag-like separator for a lead storage battery having low electric resistance and excellent oxidation resistance, and at least one of the surfaces has a convex portion. It is possible to provide a sheet-like and bag-shaped separator that has been formed and a sheet- and bag-shaped separator that has no projections formed at all. Example
以下、 本発明を実施例により説明する力 本発明は、 これら実施 例に限定されるものではない。  Hereinafter, the present invention will be described with reference to examples. The present invention is not limited to these examples.
実施例 A - 1 Example A-1
<多孔性基材シー 卜の調製、  <Preparation of porous substrate sheet,
構成繊維が多分岐状態にある合成パルプ ( a ) と してポリエチレ ン合成パルプ (融点 = 1 3 5 °C、 平均繊維長 = l m m、 濾水度 = 3 秒 Z g ) 3 0重量%、  As synthetic pulp (a) in which the constituent fibers are in a multi-branched state, polyethylene synthetic pulp (melting point = 135 ° C, average fiber length = lmm, freeness = 3 seconds Zg) 30% by weight,
耐酸性無機粉体 ( b ) としてケイ ソゥ土 4 5重量 ¾、  As acid-resistant inorganic powder (b), silica earth 45 weight%,
合成繊維 ( f ) としてポリエステル繊維 2 3重量 Q0、 および パ、イ ンダー ( h ) と してスチレン—ブタジエン共重合体ゴムバイ ンダ一 2重量%からなるシー トを湿式抄造法で成形し、 その後 1 2 5 °Cに設定した ドラム型乾燥機を通して乾燥および熱処理を施し、 厚さ 0. 2 5 m m、 密度 0. 3 5 g Z c m 3 の多孔性基材シー ト (空隙率 = 7 6 %、 平均孔径 = 1 5 ju 最大孔径 = 5 0 m ) を 調製した。 Synthetic fibers (f) polyester fiber 2 3 wt Q 0 as, and Pa, and the Lee Nda (h) a styrene - molded butadiene copolymer Gomubai Sunda wet papermaking method sheet comprising a single 2 wt%, then 1 2 5 ° C subjected to a drying and heat treatment through the set drum dryer, thickness 0. 2 5 mm, density 0. 3 5 g Z cm 3 of the porous substrate sheet (porosity = 7 6% , Average pore size = 15 ju maximum pore size = 50 m).
塗布層形成用ペース 卜状混合液の調製 \  Preparation of paste-like mixture for coating layer formation \
無機粉体 ( d ) と して、 平均粒径 1 m、 比表面積 2 2 0 m 2 ノ gの合成シ リ カ 4重量%、 平均粒径 1 5 / m、 比表面積 2 m 2 ノ g のケイ ソゥ土 6重量0 、 平均粒径 3 / m、 比表面積 3 m 2 ノ gのパ 一ライ ト 1 0重量%、 As the inorganic powder (d), an average particle diameter of 1 m, a specific surface area 2 2 0 m 2 Bruno g silica 4% by weight, average particle size 15 / m, specific surface area 2 m 2 g g silica earth 6 weight 0 , average particle size 3 / m, specific surface area 3 m 2 g 10% by weight of light,
耐酸性重合体 ( e ) と して、 ガラス転移点 ( T g ) が 7 0 °Cのァ ク リル樹脂ェマルジヨ ンを固形分と して 1 . 5重量%、 ガラス転移 点 ( T g ) がー 5 °Cのスチ レ ン—ブタ ジエン共重合体ラテ ッ クス ( S B R ) ェマルジョ ンを固形分と して 3重量%、  The acid-resistant polymer (e) has a glass transition point (T g) of 1.5% by weight of a solid content of an acrylic resin emulsion having a glass transition point (T g) of 70 ° C. -5 ° C styrene-butadiene copolymer latex (SBR) 3% by weight of emulsion as solids,
増粘剤と してポリアク リル酸ソーダ 0 . 5重量%、 および 水 7 5重量%からなるペース ト状混合液 (粘度 4 0 0 0 c P s ( 2 5 °C ) ) を調製した。  A paste-like mixed solution (viscosity: 400 cps (25 ° C.)) consisting of 0.5% by weight of sodium polyacrylate and 75% by weight of water was prepared as a thickener.
<塗布層の形成およびリ ブの形成 > <Formation of coating layer and formation of rib>
上記多孔性基材シー トの片面に、 このべ一ス ト状混合液を、 図 1 に示す塗布装置を用いて塗布した後、 1 5 0 °Cで加熱乾燥して、 乾 燥坪量 4 0 g Z m 2 の塗布層を形成した。 この塗布は、 図 1 に示す ように、 ペース ト状混合液 2を塗装装置における混合槽 3 に供給し ながら、 同時に多孔性基材シー 卜 1 をコ一ティ ングバーコ一夕一 4 と案内ロール 5 との間に通して行なった。 This base-like mixed solution was applied to one surface of the porous substrate sheet using the application apparatus shown in FIG. 1, and then heated and dried at 150 ° C. to obtain a dry basis weight of 4 A coating layer of 0 g Z m 2 was formed. In this application, as shown in Fig. 1, the paste-like mixed solution 2 is supplied to the mixing tank 3 in the coating apparatus, and at the same time, the porous substrate sheet 1 is simultaneously coated with the coating bar 4 and the guide roll 5. Between the two.
次いで、 この塗布面にホッ トメル 卜型樹脂 (旭化学合成 (株) 製 「アサヒタ ッ ク T D 3 — 1 7 6」 (商品名) ) を用いて、 リブ高さ 0. 8 m m、 リブ間隔 1 0 m mとなるように連続直線状のリブを複 数個形成して、 鉛蓄電池用セパレータ (平均孔径 = l ^ m ) を得た。 得られたセパレー夕について、 セパレ一タ特性を下記の方法によ つて測定した。 その結果を表 1 に示す。  Then, using a hot-melt resin (“Asahi Tack TD3—176” (trade name) manufactured by Asahi Chemical Synthetic Co., Ltd.) on the coating surface, the rib height was 0.8 mm and the rib spacing was 1 mm. A plurality of continuous linear ribs were formed so as to have a thickness of 0 mm to obtain a lead storage battery separator (average pore diameter = l ^ m). Separator characteristics of the obtained separator were measured by the following method. The results are shown in Table 1.
<セパレ一タ特性の測定方法: ( 1 ) 厚さ : J I S C 2 2 0 2に従って測定した <Method of measuring separator characteristics: (1) Thickness: measured according to JISC 222
( 2 ) 電気抵抗値 J I S C 2 3 1 3に従って測定した。  (2) Electric resistance value Measured according to JISC2313.
( 3 ) 耐酸化時間 試験容器内に陽極板と陰極板を配置し、 その間 に、 作製した 5 0 mm x 5 0 mmのセノ、°レ一夕 試料をセッ 卜 し、 試料には 5 k gの荷重をかけ た。 この状態で、 容器内に硫酸水溶液 ( 2 0 での比重 1. 3 ) 1 0 0 0 m l を入れ、 5 0 °C で 2. 5 Aの直流電流を流し、 両電極間の端子 電圧が 2. 6 V以下、 または電圧差が 2時間以 内に 0. 2 V降下した時間を測定し、 これを耐 酸化時間と した。  (3) Oxidation resistance time An anode plate and a cathode plate are placed in a test container, and a 50 mm x 50 mm Seno and temperature sample is set between them. Load was applied. In this state, 100 ml of sulfuric acid aqueous solution (specific gravity at 20: 1.3) was put into the vessel, and a DC current of 2.5 A was passed at 50 ° C, and the terminal voltage between both electrodes was 2 The time during which 6 V or less or the voltage difference dropped 0.2 V within 2 hours was measured, and this was defined as the oxidation resistance time.
実施例 A - 2 Example A-2
ぐ塗布層形成用ペース ト状混合液の調製ヽ Preparation of paste-like mixture for forming coating layer
無機粉体 ( d ) と して、 平均粒径 1 m、 比表面積 2 2 0 m2 / gの合成シ リ カ 1 0重量%、 平均粒径 1 5 ^ m、 比表面積 2 m 2 / gのケイ ソゥ土 6重量%、 平均粒径 3 m、 比表面積 3 m 2 ノ' gの パ一ライ ト 4重量%、 As inorganic powder (d), 10% by weight of synthetic silica having an average particle size of 1 m and a specific surface area of 220 m 2 / g, an average particle size of 15 ^ m, and a specific surface area of 2 m 2 / g Kay Sou soil 6 wt%, average particle diameter 3 m, a specific surface area of 3 m 2 Roh 'g Pas one line preparative 4% by weight of,
耐酸性重合体 ( e ) と して、 ガラス転移点 ( T g ) が 7 0 °Cのァ ク リ ル樹脂エマルジ ョ ンを固形分と して 2重量 ¾、 ガラス転移点 ( T g ) がー 5 °Cの S B Rェマルジヨ ンを固形分と して 2. 5重量 %、 増粘剤としてポリ アク リル酸ソ一ダ 0. 5重量%、 および 水 7 5重量 <½からなるペース ト状混合液 (粘度 4 5 0 0 c P s ( 2 5 °C ) ) を調製した。  The acid-resistant polymer (e) has a glass transition point (T g) of 70% at 70 ° C as a solid content of 2% by weight as a solid, and a glass transition point (T g). -Paste-like mixture consisting of 2.5% by weight of SBR emulsion at 5 ° C as solids, 0.5% by weight of sodium polyacrylate as a thickener, and 75% by weight of water <½ A liquid (viscosity 450 000 cPs (25 ° C)) was prepared.
く塗布層の形成およびリブの形成 実施例 A — 1 と同じ多孔性基材シ一 卜の片面に、 実施例 A — 1 と 同様に、 図 1 に示す塗布装置を用いて塗布した後、 1 5 0 °Cで加熱 乾燥して、 乾燥坪量 2 0 g m 2 の塗布層を形成した。 Formation of coating layer and formation of rib One side of the same porous substrate sheet as in Example A-1 was applied using the coating apparatus shown in Fig. 1 in the same manner as in Example A-1, and then heated and dried at 150 ° C. A coating layer having a dry basis weight of 20 gm 2 was formed.
次いで、 実施例 1 と同様にして、 連続直線状のリ ブを複数個形成 し、 鉛蓄電池用セパレータ (平均孔径 = 2 ^ m ) を得た。  Subsequently, a plurality of continuous linear ribs were formed in the same manner as in Example 1 to obtain a lead storage battery separator (average pore diameter = 2 ^ m).
得られたセパレ一タについて、 セパレータ特性を上記方法によつ て測定した。 その結果を表 1 に示す。  Separator characteristics of the obtained separator were measured by the above method. The results are shown in Table 1.
実施例 A - 3 Example A-3
<多孔性基材シ一 卜の調製  <Preparation of porous substrate sheet
合成パルプ ( a ) と してポリエチレン合成パルプ (平均繊維長 = 1 m m, 濾水度 = 3秒 Z g ) 3 0重量%、  As synthetic pulp (a), polyethylene synthetic pulp (average fiber length = 1 mm, freeness = 3 seconds Z g) 30% by weight,
耐酸性無機粉末 ( b ) と して合成シリ カ 4 5重量%、  45% by weight of synthetic silica as acid-resistant inorganic powder (b),
複合型接着性繊維 ( g ) と してポ リ プロ ピレ ンとポ リ エチレン (融点 1 1 0 °C) とからなる複合型熱接着繊維 2 3重量%、 バイ ンダー ( h ) と してスチレン一ブタジエン共重合体ゴムバイ ンダ一 2重量%からなり、 かつ、  23% by weight of composite heat-bonding fiber composed of polypropylene and polyethylene (melting point: 110 ° C) as the composite adhesive fiber (g), and styrene as the binder (h) A butadiene copolymer rubber binder consisting of 2% by weight; and
厚さ 0. 2 0 m m、 密度 0. 3 5 g / c m 3 の多孔性基材シ一 卜 を (空隙率 = 7 6 %、 平均孔径 = 1 3 ^ m、 最大孔径 = 4 5 ^ m ) を湿式抄造法により調製した。 The thickness 0. 2 0 mm, density 0. 3 5 g / cm 3 of the porous substrate sheet scratch Bok (porosity = 7 6%, an average pore diameter = 1 3 ^ m, a maximum pore size = 4 5 ^ m) Was prepared by a wet papermaking method.
く塗布層形成用ペース ト状混合液の調製 \ Preparation of paste mixture for coating layer formation \
無機粉体 ( d ) と して、 平均粒径 1 β m、 比表面積 2 2 0 m 2 / の合成シ リ カ 1 0重量%、 平均粒径 1 5 m、 比表面積 2 m 2 ,' gのケイ ソゥ土 1 8重量%、 As inorganic powder (d), synthetic silica having an average particle diameter of 1 βm and a specific surface area of 220 m 2 /10% by weight, an average particle diameter of 15 m, and a specific surface area of 2 m 2 , 'g 18% by weight
耐酸性重合体 ( e ) と して、 ガラス転移点 ( T g ) がー 5 °Cの S B Rェマルジヨ ンを固形分と して 1 1 . 5重量%、 The acid-resistant polymer (e) has a glass transition point (Tg) of -5 ° C. 11.5% by weight of BR emulsion as solids,
增粘剤と してポ リアク リル酸ソ一ダ 0 . 5重量 <%、 および 水 6 0重量%からなるペース ト状混合液 (粘度 5 0 0 0 c P s ( 2 5 ) ) を調製した。  A paste-like mixture (viscosity: 500 cps (25)) consisting of 0.5% by weight of sodium polyacrylate and 60% by weight of water was prepared as a thickener. .
<塗布層の形成およびリブの形成ン  <Formation of coating layer and formation of ribs
上記多孔性基材シ一 卜の片面に、 このペース 卜状混合液を、 実施 例 A— 1 と同様、 図 1 に示す塗布装置を用いて塗布した後、 1 5 0 This paste-like mixed solution was applied to one surface of the porous substrate sheet using the coating apparatus shown in FIG. 1 in the same manner as in Example A-1.
°Cで加熱乾燥して、 乾燥坪量 4 5 gノ m 2 の塗布層を形成した。 次いで、 実施例 1 と同様にして、 連続直線状のリ ブを複数個形成 し、 鉛蓄電池用セパレータ (平均孔径 = 1 H m ) を得た。 The resultant was dried by heating at ° C to form a coating layer having a dry basis weight of 45 g nom 2 . Next, a plurality of continuous linear ribs were formed in the same manner as in Example 1 to obtain a lead storage battery separator (average pore size = 1 Hm).
得られたセパレ一夕について、 セパレ一タ特性を上記方法によつ て測定した。 その結果を表 1 に示す。  Separation characteristics of the obtained separation were measured by the above method. The results are shown in Table 1.
実施例 A - 4 Example A-4
<塗布層形成用ペース ト状混合液の調製、  <Preparation of a paste mixture for forming a coating layer,
無機粉体 ( d ) と して、 平均粒径 1 β m、 比表面積 2 2 0 m 2 / gの合成シ リ カ 8重量1 ½、 平均粒径 1 5 ^ m、 比表面積 2 m 2 / g のケイ ソゥ土 2 0重量%、 As inorganic powder (d), synthetic silica having an average particle size of 1 βm and a specific surface area of 220 m 2 / g 8 weight 11 , an average particle size of 15 ^ m, and a specific surface area of 2 m 2 / 20% by weight of g
耐酸性重合体 ( e ) と して、 ガラス転移点 ( T g ) がー 5 °Cのァ ク リル樹脂ェマルジヨ ンを固形分と して 3 . 5重量%、 ガラス転移 点 ( T g ) が 6 °Cの S B Rェマルジヨ ンを固形分と して 8重量 <¾、 増粘剤として、 ポリ アク リル酸ソ一ダ 0 . 5重量%、 および 水 6 0重量%からなるペース 卜状混合液 (粘度 5 0 0 0 c P s ( 2 5 °C ) ) を調製した。  As the acid-resistant polymer (e), an acrylic resin having a glass transition point (Tg) of -5 ° C is 3.5% by weight as a solid content, and the glass transition point (Tg) is 3.5% by weight. A paste-like liquid mixture consisting of 8% by weight of SBR emulsion at 6 ° C as solids, 0.5% by weight of sodium polyacrylate as a thickener, and 60% by weight of water ( A viscosity of 500 000 cPs (25 ° C) was prepared.
て塗布層の形成およびリ ブの形成 実施例 A— 3 と同じ多孔性基材シー 卜の片面に、 実施例 A - 1 と 同様に、 図 1 に示す塗布装置を用いて塗布した後、 1 5 0 °Cで加熱 乾燥して、 坪量 2 5 gノ m2 の塗布層を形成した。 Coating layer and rib formation One side of the same porous substrate sheet as in Example A-3 was coated using the coating apparatus shown in FIG. 1 in the same manner as in Example A-1, and then dried by heating at 150 ° C. A coating layer having a basis weight of 25 gm 2 was formed.
次いで、 実施例 1 と同様にして連続直線状のリブを複数個形成し、 鉛蓄電池用セパレータ (平均孔径 = 2 ^ m) を得た。  Next, a plurality of continuous linear ribs were formed in the same manner as in Example 1 to obtain a lead storage battery separator (average pore diameter = 2 ^ m).
得られたセパレー夕について、 セパレ一タ特性を上記方法によつ て測定した。 その結果を表 1 に示す。  Separator characteristics of the obtained separator were measured by the above method. The results are shown in Table 1.
比較例 A - 1 Comparative Example A-1
多孔性基材シ一 トと して、 ポリエステル繊維からなる坪量 4 0 g ノ m2 、 厚さ 0. 2 mm、 密度 0. 2 g Z c m3 の不織布を用い、 その片面に、 実施例 1 と同様にして実施例 1 と同じ無機粉体と耐酸 性重合体とからなる坪量 1 0 0 g /m2 の塗布層を形成した。 As a porous base sheet, a nonwoven fabric made of polyester fiber having a basis weight of 40 g nom 2 , a thickness of 0.2 mm, and a density of 0.2 g Z cm 3 was used. In the same manner as in Example 1, a coating layer having a basis weight of 100 g / m 2 and comprising the same inorganic powder and the acid-resistant polymer as in Example 1 was formed.
次いで、 実施例 1 と同様にして連続直線状のリブを複数個形成し、 比較用セパレー夕 (平均孔径 = 1 5 m) を得た。  Next, a plurality of continuous linear ribs were formed in the same manner as in Example 1 to obtain a comparative separator (average pore diameter = 15 m).
得られたセパレ一夕について、 セパレー夕特性を上記方法によつ て測定した。 その結果を表 1 に示す。  Separation characteristics of the obtained separation were measured by the above method. The results are shown in Table 1.
比較例 A— 2 Comparative Example A-2
実施例 1 と同じ多孔性基材シ一 卜に、 ァク リルェマルジ ヨ ン 2 0 重量%水溶液を含浸させて、 1 2 0 DCで加熱乾燥した。 The same porous substrate sheet one Bok Example 1, impregnated with § click Riruemaruji Yo emissions 2 0 wt% aqueous solution, and dried by heating 1 2 0 D C.
次いで、 実施例 1 と同様にしてリ ブを複数個形成し、 比較用セパ レータ (平均孔径 = 7 m) を得た。  Next, a plurality of ribs were formed in the same manner as in Example 1 to obtain a separator for comparison (average pore diameter = 7 m).
得られたセパレ一タについて、 セパレ一夕特性を上記方法によつ て測定した。 その結果を表 1 に示す。 表 1 The separation properties of the obtained separator were measured by the above method. The results are shown in Table 1. table 1
実施例 A— 1 実施例 A - 2 施例 A - 3 実施例 A - 4 比較例 A - 1 比較例 A - 2 多孔性基材シ一ト  Example A-1 Example A-2 Example A-3 Example A-4 Comparative Example A-1 Comparative Example A-2 Porous substrate sheet
厚み mm) 0. 25 0. 25 0. 20 0. 20 0. 20 0. 25 ァクリルエマ 乾燥坪量 (gZm2) 40 20 45 25 1 00 ルジョン含浸 リブ形成 有り 有り 有り 有り 有り 有り 電気抵抗値 Thickness mm) 0.25 0.25 0.20 0.20 0.20 0.25 Acrylema Dry basis weight (gZm 2 ) 40 20 45 25 1 00 Revolution impregnation Rib formation Yes Yes Yes Yes Yes Yes Electric resistance
(Ω . dm2Z枚) 0. 0007 0. 0006 0. 0007 0. 0005 0. 00 1 0 0. 00 1 3 耐酸化時間 (Ω. Dm 2 Z) 0.0007 0.0006 0000.0007 0.0005 0.00 1 0 0.00 1 3 Oxidation resistance time
(h r s/枚) 330 300 340 305 1 60 1 40 (hrs / sheet) 330 300 340 305 1 60 1 40
表 1 から明らかなように、 本実施例のセパレ一夕は、 比較例に比 ベ、 電気抵抗が低く、 耐酸化性が極めて優れている。 実施例 B — 1 As is clear from Table 1, the separation of this example has lower electric resistance and extremely excellent oxidation resistance as compared with the comparative example. Example B-1
く多孔性基材シー 卜の調製ゝ Preparation of porous base sheet
合成パルプ ( a ) と して、 ポ リ エチレ ン合成パルプ (三井石油化 学工業 (株) 製、 商品名 S W P E S T— 2、 融点 1 3 5 °C ) 3 0重量 <%、  As synthetic pulp (a), polyethylene synthetic pulp (manufactured by Mitsui Petrochemical Industries, Ltd., trade name SWPEST-2, melting point: 135 ° C) 30% by weight <%
耐酸性無機粉末 ( b ) と して、 合成シ リ カ (日本シ リ カ社製、 商 品名 ニップシール N S — T ) 4 5重量0 /0、 As the acid-resistant inorganic powder (b), synthesized Li Ca (Japan Shi Li Ca Co., trade name Nipsil NS - T) 4 5 Weight 0/0,
複合型接着性繊維 ( g ) と して、 ポリプロピレンとポリエチレン (融点 1 1 0 °C) とからなる複合型熱接着繊維 (ダイヮボウポリ テ ック社製、 商品名 N B F Eタイプ) 2 3重量0' 0、 および And a composite adhesive fiber (g), polypropylene with polyethylene (melting point 1 1 0 ° C) and composite thermal bonding fibers consisting (Daiwaboupori Te click trade name NBFE type) 2 3 Weight 0 '0 , and
バイ ンダー ( h ) と してスチレ ン一ブタ ジエン共重合体ゴムバイ ンダー (日本ゼオン (株) 製、 商品名 二ポール L X 4 3 0 ) 2重 量%からなるシー トを湿式抄造法で成形し、 その後 1 2 5 °Cに設定 した ドラム型乾燥機を通して乾燥および熱処理を施し、  As a binder (h), a styrene-butadiene copolymer rubber binder (manufactured by Nippon Zeon Co., Ltd., trade name: Nipol LX430), a sheet consisting of 2% by weight, is formed by a wet papermaking method. , Followed by drying and heat treatment through a drum dryer set at 125 ° C,
厚さ 0. 2 0 mm、 密度 0. 3 5 g Z c m 3 の多孔性基材シ一 卜 (空隙率 = 7 6 %、 平均孔径 = 1 0 m、 最大孔径 = 4 0 ^ m ) を 調製した。 The thickness 0. 2 0 mm, density 0. 3 5 g Z cm 3 of the porous substrate sheet one Bok (porosity = 7 6%, an average pore diameter = 1 0 m, a maximum pore size = 4 0 ^ m) Preparation did.
く塗布層形成用ペース ト状混合液の調製 > Preparation of paste-like mixture for coating layer formation>
無機粉体 ( d ) と して、 平均粒径 1 β m、 比表面積 2 2 0 m 2 / g の合成シ リ カ 1 0重量%、 平均粒径 1 5 ^ m、 比表面積 2 m 2 / g のケイソゥ土 5重量%、 耐酸性重合体 ( e ) と して、 アク リル樹脂ェマルジヨ ン (旭化成 工業 (株) 製、 商品名 ポリ トロ ン F X— 2 2 1 0 ) を固形分と し て 1 0重量%、 および As inorganic powder (d), 10% by weight of synthetic silica having an average particle size of 1 βm and a specific surface area of 220 m 2 / g, an average particle size of 15 ^ m, and a specific surface area of 2 m 2 / g g of diatomaceous earth 5% by weight, As the acid-resistant polymer (e), an acrylic resin emulsion (Polytron FX—2210) manufactured by Asahi Kasei Kogyo Co., Ltd., having a solid content of 10% by weight, and
水 7 5重量%からなるペース ト状混合液 (粘度 4 0 0 0 c P s ( 2 5 °C ) ) を調製した。  A paste-like mixed solution (viscosity: 40000 cPs (25 ° C)) consisting of 75% by weight of water was prepared.
エンボス加工による凸部形成 >  Convex part formation by embossing>
金属製凸ロールとペーパー製凹ロールの組み合わせによる 2本の エンボスロールを用いて、 金属製凸ロール温度 1 3 0 °C、 ロール間 二ップ圧 1 0 k g / c m、 基材シー ト送り速度 5 m /'分の条件で、 2本のェンボス口一ル間に、 上記多孔性基材シー 卜を通過させてェ ンボス加工を行なった。 このエンボス加工により、 同一直線上に連 続した直線状の凸部を 1 0 mm間隔で複数個形成することができた。 このエンボス凸部を含めた多孔性基材シー トの総厚は 1. 0 mmで めった。  Using two embossing rolls consisting of a combination of a metal convex roll and a paper concave roll, the metal convex roll temperature is 130 ° C, the nip pressure between the rolls is 10 kg / cm, and the base sheet feeding speed Under the condition of 5 m / 'minute, the embossing was performed by passing the porous substrate sheet between the two embossed mouths. By this embossing, a plurality of linear convex portions continuous on the same straight line could be formed at intervals of 10 mm. The total thickness of the porous base sheet including the embossed protrusions was 1.0 mm.
<塗布層の形成ヽ  <Formation of coating layer ヽ
上記のようにして得られたエンボスシー トのエンボス凹面側に、 上記ペース ト状混合液を、 実施例 A - 1 と同様に、 図 1 に示す塗布 装置を用いて塗布した後、 1 5 0 °Cで加熱乾燥して、 乾燥坪量 3 0 g /m 2 の塗布層を形成し、 鉛蓄電池用セパレ一夕 (平均孔径 = 2 m ) を得た。 The paste-like mixed solution was applied to the embossed concave side of the embossed sheet obtained as described above using the application device shown in FIG. 1 in the same manner as in Example A-1. The resultant was dried by heating at ° C to form a coating layer having a dry basis weight of 30 g / m 2 , thereby obtaining a lead storage battery separator (average pore diameter = 2 m).
得られたセパレ一タについて、 セパレータ特性を上記方法によつ て測定した。 その結果を表 2 に示す。  Separator characteristics of the obtained separator were measured by the above method. The results are shown in Table 2.
実施例 B - 2 Example B-2
く塗布層形成用ペース 卜状混合液の調製: 無機粉体 ( d ) と して、 平均粒径 1 β m、 比表面積 2 2 0 m 2 , gの合成シ リ カ 1 0重量%、 平均粒径 1 5 ^ m、 比表面積 2 m 2 ノ gのケイ ソゥ土 5重量%、 Preparation of paste-like mixture for coating layer formation: As inorganic powder (d), synthetic silica having an average particle diameter of 1 βm and a specific surface area of 220 m 2 , g was 10% by weight, an average particle diameter of 15 ^ m, and a specific surface area of 2 m 2. 5% by weight of g
耐酸性重合体と して、 アク リ ル樹脂ェマルジ ヨ ン (旭化成ェ業 (株) 製、 商品名 ポリ トロン F X— 2 2 1 0 ) を固形分と して 8 重量0 、 ガラス転移点 ( T g ) — 5 °Cのスチレン一ブタジエン共重 合体ラテッ クス ( S B R ) ェマルジョ ンを固形分と して 2重量%、 および水 7 5重量%からなるペース ト状混合液 (粘度 4 0 0 0 c P s ( 2 5 °C ) ) を調製した。 As an acid-resistant polymer, Acryl Resin Emulsion (made by Asahi Kasei Corporation, trade name: Polytron FX-2210) has a solid content of 8 weight 0 and a glass transition point (T g) — 5 ° C styrene-butadiene copolymer latex (SBR) Paste-like liquid mixture consisting of 2% by weight of solids and 75% by weight of water (viscosity of 400 c P s (25 ° C.)) was prepared.
くエンボス加工による凸部形成 Convex formation by embossing
実施例 B — 1 と同じ多孔性基材シー トを用いて、 金属製凸ロール とペーパー製凹ロールの組み合わせによる 2本のエンボスロールを 用いて、 金属製凸ロール温度 1 3 5 °C、 ロール間二ップ圧 5 k g Z c m、 基材シー ト送り速度 5 m /分の条件で、 2本のエ ンボス口一 ル間に、 多孔性基材シ一 卜を通過させてエンボス加ェを行なった。 このエンボス加工により、 同一直線上に連続した直線状の凸部を 1 0 m m間隔で複数個形成することができた。 このエンボス凸部を含 めた多孔性基材シー トの総厚は 0 . 8 m mであった。  Example B—Using the same porous substrate sheet as in 1, using two embossing rolls composed of a combination of a metal convex roll and a paper concave roll, the metal convex roll temperature was set at 135 ° C and the roll was rolled. Embossing is performed by passing a porous substrate sheet between the two embossing ports under the conditions of a nip pressure of 5 kg Z cm and a substrate sheet feeding speed of 5 m / min. Done. By this embossing, a plurality of linear projections continuous on the same straight line could be formed at intervals of 10 mm. The total thickness of the porous base sheet including the embossed protrusions was 0.8 mm.
<塗布層の形成 > <Formation of coating layer>
このエンボスシ一 卜のエンボス凹面側に、 実施例 A— 1 と同様に、 図 1 に示す塗布装置を用いて塗布した後、 1 5 0 °Cで加熱乾燥して、 乾燥坪量 4 5 g /' m 2 および 1 0 0 g Z m 2 の 2種類の塗布層を形 成し、 平均孔径 2 mの鉛蓄電池用セパレータおよび平均孔径 1 mの鉛蓄電池用セパレ一タを得た。 得られたセパレー夕について、 セパレ一タ特性を上記方法によつ. て測定した。 その結果を表 2 に示す。 The embossed sheet was coated on the concave side of the embossed sheet using the coating apparatus shown in FIG. 1 in the same manner as in Example A-1, then dried by heating at 150 ° C. to obtain a dry basis weight of 45 g / By forming two types of coating layers, m 2 and 100 g Z m 2 , a lead-acid battery separator having an average pore diameter of 2 m and a separator for a lead-acid battery having an average pore diameter of 1 m were obtained. Separator characteristics of the obtained separator were measured by the above method. The results are shown in Table 2.
実施例 B - 3 Example B-3
<多孔性基材シー 卜の調製  <Preparation of porous substrate sheet
多孔性基材シー トの厚さを 0 . 2 5 m mにした以外は、 実施例 B — 1 と同じ多孔性基材シ一 ト (密度 = 0 . 3 5 g / c m 3 , 空隙率 = 7 6 90、 平均孔径 = 1 0 m、 最大孔径 = 4 0 m ) を湿式抄造 法により作製した。 . The thickness of the porous substrate sheet 0 except that the 2 5 mm, Example B -. 1 with the same porous substrate sheet one preparative (density = 0 3 5 g / cm 3 , the porosity = 7 690, average pore size = 10 m, maximum pore size = 40 m) were prepared by a wet papermaking method.
塗布層形成用ペース 卜状混合液の調製 \  Preparation of paste-like mixture for coating layer formation \
無機粉体 ( d ) と して、 平均粒径 1 n m、 比表面積 2 2 0 m 2 / gの合成シ リ カ 7重量%、 平均粒径 1 5 ^ m、 比表面積 2 m 2 Z g のゲイ ソゥ土 8重量%、 As inorganic powder (d), 7% by weight of synthetic silica having an average particle size of 1 nm and a specific surface area of 220 m 2 / g, an average particle size of 15 ^ m and a specific surface area of 2 m 2 Zg 8% by weight
耐酸性重合体 ( e ) と して、 アク リル樹脂ェマルジヨ ン (旭化成 工業 (株) 製、 商品名 ポリ 卜ロ ン F X— 2 2 1 0 ) を固形分と し て 1 0重量%、 および  As the acid-resistant polymer (e), an acrylic resin emulsion (Polytron F X—2 210) manufactured by Asahi Kasei Kogyo Co., Ltd., having a solid content of 10% by weight, and
水 7 5重量%からなるペース 卜状混合液 (粘度 4 0 0 0 c P s ( 2 5 °C ) を調製した。  A paste-like mixed solution (viscosity: 400 cps (25 ° C.)) consisting of 75% by weight of water was prepared.
くェンボス加工による凸部形成 > Convex part formation by round boss processing>
金属製凸ロ一ルとペーパー製凹ロールの組み合わせによる 2本の エンボスロールを用いて、 金属製凸ロール温度 1 3 0 °C、 ロール間 二ップ圧 1 0 k g Z c m、 基材シ一 ト送り速度 5 m Z分の条件で、 2本のエンボスロール間に、 上記多孔性基材シー 卜を通過させてェ ンボス加工を行なった。 このエンボス加工により、 同一直線上に不 連続な直線状の凸部を 1 0 m m間隔で複数個形成することができた。 このエンボス凸部を含めた多孔性基材シー 卜の総厚は 1 . 0 m mで あった Using two embossing rolls consisting of a combination of a metal convex roll and a paper concave roll, the metal convex roll temperature was 130 ° C, the nip pressure between the rolls was 10 kg Z cm, Embossing was performed by passing the porous substrate sheet between two embossing rolls under the conditions of a feed speed of 5 mZ. By this embossing, it was possible to form a plurality of discontinuous linear projections on the same straight line at intervals of 10 mm. The total thickness of the porous base sheet including the embossed protrusions was 1.0 mm.
て塗布層の形成 >  Forming a coating layer>
このエンボスシ一 卜のエンボス凹面側に、 上記ペース 卜状混合液 を、 実施例 A— 1 と同様に、 図 1 に示す塗布装置を用いて塗布した 後、 1 5 0 °Cで加熱乾燥して、 乾燥坪量 4 0 g m 2 および 5 0 g / m 2 の 2種類の塗布層を形成し、 2種類の鉛蓄電池用セパレー夕 (平均孔径 = 2 u rn ) を得た。 The paste-like mixture was applied to the embossed concave side of the embossed sheet using the application apparatus shown in FIG. 1 in the same manner as in Example A-1, and then dried by heating at 150 ° C. Two types of coating layers having a dry basis weight of 40 gm 2 and 50 g / m 2 were formed to obtain two types of separation batteries for lead-acid batteries (average pore diameter = 2 u rn).
得られたセパレ一夕について、 セパレ一タ特性を上記方法によつ て測定した。 その結果を表 2 に示す。  Separation characteristics of the obtained separation were measured by the above method. The results are shown in Table 2.
実施例 B - 4 Example B-4
<塗布層形成用ペース 卜状混合液の調製、  <Preparation of paste-like mixed solution for coating layer formation,
無機粉体 ( d ) と して、 平均粒径 1 β m、 比表面積 2 2 0 m 2 / の合成シ リ カ 7重量%、 平均粒径 1 5 m、 比表面積 2 m 2 Z g のゲイ ソゥ土 8重量%、 As an inorganic powder (d), a 7% by weight synthetic silica having an average particle size of 1 βm and a specific surface area of 220 m 2 /, a gay particle having an average particle size of 15 m and a specific surface area of 2 m 2 Zg 8% by weight of soil
耐酸性重合体 ( e ) と して、 アク リル樹脂ェマルジ ヨ ン (旭化成 工業 (株) 製、 商品名 ポリ トロ ン F X— 2 2 1 0 ) を固形分と し て 5重量%、 ガラス転移点 ( T g ) — 5 °Cのスチレン一ブタジエン 共重合体ラテッ クス ( S B R ) ェマルジ ヨ ンを固形分と して 5重量 %、 および  As the acid-resistant polymer (e), acrylic resin emulsion (trade name: Polytron FX—2210, manufactured by Asahi Kasei Kogyo Co., Ltd.) is 5% by weight as a solid content, and has a glass transition point. (T g) — 5 ° C styrene-butadiene copolymer latex (SBR) 5% by weight as solid content of emulsion, and
水 7 5重量%からなるペース ト状混合液 (粘度 4 0 0 0 c P s ( 2 5 °C ) ) を調製した。  A paste-like mixed solution (viscosity: 40000 cPs (25 ° C)) consisting of 75% by weight of water was prepared.
くエンボス加工による凸部形成ヽ Convex formation by embossing
実施例 B — 3 と同じ多孔性基材シ一 トを用いて、 金属製凸ロール とペーパー製凹ロールの組み合わせによる 2本のエンボスロールを 用いて、 金属製凸ロール温度 1 3 5 °C、 ロール間二ップ圧 5 k gノ c m、 基材シー ト送り速度 5 m /分の条件で、 2本のエンボス口一 ル間に、 多孔性基材シ一 卜を通過させてェンボス加工を行なつた。 このエンボス加工によ り、 同一直線上に不連続な直線状の凸部を 1 0 mm間隔で複数個形成することができた。 このエンボス凸部を含 めた多孔性基材シ一 トの総厚は 0. 8 mmであった。 Using the same porous substrate sheet as in Example B-3, a metal convex roll was used. Using two embossing rolls, which are a combination of a concave roll made of paper, a metal convex roll temperature of 135 ° C, a nip pressure between rolls of 5 kgcm, and a substrate sheet feed speed of 5 m / min. Under the conditions, an embossing process was performed by passing a porous substrate sheet between two embossing holes. By this embossing, it was possible to form a plurality of discontinuous linear projections on the same straight line at intervals of 10 mm. The total thickness of the porous base sheet including the embossed protrusions was 0.8 mm.
く塗布層の形成 > Coating layer formation>
このエンボスシー 卜のエンボス凹面側に、 上記ペース 卜状混合液 を、 実施例 A— 1 と同様に、 図 1 に示す塗布装置を用いて塗布した 後、 1 5 0 °Cで加熱乾燥して、 乾燥坪量 5 O g Zm 2 および 1 0 0 g /m2 の 2種類の塗布層を形成し、 平均孔径 2 mの鉛蓄電池用 セパレ一夕および平均孔径 1 μ mの鉛蓄電池用セパレー夕を得た。 得られたセパレ一夕について、 セパレ一タ特性を上記方法によつ て測定した。 その結果を表 2 に示す。 The paste-like mixture was applied to the embossed concave side of the embossed sheet using the coating apparatus shown in FIG. 1 in the same manner as in Example A-1, and then dried by heating at 150 ° C. , two kinds of coating layer having a dry basis weight of 5 O g Zm 2 and 1 0 0 g / m 2 was formed, the average pore size of 2 m lead acid battery separator Isseki and average pore size of 1 mu m lead acid battery separator evening of I got Separation characteristics of the obtained separation were measured by the above method. The results are shown in Table 2.
比較例 B — 1 Comparative Example B-1
実施例 B — 1 と同じ多孔性基材シー トを用いて、 金属製凸ロール とぺ―パ—製凹ロールの組み合わせによる 2本のエンボスロールを 用いて、 金属製凸ロール温度 1 3 0 °C、 ロール間二ップ圧 1 0 k g / c m, 基材シー ト送り速度 5 m/分の条件で、 2本のエンボス口 —ル間に、 多孔性基材シ一 トを通過させてエンボス加工を行ない、 比較用セパレ一夕 (平均孔径 = 1 0 m) を得た。 エンボス加工に より、 同一直線上に連続した直線状の凸部を 1 0 mm間隔で複数個 形成するこ とができた。 このエンボス凸部を含めた多孔性基材シー 卜の総厚は 1. O mmであった。 Using the same porous substrate sheet as in Example B-1 and using two embossing rolls composed of a combination of a metal convex roll and a paper concave roll, the metal convex roll temperature was 130 ° C. C, Emboss by passing a porous substrate sheet between the two embossing holes under the conditions of 10 kg / cm nip pressure between rolls and a substrate sheet feed speed of 5 m / min. Processing was performed to obtain a comparative separator (average pore diameter = 10 m). By embossing, it was possible to form a plurality of linear projections on the same straight line at intervals of 10 mm. The porous substrate sheet including the embossed protrusions The total thickness of the bird was 1. O mm.
得られたセパレ一夕について、 セパレータ特性を上記方法によつ て測定した。 その結果を表 2 に示す。  Separator characteristics of the obtained separator were measured by the above method. The results are shown in Table 2.
比較例 B - 2 Comparative Example B-2
実施例 B — 3 と同じ多孔性基材シ一 卜を用いて、 金属製凸ロール とペーパー製凹ロールの組み合わせによる 2本のエンボスロールを 用いて、 金属製凸ロール温度 1 3 5 °C、 ロール間二ップ圧 5 k g / c m、 基材シー ト送り速度 5 m/'分の条件で、 2本のエンボスロー ル間に、 多孔性基材シ一 卜を通過させてエンボス加工を行ない、 比 較用セパレータ (平均孔径 = 1 0 m ) を得た。 エンボス加工によ り、 同一直線上に不連続な直線状の凸部を 1 0 mm間隔で複数個形 成することができた。 このエンボス凸部を含めた多孔性基材シ一 ト の総厚は 1. 0 m mであった。  Using the same porous substrate sheet as in Example B-3, using two embossing rolls composed of a combination of a metal convex roll and a paper concave roll, a metal convex roll temperature of 135 ° C, Embossing is performed by passing a porous substrate sheet between two embossing rolls under the conditions of a nip pressure between rolls of 5 kg / cm and a substrate sheet feed speed of 5 m / 'min. Thus, a comparative separator (average pore size = 10 m) was obtained. By embossing, it was possible to form a plurality of discontinuous linear projections on the same straight line at intervals of 10 mm. The total thickness of the porous base sheet including the embossed projections was 1.0 mm.
得られたセパレ一夕について、 セパレー夕特性を上記方法によつ て測定した。 その結果を表 2 に示す。  Separation characteristics of the obtained separation were measured by the above method. The results are shown in Table 2.
実施例 A— 1 〜 4、 実施例 B - 1 〜 4の各セパレ一夕を用いて鉛 蓄電池を構成し、 電池寿命テス ト ( S A E J 2 4 0 C y c l e A lead-acid battery was constructed using each separator of Examples A-1 to 4 and Examples B-1 to 4, and a battery life test (SAEJ240Cycle) was performed.
L i f e T e s t i n g ) を行なった結果、 市販のポリエチレ ンフィルムセパレ一夕と同等以上のサイ クル寿命を示した。 表 2 As a result of performing Life Testing, the cycle life was equal to or longer than that of a commercially available polyethylene film separator. Table 2
実施例 B— 1 実施例 B - 2 実施例 B— 3 実施例 B— 4 比較例 B— 1 比較例 Β _ 2 Example B-1 Example B-2 Example B-3 Example B-4 Comparative Example B-1 Comparative Example _ _2
^孔性¾材シート ^ Porous material sheet
h匾f-み0^ ( m 0 , 20 0. 20 0. 25 0. 25 0. 20 0. 25 エンボス形状 i車 綜 速 続 不連続 不連続 連 ^ ヽ"!卓 h 匾 f-mi 0 ^ (m 0, 20 0. 20 0. 25 0. 25 0. 20 0.25 Embossed shape i car Overall speed Continuous Discontinuous Discontinuous Continuous ^ ^ "!
直線状 直線状 直線状 線 商總 τ H'フ\ "hJnU丁、、一  Straight line straight line straight line business τ H '
j^-ffj' v ΙΠ ill J π 0. 8 1. 0 0. 8 * w 1 Ω 涂;作? ^眉園 7 ffCi 田flぺへ一人 1 k H/氏臣ム口 ft¾ j ^ -ffj 'v ΙΠ ill J π 0.8.1.0.0.8 * w 1 Ω 涂; product? ^ Bizoen 7 ffCi field to fl 一 人 alone 1 kH / Mr.
iJi  iJi
ム ^、ノ 1 0 1 0 7 7  M ^, no 1 0 1 0 7 7
>r ソ L. リ 5 8 8  > r Seo L. Li 5 8 8
ァクリル樹脂ェマルジコ 固形分) 1 0 8 1 0 5  Acryl resin emalzico solids) 1 0 8 1 0 5
S BR ェマルジョズ固形分) 2 5  S BR Emarjoz solids) 2 5
水 75 75 75 75 乾燥坪量 (gZm2) 30 45 1 00 4 0 50 50 1 00 Water 75 75 75 75 Dry basis weight (gZm 2 ) 30 45 1 00 4 0 50 50 1 00
電気抵抗値 Electric resistance
(Ω · dm2/枚) 0.0005 0.0006 0.0007 0.0007 0.0007 0.0006 0.0008 0.0004 0.0005 耐酸化時間 (Ω · dm 2 / sheet) 0.0005 0.0006 0.0007 0.0007 0.0007 0.0006 0.0008 0.0004 0.0005 oxidation time
(h r s/ 300 330 360 330 330 34 0 370 90 1 1 0 (hrs / 300 330 360 330 330 34 0 370 90 1 1 0
表 2から明らかなように、 本実施例のセパレー夕は電気抵抗が低 く、 エンボス加工のみの比較例に比べて、 耐酸化性が極めて優れて いる。 As is clear from Table 2, the separator of this example has a low electric resistance, and has extremely excellent oxidation resistance as compared with the comparative example in which only embossing is performed.

Claims

請求の範固 Claim scope
1. 構成繊維が多分岐状態にある合成パルプ ( a ) と、 耐酸性無機 粉体 ( b ) および Zまたは耐酸性無機繊維 ( c ) とからなり、 湿式 抄造法によ り製造された多孔性基材シー ト ( I ) の少なく とも片面 に、 無機粉体 ( d ) と耐酸性重合体 ( e ) とを含む塗布層 ( Π ) 力 形成された積層シー ト ( ΠΙ ) からなるこ とを特徴とする鉛蓄電池用 セノ、レ一タ。 1. A porous pulp made of a synthetic pulp (a) in which the constituent fibers are in a multi-branched state, an acid-resistant inorganic powder (b) and Z or an acid-resistant inorganic fiber (c), produced by a wet paper-making method. At least one side of the base sheet (I) is composed of a laminated sheet (ΠΙ) formed with a coating layer (Π) containing an inorganic powder (d) and an acid-resistant polymer (e). Features lead-acid battery seno and writer.
2. 前記積層シー ト ( m) の片面または両面に、 凸部が設けられて いることを特徴とする請求の範囲第 1項に記載の鉛蓄電池用セパレ 一夕。 2. The lead storage battery separator according to claim 1, wherein a convex portion is provided on one or both surfaces of the laminated sheet (m).
3. 前記凸部が、 前記積層シー ト ( m ) の多孔性基材シ一 卜 ( I ) 層の表面に、 ほぼ同一直線上に連続または不連続に形成されている ことを特徴とする請求の範囲第 2項に記載の鉛蓄電池用セパレ一夕。 3. The convex portion is formed on the surface of the porous base sheet (I) layer of the laminated sheet (m) continuously or discontinuously on substantially the same straight line. 2. Separation for lead-acid batteries according to paragraph 2 of the paragraph.
4. 前記凸部が、 ホッ トメル ト型樹脂でリ ブ状に接着形成されてい るこ とを特徴とする請求の範囲第 2項または第 3項に記載の鉛蓄電 池用セパレー夕。 4. The lead-acid battery separator according to claim 2, wherein the convex portion is formed by hot-melt resin in a rib shape.
5. 前記凸部が、 前記多孔性基材シー ト ( I ) のエンボス加工によ り形成されていることを特徴とする請求の範囲第 2項または第 3項 に記載の鉛蓄電池用セパレータ。 5. The lead storage battery separator according to claim 2, wherein the projections are formed by embossing the porous base sheet (I).
6. 前記多孔性基材シー ト ( I ) のェンボス加工によってその片面 に、 ほぼ同一直線上に前記凸部が連続または不連続に形成されてい るとともに、 前記多孔性基材シー ト ( I ) の凸部が形成された面と 反対側の表面に、 前記塗布層 ( Π ) が形成されていることを特徴と する請求の範囲第 2項に記載の鉛蓄電池用セパレ一夕。 6. The protrusions are formed on one surface of the porous base sheet (I) in a continuous or discontinuous manner on substantially the same straight line by embossing, and the porous base sheet (I) 3. The separator for a lead-acid battery according to claim 2, wherein the coating layer (Π) is formed on a surface opposite to a surface on which the convex portions are formed.
7. 前記積層シ一 卜 (m) が袋状に形成されていることを特徴とす る請求の範囲第 1項〜第 6項のいずれかに記載の鉛蓄電池用セパレ 一夕。 7. The lead storage battery separator according to any one of claims 1 to 6, wherein the laminated sheet (m) is formed in a bag shape.
8. 前記多孔性基材シ一 ト ( I ) 、 8. The porous substrate sheet (I),
合成パルプ ( a ) 5〜 7 0重量%と、  Synthetic pulp (a) 5 to 70% by weight,
耐酸性無機粉体 ( b ) および/または耐酸性無機繊維 ( c ) 5〜 6 0重量%と、  Acid resistant inorganic powder (b) and / or acid resistant inorganic fiber (c) 5 to 60% by weight,
合成繊維 ( f ) および //または複合型接着性繊維 ( g ) 5〜 5 0 重量%と  Synthetic fiber (f) and / or composite adhesive fiber (g) 5-50% by weight
からなるこ とを特徴とする請求の範囲第 1項〜第 7項のいずれかに 記載の鉛蓄電池用セパレ一夕。 The lead storage battery separator according to any one of claims 1 to 7, wherein the separation is for a lead storage battery.
9. 前記多孔性基材シー ト ( I ) 、 9. The porous substrate sheet (I),
合成パルプ ( a ) 5〜 7 0重量%と、  Synthetic pulp (a) 5 to 70% by weight,
耐酸性無機粉体 ( b ) および/または耐酸性無機繊維 ( c ) 5〜 6 0重量%と、  Acid resistant inorganic powder (b) and / or acid resistant inorganic fiber (c) 5 to 60% by weight,
合成繊維 ( f ) およびズまたは複合型接着性繊維 ( g ) 5〜 5 0 重量%と、 Synthetic fiber (f) and composite or composite adhesive fiber (g) 5 to 50 Weight percent,
合成パルプ ( a ) の融点もしく は分解温度より も低い融点を有す、 または前記温度で接着力を発現するバイ ンダー ( h ) 0. 5 〜 1 0 重量%と  A binder (h) having a melting point lower than the melting point or the decomposition temperature of the synthetic pulp (a) or exhibiting an adhesive force at the above-mentioned temperature;
からなるこ とを特徴とする請求の範囲第 1項〜第 7項のいずれかに 記載の鉛蓄電池用セパレータ。 The lead-acid battery separator according to any one of claims 1 to 7, wherein the separator comprises:
1 0. 前記塗布層 ( Π ) の乾燥坪量が、 5 〜 5 0 g m 2 の範囲内 にあることを特徴とする請求の範囲第 1項〜第 9項のいずれかに記 載の鉛蓄電池用セパレータ。 10. The lead-acid battery according to any one of claims 1 to 9, wherein the dry basis weight of the coating layer (Π) is in the range of 5 to 50 gm 2. For separator.
1 1. 前記塗布層 ( Π ) 、 無機粉体 ( d ) 3 0 〜 9 0重量%と、 耐酸性重合体 ( e ) 1 0 〜 7 0重量%とからなるこ とを特徴とする 請求の範囲第 1項〜第 1 0項のいずれかに記載の鉛蓄電池用セパレ —夕。 11. The coating layer (Π), the inorganic powder (d) is composed of 30 to 90% by weight, and the acid-resistant polymer (e) is composed of 10 to 70% by weight. Separation for lead-acid batteries according to any one of the paragraphs 1 to 10 — evening.
1 2. 前記塗布層 ( Π ) を構成する無機粉体 ( d ) カ^ 平均粒怪が 1 0 H m以下であり、 かつ比表面積が 1 0 0 〜 2 5 0 m 2 / gであ る無機粉体 ( i ) 1 0 〜 9 0重量%と、 平均粒径が 1 〜 3 0 mで あり、 かつ比表面積が 0. 1 〜 5 0 m 2 / gである無機粉体 ( ii) 9 0 〜 1 0重量%との混合物であることを特徴とする請求の範囲第 1項〜第 1 1項のいずれかに記載の鉛蓄電池用セパレ一タ。 1 2. The inorganic powder (d) constituting the coating layer (Π) has an average grain size of 10 Hm or less and a specific surface area of 100 to 250 m 2 / g. Inorganic powder (i) an inorganic powder having an average particle size of 10 to 90% by weight and a specific surface area of 0.1 to 50 m 2 / g; The separator for a lead storage battery according to any one of claims 1 to 11, wherein the separator is a mixture of 0 to 10% by weight.
1 3. 前記積層シー ト ( m ) の平均孔径が 0. l 〜 1 0 〃 mの範囲 内にあるこ とを特徴とする請求の範囲第 1項〜第 1 2項のいずれか に記載の鉛蓄電池用セパレ一タ。 1 3. The average pore size of the laminated sheet (m) is in the range of 0.1 to 10 μm. The separator for a lead-acid battery according to any one of claims 1 to 12, characterized in that the separator is located within the separator.
1 4. 構成繊維が多分岐状態にある合成パルプ ( a ) と、 耐酸性無 機粉体 ( b ) および Zまたは耐酸性無機繊維 ( c ) とを媒体中に分 散させて湿式抄造法により多孔性基材シー ト ( I ) を調製し、 次いで、 無機粉体 ( d ) と耐酸性重合体 ( e ) の固形分濃度が 11 4. Synthetic pulp (a), whose constituent fibers are in a multi-branched state, and acid-resistant inorganic powder (b) and Z or acid-resistant inorganic fiber (c) are dispersed in a medium and wet-laid. A porous substrate sheet (I) is prepared, and then the inorganic powder (d) and the acid-resistant polymer (e) have a solid concentration of 1%.
0〜 7 0重量%となるように水を加えて調製したペース ト状混合液 を該多孔性基材シ一 ト ( I ) の少な く と も片面に塗布し、 乾燥して 塗布層 ( Π ) を形成し積層シー ト (m) とすることを特徴とする鉛 蓄電池用セパレ一夕の製造方法。 A paste-like mixed solution prepared by adding water to a concentration of 0 to 70% by weight is applied to at least one side of the porous substrate sheet (I), dried, and dried. ) To form a laminated sheet (m).
1 5. 前記多孔性基材シ一 ト ( I ) が、 1 5. The porous substrate sheet (I)
合成パルプ ( a ) 5〜 7 0重量%と、  Synthetic pulp (a) 5 to 70% by weight,
耐酸性無機粉体 ( b ) および/または耐酸性無機繊維 ( c ) 5〜 6 0重量%と、  Acid resistant inorganic powder (b) and / or acid resistant inorganic fiber (c) 5 to 60% by weight,
合成繊維 ( f ) および Zまたは複合型接着性繊維 ( g ) 5〜 5 0 重量%と  5 to 50% by weight of synthetic fiber (f) and Z or composite type adhesive fiber (g)
からなるこ とを特徴とする請求の範囲第 1 4項に記載の鉛蓄電池用 セパレ一夕の製造方法。 15. The method for producing a separation battery for a lead-acid battery according to claim 14, wherein the method comprises:
1 6. 前記多孔性基材シ一 ト ( I ) 、 1 6. The porous substrate sheet (I),
合成パルプ ( a ) 5〜 7 0重量 ¾と、  Synthetic pulp (a) 5 ~ 70 weight 重量,
耐酸性無機粉体 ( b ) および または耐酸性無機繊維 ( c ) 5〜 - 5i - Acid resistant inorganic powder (b) and / or acid resistant inorganic fiber (c) 5 ~ -5i-
6 0重量%と、 60% by weight,
合成繊維 ( f ) および/または複合型接着性繊維 ( g ) 5〜 5 ◦ 重量%と、  A synthetic fiber (f) and / or a composite adhesive fiber (g) of 5 to 5 °% by weight;
合成パルプ ( a ) の融点も しく は分解温度より も低い融点を有す、 または前記温度で接着力を発現するバイ ンダー ( h ) 0. 5〜 1 0 重量%と  A binder (h) having a melting point lower than the melting point or the decomposition temperature of the synthetic pulp (a), or a binder (h) exhibiting adhesive force at the above-mentioned temperature of 0.5 to 10% by weight;
からなるこ とを特徴とする請求の範囲第 1 4項に記載の鉛蓄電池用 セパレー夕の製造方法。 15. The method for producing a lead-acid battery separator according to claim 14, wherein the method comprises:
1 7. 前記多孔性基材シー ト ( I ) 力、'、 空隙率 5 0 %以上、 平均孔 径 0. 5〜 2 0 z mであるこ とを特徴とする請求の範囲第 1 4項〜 第 1 6項のいずれかに記載の鉛蓄電池用セパレ一タの製造方法。 17. The porous substrate sheet (I) having a force, a porosity of 50% or more, and an average pore diameter of 0.5 to 20 zm. 16. A method for producing a separator for a lead storage battery according to any one of the above items 16.
1 8. 前記ペース ト状混合液中の固形分を構成する無機粉体 ( d ) と耐酸性重合体 ( e ) との混合割合 〔 ( d ) ( e ) I が 3 0 Z 7 0〜 9 0 / 1 0であることを特徴とする請求の範囲第 1 4項〜第 1 7項のいずれかに記載の鉛蓄電池用セパレ一夕の製造方法。 1 8. The mixing ratio of the inorganic powder (d) and the acid-resistant polymer (e) constituting the solid content in the paste-like mixed solution [(d) (e) I is 30 Z70-9 The method for producing a separator for a lead-acid battery according to any one of claims 14 to 17, wherein the method is 0/10.
1 9. 前記ペース ト状混合液をコ一ターを用いて多孔性基材シ一 ト ( I ) の少な く とも片面に塗布することを特徴とする請求の範囲第 1 4項〜第 1 8項のいずれかに記載の鉛蓄電池用セパレー夕の製造 方法。 19. The above paste-like mixture is applied to at least one side of a porous substrate sheet (I) using a coater. The method for producing a lead storage battery separator according to any one of the above items.
2 0. 前記多孔性基材シー ト ( I ) の少なく とも片面に前記塗布層 ( π ) を形成して積層シー ト ( m ) を製造した後、 この積層シー ト (in) の片面または両面に、 ホッ トメル ト型樹脂を用いて線状のリ ブを接着形成することを特徴とする請求の範囲第 1 4項〜第 1 9項 のいずれかに記載の鉛蓄電池用セパレ一夕の製造方法。 20. The coating layer is formed on at least one side of the porous base sheet (I). After forming the laminated sheet (m) by forming (π), it is necessary to bond a linear rib to one or both surfaces of the laminated sheet (in) using a hot melt type resin. The method for producing a lead storage battery separator according to any one of claims 14 to 19, characterized by the above-mentioned.
2 1. 湿式抄造法によつて前記多孔性基材シ一 ト ( I ) を製造した 後、 あるいは前記積層シー ト (m) を製造した後、 多孔性基材シ一 ト ( I ) を構成する複合型接着性繊維 ( g ) の接着温度以上かつ合 成パルプ ( a ) の融点以下の温度で、 も しく はバイ ンダー ( h ) 力 接着力を発現する温度で熱処理を施すこ とを特徴とする請求の範囲 第 1 4項〜第 2 0項のいずれかに記載の鉛蓄電池用セパレ一夕の製 造方法。 2 1. After producing the porous substrate sheet (I) by wet papermaking or after producing the laminated sheet (m), the porous substrate sheet (I) is formed. Heat treatment at a temperature above the bonding temperature of the composite adhesive fiber (g) and below the melting point of the composite pulp (a), or at a temperature at which the binder (h) force develops adhesive force. 20. The method for producing a lead storage battery separator according to any one of claims 14 to 20.
2 2. 湿式抄造法によつて前記多孔性基材シ一 卜 ( I ) を製造した 後、 エンボスロールを用いて多孔性基材シー ト ( I ) 上に、 ほぼ直 線状の凸部を連続または不連続に形成させるエンボス加工を施し、 次いで、 多孔性基材シー ト ( I ) の凸部が形成された面と反対側 の表面に、 無機粉体 ( d ) と耐酸性重合体 ( e ) の固形分濃度が 1 0〜 7 0重量%となるように水を加えて調製したペース ト状混合液 を塗布し、 乾燥して塗布層 ( Π ) を形成し積層シー 卜 (ΙΠ ) とする ことを特徴とする請求の範囲第 1 4項〜第 1 9項のいずれかに記載 の鉛蓄電池用セパレー夕の製造方法。 2 2. After manufacturing the porous substrate sheet (I) by wet papermaking, an approximately linear convex portion is formed on the porous substrate sheet (I) using an embossing roll. An embossing process for forming a continuous or discontinuous shape is performed. Then, the inorganic powder (d) and the acid-resistant polymer ( e) A paste-like mixed solution prepared by adding water so that the solid content concentration becomes 10 to 70% by weight is applied, and dried to form a coated layer (Π), and a laminated sheet (ΙΠ) is formed. The method for producing a lead-acid battery separator according to any one of claims 14 to 19, characterized in that:
2 3. 湿式抄造法によって前記多孔性基材シー ト ( I ) を製造した 後、 多孔性基材シー ト ( I ) を構成する複合型接着性繊維 ( g ) の 接着温度以上かつ合成パルプ ( a ) の融点以下の温度で、 もしく は バイ ンダー ( h ) が接着力を発現する温度で熱処理を施し、 その後、 エンボス口一ルを用いて多孔性基材シー ト ( I ) 上に、 ほぼ直線状 の凸部を形成させるエンボス加工を施し、 2 3. The porous base sheet (I) was manufactured by wet papermaking. Then, at a temperature not lower than the bonding temperature of the composite adhesive fiber (g) constituting the porous base sheet (I) and not higher than the melting point of the synthetic pulp (a), the binder (h) has an adhesive force. Heat treatment at a temperature that develops, and then embossing is performed to form a substantially linear convex portion on the porous substrate sheet (I) using an embossed hole.
次いで、 多孔性基材シー ト ( I ) の凸部が形成された面と反対側 の表面に、 無機粉体 ( d ) と耐酸性重合体 ( e ) の固形分濃度が 1 0〜 7 0重量%となるように水を加えて調製したペース 卜状混合液 を塗布し、 乾燥して塗布層 ( Π ) を形成し積層シー ト (m ) とする ことを特徴とする請求の範囲第 1 4項〜第 1 9項のいずれかに記載 の鉛蓄電池用セパレ一夕の製造方法。  Next, the solid content concentration of the inorganic powder (d) and the acid-resistant polymer (e) is 10 to 70 on the surface of the porous substrate sheet (I) opposite to the surface on which the projections are formed. A paste-like mixed solution prepared by adding water to a concentration of 1% by weight, followed by drying to form a coating layer (Π) to form a laminated sheet (m). Item 10. The method for producing a lead storage battery separator according to any one of Items 4 to 19.
2 4. 前記積層シー ト ( m) を製造した後、 エンボスロールを用い てほぼ直線状の凸部を連続または不連続に形成させるェンボス加工 を施すこ とを特徴とする請求の範囲第 1 4項〜第 1 9項のいずれか に記載の鉛蓄電池用セパレー夕の製造方法。 24. After manufacturing the laminated sheet (m), the laminated sheet (m) is subjected to embossing using an embossing roll to form a substantially linear convex portion continuously or discontinuously. Item 14. The method for producing a lead-acid battery separator according to any one of Items 1 to 19.
2 5. 前記積層シー ト (ΠΙ) を重ね合わせ、 その側端部をシールし て一つの開口部を形成し、 袋状とするこ とを特徴とする請求の範囲 第 1 4項〜第 2 5項のいずれかに記載の鉛蓄電池用セパレ一夕の製 造方法。 25. The laminated sheet (ΠΙ) is overlapped, a side end thereof is sealed to form one opening, and a bag-like shape is formed. 6. The method for producing the separation for lead-acid batteries according to any one of the items 5 to 5.
PCT/JP1997/004255 1996-11-21 1997-11-21 Separator for lead-acid battery and method for manufacturing the same WO1998022988A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8310489A JPH10154500A (en) 1996-11-21 1996-11-21 Separator for lead-acid battery and manufacture
JP8/310489 1996-11-21
JP9237368A JPH1186829A (en) 1997-09-02 1997-09-02 Separator for lead-acid battery and manufacture thereof
JP9/237368 1997-09-02

Publications (1)

Publication Number Publication Date
WO1998022988A1 true WO1998022988A1 (en) 1998-05-28

Family

ID=26533178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004255 WO1998022988A1 (en) 1996-11-21 1997-11-21 Separator for lead-acid battery and method for manufacturing the same

Country Status (1)

Country Link
WO (1) WO1998022988A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895184B2 (en) 2008-08-29 2014-11-25 Zeon Corporation Porous film, secondary battery electrodes, and lithium ion secondary battery
EP2783405A4 (en) * 2011-11-21 2015-08-05 Daramic Llc Embossed separators, batteries and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914261A (en) * 1982-07-15 1984-01-25 Nippon Muki Kk Sack shaped paper separator and its manufacture for storage battery
JPS62180954A (en) * 1986-02-03 1987-08-08 Yuasa Battery Co Ltd Separator for lead storage battery
JPS63284755A (en) * 1987-05-14 1988-11-22 Yuasa Battery Co Ltd Separator for lead storage battery
JPH0364855A (en) * 1989-08-01 1991-03-20 Nippon Muki Kk Separator for storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914261A (en) * 1982-07-15 1984-01-25 Nippon Muki Kk Sack shaped paper separator and its manufacture for storage battery
JPS62180954A (en) * 1986-02-03 1987-08-08 Yuasa Battery Co Ltd Separator for lead storage battery
JPS63284755A (en) * 1987-05-14 1988-11-22 Yuasa Battery Co Ltd Separator for lead storage battery
JPH0364855A (en) * 1989-08-01 1991-03-20 Nippon Muki Kk Separator for storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895184B2 (en) 2008-08-29 2014-11-25 Zeon Corporation Porous film, secondary battery electrodes, and lithium ion secondary battery
EP2783405A4 (en) * 2011-11-21 2015-08-05 Daramic Llc Embossed separators, batteries and methods
US9461291B2 (en) 2011-11-21 2016-10-04 Daramic, Llc Embossed separators, batteries and methods

Similar Documents

Publication Publication Date Title
US20180269452A1 (en) Battery separators having a low apparent density
EP0507090B1 (en) Lead/sulphuric acid storage battery
JP3083520B2 (en) Air cathode and materials used for it
KR20180089526A (en) Nonwoven fabric separator for lead-acid batteries and lead-acid batteries using the same
EP2721664B1 (en) Multifunctional web for use in a lead-acid battery
KR20050035283A (en) Separator for use in high-energy batteries and method for the production thereof
CA2923111C (en) Small pore size nonwoven mat with hydrophilic/acid resistant filler used in lead acid batteries and applications therefor
AU2008335203A1 (en) Battery separator structures
US5154988A (en) Deep cycle battery separators
CN112005404B (en) Porous body, separator for lead-acid battery, and lead-acid battery
EP0030479B1 (en) Conductive element and process for making the same
JPH10154500A (en) Separator for lead-acid battery and manufacture
JPH06236752A (en) Separator for lead-acid battery and its manufacture
CA2923112C (en) Wicking nonwoven mat from wet-laid process
WO1998022988A1 (en) Separator for lead-acid battery and method for manufacturing the same
JP7050905B2 (en) Porous media, separators for lead-acid batteries, and lead-acid batteries
CN110892551B (en) Separator for electrochemical element
US4818340A (en) Envelope type separator for storage battery and manufacturing process therefor
JP2017188576A (en) Separator for electrochemical device
JPH1186829A (en) Separator for lead-acid battery and manufacture thereof
JPH11339752A (en) Lead-acid battery separator and its manufacture
US2687446A (en) Battery separator
CN113904062A (en) Composite diaphragm, preparation method thereof, battery with composite diaphragm and object with composite diaphragm
JPH09199101A (en) Bag-shaped separator for lead-acid battery
US20230170523A1 (en) Nonwoven fabric and solid electrolyte loaded sheet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA