WO1998022217A1 - Polymeric material for water treatment, cation-exchange resin, and anion-exchange resin - Google Patents

Polymeric material for water treatment, cation-exchange resin, and anion-exchange resin Download PDF

Info

Publication number
WO1998022217A1
WO1998022217A1 PCT/JP1997/004189 JP9704189W WO9822217A1 WO 1998022217 A1 WO1998022217 A1 WO 1998022217A1 JP 9704189 W JP9704189 W JP 9704189W WO 9822217 A1 WO9822217 A1 WO 9822217A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
exchange resin
antioxidant function
water treatment
covalently bonded
Prior art date
Application number
PCT/JP1997/004189
Other languages
French (fr)
Japanese (ja)
Inventor
Masa-Aki Wakita
Masato Yamaguchi
Tsuneyasu Adachi
Toshihiro Ueno
Original Assignee
Kurita Water Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP32219896A external-priority patent/JPH10137736A/en
Priority claimed from JP28191497A external-priority patent/JP3911794B2/en
Priority claimed from JP30870597A external-priority patent/JP3911801B2/en
Application filed by Kurita Water Industries Ltd. filed Critical Kurita Water Industries Ltd.
Publication of WO1998022217A1 publication Critical patent/WO1998022217A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the present invention relates to a polymer water treatment material, a cation exchange resin, and an anion exchange resin. More specifically, the present invention relates to a coagulant, a dehydrating agent, and a dispersing agent, in which a group having an antioxidant function is covalently bonded, and there is little risk of deterioration in performance due to oxidative deterioration and contamination of water quality due to oxidative decomposition products during use.
  • Polymer water treatment material that can be used for water treatment as a membrane, etc., cation exchange resin with excellent resistance to oxidative decomposition and less elution of resin components, and anion with excellent resistance to oxidative decomposition and less elution of resin components Regarding exchange resin.
  • an ion exchange resin has a structure in which an ion exchange group such as a sulfonic acid group or a trimethylammonium group is bonded to a polymer matrix having a three-dimensional network structure represented by a styrene-divinylbenzene copolymer. It is an insoluble solid acid or solid base that has been widely used in the production of ultrapure water used in the manufacture of semiconductors and pharmaceuticals, and in the condensate treatment of nuclear power plants.
  • the flocculant, dehydrating agent, and dispersant include monomers having a carboxyl group such as acrylamide, acrylic acid, and methacrylic acid, 2-acrylamide 2-methylpropanesulfonic acid, vinylsulfonic acid, and styrenesulfonic acid. Homopolymers or copolymers of monomers having a sulfonic acid group, such as dialkylaminoalkyl acrylates and dialkylaminoalkyl methacrylates, etc .; A modified polymer having a structure or the like, a natural polymer such as chitosan, starch or the like, or a modified product thereof is used. As the membrane, cellulose acetate, polyimide, polyamide, High molecular compounds such as polysulfone are used.
  • Organic polymers generally undergo oxidative decomposition gradually in the presence of oxygen.
  • the conventional polymer water treatment material ion exchange resin has the following problems caused by oxidative decomposition. For example, when ion-exchange resins and membranes are used in the production of ultrapure water used in semiconductor and pharmaceutical manufacturing, if the ion-exchange resins and membranes are oxidized and decomposed to elute constituent components, the quality of treated water will decrease. Occur.
  • Oxidative degradation products such as sulfobenzoic acid, phenolsulfonic acid, and styrenesulfonic acid polymers are eluted from the strongly acidic cation exchange resin in which sulfonic acid groups are introduced into styrene divinylbenzene crosslinked copolymer particles. .
  • These effluents not only degrade the quality of the treated water, but also decompose during heat exchange of the condensate to produce corrosive sulfate ions. It also contaminates the anion exchange resin, which is often used simultaneously.
  • Styrene divinylbenzene cross-linked copolymer Decomposition products such as etc. are eluted, similarly deteriorating the treated water quality and contaminating the cation exchange resin often used at the same time. In addition, as the oxidative decomposition of the ion exchange resin proceeds, the ion exchange resin itself deteriorates.
  • Coagulants and dehydrating agents are added to wastewater and sludge as aqueous solutions to coagulate suspended solids and perform solid-liquid separation.However, the coagulant effect of coagulants and dispersants is greatly affected by their molecular weight, so oxidation When the molecular weight is reduced by decomposition, the performance is significantly reduced. That is, in the case of the polymer water treatment material, there is a problem that even if the oxidative decomposition is slight, the function is lowered or the water quality is lowered.
  • JP-A-1-1191345 and JP-A-2-91946 disclose that an ion-exchange resin is stored in a low-dissolved oxygen concentration water or oxygen-free atmosphere, There is disclosed a method of avoiding contact with oxygen by lowering the dissolved oxygen concentration of an elephant fluid and passing the solution.
  • Japanese Patent Publication No. 40-239398 discloses the oxidation of polyphenylene ether, fluorine-containing polymers, polyimides, polyamideimides, etc.
  • a method for preparing a polymer water treatment material or an ion exchanger from a special material having a chemical structure that is difficult to receive is disclosed.
  • these materials are not only more expensive than conventional polymer water treatment materials and ion exchangers, but also have problems in that it is difficult to control the shape and porosity of the product.
  • Japanese Patent No. 25174111 discloses a method of suppressing oxidation by bringing a cation exchange resin into contact with an antioxidant and incorporating the antioxidant. ing.
  • Japanese Patent Publication No. 491-27622, Japanese Patent Publication No. 52-272, and Japanese Patent Publication No. 58-47414 include acrylamide-based polymers.
  • a stabilization method is disclosed by blending thiourea, formic acid, ammonia, potassium iodide, and 2-mercaptobenzoimidazole.
  • the auxiliary compounded for stabilization is physically incorporated or mixed, so that the auxiliary compound is eluted into the treated water. is there.
  • the present invention has excellent resistance to oxidative decomposition, and is less likely to cause deterioration in performance due to oxidative degradation during use and to cause contamination of water quality due to oxidized decomposed substances, and is used in water treatment as a coagulant, a dehydrating agent, a dispersant, a membrane, etc.
  • Polymer water treatment materials that can be used, cation exchange resin with excellent resistance to oxidative decomposition and low elution of resin components during use, and anion exchange with excellent resistance to oxidative decomposition and low elution of resin components during use The purpose was to provide resin. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, oxidative decomposition of the polymer water treatment material has already occurred in some parts immediately after synthesis, and oxidative decomposition even under ordinary storage or use conditions. Gradually progresses, and by covalently bonding a group having an antioxidant function to the polymer matrix of the polymer water treatment material, the antioxidant is simply mixed and impregnated or bonded by ionic bonds. It is more stable against oxidation than the ones that have been made, and it has been found that the performance is stably maintained for a long time as a polymer water treatment material or ion exchange resin.
  • the group having an antioxidant function is a hindered amine group, a monocyclic or polycyclic hindered phenol group, a thioester group, a thioether group, an amine group, a phosphorus group, a benzophenone group, a salicylate group or a triazole group.
  • R 1 is hydrogen or a methyl group.
  • Fig. 1 is a graph showing the change over time in the amount of eluted material from the cation exchange resin.
  • the group having an antioxidant function introduced by a covalent bond is not particularly limited.
  • 2,2,6,6-tetramethyl-4-piperidine, 1,2,2 Hindered amines such as 2,6,6-pentamethyl-1-piperidine, monocyclic phenols such as 2,6-di-t-butyl-1-p-cresol, tetrakis [methylene-1- (3 ' Polycyclic phenols such as, 5'-di-t-butyl-4'-hydroxyphenylpropionate] methane, bis [2-methyl-1- (3-n-alkylthiopropionyloxy)- thioesters such as [t-butyl phenyl] sulfide; thioethers such as dilauryl thiodipropionate; phenyl- ⁇ -naphthylamine; N, N'-diphenyl ⁇ _phenylene Phosphorus antioxidants such as
  • Salicylates such as benzophenone, phenyl salicylate, p-t-butylphenyl salicylate, bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, bis (1 Hindered amide-based light stabilizers such as 1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate, and triazole-based heavy metals such as 3- (N-salicyloyl) amine 1,2,4-triazole Examples include groups derived from compounds having an antioxidant function, such as blocking agents.
  • the amount of the group having an antioxidant function that is covalently bonded is not particularly limited. It is preferably 10 mol%, more preferably 0.01 to 8 mol%, and still more preferably 0.01 to 7 mol%. If the bonding amount of the group having an antioxidant function is less than 0.01 mol% of the monomer unit, the polymer water treatment material may not be provided with sufficient oxidation stability. The amount of binding of the group having an antioxidant function is usually 10 mol% is sufficient. The amount of groups attached decreases, and in many cases, it is economically disadvantageous.
  • a method of covalently bonding a group having an antioxidant function is not particularly limited.
  • a method of reacting a compound having an antioxidant function with a polymer water treatment material to form a polymer water A group having an antioxidant function can be covalently bonded to the treatment material, and after copolymerizing a monomer having an antioxidant function with another monomer, a functional group having a water treatment function is introduced by reaction.
  • a polymer water treatment material in which a group having an antioxidant function is covalently bonded by copolymerization of a monomer having an antioxidant function and a monomer having a water treatment function can be obtained. .
  • Examples of the monomer having an antioxidant function include a monomer having an antioxidant function and a monomer for addition polymerization having an unsaturated bond, and a structure having an antioxidant function and two functional groups having condensation reactivity.
  • Condensation polymerization monomer having the above structure with antioxidant function is ring-opening polymerizable Ring-opening polymerization monomers bonded to the structure can be exemplified.
  • these methods there is a method of copolymerizing a monomer for addition polymerization having a structure having an antioxidant function and an unsaturated bond with or without a water treatment function and a monomer for addition polymerization. Synthesis is easy and preferred.
  • Examples of the monomer for addition polymerization having a structure having an antioxidant function and an unsaturated bond include, for example, 1,2,2,6,6, -pentanomethyl-4-piperidinyl methacrylate [Asahi Denka Kogyo Co., Ltd. ), Adekastab LA-82], 2,2,6,6-tetramethyl-14-piperidinyl methacrylate [Asahi Denka Kogyo Co., Ltd., Adekastab LA-87], etc.
  • hindered drugs such as 2,6-di-t-butyl-14-vinylphenol and derivatives thereof described in Makromol. Chem., Vol. 181, p. 557 (1980).
  • Biperidine and its derivatives 4-[(bicyclo [2.2.1] hept-5-en-1-ynole) methoxy] -1,2,2,6,6-tetramethylpiperidine and its derivatives, J.
  • antioxidants such as hindered amine, monocyclic or polycyclic hindered phenol, thioester, thioether, amine, phosphorus, benzophenone, salicylate, triazole, etc.
  • Monomer into which polymerizable group having unsaturated bond such as vinyl group, aryl group, styryl group, acryloyl group, methacryloyl group, N-vinylamino group, N-arylamino group, acrylamide group, methacrylamide group is introduced. Etc. can be used.
  • antioxidants have a polymerizable group capable of undergoing polycondensation or ring-opening polymerization, for example, an amino group, a carboxyl group, a hydroxyl group, ethylene oxide, / 3-propiolactone, and / 3-pro- Monomers having a structure such as piolactam or ⁇ -force prolactam can be used.
  • radical polymerization and cationic polymerization may be used.
  • Polymerization methods such as addition polymerization such as anion polymerization and condensation polymerization and ring-opening polymerization can be appropriately selected.
  • the method for covalently bonding a group having an antioxidant function to a polymer water treatment material having no antioxidant function is not particularly limited.
  • a functional group such as a hydroxyl group, an amino group, a carboxyl group, or a halogenated alkyl group may be used.
  • the high-molecular-weight water treatment material and an antioxidant capable of forming a covalent bond by reacting with these functional groups can be reacted. If the high molecular weight water treatment material does not have an appropriate functional group, it can react with an antioxidant after introducing an appropriate functional group, or can be combined with an antioxidant having an appropriate functional group and a polymer water treatment. Can react with the material.
  • a group having an antioxidant function is covalently bonded via a sulfonamide bond represented by the general formula [1].
  • R 1 is hydrogen or a methyl group.
  • the method for producing the cation exchange resin of the present invention is not particularly limited.
  • a chlorosulfone group and a sulfonate group are introduced into an insoluble carrier made of a polymer having a three-dimensional network structure, Compounds with groups with antioxidant function It can be produced by reacting with a methyl sulfone group.
  • the structure, shape, and manufacturing method of the insoluble carrier made of a polymer having a three-dimensional network structure are not particularly limited, and examples thereof include organic polymers such as a copolymer of styrene and divinylbenzene, a cross-linked polyethylene, and a cross-linked polypropylene.
  • Insoluble carriers such as spheres, membranes, and fibers can be used.
  • Crosslinked particles made of a styrene-divinylbenzene copolymer are obtained by dispersing styrene and divinylbenzene in water containing a dispersant such as polyvinyl alcohol, polyvinylpyrrolidone, and calcium phosphate.
  • Such a radical polymerization initiator can be obtained by adding the radical polymerization initiator, and heating and stirring to carry out suspension polymerization.
  • the ratio of styrene to divinyl benzene is not particularly limited, it is usually preferable that the content of divinyl benzene is 6 to 20% by weight, more preferably 8 to 12% by weight.
  • the method of introducing a group having an antioxidant function into a cation exchange resin via a sulfonamide bond is not particularly limited.
  • a chlorosulfone group is introduced into an insoluble carrier, and a primary or secondary amino group is further introduced. It can be easily introduced by reacting a group with a compound having a group having an antioxidant function.
  • a ketone sulfone group can be easily introduced into the styrenedivinylbenzene crosslinked copolymer particles.
  • the reaction can be promoted by using a solvent that swells the styrene-divinylbenzene crosslinked copolymer particles such as tetrachloroethane and dichloromethane.
  • the chlorosulfonating agent is preferably used in an amount equal to or more than the amount to be introduced.In the case of styrene-divinylbenzene crosslinked copolymer particles, use 2 to 3 times the benzene ring in the particles. Is preferred.
  • the temperature and time for the sulphonation reaction can be carried out by immersing in an ice-water bath or stirring at room temperature for several hours. After completion of the chlorosulfonation reaction, the reaction mixture is preferably filtered and washed with a solvent that does not react with chlorosulfone groups, such as chloroform, dichloromethane, and acetone.
  • a compound having a primary or secondary amino group and a group having an antioxidant function include, for example,
  • Hindered amide compounds such as 4-amino-2,2,6,6-tetramethylpiperidine, 4-amino-1,2,2,6,6-pentamethylpiperidine, and 2,6-di-t— Butyl-4-aminomethylphenol, 2,6-di-t-butyl-4-methylethylaminophenol, 2,6-di-t-butyl-4-aminophenol, 2, Hindered phenolic compounds such as 6-di-t-butyl-14-aminopropylphenol and the like can be mentioned.
  • the amount of the group having an antioxidant function to be introduced is not particularly limited, but is usually preferably from 0.01 to 10% by weight of the cation exchange resin.
  • reaction temperature and time are not particularly limited, but usually the reaction can be terminated by stirring at room temperature for several hours.
  • the hydrolysis method is not particularly limited.
  • a product obtained by reacting a compound having an amino group and a group having an antioxidant function can be dispersed in water to perform a hydrolysis reaction.
  • the hydrolysis reaction usually proceeds efficiently by heating at 40 to 50 ° C.
  • hydrochloric acid is generated to lower the pH of the system.
  • a compound having a buffering action such as sodium acetate, may be coexistent, or hydroxylated. It is preferable to add an alkali such as sodium to prevent the system from becoming strongly acidic.
  • the antioxidant since a group having an antioxidant function is introduced by a covalent bond, the antioxidant is more oxidatively prevented than a conventional method in which an antioxidant is ionically adsorbed or physically retained. Prevents the agent from falling off, maintains excellent antioxidant properties over a long period of time, and effectively prevents the elution of resin components during use Can be.
  • the anion exchange resin of the present invention is a resin in which a group having an antioxidant function is covalently bonded via an iminoalkylene bond represented by the general formula [2].
  • R 2 is hydrogen or a methyl group
  • n is an integer of 1 to 4.
  • the method for producing the anion exchange resin of the present invention is not particularly limited.
  • a halogenated alkyl group is introduced into an insoluble carrier made of a polymer having a three-dimensional network structure, and a part of the halogenated alkyl group is amino.
  • a group having an antioxidant function is introduced by reacting the group with a compound having an antioxidant function, and an amine is reacted with the remaining alkyl halide group to form a quaternary ammonium group. Can be manufactured.
  • an alkyl halide group is introduced into an insoluble carrier made of a polymer having a three-dimensional network structure, and most of the alkyl halide group is reacted with an amine to form a quaternary ammonium group, and the remaining halogen is added. It can also be produced by introducing a group having an antioxidant function by reacting a compound having an amino group with an antioxidant function with an alkyl group.
  • the structure, shape, and production method of the insoluble carrier comprising a polymer having a three-dimensional network structure are not particularly limited, and examples thereof include organic polymers such as a copolymer of styrene and divinylbenzene, a crosslinked polyethylene, and a crosslinked polypropylene.
  • Insoluble carriers such as polymer spheres, membranes, and fibers can be used.
  • Crosslinked particles composed of a styrene-divinylpentene copolymer are obtained by dispersing styrene and divinylbenzene in water containing a dispersant such as polyvinyl alcohol, polyvinylpyrrolidone, and calcium phosphate.
  • a radical polymerization initiator can be obtained by adding the above radical polymerization initiator, heating and stirring to carry out suspension polymerization.
  • the halogenated alkyl group introduced into the insoluble carrier is a halogenated alkyl group having 1 to 4 carbon atoms, and is preferably a chloromethyl group.
  • the number of carbon atoms in the halogenated alkyl group is 5 or more, the ion exchange capacity per unit weight of the anion exchange resin becomes small, and the hydrophobicity of the anion exchange resin becomes too strong. There is a risk.
  • the insoluble carrier is a copolymer of styrene
  • the chloromethyl group is reacted by reacting chloromethyl methyl ether in the presence of a catalyst such as anhydrous aluminum chloride, tin tetrachloride, stannic chloride, or anhydrous zinc chloride.
  • a catalyst such as anhydrous aluminum chloride, tin tetrachloride, stannic chloride, or anhydrous zinc chloride.
  • the reaction can be promoted by using a solvent such as tetrachloroethane or dichloromethane that swells the styrene-divinylbenzene bridge copolymer particles.
  • Chloromethyl methyl ether is usually used in an amount equal to or greater than the amount to be introduced, and when the insoluble carrier is a styrene-divinylbenzene cross-linked copolymer particle, it is 2-3 equivalent times the benzene ring in the particle. It is preferable to use
  • the reaction temperature and reaction time are not particularly limited, and can be appropriately set depending on the catalyst used. For example, when stannic chloride is used, the reaction may be performed at 50 to 70 ° C for 4 to 6 hours. When anhydrous aluminum chloride is used, the activity is high. The reaction may take up to 3 hours. After completion of the reaction, the reaction mixture is preferably filtered to separate chloromethylated particles, and washed with a solvent that does not react with chloromethyl groups, such as chloroform and dichloromethane.
  • particles such as styrene-divinylbenzene cross-linked copolymer particles into which a halogenated alkyl group has been introduced are dispersed in a solvent such as benzene, chloroform, and dichloromethane to form a primary or secondary amino group and an antioxidant function.
  • a solvent such as benzene, chloroform, and dichloromethane
  • a group having an antioxidant function can be covalently bonded via an iminoalkylene group.
  • Examples of the compound having a primary or secondary amino group and a group having an antioxidant function include, for example, 4-amino-2,2,6,6-tetramethylpiperidine, 4-amino-1,2,2,6, Hindered amine compounds such as 6-pentamethylpiperidine, 2,6-di-tert-butyl-1-aminomethylphenol, 2,6-di-tert-butyl-14-methylaminomethylphenol, 2,6 Hindered phenolic compounds such as di-tert-butyl-4-aminophenol and 2,6-di-tert-butyl-4-aminopropylphenol;
  • the amount of the group having an antioxidant function to be introduced is not particularly limited, but is usually preferably from 0.01 to 10% by weight of the anion exchange resin.
  • Reaction temperature and anti The reaction time is not particularly limited. For example, the reaction can be completed by a reaction at room temperature for several hours.
  • the amine that is reacted to convert the halogenated alkyl group into a quaternary ammonium group examples thereof include trialkylamines such as trimethylamine and dialkylmonoamines such as dimethylmonoethanolamine. Alkanolamine and the like can be mentioned.
  • the ammoniating reaction can be terminated by blowing the amine into the reaction system and, for example, reacting at room temperature for 10 to 12 hours.
  • the antioxidant since a group having an antioxidant function is introduced by a covalent bond, the antioxidant is more oxidized than the conventional method in which the antioxidant is ionically adsorbed or physically retained.
  • the agent does not easily fall off, maintains excellent resistance to oxidative decomposition over a long period of time, and can effectively prevent elution of resin components and deterioration of the resin during use.
  • a dispersant composed of sodium polystyrenesulfonate having a 2,2,6,6-tetramethyl-14-piperidinyl group covalently bonded thereto was synthesized.
  • the infrared absorption spectrum of the obtained product shows an absorption band derived from the benzene ring at 3070 cm-3030 cm1 600 cm-1500 cm-835 cm- 1.
  • a 0.5% by weight aqueous solution of this copolymer was prepared, and the viscosity of the solution was measured at 20 ° C. using a B-type viscometer.
  • 200 ml of this solution was placed in a beaker, a 6% by weight aqueous solution of hydrogen peroxide was added at 50 // 1, and the mixture was placed in a 50 ° C water bath and heated for 4 days. Thereafter, when the temperature was returned to 20 ° C. and the solution viscosity was measured, it was 22 cP, and there was no change in the solution viscosity.
  • a dispersant consisting of sodium polystyrene sulfonate was synthesized.
  • Example 1 A 0.5% by weight aqueous solution of the obtained sodium polystyrene sulfonate was prepared, and in the same manner as in Example 1, the solution viscosity immediately after preparation and hydrogen peroxide were added, and the mixture was heated for 4 hours in a 50 ° C water bath. The solution viscosity afterwards was measured. The solution viscosity immediately after preparation was 56 cP, and the solution viscosity after adding a hydrogen peroxide solution and heating was 15 cP. As shown in Example 1 and Comparative Example 1, a group having an antioxidant function is covalently bonded.
  • a powdered cation exchange resin having a 2,2,6,6-tetramethyl-14-piperidinyl group covalently bound as a group having an antioxidant function was synthesized.
  • the obtained product does not dissolve in water, and the infrared absorption spectrum of the product is determined by comparing the sodium styrenesulfonate obtained in Example 1 with 2,2,6,6-tetramethyl-1-piperidine.
  • the product obtained is sodium styrenesulfonate, styrene, divinylbenzene and 2,266-tetramethyl-14-piperidinium, since the absorption spectrum is the same as that of the methyl methacrylate copolymer. It was confirmed that it was a copolymer of nilmethacrylate.
  • a group having an antioxidant function was bonded to form an L-type powdered cation exchange resin.
  • Example 2 using 16.06 g (78.0 mimol) of sodium styrenesulfonate, 1.54 g (14.8 mimol) of styrene and 1.75 g (7.4 mimol) of divinylbenzene [55% by weight of active ingredient] The synthesis was performed to obtain 13.61 g of a copolymer of sodium styrenesulfonate, styrene and divinylbenzene.
  • the amount of organic carbon in the supernatant of the cation exchange resin to which a group having an antioxidant function is covalently bonded is determined by the amount of the group having an antioxidant function. Since the amount of the organic carbon in the supernatant of the cation exchange resin that has not been subjected to the reaction is smaller than that of the supernatant, it is understood that the decomposition and elution of the resin are suppressed by covalently bonding a group having an antioxidant function.
  • a lid equipped with a Teflon blade for stirring and a nitrogen gas inlet tube was attached, and stirring was performed at 150 rpm while blowing nitrogen gas at a rate of 15 OmlZ.
  • the separable flask was placed in a constant temperature water bath maintained at 70 ° C., and the nitrogen gas was blown at a rate of 1 O OmlZ, and heated for 17 hours.
  • the resulting white particles were collected by filtration through No. 5A filter paper, washed with water, methanol, chloroform, and methanol in that order, and dried in vacuo at room temperature to obtain 45.95 g of a particulate product. .
  • the product was poured into water, filtered, and washed with acetone and water in this order.
  • the product after washing, 40.00 g of sodium acetate and 200 ml of water are placed in a 500 ml separable flask, immersed in a constant temperature water bath maintained at 40 ° C, and blown with nitrogen gas at 75 ml / min. Stirred for hours.
  • the product was collected by filtration and washed with water.
  • the infrared absorption spectrum of the product, 120 Ocnr 1 1 derived from a sulfonic acid group An absorption band of 13 Ocm ⁇ 1040cm-1010cm- 1 was observed.
  • a lid equipped with a Teflon blade for stirring and a nitrogen gas inlet tube was attached, and the mixture was stirred at 15 Orpm while blowing nitrogen gas at 15 OmlZ.
  • the separable flask was placed in a thermostatic water bath maintained at 70 ° C, and the nitrogen gas was blown at 10 OnilZ minutes, and heated for 17 hours.
  • the resulting white particles were collected by filtration through a No. 5A filter paper, washed with water, methanol, chloroform, and methanol in that order, and vacuum dried at room temperature to obtain 23.76 g of a particulate product. Obtained.
  • the absorption band of 172 Ocnr 1 based on the vibration and the absorption band of 361 Ocm- 1 based on the 0-H stretching vibration were observed, indicating that the obtained products were styrene, divinylbenzene and 2- [1-1 (2 , 1-hydroxy_3 ', 5'-di-t-pentylphenyl) ethyl] —4,6-di-t-pentylphenylacrylate.
  • the product was thrown into water, filtered, and washed with acetone and water in that order. Transfer the washed product, sodium acetate (25.00 g) and water (120 ml) to a 300 ml separable flask, immerse it in a constant temperature water bath maintained at 40 ° C, and blow nitrogen gas at 75 ml for 6 hours at 4 Orpm. Stirred. The product was collected by filtration and washed with water.
  • a cation exchange resin having a 2,2,6,6-tetramethyl-4-piberidinyl group covalently bound as a group having an antioxidant function was synthesized.
  • styrene-divinylbenzene crosslinked copolymer particles [manufactured by Supe 1 c 0. Inc., specific surface area 330 m 2 / g, average pore size 9 OA] are mixed with water, methanol, chloroform, and tetrachlorene. And washed in this order.
  • the crosslinked particles and Tet 85 ml of lachlorethane was placed in a 50 Oml separable flask, fitted with a lid equipped with a Teflon blade for stirring, a nitrogen gas inlet tube, and a cooling tube, heated at 60 ° C for 30 minutes, and then returned to room temperature.
  • Nitrogen gas was blown near the liquid surface at 60 ml / min, and while stirring at 60 rpm, 75 ml of chlorosulfonic acid [manufactured by Wako Pure Chemical Industries, Ltd.] was added little by little. .
  • 75 ml of chlorosulfonic acid [manufactured by Wako Pure Chemical Industries, Ltd.] was added little by little. .
  • 10 ml of acetic acid was added and the mixture was stirred, and the resulting chlorsulfonated particles were collected by filtration.
  • the chlorsulfonated particles were washed with tetrachloroethane, then put in water, and further washed with acetone and chloroform.
  • the chlorsulfonated particles, 150 ml of black-mouthed form and 10 ml of triethylamine were placed in a 500 ml separable flask, and fitted with a Teflon blade for stirring, a nitrogen gas inlet tube, and a lid equipped with a cooling tube. Nitrogen gas was blown near the liquid surface at a rate of 60 ml / min, and while stirring at 6 O rpm, 4.58 g of 4-amino-2,2,6,6-tetramethylpiberidine was dissolved in 30 ml of Cloth form. The solution was added dropwise and reacted overnight. The generated particles were collected by filtration, and washed with port-form, acetone, and water in this order.
  • the obtained particles 40 g of sodium acetate and 200 ml of water were placed in a 500 ml separable flask, and a lid equipped with a Teflon blade for stirring, a nitrogen gas inlet tube, and a cooling tube was attached.
  • the separable flask was immersed in a thermostatic water bath maintained at 45 ° C, and stirred at 4 Orpm for 6 hours while blowing nitrogen gas at 75 mlZ.
  • the product was collected by filtration and washed with water.
  • organic sulfonic acids such as polymers of sulfobenzoic acid, phenolsulfonic acid, and styrenesulfonic acid can be detected with high sensitivity.
  • the amount of organic sulfonic acid dissolved in the supernatant was calculated from the calibration curve prepared in advance for the concentration of sulfobenzoic acid and the peak area in terms of the amount of sulfobenzoic acid per liter of resin.
  • the elution amount of sulfobenzoic acid was 0 mg before the start of the test, 10 mg after 8 days, 35 nig after 14 and 4 lmg after 21.
  • the dissolution test was performed in the same manner as in Example 5 using a commercially available cation exchange resin [650-C, manufactured by Dow Chemical Co., Ltd.].
  • the dissolution amount of sulfobenzoic acid was 0 mg before the start of the test, 26 mg after 8 days, 79 mg after 14 days, and 149 mg after 21 days.
  • FIG. 1 shows the results of the dissolution test of Example 5 and Comparative Example 3. From this figure, it can be seen that the eluate from a commercially available cation exchange resin increases with time due to oxidative decomposition, whereas the group having an antioxidant function is covalently bonded via a sulfonamide bond, and It can be seen that elution of sulfobenzoic acid and the like is suppressed in the force-exchange resin of the invention.
  • a solution prepared by dissolving 7 g in 3 Oml of form-form was added dropwise and allowed to react overnight.
  • the generated particles were collected by filtration, and washed with black form and benzene.
  • Elementary analysis was conducted by sampling a small amount of these particles, and as a result, 88.8% by weight of carbon and 0.6% by weight of nitrogen were detected, confirming that 4-amino-2,2,6,6-tetramethylbiperidine was introduced.
  • the amount of the group having an antioxidant function based on the weight of the resin was 3% by weight.
  • the particles into which 4-amino-2,2,6,6-tetramethylpiperidine has been introduced are placed in a 300 ml separable flask together with 100 ml of benzene, and a lid equipped with a Teflon blade for stirring, a nitrogen gas inlet tube, and a cooling tube is provided. After mounting and heating at 60 ° C for 30 minutes, the temperature was returned to room temperature. Next, trimethylamine gas was blown at a rate of 5 ml / min for 30 minutes, followed by reaction at room temperature overnight. The resulting anion exchange resin particles were collected by filtration, washed with acetone, and air-dried. When the ion exchange capacity of the anion exchange resin was measured, it was 1.0 meqZ g.
  • Example 6 The same dissolution test as in Example 6 was performed using a commercially available anion exchange resin [Mitsubishi Chemical Corporation, SA10A, OH type] instead of the anion exchange resin to which a group having an antioxidant function was bonded.
  • the amount of eluted organic carbon was 5 Omg per ml of anion exchange resin.
  • the polymer water treatment material of the present invention has a group having an antioxidant function covalently bonded thereto, there is little risk of deterioration in performance due to oxidative deterioration and contamination of water quality due to oxidative decomposition products during use, and a flocculant It can be suitably used for water treatment as a dehydrating agent, a dispersing agent, a membrane and the like.
  • the cation exchange resin and the anion exchange resin of the present invention have excellent oxidation resistance and little elution of resin components because the group having an antioxidation function is covalently bonded.

Abstract

A polymeric material which has such a high resistance to oxidative decomposition that it is less apt to suffer the performance decrease caused by oxidative deterioration and to cause water pollution by oxidative decomposition products during its use, and which is usable for water treatment as a coagulant, dehydrant, dispersant, film, etc.; a cation-exchange resin which has an excellent resistance to oxidative decomposition and is reduced in the elution of resin components during use; and an anion-exchange resin which has an excellent resistance to oxidative decomposition and is reduced in the elution of resin components during use. The polymeric material is characterized by having groups which have an antioxidant function and have been covalently bonded. The cation-exchange resin is characterized in that the groups having an antioxidant function have been covalently bonded through sulfonamide bonds represented by the general formula (1): -SO2NR1-. The anion-exchange resin is characterized in that the groups having an antioxidant function have been covalently bonded through iminoalkylene bonds represented by the general formula (2): -(CH¿2)nNR?2-. In the formulae, R?1 and R2¿ each represents hydrogen or methyl and n is an integer of 1 to 4.

Description

明細書 高分子水処理材料、 力チォン交換樹脂及びァニォン交換樹脂 技術分野  Description Polymer water treatment material, force exchange resin and anion exchange resin
本発明は、 高分子水処理材料、 カチオン交換樹脂及びァニオン交換樹脂に関す る。 さらに詳しくは、 本発明は、 酸化防止機能を有する基が共有結合され、 使用 時に酸化劣化による性能の低下や酸化分解物による水質の汚染を惹起するおそれ が少なく、 凝集剤、 脱水剤、 分散剤、 膜などとして水処理に用いることができる 高分子水処理材料、 耐酸化分解性に優れ、 樹脂成分の溶出の少ないカチオン交換 樹脂、 及び、 耐酸化分解性に優れ、 樹脂成分の溶出の少ないァニオン交換樹脂に 関する。 背景技術  The present invention relates to a polymer water treatment material, a cation exchange resin, and an anion exchange resin. More specifically, the present invention relates to a coagulant, a dehydrating agent, and a dispersing agent, in which a group having an antioxidant function is covalently bonded, and there is little risk of deterioration in performance due to oxidative deterioration and contamination of water quality due to oxidative decomposition products during use. Polymer water treatment material that can be used for water treatment as a membrane, etc., cation exchange resin with excellent resistance to oxidative decomposition and less elution of resin components, and anion with excellent resistance to oxidative decomposition and less elution of resin components Regarding exchange resin. Background art
水処理には、 イオン交換樹脂、 凝集剤、 脱水剤、 分散剤、 膜などの高分子材料 が用いられている。 これらは、 ほとんどが有機高分子である。 例えば、 イオン交 換樹脂は、 スチレンージビニルベンゼン共重合体に代表される三次元網目構造を 有する高分子母体に、 スルホン酸基やトリメチルアンモニゥム基などのイオン交 換基が結合した構造を有する不溶性の固体酸又は固体塩基であり、 半導体製造や 医薬品製造に用いられる超純水の製造、 原子力発電所の復水処理などに幅広く利 用されている。 また、 凝集剤、 脱水剤、 分散剤は、 アクリルアミ ド、 アクリル酸、 メタクリル酸などのカルボキシル基を有する単量体、 2—アクリルアミ ドー 2— メチルプロパンスルホン酸、 ビニルスルホン酸、 スチレンスルホン酸などのスル ホン酸基を有する単量体、 アクリル酸ジアルキルアミノアルキルエステル、 メタ クリル酸ジアルキルァミノアルキルエステルなどのァミノ基を有する単量体など の単独重合体又は共重合体、 ビニルァミン構造ゃビニルァミジン構造などを有す る変成重合体、 キトサン、 デンプンなどの天然高分子又はその変成物などが用い られている。 膜としては、 セルロースの酢酸エステル、 ポリイミ ド、 ポリアミ ド、 ポリスルホンなどの高分子化合物が用いられている。 For water treatment, polymer materials such as ion exchange resins, flocculants, dehydrating agents, dispersants, and membranes are used. These are mostly organic macromolecules. For example, an ion exchange resin has a structure in which an ion exchange group such as a sulfonic acid group or a trimethylammonium group is bonded to a polymer matrix having a three-dimensional network structure represented by a styrene-divinylbenzene copolymer. It is an insoluble solid acid or solid base that has been widely used in the production of ultrapure water used in the manufacture of semiconductors and pharmaceuticals, and in the condensate treatment of nuclear power plants. The flocculant, dehydrating agent, and dispersant include monomers having a carboxyl group such as acrylamide, acrylic acid, and methacrylic acid, 2-acrylamide 2-methylpropanesulfonic acid, vinylsulfonic acid, and styrenesulfonic acid. Homopolymers or copolymers of monomers having a sulfonic acid group, such as dialkylaminoalkyl acrylates and dialkylaminoalkyl methacrylates, etc .; A modified polymer having a structure or the like, a natural polymer such as chitosan, starch or the like, or a modified product thereof is used. As the membrane, cellulose acetate, polyimide, polyamide, High molecular compounds such as polysulfone are used.
有機高分子は、 一般に酸素の存在下に徐々に酸化分解する。 従来の高分子水処 理材料ゃィォン交換樹脂には、 酸化分解に起因する次のような問題点があつた。 例えば、 イオン交換樹脂や膜が、 半導体製造や医薬品製造に用いられる超純水の 製造などに利用された場合、 ィォン交換樹脂や膜が酸化分解して構成成分が溶出 すると、 処理水質の低下が起こる。 スチレンージビニルベンゼン架橋共重合体粒 子にスルホン酸基を導入した強酸性カチオン交換樹脂からは、 スルホ安息香酸、 フエノ一ルスルホン酸、 スチレンスルホン酸の重合体などの酸化分解生成物が溶 出する。 これらの溶出物は、 処理水の水質を悪化させるのみならず、 復水の熱交 換時に分解して、 腐食性の硫酸イオンを生成する。 また、 同時に使用される場合 が多いァニォン交換樹脂を汚染する。 スチレンージビニルベンゼン架橋共重合体 粒子にトリメチルアンモニゥム基を導入した強塩基性ァニオン交換樹脂からは、 トリメチルァミン、 ジメチルァミン、 メタノール、 トリメチルァンモニオメチル 安息香酸、 トリメチルアンモニオメチルフヱノールなどの分解生成物が溶出し、 同様に処理水質を悪化させるとともに、 同時に使用される場合が多いカチオン交 換樹脂を汚染する。 また、 イオン交換樹脂の酸化分解が進むと、 イオン交換樹脂 自体が劣化する。  Organic polymers generally undergo oxidative decomposition gradually in the presence of oxygen. The conventional polymer water treatment material ion exchange resin has the following problems caused by oxidative decomposition. For example, when ion-exchange resins and membranes are used in the production of ultrapure water used in semiconductor and pharmaceutical manufacturing, if the ion-exchange resins and membranes are oxidized and decomposed to elute constituent components, the quality of treated water will decrease. Occur. Oxidative degradation products such as sulfobenzoic acid, phenolsulfonic acid, and styrenesulfonic acid polymers are eluted from the strongly acidic cation exchange resin in which sulfonic acid groups are introduced into styrene divinylbenzene crosslinked copolymer particles. . These effluents not only degrade the quality of the treated water, but also decompose during heat exchange of the condensate to produce corrosive sulfate ions. It also contaminates the anion exchange resin, which is often used simultaneously. Styrene divinylbenzene cross-linked copolymer Decomposition products such as etc. are eluted, similarly deteriorating the treated water quality and contaminating the cation exchange resin often used at the same time. In addition, as the oxidative decomposition of the ion exchange resin proceeds, the ion exchange resin itself deteriorates.
凝集剤や脱水剤は、 水溶液として排水や汚泥に添加され、 懸濁物質を凝集させ て固液分離が行われるが、 凝集剤や分散剤の凝集効果はその分子量に大きく影響 されるので、 酸化分解によって分子量が低下すると性能が著しく低下する。 すな わち、 高分子水処理材料の場合、 酸化分解が軽微であっても、 機能の低下が起こつ たり、 水質の低下を招くという問題が起こる。  Coagulants and dehydrating agents are added to wastewater and sludge as aqueous solutions to coagulate suspended solids and perform solid-liquid separation.However, the coagulant effect of coagulants and dispersants is greatly affected by their molecular weight, so oxidation When the molecular weight is reduced by decomposition, the performance is significantly reduced. That is, in the case of the polymer water treatment material, there is a problem that even if the oxidative decomposition is slight, the function is lowered or the water quality is lowered.
このような問題を回避するため、 高分子水処理材料の使用方法、 化学構造及び 安定化を目的とした助剤の配合の三つの観点で検討がなされてきた。 例えば、 特 開昭 6 2— 1 3 2 5 8 5号公報、 特開平 1一 1 7 1 6 4 5号公報には、 イオン交 換樹脂を使用に先立つて十分に洗浄し、 溶出物を少なくする方法が開示されてい る。 また、 特開平 1一 1 1 9 3 4 5号公報、 特開平 2— 9 9 1 4 6号公報には、 イオン交換樹脂を溶存酸素濃度の低い水又は酸素のない雰囲気で保存し、 処理対 象液の溶存酸素濃度を低く して通液することにより、 酸素との接触を避ける方法 が開示されている。 しかし、 高分子水処理材料やイオン交換樹脂は、 わずかの酸 素によっても徐々に分解するために、 これらの方法では初期の溶出物量を低減す ることはできても、 長期間にわたり酸化分解を抑制することは困難である。 また、 酸素との接触を避けるためには、 大量の水を脱気するための専用の装置が必要と なる。 In order to avoid such problems, studies have been made from three viewpoints: the method of using the polymer water treatment material, the chemical structure, and the blending of auxiliaries for the purpose of stabilization. For example, Japanese Unexamined Patent Publications Nos. 62-132585 and JP-A-11-71645 disclose that ion exchange resin is sufficiently washed prior to use to reduce elution. A method for doing so is disclosed. In addition, JP-A-1-1191345 and JP-A-2-91946 disclose that an ion-exchange resin is stored in a low-dissolved oxygen concentration water or oxygen-free atmosphere, There is disclosed a method of avoiding contact with oxygen by lowering the dissolved oxygen concentration of an elephant fluid and passing the solution. However, high-molecular-weight water treatment materials and ion-exchange resins are gradually decomposed even by a small amount of oxygen, so even if these methods can reduce the initial amount of eluted substances, they will cause long-term oxidative decomposition. It is difficult to control. In order to avoid contact with oxygen, a special device for degassing a large amount of water is required.
一方、 特公昭 4 0— 2 4 3 9 8号公報、 特開昭 5 9— 1 2 2 5 2 0号公報、 特 開昭 6 1— 1 8 5 5 0 7号公報、 特開昭 5 8— 1 5 3 5 4 1号公報、 特開昭 5 8 — 1 6 3 4 4 5号公報には、 ポリフエ二レンエーテル、 含ふつ素系高分子、 ポリ イミ ド、 ポリアミ ドイミ ドなどの酸化を受けにくい化学構造を有する特殊な素材 から、 高分子水処理材料やイオン交換体を調製する方法が開示されている。 しか し、 これらの素材は、 従来の高分子水処理材料やイオン交換体に比べてコストが 高いばかりでなく、 製品の形状や多孔性をコントロールすることが困難であると いう問題がある。  On the other hand, Japanese Patent Publication No. 40-239398, Japanese Patent Application Laid-Open No. 59-122520, Japanese Patent Publication No. 61-1855507, Japanese Patent Application — 1 5 3 5 4 1 and Japanese Patent Laid-Open No. 58 — 16 3 4 4 5 discloses the oxidation of polyphenylene ether, fluorine-containing polymers, polyimides, polyamideimides, etc. A method for preparing a polymer water treatment material or an ion exchanger from a special material having a chemical structure that is difficult to receive is disclosed. However, these materials are not only more expensive than conventional polymer water treatment materials and ion exchangers, but also have problems in that it is difficult to control the shape and porosity of the product.
安定化を目的とした助剤の配合に関しては、 特許第 2 5 1 7 4 1 1号公報に、 カチォン交換樹脂を酸化防止剤と接触させて酸化防止剤を取り入れることによる 酸化抑制法が開示されている。 また、 特公昭 4 9一 2 7 6 6 2号公報、 特公昭 5 2— 2 2 7 7 2号公報、 特公昭 5 8— 4 7 4 1 4号公報には、 アクリルアミ ド系 重合体に、 チォ尿素、 ギ酸、 アンモニア、 ヨウ化カリウム、 2—メルカプトベン ゾイミダゾ一ルを配合することによる安定化法が開示されている。 し力、し、 これ らの方法では、 安定化のために配合された助剤は、 物理的に取り込まれているか 混合されているのみであるため、 助剤が処理水に溶出するという問題がある。 本発明は、 耐酸化分解性に優れ、 使用時に酸化劣化による性能の低下や酸化分 解物による水質の汚染を惹起するおそれが少なく、 凝集剤、 脱水剤、 分散剤、 膜 などとして水処理に用いることができる高分子水処理材料、 耐酸化分解性に優れ、 使用時の樹脂成分の溶出の少ないカチオン交換樹脂、 及び、 耐酸化分解性に優れ、 使用時の樹脂成分の溶出の少ないァニオン交換樹脂を提供することを目的として なされたものである。 発明の開示 Regarding the blending of auxiliaries for the purpose of stabilization, Japanese Patent No. 25174111 discloses a method of suppressing oxidation by bringing a cation exchange resin into contact with an antioxidant and incorporating the antioxidant. ing. In addition, Japanese Patent Publication No. 491-27622, Japanese Patent Publication No. 52-272, and Japanese Patent Publication No. 58-47414 include acrylamide-based polymers. A stabilization method is disclosed by blending thiourea, formic acid, ammonia, potassium iodide, and 2-mercaptobenzoimidazole. However, in these methods, the auxiliary compounded for stabilization is physically incorporated or mixed, so that the auxiliary compound is eluted into the treated water. is there. INDUSTRIAL APPLICABILITY The present invention has excellent resistance to oxidative decomposition, and is less likely to cause deterioration in performance due to oxidative degradation during use and to cause contamination of water quality due to oxidized decomposed substances, and is used in water treatment as a coagulant, a dehydrating agent, a dispersant, a membrane, etc. Polymer water treatment materials that can be used, cation exchange resin with excellent resistance to oxidative decomposition and low elution of resin components during use, and anion exchange with excellent resistance to oxidative decomposition and low elution of resin components during use The purpose was to provide resin. Disclosure of the invention
本発明者らは、 上記の課題を解決すべく鋭意研究を重ねた結果、 高分子水処理 材料は合成直後でもすでに酸化分解が一部に起こっていて、 通常の保管又は使用 条件下でも酸化分解が徐々に進行することを確認し、 高分子水処理材料の高分子 母体に酸化防止機能を有する基を共有結合することにより、 酸化防止剤を単に混 合、 含浸させたものやイオン結合で結合させたものに比べ、 酸化に対してより安 定であり、 高分子水処理材料やイオン交換樹脂として性能が長期間にわたり安定 して保持されることを見いだし、 さらに、 酸化防止機能を有する基は、 カチオン 交換樹脂においてはスルホンアミ ド結合を介して、 ァニオン交換樹脂においては イミノアルキレン結合を介して、 安定に共有結合させ得ることを見いだして、 こ れらの知見に基づ L、て本発明を完成するに至つた。  The present inventors have conducted intensive studies to solve the above problems, and as a result, oxidative decomposition of the polymer water treatment material has already occurred in some parts immediately after synthesis, and oxidative decomposition even under ordinary storage or use conditions. Gradually progresses, and by covalently bonding a group having an antioxidant function to the polymer matrix of the polymer water treatment material, the antioxidant is simply mixed and impregnated or bonded by ionic bonds. It is more stable against oxidation than the ones that have been made, and it has been found that the performance is stably maintained for a long time as a polymer water treatment material or ion exchange resin. However, they found that they can be stably covalently bonded via a sulfonamide bond in a cation exchange resin and via an iminoalkylene bond in an anion exchange resin. ItaruTsuta based L, Te to the completion of the present invention to knowledge.
すなわち、 本発明は、  That is, the present invention
(1) 酸化防止機能を有する基が、 共有結合されてなることを特徴とする高分子 水処理材料、  (1) a polymer water treatment material, wherein a group having an antioxidant function is covalently bonded;
(2) 酸化防止機能を有する基が、 ヒンダードアミン系、 単環状若しくは多環状 のヒンダードフエノール系、 チォエステル系、 チォエーテル系、 アミン系、 リン 系、 ベンゾフヱノン系、 サリチレート系又はトリァゾール系の基である第(1)項 記載の高分子水処理材料、  (2) The group having an antioxidant function is a hindered amine group, a monocyclic or polycyclic hindered phenol group, a thioester group, a thioether group, an amine group, a phosphorus group, a benzophenone group, a salicylate group or a triazole group. (1) the polymer water treatment material according to the above,
(3) 酸化防止機能を有する基が、 一般式 [1] で示されるスルホンアミ ド結合 を介して共有結合されてなることを特徴とするカチオン交換樹脂、  (3) a cation exchange resin, wherein a group having an antioxidant function is covalently bonded through a sulfonamide bond represented by the general formula [1]:
-SOzNR1- … [1] -SOzNR 1- … [1]
(ただし、 式中、 R1は水素又はメチル基である。 ) 、 (Wherein, R 1 is hydrogen or a methyl group.)
(4) 酸化防止機能を有する基が、 ヒンダ一ドアミン系の基又はヒンダ一ドフエ ノール系の基である第( 3 )項記載のカチォン交換樹脂、  (4) The cation exchange resin according to (3), wherein the group having an antioxidant function is a hindered amine group or a hindered phenol group.
(5) 酸化防止機能を有する基が、 一般式 [2] で示されるイミノアルキレン結 合を介して共有結合されてなることを特徴とするァニオン交換樹脂、  (5) An anion exchange resin, wherein a group having an antioxidant function is covalently bonded via an iminoalkylene bond represented by the general formula [2]:
一(CH2)nNR2— … [2] (ただし、 式中、 R 2は水素又はメチル基であり、 nは 1〜4の整数である。 ) 、 及び、 One (CH 2 ) nNR 2 —… [2] (Wherein, R 2 is hydrogen or a methyl group, and n is an integer of 1 to 4.), and
(6) 酸化防止機能を有する基が、 ヒンダードァミ ン系の基又はヒンダードフエ ノール系の基である第( 5 )項記載のァニォン交換樹脂、  (6) The anion-exchange resin according to (5), wherein the group having an antioxidant function is a hindered phenol group or a hindered phenol group.
を提供するものである。 Is provided.
さらに、 本発明の好ましい態様として、  Further, as a preferred embodiment of the present invention,
(7) 酸化防止機能を有する基が、 高分子を構成する単量体単位の 0.01〜1 0モル%に結合されてなる第( 1 )項又は第( 2 )項記載の高分子水処理材料、 (7) The polymer water treatment material according to item (1) or (2), wherein the group having an antioxidant function is bonded to 0.01 to 10 mol% of the monomer units constituting the polymer. ,
(8) 酸化防止機能を有する基が、 2, 2, 6, 6—テトラメチル— 4ーピペリジ ニル基である第( 1 )項、 第( 2 )項又は第( 7 )項記載の高分子水処理材料、 (8) The polymer water according to (1), (2) or (7), wherein the group having an antioxidant function is a 2,2,6,6-tetramethyl-4-piperidinyl group. Processing materials,
(9) 2, 2, 6, 6—テトラメチルー 4—ピペリジニル基が、 2, 2, 6, 6—テ卜 ラメチルー 4ーピペリジニルメタクリレー卜の共重合により結合される第(8)項 記載の高分子水処理材料、  (9) Item (8), wherein the 2,2,6,6-tetramethyl-4-piperidinyl group is bonded by copolymerization of 2,2,6,6-tetramethyl-4-piperidinyl methacrylate. Polymer water treatment materials,
を挙げることができる。 図面の簡単な説明 Can be mentioned. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 カチォン交換樹脂からの溶出物の量の経時変化を示すグラフである c 発明を実施するための最良の形態 Fig. 1 is a graph showing the change over time in the amount of eluted material from the cation exchange resin. C The best mode for carrying out the invention
本発明の高分子水処理材料において、 共有結合により導入される酸化防止機能 を有する基には特に制限はなく、 例えば、 2, 2, 6, 6—テトラメチルー 4ーピ ペリジン、 1, 2, 2, 6, 6—ペンタメチル一 4 -ピぺリジンなどのヒンダードア ミン系、 2, 6—ジ一 t一ブチル一p—クレゾ一ルなどの単環状のフヱノール系、 テトラキス [メチレン一 3— (3', 5'—ジ一 t—ブチルー 4'ーヒ ドロキシフヱ二 ノレ)プロピオネート]メタンなどの多環状のフヱノール系、 ビス [2—メチル一4 ー(3— n—アルキルチオプロピオ二ルォキシ)— 5― tーブ牛ルフヱニル]スル フィ ドなどのチォエステル系、 ジラウリルチオジプロピオネートなどのチォエー テル系、 フヱニルー α—ナフチルァミ ン、 N, N'—ジフヱ二ルー ρ_フヱニレン ジァミンなどのアミン系、 トリフヱニルホスファイ ト、 トリス(ノニルフヱニル) ホスフアイ トなどのリン系の酸化防止剤、 2 , 4—ジヒドロキシベンゾフヱノン、 2—ヒドロキシー 4ーメ トキシベンゾフヱノンなどのベンゾフヱノン系、 フエ二 ルサリチレ一ト、 p— t —ブチルフヱニルサリチレ一トなどのサリチレ一ト系、 ビス(2 , 2 , 6, 6—テトラメチルー 4ーピペリジニル)セバケ一ト、 ビス(1 , 2, 2, 6 , 6—ペンタメチルー 4一ピペリジニル)セバケ一トなどのヒンダ一ドアミ ン系の光安定剤、 3—(N—サリチロイル)ァミノー 1, 2, 4—トリアゾールなど のトリアゾール系の重金属封鎖剤などの酸化防止機能を有する化合物から誘導さ れる基を挙げることができる。 In the polymer water treatment material of the present invention, the group having an antioxidant function introduced by a covalent bond is not particularly limited. For example, 2,2,6,6-tetramethyl-4-piperidine, 1,2,2 Hindered amines such as 2,6,6-pentamethyl-1-piperidine, monocyclic phenols such as 2,6-di-t-butyl-1-p-cresol, tetrakis [methylene-1- (3 ' Polycyclic phenols such as, 5'-di-t-butyl-4'-hydroxyphenylpropionate] methane, bis [2-methyl-1- (3-n-alkylthiopropionyloxy)- thioesters such as [t-butyl phenyl] sulfide; thioethers such as dilauryl thiodipropionate; phenyl-α-naphthylamine; N, N'-diphenyl ρ_phenylene Phosphorus antioxidants such as amines such as diamine, triphenylphosphite and tris (nonylphenyl) phosphite, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, etc. Salicylates such as benzophenone, phenyl salicylate, p-t-butylphenyl salicylate, bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, bis (1 Hindered amide-based light stabilizers such as 1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate, and triazole-based heavy metals such as 3- (N-salicyloyl) amine 1,2,4-triazole Examples include groups derived from compounds having an antioxidant function, such as blocking agents.
本発明の高分子水処理材料において、 共有結合される酸化防止機能を有する基 の量には特に制限はないが、 通常は高分子水処理材料を構成する単量体単位の 0. 0 1 ~ 1 0モル%であることが好ましく、 0. 0 1〜8モル%であることがより 好ましく、 0. 0 1〜7モル%であることがさらに好ましい。 酸化防止機能を有 する基の結合量が単量体単位の 0. 0 1モル%未満であると、 高分子水処理材料 に酸化に対する十分な安定性が付与されないおそれがある。 酸化防止機能を有す る基の結合量は通常は 1 0モル%で十分であり、 1 0モル%を超える酸化防止機 能を有する基を結合させると、 相対的に水処理機能を有する官能基の結合量が低 下し、 また多くの場合、 経済的にも不利益となる。  In the polymer water treatment material of the present invention, the amount of the group having an antioxidant function that is covalently bonded is not particularly limited. It is preferably 10 mol%, more preferably 0.01 to 8 mol%, and still more preferably 0.01 to 7 mol%. If the bonding amount of the group having an antioxidant function is less than 0.01 mol% of the monomer unit, the polymer water treatment material may not be provided with sufficient oxidation stability. The amount of binding of the group having an antioxidant function is usually 10 mol% is sufficient. The amount of groups attached decreases, and in many cases, it is economically disadvantageous.
本発明の高分子水処理材料において、 酸化防止機能を有する基を共有結合する 方法には特に制限はなく、 例えば、 酸化防止機能を有する化合物と高分子水処理 材料との反応により、 高分子水処理材料に酸化防止機能を有する基を共有結合す ることができ、 酸化防止機能を有する単量体と他の単量体を共重合したのち、 反 応により水処理機能を有する官能基を導入することができ、 あるいは、 酸化防止 機能を有する単量体と水処理機能を有する単量体との共重合により酸化防止機能 を有する基が共有結合された高分子水処理材料とすることができる。 酸化防止機 能を有する単量体としては、 例えば、 酸化防止機能を有する構造と不飽和結合を 有する付加重合用の単量体、 酸化防止機能を有する構造と縮合反応性の官能基を 2個以上有する縮合重合用の単量体、 酸化防止機能を有する構造が開環重合性の 構造に結合した開環重合用の単量体などを挙げることができる。 これらの方法の 中で、 酸化防止機能を有する構造と不飽和結合を有する付加重合用の単量体を水 処理機能を有する又は有しなし、付加重合用の単量体と共重合する方法が合成が容 易であり、 好ましい。 In the polymer water treatment material of the present invention, a method of covalently bonding a group having an antioxidant function is not particularly limited. For example, a method of reacting a compound having an antioxidant function with a polymer water treatment material to form a polymer water A group having an antioxidant function can be covalently bonded to the treatment material, and after copolymerizing a monomer having an antioxidant function with another monomer, a functional group having a water treatment function is introduced by reaction. Alternatively, a polymer water treatment material in which a group having an antioxidant function is covalently bonded by copolymerization of a monomer having an antioxidant function and a monomer having a water treatment function can be obtained. . Examples of the monomer having an antioxidant function include a monomer having an antioxidant function and a monomer for addition polymerization having an unsaturated bond, and a structure having an antioxidant function and two functional groups having condensation reactivity. Condensation polymerization monomer having the above structure with antioxidant function is ring-opening polymerizable Ring-opening polymerization monomers bonded to the structure can be exemplified. Among these methods, there is a method of copolymerizing a monomer for addition polymerization having a structure having an antioxidant function and an unsaturated bond with or without a water treatment function and a monomer for addition polymerization. Synthesis is easy and preferred.
酸化防止機能を有する構造と不飽和結合を有する付加重合用の単量体としては、 例えば、 1, 2, 2, 6, 6,—ペン夕メチルー 4 -ピペリジニルメタクリレート [旭電化工業 (株)、 アデカスタブ LA— 82] 、2, 2, 6, 6,—テトラメチル一 4—ピペリジニルメタクリレート [旭電化工業(株)、 アデカスタブ LA— 87] などのヒンダ一ドアミン構造を有する単量体、 2 - t—プチルー 4ーメチルー 6 一( 2 '—ヒドロキシ一 3 '— t—ブチル一 5 '—メチルべンジノレ)フヱニルァクリ レート [住友化学 (株)、 スミライザ一 GM] 、 2— [1—(2'—ヒドロキシ一 3', 5'—ジ一 t—ペンチルフヱニル)ェチル ]— 4, 6—ジ一 t一ペンチルフェニルァ クリレート [住友化学 (株)、 スミライザ一 GS] などのヒンダードフヱノール構 造を有する単量体などが市販されている。  Examples of the monomer for addition polymerization having a structure having an antioxidant function and an unsaturated bond include, for example, 1,2,2,6,6, -pentanomethyl-4-piperidinyl methacrylate [Asahi Denka Kogyo Co., Ltd. ), Adekastab LA-82], 2,2,6,6-tetramethyl-14-piperidinyl methacrylate [Asahi Denka Kogyo Co., Ltd., Adekastab LA-87], etc. , 2-t-butyl-4-methyl-6- (2'-hydroxy-13'-t-butyl-15'-methylbenzinole) phenylacrylate [Sumitomo Chemical Co., Ltd., Sumilizer-GM], 2- [1- ( 2'-Hydroxy-3 ', 5'-di-t-pentylphenyl) ethyl] —4,6-di-t-pentylphenyl acrylate [Sumitomo Chemical Co., Ltd., hindered phenols such as Sumilizer-GS] Monomers having a structure are commercially available.
また、 Ma k r omo l . Ch em. 、 第 181巻, 557頁 (1980年) に記載されている 2, 6—ジ一 t—プチル一 4ービニルフヱノール及びその誘導 体などのヒンダードフヱノール構造を有する単量体、 J. Po l yme r S c i e n c e : P a r tA、 第 32卷、 961頁 (1994年) に記載されている 4—ァリルォキシー2, 2, 6, 6—テトラメチルビペリジン及びその誘導体、 4 一 [(ビシクロ [2.2.1] ヘプトー 5—ェン一 2—ィノレ)メ トキシ]一 2, 2, 6, 6—テトラメチルピペリジン及びその誘導体、 J. Ap p l i e d P o 1 ym e r S c i e n c e、 第 61巻、 1405頁 (1996年) に記載されている N— 4'— (2', 2', 6', 6'—テトラメチルピペリジニル)一2—ヒドロキシー 3 ーァリルォキシプロピルアミンなどのヒンダ一ドアミン構造を有する単量体、 P o 1 yme r J o u r n a l、 第 28巻、 827頁 (1996年) に記載され ている 3—(3', 5'ージ一 t—プチルー 4'—ヒ ドロキシフヱニル)プロピルメタ クリレートなどのヒンダ一ドフ Xノール構造を有する単量体などを使用すること ができる。 これらのほかに、 ヒンダードアミン系、 単環状又は多環状のヒンダ一ドフエノ —ル系、 チォエステル系、 チォエーテル系、 アミン系、 リン系、 ベンゾフヱノン 系、 サリチレート系、 トリァゾール系などの公知の酸化防止剤に、 ビニル基、 ァ リル基、 スチリル基、 ァクリロイル基、 メタクリロイル基、 N—ビニルァミノ基、 N—ァリルアミノ基、 ァクリルァミ ド基、 メタクリルアミ ド基などの不飽和結合 を有する重合性基を導入した単量体などを用いることができる。 また、 これらの 公知の酸化防止剤に、 重合性基として重縮合又は開環重合が可能な構造、 例えば、 アミノ基、 カルボキシル基、 水酸基、 エチレンォキシド、 /3—プロピオラク トン、 /3—プロピオラクタム、 ε—力プロラクタムなどの構造を導入した単量体などを 用いることができる。 Also, hindered drugs such as 2,6-di-t-butyl-14-vinylphenol and derivatives thereof described in Makromol. Chem., Vol. 181, p. 557 (1980). Monomers having a phenol structure, 4-aryloxy 2,2,6,6-tetramethyl, described in J. Polymer Science: Part A, Vol. 32, page 961 (1994). Biperidine and its derivatives, 4-[(bicyclo [2.2.1] hept-5-en-1-ynole) methoxy] -1,2,2,6,6-tetramethylpiperidine and its derivatives, J. Applied N—4 ′ — (2 ′, 2 ′, 6 ′, 6′—tetramethylpiperidinyl) 1-2— described in P o 1 symbol Science, vol. 61, p. 1405 (1996). Monomers having a hindered amine structure, such as hydroxy-3-aryloxypropylamine, are described in Polymethyl Journal, Vol. 28, p. 827 (1996), 3- (3 ', Five A monomer having a hindered phenol structure such as'di-t-butyl-4'-hydroxyphenyl) propyl methacrylate may be used. In addition to these, known antioxidants such as hindered amine, monocyclic or polycyclic hindered phenol, thioester, thioether, amine, phosphorus, benzophenone, salicylate, triazole, etc. Monomer into which polymerizable group having unsaturated bond such as vinyl group, aryl group, styryl group, acryloyl group, methacryloyl group, N-vinylamino group, N-arylamino group, acrylamide group, methacrylamide group is introduced. Etc. can be used. In addition, these known antioxidants have a polymerizable group capable of undergoing polycondensation or ring-opening polymerization, for example, an amino group, a carboxyl group, a hydroxyl group, ethylene oxide, / 3-propiolactone, and / 3-pro- Monomers having a structure such as piolactam or ε-force prolactam can be used.
これらの酸化防止機能を有する単量体を共重合する方法には特に制限はなく、 それぞれの単量体の性状及び共重合する他の単量体の性状に応じて、 ラジカル重 合、 カチオン重合、 ァニオン重合などの付加重合や、 縮重合、 開環重合などの重 合方法を適宜選定することができる。  There is no particular limitation on the method of copolymerizing these monomers having an antioxidant function. Depending on the properties of each monomer and the properties of other monomers to be copolymerized, radical polymerization and cationic polymerization may be used. Polymerization methods such as addition polymerization such as anion polymerization and condensation polymerization and ring-opening polymerization can be appropriately selected.
酸化防止機能を有しない高分子水処理材料に、 酸化防止機能を有する基を共有 結合させる方法には特に制限はなく、 例えば、 水酸基、 アミノ基、 カルボキシル 基、 ハロゲン化アルキル基などの官能基を有する高分子水処理材料と、 これらの 官能基と反応して共有結合を形成し得る酸化防止剤を反応することができる。 高 分子水処理材料が適当な官能基を有しない場合は、 適当な官能基を導入したのち 酸化防止剤と反応することができ、 あるいは、 適当な官能基を有する酸化防止剤 と高分子水処理材料とを反応することができる。  The method for covalently bonding a group having an antioxidant function to a polymer water treatment material having no antioxidant function is not particularly limited. For example, a functional group such as a hydroxyl group, an amino group, a carboxyl group, or a halogenated alkyl group may be used. The high-molecular-weight water treatment material and an antioxidant capable of forming a covalent bond by reacting with these functional groups can be reacted. If the high molecular weight water treatment material does not have an appropriate functional group, it can react with an antioxidant after introducing an appropriate functional group, or can be combined with an antioxidant having an appropriate functional group and a polymer water treatment. Can react with the material.
本発明のカチオン交換樹脂は、 酸化防止機能を有する基が一般式 [ 1 ] で示さ れるスルホンァミ ド結合を介して共有結合されてなるものである。  In the cation exchange resin of the present invention, a group having an antioxidant function is covalently bonded via a sulfonamide bond represented by the general formula [1].
- S O z N R 1 - … [ 1 ] -SO z NR 1- … [1]
ただし、 式中、 R 1は水素又はメチル基である。 However, in the formula, R 1 is hydrogen or a methyl group.
本発明のカチオン交換樹脂を製造する方法には特に制限はないが、 例えば、 三 次元網目構造を有する高分子からなる不溶性担体に、 クロルスルホン基とスルホ ン酸基を導入し、 さらにァミノ基と酸化防止機能を有する基をもつた化合物をク 口ルスルホン基に反応させることにより製造することができる。 The method for producing the cation exchange resin of the present invention is not particularly limited. For example, a chlorosulfone group and a sulfonate group are introduced into an insoluble carrier made of a polymer having a three-dimensional network structure, Compounds with groups with antioxidant function It can be produced by reacting with a methyl sulfone group.
三次元網目構造を有する高分子からなる不溶性担体の構造、 形状、 製造方法に は特に制限はなく、 例えば、 スチレンとジビニルベンゼンの共重合体、 架橋ポリ エチレン、 架橋ポリプロピレンなどの、 有機高分子の球状、 膜状、 繊維状などの 不溶性担体を用いることができる。 スチレンージビニルベンゼン共重合体からな る架橋粒子は、 スチレンとジビニルベンゼンを、 ポリビニルアルコール、 ポリビ ニルピロリ ドン、 リン酸カルシウムなどの分散剤を含む水に分散させ、 過酸化べ ンゾィル、 ァゾビスイソプチロニトリルなどのラジカル重合開始剤を加え、 加熱 撹拌して懸濁重合することによって得ることができる。 スチレンとジビニルペン ゼンの比に特に制限はないが、 通常はジビニルベンゼンが 6〜 2 0重量%である ことが好ましく、 8〜1 2重量%であることがより好ましい。  The structure, shape, and manufacturing method of the insoluble carrier made of a polymer having a three-dimensional network structure are not particularly limited, and examples thereof include organic polymers such as a copolymer of styrene and divinylbenzene, a cross-linked polyethylene, and a cross-linked polypropylene. Insoluble carriers such as spheres, membranes, and fibers can be used. Crosslinked particles made of a styrene-divinylbenzene copolymer are obtained by dispersing styrene and divinylbenzene in water containing a dispersant such as polyvinyl alcohol, polyvinylpyrrolidone, and calcium phosphate. Such a radical polymerization initiator can be obtained by adding the radical polymerization initiator, and heating and stirring to carry out suspension polymerization. Although the ratio of styrene to divinyl benzene is not particularly limited, it is usually preferable that the content of divinyl benzene is 6 to 20% by weight, more preferably 8 to 12% by weight.
本発明において、 カチオン交換樹脂にスルホンアミ ド結合を介して酸化防止機 能を有する基を導入する方法には特に制限はなく、 例えば、 不溶性担体にクロル スルホン基を導入し、 さらに一級又は二級アミノ基と酸化防止機能を有する基を もった化合物を反応させることにより容易に導入することができる。 例えば、 ス チレンージビニルベンゼン架橋共重合体粒子にクロルスルホン酸、 塩化スルフリ ノレ、 二酸化イオウと塩素の混合物などを反応させることにより、 スチレンージビ ニルベンゼン架橋共重合体粒子へク口ルスルホン基を容易に導入することができ る。 この際、 テトラクロルェタン、 ジクロルメタンなどのスチレン一ジビニルべ ンゼン架橋共重合体粒子が膨潤する溶媒を用いることにより、 反応を促進するこ とができる。 クロルスルホン化剤は、 通常、 導入しょうとする量の当量以上用い ることが好ましく、 スチレンージビニルベンゼン架橋共重合体粒子の場合は、 粒 子中のベンゼン環の 2〜3当量倍を用いることが好ましい。 ク口ルスルホン化反 応の温度と時間には特に制限はなく、 例えば、 氷水浴中に浸潰し、 あるいは室温 で、 数時間撹拌しつつ反応することができる。 クロルスルホン化反応を終了した のち、 反応混合物をろ過して、 クロ口ホルム、 ジクロルメタン、 アセトンなどの クロルスルホン基と反応しない溶媒で洗浄することが好ましい。  In the present invention, the method of introducing a group having an antioxidant function into a cation exchange resin via a sulfonamide bond is not particularly limited. For example, a chlorosulfone group is introduced into an insoluble carrier, and a primary or secondary amino group is further introduced. It can be easily introduced by reacting a group with a compound having a group having an antioxidant function. For example, by reacting chlorosulfonic acid, sulfonol chloride, a mixture of sulfur dioxide and chlorine, etc. with the styrenedivinylbenzene crosslinked copolymer particles, a ketone sulfone group can be easily introduced into the styrenedivinylbenzene crosslinked copolymer particles. can do. At this time, the reaction can be promoted by using a solvent that swells the styrene-divinylbenzene crosslinked copolymer particles such as tetrachloroethane and dichloromethane. Usually, the chlorosulfonating agent is preferably used in an amount equal to or more than the amount to be introduced.In the case of styrene-divinylbenzene crosslinked copolymer particles, use 2 to 3 times the benzene ring in the particles. Is preferred. There is no particular limitation on the temperature and time for the sulphonation reaction. For example, the reaction can be carried out by immersing in an ice-water bath or stirring at room temperature for several hours. After completion of the chlorosulfonation reaction, the reaction mixture is preferably filtered and washed with a solvent that does not react with chlorosulfone groups, such as chloroform, dichloromethane, and acetone.
クロルスルホン基が導入されたスチレンージビニルベンゼン架橋共重合体粒子 をクロ口ホルム、 ジクロルメタンなどの溶媒に分散し、 一級又は二級アミノ基と 酸化防止機能を有する基をもつた化合物と反応させることにより、 スルホンァミ ド結合を介して、 酸化防止機能を有する基を共有結合させることができる。 一級 又は二級ァミノ基と酸化防止機能を有する基をもった化合物としては、 例えば、Styrene divinylbenzene cross-linked copolymer particles with chlorosulfone groups introduced Is dispersed in a solvent such as chloroform and dichloromethane, and reacted with a compound having a primary or secondary amino group and a group having an antioxidant function to form a group having an antioxidant function through a sulfonamide bond. They can be covalently bonded. Examples of the compound having a primary or secondary amino group and a group having an antioxidant function include, for example,
4一アミノー 2 , 2 , 6 , 6—テトラメチルピペリジン、 4一アミノー 1 , 2 , 2, 6 , 6一ペンタメチルピペリジンなどのヒンダ一ドアミ ン系の化合物や、 2, 6—ジ ― t—ブチル一 4—アミノメチルフヱノール、 2, 6—ジ一 t—ブチル一 4ーメ チルァミノメチルフヱノール、 2 , 6—ジ一 t—ブチル一 4ーァミノフヱノール、 2 , 6—ジ一 tーブチル一 4—ァミノプロピルフヱノ一ルなどのヒンダ一ドフヱ ノール系の化合物などを挙げることができる。 導入する酸化防止機能を有する基 の量には特に制限はないが、 通常はカチオン交換樹脂の 0. 0 1〜1 0重量%で あることが好ましい。 反応の際、 トリメチルァミン、 ピリジンなどの塩基を共存 させると、 反応によって生成する塩酸を中和して、 反応を効率よく進めることが できる。 反応温度と時間には特に制限はないが、 通常は室温で数時間撹拌するこ とにより反応を終了することができる。 Hindered amide compounds such as 4-amino-2,2,6,6-tetramethylpiperidine, 4-amino-1,2,2,6,6-pentamethylpiperidine, and 2,6-di-t— Butyl-4-aminomethylphenol, 2,6-di-t-butyl-4-methylethylaminophenol, 2,6-di-t-butyl-4-aminophenol, 2, Hindered phenolic compounds such as 6-di-t-butyl-14-aminopropylphenol and the like can be mentioned. The amount of the group having an antioxidant function to be introduced is not particularly limited, but is usually preferably from 0.01 to 10% by weight of the cation exchange resin. When a base such as trimethylamine or pyridine coexists during the reaction, hydrochloric acid generated by the reaction can be neutralized, and the reaction can proceed efficiently. The reaction temperature and time are not particularly limited, but usually the reaction can be terminated by stirring at room temperature for several hours.
最後に、 残存するクロルスルホン基を加水分解によってスルホン基に変換する ことにより、 本発明のカチオン交換樹脂を得ることができる。 加水分解の方法に 特に制限はなく、 例えば、 ァミノ基と酸化防止機能を有する基をもった化合物を 反応して得られた生成物を、 水に分散して加水分解反応を行うことができる。 加 水分解反応は、 通常は 4 0〜5 0 °Cに加熱して反応することにより効率よく進行 する。 また、 加水分解が進行するに従って、 塩酸が生成して系の pHが低下するの で、 スルホンアミ ド結合の分解を防ぐために、 酢酸ナトリウムなどの緩衝作用を 有する化合物を共存させたり、 あるいは、 水酸化ナトリウムなどのアルカリを添 加して、 系が強酸性となることを防ぐことが好ましい。  Finally, the remaining chlorosulfone group is converted to a sulfone group by hydrolysis, whereby the cation exchange resin of the present invention can be obtained. The hydrolysis method is not particularly limited. For example, a product obtained by reacting a compound having an amino group and a group having an antioxidant function can be dispersed in water to perform a hydrolysis reaction. The hydrolysis reaction usually proceeds efficiently by heating at 40 to 50 ° C. In addition, as the hydrolysis proceeds, hydrochloric acid is generated to lower the pH of the system.To prevent the decomposition of the sulfonamide bond, a compound having a buffering action, such as sodium acetate, may be coexistent, or hydroxylated. It is preferable to add an alkali such as sodium to prevent the system from becoming strongly acidic.
本発明のカチオン交換樹脂は、 酸化防止機能を有する基が共有結合により導入 されているので、 酸化防止剤をイオン的に吸着させ、 あるいは物理的に保持させ る従来の方法に比べて、 酸化防止剤の脱落が生じにく く、 長期間にわたって優れ た酸化防止性を維持し、 使用時における樹脂成分の溶出を効果的に防止すること ができる。 In the cation exchange resin of the present invention, since a group having an antioxidant function is introduced by a covalent bond, the antioxidant is more oxidatively prevented than a conventional method in which an antioxidant is ionically adsorbed or physically retained. Prevents the agent from falling off, maintains excellent antioxidant properties over a long period of time, and effectively prevents the elution of resin components during use Can be.
本発明のァニオン交換樹脂は、 酸化防止機能を有する基が一般式 [ 2 ] で示さ れるィミノアルキレン結合を介して共有結合されてなるものである。  The anion exchange resin of the present invention is a resin in which a group having an antioxidant function is covalently bonded via an iminoalkylene bond represented by the general formula [2].
- ( C H 2)nN R 2- … [ 2 ] -(CH 2 ) nN R 2- … [2]
ただし、 式中、 R 2は水素又はメチル基であり、 nは 1〜4の整数である。 Here, in the formula, R 2 is hydrogen or a methyl group, and n is an integer of 1 to 4.
本発明のァニオン交換樹脂を製造する方法には特に制限はなく、 例えば、 三次 元網目構造を有する高分子からなる不溶性担体に、 ハロゲン化アルキル基を導入 し、 ハロゲン化アルキル基の一部にァミノ基と酸化防止機能を有する基をもった 化合物を反応させることにより酸化防止機能を有する基を導入し、 さらに残余の ハロゲン化アルキル基にアミンを反応させて、 第四級アンモニゥム基とすること により製造することができる。 あるいは、 三次元網目構造を有する高分子からな る不溶性担体に、 ハロゲン化アルキル基を導入し、 ハロゲン化アルキル基の大部 分にァミンを反応させて第四級アンモニゥム基とし、 さらに残余のハロゲン化ァ ルキル基にァミノ基と酸化防止機能を有する基をもった化合物を反応させること により、 酸化防止機能を有する基を導入することによっても製造することができ る。  The method for producing the anion exchange resin of the present invention is not particularly limited. For example, a halogenated alkyl group is introduced into an insoluble carrier made of a polymer having a three-dimensional network structure, and a part of the halogenated alkyl group is amino. A group having an antioxidant function is introduced by reacting the group with a compound having an antioxidant function, and an amine is reacted with the remaining alkyl halide group to form a quaternary ammonium group. Can be manufactured. Alternatively, an alkyl halide group is introduced into an insoluble carrier made of a polymer having a three-dimensional network structure, and most of the alkyl halide group is reacted with an amine to form a quaternary ammonium group, and the remaining halogen is added. It can also be produced by introducing a group having an antioxidant function by reacting a compound having an amino group with an antioxidant function with an alkyl group.
本発明において、 三次元網目構造を有する高分子からなる不溶性担体の構造、 形状、 製造方法には特に制限はなく、 例えば、 スチレンとジビニルベンゼンの共 重合体、 架橋ポリエチレン、 架橋ポリプロピレンなどの、 有機高分子の球状、 膜 状、 繊維状などの不溶性担体を用いることができる。 スチレン一ジビニルペンゼ ン共重合体からなる架橋粒子は、 スチレンとジビニルベンゼンを、 ポリビニルァ ルコール、 ポリビニルピロリ ドン、 リン酸カルシウムなどの分散剤を含む水に分 散させ、 過酸化べンゾィル、 ァゾビスイソプチロニトリルなどのラジカル重合開 始剤を加え、 加熱撹拌して懸濁重合することにより得ることができる。  In the present invention, the structure, shape, and production method of the insoluble carrier comprising a polymer having a three-dimensional network structure are not particularly limited, and examples thereof include organic polymers such as a copolymer of styrene and divinylbenzene, a crosslinked polyethylene, and a crosslinked polypropylene. Insoluble carriers such as polymer spheres, membranes, and fibers can be used. Crosslinked particles composed of a styrene-divinylpentene copolymer are obtained by dispersing styrene and divinylbenzene in water containing a dispersant such as polyvinyl alcohol, polyvinylpyrrolidone, and calcium phosphate. Such a radical polymerization initiator can be obtained by adding the above radical polymerization initiator, heating and stirring to carry out suspension polymerization.
本発明において、 不溶性担体に導入するハロゲン化アルキル基は、 炭素数 1〜 4のハロゲン化アルキル基であり、 好ましくはクロロメチル基である。 ハロゲン 化アルキル基の炭素数が 5以上であると、 ァニォン交換樹脂の単位重量当たりの ィォン交換容量が小さくなり、 かつァニォン交換樹脂の疎水性が強くなりすぎる おそれがある。 In the present invention, the halogenated alkyl group introduced into the insoluble carrier is a halogenated alkyl group having 1 to 4 carbon atoms, and is preferably a chloromethyl group. When the number of carbon atoms in the halogenated alkyl group is 5 or more, the ion exchange capacity per unit weight of the anion exchange resin becomes small, and the hydrophobicity of the anion exchange resin becomes too strong. There is a risk.
不溶性担体がスチレンの共重合体である場合は、 無水塩化アルミニウム、 四塩 化スズ、 塩化第二スズ、 無水塩化亜鉛などの触媒の存在下にクロロメチルメチル エーテルを反応することにより、 クロロメチル基を導入することができる。 この 際、 テトラクロロェタン、 ジクロロメタンなどのスチレン一ジビニルベンゼン架 橋共重合体粒子を膨潤させる溶媒を用いることにより、 反応を促進することがで きる。 クロロメチルメチルェ一テルは、 通常、 導入しょうとする量の当量以上を 用し、、 不溶性担体がスチレンージビニルベンゼン架橋共重合体粒子である場合、 粒子中のベンゼン環の 2〜3当量倍を用いることが好ましい。 反応温度と反応時 間には特に制限はなく、 使用する触媒によって適宜設定することができる。 例え ば、 塩化第二スズを用いる場合は、 5 0〜7 0 °Cで 4〜6時間反応すればよい。 また、 無水塩化アルミニウムを用いる場合は、 活性が高いので、 通常 0〜5 °Cで :!〜 3時間反応すればよい。 反応終了後、 反応混合物をろ過してクロロメチル化 された粒子を分離し、 クロ口ホルム、 ジクロロメタンなどのクロロメチル基と反 応じない溶媒で洗浄することが好ましい。  When the insoluble carrier is a copolymer of styrene, the chloromethyl group is reacted by reacting chloromethyl methyl ether in the presence of a catalyst such as anhydrous aluminum chloride, tin tetrachloride, stannic chloride, or anhydrous zinc chloride. Can be introduced. At this time, the reaction can be promoted by using a solvent such as tetrachloroethane or dichloromethane that swells the styrene-divinylbenzene bridge copolymer particles. Chloromethyl methyl ether is usually used in an amount equal to or greater than the amount to be introduced, and when the insoluble carrier is a styrene-divinylbenzene cross-linked copolymer particle, it is 2-3 equivalent times the benzene ring in the particle. It is preferable to use The reaction temperature and reaction time are not particularly limited, and can be appropriately set depending on the catalyst used. For example, when stannic chloride is used, the reaction may be performed at 50 to 70 ° C for 4 to 6 hours. When anhydrous aluminum chloride is used, the activity is high. The reaction may take up to 3 hours. After completion of the reaction, the reaction mixture is preferably filtered to separate chloromethylated particles, and washed with a solvent that does not react with chloromethyl groups, such as chloroform and dichloromethane.
本発明において、 ハロゲン化アルキル基が導入されたスチレン一ジビニルベン ゼン架橋共重合体粒子などの粒子を、 ベンゼン、 クロ口ホルム、 ジクロロメタン などの溶媒に分散し、 一級又は二級アミノ基と酸化防止機能を有する基をもった 化合物を反応させることにより、 イミノアルキレン基を介して、 酸化防止機能を 有する基を共有結合させることができる。 一級又は二級アミノ基と酸化防止機能 を有する基をもった化合物としては、 例えば、 4一アミノー 2, 2 , 6, 6—テト ラメチルピペリジン、 4—ァミノ一 1 , 2 , 2 , 6 , 6—ペンタメチルピペリジンな どのヒンダ一ドアミン系化合物や、 2, 6—ジー t—プチル一 4—アミノメチル フエノール、 2 , 6—ジー t一ブチル一 4一メチルアミノメチルフヱノール、 2 , 6—ジー tーブチルー 4—アミノフエノ一ル、 2 , 6—ジ一 tーブチルー 4—ァ ミノプロピルフェノールなどのヒンダ一ドフエノ一ル系化合物などを挙げること ができる。 導入する酸化防止機能を有する基の量には特に制限はないが、 通常は ァニオン交換樹脂の 0. 0 1 ~ 1 0重量%であることが好ましい。 反応温度と反 応時間に特に制限はないが、 例えば、 室温における数時間の反応により、 反応を 終了することができる。 In the present invention, particles such as styrene-divinylbenzene cross-linked copolymer particles into which a halogenated alkyl group has been introduced are dispersed in a solvent such as benzene, chloroform, and dichloromethane to form a primary or secondary amino group and an antioxidant function. By reacting a compound having a group having the following formula, a group having an antioxidant function can be covalently bonded via an iminoalkylene group. Examples of the compound having a primary or secondary amino group and a group having an antioxidant function include, for example, 4-amino-2,2,6,6-tetramethylpiperidine, 4-amino-1,2,2,6, Hindered amine compounds such as 6-pentamethylpiperidine, 2,6-di-tert-butyl-1-aminomethylphenol, 2,6-di-tert-butyl-14-methylaminomethylphenol, 2,6 Hindered phenolic compounds such as di-tert-butyl-4-aminophenol and 2,6-di-tert-butyl-4-aminopropylphenol; The amount of the group having an antioxidant function to be introduced is not particularly limited, but is usually preferably from 0.01 to 10% by weight of the anion exchange resin. Reaction temperature and anti The reaction time is not particularly limited. For example, the reaction can be completed by a reaction at room temperature for several hours.
本発明において、 ハロゲン化アルキル基を第四級アンモニゥム基に転換するた めに反応させるアミンには特に制限はなく、 例えば、 トリメチルァミンなどのト リアルキルァミンゃ、 ジメチルモノエタノ一ルァミンなどなジアルキルモノアル カノールァミンなどを挙げることができる。 ァミンが、 室温において気体である 場合は、 反応系にアミンを吹き込み、 例えば、 室温で 1 0〜1 2時間反応するこ とにより、 アンモニゥム化反応を終了することができる。  In the present invention, there is no particular limitation on the amine that is reacted to convert the halogenated alkyl group into a quaternary ammonium group. Examples thereof include trialkylamines such as trimethylamine and dialkylmonoamines such as dimethylmonoethanolamine. Alkanolamine and the like can be mentioned. When the amine is a gas at room temperature, the ammoniating reaction can be terminated by blowing the amine into the reaction system and, for example, reacting at room temperature for 10 to 12 hours.
本発明のァニオン交換樹脂は、 酸化防止機能を有する基が共有結合により導入 されているので、 酸化防止剤をイオン的に吸着させ、 あるいは物理的に保持させ る従来の方法に比べて、 酸化防止剤の脱落が生じにく く、 長期間にわたって優れ た耐酸化分解性を維持し、 使用時における樹脂成分の溶出と樹脂の劣化を効果的 に防止することができる。  In the anion exchange resin of the present invention, since a group having an antioxidant function is introduced by a covalent bond, the antioxidant is more oxidized than the conventional method in which the antioxidant is ionically adsorbed or physically retained. The agent does not easily fall off, maintains excellent resistance to oxidative decomposition over a long period of time, and can effectively prevent elution of resin components and deterioration of the resin during use.
実施例 Example
以下に、 実施例を挙げて本発明をさらに詳細に説明するが、 本発明はこれらの 実施例によりなんら限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
実施例 1 Example 1
酸化防止機能を有する基として、 2 , 2 , 6 , 6—テトラメチル一 4ーピペリジ ニル基が共有結合されたポリスチレンスルホン酸ナトリウムからなる分散剤を合 成した。  As a group having an antioxidant function, a dispersant composed of sodium polystyrenesulfonate having a 2,2,6,6-tetramethyl-14-piperidinyl group covalently bonded thereto was synthesized.
スチレンスルホン酸ナトリウム [東京化成工業 (株)] 1 3. 8 0 g ( 6 7. 0ミ リモル) 、 2, 2 , 6 , 6—テトラメチル _ 4ーピペリジニルメタクリレート [旭 電化工業 (株)、 アデカスタブ L A— 8 7 ] 0. 6 8 g ( 3. 0ミ リモル) 及び水 8 0 mlを 5 0 0 mlセパラブルフラスコに採り、 フラスコを氷水浴に浸漬して低温を 保ちつつ、 2, 2, 6 , 6—テトラメチルー 4ーピペリジニルメタクリレ一卜が溶 解するまで塩酸を滴下し、 さらに水を 2 0 ml追加した。 得られた溶液の pHは、 4. 1であった。  Sodium styrenesulfonate [Tokyo Kasei Kogyo Co., Ltd.] 13.80 g (67.0 mimol), 2,2,6,6-tetramethyl-4-piperidinyl methacrylate [Asahi Denka Kogyo Co., Ltd. ), ADK STAB LA—87] 0.68 g (3.0 millimoles) and 80 ml of water were placed in a 500 ml separable flask, and the flask was immersed in an ice water bath to keep the temperature low. Hydrochloric acid was added dropwise until 2,2,6,6-tetramethyl-4-piperidinyl methacrylate was dissolved, and 20 ml of water was further added. The pH of the resulting solution was 4.1.
セパラブルフラスコに窒素ガス導入管を備えた蓋を取り付け、 窒素ガスを 2 0 OmlZ分で 30分間吹き込んだ。 過硫酸カリウム [キシダ化学 (株)] 140mgを 5. 2 mlの水に溶解した水溶液 lmlを加え、 窒素ガス吹き込み量を 60 mlZ分と し、 45°Cで 15.5時間加熱して重合した。 反応混合物に水酸化ナトリウム水 溶液を加えて pHを 8. 1とし、 アセトンに投入して沈殿した生成物をろ別し、 真 空乾燥した。 白色固体 13. 10 gが得られた。 Attach a lid equipped with a nitrogen gas inlet tube to the separable flask, Blowed at OmlZ minutes for 30 minutes. One milliliter of an aqueous solution obtained by dissolving 140 mg of potassium persulfate [Kishida Chemical Co., Ltd.] in 5.2 ml of water was added thereto, and the amount of nitrogen gas blown was 60 mlZ, and the mixture was heated at 45 ° C for 15.5 hours to carry out polymerization. An aqueous sodium hydroxide solution was added to the reaction mixture to adjust the pH to 8.1, and the mixture was poured into acetone, and the precipitated product was separated by filtration and vacuum-dried. 13.10 g of a white solid was obtained.
得られた生成物の赤外吸収スペク トルには、 3070cm- 3030cm 1 600cm— 1500cm— 835cm— 1にベンゼン環に由来する吸収帯、 292The infrared absorption spectrum of the obtained product shows an absorption band derived from the benzene ring at 3070 cm-3030 cm1 600 cm-1500 cm-835 cm- 1.
5 cm"1. 2850cm—1にメチレン基に由来する吸収帯、 1200cm— 1130 cm"1. 1040cm' 101 Ocnr1にスルホン基に由来する吸収帯、 1720cm -1に 2, 2, 6, 6—テトラメチル一4ーピペリジニルメタクリ レートのエステル 結合の C =〇伸縮振動に基づく吸収帯が認められた。 この結果から、 生成物がス チレンスルホン酸ナトリウムと 2, 2, 6, 6—テ卜ラメチル一 4—ピペリジニル メタクリレー卜の共重合体であることが確かめられた。 . 5 cm ". 1 2850cm- absorption band derived from the methylene group in 1, 1200cm- 1130 cm" 1 1040cm '101 Ocnr absorption band derived from a sulfonic group in 1, 1720 cm - 1 to 2, 2, 6, 6- An absorption band based on the C = 〇 stretching vibration of the ester bond of tetramethyl-1-piperidinyl methacrylate was observed. From these results, it was confirmed that the product was a copolymer of sodium styrenesulfonate and 2,2,6,6-tetramethyl-14-piperidinyl methacrylate.
この共重合体の 0.5重量%水溶液を調製し、 B型粘度計を用いて 20°Cにお いて溶液粘度を測定したところ、 22 c Pであった。 次に、 この溶液 200mlを ビーカーに採り、 6重量%の過酸化水素水溶液を 50// 1添加し、 50°Cの湯浴 に入れて 4日間加熱した。 その後、 温度を 20°Cに戻して溶液粘度を測定したと ころ、 22 c Pであり、 溶液粘度に変化はなかった。  A 0.5% by weight aqueous solution of this copolymer was prepared, and the viscosity of the solution was measured at 20 ° C. using a B-type viscometer. Next, 200 ml of this solution was placed in a beaker, a 6% by weight aqueous solution of hydrogen peroxide was added at 50 // 1, and the mixture was placed in a 50 ° C water bath and heated for 4 days. Thereafter, when the temperature was returned to 20 ° C. and the solution viscosity was measured, it was 22 cP, and there was no change in the solution viscosity.
比較例 1 Comparative Example 1
ポリスチレンスルホン酸ナトリウムからなる分散剤を合成した。  A dispersant consisting of sodium polystyrene sulfonate was synthesized.
2, 2, 6, 6—テトラメチル _4ーピペリジニルメタクリレートを用いなかつ たことと、 溶液の pH調整を行わなかったこと以外は実施例 1と同様にして、 13. As in Example 1, except that 2, 2, 6, 6-tetramethyl_4-piperidinyl methacrylate was not used and the pH of the solution was not adjusted.
66 gのポリスチレンスルホン酸ナトリウムを白色固体として得た。 66 g of sodium polystyrene sulfonate was obtained as a white solid.
得られたポリスチレンスルホン酸ナトリウムの 0.5重量%水溶液を調製し、 実施例 1と同様にして、 調製直後の溶液粘度及び過酸化水素水を添加して 50°C の湯浴で 4曰間加熱した後の溶液粘度を測定した。 調製直後の溶液粘度は 56 c Pであり、 過酸化水素水を添加して加熱した後の溶液粘度は 15 c Pであった。 実施例 1と比較例 1に見られるように、 酸化防止機能を有する基が共有結合さ れているポリスチレンスルホン酸ナ卜リウムは溶液粘度が変化していないのに対 して、 酸化防止機能を有する基が結合されていないポリスチレンスルホン酸ナト リウムは大幅に溶液粘度が低下している。 この結果から、 酸化防止機能を有する 基を共有結合することにより、 ポリスチレンスルホン酸ナ卜リウムの酸化分解を 防止できることは明らかである。 A 0.5% by weight aqueous solution of the obtained sodium polystyrene sulfonate was prepared, and in the same manner as in Example 1, the solution viscosity immediately after preparation and hydrogen peroxide were added, and the mixture was heated for 4 hours in a 50 ° C water bath. The solution viscosity afterwards was measured. The solution viscosity immediately after preparation was 56 cP, and the solution viscosity after adding a hydrogen peroxide solution and heating was 15 cP. As shown in Example 1 and Comparative Example 1, a group having an antioxidant function is covalently bonded. The solution viscosity of sodium polystyrene sulfonate does not change, whereas the solution viscosity of sodium polystyrene sulfonate, to which a group having an antioxidant function is not bonded, is greatly reduced. From these results, it is clear that oxidative decomposition of sodium polystyrene sulfonate can be prevented by covalently bonding a group having an antioxidant function.
実施例 2 Example 2
酸化防止機能を有する基として、 2 2, 6, 6—テトラメチル一 4ーピペリジ ニル基が共有結合された粉末状カチオン交換樹脂を合成した。  A powdered cation exchange resin having a 2,2,6,6-tetramethyl-14-piperidinyl group covalently bound as a group having an antioxidant function was synthesized.
スチレンスルホン酸ナトリウム 15.00 g (72.8ミ リモル) 、 スチレン Sodium styrene sulfonate 15.00 g (72.8 mimol), styrene
[東京化成工業 (株)] 1.54 g (14.8ミ リモル) ジビニルベンゼン [東京 化成工業 (株)、 有効成分 55重量%] 1.75 g (7.4ミ リモル) 、 2, 2, 6, 6—テトラメチル一4—ピペリジニルメタクリ レート 1.04 g (4.6ミ リモル) 及びジメチルホルムアミ ド 195mlを、 50 Omlセパラブルフラスコに採った。 撹拌用のテフロン羽根、 窒素ガス導入管を備えた蓋を取り付け、 40rpmで撹拌 しながら、 窒素ガスを 30 OmlZ分で 1時間吹き込んだ。 [Tokyo Kasei Kogyo Co., Ltd.] 1.54 g (14.8 mimol) divinylbenzene [Tokyo Kasei Kogyo Co., Ltd., 55% by weight of active ingredient] 1.75 g (7.4 mimol), 2, 2, 6, 6-tetramethyl 1.04 g (4.6 mmol) of 4-piperidinyl methacrylate and 195 ml of dimethylformamide were placed in a 50-ml separable flask. A Teflon blade for stirring and a lid equipped with a nitrogen gas inlet tube were attached, and nitrogen gas was blown in at 30 OmlZ for 1 hour while stirring at 40 rpm.
次いで、 2 2'—ァゾビスイソプチロニトリル [キシダ化学 (株)] 66mgをジ メチルホルムアミ ド 12mlに溶解した溶液 6mlを加え、 窒素ガス吹き込み量を 1 O OmlZ分とし、 70°Cで 17時間加熱した。 窒素ガスの吹き込み量は、 加熱開 始 2時間後に 5 OmlZ分とした。 生成した白色沈殿をろ別し、 ジメチルホルムァ ミ ド、 ァセトンの順で洗浄し、 真空乾燥して、 粉末状の生成物 13.42 gを得 o  Next, 6 ml of a solution of 66 mg of 22'-azobisisobutyronitrile [Kishida Chemical Co., Ltd.] dissolved in 12 ml of dimethylformamide was added. Heated for 17 hours. The amount of nitrogen gas blown was 5 OmlZ minutes two hours after the start of heating. The formed white precipitate is filtered off, washed with dimethylformamide and acetone in that order, and dried in vacuo to obtain 13.42 g of a powdery product o
得られた生成物が水に溶解しないこと、 生成物の赤外吸収スぺク トルが実施例 1で得られたスチレンスルホン酸ナトリウムと 2, 2, 6, 6—テトラメチル一4 ーピペリジニルメタクリレート共重合体の赤外吸収スぺク トルと同じであること から、 得られた生成物がスチレンスルホン酸ナトリウム、 スチレン、 ジビニルべ ンゼン及び 2, 2 6 6—テトラメチル一4—ピペリジニルメタクリレー卜の共 重合体であることが確かめられた。  The obtained product does not dissolve in water, and the infrared absorption spectrum of the product is determined by comparing the sodium styrenesulfonate obtained in Example 1 with 2,2,6,6-tetramethyl-1-piperidine. The product obtained is sodium styrenesulfonate, styrene, divinylbenzene and 2,266-tetramethyl-14-piperidinium, since the absorption spectrum is the same as that of the methyl methacrylate copolymer. It was confirmed that it was a copolymer of nilmethacrylate.
得られた粉末状の共重合体 0.39 gを 250mlの洗気瓶に採り、 水 200ml を加えた。 粉末状の共重合体は、 見かけ容積約 25 mlまで膨潤した。 31重量% の過酸化水素水 50 a 1を添加し、 70°Cの湯浴により一夜加熱した。 その後、 上澄液の有機体炭素 (TOC) の量を測定したところ、 18ppmであった。 Take 0.39 g of the obtained powdery copolymer in a 250 ml washing bottle, and add 200 ml of water. Was added. The powdery copolymer swelled to an apparent volume of about 25 ml. 31% by weight of a hydrogen peroxide solution 50a1 was added, and the mixture was heated overnight in a 70 ° C water bath. Thereafter, the amount of organic carbon (TOC) in the supernatant was measured and was found to be 18 ppm.
比較例 2 Comparative Example 2
酸化防止機能を有する基が結合されて L、な 、粉末状カチォン交換樹脂を合成し た。  A group having an antioxidant function was bonded to form an L-type powdered cation exchange resin.
スチレンスルホン酸ナトリウム 16.06 g (78.0ミ リモル) 、 スチレン 1. 54 g (14.8ミ リモル) 及びジビニルベンゼン [有効成分 55重量%] 1.7 5 g (7.4ミ リモル) を用いて、 実施例 2と同様に合成を行い、 スチレンスル ホン酸ナトリウム、 スチレン及びジビニルベンゼンの共重合体 13.61 gを得 た。  As in Example 2, using 16.06 g (78.0 mimol) of sodium styrenesulfonate, 1.54 g (14.8 mimol) of styrene and 1.75 g (7.4 mimol) of divinylbenzene [55% by weight of active ingredient] The synthesis was performed to obtain 13.61 g of a copolymer of sodium styrenesulfonate, styrene and divinylbenzene.
得られた粉末状の共重合体 0.43 gを 250mlの洗気瓶に採り、 水 200ml を加えたところ、 共重合体は見かけ容積約 25 mlまで膨潤した。 次いで、 31重 量%の過酸化水素水 50 / 1を添加し、 70°Cの湯浴により一夜加熱した。 その 後、 上澄液の有機体炭素の量を測定したところ、 34ppmであった。  0.43 g of the obtained powdery copolymer was placed in a 250 ml air-washing bottle, and 200 ml of water was added. The copolymer swelled to an apparent volume of about 25 ml. Then, 50/1 of 31% by weight aqueous hydrogen peroxide was added, and the mixture was heated overnight in a 70 ° C water bath. Thereafter, the amount of organic carbon in the supernatant was measured and found to be 34 ppm.
実施例 2及び比較例 2に見られるように、 酸化防止機能を有する基が共有結合 されているカチォン交換樹脂の上澄液の有機体炭素の量が、 酸化防止機能を有す る基が結合されていないカチオン交換樹脂の上澄液の有機体炭素の量より少ない ことから、 酸化防止機能を有する基を共有結合することにより、 樹脂の分解溶出 が抑制されることが分かる。  As can be seen in Example 2 and Comparative Example 2, the amount of organic carbon in the supernatant of the cation exchange resin to which a group having an antioxidant function is covalently bonded is determined by the amount of the group having an antioxidant function. Since the amount of the organic carbon in the supernatant of the cation exchange resin that has not been subjected to the reaction is smaller than that of the supernatant, it is understood that the decomposition and elution of the resin are suppressed by covalently bonding a group having an antioxidant function.
実施例 3 Example 3
酸化防止機能を有する基として、 2, 2, 6, 6—テトラメチル一 4—ピペリジ ニル基が共有結合された粒子状カチオン交換樹脂を合成した。  We have synthesized a particulate cation exchange resin in which a 2,2,6,6-tetramethyl-14-piperidinyl group is covalently bonded as an antioxidant group.
スチレン 35. 10 g (337.5ミ リモル) 、 ジビニルベンゼン [有効成分 5 5重量%] 7.62 g (32.2ミリモル) 、 2, 2, 6, 6—テトラメチル一4一 ピペリジニルメタクリレート 4.59 g (20.4ミ リモル) 及び 2, 2,一ァゾビ スィソブチロニトリル 0.25 gを、 500mlセパラブルフラスコに採り、 窒素 ガスを 20 OmlZ分で 30分間吹き込んで脱酸素した。 この単量体混合液に、 ポ リビニルアルコール [キシダ化学(株)、 重合度 2, 000、 ケン化度 78〜82 モル%] 0.06 g及びポリビニルアルコール [キシダ化学 (株)、 重合度 2, 00 0、 ゲン化度 98.5〜99.4モル%] 1.44 gを水 500mlに加え、 加熱し て溶解したのち、 No.5 Aろ紙を用いてろ過して調製したポリビニルアルコー ル水溶液 200mlを加えた。 Styrene 35.10 g (337.5 mmol), divinylbenzene [55% by weight of active ingredient] 7.62 g (32.2 mmol), 2,2,6,6-tetramethyl-14-piperidinyl methacrylate 4.59 g (20.4 mmol) 0.25 g of 2,2,1-azobisisobutyronitrile and 2,2,1-azobisisobutyronitrile were placed in a 500 ml separable flask, and nitrogen gas was blown in at 20 OmlZ for 30 minutes to deoxygenate. To this monomer mixture, add 0.06 g of polyvinyl alcohol [Kishida Chemical Co., Ltd., degree of polymerization 2,000, degree of saponification 78-82 mol%] and polyvinyl alcohol [Kishida Chemical Co., Ltd., degree of polymerization 2,000, degree of gentification 98.5-99.4] Mol%] was added to 500 ml of water and dissolved by heating, and then 200 ml of an aqueous polyvinyl alcohol solution prepared by filtration using No. 5A filter paper was added.
撹拌用のテフロン羽根、 窒素ガス導入管を備えた蓋を取り付け、 窒素ガスを 1 5 OmlZ分で吹き込みながら 150rpmで撹拌した。 セパラブルフラスコをを 7 0°Cに保った恒温水槽に入れ、 窒素ガス吹き込み量を 1 O OmlZ分とし、 17時 間加熱した。 生成した白色粒子を No.5 Aろ紙でろ過して回収し、 水、 メタノ ール、 クロ口ホルム及びメタノールの順で洗浄し、 常温で真空乾燥して粒子状の 生成物 45.95 gを得た。  A lid equipped with a Teflon blade for stirring and a nitrogen gas inlet tube was attached, and stirring was performed at 150 rpm while blowing nitrogen gas at a rate of 15 OmlZ. The separable flask was placed in a constant temperature water bath maintained at 70 ° C., and the nitrogen gas was blown at a rate of 1 O OmlZ, and heated for 17 hours. The resulting white particles were collected by filtration through No. 5A filter paper, washed with water, methanol, chloroform, and methanol in that order, and dried in vacuo at room temperature to obtain 45.95 g of a particulate product. .
得られた生成物がクロ口ホルムに溶解しないこと、 生成物の赤外吸収スぺク ト ノレに 2, 2, 6, 6—テトラメチルー 4ーピペリジニルメタクリ レー卜のエステル 結合の C = 0伸縮振動に基づく 1720cm— 1の吸収帯が認められたことから、 得 られた生成物がスチレン、 ジビニルベンゼン及び 2, 2, 6, 6—テトラメチルー 4—ピペリジニルメタクリレー卜の共重合体であることが確かめられた。 The obtained product does not dissolve in pore-form, and the infrared absorption spectrum of the product has C = 0 of the ester bond of 2,2,6,6-tetramethyl-4-piperidinyl methacrylate. Since the absorption band at 1720 cm- 1 based on stretching vibration was observed, the obtained product was a copolymer of styrene, divinylbenzene and 2,2,6,6-tetramethyl-4-piperidinyl methacrylate. It was confirmed that there was.
得られた粒子状の共重合体 35.00 gとテトラクロルェタン 125mlを 50 0mlセバラブルフラスコに採り、 60°Cで 30分間加熱した。 室温まで冷却し、 撹拌用のテフロン羽根、 窒素ガス導入管を備えた蓋を取り付けた。 窒素ガスを 5 OmlZ分で液面付近に吹き込み、 8 Orpmで撹拌しながらクロロスルホン酸 [和 光純薬工業 (株)] 50mlを少しづつ加え、 室温で 4時間反応させた。 酢酸 15ml を加えたのち、 生成物をろ過により回収した。 テトラクロルエタンを用いて洗浄 したのち、 生成物を水中に投じ、 ろ過したのち、 アセトン、 水の順で洗浄した。 洗浄後の生成物、 酢酸ナトリウム 40.00 g及び水 200 mlを 500 mlセパ ラブルフラスコに採り、 40°Cに保った恒温水槽に浸潰して、 窒素ガスを 75ml /分で吹き込みながら、 4 Orpmで 6時間撹拌した。 生成物をろ過して回収し、 水で洗浄した。  35.00 g of the obtained particulate copolymer and 125 ml of tetrachloroethane were placed in a 500 ml separable flask, and heated at 60 ° C for 30 minutes. After cooling to room temperature, a Teflon blade for stirring and a lid equipped with a nitrogen gas inlet tube were attached. Nitrogen gas was blown near the liquid surface at 5 OmlZ, and 50 ml of chlorosulfonic acid [Wako Pure Chemical Industries, Ltd.] was added little by little while stirring at 8 Orpm, and the mixture was reacted at room temperature for 4 hours. After adding 15 ml of acetic acid, the product was recovered by filtration. After washing with tetrachloroethane, the product was poured into water, filtered, and washed with acetone and water in this order. The product after washing, 40.00 g of sodium acetate and 200 ml of water are placed in a 500 ml separable flask, immersed in a constant temperature water bath maintained at 40 ° C, and blown with nitrogen gas at 75 ml / min. Stirred for hours. The product was collected by filtration and washed with water.
生成物の赤外吸収スペク トルには、 スルホン酸基に由来する 120 Ocnr1 1 13 Ocm ^ 1040cm- 1010cm-1の吸収帯が認められた。 また、 2, 2, 6, 6—テトラメチルー 4ーピペリジニルメタクリレー卜のエステル結合の C = 〇伸縮振動に基づく 172 Ocra- 1の吸収帯も認められ、 酸化防止機能を有する基 が結合されていることが確かめられた。 The infrared absorption spectrum of the product, 120 Ocnr 1 1 derived from a sulfonic acid group An absorption band of 13 Ocm ^ 1040cm-1010cm- 1 was observed. In addition, the absorption band of 172 Ocra- 1 based on the C = エ ス テ ル stretching vibration of the ester bond of 2,2,6,6-tetramethyl-4-piperidinyl methacrylate was also recognized, and a group having an antioxidant function was bonded. It was confirmed that.
実施例 4 Example 4
酸化防止機能を有する基として、 2— [1— (2'—ヒドロキシー 3', 5'—ジー t—ペンチルフヱニル)ェチル]一 4, 6—ジ一 t—ペンチルフヱニル基が共有結 合された粒子状カチオン交換樹脂を合成した。  As a group having an antioxidant function, 2- [1- (2'-hydroxy-3 ', 5'-di-tert-pentylphenyl) ethyl] -1,4,6-di-t-pentylphenyl groups are covalently bonded to particles. A cation exchange resin was synthesized.
スチレン 26.52 g (255.0ミ リモル) 、 ジビニルベンゼン [有効成分 5 5重量%] 7.09 g (30.0ミ リモル) 、 2— [1—(2'—ヒ ドロキシ一 3', 5'―ジー t—ペンチルフヱニル)ェチル]一 4, 6—ジ一 t一ペンチルフヱニルァ クリレート [住友化学 (株)、 スミライザ一 GS] 8.22 g (15.0ミ リモル) 及び 2, 2'ーァゾビスィソブチロニトリノレ 0.25 gを、 500mlセパラブルフ ラスコに採り、 窒素ガスを 200ml/分で 30分間吹き込んで脱酸素した。 この 単量体混合液に、 ポリビニルアルコール [キシダ化学 (株)、 重合度 2, 000、 ゲン化度 78〜82モル%] 0.06 g及びポリビニルアルコール [キシダ化学 (株)、 重合度 2, 000、 ゲン化度 98.5〜99.4モル 1.44 gを水 50 0mlに加え、 加熱して溶解したのち、 No.5 Aろ紙を用いてろ過して調製した ポリビニルアルコール水溶液 200mlを加えた。  Styrene 26.52 g (255.0 mimol), divinylbenzene [active ingredient 55% by weight] 7.09 g (30.0 mimol), 2- [1- (2'-hydroxy-1 3 ', 5'-G-t-pentylphenyl) 1,6-di-t-pentylphenylacrylate [Sumitomo Chemical Co., Ltd., Sumilizer-GS] 8.22 g (15.0 mimol) and 2,2'-azobisisobutyronitrile 0.25 g was taken in a 500 ml separable flask and deoxygenated by blowing nitrogen gas at 200 ml / min for 30 minutes. To this monomer mixture, 0.06 g of polyvinyl alcohol [Kishida Chemical Co., Ltd., degree of polymerization: 2,000, degree of polymerization: 78 to 82 mol%] and polyvinyl alcohol [Kishida Chemical Co., Ltd., degree of polymerization: 2,000, A degree of genification of 98.5 to 99.4 mol, 1.44 g, was added to 500 ml of water, dissolved by heating, and then 200 ml of an aqueous polyvinyl alcohol solution prepared by filtration using No. 5A filter paper was added.
撹拌用のテフロン羽根、 窒素ガス導入管を備えた蓋を取り付け、 窒素ガスを 1 5 OmlZ分で吹き込みながら 15 Orpmで撹拌した。 セパラブルフラスコをを 7 0°Cに保った恒温水槽に入れ、 窒素ガス吹き込み量を 10 OnilZ分とし、 17時 間加熱した。 生成した白色粒子を No.5 Aろ紙でろ過して回収し、 水、 メタノ ール、 クロ口ホルム及びメタノールの順で洗浄し、 常温で真空乾燥して粒子状の 生成物 23. 76 gを得た。  A lid equipped with a Teflon blade for stirring and a nitrogen gas inlet tube was attached, and the mixture was stirred at 15 Orpm while blowing nitrogen gas at 15 OmlZ. The separable flask was placed in a thermostatic water bath maintained at 70 ° C, and the nitrogen gas was blown at 10 OnilZ minutes, and heated for 17 hours. The resulting white particles were collected by filtration through a No. 5A filter paper, washed with water, methanol, chloroform, and methanol in that order, and vacuum dried at room temperature to obtain 23.76 g of a particulate product. Obtained.
得られた生成物がクロ口ホルムに溶解しないこと、 生成物の赤外吸収スぺク ト ルに 2— [1一(2'—ヒ ドロキン一 3', 5'ージー t—ペンチルフヱニル)ェチル] 一 4, 6—ジ一 t—ペンチルフヱ二ルァクリ レー卜のエステル結合の C = 0伸縮 振動に基づく 172 Ocnr1の吸収帯及び 0— H伸縮振動に基づく 361 Ocm— 1の 吸収帯が認められたことから、 得られた生成物がスチレン、 ジビニルベンゼン及 び 2— [1一(2,一ヒドロキシ _3', 5'—ジ一 t一ペンチルフヱニル)ェチル]— 4, 6—ジ一 t一ペンチルフヱ二ルァクリレー卜の共重合体であることが確かめ られた。 The obtained product does not dissolve in black-mouthed form, and the infrared absorption spectrum of the product contains 2- [1-1 (2'-hydroquinone-3 ', 5'-t-pentylphenyl) ethyl] C = 0 stretching of ester bond of 1,4,6-di-t-pentylphenyl acrylate The absorption band of 172 Ocnr 1 based on the vibration and the absorption band of 361 Ocm- 1 based on the 0-H stretching vibration were observed, indicating that the obtained products were styrene, divinylbenzene and 2- [1-1 (2 , 1-hydroxy_3 ', 5'-di-t-pentylphenyl) ethyl] —4,6-di-t-pentylphenylacrylate.
得られた粒子状の共重合体 20.00 gとテトラクロルェタン 70mlを 300m 1セバラブルフラスコに採り、 60°Cで 30分間加熱した。 室温まで冷却し、 撹 拌用のテフロン羽根、 窒素ガス導入管を備えた蓋を取り付けた。 窒素ガスを 50 mlZ分で液面付近に吹き込み、 8 Orpmで撹拌しながらクロロスルホン酸 [和光 純薬工業(株)] 30mlを少しづつ加え、 室温で 4時間反応させた。 酢酸 10mlを 加えたのち、 生成物をろ過により回収した。 テトラクロルェ夕ンを用いて洗浄し たのち、 生成物を水中に投じ、 ろ過したのち、 アセトン、 水の順で洗浄した。 洗浄後の生成物、 酢酸ナトリウム 25.00 g及び水 120mlを 300mlセパ ラブルフラスコに採り、 40°Cに保った恒温水槽に浸潰して、 窒素ガスを 75 ml ノ分で吹き込みながら、 4 Orpmで 6時間撹拌した。 生成物をろ過して回収し、 水で洗浄した。  20.00 g of the obtained particulate copolymer and 70 ml of tetrachloroethane were placed in a 300 ml separable flask and heated at 60 ° C for 30 minutes. After cooling to room temperature, a Teflon blade for stirring and a lid equipped with a nitrogen gas inlet tube were attached. Nitrogen gas was blown into the vicinity of the liquid surface at a volume of 50 mlZ, and 30 ml of chlorosulfonic acid [Wako Pure Chemical Industries, Ltd.] was added little by little while stirring at 8 Orpm, and the mixture was reacted at room temperature for 4 hours. After adding 10 ml of acetic acid, the product was recovered by filtration. After washing with tetrachlorene, the product was thrown into water, filtered, and washed with acetone and water in that order. Transfer the washed product, sodium acetate (25.00 g) and water (120 ml) to a 300 ml separable flask, immerse it in a constant temperature water bath maintained at 40 ° C, and blow nitrogen gas at 75 ml for 6 hours at 4 Orpm. Stirred. The product was collected by filtration and washed with water.
生成物の赤外吸収スペク トルには、 スルホン酸基に由来する 120 Ocnr1 1 13 Ocnr 1040cm- 101 Ocnr1の吸収帯が認められた。 また、 2— [1ー(2'—ヒ ドロキシ _3', 5' _ジ一 t—ペンチルフヱニル)ェチル] —4, 6—ジ— t—ペンチルフヱ二ルァクリレー卜のエステル結合の C = 0伸縮振動に 基づく 172 Ocnr1の吸収帯及び 0— H伸縮振動に基づく 361 Ocnr1の吸収帯 が認められ、 酸化防止機能を有する基が結合されていることが確かめられた。 実施例 5 The infrared absorption spectrum of the product, the absorption band of 120 Ocnr 1 1 13 Ocnr 1040cm- 101 Ocnr 1 derived from a sulfonic acid group was observed. Also, the C = 0 stretching vibration of the ester bond of 2- [1- (2'-hydroxy_3 ', 5'_di-t-pentylphenyl) ethyl] -4,6-di-t-pentylphenylacrylate 172 Ocnr 1 absorption band based on 0-H stretching vibration and 361 Ocnr 1 absorption band based on 0-H stretching vibration, confirming that a group having an antioxidant function is bonded. Example 5
酸化防止機能を有する基として、 2, 2, 6, 6—テトラメチルー 4ーピベリジ ニル基が共有結合されたカチオン交換樹脂を合成した。  A cation exchange resin having a 2,2,6,6-tetramethyl-4-piberidinyl group covalently bound as a group having an antioxidant function was synthesized.
スチレン—ジビニルベンゼン架橋共重合体粒子 [S u p e 1 c 0. I n c.製、 比表面積 330m2/g、 平均孔径 9 OA] 185 mlを、 水、 メタノール、 クロ 口ホルム、 テトラクロルェ夕ンを用いてこの順に洗浄した。 この架橋粒子とテト ラクロルェタン 85 mlを 50 Omlセパラブルフラスコに採り、 撹拌用のテフロン 羽根、 窒素ガス導入管、 冷却管を備えた蓋を取リ付け、 60°Cで 30分間加熱し たのち、 室温に戻した。 窒素ガスを 60ml/分で液面付近に吹き込み、 60rpm で撹拌しながら、 クロルスルホン酸 [和光純薬工業 (株)製] 75mlを少しずつ加 え、 氷水浴で冷却しつつ 4時間反応させた。 次いで、 酢酸 10mlを加えて撹拌し たのち、 生成したクロルスルホン化粒子をろ過して回収した。 このクロルスルホ ン化粒子をテトラクロルェタンで洗浄したのち、 水に入れ、 さらに、 アセトン、 クロ口ホルムで洗浄した。 185 ml of styrene-divinylbenzene crosslinked copolymer particles [manufactured by Supe 1 c 0. Inc., specific surface area 330 m 2 / g, average pore size 9 OA] are mixed with water, methanol, chloroform, and tetrachlorene. And washed in this order. The crosslinked particles and Tet 85 ml of lachlorethane was placed in a 50 Oml separable flask, fitted with a lid equipped with a Teflon blade for stirring, a nitrogen gas inlet tube, and a cooling tube, heated at 60 ° C for 30 minutes, and then returned to room temperature. Nitrogen gas was blown near the liquid surface at 60 ml / min, and while stirring at 60 rpm, 75 ml of chlorosulfonic acid [manufactured by Wako Pure Chemical Industries, Ltd.] was added little by little. . Next, 10 ml of acetic acid was added and the mixture was stirred, and the resulting chlorsulfonated particles were collected by filtration. The chlorsulfonated particles were washed with tetrachloroethane, then put in water, and further washed with acetone and chloroform.
このクロルスルホン化粒子、 クロ口ホルム 150 ml及びトリエチルアミ ン 10 mlを 500mlセパラブルフラスコに採り、 撹拌用のテフロン羽根、 窒素ガス導入 管、 冷却管を備えた蓋を取り付けた。 窒素ガスを 60ml/分で液面付近に吹き込 み、 6 Orpmで撹拌しながら、 4—アミノー 2 , 2 , 6 , 6—テトラメチルピベリジ ン 4.58 gをクロ口ホルム 30 mlに溶解した溶液を滴下して、 一夜反応させた。 生成した粒子をろ過して回収し、 クロ口ホルム、 アセトン、 水でこの順に洗浄し た。  The chlorsulfonated particles, 150 ml of black-mouthed form and 10 ml of triethylamine were placed in a 500 ml separable flask, and fitted with a Teflon blade for stirring, a nitrogen gas inlet tube, and a lid equipped with a cooling tube. Nitrogen gas was blown near the liquid surface at a rate of 60 ml / min, and while stirring at 6 O rpm, 4.58 g of 4-amino-2,2,6,6-tetramethylpiberidine was dissolved in 30 ml of Cloth form. The solution was added dropwise and reacted overnight. The generated particles were collected by filtration, and washed with port-form, acetone, and water in this order.
得られた粒子、 酢酸ナトリウム 40 g及び水 200mlを 500mlセパラブルフ ラスコに採り、 撹拌用のテフロン羽根、 窒素ガス導入管、 冷却管を備えた蓋を取 り付けた。 セパラブルフラスコを 45°Cに保った恒温水槽に浸漬し、 窒素ガスを 75mlZ分で吹き込みながら、 4 Orpmで 6時間撹拌した。 生成物をろ過して回 収し、 水で洗浄した。  The obtained particles, 40 g of sodium acetate and 200 ml of water were placed in a 500 ml separable flask, and a lid equipped with a Teflon blade for stirring, a nitrogen gas inlet tube, and a cooling tube was attached. The separable flask was immersed in a thermostatic water bath maintained at 45 ° C, and stirred at 4 Orpm for 6 hours while blowing nitrogen gas at 75 mlZ. The product was collected by filtration and washed with water.
生成物の赤外吸収スペク トルには、 スルホン基に由来する 1, 20 Ocnr^ 1, 130cm- 1, 04 Ocnr1及び 1, 010cm— 1の吸収帯が認められた。 また、 ィ オン交換容量を測定したところ、 1.2meq/mlであった。 元素分析では、 0.6 重量%の窒素が認められ、 4—アミノー 2, 2, 6, 6—テトラメチルビペリジン が導入されたことが確かめられた。 樹脂重量に対する酸化防止機能を有する基の 量は、 3重量%である。 The infrared absorption spectrum of the product, 1 derived from the sulfone group, 20 Ocnr ^ 1, 130cm- 1 , 04 Ocnr 1 and 1, the absorption band of 010cm- 1 was observed. Also, the ion exchange capacity was measured and was 1.2 meq / ml. Elemental analysis revealed 0.6% by weight of nitrogen, confirming that 4-amino-2,2,6,6-tetramethylbiperidine had been introduced. The amount of the group having an antioxidant function based on the weight of the resin was 3% by weight.
得られた 2, 2, 6, 6—テ卜ラメチル—4 _ピぺリジニル基が共有結合された カチオン交換樹脂 (H型) 50mlを洗気瓶に採り、 超純水を全容量が 200mlに なるまで加えた。 酸素ガスを 1 OmlZ分で吹き込み、 試験開始前、 8曰後、 14 曰後及び 21曰後に上澄液を採取して、 サイズ排除クロマトグラフィー分析を行つ た。 分析は、 カラムに S h o d e x SB— 802.5 HQを用い、 移動相をァセ トニ卜リル Z2 OmM塩化リチウム (2Z8) として、 検出波長 200 nmで行つ た。 この条件では、 スルホ安息香酸、 フヱノ一ルスルホン酸、 スチレンスルホン 酸の重合体などの有機スルホン酸を感度よく検出することができる。 スルホ安息 香酸の濃度とピーク面積についてあらかじめ作成した検量線から、 上澄液中に溶 出している有機スルホン酸の量を、 樹脂 1リッ トル当たりのスルホ安息香酸量に 換算して算出した。 50 ml of the obtained 2,2,6,6-tetramethyl-4-pyridinyl group-covalently bound cation exchange resin (H-type) is placed in a cleansing bottle, and the total volume of ultrapure water is reduced to 200 ml. Added until it was. Oxygen gas was blown in at an amount of 1 OmlZ, and the supernatant was collected before the start of the test, after 8, 14 and 21, and subjected to size exclusion chromatography analysis. The analysis was performed at a detection wavelength of 200 nm using Shodex SB-802.5 HQ as the column and a mobile phase of acetonitrile Z2OmM lithium chloride (2Z8). Under these conditions, organic sulfonic acids such as polymers of sulfobenzoic acid, phenolsulfonic acid, and styrenesulfonic acid can be detected with high sensitivity. The amount of organic sulfonic acid dissolved in the supernatant was calculated from the calibration curve prepared in advance for the concentration of sulfobenzoic acid and the peak area in terms of the amount of sulfobenzoic acid per liter of resin.
スルホ安息香酸の溶出量は、 試験開始前が 0mg、 8日後が 10mg、 14曰後が 35 nig. 21曰後が 4 lmgであった。  The elution amount of sulfobenzoic acid was 0 mg before the start of the test, 10 mg after 8 days, 35 nig after 14 and 4 lmg after 21.
比較例 3 Comparative Example 3
市販のカチオン交換樹脂 [ダウケミカル製、 650— C] を用いて、 実施例 5 と同様にして溶出試験を行った。  The dissolution test was performed in the same manner as in Example 5 using a commercially available cation exchange resin [650-C, manufactured by Dow Chemical Co., Ltd.].
スルホ安息香酸の溶出量は、 試験開始前が 0mg、 8日後が 26mg、 14日後が 79mg、 21日後が 149mgであった。 The dissolution amount of sulfobenzoic acid was 0 mg before the start of the test, 26 mg after 8 days, 79 mg after 14 days, and 149 mg after 21 days.
実施例 5及び比較例 3の溶出試験の結果を、 第 1図に示す。 この図から、 市販 のカチオン交換樹脂からの溶出物が、 酸化分解によって経時的に増加していくの に対して、 酸化防止機能を有する基がスルホンアミ ド結合を介して共有結合して 、る本発明の力チォン交換樹脂では、 スルホ安息香酸などの溶出が抑制されてい ることが分かる。  FIG. 1 shows the results of the dissolution test of Example 5 and Comparative Example 3. From this figure, it can be seen that the eluate from a commercially available cation exchange resin increases with time due to oxidative decomposition, whereas the group having an antioxidant function is covalently bonded via a sulfonamide bond, and It can be seen that elution of sulfobenzoic acid and the like is suppressed in the force-exchange resin of the invention.
実施例 6 Example 6
酸化防止機能を有する基として、 2, 2, 6, 6—テトラメチルー 4ーピペリジ ニル基が共有結合されたァニオン交換樹脂を合成した。  We have synthesized anion-exchange resin with 2,2,6,6-tetramethyl-4-piperidinyl group covalently bound as a group with antioxidant function.
クロロメチル化スチレンージビニルベンゼン架橋共重合体粒子 [A 1 d r i c h Ch em i c a l Co., I n 製、 架橋度 2%、 1 meq C 1 /g] 50 g とクロ口ホルム 100 mlを、 300 mlセパラブルフラスコに採り、 撹拌用のテフ ロン羽根、 窒素ガス導入管、 冷却管を備えた蓋を取り付けて、 60°Cで 30分間 加熱したのち、 室温まで冷却した。 窒素ガスを 6 Oml/分で液面付近に吹き込み、300 g of chloromethylated styrene divinylbenzene cross-linked copolymer particles [A 1 drich Chemical Co., In, cross-linking degree 2%, 1 meq C 1 / g] Place in a separable flask, attach a lid equipped with a Teflon blade for stirring, a nitrogen gas inlet tube, and a cooling tube, and at 60 ° C for 30 minutes After heating, it was cooled to room temperature. Nitrogen gas is blown near the liquid level at 6 Oml / min.
6 Orpmで撹拌しながら、 4—ァミノ一 2, 2, 6, 6—テトラメチルピペリジン 4.While stirring at 6 Orpm, 4-amino-1,2,2,6,6-tetramethylpiperidine 4.
7 gをクロ口ホルム 3 Omlに溶解した溶液を滴下して、 一夜反応させた。 生成し た粒子をろ過して回収し、 クロ口ホルム、 ベンゼンで洗浄した。 この粒子を少量 サンプリングして元素分析を行ったところ、 炭素 88.8重量%、 窒素 0.6重量 %が検出され、 4一アミノー 2, 2, 6, 6—テトラメチルビペリジンが導入され たことが確認された。 樹脂重量に対する酸化防止機能を有する基の量は、 3重量 %である。 A solution prepared by dissolving 7 g in 3 Oml of form-form was added dropwise and allowed to react overnight. The generated particles were collected by filtration, and washed with black form and benzene. Elementary analysis was conducted by sampling a small amount of these particles, and as a result, 88.8% by weight of carbon and 0.6% by weight of nitrogen were detected, confirming that 4-amino-2,2,6,6-tetramethylbiperidine was introduced. Was done. The amount of the group having an antioxidant function based on the weight of the resin was 3% by weight.
4—アミノー 2, 2, 6, 6—テトラメチルピペリジンが導入された粒子をベン ゼン 100mlとともに 300mlセパラブルフラスコに採り、 撹拌用のテフロン羽 根、 窒素ガス導入管、 冷却管を備えた蓋を取り付け、 60°Cで 30分間加熱した のち、 室温に戻した。 次いで、 トリメチルァミンガスを 5ml/分で 30分間吹き 込んだのち、 室温で一夜反応させた。 得られたァニオン交換樹脂の粒子をろ過し て回収し、 アセトンで洗浄したのち、 風乾した。 このァニオン交換樹脂のイオン 交換容量を測定したところ、 1.0 meqZ gであつた。  The particles into which 4-amino-2,2,6,6-tetramethylpiperidine has been introduced are placed in a 300 ml separable flask together with 100 ml of benzene, and a lid equipped with a Teflon blade for stirring, a nitrogen gas inlet tube, and a cooling tube is provided. After mounting and heating at 60 ° C for 30 minutes, the temperature was returned to room temperature. Next, trimethylamine gas was blown at a rate of 5 ml / min for 30 minutes, followed by reaction at room temperature overnight. The resulting anion exchange resin particles were collected by filtration, washed with acetone, and air-dried. When the ion exchange capacity of the anion exchange resin was measured, it was 1.0 meqZ g.
得られた 2, 2, 6, 6—テトラメチルー 4—ピペリジニル基が共有結合された ァニオン交換樹脂 (OH型) 50mlを洗気瓶に採り、 超純水を全容量が 200ml になるまで加えた。 酸素ガスを 1 OmlZ分で吹き込み、 14曰後に上澄液を採取 して、 J I S K 0101にしたがって有機体炭素 (TOC) の測定を行った。 溶出した有機体炭素の量は、 ァニオン交換樹脂 1ml当たり 2 Omgであった。  50 ml of the obtained anion exchange resin (OH type) to which 2,2,6,6-tetramethyl-4-piperidinyl group was covalently bonded was taken in an air-washing bottle, and ultrapure water was added until the total volume became 200 ml. Oxygen gas was blown in at an amount of 1 OmlZ, and after 14 minutes, the supernatant was collected and the organic carbon (TOC) was measured according to JIS K0101. The amount of eluted organic carbon was 2 Omg per ml of anion exchange resin.
比較例 4 Comparative Example 4
酸化防止機能を有する基が結合したァニォン交換樹脂の代わりに、 市販のァニ オン交換樹脂 [三菱化学 (株)、 SA10A、 OH型] を用いて、 実施例 6と同じ 溶出試験を行った。 溶出した有機体炭素の量は、 ァニオン交換樹脂 lml当たり 5 Omgであった。  The same dissolution test as in Example 6 was performed using a commercially available anion exchange resin [Mitsubishi Chemical Corporation, SA10A, OH type] instead of the anion exchange resin to which a group having an antioxidant function was bonded. The amount of eluted organic carbon was 5 Omg per ml of anion exchange resin.
実施例 6と比較例 4の溶出試験の結果から、 酸化防止機能を有する基が共有結 合された本発明のァニオン交換樹脂からの有機体炭素の溶出量は、 市販のァニォ ン交換樹脂からの有機体炭素の溶出量の約 40%であり、 本発明のァニオン交換 樹脂は、 耐酸化分解性に優れ、 樹脂成分の溶出が抑制されていることが分かる。 産業上の利用可能性 From the results of the dissolution tests of Example 6 and Comparative Example 4, the amount of organic carbon eluted from the anion exchange resin of the present invention in which the group having an antioxidant function was covalently bound was determined from the commercially available anion exchange resin. About 40% of the amount of organic carbon eluted, It can be seen that the resin has excellent resistance to oxidative decomposition and the elution of the resin component is suppressed. Industrial applicability
本発明の高分子水処理材料は、 酸化防止機能を有する基が共有結合されている ため、 使用時に酸化劣化による性能の低下及び酸化分解物による水質の汚染を惹 起するおそれが少なく、 凝集剤、 脱水剤、 分散剤、 膜などとして好適に水処理に 使用することができる。 本発明のカチオン交換樹脂及びァニオン交換樹脂は、 酸 化防止機能を有する基が共有結合しているために、 耐酸化分解性に優れ、 樹脂成 分の溶出が少ない。  Since the polymer water treatment material of the present invention has a group having an antioxidant function covalently bonded thereto, there is little risk of deterioration in performance due to oxidative deterioration and contamination of water quality due to oxidative decomposition products during use, and a flocculant It can be suitably used for water treatment as a dehydrating agent, a dispersing agent, a membrane and the like. The cation exchange resin and the anion exchange resin of the present invention have excellent oxidation resistance and little elution of resin components because the group having an antioxidation function is covalently bonded.

Claims

請求の範囲 The scope of the claims
1. 酸化防止機能を有する基が、 共有結合されてなることを特徴とする高分子水 処理材料。 1. A polymer water treatment material, characterized in that a group having an antioxidant function is covalently bonded.
2. 酸化防止機能を有する基が、 ヒンダードアミン系、 単環状若しくは多環状の ヒンダードフヱノール系、 チォエステル系、 チォエーテル系、 アミン系、 リン系、 ベンゾフエノン系、 サリチレ一ト系又はトリアゾ一ル系の基である請求項 1記載 の高分子水処理材料。  2. When the group having antioxidant function is a hindered amine, monocyclic or polycyclic hindered phenol, thioester, thioether, amine, phosphorus, benzophenone, salicylate or triazole type The polymer water treatment material according to claim 1, which is a base.
3. 酸化防止機能を有する基が、 一般式 [1] で示されるスルホンアミ ド結合を 介して共有結合されてなることを特徴とするカチォン交換樹脂。  3. A cation exchange resin wherein a group having an antioxidant function is covalently bonded via a sulfonamide bond represented by the general formula [1].
-SOzNR1- … [1] -SOzNR 1- … [1]
(ただし、 式中、 R1は水素又はメチル基である。 ) (Wherein, R 1 is hydrogen or a methyl group.)
4. 酸化防止機能を有する基が、 ヒンダードァミン系の基又はヒンダードフエノ —ル系の基である請求項 3記載のカチォン交換樹脂。  4. The cation exchange resin according to claim 3, wherein the group having an antioxidant function is a hindered amine group or a hindered phenol group.
5. 酸化防止機能を有する基が、 一般式 [2] で示されるイミノアルキレン結合 を介して共有結合されてなることを特徴とするァニオン交換樹脂。  5. An anion exchange resin, wherein a group having an antioxidant function is covalently bonded via an iminoalkylene bond represented by the general formula [2].
一(CH2)nNR2 - … [2] One (CH 2 ) nNR 2- … [2]
(ただし、 式中、 R 2は水素又はメチル基であり、 nは 1〜4の整数である。 )(Wherein, R 2 is hydrogen or a methyl group, and n is an integer of 1 to 4.)
6. 酸化防止機能を有する基が、 ヒンダ一ドアミン系の基又はヒンダードフエノ ール系の基である請求項 5記載のァニオン交換樹脂。 6. The anion exchange resin according to claim 5, wherein the group having an antioxidant function is a hindered amine group or a hindered phenol group.
PCT/JP1997/004189 1996-11-18 1997-11-18 Polymeric material for water treatment, cation-exchange resin, and anion-exchange resin WO1998022217A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8/322198 1996-11-18
JP32219896A JPH10137736A (en) 1996-11-18 1996-11-18 Polymeric material for water treatment
JP28191497A JP3911794B2 (en) 1997-10-15 1997-10-15 Cation exchange resin
JP9/281914 1997-10-15
JP9/308705 1997-11-11
JP30870597A JP3911801B2 (en) 1997-11-11 1997-11-11 Anion exchange resin

Publications (1)

Publication Number Publication Date
WO1998022217A1 true WO1998022217A1 (en) 1998-05-28

Family

ID=27336892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004189 WO1998022217A1 (en) 1996-11-18 1997-11-18 Polymeric material for water treatment, cation-exchange resin, and anion-exchange resin

Country Status (1)

Country Link
WO (1) WO1998022217A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2471599A1 (en) * 2010-12-29 2012-07-04 Dow Global Technologies LLC Method for inhibiting nitrosamine formation in anion exchange resins
EP2471598A1 (en) * 2010-12-29 2012-07-04 Dow Global Technologies LLC Anion exchange resins having controlled nitrosamine formation
WO2022119904A1 (en) * 2020-12-01 2022-06-09 The Lubrizol Corporation Antioxidant substituted sulfonated ion exchange membranes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140556B2 (en) * 1971-11-26 1976-11-04
JPS5417713B2 (en) * 1972-12-29 1979-07-02
JPS5540054B2 (en) * 1976-10-12 1980-10-15
JPS5830333B2 (en) * 1975-06-30 1983-06-28 株式会社トクヤマ Kairiyou Ion Koukantaino Seizouhouhou
JPS6118929B2 (en) * 1978-10-25 1986-05-15 Tokuyama Soda Kk
JPS6130820B2 (en) * 1978-09-13 1986-07-16 Sumitomo Chemical Co
JPH05111641A (en) * 1991-03-07 1993-05-07 Dow Chem Co:The Oxidation resisting cation-exchange resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140556B2 (en) * 1971-11-26 1976-11-04
JPS5417713B2 (en) * 1972-12-29 1979-07-02
JPS5830333B2 (en) * 1975-06-30 1983-06-28 株式会社トクヤマ Kairiyou Ion Koukantaino Seizouhouhou
JPS5540054B2 (en) * 1976-10-12 1980-10-15
JPS6130820B2 (en) * 1978-09-13 1986-07-16 Sumitomo Chemical Co
JPS6118929B2 (en) * 1978-10-25 1986-05-15 Tokuyama Soda Kk
JPH05111641A (en) * 1991-03-07 1993-05-07 Dow Chem Co:The Oxidation resisting cation-exchange resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2471599A1 (en) * 2010-12-29 2012-07-04 Dow Global Technologies LLC Method for inhibiting nitrosamine formation in anion exchange resins
EP2471598A1 (en) * 2010-12-29 2012-07-04 Dow Global Technologies LLC Anion exchange resins having controlled nitrosamine formation
WO2022119904A1 (en) * 2020-12-01 2022-06-09 The Lubrizol Corporation Antioxidant substituted sulfonated ion exchange membranes

Similar Documents

Publication Publication Date Title
EP0143328B1 (en) Small-flobular crosslinked monoallylamine polymer and process for producing the same
JP3061197B2 (en) Copolymer composition of trifluorostyrene and substituted trifluorostyrene and ion exchange resin made therefrom
CA2221813C (en) Substituted trifluorostyrene compositions
US5248435A (en) Ion exchange resin, process for producing the same, and method for removing impurities from condensate
CN111617644B (en) Preparation method of monolithic polyaryletherketone bipolar membrane with side chain containing porphyrin water dissociation catalytic group
US8841384B2 (en) Material comprising polyazacycloalkanes, grafted on polypropylene fibres, its process of preparation, and process for removing metal cations from a liquid
US6849688B2 (en) Polymer grafted support polymers
EP0330187B1 (en) Cation exchanger
EP0691990A1 (en) Amphoteric copolymer derived from vinylpyridine & acetoxystyrene
WO1998022217A1 (en) Polymeric material for water treatment, cation-exchange resin, and anion-exchange resin
Singh et al. Fluorenyl phenolphthalein groups containing a multi-block copolymer membrane for alkaline fuel cells
AU551369B2 (en) Polymerization process
EP3707172A1 (en) Polymerization process involving addition of monofunctional vinyl monomer
JPH11179218A (en) Ion exchange resin
KR20060012647A (en) Organic polymer materials having sulfonic acid groups and method for their preparation
JP3232699B2 (en) Porous anion exchange resin and method for producing the same
Bolto et al. Synthesis of cross-linked polyallylamines which are resistant to sulfite attack
JPH10137736A (en) Polymeric material for water treatment
US3728286A (en) Pyrazolanthrone electron exchangers
WO2010069277A2 (en) Polymeric aliphatic ion-exchange materials and their applications
JP3911801B2 (en) Anion exchange resin
US5210149A (en) Amphoteric copolymer derived from vinylpyridine and acetoxystyrene
JPS6058405A (en) Production of chloromethylated 2-isopropenylnaphthalene resin
SU811789A1 (en) Method of obtaining polyelectrolyte
KR0134558B1 (en) Method for preparing ion exchange resin with high density and pores

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase