WO1998015867A1 - Spectral analysis apparatus capable of functioning in several spectral regions of different wavelengths - Google Patents

Spectral analysis apparatus capable of functioning in several spectral regions of different wavelengths Download PDF

Info

Publication number
WO1998015867A1
WO1998015867A1 PCT/FR1997/001743 FR9701743W WO9815867A1 WO 1998015867 A1 WO1998015867 A1 WO 1998015867A1 FR 9701743 W FR9701743 W FR 9701743W WO 9815867 A1 WO9815867 A1 WO 9815867A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
spectral
radiation
confocal
spectral analysis
Prior art date
Application number
PCT/FR1997/001743
Other languages
French (fr)
Inventor
Edouard Da Silva
Michel Delhaye
Jacques Barbillat
Bernard Roussel
Original Assignee
Dilor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dilor filed Critical Dilor
Publication of WO1998015867A1 publication Critical patent/WO1998015867A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0064Optical details of the image generation multi-spectral or wavelength-selective arrangements, e.g. wavelength fan-out, chromatic profiling

Definitions

  • Spectral analysis apparatus capable of operating in several spectral ranges of different wavelengths
  • the present invention relates to a spectral analysis apparatus capable of operating in several spectral domains of different wavelengths in particular for characterizing the spatial distribution of at least one chemical species present in a sample.
  • the present invention overcomes these drawbacks.
  • Its aim is to offer researchers and / or analysts a spectral analysis device able to excite the same spatial domain of a sample, by several excitation beams of different wavelengths, in order to obtain at least several molecular spectra at different wavelengths generated by said same domain of the sample.
  • It relates to an apparatus for spectral analysis of a sample of the type comprising: - an excitation branch, comprising excitation means, to excite a sample;
  • an analysis branch comprising spectral analysis means, for spectrally analyzing the light scattered and / or reflected by the sample;
  • processing means for processing the signals detected by the detection means in order to deduce therefrom information on the spatial distribution of at least one chemical species present in said sample.
  • the excitation means comprise generator means capable of generating a plurality of monochromatic excitation beams of different wavelengths, and transport means specific to said excitation beams on the same spatial domain of the sample;
  • the analysis branch comprises collection and transfer means suitable for collecting the radiation which results from the illumination of said spatial domain the sample by said plurality of excitation beams, and for transferring these radiation to the analysis means spectral;
  • the detection and processing means are suitable for detecting and processing the spectra generated by said spatial domain of the sample thus excited at different wavelengths.
  • the convergence of the plurality of monochromatic excitation beams on the same spatial domain of the sample is sequential or simultaneous.
  • spectral detection at different wavelengths is sequential or simultaneous.
  • Such an apparatus is thus able to record several molecular spectra generated by the same spatial domain (or spatial zone) of the sample at different wavelengths, which facilitates the implementation of the analysis and especially the processing of the information. by increasing the amount of data useful for the molecular characterization of the sample by processing methods such as chemometry.
  • the means of transport are suitable for transporting the plurality of monochromatic excitation beams on a common optical axis.
  • the means of transport as well as the means of collection and transfer are achromatic in a very wide spectral range, going in particular from the visible to the infrared.
  • the means of transport as well as the means of collection and transfer are preferably at least partially arranged and combined on the common optical axis.
  • the means of transport comprise first achromatic deflection means, arranged on the common optical axis and adapted to move, along a first line of a chosen length, and at a chosen frequency, the plurality of monochromatic excitation beams, on the sample to be analyzed, and said first deflection means are also capable of receiving and bringing back, on the common optical axis, the radiations resulting from said illumination by compensating in return for the first deflection, said resulting radiation comprising the spectra generated by the line of spatial domains of the sample thus scanned and illuminated at different wavelengths.
  • the first deflection means are confocal, each first line analyzed of the sample being formed of points having rigorously confocal properties.
  • the collection and transfer means comprise second confocal achromatic deflection means, arranged on the common optical axis, and capable of spatially distributing on the entry slit of the spectral analysis means, along a second line of chosen length and at the same frequency as that of the first deflection means, said resulting radiation coming from the first deflection means, the first and second deflections being synchronous one with respect to the other to preserve the spatial information of said resulting radiations.
  • the lengths of the first and second scanning lines are chosen relative to each other so as to achieve a chosen magnification of the spectral images of the sample on the detection means.
  • the collection and transfer means in practice comprise a diaphragm mounted on the common optical axis between the first and second deflection means and the diameter of which is adjustable on command to control the lateral dimension of the sample analyzed as well as the depth of field.
  • the device comprises at least one optical fiber capable of conveying the confocal information originating from the adjustable diaphragm to the input of the second deflection means.
  • the apparatus further comprises confocal imaging means capable of at least partially detecting the energy of the radiations which result from the illumination of the sample thus scanned so as to have, if necessary simultaneously, at least one confocal image and several confocal spectral images relating to the same spatial domain of the sample thus scanned.
  • the confocal imaging means are capable of delivering several confocal images of the same spatial domain of the sample obtained at different wavelengths.
  • Such an apparatus thus makes it possible to have, if necessary, simultaneously, a confocal image and several spectral confocal images of the same spatial domain of the sample, with a view to comparing them, superimposing them or processing them.
  • This information of various kinds thus made available makes the work of the users easier and better by offering them even more information useful for analyzing the sample.
  • the confocal imaging means comprise an adjustable aperture diaphragm and at least one detector connected to the processing means.
  • the apparatus further comprises servo means capable of at least partially detecting the energy of the radiations which result from the illumination of the sample in order to servo the distance from the objective to the sample.
  • the servo means comprise an optical filter separating the radiation useful for the spectral characterization of the sample, an adjustable aperture diaphragm, and a signal detector connected to a servo unit suitable for servoing the distance from the objective to the sample using the confocal signal thus detected.
  • the apparatus comprises a sample holder plate adjustable in Z in response to the servo means and / or an optical focusing element adjustable in Z in response to the servo means.
  • the collection and transfer means comprise filtering means capable of separating the radiation useful for the spectral characterization of the sample for each excitation beam.
  • the filtering means comprise several filtering elements, mounted in series on the common axis, and each associated with the filtering of an excitation beam around a selected excitation wavelength, in one direction. optics of the common axis, on the one hand, and radiation backscattered around said selected excitation wavelength, in the other direction of the common axis, on the other hand, the bandwidths of the filter elements being compatible with each other.
  • each filter element mounted in series on the common axis, is a narrow band, with a steep attenuation slope and centered on the associated excitation wavelength and capable of injecting in a first direction ranging from generating means towards the sample, an excitation beam comprising radiation useful for illumination and for stopping the radiation useless for illumination situated outside the narrow band, as well as for transmitting simultaneously in a second direction opposite to the first , used back-scattered radiation useful for spectral analysis and located outside the narrow band and to reject back-scattered radiation useless for spectral analysis reflected or scattered around the associated excitation wavelength .
  • the spectral analysis means comprise a plurality of dispersers, able to be coupled respectively to a plurality of ultichannel detection means each sensitive to at least one spectral domain.
  • the spectral analysis means comprise a single stigmatic, achromatic disperser capable of operating simultaneously or sequentially in a plurality of different orders to cover a plurality of distinct spatial domains.
  • FIG. 1 and 2 show schematically globally the means of the device according to the invention
  • FIG. 3 schematically illustrates in detail the constituent elements of the means of transport, as well as means of collection and transfer of the device 1 according to the invention;
  • FIG. 5 schematically shows in detail the input optics and the sample holder of the apparatus according to the invention
  • FIG. 6 schematically shows in detail the confocal imaging means, as well as the means for controlling the development of the apparatus according to the invention
  • FIG. 8 shows schematically a variant of the invention comprising an optical fiber connection of the adjustable diaphragm up to the inlet of the second deflector means according to the invention
  • FIG. 9 schematically illustrates in detail the spectral analysis means comprising a first dispersive spectrometer capable of operating at a first wavelength and associated with a signal detector according to the invention
  • FIG. 10 schematically illustrates in detail the spectral analysis means comprising a second dispersive spectrometer capable of operating at a second wavelength and associated with a signal detector according to the invention.
  • FIG. 11 illustrates a variant of the apparatus in which the second deflection means are separated into two separate deflector elements according to the invention.
  • the spectral analysis apparatus according to the invention comprises only two monochromatic excitation beams FEX1 and FEX2 of different wavelengths.
  • FEX1 and FEX2 monochromatic excitation beams
  • n excitation beams with n integer greater than or equal to 2.
  • the excitation beams FEX1 and FEX2 are generated by one or two laser sources SL which are for example of the type with fixed wavelengths (solid laser, gas laser) or of the type with lengths d tunable wave (dye laser, diode laser). These excitation beams can be routed from their respective sources to their respective inputs 10 and 12 by single-mode or multimode optical fibers (not shown).
  • the wavelength of the laser beam FEX1 is 532 n (visible) and that of the laser beam FEX2 is 1064 nm (near infrared).
  • the invention applies to monochromatic excitation beams having other wavelength values than 532 or 1064 nm. In this particular case, we can use the same spectrometer working at two different orders.
  • the monochromatic excitation beam FEX1 of a wavelength belonging for example to the visible-ultraviolet range is represented by arrows with thin solid lines.
  • the FEX2 monochromatic excitation beam with a wavelength belonging for example to the near infrared range is represented by arrows with thin dashed lines.
  • the RD12 radiation resulting from the simultaneous illumination of the sample by the excitation beams FEX1 and FEX2 are represented by thick arrows with solid lines on the one hand and dashed lines on the other hand.
  • the RDI radiations resulting from the illumination of the sample by the excitation beam FEX1 in the visible are represented by thick arrows with solid lines.
  • Radiation RD2 resulting from the illumination of the sample by the excitation beam FEX2 in the near infrared are represented by thick arrows with dashed lines.
  • the excitation beam FEX1 is transported from the input 10, along the axis AX1 and the direction of propagation of the light, to a filter FT1, by optical elements comprising a mirror Ml, a spatial filter DF1 adjustable aperture (spatial filtering hole), two lenses L1 and L2 framing the filter DF1, and mirrors M2 and M3.
  • optical elements comprising a mirror Ml, a spatial filter DF1 adjustable aperture (spatial filtering hole), two lenses L1 and L2 framing the filter DF1, and mirrors M2 and M3.
  • the filter FT1 is inclined relative to the normal to the common axis AXC, which will be described in more detail below, at an angle of a value of a few degrees. It is a narrow band, with a steep attenuation slope and centered on the wavelength 532 nm. It makes it possible to inject along the common axis AXC, towards the sample (that is to say here towards the input / output 14), an excitation beam FEX1 comprising radiation useful for illumination and d '' stop unnecessary radiation at illumination outside the narrow band.
  • the FT1 filter is, for example, a reflection disperser (network not shown here) or a reflection and transmission disperser (holographic filter shown here in FIG. 3).
  • the FT1 filter also allows achromatic transmission along the common axis AXC, to the spectral analysis means ANA (FIGS. 9 and 10), backscattered radiation useful for spectral analysis and located outside the narrow band and the rejection of backscattered radiation unnecessary for spectral analysis reflected or scattered around 532 nm.
  • the excitation beam FEX2 is transported along the axis AX2 and the direction of propagation of the light from the input 12 to a filter FT2 by optical elements comprising a mirror M4, an adjustable spatial filter with opening DF2 (hole of spatial filtering), two lenses L3 and L4 framing the filter DF2, and a mirror M5.
  • the FT2 filter is similar to the FT1 filter. It is inclined relative to the normal to the common axis AXC at an angle worth a few degrees. It is a narrow band, with a steep attenuation slope and centered on the wavelength 1064 nm.
  • an excitation beam FEX2 comprising radiation useful for illumination and to stop the unnecessary radiation at illumination located outside the narrow band.
  • the FT2 filter is for example a reflector and transmission disperser (holographic filter).
  • the FT2 filter also allows achromatic transmission along the common axis AXC, to the spectral analysis means ANA (that is to say to the output 100), backscattered radiation useful for spectral analysis and located outside the narrow band and the rejection of backscattered radiation unnecessary for spectral analysis reflected or scattered around 1064 nm.
  • the filters FT1 and FT2 are here mounted in series on the common axis AXC. They are each associated with the filtering of an excitation beam around a selected excitation wavelength, in an optical direction of the common optical axis, on the one hand, and with the filtering of backscattered radiation. around said selected excitation wavelength, in the other direction of the common optical axis, on the other hand.
  • the passbands of the filters FT1 and FT2 are compatible with each other, that is to say that the filter FT1 which lets the beam FEX1 pass according to the passband of the filter FT1 also lets the beam FEX2 pass through FT2 filter bandwidth.
  • the filter FT1 takes account of the filtering provided by the filter FT2 and vice versa.
  • a sequential system can be advantageously used.
  • a mirror M6 is interposed between the filters FT1 and FT2. It is used here to modify the direction of the common optical axis AXC. Obviously, not all of the mirrors are absolutely necessary here for transporting the excitation beams. They are there to improve the compactness of the device according to the invention. Obviously other light paths and other configurations of mirrors are possible. On the other hand, what is important here is the achromaticity conferred by these mirrors (spherical or aspherical) because it offers the possibility of analyzing sequentially or simultaneously in several spectral domains ranging from visible to infrared whereas usually the chromatic aberration correction domains of lens systems are limited to a small spectral range. It should be noted that the achromacity of the mirrors can be replaced by an achromacity of the optical elements obtained by appropriate software.
  • the line LS (FIG. 2) consists of a row of confocal spatial domains mO, ml, m2, m3, belonging to the sample.
  • the beams FEX1 and FEX2 are transported from the input / output 16 to the input / output 18 here by a mirror M7, the deflector DL1, a mirror M8, and a mirror M9.
  • the deflection generated by the deflector DL1 makes it possible here to obtain a line-by-line scan (in X) of the sample.
  • This scanning in X is advantageously coupled to a sample holder 30 with micrometric displacement in Y.
  • the scanning XY image can also be carried out optically for example by rotation on a perpendicular axis of the deflector assembly DLL
  • the deflector DL1 is able to bring back on the common optical axis AXC, the radiation RD12 resulting from the illumination of the sample thus scanned by compensating in return for the deflection.
  • the apparatus comprises a sample holder 30 of the micrometric table XY type, capable of carrying the sample to be analyzed ECH. Most often, the sample is analyzed under a microscope objective 22 adjustable in Z. A TV camera can also receive the radiation RD12 via a separating plate 33 arranged on the common optical axis.
  • the table 30 is movable in micrometric movement X and Y.
  • Control means 35 are suitable for also controlling the movement in Z of the objective 22 as will be described in more detail below or the movement in Z of the table micrometric.
  • the radiations RD12 which result from the illumination of the sample by the excitation beams FEX1 and FEX2 are collected by the optical elements M9, M8, DL1, M7 to be filtered by the FT1 and FT2 filters. After filtering, these RD12 radiations are then transferred to spectral analysis means ANA by mirrors M10 and Mil, an adjustable aperture diaphragm DAl (confocal hole), and the output 100.
  • the diameter of the confocal hole DAl is adjustable on command to adjust the lateral dimension of the sample analyzed, as well as the depth of the field.
  • This confocal hole DAl is placed between the first deflector means DL1 and the second deflector means DL2 which will be described in more detail below (FIG. 7), to confocal control all the spatial domains of the sample thus scanned by the first deflector means.
  • the apparatus is therefore advantageously confocal, that is to say that the spatial filters DF1 and DF2 are optically conjugated with the confocal hole DA1 whose opening is adjusted to obtain a chosen axial and lateral resolution.
  • the confocal collection of RD12 spectra therefore makes it possible to produce optical sections of selected depth, which, with appropriate software, can be manipulated as three-dimensional representations of the sample.
  • the common optical axis AXC here passes through the sample, the filters FT1 and FT2, the deflector DL1 and the confocal hole DAl.
  • the radiations RD12 originating from the output 100 are routed to the output 102 through mirrors M12 and M13, a deflector DL2 and the input slot FE of the spectral analysis means.
  • the role of the DL2 deflector here is to allow the spatial information contained in the RD12 radiation to be used by distributing this radiation along the entry slit of the spectral analysis means.
  • the DL2 deflector assembly is achromatic. It distributes along a line LN2 on the entry slit FE of the spectral analysis means ANA, the radiations RD12 brought back on the common axis AXC by the deflector DLL This distribution or distribution takes place at the same frequency as that of the first means of deflection. In practice, the length of the second LN2 deflection is a constant.
  • the deflections DL1 and DL2 are advantageously synchronous with respect to each other to preserve the spatial information of the RD12 radiations.
  • the lengths of the lines LN1 and LN2 are also chosen and controlled by electronic control (not shown) with respect to each other so as to achieve, where appropriate, a chosen magnification of the confocal spectral images on the detection means to two dimensions as will be described in more detail below ( Figures 9 and 10).
  • confocal control makes it possible to separate the device into two parts connected to each other by an optical fiber FO while retaining the characteristics and advantages of the device.
  • the first part includes the module described with reference to Figure 3, while the second part includes the second deflector means described with reference to Figure 7.
  • a focusing device FOC At the input of the optical fiber FO, a focusing device FOC focuses the radiation RD12 from the confocal hole DAl in the optical fiber FO.
  • a collimation device COL is provided for collimating the radiation RD12 coming from the optical fiber FO on the mirror M12 via, if necessary, another confocal hole DA2 placed at the exit of the fiber and optically conjugated with the DAl confocal hole placed at the entrance of the fiber.
  • the optical fiber FO transporting the confocal information coming from the confocal hole DAl, makes it possible to separate the device into two confocal branches, one of which, relating to the illumination, can be placed in a place chosen, and the other of which, relating to the analysis, can be placed in another place subject for example to environmental conditions different from those of the place where the illumination takes place.
  • the transport of confocal information also makes the device easily modular, with the possibility of using in the illumination branch and in the analysis branch different interchangeable modules.
  • the information relating to the synchronization SYN of the deflectors DL1 and DL2 can be if necessary conveyed by the optical fiber FO or by any other means of information transport.
  • DCC confocal imaging means are provided in a location of the light path where the radiation useful for the spectral characterization of the sample is accessible.
  • these confocal imaging means are arranged between the input / output 14 and the input / output 16 described with reference to FIGS. 3 and 4.
  • a separating plate 19 disposed on the common optical axis AXC takes along the axis 17 a portion of the radiation energy RD12.
  • a lens 21 focuses the sampled beam PRD12 through a diaphragm DF3 with adjustable and adjustable opening.
  • a detector 39 of photodiode type sensitive for example to a given wavelength receives the radiations coming from the diaphragm DF3.
  • the detector 39 is connected to the processing means to construct at least one confocal image of the sample analyzed at a given wavelength.
  • the detector can be divided into two sub-detectors, each sensitive to a given wavelength, which makes it possible to obtain several confocal images at different wavelengths.
  • means for controlling the focusing of the apparatus use in part the removal of energy from RD12 radiation to control the focusing of the apparatus.
  • a separating plate 41 is placed on the light path between the lens 21 and the diaphragm DF3 to take a portion of the radiation energy RD12.
  • a filter 43 separates the radiation useful for spectral characterization.
  • a detector 47 receives this radiation filtered through a diaphragm DF4 with adjustable opening.
  • the detector 47 is connected to the servo means 37 described with reference to FIG. 5. The information coming from the detector 47 makes it possible to control the position of the objective of the microscope relative to the sample.
  • the lateral position of the hole DF4 is calibrated and can be adjustable in the direction of the axis AX3 as a function of the chosen penetration (in depth) of the sample placed under the objective 22 of the microscope.
  • the spectral analysis means ANA comprise a first dispersive spectrometer RI coupled to a multichannel detector DEC1.
  • a dichroic type BS separating plate receives the RD12 radiations coming from the FE entry slit and separates them into two radiation beams RDI and RD2 according to their wavelengths.
  • the RDI radiations are those belonging to the visible domain
  • the RD2 radiations are those belonging to the infrared domain.
  • the separation of radiation can be carried out in another distribution and by other means.
  • the RDI radiations are routed to the multichannel detector DEC1 sensitive here in the example chosen at the wavelengths belonging to the visible range.
  • the spectrum m'1 displayed on the detector DECl corresponds to the spectrum of the spatial domain of the sample ml generated by the excitation beam FEX1.
  • the DECl detector is a two-dimensional CCD detector comprising a 1024 ⁇ 296 pixel mosaic, cooled by the Peltier effect or with liquid nitrogen.
  • the number PI (figure 2) of pixels per column makes it possible to determine the spatial resolution of the detector and the number pi of pixels per line makes it possible to determine the spectral resolution of the detector.
  • the magnification factor of the spectral images is a function of the length LN1 when LN2 is constant. It is also equal to the ratio between the number P of pixels per column and the length LS.
  • the light path of the RDI radiation between the separating plate BS and the input 110 of the DECl detector is effected by optical elements mounted in series and comprising mirrors M20 and M21, a collimator CI, a dispersive network RI and a collimator C2.
  • optical elements M20, M21, Cl, Ri, and C2 are arranged optically so that the spectrometry is astigmatic, achromatic, and in a flat field in the chosen region.
  • the radiation RD2 is routed to the multichannel detector DEC2 sensitive here to the wavelengths belonging to the infrared domain.
  • the DEC2 detector is a multi-channel germanium detector, cooled with liquid nitrogen, or a multi-channel detector based on gallium arsenide, cooled by the Peltier effect or with liquid nitrogen.
  • the spectrum m "l displayed on the detector DEC2 corresponds to the spectrum of the confocal spatial domain ml of the sample generated by the excitation beam FEX2.
  • the light path of the radiation RD2 between the separating plate BS and the input 120 of the detector DEC2 is effected by optical elements mounted in series and comprising a collimator C3, a mirror M30, a dispersive network R2 and a collimator C4.
  • optical elements C3, M30, R2, and C4 are arranged optically so that the spectrometry is astigmatic, achromatic, and in flat field in the chosen region.
  • the spectral analysis means can comprise two separate dispersive networks in order to implement the invention.
  • the invention can also be implemented with a single dispersive network having several different orders, which makes it possible to cover several spectral domains, with for example each order of the network associated with a spectral domain.
  • the invention can also use a single network associated with several multichannel detectors placed at different angles depending on the wavelengths chosen.
  • the detection means can comprise two separate detectors in order to implement the invention.
  • the invention can also be implemented with a single detector on the condition that it validly covers an appropriate spectral range.
  • the radiation resulting from external measurement heads can be routed to the spectral analysis means, using optical fibers optimized according to the wavelength, ie an optical fiber for RDI radiation in the visible, and another optical fiber for RD2 radiation in the infrared.
  • optical fibers optimized according to the wavelength ie an optical fiber for RDI radiation in the visible, and another optical fiber for RD2 radiation in the infrared.
  • the interposition of RDI and RD2 radiation thus obtained from optical fibers can be carried out using retractable mirrors.
  • FIG. 11 it is possible to implement the invention with second deflector means separated into two separate deflector elements DL21 and DL22. Under these conditions, the RD12 radiations coming from the DA1 confocal hole are directly separated into RDI radiations and RD2 radiations by a dichroic blade LD.
  • the RDI radiation is distributed spatially by a first deflector element DL21 on the input FE1 of a first disperser SP1 while the radiation RD2 is spatially distributed by a second deflector element DL22 on the input FE2 of a second disperser SP2.
  • This variant makes it possible to use two dispersers SP1 and SP2 of different characteristics and / or multi-channel detectors of different dimensions.
  • the dispersers SP1 and SP2 can be spectrometers, adjustable or fixed interference systems, controlled crystals or any device allowing spectral information to be separated spectrally.
  • SYN synchronization signals are used here to synchronize the deflections of the deflector elements DL21 and DL22 with the deflection DLL
  • Apparatus for spectral analysis of a sample of the type comprising:
  • an excitation branch comprising excitation means for exciting a sample
  • an analysis branch comprising spectral analysis means (ANA) for spectrally analyzing the light scattered and / or reflected by the sample;
  • ANA spectral analysis means
  • DEC - detection means
  • DEC detection means
  • the excitation means comprise generating means capable of generating a plurality of monochromatic excitation beams (FEXl, FEX2) of different wavelengths belonging to a very wide spectral range going from the ultraviolet to infrared, and means of transport capable of converging said plurality of monochromatic excitation beams (FEX1, FEX2) on the same spatial domain of the sample (ECH);
  • the analysis branch comprises means of collection and transfer suitable for collecting the radiation (RD12) which result from the illumination of said spatial domain of the sample (ECH) by said plurality of monochromatic excitation beams ( FEX1, FEX2), and to transfer said radiation (RDI, RD2, RD12) to the spectral analysis means (ANA);
  • the means of transport as well as the means of collection and transfer are achromatic in a very wide spectral range, from ultraviolet to infrared;
  • the detection (DEC) and processing means are suitable for detecting and processing the spectra generated by said spatial domain of the sample thus excited at different wavelengths.
  • Apparatus according to claim 1 characterized in that the transport means are capable of making the plurality of monochromatic excitation beams converge sequentially on the same spatial domain of the sample.
  • Apparatus according to claim 1 characterized in that the transport means are capable of making the plurality of monochromatic excitation beams converge simultaneously on the same spatial domain of the sample.
  • Apparatus according to claim 1 characterized in that the spectral detection at different wavelengths is simultaneous or sequential.
  • Apparatus according to claim 5 characterized in that the means of transport and the means of collection and transfer are at least partially arranged and coincident on the commum optical axis (AXC).
  • the transport means comprise first achromatic deflection means (DLl) arranged on the common optical axis and suitable for moving, along a first line of chosen length, and at a chosen frequency, the plurality of monochromatic excitation beams (FEX1, FEX2), on the sample to be analyzed (ECH), and in that said first deflection means (DLl) are adapted to receive and bring back onto the common optical axis (AXC) the radiation (RD12) resulting from said illumination by compensating in return for the first deflection, said resulting radiation (RD12) comprising the spectra generated by the line of spatial domains of the sample thus scanned and illuminated at different wavelengths.
  • DLl first achromatic deflection means
  • the collection and transfer means comprise second deflection means (DL2) achromatic, confocal, arranged on the common optical axis (AXC), and suitable for spatially distributing , along a second line of chosen length, and at the same frequency as that of the first deflector means (DLl), on the input slit (FE) of the spectral analysis means (ANA), the radiation (RD12) coming from the first deflection means (DLl), the first and second deflections being synchronous to preserve the spatial information of the radiations (RD12) coming from the first deflection means.
  • DL2 second deflection means
  • AXC common optical axis
  • Dl diaphragm
  • AXC common optical axis
  • Apparatus according to claim 11 characterized in that it comprises at least one optical fiber capable of conveying the confocal information coming from the adjustable diaphragm
  • the second deflection means (DL2) are separated into two separate deflector elements (DL21 and DL22), the radiation (RD12) from the adjustable diaphragm (DAl) being directly separated into first radiations (RDI) and second radiations (RD2) distinct according to their wavelength, the first deflector element (DL21) being adapted to spatially distribute the first radiations (RDI) on the input (FE1) of a first disperser (SPl), while the second deflector element (DL22) being adapted to spatially distribute the second radiation (RD2) on the input (FE2) of a second disperser (SP2).
  • DCC confocal imaging means
  • Apparatus according to claim 14 characterized in that the confocal imaging means are capable of delivering several confocal images of the same spatial domain of the sample obtained at different wavelengths.
  • Apparatus according to claim 14 or claim 15 characterized in that the confocal imaging means (DCC) comprise an adjustable aperture diaphragm (DF3) and at least one detector (39) connected to the processing means. 17. Apparatus according to claim 1, characterized in that it further comprises control means suitable for at least partially detecting the energy of the radiations which result from the illumination of the sample (ECH) in order to control the distance from lens to sample.
  • DCC confocal imaging means
  • DF3 adjustable aperture diaphragm
  • EH illumination of the sample
  • control means comprise an optical filter (43) separating the radiation useful for the spectral characterization of the sample, an adjustable aperture diaphragm (DF4), and a detector signal (47) connected to a servo unit (37) adapted to servo the distance from the objective to the sample using the confocal signal thus detected.
  • Apparatus according to claim 1 characterized in that the collection and transfer means comprise filtering means (FT1, FT2) suitable for separating the radiation useful for the spectral characterization of the sample for each excitation beam ( FEXl, FEX2).
  • filtering means FT1, FT2
  • the filtering means comprise several filtering elements (FTl, FT2), mounted in series on the common axis (AXC), and each associated with the filtering of a beam of monochromatic excitation (FEXl or FEX2) around a selected excitation wavelength, in an optical direction of the common axis (AXC), on the one hand, and backscattered radiations around said length of selected excitation wave, in the other direction of the common axis (AXC), on the other hand, the passbands of the filter elements (FT1 and FT2) being compatible with each other.
  • FTl, FT2 filtering elements

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The excitation means comprise means for generating a plurality of monochromatic excitation beams (FEX1, FEX2) of different wavelengths, and transporting means for converging said plurality of excitation beams (FEX1, FEX2) on the same spatial region of the sample (ECH). The analysing arm comprises means for collecting the radiation (RD12) resulting from the illumination of said spatial region of the sample (ECH) by said plurality of excitation beams (FEX1, FEX2), and transferring said radiation (RD1, RD2, RD12) on to the spectral analysis means (ANA), means for detecting (DEC) and processing the spectra generated by said spatial region of the sample thus excited at different wavelengths.

Description

Appareil d' analyse spectrale apte à fonctionner dans plusieurs domaines spectraux de longueurs d'onde différentesSpectral analysis apparatus capable of operating in several spectral ranges of different wavelengths
La présente invention concerne un appareil d'analyse spectrale apte à fonctionner dans plusieurs domaines spectraux de longueurs d'onde différentes pour notamment caractériser la distribution spatiale d'au moins une espèce chimique présente dans un échantillon.The present invention relates to a spectral analysis apparatus capable of operating in several spectral domains of different wavelengths in particular for characterizing the spatial distribution of at least one chemical species present in a sample.
Elle trouve urie application générale en spectrométrie moléculaire, en particulier mais non limitativement en spectrométrie Ra an .It finds a general application in molecular spectrometry, in particular but not limited to Ra an spectrometry.
On connaît déjà de nombreux appareils d'analyse spectrale fonctionnant soit dans un seul domaine spectral, soit dans plusieurs domaines spectraux.Numerous spectral analysis apparatuses are already known which operate either in a single spectral domain or in several spectral domains.
Lorsque l'analyse exige des mesures dans plusieurs domaines spectraux, ces mesures ne sont pas réalisées, jusqu'à présent, sur le même domaine spatial de l'échantillon, ou bien elles le sont mais avec des appareils différents, ou encore à l'aide de commutations ou réglages qui compliquent la mise en oeuvre de l'analyse.When the analysis requires measurements in several spectral domains, these measurements are not carried out, until now, on the same spatial domain of the sample, or they are but with different devices, or even at using switches or settings which complicate the implementation of the analysis.
La présente invention remédie à ces inconvénients.The present invention overcomes these drawbacks.
Elle a pour but d'offrir aux chercheurs et/ou aux analystes, un appareil d'analyse spectrale apte à exciter le même domaine spatial d'un échantillon, par plusieurs faisceaux d'excitation de longueurs d'onde différentes, en vue d'obtenir au moins plusieurs spectres moléculaires à différentes longueurs d'onde générés par ledit même domaine de l'échan- tillon.Its aim is to offer researchers and / or analysts a spectral analysis device able to excite the same spatial domain of a sample, by several excitation beams of different wavelengths, in order to obtain at least several molecular spectra at different wavelengths generated by said same domain of the sample.
Elle porte sur un appareil d'analyse spectrale d'un échantillon du type comprenant: - une branche d'excitation, comprenant des moyens d'excitation, pour exciter un échantillon;It relates to an apparatus for spectral analysis of a sample of the type comprising: - an excitation branch, comprising excitation means, to excite a sample;
- une branche d'analyse, comprenant des moyens d'analyse spectrale, pour analyser spectralement la lumière diffusée et/ou réfléchie par l'échantillon;- an analysis branch, comprising spectral analysis means, for spectrally analyzing the light scattered and / or reflected by the sample;
- des moyens de détection montés à la sortie de la branche d'analyse; et- detection means mounted at the outlet of the analysis branch; and
- des moyens de traitement pour traiter les signaux détectés par les moyens de détection afin d'en déduire des informations sur la distribution spatiale d'au moins une espèce chimique présente dans ledit échantillon.processing means for processing the signals detected by the detection means in order to deduce therefrom information on the spatial distribution of at least one chemical species present in said sample.
Selon une définition générale de l'invention, les moyens d'excitation comprennent des moyens générateurs propres à générer une pluralité faisceaux d'excitation monochromatiques de longueurs d'onde différentes, et des moyens de transport propres à lesdits faisceaux d'excitation sur le même domaine spatial de l'échantillon;According to a general definition of the invention, the excitation means comprise generator means capable of generating a plurality of monochromatic excitation beams of different wavelengths, and transport means specific to said excitation beams on the same spatial domain of the sample;
la branche d'analyse comprend des moyens de collecte et de transfert propres à collecter les radiations qui résultent de l'illumination dudit domaine spatial l'échantillon par ladite pluralité de faisceaux d'excitation, et à transférer ces radiations sur les moyens d'analyse spectrale;the analysis branch comprises collection and transfer means suitable for collecting the radiation which results from the illumination of said spatial domain the sample by said plurality of excitation beams, and for transferring these radiation to the analysis means spectral;
les moyens de détection et de traitement sont propres à détecter et à traiter les spectres générés par ledit domaine spatial de l'échantillon ainsi excité à différentes longueurs d'onde.the detection and processing means are suitable for detecting and processing the spectra generated by said spatial domain of the sample thus excited at different wavelengths.
La convergence de la pluralité de faisceaux d'excitation monochromatiques sur le même domaine spatial de l'échantillon est séquentielle ou simultanée.The convergence of the plurality of monochromatic excitation beams on the same spatial domain of the sample is sequential or simultaneous.
De même, la détection spectrale à différentes longueurs d'onde est séquentielle ou simultanée. Un tel appareil est ainsi apte à enregistrer plusieurs spectres moléculaires générés par le même domaine spatial (ou zone spatiale) de l'échantillon à différentes longueurs d'onde, ce qui facilite la mise en oeuvre de l'analyse et surtout le traitement des informations en augmentant la quantité de données utiles pour la caractérisation moléculaire de l'échantillon par les méthodes de traitement telles que la chimiométrie .Likewise, spectral detection at different wavelengths is sequential or simultaneous. Such an apparatus is thus able to record several molecular spectra generated by the same spatial domain (or spatial zone) of the sample at different wavelengths, which facilitates the implementation of the analysis and especially the processing of the information. by increasing the amount of data useful for the molecular characterization of the sample by processing methods such as chemometry.
II offre ainsi aux chercheurs et/ou analystes la possibilité d'observer, simultanément ou séquentiellement, en combinaison ou en corrélation, des spectres de différents types (résonance, hors résonance, absorption, fluorescence, ou loin de toute fluorescence) dans des domaines spectraux distincts, par exemple dans le domaine spectral de l'ultraviolet-visible et dans le domaine spectral du proche infra-rouge.It thus offers researchers and / or analysts the possibility of observing, simultaneously or sequentially, in combination or in correlation, spectra of different types (resonance, off resonance, absorption, fluorescence, or far from any fluorescence) in spectral domains. distinct, for example in the spectral range of the ultraviolet-visible and in the spectral range of the near infrared.
Il permet aussi par exemple la discrimination d'une bande de fluorescence par un traitement informatique approprié des données spectrales obtenues simultanément ou séquentiellement à différentes longueurs d'onde.It also allows, for example, the discrimination of a fluorescence band by appropriate computer processing of the spectral data obtained simultaneously or sequentially at different wavelengths.
En pratique, les moyens de transport sont propres à transporter la pluralité de faisceaux d'excitation monochromatiques sur un axe optique commun.In practice, the means of transport are suitable for transporting the plurality of monochromatic excitation beams on a common optical axis.
Selon une caractéristique très importante du dispositif selon l'invention, les moyens de transport ainsi que les moyens de collecte et de transfert sont achromatiques dans un très large domaine spectral, allant en particulier du visible jusqu'à l'infrarouge.According to a very important characteristic of the device according to the invention, the means of transport as well as the means of collection and transfer are achromatic in a very wide spectral range, going in particular from the visible to the infrared.
Cette achromaticité permet d'offrir une analyse dans plusieurs domaines spectraux allant de l'ultraviolet jusqu'à l'infrarouge alors qu'habituellement les domaines de correction des aberrations chromatiques des systèmes à lentilles sont limités à une gamme spectrale peu étendue. En pratique, les moyens de transport ainsi que les moyens de collecte et de transfert sont de préférence au moins partiellement disposés et confondus sur l'axe optique commun.This achromaticity makes it possible to offer an analysis in several spectral domains ranging from the ultraviolet to the infrared, whereas usually the domains of correction of the chromatic aberrations of the lens systems are limited to a sparse spectral range. In practice, the means of transport as well as the means of collection and transfer are preferably at least partially arranged and combined on the common optical axis.
Selon un autre aspect de l'invention, les moyens de transport comprennent des premiers moyens de déflexion achromatiques, disposés sur l'axe optique commun et propres à déplacer, selon une première ligne d'une longueur choisie, et à une fréquence choisie, la pluralité de faisceaux d'excitation monochromatiques, sur l'échantillon à analyser, et lesdits premiers moyens de déflexion sont propres également à recevoir et ramener, sur l'axe optique commun, les radiations résultant de ladite illumination en compensant en retour la première déflexion, lesdites radiations résultantes compre- nant les spectres générés par la ligne de domaines spatiaux de l'échantillon ainsi balayée et illuminée à différentes longueurs d'onde.According to another aspect of the invention, the means of transport comprise first achromatic deflection means, arranged on the common optical axis and adapted to move, along a first line of a chosen length, and at a chosen frequency, the plurality of monochromatic excitation beams, on the sample to be analyzed, and said first deflection means are also capable of receiving and bringing back, on the common optical axis, the radiations resulting from said illumination by compensating in return for the first deflection, said resulting radiation comprising the spectra generated by the line of spatial domains of the sample thus scanned and illuminated at different wavelengths.
Très avantageusement, les premiers moyens de déflexion sont confocaux, chaque première ligne analysée de l'échantillon étant formée de points ayant rigoureusement des propriétés confocales .Very advantageously, the first deflection means are confocal, each first line analyzed of the sample being formed of points having rigorously confocal properties.
Pour obtenir des images confocales spectrales de l'échantil- Ion ainsi balayé par les premiers moyens de déflexion, les moyens de collecte et de transfert comprennent des seconds moyens de déflexion achromatiques confocaux, disposés sur l'axe optique commun, et propres à distribuer spatialement sur la fente d'entrée des moyens d'analyse spectrale, selon une seconde ligne de longueur choisie et à la même fréquence que celle des premiers moyens de déflexion, lesdites radiations résultantes provenant des premiers moyens de déflexion, les première et seconde déflexions étant synchrones l'une par rapport à l'autre pour conserver les informations spatiales desdites radiations résultantes.To obtain spectral confocal images of the sample thus scanned by the first deflection means, the collection and transfer means comprise second confocal achromatic deflection means, arranged on the common optical axis, and capable of spatially distributing on the entry slit of the spectral analysis means, along a second line of chosen length and at the same frequency as that of the first deflection means, said resulting radiation coming from the first deflection means, the first and second deflections being synchronous one with respect to the other to preserve the spatial information of said resulting radiations.
Très avantageusement, les longueurs des première et seconde lignes de balayage sont choisies l'une par rapport à l'autre de manière à réaliser un grandissement choisi des images spectrales de l'échantillon sur les moyens de détection.Very advantageously, the lengths of the first and second scanning lines are chosen relative to each other so as to achieve a chosen magnification of the spectral images of the sample on the detection means.
Pour obtenir des images spectrales confocales de l'échantil- Ion, les moyens de collecte et de transfert comprennent en pratique un diaphragme monté sur l'axe optique commun entre les premiers et seconds moyens de déflexion et dont le diamètre est ajustable sur commande pour contrôler la dimension latérale de l'échantillon analysé ainsi que la profon- deur de champ.To obtain confocal spectral images of the sample, the collection and transfer means in practice comprise a diaphragm mounted on the common optical axis between the first and second deflection means and the diameter of which is adjustable on command to control the lateral dimension of the sample analyzed as well as the depth of field.
Pour des applications particulières telles que des mesures in situ, l'appareil comprend au moins une fibre optique propre à acheminer les informations confocales issues du diaphragme ajustable jusqu'à l'entrée des seconds moyens de déflexion.For particular applications such as in situ measurements, the device comprises at least one optical fiber capable of conveying the confocal information originating from the adjustable diaphragm to the input of the second deflection means.
Selon un autre aspect de l'invention, l'appareil comprend en outre des moyens d'imagerie confocale propres à détecter au moins partiellement l'énergie des radiations qui résultent de l'illumination de l'échantillon ainsi balayé pour disposer, le cas échéant simultanément, d'au moins une image confocale et de plusieurs images spectrales confocales relatives au même domaine spatial de l'échantillon ainsi balayé. En variante, les moyens d'imagerie confocale sont aptes à délivrer plusieurs images confocales du même domaine spatial de l'échantillon obtenues à différentes longueurs d'onde.According to another aspect of the invention, the apparatus further comprises confocal imaging means capable of at least partially detecting the energy of the radiations which result from the illumination of the sample thus scanned so as to have, if necessary simultaneously, at least one confocal image and several confocal spectral images relating to the same spatial domain of the sample thus scanned. As a variant, the confocal imaging means are capable of delivering several confocal images of the same spatial domain of the sample obtained at different wavelengths.
Un tel appareil permet ainsi de disposer, le cas échéant, simultanément, d'une image confocale et de plusieurs images confocales spectrales du même domaine spatial de l'échantillon, en vue de les comparer, les superposer ou les traiter. Ces informations de différentes natures ainsi rendues disponibles facilitent et améliorent le travail des utilisateurs en leur offrant encore plus d'informations utiles à l'analyse de l'échantillon.Such an apparatus thus makes it possible to have, if necessary, simultaneously, a confocal image and several spectral confocal images of the same spatial domain of the sample, with a view to comparing them, superimposing them or processing them. This information of various kinds thus made available makes the work of the users easier and better by offering them even more information useful for analyzing the sample.
Il permet aussi de comparer, superposer ou de traiter des images confocales obtenues sur un autre appareil avec les images confocales et spectrales confocales obtenues avec l'appareil objet de l'invention au même endroit de l'échantillon.It also allows you to compare, superimpose or process confocal images obtained on another device with the confocal and confocal spectral images obtained with the device object of the invention in the same place of the sample.
En pratique, les moyens d'imagerie confocale comprennent un diaphragme d'ouverture ajustable et au moins un détecteur relié aux moyens de traitement.In practice, the confocal imaging means comprise an adjustable aperture diaphragm and at least one detector connected to the processing means.
Selon une autre caractéristique de l'invention, l'appareil comprend en outre des moyens d'asservissement propres à détecter au moins partiellement l'énergie des radiations qui résultent de l'illumination de l'échantillon pour asservir la distance de l'objectif à l'échantillon.According to another characteristic of the invention, the apparatus further comprises servo means capable of at least partially detecting the energy of the radiations which result from the illumination of the sample in order to servo the distance from the objective to the sample.
En pratique, les moyens d'asservissement comprennent un filtre optique séparant les radiations utiles à la caractéri- εation spectrale de l'échantillon, un diaphragme d'ouverture ajustable, et un détecteur de signal relié à une unité d'asservissement propre à asservir la distance de l'objectif à l'échantillon à l'aide du signal confocal ainsi détecté.In practice, the servo means comprise an optical filter separating the radiation useful for the spectral characterization of the sample, an adjustable aperture diaphragm, and a signal detector connected to a servo unit suitable for servoing the distance from the objective to the sample using the confocal signal thus detected.
De préférence, l'appareil comprend une platine porte-échantillon ajustable en Z en réponse aux moyens d'asservissement et/ou un élément optique de focalisation ajustable en Z en réponse aux moyens d'asservissement.Preferably, the apparatus comprises a sample holder plate adjustable in Z in response to the servo means and / or an optical focusing element adjustable in Z in response to the servo means.
Selon encore une autre caractéristique importante de l'invention, les moyens de collecte et de transfert comprennent des moyens de filtrage propres à séparer les radiations utiles à la caractérisation spectrale de l'échantillon pour chaque faisceau d'excitation.According to yet another important characteristic of the invention, the collection and transfer means comprise filtering means capable of separating the radiation useful for the spectral characterization of the sample for each excitation beam.
En pratique, les moyens de filtrage comprennent plusieurs éléments de filtrage, montés en série sur l'axe commun, et chacun associé au filtrage d'un faisceau d'excitation autour d'une longueur d'onde d'excitation choisie, dans un sens optique de l'axe commun, d'une part, et des radiations rétro-diffusées autour de ladite longueur d'onde d'excitation choisie, dans l'autre sens de l'axe commun, d'autre part, les bandes passantes des éléments de filtrage étant compatibles entre elles.In practice, the filtering means comprise several filtering elements, mounted in series on the common axis, and each associated with the filtering of an excitation beam around a selected excitation wavelength, in one direction. optics of the common axis, on the one hand, and radiation backscattered around said selected excitation wavelength, in the other direction of the common axis, on the other hand, the bandwidths of the filter elements being compatible with each other.
De préférence, chaque élément de filtrage, monté en série sur l'axe commun, est à bande étroite, de pente d'atténuation raide et centrée sur la longueur d'onde d'excitation associée et apte à injecter selon un premier sens allant des moyens générateurs vers l'échantillon, un faisceau d'excitation comprenant des rayonnements utiles à l'illumination et à arrêter les rayonnements inutiles à l'illumination situés hors de la bande étroite, ainsi qu'à transmettre simultanément selon un second sens inverse du premier, les radiations rétro-dif usées utiles à l'analyse spectrale et situées hors de la bande étroite et à rejeter les radiations rétro-diffu- sées inutiles à l'analyse spectrale réfléchies ou diffusées autour de la longueur d'onde d'excitation associée.Preferably, each filter element, mounted in series on the common axis, is a narrow band, with a steep attenuation slope and centered on the associated excitation wavelength and capable of injecting in a first direction ranging from generating means towards the sample, an excitation beam comprising radiation useful for illumination and for stopping the radiation useless for illumination situated outside the narrow band, as well as for transmitting simultaneously in a second direction opposite to the first , used back-scattered radiation useful for spectral analysis and located outside the narrow band and to reject back-scattered radiation useless for spectral analysis reflected or scattered around the associated excitation wavelength .
Selon un autre aspect de l'invention, les moyens d'analyse spectrale comprennent une pluralité de disperseurs, aptes à être couplés respectivement à une pluralité de moyens de détection ulticanaux sensibles chacun à au moins un domaine spectral.According to another aspect of the invention, the spectral analysis means comprise a plurality of dispersers, able to be coupled respectively to a plurality of ultichannel detection means each sensitive to at least one spectral domain.
En variante, les moyens d'analyse spectrale comprennent un seul disperseur stigmatique, achromatique et apte à fonctionner simultanément ou séquentiellement à une pluralité d'ordres différents pour couvrir une pluralité de domaines spatiaux distincts.Alternatively, the spectral analysis means comprise a single stigmatic, achromatic disperser capable of operating simultaneously or sequentially in a plurality of different orders to cover a plurality of distinct spatial domains.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lumière de la description détaillée ci-après et des dessins qui peuvent contribuer à la définition de l'invention, le cas échéant, et dans lesquels:Other characteristics and advantages of the invention will become apparent in the light of the detailed description below and of the drawings which may contribute to the definition of the invention, where appropriate, and in which:
- les figures 1 et 2 représentent schématiquement de façon globale les moyens constitutifs de l'appareil selon l'invention; - la figure 3 illustre schématiquement de façon détaillée les éléments constitutifs des moyens de transport, ainsi que des moyens de collecte et de transfert de l'appareil selon 1 'invention;- Figures 1 and 2 show schematically globally the means of the device according to the invention; - Figure 3 schematically illustrates in detail the constituent elements of the means of transport, as well as means of collection and transfer of the device 1 according to the invention;
- la figure 4 représente schématiquement de façon détaillée les premiers moyens déflecteurs selon l'invention;- Figure 4 schematically shows in detail the first deflector means according to the invention;
- la figure 5 représente schématiquement de façon détaillée l'optique d'entrée et le porte-échantillon de l'appareil selon l'invention;- Figure 5 schematically shows in detail the input optics and the sample holder of the apparatus according to the invention;
- la figure 6 représente schématiquement de façon détaillée les moyens d'imagerie confocale, ainsi que les moyens d'asservissement de la mise au point de l'appareil selon 1 ' invention;- Figure 6 schematically shows in detail the confocal imaging means, as well as the means for controlling the development of the apparatus according to the invention;
- la figure 7 représente schématiquement de façon détaillée les seconds moyens déflecteurs selon l'invention;- Figure 7 schematically shows in detail the second deflector means according to the invention;
- la figure 8 représente schématiquement une variante de l'invention comprenant une connexion par fibre optique du diaphragme ajustable jusqu'à l'entrée des seconds moyens déflecteurs selon l'invention ;- Figure 8 shows schematically a variant of the invention comprising an optical fiber connection of the adjustable diaphragm up to the inlet of the second deflector means according to the invention;
- la figure 9 illustre schématiquement de façon détaillée les moyens d'analyse spectrale comprenant un premier spectrometre dispersif apte à fonctionner à une première longueur d'onde et associé à un détecteur de signal selon l'invention;- Figure 9 schematically illustrates in detail the spectral analysis means comprising a first dispersive spectrometer capable of operating at a first wavelength and associated with a signal detector according to the invention;
- la figure 10 illustre schématiquement de façon détaillée les moyens d'analyse spectrale comprenant un second spectrometre dispersif apte à fonctionner à une seconde longueur d'onde et associé à un détecteur de signai selon l'invention; et- Figure 10 schematically illustrates in detail the spectral analysis means comprising a second dispersive spectrometer capable of operating at a second wavelength and associated with a signal detector according to the invention; and
- la figure 11 illustre une variante de l'appareil dans laquelle les seconds moyens de déflexion sont séparés en deux éléments déflecteurs distincts selon l'invention. Pour faciliter la compréhension de la description, l' appareil d'analyse spectrale selon l'invention comprend seulement deux faisceaux d'excitation monochromatiques FEXl et FEX2 de longueurs d'onde différentes. Bien évidemment, l'invention s'applique aussi à n faisceaux d'excitation, avec n nombre entier supérieur ou égal à 2.- Figure 11 illustrates a variant of the apparatus in which the second deflection means are separated into two separate deflector elements according to the invention. To facilitate understanding of the description, the spectral analysis apparatus according to the invention comprises only two monochromatic excitation beams FEX1 and FEX2 of different wavelengths. Obviously, the invention also applies to n excitation beams, with n integer greater than or equal to 2.
En pratique (figure 1), les faisceaux d'excitation FEXl et FEX2 sont générés par une ou deux sources lasers SL qui sont par exemple du type à longueurs d'onde fixes (laser solide, laser à gaz) ou du type a longueurs d'onde accordables (laser à colorants, laser à diodes). Ces faisceaux d'excitation peuvent être acheminés depuis leurs sources respectives vers leurs entrées respectives 10 et 12 par des fibres optiques monomodes ou multimodes (non représentées).In practice (FIG. 1), the excitation beams FEX1 and FEX2 are generated by one or two laser sources SL which are for example of the type with fixed wavelengths (solid laser, gas laser) or of the type with lengths d tunable wave (dye laser, diode laser). These excitation beams can be routed from their respective sources to their respective inputs 10 and 12 by single-mode or multimode optical fibers (not shown).
Dans un exemple présentant de nombreux intérêts en spectrométrie RAMAN, la longueur d'onde du faisceau laser FEXl est de 532 n (visible) et celle du faisceau laser FEX2 est de 1064 nm (proche infrarouge). Bien évidemment, l'invention s'applique à des faisceaux d'excitation monochromatiques ayant d'autres valeurs de longueurs d'onde que 532 ou 1064 nm. Dans ce cas particulier, on pourra utiliser le même spectrometre travaillant à deux ordres différents.In an example presenting numerous interests in RAMAN spectrometry, the wavelength of the laser beam FEX1 is 532 n (visible) and that of the laser beam FEX2 is 1064 nm (near infrared). Obviously, the invention applies to monochromatic excitation beams having other wavelength values than 532 or 1064 nm. In this particular case, we can use the same spectrometer working at two different orders.
Le faisceau d'excitation monochromatique FEXl d'une longueur d'onde appartenant par exemple au domaine de l'ultraviolet- visible est représenté par des flèches à traits pleins fins. Le faisceau d'excitation monochromatique FEX2 d'une longueur d'onde appartenant par exemple au domaine du proche infrarouge est représenté par des flèches à traits tiretés fins.The monochromatic excitation beam FEX1 of a wavelength belonging for example to the visible-ultraviolet range is represented by arrows with thin solid lines. The FEX2 monochromatic excitation beam with a wavelength belonging for example to the near infrared range is represented by arrows with thin dashed lines.
Les radiations RD12 résultant de l'illumination simultanée de l'échantillon par les faisceaux d'excitation FEXl et FEX2 sont représentées par des flèches épaisses à traits continus d'une part et à traits tiretés d'autre part. Les radiations RDI résultant de l'illumination de l'échantillon par le faisceau d'excitation FEXl dans le visible sont représentées par des flèches épaisses à traits continus. Les radiations RD2 résultant de l'illumination de l'échantillon par le faisceau d'excitation FEX2 dans le proche infra-rouge sont représentées par des flèches épaisses à traits tiretés.The RD12 radiation resulting from the simultaneous illumination of the sample by the excitation beams FEX1 and FEX2 are represented by thick arrows with solid lines on the one hand and dashed lines on the other hand. The RDI radiations resulting from the illumination of the sample by the excitation beam FEX1 in the visible are represented by thick arrows with solid lines. Radiation RD2 resulting from the illumination of the sample by the excitation beam FEX2 in the near infrared are represented by thick arrows with dashed lines.
Sur la figure 3, le faisceau d'excitation FEXl est transporté depuis l'entrée 10, selon l'axe AX1 et le sens de propagation de la lumière, vers un filtre FT1, par des éléments optiques comprenant un miroir Ml, un filtre spatial d'ouverture ajustable DF1 (trou de filtrage spatial), deux lentilles Ll et L2 encadrant le filtre DF1, et des miroirs M2 et M3.In FIG. 3, the excitation beam FEX1 is transported from the input 10, along the axis AX1 and the direction of propagation of the light, to a filter FT1, by optical elements comprising a mirror Ml, a spatial filter DF1 adjustable aperture (spatial filtering hole), two lenses L1 and L2 framing the filter DF1, and mirrors M2 and M3.
Le filtre FT1 est incliné par rapport à la normale à l'axe commun AXC, que l'on décrira plus en détail ci-après, selon un angle d'une valeur de quelques degrés. Il est à bande étroite, de pente d'atténuation raide et centrée sur la longueur d'onde 532 nm. Il permet d'injecter selon l'axe commun AXC, vers l'échantillon (c'est-à-dire ici vers l'entrée/sortie 14), un faisceau d'excitation FEXl comprenant des rayonnements utiles à l'illumination et d'arrêter les rayonnements inutiles à l'illumination situés hors de la bande étroite. Le filtre FT1 est par exemple un disperseur par réflexion (réseau non représenté ici) ou un disperseur par réflexion et transmission (filtre holographique représenté ici en figure 3).The filter FT1 is inclined relative to the normal to the common axis AXC, which will be described in more detail below, at an angle of a value of a few degrees. It is a narrow band, with a steep attenuation slope and centered on the wavelength 532 nm. It makes it possible to inject along the common axis AXC, towards the sample (that is to say here towards the input / output 14), an excitation beam FEX1 comprising radiation useful for illumination and d '' stop unnecessary radiation at illumination outside the narrow band. The FT1 filter is, for example, a reflection disperser (network not shown here) or a reflection and transmission disperser (holographic filter shown here in FIG. 3).
Le filtre FT1 permet aussi la transmission achromatique selon l'axe commun AXC, vers les moyens d'analyse spectrale ANA (figures 9 et 10), des radiations rétro-diffusées utiles à l'analyse spectrale et situées hors de la bande étroite et la réjection des radiations rétro-diffusées inutiles à l'analyse spectrale réfléchies ou diffusées autour de 532 nm.The FT1 filter also allows achromatic transmission along the common axis AXC, to the spectral analysis means ANA (FIGS. 9 and 10), backscattered radiation useful for spectral analysis and located outside the narrow band and the rejection of backscattered radiation unnecessary for spectral analysis reflected or scattered around 532 nm.
Le faisceau d'excitation FEX2 est transporté selon l'axe AX2 et le sens de propagation de la lumière depuis l'entrée 12 vers un filtre FT2 par des éléments optiques comprenant un miroir M4 , un filtre spatial d'ouverture ajustable DF2 (trou de filtrage spatial), deux lentilles L3 et L4 encadrant le filtre DF2, et un miroir M5. Le filtre FT2 est similaire au filtre FT1. Il est incliné par rapport à la normale à l'axe commun AXC selon un angle d'une valeur de quelques degrés. Il est à bande étroite, de pente d'atténuation raide et centrée sur la longueur d'onde 1064 nm. Il permet d'injecter selon l'axe commun AXC, vers l'échantillon (c'est à dire vers l'entrée/sortie 14), un faisceau d'excitation FEX2 comprenant des rayonnements utiles à l'illumination et d'arrêter les rayonnements inutiles à l'illumination situés hors de la bande étroite. Le filtre FT2 est par exemple un disperseur par réflexion et transmission (filtre holographique).The excitation beam FEX2 is transported along the axis AX2 and the direction of propagation of the light from the input 12 to a filter FT2 by optical elements comprising a mirror M4, an adjustable spatial filter with opening DF2 (hole of spatial filtering), two lenses L3 and L4 framing the filter DF2, and a mirror M5. The FT2 filter is similar to the FT1 filter. It is inclined relative to the normal to the common axis AXC at an angle worth a few degrees. It is a narrow band, with a steep attenuation slope and centered on the wavelength 1064 nm. It makes it possible to inject along the common axis AXC, towards the sample (that is to say towards the input / output 14), an excitation beam FEX2 comprising radiation useful for illumination and to stop the unnecessary radiation at illumination located outside the narrow band. The FT2 filter is for example a reflector and transmission disperser (holographic filter).
Le filtre FT2 permet aussi la transmission achromatique selon l'axe commun AXC, vers les moyens d'analyse spectrale ANA (c'est-à-dire vers la sortie 100), des radiations rétro-dif- fusées utiles à l'analyse spectrale et situées hors de la bande étroite et la réjection des radiations rétro-diffusées inutiles à l'analyse spectrale réfléchies ou diffusées autour de 1064 nm.The FT2 filter also allows achromatic transmission along the common axis AXC, to the spectral analysis means ANA (that is to say to the output 100), backscattered radiation useful for spectral analysis and located outside the narrow band and the rejection of backscattered radiation unnecessary for spectral analysis reflected or scattered around 1064 nm.
Les filtres FT1 et FT2 sont ici montés en série sur l'axe commun AXC. Ils sont chacun associé au filtrage d'un faisceau d'excitation autour d'une longueur d'onde d'excitation choisie, dans un sens optique de l'axe optique commun, d'une part, et au filtrage des radiations rétro-diffusées autour de ladite longueur d'onde d'excitation choisie, dans l'autre sens de l'axe optique commun, d'autre part.The filters FT1 and FT2 are here mounted in series on the common axis AXC. They are each associated with the filtering of an excitation beam around a selected excitation wavelength, in an optical direction of the common optical axis, on the one hand, and with the filtering of backscattered radiation. around said selected excitation wavelength, in the other direction of the common optical axis, on the other hand.
Il est à remarquer que les bandes passantes des filtres FT1 et FT2 sont compatibles entre elles, c'est-à-dire que le filtre FT1 qui laisse passer le faisceau FEXl selon la bande passante du filtre FT1 laisse aussi passer le faisceau FEX2 selon la bande passante du filtre FT2. Il en est de même pour les radiations résultant de l'illumination de l'échantillon par les faisceaux FEXl et FEX2. En d'autres termes, le filtre FT1 tient compte du filtrage assuré par le filtre FT2 et réciproquement . Dans le cas où l'un des filtres FTl et FT2 présente une atténuation trop importante pour l'autre radiation, un système séquentiel peut être avantageusement utilisé.It should be noted that the passbands of the filters FT1 and FT2 are compatible with each other, that is to say that the filter FT1 which lets the beam FEX1 pass according to the passband of the filter FT1 also lets the beam FEX2 pass through FT2 filter bandwidth. The same is true for the radiation resulting from the illumination of the sample by the beams FEXl and FEX2. In other words, the filter FT1 takes account of the filtering provided by the filter FT2 and vice versa. In the case where one of the filters FT1 and FT2 has too much attenuation for the other radiation, a sequential system can be advantageously used.
Un miroir M6 est intercalé entre les filtres FTl et FT2. Il sert ici à modifier la direction de l'axe commun optique AXC. Bien évidemment, tous les miroirs ne sont pas ici impérativement nécessaire au transport des faisceaux d'excitation. Ils sont là pour améliorer la compacité de l'appareil selon l'invention. Bien évidemment d'autres trajets lumineux et d'autres configurations de miroirs sont possibles. Par contre ce qui est important ici, c'est 1 ' achromaticité conférée par ces miroirs (sphériques ou asphériques) car elle offre la possibilité d'analyser séquentiellement ou simultanément dans plusieurs domaines spectraux allant du visible jusqu'à l'infrarouge alors qu'habituellement les domaines de correction des aberrations chromatiques des systèmes à lentilles sont limités à une gamme spectrale peu étendue. Il est à remarquer que l' achromacité des miroirs peut être remplacée par une achromacité des éléments optiques obtenue par des logiciels appropriés.A mirror M6 is interposed between the filters FT1 and FT2. It is used here to modify the direction of the common optical axis AXC. Obviously, not all of the mirrors are absolutely necessary here for transporting the excitation beams. They are there to improve the compactness of the device according to the invention. Obviously other light paths and other configurations of mirrors are possible. On the other hand, what is important here is the achromaticity conferred by these mirrors (spherical or aspherical) because it offers the possibility of analyzing sequentially or simultaneously in several spectral domains ranging from visible to infrared whereas usually the chromatic aberration correction domains of lens systems are limited to a small spectral range. It should be noted that the achromacity of the mirrors can be replaced by an achromacity of the optical elements obtained by appropriate software.
En référence aux figures 1 à 4, les faisceaux FEXl et FΞX2 sont ensuite transportés depuis l'entrée/sortie 16 vers un ensemble achromatique comprenant un déflecteur DL1, disposé sur l'axe commun AXC et qui peut balayer selon une ligne de longueur choisie LN1, à une fréquence choisie, les faisceaux d'excitation monochromatiques FEXl et FEX2 , sur une ligne de domaines spatiaux LS proportionnelle à la ligne LN1 de l'échantillon à analyser (avec LS = K(LN1) et K coefficient de proportionnalité). La ligne LS (figure 2) est constituée d'une rangée de domaines spatiaux confocaux mO , ml, m2 , m3 , appartenant à l'échantillon.With reference to FIGS. 1 to 4, the beams FEXl and FΞX2 are then transported from the input / output 16 to an achromatic assembly comprising a deflector DL1, arranged on the common axis AXC and which can sweep along a line of chosen length LN1 , at a chosen frequency, the monochromatic excitation beams FEX1 and FEX2, on a line of spatial domains LS proportional to the line LN1 of the sample to be analyzed (with LS = K (LN1) and K coefficient of proportionality). The line LS (FIG. 2) consists of a row of confocal spatial domains mO, ml, m2, m3, belonging to the sample.
Le transport des faisceaux FEXl et FEX2 de l'entrée/sortie 16 vers l'entrée/sortie 18 s'effectue ici par un miroir M7 , le déflecteur DL1, un miroir M8, et un miroir M9. La déflexion engendrée par le déflecteur DL1 permet ici d'obtenir un balayage ligne par ligne (en X) de l'échantillon. Ce balayage en X est avantageusement couplé à un porte- échantillon 30 à déplacement micrométrique en Y. Le balayage XY image peut aussi être réalisé optiquement par exemple par rotation sur un axe perpendiculaire de l'ensemble déflecteur DLLThe beams FEX1 and FEX2 are transported from the input / output 16 to the input / output 18 here by a mirror M7, the deflector DL1, a mirror M8, and a mirror M9. The deflection generated by the deflector DL1 makes it possible here to obtain a line-by-line scan (in X) of the sample. This scanning in X is advantageously coupled to a sample holder 30 with micrometric displacement in Y. The scanning XY image can also be carried out optically for example by rotation on a perpendicular axis of the deflector assembly DLL
Le déflecteur DL1 est apte à ramener sur l'axe optique commun AXC, les radiations RD12 résultant de l'illumination de l'échantillon ainsi balayé en compensant en retour la déflexion.The deflector DL1 is able to bring back on the common optical axis AXC, the radiation RD12 resulting from the illumination of the sample thus scanned by compensating in return for the deflection.
En référence à la figure 5, l'appareil comprend un porte- échantillon 30 de type table micrométrique XY, susceptible de porter l'échantillon à analyser ECH. Le plus souvent, l'échantillon est analysé sous un objectif 22 de microscope réglable en Z. Une caméra TV peut aussi recevoir les radiations RD12 via une lame séparatrice 33 disposée sur l'axe optique commun.With reference to FIG. 5, the apparatus comprises a sample holder 30 of the micrometric table XY type, capable of carrying the sample to be analyzed ECH. Most often, the sample is analyzed under a microscope objective 22 adjustable in Z. A TV camera can also receive the radiation RD12 via a separating plate 33 arranged on the common optical axis.
La table 30 est mobile en déplacement micrométrique X et Y. Des moyens d'asservissement 35 sont propres à piloter également le déplacement en Z de l'objectif 22 comme on le décrira plus en détail ci-après ou le déplacement en Z de la table micrométrique.The table 30 is movable in micrometric movement X and Y. Control means 35 are suitable for also controlling the movement in Z of the objective 22 as will be described in more detail below or the movement in Z of the table micrometric.
On fait de nouveau référence aux figures 1 à 4. Les radiations RD12 qui résultent de l'illumination de l'échantillon par les faisceaux d'excitation FEXl et FEX2 sont collectées par les éléments optiques M9 , M8, DL1, M7 pour être filtrées par les filtres FTl et FT2. Après filtrage, ces radiations RD12 sont ensuite transférées vers des moyens d'analyse spectrale ANA par des miroirs M10 et Mil, un diaphragme d'ouverture ajustable DAl (trou confocal), et la sortie 100.Reference is again made to FIGS. 1 to 4. The radiations RD12 which result from the illumination of the sample by the excitation beams FEX1 and FEX2 are collected by the optical elements M9, M8, DL1, M7 to be filtered by the FT1 and FT2 filters. After filtering, these RD12 radiations are then transferred to spectral analysis means ANA by mirrors M10 and Mil, an adjustable aperture diaphragm DAl (confocal hole), and the output 100.
Le diamètre du trou confocal DAl est ajustable sur commande pour régler la dimension latérale de l'échantillon analysé, ainsi que la profondeur du champ. Ce trou confocal DAl est placé entre les premiers moyens déflecteurs DL1 et les seconds moyens déflecteurs DL2 que l'on décrira plus en détail ci-après (figure 7), pour contrôler confocalement l'ensemble des domaines spatiaux de l'échantillon ainsi balayé par les premiers moyens déflecteurs.The diameter of the confocal hole DAl is adjustable on command to adjust the lateral dimension of the sample analyzed, as well as the depth of the field. This confocal hole DAl is placed between the first deflector means DL1 and the second deflector means DL2 which will be described in more detail below (FIG. 7), to confocal control all the spatial domains of the sample thus scanned by the first deflector means.
L'appareil est donc avantageusement confocal, c'est-à-dire que les filtres spatiaux DF1 et DF2 sont conjugués optique- ment avec le trou confocal DAl dont l'ouverture est ajustée pour obtenir une résolution axiale et latérale choisie. La collection confocale des spectres RD12 permet donc de produire des sections optiques de profondeur choisie, qui, avec des logiciels appropriés, peuvent être manipulées comme des représentations en trois dimensions de l'échantillon.The apparatus is therefore advantageously confocal, that is to say that the spatial filters DF1 and DF2 are optically conjugated with the confocal hole DA1 whose opening is adjusted to obtain a chosen axial and lateral resolution. The confocal collection of RD12 spectra therefore makes it possible to produce optical sections of selected depth, which, with appropriate software, can be manipulated as three-dimensional representations of the sample.
Il est à remarquer que l'asservissement en Z de la position de l'objectif 22 ou de la table micrométrique est importante pour cette application.It should be noted that the Z control of the position of the objective 22 or of the micrometric table is important for this application.
A la sortie du trou confocal DAl, il est possible de mesurer l'énergie des radiations RD12 d'une ligne LS de domaines spatiaux de l'échantillon, en vue par exemple de déterminer des inhomogénéités dans l'échantillon.At the exit from the confocal hole DA1, it is possible to measure the energy of the radiations RD12 of a line LS of spatial domains of the sample, in order for example to determine inhomogeneities in the sample.
En référence aux figures 1 à 6, l'axe optique commun AXC passe ici par l'échantillon, les filtres FTl et FT2 , le déflecteur DL1 et le trou confocal DAl .With reference to FIGS. 1 to 6, the common optical axis AXC here passes through the sample, the filters FT1 and FT2, the deflector DL1 and the confocal hole DAl.
En référence à la figure 7, les radiations RD12 issues de la sortie 100 sont acheminées vers la sortie 102 à travers des miroirs M12 et M13, un déflecteur DL2 et la fente d'entrée FE des moyens d'analyse spectrale. Le déflecteur DL2 a ici pour rôle de permettre d'utiliser les informations spatiales contenues dans les radiations RD12 en distribuant ces radiations le long de la fente d'entrée des moyens d'analyse spectrale. L'ensemble déflecteur DL2 est achromatique. Il répartit selon une ligne LN2 sur la fente d'entrée FE des moyens d'analyse spectrale ANA, les radiations RD12 ramenées sur l'axe commun AXC par le déflecteur DLL Cette répartition ou distribution s'effectue à la même fréquence que celle des premiers moyens de déflexion. En pratique, la longueur de la seconde déflexion LN2 est une constante.With reference to FIG. 7, the radiations RD12 originating from the output 100 are routed to the output 102 through mirrors M12 and M13, a deflector DL2 and the input slot FE of the spectral analysis means. The role of the DL2 deflector here is to allow the spatial information contained in the RD12 radiation to be used by distributing this radiation along the entry slit of the spectral analysis means. The DL2 deflector assembly is achromatic. It distributes along a line LN2 on the entry slit FE of the spectral analysis means ANA, the radiations RD12 brought back on the common axis AXC by the deflector DLL This distribution or distribution takes place at the same frequency as that of the first means of deflection. In practice, the length of the second LN2 deflection is a constant.
Les déflexions DL1 et DL2 sont avantageusement synchrones l'une par rapport à l'autre pour conserver les informations spatiales des radiations RD12. Les longueurs des lignes LN1 et LN2 sont également choisies et asservies par une électronique de commande (non représentée) l'une par rapport à l'autre de manière à réaliser le cas échéant un grandissement choisi des images spectrales confocales sur les moyens de détection à deux dimensions comme on le décrira plus en détail ci-après (figures 9 et 10).The deflections DL1 and DL2 are advantageously synchronous with respect to each other to preserve the spatial information of the RD12 radiations. The lengths of the lines LN1 and LN2 are also chosen and controlled by electronic control (not shown) with respect to each other so as to achieve, where appropriate, a chosen magnification of the confocal spectral images on the detection means to two dimensions as will be described in more detail below (Figures 9 and 10).
En référence à la figure 8, pour certaines applications telles que les mesures in situ ou autres, le contrôle confocal permet de séparer l'appareil en deux parties reliées l'une à l'autre par une fibre optique FO tout en conservant les caractéristiques et avantages de l'appareil. La première partie comprend le module décrit en référence à la figure 3, tandis que la seconde partie comprend les seconds moyens déflecteurs décrits en référence à la figure 7. A l'entrée de la fibre optique FO, un dispositif de focalisation FOC focalise les radiations RD12 issues du trou confocal DAl dans la fibre optique FO. A la sortie de la fibre optique, un dispositif de collimation COL est prévu pour collimater les radiations RD12 issues de la fibre optique FO sur le miroir M12 via, le cas échéant, un autre trou confocal DA2 placé à la sortie de la fibre et optiquement conjugué avec le trou confocal DAl placé à l'entrée de la fibre.With reference to FIG. 8, for certain applications such as in situ measurements or others, confocal control makes it possible to separate the device into two parts connected to each other by an optical fiber FO while retaining the characteristics and advantages of the device. The first part includes the module described with reference to Figure 3, while the second part includes the second deflector means described with reference to Figure 7. At the input of the optical fiber FO, a focusing device FOC focuses the radiation RD12 from the confocal hole DAl in the optical fiber FO. At the exit of the optical fiber, a collimation device COL is provided for collimating the radiation RD12 coming from the optical fiber FO on the mirror M12 via, if necessary, another confocal hole DA2 placed at the exit of the fiber and optically conjugated with the DAl confocal hole placed at the entrance of the fiber.
Il est à remarquer que la fibre optique FO, transportant les informations confocales issues du trou confocal DAl, permet de séparer l'appareil en deux branches confocales dont l'une, relative à l'illumination, peut être placée dans un endroit choisi, et dont l'autre, relative à l'analyse, peut être placée dans un autre endroit soumis par exemple à des conditions d'environnement différentes de celles de l'endroit où a lieu l'illumination. Le transport des informations confocales rend aussi l'appareil facilement modulaire, avec la possibilité d'utiliser dans la branche d'illumination et dans la branche d'analyse différents modules interchangeables .It should be noted that the optical fiber FO, transporting the confocal information coming from the confocal hole DAl, makes it possible to separate the device into two confocal branches, one of which, relating to the illumination, can be placed in a place chosen, and the other of which, relating to the analysis, can be placed in another place subject for example to environmental conditions different from those of the place where the illumination takes place. The transport of confocal information also makes the device easily modular, with the possibility of using in the illumination branch and in the analysis branch different interchangeable modules.
Les informations relatives à la synchronisation SYN des déflecteurs DL1 et DL2 peuvent être le cas échéant véhiculées par la fibre optique FO ou par tout autre moyen de transport d ' informations .The information relating to the synchronization SYN of the deflectors DL1 and DL2 can be if necessary conveyed by the optical fiber FO or by any other means of information transport.
II est à remarquer que lorsque les deux ensembles déflecteurs DL1 et DL2 sont à l'arrêt, on obtient un système classique ponctuel confocal. Une image spectrale confocale peut être alors obtenue par déplacement micrométrique de l'échantillon.It should be noted that when the two deflector assemblies DL1 and DL2 are stopped, a conventional confocal point system is obtained. A confocal spectral image can then be obtained by micrometric displacement of the sample.
En référence à la figure 6, des moyens d'imagerie confocale DCC sont prévus dans un endroit du trajet lumineux où les radiations utiles à la caractérisation spectrale de l'échantillon sont accessibles. Par exemple, ces moyens d'imagerie confocale sont disposés entre 1 'entrée/sortie 14 et l'en- trée/sortie 16 décrites en référence aux figures 3 et 4.Referring to Figure 6, DCC confocal imaging means are provided in a location of the light path where the radiation useful for the spectral characterization of the sample is accessible. For example, these confocal imaging means are arranged between the input / output 14 and the input / output 16 described with reference to FIGS. 3 and 4.
Une lame séparatrice 19 disposée sur l'axe optique commun AXC prélève selon l'axe 17 une portion de l'énergie des radiations RD12. Une lentille 21 focalise le faisceau prélevé PRD12 à travers un diaphragme DF3 d'ouverture réglable et ajustable. Un détecteur 39 de type photodiode sensible par exemple à une longueur d'onde donnée reçoit les rayonnements issus du diaphragme DF3. Le détecteur 39 est relié aux moyens de traitement pour construire au moins une image confocale de l'échantillon analysé à une longueur d'onde donnée. Le détecteur peut être divisé en deux sous-détecteurs, chacun sensible à une longueur d'onde donnée, ce qui permet d'obtenir plusieurs images confocales à différentes longueurs d'onde. Avantageusement, des moyens d'asservissement de la mise au point de l'appareil utilisent en partie le prélèvement d'énergie des radiations RD12 pour asservir la mise au point de l'appareil.A separating plate 19 disposed on the common optical axis AXC takes along the axis 17 a portion of the radiation energy RD12. A lens 21 focuses the sampled beam PRD12 through a diaphragm DF3 with adjustable and adjustable opening. A detector 39 of photodiode type sensitive for example to a given wavelength receives the radiations coming from the diaphragm DF3. The detector 39 is connected to the processing means to construct at least one confocal image of the sample analyzed at a given wavelength. The detector can be divided into two sub-detectors, each sensitive to a given wavelength, which makes it possible to obtain several confocal images at different wavelengths. Advantageously, means for controlling the focusing of the apparatus use in part the removal of energy from RD12 radiation to control the focusing of the apparatus.
En pratique, une lame séparatrice 41 est placée sur le trajet lumineux entre la lentille 21 et le diaphragme DF3 pour prélever une portion de l'énergie des radiations RD12. Un filtre 43 sépare les radiations utiles à la caractérisation spectrale.In practice, a separating plate 41 is placed on the light path between the lens 21 and the diaphragm DF3 to take a portion of the radiation energy RD12. A filter 43 separates the radiation useful for spectral characterization.
Un détecteur 47 reçoit ces radiations filtrées à travers un diaphragme DF4 d'ouverture réglable. Le détecteur 47 est relié aux moyens d'asservissement 37 décrit en référence à la figure 5. Les informations issues du détecteur 47 permettent d'asservir la position de l'objectif du microscope par rapport à l'échantillon.A detector 47 receives this radiation filtered through a diaphragm DF4 with adjustable opening. The detector 47 is connected to the servo means 37 described with reference to FIG. 5. The information coming from the detector 47 makes it possible to control the position of the objective of the microscope relative to the sample.
La position latérale du trou DF4 est calibrée et peut être réglable dans la direction de l'axe AX3 en fonction de la pénétration (en profondeur) choisie de l'échantillon placé sous l'objectif 22 du microscope.The lateral position of the hole DF4 is calibrated and can be adjustable in the direction of the axis AX3 as a function of the chosen penetration (in depth) of the sample placed under the objective 22 of the microscope.
En référence à la figure 9, les moyens d'analyse spectrale ANA comprennent un premier spectrometre dispersif RI couplé à un détecteur multicanal DEC1.With reference to FIG. 9, the spectral analysis means ANA comprise a first dispersive spectrometer RI coupled to a multichannel detector DEC1.
Une lame séparatrice de type dichroïque BS reçoit les radiations RD12 issues de la fente d'entrée FE et les séparent en deux faisceaux de radiations RDI et RD2 selon leurs longueurs d'onde. Ici, les radiations RDI sont celles appartenant au domaine du visible, et les radiations RD2 sont celles appartenant au domaine de l'infrarouge. Bien évidemment, la séparation des radiations peut s'effectuer selon une autre répartition et par d'autres moyens.A dichroic type BS separating plate receives the RD12 radiations coming from the FE entry slit and separates them into two radiation beams RDI and RD2 according to their wavelengths. Here, the RDI radiations are those belonging to the visible domain, and the RD2 radiations are those belonging to the infrared domain. Obviously, the separation of radiation can be carried out in another distribution and by other means.
Les radiations RDI sont acheminées vers le détecteur multicanal DEC1 sensible ici dans l'exemple choisi aux longueurs d'onde appartenant au domaine du visible. Le spectre m'1 affiché sur le détecteur DECl (figure 2) correspond au spectre du domaine spatial de l'échantillon ml généré par le faisceau d'excitation FEXl.The RDI radiations are routed to the multichannel detector DEC1 sensitive here in the example chosen at the wavelengths belonging to the visible range. The spectrum m'1 displayed on the detector DECl (FIG. 2) corresponds to the spectrum of the spatial domain of the sample ml generated by the excitation beam FEX1.
Par exemple, le détecteur DECl est un détecteur CCD à deux dimensions comprenant une mosaïque de 1024x296 pixels, refroidi par effet Peltier ou à l'azote liquide. Par exemple, le nombre PI (figure 2) de pixels par colonne permet de déterminer la résolution spatiale du détecteur et le nombre pi de pixels par ligne permet de déterminer la résolution spectrale du détecteur. Le facteur de grandissement des images spectrales est fonction de la longueur LN1 lorsque LN2 est constante. Il est aussi égal au rapport entre le nombre P de pixels par colonne et la longueur LS.For example, the DECl detector is a two-dimensional CCD detector comprising a 1024 × 296 pixel mosaic, cooled by the Peltier effect or with liquid nitrogen. For example, the number PI (figure 2) of pixels per column makes it possible to determine the spatial resolution of the detector and the number pi of pixels per line makes it possible to determine the spectral resolution of the detector. The magnification factor of the spectral images is a function of the length LN1 when LN2 is constant. It is also equal to the ratio between the number P of pixels per column and the length LS.
Le trajet lumineux des radiations RDI entre la lame séparatrice BS et l'entrée 110 du détecteur DECl s'effectue par des éléments optiques montés en série et comprenant des miroirs M20 et M21, un collimateur CI, un réseau dispersif RI et un collimateur C2.The light path of the RDI radiation between the separating plate BS and the input 110 of the DECl detector is effected by optical elements mounted in series and comprising mirrors M20 and M21, a collimator CI, a dispersive network RI and a collimator C2.
Les éléments optiques M20, M21, Cl, Ri, et C2 sont agencés optiquement de telle sorte que la spectrométrie soit astigma- tique, achromatique, et à champ plan dans la région choisie.The optical elements M20, M21, Cl, Ri, and C2 are arranged optically so that the spectrometry is astigmatic, achromatic, and in a flat field in the chosen region.
En référence à la figure 10, les radiations RD2 sont acheminées vers le détecteur multicanal DEC2 sensible ici aux longueurs d'onde appartenant au domaine de l'infrarouge.With reference to FIG. 10, the radiation RD2 is routed to the multichannel detector DEC2 sensitive here to the wavelengths belonging to the infrared domain.
Par exemple, le détecteur DEC2 est un détecteur multicanal en germanium, refroidi à l'azote liquide, ou un détecteur multicanal a base d'arséniure de gallium, refroidi par effet Peltier ou à l'azote liquide.For example, the DEC2 detector is a multi-channel germanium detector, cooled with liquid nitrogen, or a multi-channel detector based on gallium arsenide, cooled by the Peltier effect or with liquid nitrogen.
Le spectre m"l affiché sur le détecteur DEC2 (figure 2) correspond au spectre du domaine spatial confocal ml de l'échantillon généré par le faisceau d'excitation FEX2. Le trajet lumineux des radiations RD2 entre la lame séparatrice BS et l'entrée 120 du détecteur DEC2 s'effectue par des éléments optiques montés en série et comprenant un collimateur C3, un miroir M30, un réseau dispersif R2 et un collimateur C4.The spectrum m "l displayed on the detector DEC2 (FIG. 2) corresponds to the spectrum of the confocal spatial domain ml of the sample generated by the excitation beam FEX2. The light path of the radiation RD2 between the separating plate BS and the input 120 of the detector DEC2 is effected by optical elements mounted in series and comprising a collimator C3, a mirror M30, a dispersive network R2 and a collimator C4.
Les éléments optiques C3, M30, R2 , et C4 sont agencés optiquement de telle sorte que la spectrométrie soit astigma- tique, achromatique, et à champ plan dans la région choisie.The optical elements C3, M30, R2, and C4 are arranged optically so that the spectrometry is astigmatic, achromatic, and in flat field in the chosen region.
Il est à remarquer qu'il n'est pas nécessaire que les moyens d'analyse spectrale comprennent deux réseaux dispersifs séparés pour mettre en oeuvre l'invention. En effet, l'invention peut aussi être mise en oeuvre avec un seul réseau dispersif ayant plusieurs ordres différents, ce qui permet de couvrir plusieurs domaines spectraux, avec par exemple chaque ordre du réseau associé à un domaine spectral.It should be noted that it is not necessary for the spectral analysis means to comprise two separate dispersive networks in order to implement the invention. Indeed, the invention can also be implemented with a single dispersive network having several different orders, which makes it possible to cover several spectral domains, with for example each order of the network associated with a spectral domain.
L'invention peut aussi utiliser un seul réseau associé à plusieurs détecteurs multicanaux placés à des angles différents en fonction des longueurs d'onde choisies.The invention can also use a single network associated with several multichannel detectors placed at different angles depending on the wavelengths chosen.
Elle peut aussi utiliser d'autres systèmes dispersifs.It can also use other dispersive systems.
De même, il n'est pas nécessaire que les moyens de détection comprennent deux détecteurs séparés pour mettre en oeuvre l'invention. En effet, l'invention peut aussi être mise en oeuvre avec un seul détecteur à la condition qu'il couvre valablement un domaine spectral approprié .Likewise, it is not necessary for the detection means to comprise two separate detectors in order to implement the invention. Indeed, the invention can also be implemented with a single detector on the condition that it validly covers an appropriate spectral range.
Par ailleurs, les radiations résultant de têtes de mesure extérieures (in situ) peuvent être acheminées vers les moyens d'analyse spectrale, à l'aide de fibres optiques optimisées selon la longueur d'onde, c'est à dire une fibre optique pour les radiations RDI dans le visible, et une autre fibre optique pour les radiations RD2 dans l'infrarouge. L'interposition des radiations RDI et RD2 ainsi issues des fibres optiques peut être réalisée à l'aide de miroirs escamotables.Furthermore, the radiation resulting from external measurement heads (in situ) can be routed to the spectral analysis means, using optical fibers optimized according to the wavelength, ie an optical fiber for RDI radiation in the visible, and another optical fiber for RD2 radiation in the infrared. The interposition of RDI and RD2 radiation thus obtained from optical fibers can be carried out using retractable mirrors.
En variante (figure 11), il est possible de mettre en oeuvre l'invention avec des seconds moyens déflecteurs séparés en deux éléments déflecteurs distincts DL21 et DL22. Dans ces conditions, les radiations RD12 issues du trou confocal DAl sont directement séparées en des radiations RDI et des radia- tions RD2 par une lame dichroïque LD. Les radiations RDI sont distribuées spatialement par un premier élément déflecteur DL21 sur l'entrée FE1 d'un premier disperseur SP1 tandis que les radiations RD2 sont distribuées spatialement par un second élément déflecteur DL22 sur l'entrée FE2 d'un second disperseur SP2. Cette variante permet d'utiliser deux disperseurs SP1 et SP2 de caractéristique différente et/ou des détecteurs multicanaux de dimensions différentes. Les disperseurs SP1 et SP2 peuvent être des spectromètres , des systèmes interférentiels réglables ou fixes, des cristaux pilotés ou tout dispositif permettant de séparer spectrale- ment des informations spectrales. Des signaux de synchronisation SYN servent ici à synchroniser les déflexions des éléments déflecteurs DL21 et DL22 avec la déflexion DLL As a variant (FIG. 11), it is possible to implement the invention with second deflector means separated into two separate deflector elements DL21 and DL22. Under these conditions, the RD12 radiations coming from the DA1 confocal hole are directly separated into RDI radiations and RD2 radiations by a dichroic blade LD. The RDI radiation is distributed spatially by a first deflector element DL21 on the input FE1 of a first disperser SP1 while the radiation RD2 is spatially distributed by a second deflector element DL22 on the input FE2 of a second disperser SP2. This variant makes it possible to use two dispersers SP1 and SP2 of different characteristics and / or multi-channel detectors of different dimensions. The dispersers SP1 and SP2 can be spectrometers, adjustable or fixed interference systems, controlled crystals or any device allowing spectral information to be separated spectrally. SYN synchronization signals are used here to synchronize the deflections of the deflector elements DL21 and DL22 with the deflection DLL
RevendicationsClaims
1. Appareil d'analyse spectrale d'un échantillon du type comprenant:1. Apparatus for spectral analysis of a sample of the type comprising:
- une branche d'excitation, comprenant des moyens d'excitation pour exciter un échantillon;- an excitation branch, comprising excitation means for exciting a sample;
- une branche d'analyse, comprenant des moyens d'analyse spectrale (ANA) pour analyser spectralement la lumière diffusée et/ou réfléchie par l'échantillon;- an analysis branch, comprising spectral analysis means (ANA) for spectrally analyzing the light scattered and / or reflected by the sample;
- des moyens de détection (DEC) montés à la sortie de la branche d'analyse; et- detection means (DEC) mounted at the output of the analysis branch; and
- des moyens de traitement pour traiter les signaux détectés par les moyens de détection (DEC) afin d'obtenir des informations sur la distribution spatiale d'au moins une espèce chimique présente dans l'échantillon;- processing means for processing the signals detected by the detection means (DEC) in order to obtain information on the spatial distribution of at least one chemical species present in the sample;
caractérisé en ce que les moyens d'excitation comprennent des moyens générateurs propres à générer une pluralité de faisceaux d'excitation monochromatiques (FEXl, FEX2 ) de longueurs d-'onde différentes appartenant à un très large domaine spectral allant de l'ultraviolet jusqu'à l'infrarouge, et des moyens de transport propres à faire converger ladite pluralité de faisceaux d'excitation monochromatiques (FEXl, FEX2 ) sur le même domaine spatial de l'échantillon (ECH);characterized in that the excitation means comprise generating means capable of generating a plurality of monochromatic excitation beams (FEXl, FEX2) of different wavelengths belonging to a very wide spectral range going from the ultraviolet to infrared, and means of transport capable of converging said plurality of monochromatic excitation beams (FEX1, FEX2) on the same spatial domain of the sample (ECH);
en ce que la branche d'analyse comprend des moyens de collecte et de transfert propres à collecter les radiations (RD12) qui résultent de l'illumination dudit domaine spatial de l'échantillon (ECH) par ladite pluralité de faisceaux d'excitation monochromatiques (FEXl, FEX2 ) , et à transférer lesdites radiations (RDI, RD2, RD12) sur les moyens d'analyse spectrale (ANA) ;in that the analysis branch comprises means of collection and transfer suitable for collecting the radiation (RD12) which result from the illumination of said spatial domain of the sample (ECH) by said plurality of monochromatic excitation beams ( FEX1, FEX2), and to transfer said radiation (RDI, RD2, RD12) to the spectral analysis means (ANA);
en ce que les moyens de transport ainsi que les moyens de collecte et de transfert sont achromatiques dans un très large domaine spectral, allant de l'ultraviolet jusqu'à l'infrarouge; etin that the means of transport as well as the means of collection and transfer are achromatic in a very wide spectral range, from ultraviolet to infrared; and
en ce que les moyens de détection (DEC) et de traitement sont propres à détecter et à traiter les spectres générés par ledit domaine spatial de l'échantillon ainsi excité à différentes longueurs d'onde.in that the detection (DEC) and processing means are suitable for detecting and processing the spectra generated by said spatial domain of the sample thus excited at different wavelengths.
2. Appareil selon la revendication 1, caractérisé en ce que les moyens de transport sont aptes à faire converger de façon séquentielle la pluralité de faisceaux d'excitation monochro- matiques sur le même domaine spatial de l'échantillon.2. Apparatus according to claim 1, characterized in that the transport means are capable of making the plurality of monochromatic excitation beams converge sequentially on the same spatial domain of the sample.
3. Appareil selon la revendication 1, caractérisé en ce que les moyens de transport sont aptes à faire converger de façon simultanée la pluralité de faisceaux d'excitation monochromatiques sur le même domaine spatial de l'échantillon.3. Apparatus according to claim 1, characterized in that the transport means are capable of making the plurality of monochromatic excitation beams converge simultaneously on the same spatial domain of the sample.
4. Appareil selon la revendication 1, caractérisé en ce que la détection spectrale à différentes longueurs d'onde est simultanée ou séquentielle.4. Apparatus according to claim 1, characterized in that the spectral detection at different wavelengths is simultaneous or sequential.
5. Appareil selon la revendication 2 ou la revendication 3, caractérisé en ce que les moyens de transport sont propres à transporter la pluralité de faisceaux d'excitation monochromatiques sur un axe optique commun (AXC).5. Apparatus according to claim 2 or claim 3, characterized in that the transport means are adapted to transport the plurality of monochromatic excitation beams on a common optical axis (AXC).
6. Appareil selon la revendication 5, caractérisé en ce que les moyens de transport ainsi que les moyens de collecte et de transfert sont au moins partiellement disposés et confondus sur l'axe optique commum (AXC).6. Apparatus according to claim 5, characterized in that the means of transport and the means of collection and transfer are at least partially arranged and coincident on the commum optical axis (AXC).
7. Appareil selon la revendication 1 et la revendication 5, caractérisé en ce que les moyens de transport comprennent des premiers moyens de déflexion (DLl) achromatiques disposés sur l'axe optique commun et propres a déplacer, selon une première ligne de longueur choisie, et à une fréquence choisie, la pluralité de faisceaux d'excitation monochromatiques (FEXl, FEX2), sur l'échantillon à analyser (ECH), et en ce que lesdits premiers moyens de déflexion (DLl) sont propres à recevoir et ramener sur l'axe optique commun (AXC) les radiations (RD12) résultant de ladite illumination en compensant en retour la première déflexion, lesdites radia- tions résultantes (RD12) comprenant les spectres générés par la ligne de domaines spatiaux de l'échantillon ainsi balayée et illuminée à différentes longueurs d'onde.7. Apparatus according to claim 1 and claim 5, characterized in that the transport means comprise first achromatic deflection means (DLl) arranged on the common optical axis and suitable for moving, along a first line of chosen length, and at a chosen frequency, the plurality of monochromatic excitation beams (FEX1, FEX2), on the sample to be analyzed (ECH), and in that said first deflection means (DLl) are adapted to receive and bring back onto the common optical axis (AXC) the radiation (RD12) resulting from said illumination by compensating in return for the first deflection, said resulting radiation (RD12) comprising the spectra generated by the line of spatial domains of the sample thus scanned and illuminated at different wavelengths.
8. Appareil selon la revendication 7, caractérisé en ce que les premiers moyens déflecteurs (DLl) sont confocaux, chaque première ligne analysée de l'échantillon étant formée de points ayant des propriétés confocales.8. Apparatus according to claim 7, characterized in that the first deflector means (DLl) are confocal, each first analyzed line of the sample being formed of points having confocal properties.
9. Appareil selon les revendications 6 et 7 , caractérisé en ce que les moyens de collecte et de transfert comprennent des seconds moyens de déflexion (DL2) achromatiques, confocaux, disposés sur l'axe optique commun (AXC), et propres à distribuer spatialement, selon une seconde ligne de longueur choisie, et à la même fréquence que celle des premiers moyens déflecteurs (DLl), sur la fente d'entrée (FE) des moyens d'analyse spectrale (ANA), les radiations (RD12) provenant des premiers moyens de déflexion (DLl), les première et seconde déflexions étant synchrones pour conserver les informations spatiales des radiations (RD12) provenant des premiers moyens de déflexion.9. Apparatus according to claims 6 and 7, characterized in that the collection and transfer means comprise second deflection means (DL2) achromatic, confocal, arranged on the common optical axis (AXC), and suitable for spatially distributing , along a second line of chosen length, and at the same frequency as that of the first deflector means (DLl), on the input slit (FE) of the spectral analysis means (ANA), the radiation (RD12) coming from the first deflection means (DLl), the first and second deflections being synchronous to preserve the spatial information of the radiations (RD12) coming from the first deflection means.
10. Appareil selon les revendications 7 à 9, caractérisé en ce que la longueur des première et seconde lignes de balayage sont choisies l'une par rapport à l'autre de manière à réaliser un grandissement choisi des images spectrales de l'échantillon sur les moyens de détection (DECl, DEC2 ) .10. Apparatus according to claims 7 to 9, characterized in that the length of the first and second scanning lines are chosen relative to each other so as to achieve a chosen magnification of the spectral images of the sample on the detection means (DECl, DEC2).
11. Appareil selon les revendications 8 et 9 , caractérisé en ce que les moyens de collecte et de transfert comprennent un diaphragme (DAl) monté sur l'axe optique commun (AXC) entre les premiers et seconds moyens de déflexion et dont le diamètre est ajustable sur commande pour régler la dimension latérale de l'échantillon analysé ainsi que la profondeur de champ en vue de rendre confocaux les spectres ou images spectrales du ou des domaines spatiaux de l'échantillon ainsi analysé.11. Apparatus according to claims 8 and 9, characterized in that the collection and transfer means comprise a diaphragm (DAl) mounted on the common optical axis (AXC) between the first and second deflection means and whose diameter is adjustable on command to adjust the lateral dimension of the analyzed sample as well as the depth of field in order to make the spectra or images confocal spectral of the spatial domain or domains of the sample thus analyzed.
12. Appareil selon la revendication 11, caractérisé en ce qu'il comprend au moins une fibre optique propre à acheminer les informations confocales provenant du diaphragme ajustable12. Apparatus according to claim 11, characterized in that it comprises at least one optical fiber capable of conveying the confocal information coming from the adjustable diaphragm
(DAl) jusqu'à l'entrée des seconds moyens de déflexion (DL2).(DAl) until the entry of the second deflection means (DL2).
13. Appareil selon la revendication 9, caractérisé en ce que les seconds moyens de déflexion (DL2) sont séparés en deux éléments déflecteurs distincts (DL21 et DL22), les radiations (RD12) issues du diaphragme ajustable (DAl) étant directement séparées en des premières radiations (RDI) et des secondes radiations (RD2) distinctes selon leur longueur d'onde, le premier élément déflecteur (DL21) étant propre à distribuer spatialement les premières radiations (RDI) sur l'entrée (FE1) d'un premier disperseur (SPl), tandis que le second élément déflecteur (DL22) étant propre à distribuer spatialement les secondes radiations (RD2) sur l'entrée (FE2) d'un second disperseur (SP2).13. Apparatus according to claim 9, characterized in that the second deflection means (DL2) are separated into two separate deflector elements (DL21 and DL22), the radiation (RD12) from the adjustable diaphragm (DAl) being directly separated into first radiations (RDI) and second radiations (RD2) distinct according to their wavelength, the first deflector element (DL21) being adapted to spatially distribute the first radiations (RDI) on the input (FE1) of a first disperser (SPl), while the second deflector element (DL22) being adapted to spatially distribute the second radiation (RD2) on the input (FE2) of a second disperser (SP2).
14. Appareil selon les revendications 7 à 11, caractérisé en ce qu'il comprend en outre des moyens d'imagerie confocale (DCC) propres à détecter au moins partiellement l'énergie des radiations (RD12) qui résultent de l'illumination de l'échantillon ainsi balayé (ECH) pour disposer d'au moins une image confocale et de plusieurs images spectrales confocales relatives au même domaine spatial de l'échantillon ainsi balayé.14. Apparatus according to claims 7 to 11, characterized in that it further comprises confocal imaging means (DCC) capable of at least partially detecting the energy of the radiations (RD12) which result from the illumination of the sample thus scanned (ECH) to have at least one confocal image and several confocal spectral images relating to the same spatial domain of the sample thus scanned.
15. Appareil selon la revendication 14, caractérisé en ce que les moyens d'imagerie confocale sont aptes à délivrer plusieurs images confocales du même domaine spatial de l'échantillon obtenues à différentes longueurs d'onde.15. Apparatus according to claim 14, characterized in that the confocal imaging means are capable of delivering several confocal images of the same spatial domain of the sample obtained at different wavelengths.
16. Appareil selon la revendication 14 ou la revendication 15, caractérisé en ce que les moyens d'imagerie confocale (DCC) comprennent un diaphragme d'ouverture réglable (DF3) et au moins un détecteur (39) relié aux moyens de traitement. 17. Appareil selon la revendication 1, caractérisé en ce qu'il comprend en outre des moyens d'asservissement propres à détecter au moins partiellement l'énergie des radiations qui résultent de l'illumination de l'échantillon (ECH) pour asservir la distance de l'objectif à l'échantillon.16. Apparatus according to claim 14 or claim 15, characterized in that the confocal imaging means (DCC) comprise an adjustable aperture diaphragm (DF3) and at least one detector (39) connected to the processing means. 17. Apparatus according to claim 1, characterized in that it further comprises control means suitable for at least partially detecting the energy of the radiations which result from the illumination of the sample (ECH) in order to control the distance from lens to sample.
18. Appareil selon la revendication 17, caractérisé en ce que les moyens d'asservissement comprennent un filtre optique (43) séparant les radiations utiles à la caracterisation spectrale de l'échantillon, un diaphragme d'ouverture ajustable (DF4), et un détecteur de signal (47) relié à une unité d'asservissement (37) propre à asservir la distance de l'objectif à l'échantillon à l'aide du signal confocal ainsi détecté.18. Apparatus according to claim 17, characterized in that the control means comprise an optical filter (43) separating the radiation useful for the spectral characterization of the sample, an adjustable aperture diaphragm (DF4), and a detector signal (47) connected to a servo unit (37) adapted to servo the distance from the objective to the sample using the confocal signal thus detected.
19. Appareil selon la revendication 18, caractérisé en ce qu'il comprend une platine porte-échantillon (30) ajustable en Z en réponse aux moyens d'asservissement et/ou un élément optique de focalisation (22) ajustable en Z en réponse aux moyens d'asservissement.19. Apparatus according to claim 18, characterized in that it comprises a sample-holder plate (30) adjustable in Z in response to the servo means and / or an optical focusing element (22) adjustable in Z in response to means of enslavement.
20. Appareil selon la revendication 1, caractérisé en ce que les moyens de collecte et de transfert comprennent des moyens de filtrage (FTl, FT2 ) propres à séparer les radiations utiles à la caracterisation spectrale de l'échantillon pour chaque faisceau d'excitation (FEXl, FEX2).20. Apparatus according to claim 1, characterized in that the collection and transfer means comprise filtering means (FT1, FT2) suitable for separating the radiation useful for the spectral characterization of the sample for each excitation beam ( FEXl, FEX2).
21. Appareil selon la revendication 20, caractérisé en ce que les moyens de filtrage comprennent plusieurs éléments de filtrage (FTl, FT2 ) , montés en série sur l'axe commun (AXC), et chacun associé au filtrage d'un faisceau d'excitation monochromatique (FEXl ou FEX2 ) autour d'une longueur d'onde d'excitation choisie, dans un sens optique de l'axe commun (AXC), d'une part, et des radiations rétro-diffusées autour de ladite longueur d'onde d'excitation choisie, dans l'autre sens de l'axe commun (AXC), d'autre part, les bandes passantes des éléments de filtrage (FTl et FT2 ) étant compatibles entre elles. 21. Apparatus according to claim 20, characterized in that the filtering means comprise several filtering elements (FTl, FT2), mounted in series on the common axis (AXC), and each associated with the filtering of a beam of monochromatic excitation (FEXl or FEX2) around a selected excitation wavelength, in an optical direction of the common axis (AXC), on the one hand, and backscattered radiations around said length of selected excitation wave, in the other direction of the common axis (AXC), on the other hand, the passbands of the filter elements (FT1 and FT2) being compatible with each other.

Claims

22. Appareil selon la revendication 21, caractérisé en ce que chaque élément de filtrage (FTl, FT2 ) , montés en série sur l'axe commun, est à bande étroite, de pente d'atténuation raide et centrée sur la longueur d'onde d'excitation associée et apte à injecter selon un premier sens allant des moyens générateurs vers l'échantillon, un faisceau d'excitation monochromatique comprenant des rayonnements utiles à l'illumination et à arrêter les rayonnements inutiles à l'illumination situés hors de la bande étroite, ainsi qu'à transmettre simultanément selon un second sens inverse du premier, les radiations rétro-diffusées utiles à l'analyse spectrale et situées hors de la bande étroite et à rejeter les radiations rétro-diffusées inutiles à l'analyse spectrale réfléchies ou diffusées autour de la longueur d'onde d'excitation associée.22. Apparatus according to claim 21, characterized in that each filter element (FT1, FT2), mounted in series on the common axis, is a narrow band, with a steep attenuation slope and centered on the wavelength associated excitation and capable of injecting in a first direction from the generator means towards the sample, a monochromatic excitation beam comprising radiation useful for illumination and in stopping the radiation useless for illumination located outside the band narrow, as well as to transmit simultaneously in a second direction opposite to the first, the backscattered radiations useful for the spectral analysis and located outside the narrow band and to reject the backscattered radiations useless for the spectral analysis reflected or scattered around the associated excitation wavelength.
23. Appareil selon l'une quelconque des précédentes revendications caractérisé en ce que les moyens d'analyse spectrale (ANA) comprennent une pluralité de disperseurs (RI, R2 ) , aptes chacun à être couplés respectivement à une pluralité de moyens de détection multicanaux (DECl, DEC2 ) sensibles chacun à au moins un domaine spectral.23. Apparatus according to any one of the preceding claims, characterized in that the spectral analysis means (ANA) comprise a plurality of dispersers (RI, R2), each capable of being coupled respectively to a plurality of multichannel detection means ( DECl, DEC2) each sensitive to at least one spectral domain.
24. Appareil selon l'une des revendications 1 à 23, caractérisé en ce que les moyens d'analyse spectrale (ANA) compren- nent un seul disperseur stigmatique, achromatique et travaillant à une pluralité d'ordres différents pour couvrir une pluralité de domaines spectraux distincts. 24. Apparatus according to one of claims 1 to 23, characterized in that the spectral analysis means (ANA) comprise a single stigmatic, achromatic disperser and working in a plurality of different orders to cover a plurality of domains distinct spectral.
PCT/FR1997/001743 1996-10-04 1997-10-02 Spectral analysis apparatus capable of functioning in several spectral regions of different wavelengths WO1998015867A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9612139A FR2754341B1 (en) 1996-10-04 1996-10-04 SPECTRAL ANALYSIS APPARATUS CAPABLE OF WORKING IN MULTIPLE SPECTRAL AREAS OF DIFFERENT WAVELENGTHS
FR96/12139 1996-10-04

Publications (1)

Publication Number Publication Date
WO1998015867A1 true WO1998015867A1 (en) 1998-04-16

Family

ID=9496378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/001743 WO1998015867A1 (en) 1996-10-04 1997-10-02 Spectral analysis apparatus capable of functioning in several spectral regions of different wavelengths

Country Status (2)

Country Link
FR (1) FR2754341B1 (en)
WO (1) WO1998015867A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885445B2 (en) 1998-05-09 2005-04-26 Renishaw Plc Electron microscope and spectroscopy system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797495B1 (en) 1999-08-11 2003-01-31 Dilor SPECTROMETRIC IMAGING APPARATUS
US6687035B2 (en) * 2001-06-07 2004-02-03 Leica Microsystems Heildelberg Gmbh Method and apparatus for ROI-scan with high temporal resolution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327425A1 (en) * 1988-01-27 1989-08-09 Commissariat A L'energie Atomique Method for optical scanning microscopy in confocal arrangement with large depth of field and apparatus to perform this method
WO1992002839A1 (en) * 1990-08-10 1992-02-20 Regents Of The University Of Minnesota Laser for confocal microscope
EP0508257A2 (en) * 1991-04-12 1992-10-14 Bayer Ag Scanning microspectroscope
WO1992018850A1 (en) * 1991-04-10 1992-10-29 Mayo Foundation For Medical Education And Research Confocal imaging system for visible and ultraviolet light

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327425A1 (en) * 1988-01-27 1989-08-09 Commissariat A L'energie Atomique Method for optical scanning microscopy in confocal arrangement with large depth of field and apparatus to perform this method
WO1992002839A1 (en) * 1990-08-10 1992-02-20 Regents Of The University Of Minnesota Laser for confocal microscope
WO1992018850A1 (en) * 1991-04-10 1992-10-29 Mayo Foundation For Medical Education And Research Confocal imaging system for visible and ultraviolet light
EP0508257A2 (en) * 1991-04-12 1992-10-14 Bayer Ag Scanning microspectroscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885445B2 (en) 1998-05-09 2005-04-26 Renishaw Plc Electron microscope and spectroscopy system

Also Published As

Publication number Publication date
FR2754341B1 (en) 1998-12-24
FR2754341A1 (en) 1998-04-10

Similar Documents

Publication Publication Date Title
EP2734884B1 (en) Conoscopic illumination optical device with a hollow cone for an optical microscope and method of optical microscopy in conoscopy
EP3111178B1 (en) Optical microscopy system and method for raman scattering with adaptive optics
CA2742493C (en) Dyson-type imaging spectrometer having improved image quality and low distortion
CN108802989B (en) Parallel multizone image device
FR2970075A1 (en) Wide-field imaging spectrometer for use in space vehicle to monitor earth in distinct spectral bands covering e.g. UV range, has detection assembly arranged to separate and isolate diffraction orders according to detection channels
EP2852815B1 (en) Chromatic altimetry converter
EP0502752B1 (en) Spectroscopic apparatus
EP3833999B1 (en) System for optical characterization of a zone of interest of an object
EP3899460B1 (en) Apparatus and method for light-beam scanning microspectrometry
FR3040828A1 (en) ULTRABRED LASER IMPULSE TIME OR TEMPERATURE MEASUREMENT SYSTEM
WO1998015867A1 (en) Spectral analysis apparatus capable of functioning in several spectral regions of different wavelengths
WO2001013157A1 (en) Spectrometric imaging apparatus
EP0416996A1 (en) Spectroscopical analytical device
WO2020016259A1 (en) Method and device for characterising optical filters
EP0642005A1 (en) Optical imaging device for the spectral analysis of a scene
US6657724B1 (en) Optical filter for raman spectroscopy
EP2021771B1 (en) Device and measurement method for characterizing surfaces by means of reflectometry
EP3913395A1 (en) Improved detector with deflecting elements for coherent imaging
FR2933494A1 (en) DEVICE FOR OPTICALLY CHARACTERIZING AN OBJECT OF VERY SMALL DIMENSIONS
FR2719114A1 (en) Global spectral image analysing system for emission type optical and Raman diffusion or fluorescence spectrometer
FR3064058A1 (en) OPTICAL SYSTEM AND MINIATURE SPECTROMETER EQUIPPED WITH SUCH A SYSTEM AND METHOD OF ANALYZING OBJECTS USING SUCH AN OPTICAL SYSTEM
EP2829856A1 (en) Imaging spectrometer with extended spectral range
FR2950444A1 (en) Method for automatically adjusting electronic vision apparatus, involves identifying optimal wavelength at which image is perfectly at pint, and adjusting central wavelength of light beam to optimal wavelength
FR2990582A1 (en) Light emission device for emitting light beam of controlled spectrum in multispectral imaging apparatus, has optical assembly moving light beams spatially closer together, where light beams propagate in free space from LEDs to assembly

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997943925

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997943925

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998517231

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase