WO1998012108A2 - Satellite attitude sensor using thermal imaging - Google Patents
Satellite attitude sensor using thermal imaging Download PDFInfo
- Publication number
- WO1998012108A2 WO1998012108A2 PCT/CA1997/000672 CA9700672W WO9812108A2 WO 1998012108 A2 WO1998012108 A2 WO 1998012108A2 CA 9700672 W CA9700672 W CA 9700672W WO 9812108 A2 WO9812108 A2 WO 9812108A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- satellite
- mirror
- detector
- detection means
- pixelated
- Prior art date
Links
- 238000001931 thermography Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 35
- 230000007704 transition Effects 0.000 claims abstract description 28
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 16
- 230000003287 optical effect Effects 0.000 claims description 64
- 238000001514 detection method Methods 0.000 claims description 58
- 238000012545 processing Methods 0.000 claims description 29
- 230000005855 radiation Effects 0.000 claims description 23
- 230000003595 spectral effect Effects 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 11
- 239000004065 semiconductor Substances 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 2
- 238000003491 array Methods 0.000 abstract description 6
- 238000001816 cooling Methods 0.000 abstract description 5
- 238000003384 imaging method Methods 0.000 abstract description 4
- 238000009987 spinning Methods 0.000 description 16
- 238000013461 design Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000000429 assembly Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000000701 chemical imaging Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/78—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
- G01S3/782—Systems for determining direction or deviation from predetermined direction
- G01S3/785—Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
- G01S3/786—Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
- G01S3/7868—Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically using horizon sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/28—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
- B64G1/281—Spin-stabilised spacecraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/32—Guiding or controlling apparatus, e.g. for attitude control using earth's magnetic field
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/36—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
- B64G1/363—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors using sun sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/36—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
- B64G1/365—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors using horizon or Earth sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/36—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
- B64G1/366—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors using magnetometers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G3/00—Observing or tracking cosmonautic vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
Definitions
- Satellite attitude control is traditionally achieved using sensors and actuators to detect orientation errors and provide the necessary control torques to correct the errors
- Earth sensors are used to determine the satellite orientation with respect to the earth
- Infrared detectors are commonly used to determine the location of the earth's horizon against the cold background of space
- individual photodiodes are employed as the detector(s) along with rotating or scanning mechanisms to allow a periodic sweep of the detector across the space/earth and earth/space boundaries The centre of the earth is determined as the midpoint between the two horizon transitions
- Satellites are typically stabilized so that their axes have a known relationship with earth to facilitate such activities as earth observation and communication with ground terminals
- Certain types of satellites are stabilized by spinning about one of their axes while other types are three-axis controlled so that the orientation of the satellite is maintained as required
- Earth sensors are used for both applications and most geosynchronous satellites use spin stabilization at least during the transfer orbit phase prior to deployment on station
- these satellites usually carry two completely different sets of equipment including both earth and sun sensors
- the need for two completely different types of equipment is a major drawback in satellite design because of the added mass Therefore, it would be very advantageous to provide a satellite attitude sensor system which can function in both spinning and non-spinning modes
- Another major drawback of present earth horizon sensors is that they are usually designed to operate at a specific orbital altitude and therefore the optics are optimized accordingly It would be very advantageous to provide a satellite attitude sensor which can operate over a wide range of altitudes while still maintaining the required resolution
- United States Patent No 3,551 ,681 issued to Astheimer is directed to a non-scanning position indicator having at least two separate radiometric cells or detectors each comprising an objective lens, a triangular field mask located in the focal plane of the objective lens, a field lens and a radiation detector
- Each separate telescope or cell gathers infrared radiation from two essentially identical fields of view that are from essentially the same region of the earth-space boundary with one of the radiometric cells inverted with respect to the other
- the output voltages of the two separate detectors A and B are then electronically ratioed to provide a signal which is linearly proportional to a horizon position
- the use of moving parts, namely mechanical choppers is a further drawback to this device
- Another object of the present invention is to provide a method and apparatus for sensing wildfires on earth from satellites
- Still another object of the present invention is to provide a satellite attitude sensor which can operate as both an earth and sun sensor in a spinning environment and also as the earth sensor in the non-spinning case thereby providing considerable savings in launch mass and overall cost
- a method for distinguishing a boundary of an object or the object itself within a thermal image in the presence of a large background signal comprises detecting electromagnetic radiation from one or more fields of view substantially spanning at least a portion of the boundary of the object and background adjacent to at least a portion of the boundary and focusing the detected radiation as an image onto a detection means that can provide a spatial sampling of the image
- the method preferably includes focusing the image onto a pixelated detector comprising a plurality of individual detector elements which independently respond to thermal radiation and provide a known spatial sampling of the image
- a method of determining satellite attitude and orientation with respect to a celestial body comprises superposition of images from multiple fields-of-view of limited extent spanning the celestial object/space boundary onto a common detector
- the method includes distinguishing amongst the multiple fields of view so that the celestial body can be located within the total field of regard represented by the multiple fields of view
- the present invention provides a device for distinguishing a boundary of an object from its background
- the device comprises a housing, a detection means mounted in the housing for detecting electromagnetic radiation
- the detection means is adapted for spatial sampling of images focused thereon
- the device is provided with an optical focusing means mounted in the housing for focusing electromagnetic radiation from at least one field of view as an image onto the detection means
- a processing means connected to the detection means for correlating a spatial transition in intensity of the image focused on the detection means with the boundary of the object
- the invention also provides a device for determining satellite orientation and attitude with respect to a celestial body, comprising at least three optical modules adapted to be attached to a satellite housing in preselected position with respect to each other
- Each optical module includes a detection means adapted to spatially sample an image focused thereon, a segmented mirror having at least one mirror segment, and a focusing mirror means located with respect to the segmented mirror for receiving images reflected from the at least one mirror segment and focussing the image onto the pixelated detection means
- the device includes a processing means connected to the detection means The processing means is adapted to correlate spatial transitions in intensity of the image focused on the pixelated detection means with a boundary of the celestial body and determining therefrom satellite attitude with respect to the celestial body
- a device for determining orientation and attitude of a satellite with respect to a celestial body The device comprises at least three optical modules adapted to be attached to a satellite housing in preselected positions with respect to each other, each optical module including a pixelated
- a satellite having a satellite housing and an equipment complement comprising an orientation and attitude sensor for determining satellite orientation and attitude of the satellite with respect to a celestial body
- the sensor includes at least three optical modules adapted to be attached to the satellite housing in preselected positions with respect to each other
- Each optical module includes pixelated detection means and an optical focusing means mounted in the module for collecting and focusing electromagnetic radiation from at least two fields of view as overlaid images onto the pixelated detection means
- the sensor includes processing means connected to the pixelated detection means for correlating a spatial transition in intensity of the overlaid images with a boundary of the celestial object and determining therefrom satellite attitude and/or orientation with respect to the celestial body
- the present invention also provides a satellite sensor device for detecting fires on the earth
- the device comprises a sensor housing, an infrared detector mounted in the housing for detecting infrared electromagnetic radiation characteristic of fires
- the device includes optical focusing means mounted in the sensor housing for superimposing images from at least two fields of view of the earth's surface as overlaid images onto the infrared detector
- the overlaid images may have different spectral characteristics
- processing means for correlating a spatial transition in intensity of the overlaid images on the infrared detector with a boundary of a region emitting infrared radiation characteristic of fires
- the present invention advantageously provides a simple, effective method of, and sensor for, determining satellite orientation and/or attitude with respect to a thermal infrared-emitting target body
- the sensor includes a segmented limb-looking mirror to provide multiple fields-of- view within the field-of-regard and superimposing the images from these fields- of-view onto a common detector
- the required resolution can be obtained while providing a wide range of operational orbital altitudes
- Multiple channels in a modular form provide redundancy, improved accuracy, and the opportunity of providing more diverse configurations
- the utilization of uncooled microbolometer arrays as imaging detectors removes the requirement for additional cooling equipment These features provide for a low cost, small size low mass sensor with configurational flexibility to meet typical attitude requirements
- the preferred use of uncooled microbolometer arrays as imaging detectors advantageously permits replacement of individual photodiodes by one- or two-dimensional matrices of detector pixels These can be used to determine the horizon transition location when the earth/space transition area is imaged onto the detector array
- FIG. 1 illustrates a satellite attitude sensor (SAS) constructed in accordance with the present invention provided with multiple optical channels,
- Figure 2 illustrates the configuration of an optical module of the satellite attitude sensor using reflective optics and a detector
- Figure 3a is an isometric view of a focussing mirror used in the optical module of Figure 2
- Figure 3b is an isometric view of a segmented limb-looking mirror used in the optical module of Figure 2,
- Figure 3c is a diagrammatic representation of one optical channel which provides four fields-of-view
- Figure 4 is a graph of the Earth's angular radius as observed from altitudes from 100 to 40,000 km above the earth which provides the range of orbital altitudes available for a specific field-of-regard of the sensor,
- Figure 5 is an illustration of the field-of-regard and the four fields- of-view with respect to the Earth horizon disk as viewed with the six channel sensor of Figure 1 ,
- Figure 6 depicts the overlay concept with the Earth horizon transition occurring within the overlay of the third field-of-view as an example of the net radiometric effect of several image overlays
- Figure 7 is a perspective view, broken away, of an alternative embodiment of a satellite attitude sensor (SAS) constructed in accordance with the present invention
- Figure 8 illustrates the configuration of an optical module used in the satellite attitude sensor of Figure 7
- Figure 9 illustrates a generic microbolometer detector used for detecting thermal radiation in accordance with the present invention
- Figure 10 is a block diagram of the satellite attitude sensor configured for operation on a satellite
- Figure 11 illustrates the method of the present invention adapted for a satellite-based wildfire detection system
- Figure 12 is a diagrammatic representation of an optical channel which overlays images from three fields-of-view used in the system of Figure 11 .
- Figure 13 illustrates overlay of two fields of view in the system of Figure 11
- a satellite attitude sensor constructed in accordance with the present invention is shown generally at 20
- Sensor 20 is provided with a housing 22 fabricated of a strong, light weight material such as aluminum Titanium, although more expensive than aluminum, may also be used to construct housing 22
- Housing 22 defines an axis 24 and includes a mounting pylon 26 with locating pins 28
- Sensor 20 is provided with several optical modules 30 disposed about axis 24 and rigidly attached to mounting pylon 26 by bolts 27 with the aid of locating pins 28
- Those skilled in the art will appreciate that other types of precision locating and fastening devices may be used in place of pins 28 and bolts 27
- Module 30 comprises a limb-looking entrance mirror 32 for receiving images from the celestial body and background region which the satellite is tracking, a focusing mirror 34 onto which the images are reflected from mirror 32, and a detector 36 located at the final image position which receives the input images from mirror 34 in an overlay arrangement
- segmented hmb- lookmg mirror 32 is provided with four planar reflective mirror segments 40, 42, 44 and 46 in a segmented configuration with a preselected angle ⁇ between the reflective plane of each segment
- Focusing mirror 34 is provided with a single curved (concave) reflective surface 50 which focuses the four images provided by limb-looking mirror 32 at the final image position on detector 36
- Figure 3c shows a diagrammatic representation of one of the optical channels to give four overlaid images.
- the optics/detectors are modularized so that each individual module contains its own optics and a detector 36 Detectors 36 are mounted onto a printed circuit board (not shown) at the bottom of each module. Each detector 36 is interfaced with the central processing electronics (not shown) located below the modules in the base of the sensor unit
- the satellite attitude sensor as illustrated in Figure 1 employs a thermal infrared sensor 36 which detects the earth horizon against the cold background of space
- the limb-looking mirror 32 of each optical channel (or module) comprises four flat segments, each segment being rotated with respect to the next segment by a preselected amount in order to direct an adjacent angular region approximately perpendicular to the earth horizon onto the focusing mirror 34.
- the input radiation to all the mirror segments is focused onto the quasi-linear detector array
- each array may have a number of earth overlays.
- At least one of these overlays will contain the earth-space transition so that a readout of the detector will locate this transition
- the amount of earth radiation will readily indicate in which segment the transition occurs
- the location of the transition amongst the multiple fields-of-view in each detector is determi ⁇ able by the recent history since the transition is expected to shift much more slowly than the sampling rate of the detectors
- the processor controlling the sensor can determine the solution to the three-unknown problem and provide satellite orientation in the pitch and roll axes and also altitude.
- the six channel sensor 20 of Figure 1 is preferable to provide more data for redundancy, error reduction and further extension of the field of coverage
- sensor 20 comprises six channels (each channel associated with an optical module 30) with a common field-of-regard for all channels and views four fields of view (see Figure 2) because limb-looking mirror 32 comprises four segments 40 to 46.
- the field-of-regard is about 40 degrees with 4 adjacent fields-of- view of about 10 degrees each
- Two fields of view 52 and 54 are shown in Figure 2 for purposes of illustration
- the earth appears from orbit to be a warm body against the cold background of space
- the earth subtends a wide range of angular radii
- the earth image appears to be about 160 degrees wide
- geostationary earth orbit (GEO) the earth is about 17 degrees in diameter
- Figure 4 illustrates the relationship between orbit altitude and the apparent earth angular radius
- the field-of-regard may be selected to cover any orbital altitude range within the 40 degrees
- the fieid-of- regard can be chosen
- the angle of the overall limb-looking mirror 32 may be readily changed to accommodate other altitude ranges Referring to Figure 3b, only the segmented mirror 32 needs to be modified and this can be achieved by changing the angle ⁇ between reflective surface 40 and the base of the mirror which controls the location of the field-of-regard
- the individual mirror segments of mirror 32 do not change with respect to each other as they provide the sequential set of fields-of-view for any setting of the field-of-regard location
- the size of the mirror segments 40, 42, 44 and 46 in the limb- looking mirror 32 determines the input aperture of the system In order to provide reasonable signal-to-noise ratios and to keep the sensor package small, a small number of mirror segments are preferred (four segments are shown in the module of Figures 2 and 3b) However, it will be understood that if the size of sensor 20 is increased, the number of mirror segments, their aperture size, or the number of modules 30 may be increased as required With the images of all four fieids-of-view directed to the common detector 36 in each channel,
- FIGs 7 and 8 illustrate an alternative embodiment of the satellite attitude and orientation sensor constructed in accordance with the present invention
- a satellite attitude and orientation sensor provided with a baseplate and satellite interface 310 and a cover 312 to protect the optics during storage and transport
- a hexagonally- shaped central support member 314 is rigidly secured to baseplate 310 and includes six planar surfaces 316 each provided with two spaced alignment dowel pins 318 and a threaded hole 320 located between the alignment pins
- An optical channel module 322 is adapted to be releasibly secured against each surface 316
- Each module 322 comprises a housing 324 and four mirrors A , B, C and D with mirrors A and D located adjacent to each other and mounted on one side of detector 36 and mirrors B and C mounted on the other side of the detector 36
- An outer light baffle 328 and an inner light baffle 330 are located beside mirrors B and C respectively while another pair of similar baffles (not shown) are located next to mirrors A and D
- the light baffles
- Figure 8 is a cut-away of the optical modules 322 showing further details of construction Housing 324 includes two alignment holes 338 to receive associated dowel pins 318 ( Figure 7) and a centra! hole 340 through which a mounting screw (not shown) is inserted and screwed into threaded hole 320
- Figure 8 illustrates two overlapping fields of view 344 and 346 reflected by mirrors B and C respectively onto spherical mirror 334 which then focuses the beams from each field of view onto detector 36 as superimposed images shown as a strip on detector 36
- Signals from two other fields of view (not shown) incident on mirrors A and D are focused by the same spherical mirror 334 onto detector 36 so that each optical module 322 superimposes images from four fields of view
- the microprocessor 348 on which detector 36 is mounted is capable of providing a spatial sampling of the superimposed images in order to detect intensity transitions from which the position of the boundary between the celestial object and its background is determined
- the sensor housing defined by support 314 mounted on base 310 defines an axis 350 about which the optical modules 322 are disposed
- the optical module 322 of Figure 7 and module 30 of Figure 2 are designed to include preferably four flat mirrors those skilled in the art will appreciate that the sensor will work with fewer or more than four mirrors and will work with just one mirror
- a sensor with three or more modules each having only one field of view may be used This minimal number of mirrors and optical channels merely limits the altitude range of operation of the sensor
- the three modules need not be enclosed in one housing as illustrated for sensors 20 and 300
- the optical modules are advantageously very compact so that individual modules may be mounted around the periphery of a satellite and inter-connected to provide a distributed sensor function This type of configuration of distributed modules may be used as an alternative to mounting the modules in a single housing or may be used in addition to several modules mounted in a housing
- Each detector 36 is integrated with a microprocessor 348, however,
- the four mirror segments A, B C and D are replaced by a single flat mirror with an aperture, or alternatively with four mirror segments with the same tilt angle and viewing the same scene, then the four overlays shown in Figure 6 would be identical This would provide a four-fold increase in signal strength but the total field of view of the instrument would be reduced by a factor of four (for the same sized mirror) If the earth horizon is within the field of view the precision of the determination of the horizon position (le pixel number on the pixelated linear array) could be improved by the increased signal-to-noise ratio However, if the earth horizon is not within the field of view, no determination of position is possible The use of four mirror segments viewing the same scene versus the same mirror segments viewing four different scenes, is thus an issue of "capture of the horizon within the field of view" versus improved signal-to- noise ratio In the application of the satellite attitude sensor, the signal-to-noise ratio is deemed to be acceptable even if only one mirror segment is used Hence the additional mirror segments can be used to expand the field
- detector 36 is preferably a pixelated infrared detector for measuring thermal radiation from the earth which is converted to an electronic signal and includes readout electronics
- the detectors preferably operate between 4 and 16 microns
- the basic resolution of sensor 20 or 300 is dependent on the pixel size of detector 36 and the optical extent of the fields-of-view
- a 256 element (pixel) linear array is assumed matched to a 10 degree field-of-view resulting in about 0 04 degree per pixel
- the determination of attitude within 0 05 degrees (3 ⁇ ) is achievable
- the resolution of 0 04 degree represents about 1 km on the horizon which is smaller than the variation expected in the height of the Earth's atmospheric layer when viewed in the wideband thermal infrared region of the spectrum
- the detector used in the present method and apparatus for distinguishing the boundary of an object from its background is capable spatially sampling images focused thereon
- the detector comprises an elongate detector surface (in the x-y plane) which can be sampled along its length (x direction) or width (y direction) in order to provide an intensity profile This ability to sample the intensity in localized areas of the detector facilitates accurate determination of the boundary of the earth against space when the earth/space transition area is imaged onto the detector array
- the detector may comprise a continuous detector surface which can be spatially sampled at discrete points or a plurality of individual detector elements which independently respond to thermal radiation and provide a known spatial sampling of the image
- An example of the latter would be an array of photodiodes independently accessed by the control circuitry
- pixelated refers to this feature of the detector to be able to spatially sample the image focused on the detector and in practice this is preferably achieved using an array of discrete detector
- FIG. 9 shows the configuration of the uncooled microbolometer comprising an array of free standing microbolometer elements 150 each comprising a V0 2 thermometer 152 sandwiched between inner and outer S ⁇ 3 N 4 layers 154 and 156 respectively Each element is supported on pedestals 158 having low thermal conductance above the detector support 160
- the support 160 is mounted on a semiconductor wafer 162 on which the ancillary circuitry is etched
- the detector array may be utilized in a number of aspect ratios, i e the ratio of length to width or rows to columns
- a linear array has only a few (minimum of only one) column of pixels
- a quasi-linear array has a high aspect ratio but a significant number of columns, e g 20 Other two
- the utilization of uncooled microbolometer detectors as disclosed in Jerominek et al means that no additional cooling equipment is required Most sensors that use thermal infrared array detectors need to have thermoelectric or cryogenic cooling capability in order to reduce the detector dark current and provide adequate sensitivity With no moving parts and no thermoelectric or other cooling, the present sensor is able to use its electrical power for processing
- the microbolometer detectors are inherently immune from normal radiation expected on orbit
- the remainder of the electronics can be made radiation hardened to the appropriate degree It will be appreciated that the material of construction of the planar and spherical mirrors will depend on the particular wavelength reg ⁇ on(s) in which the sensor is designed to operate
- unpolished aluminum mirrors can be readily used Glass or plastic may be used in place of aluminum with evaporated coatings on the optical surfaces
- a mixture of different detectors sensitive to different wavelength regions can be used in the different modules to provide multi-spectral imaging
- the attitude sensor includes an on-board microprocessor which is interfaced with the main satellite computer and other instrumentation The mechanical and
- the sensor disclosed herein is an optical instrument which is used to allow satellites orbiting the earth to determine their pointing error with respect to the earth This error is used in conjunction with various actuators on board the satellite to maintain the attitude of the satellite in a specified relationship with the earth
- the sensor is provided with sufficient processing capability to determine the satellite attitude error with respect to the sensor boresight This will entail the detection of the earth-space transitions and the fitting of the horizon with appropriate routines
- the orbit altitude may also be computed from the data, or, alternatively, the orbit altitude may be provided as an input to further improve the attitude measurement
- the method and device forming the present invention represents a significant improvement on current technology in that only one sensor is required to provide the same, or more information, normally provided by two or more sensors
- the sensor may be operated over a wide range of orbit altitudes, potentially from low earth orbit (LEO) to geosynchronous earth orbit (GEO) This represents an altitude variation from about 200 to 36,000 km No single, current sensor can provide such a range of service
- LEO low earth orbit
- GEO geosynchronous earth orbit
- Another feature of the present sensor which makes it superior to current designs is that it can operate in both non-spinning and spinning modes (referring to the method of stabilization of the satellite)
- Many satellites are spin stabilized and these require spinning earth sensors which allow the determination of the satellite spin axis with respect to the orbital plane and also the azimuth angle between the earth centre and some other reference point on the spinning satellite.
- the present satellite attitude sensor can provide all these functions in a single sensor since it can detect the sun as well as the earth It may also be possible to locate the moon but this is not usually required
- the present sensor is capable of providing attitude data in both spinning and staring modes of operation In the spinning mode this may be achieved by detecting the sun elevation angle with respect to the satellite spin axis and determining the sun's azimuth angle with respect to the centre of the earth The sun is detectable as a spot several pixels in diameter.
- the sun crosses the field-of-regard of any of the optical channels, at least one readout will contain an image of the sun which can be located within the field-of-regard by the unique properties of the sun, that is, the size and intensity of the distinct spot and its predictable motion and recent history
- the satellites are launched into a transfer orbit which stretches from LEO to GEO
- the satellites are normally spin stabilized and carry appropriate sensor equipment to allow the determination of sun and earth position as indicated above.
- the satellite will be despun and the earth will be acquired using non-spinning earth sensors.
- This latter acquisition phase of the satellite mission requires careful use of on-board sensors to determine orientation with respect to the sun and earth
- the period of time during the despinning of the satellite and the subsequent conversion to three-axis control is critical as the satellite can be readily lost to the ground control if orientation data is misinterpreted or unavailable
- the present invention advantageously provides a very wide field-of- regard which ensures that the earth will appear within at least one of the module fields of view
- the sun may also be tracked when observed moving through the sensor's field of view as the satellite rotation rate is slowly brought down to zero revolutions per minute
- the present sensor can effectively replace both sets of equipment with one unit thus saving considerable cost
- the sensor disclosed herein has no moving parts, which is another advantage over many current sensor designs that use scanning mirrors or spinning assemblies
- the lack of moving parts provides a significant boost in reliability which is of prime concern to both satellite integrators and customers alike since the attitude control subsystem on a satellite is considered one of the most critical systems necessary to mission success
- the sensor also has built-in redundancy which allows it to tolerate some failures and provide a graceful degradation in performance
- Examples of various other embodiments include mixing the fields-of-regard amongst the different channels to provide for two or more altitude ranges, using more than 4 fields-of-view within the field-of-regard to allow higher resolution or wider angular range, having more than six channels to provide greater redundancy and/or more fields-of-regard as required, monitoring thermal targets other than the Earth, for example, other planets and satellites, or any source of thermal radiation which can be differentiated against its background, using different detectors amongst the different channels which are sensitive in different spectral regions to provide specific discrimination of observed features or targets; use of refractive optics supplying multiple fields-of- view onto a single detector, use of cryogenically cooled or thermo-elect ⁇ cally cooled detectors, using an optical module comprising beamsplitters, including dichroics, to provide multi-image overlays
- detectors may be used which operate in the ultraviolet, visible, near-infrared, short-wave infrared, middle-wave infrared, and long-wave infrared to produce overlay images
- the use of any combination of detectors amongst the various channels to provide multi-purpose spectral observations for data fusion applications provides significant configurational flexibility of the system Therefore, it will be understood that more broadly, the present invention provides a method for distinguishing a boundary of an object or the object itself from its background
- the boundary of an object or the object itself can be differentiated from its background by focussing radiation (in the visible, infrared, microwave, ultraviolet or higher energies) from one or more fields of view substantially spanning the boundary of the object, or the object itself, and background region adjacent to the boundary or the object itself as an image onto the appropriate pixelated detector and then processing the intensity data to correlate spatial transitions in intensity of the image with a boundary of the object or the object itself
- the particular wavelength(s) of the electromagnetic radiation being detected will depend on the application at hand
- the satellite attitude sensor In the case of the satellite attitude sensor disclosed herein it is preferred to detect thermal radiation from the earth/space background since there is a sharp contrast between the thermal signatures of the earth (or other celestial bodies) and vacuum of space Those skilled in the art will appreciate that the satellite attitude sensor may be used to detect the sun since it emits thermal radiation against the background of space
- the preferred number of channels (optical modules) and preferred number of fields-of-view in each channel will depend on the particular application at hand
- the satellite attitude sensor preferably uses at least three channels (optical modules) to obtain the three quantities of interest while other channels provide redundancy
- An example of an application in which the sensor may be used is for tracking a specific star within a known background of stars using the visible region of the spectrum The specific star location is monitored and the star field background is used to provide additional information about the satellite attitude with respect to the sensor boresight, namely yaw attitude
- the overlay principle may be applied to existing star tracking instruments used in spacecraft attitude sensors, in order to increase the field of view of the star tracker
- Figure 11 illustrates the method of the present invention for wildfire detection from space
- a satellite 200 in near polar low-earth orbit employs an infrared camera with high spatial resolution and two spectral channels to detect a wildfire 202 on the planet
- the ratio of the signals from the two spectral channels in a given 'ground footprint' of a detector pixel can be used to create an effective temperature map of the ground that suppresses clutter from artificial objects, sunlight glint and the thermal background
- the satellite-based system for wildfire detection preferably includes a camera system for location of fire 'events', an attitude sensor for geo- referencing of the events and an attitude control system to ensure that the camera is pointed approximately in the desired direction
- the wildfire detection system preferably requires high spatial resolution on the ground for clutter suppression, but requires only moderate spatial location (on the order of a kilometer or so) Minimal spectral resolution is needed
- the baseline concept is to use two spectral channels in the 2-4 micrometer spectral region
- a beamsplitter (or other method of wavefront division) can be used to allow each pixel of the detector array to view multiple points in the field of view
- the optical module is designed using beamsplitters 210 and 212 and mirrors 214 and 216 to direct images from several (in this case three) fields of view to overlap on the infrared detector array 220
- Each detector pixel receives light from three distinct regions
- Figure 13 illustrates the overlay of two images Features from one region are added to 'background' signals from the second region Because the spatial signature of an incipient wildfire is distinctive and localized, it can be readily distinguished from the background There is a 'degeneracy' in the location of an 'event', in the sense that the event could be in any of the regions that are combined by the beamsplitters
- a significant advantage of the overlay approach is an increase in the effective field of view of the camera system without a change in the angular size of the scene viewed by each pixel
- Drawbacks include a reduction in signal strength and the degeneracy in the location of the wildfire
- the signal strength reduction is approximately proportional to the number of overlays, assuming that the beamsplitter transmittances are correctly chosen and that absorption and second-surface reflections are negligible
- the degeneracy in the location of an 'event' can often be resolved by the context of the image, by ancillary data or by the signature from spectral coding of the imagery
- the degeneracy of the image is generally not important unless a new event is masked by the known event
- the low probability of a wildfire causes the expectation of such masking to be small If the density of wildfires is 10 *4 /km, then the probability of a masked event can be as low as
- the present invention utilizes the principle of overlaid images to differentiate objects, one of the main criteria for application of this technique is that the target should be distinct against the background Therefore, the present method may be used as long as the background is relatively uniform or well known and the scene is changing slowly with respect to the detector sampling rate
- Some other examples of possible applications in the various spectral regions are as follows visible star tracker locked on a specific star against a known background of stars, surveillance and tracking of ships at sea, a thermal infrared sensor for detection and tracking of spacecraft and/or human workers in the vicinity of a space station
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Astronomy & Astrophysics (AREA)
- Electromagnetism (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97939925A EP0927133A2 (en) | 1996-09-17 | 1997-09-17 | Satellite attitude sensor using thermal imaging |
CA002266679A CA2266679C (en) | 1996-09-17 | 1997-09-17 | Satellite attitude sensor using thermal imaging |
AU41971/97A AU4197197A (en) | 1996-09-17 | 1997-09-17 | Satellite attitude sensor using thermal imaging |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/710,308 | 1996-09-17 | ||
US08/710,308 US5721431A (en) | 1996-09-17 | 1996-09-17 | Satellite attitude sensor using thermal imaging |
CA2,186,211 | 1996-09-23 | ||
CA 2186211 CA2186211A1 (en) | 1996-09-23 | 1996-09-23 | Satellite attitude sensor using thermal imaging |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1998012108A2 true WO1998012108A2 (en) | 1998-03-26 |
WO1998012108A3 WO1998012108A3 (en) | 1998-08-20 |
Family
ID=25678696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA1997/000672 WO1998012108A2 (en) | 1996-09-17 | 1997-09-17 | Satellite attitude sensor using thermal imaging |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0927133A2 (en) |
AU (1) | AU4197197A (en) |
WO (1) | WO1998012108A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITCS20120034A1 (en) * | 2012-09-28 | 2014-03-29 | Cgs Spa Compagnia Generale Dello Sp Azio | TELESCOPE, INCLUDING A PRIMARY SPHERICAL MIRROR, LARGE FIELD OF VIEW |
WO2014048820A1 (en) * | 2012-09-28 | 2014-04-03 | Cgs Spa Compagnia Generale Per Lo Spazio | Telescope, comprising a spherical primary mirror, with wide field of view and high optical resolution |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3253150A (en) * | 1962-10-12 | 1966-05-24 | Barnes Eng Co | Reflective scanning mechanisms for conical scan horizon sensors |
US3936629A (en) * | 1974-10-07 | 1976-02-03 | U.S. Philips Corporation | Horizon sensor for a satellite in geostationary orbit |
FR2353043A1 (en) * | 1976-05-24 | 1977-12-23 | Sodern | Improved horizon sensor for artificial satellites - uses thermosensitive elements and subtractive compensation elements relative to thermal image of earth |
FR2533883A1 (en) * | 1982-10-04 | 1984-04-06 | Sodern | Terrestrial horizon sensor using charge transfer photodetectors |
US4628206A (en) * | 1984-08-27 | 1986-12-09 | Barnes Engineering Company | Visible-UV horizon sensor |
US4785169A (en) * | 1986-12-09 | 1988-11-15 | Barnes Engineering Company | Method of correcting errors in horizon sensors caused by radiance variations |
US5055689A (en) * | 1990-01-26 | 1991-10-08 | Quantic Industries, Inc. | Horizon sensor apparatus and method therefor |
WO1995016219A1 (en) * | 1993-12-10 | 1995-06-15 | Centre National D'etudes Spatiales | Observation instrument orientation detecting system |
US5477052A (en) * | 1994-04-18 | 1995-12-19 | Servo Corporation Of America | Earth sensor for satellites with radiance compensation |
-
1997
- 1997-09-17 AU AU41971/97A patent/AU4197197A/en not_active Abandoned
- 1997-09-17 WO PCT/CA1997/000672 patent/WO1998012108A2/en not_active Application Discontinuation
- 1997-09-17 EP EP97939925A patent/EP0927133A2/en not_active Ceased
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3253150A (en) * | 1962-10-12 | 1966-05-24 | Barnes Eng Co | Reflective scanning mechanisms for conical scan horizon sensors |
US3936629A (en) * | 1974-10-07 | 1976-02-03 | U.S. Philips Corporation | Horizon sensor for a satellite in geostationary orbit |
FR2353043A1 (en) * | 1976-05-24 | 1977-12-23 | Sodern | Improved horizon sensor for artificial satellites - uses thermosensitive elements and subtractive compensation elements relative to thermal image of earth |
FR2533883A1 (en) * | 1982-10-04 | 1984-04-06 | Sodern | Terrestrial horizon sensor using charge transfer photodetectors |
US4628206A (en) * | 1984-08-27 | 1986-12-09 | Barnes Engineering Company | Visible-UV horizon sensor |
US4785169A (en) * | 1986-12-09 | 1988-11-15 | Barnes Engineering Company | Method of correcting errors in horizon sensors caused by radiance variations |
US5055689A (en) * | 1990-01-26 | 1991-10-08 | Quantic Industries, Inc. | Horizon sensor apparatus and method therefor |
WO1995016219A1 (en) * | 1993-12-10 | 1995-06-15 | Centre National D'etudes Spatiales | Observation instrument orientation detecting system |
US5477052A (en) * | 1994-04-18 | 1995-12-19 | Servo Corporation Of America | Earth sensor for satellites with radiance compensation |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITCS20120034A1 (en) * | 2012-09-28 | 2014-03-29 | Cgs Spa Compagnia Generale Dello Sp Azio | TELESCOPE, INCLUDING A PRIMARY SPHERICAL MIRROR, LARGE FIELD OF VIEW |
WO2014048820A1 (en) * | 2012-09-28 | 2014-04-03 | Cgs Spa Compagnia Generale Per Lo Spazio | Telescope, comprising a spherical primary mirror, with wide field of view and high optical resolution |
Also Published As
Publication number | Publication date |
---|---|
EP0927133A2 (en) | 1999-07-07 |
WO1998012108A3 (en) | 1998-08-20 |
AU4197197A (en) | 1998-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6066850A (en) | Satellite attitude sensor using thermal imaging | |
Gehrz et al. | The NASA Spitzer space telescope | |
Thompson et al. | Initial on-orbit performance of NICMOS | |
JP2598820Y2 (en) | Image navigation support system for satellite with camera | |
US5721431A (en) | Satellite attitude sensor using thermal imaging | |
US6026337A (en) | Microbolometer earth sensor assembly | |
Fanson et al. | Space infrared telescope facility (SIRTF) | |
Bicknell et al. | EO-1 advanced land imager | |
Eisenman et al. | New generation of autonomous star trackers | |
EP0589387B1 (en) | Method and system for determining 3-axis spacecraft attitude | |
Harrison et al. | The space-based visible sensor | |
Bernard et al. | The LSTM instrument: design, technology and performance | |
US5225885A (en) | Apparatus for determining the attitude of a celestial body orbiting spacecraft or satellite relative to the celestial body | |
CA2266679C (en) | Satellite attitude sensor using thermal imaging | |
Alexander et al. | Design of a day/night star camera system | |
EP0927133A2 (en) | Satellite attitude sensor using thermal imaging | |
CA2186211A1 (en) | Satellite attitude sensor using thermal imaging | |
Mather | Cosmic background explorer (COBE) mission | |
Digenis et al. | New Millennium EO-1 Advanced Land Imager | |
Roellig et al. | On-orbit performance of the Spitzer Space Telescope | |
Spinhirne et al. | Preliminary spaceflight results from the uncooled infrared spectral imaging radiometer (ISIR) on shuttle mission STS-85 | |
Bernard et al. | The Copernicus land surface temperature monitoring (LSTM) mission: design, technology and status | |
Ames et al. | Development of the SPIRIT III sensor | |
Pledger et al. | Low-cost ultraviolet three-axis attitude sensor system | |
Dyjak et al. | Space-based visible surveillance experiment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2266679 Country of ref document: CA Kind code of ref document: A Ref document number: 2266679 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997939925 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref document number: 1998514098 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 1997939925 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWR | Wipo information: refused in national office |
Ref document number: 1997939925 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997939925 Country of ref document: EP |