WO1998010700A1 - Nasal cavity patency tester - Google Patents

Nasal cavity patency tester Download PDF

Info

Publication number
WO1998010700A1
WO1998010700A1 PCT/JP1997/003180 JP9703180W WO9810700A1 WO 1998010700 A1 WO1998010700 A1 WO 1998010700A1 JP 9703180 W JP9703180 W JP 9703180W WO 9810700 A1 WO9810700 A1 WO 9810700A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
nose
nasal
air permeability
Prior art date
Application number
PCT/JP1997/003180
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunori Shinoda
Yutaka Yamashita
Yoshiji Suzuki
Akio Yasuhara
Michihiko Nozue
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO1998010700A1 publication Critical patent/WO1998010700A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/411Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs

Definitions

  • the present invention relates to a nasal air permeability inspection device for inspecting the air permeability of a nasal cavity of a subject and diagnosing the degree of nasal obstruction, which is one of the symptoms of a nasal disease.
  • This nasal air permeability inspection apparatus is composed of a liquid crystal sheet containing a liquid crystal therein.
  • a nose breath is blown onto the surface of the liquid crystal sheet, the nose breath condenses and water droplets are formed on the surface.
  • the liquid crystal sheet is colored by the heat of the water droplets, and an image showing a nose breath sprayed on the liquid crystal sheet is observed by the color.
  • an object of the present invention is to provide an apparatus capable of reliably observing a temporal change of an image indicating a nose breath and thereby inspecting the air permeability of a nasal cavity of a subject.
  • a nasal cavity air permeability inspection apparatus is an apparatus for inspecting a nasal air permeability of a subject, comprising: a first surface and a second surface; wherein the first surface is a flat surface; Light transmitted through the second surface can be transmitted and guided to the first surface.
  • An imaging device capable of capturing an image of a nose breath composed of water droplets attached to one surface; and an image processing unit that processes the nose breath image captured by the imaging device to obtain a shape, area, and area of the nose breath image
  • a solid image processing device for calculating at least one of the nasal air permeability related information out of the time change and the characteristic position coordinates of the end points.
  • the light when light is emitted from the light source and the light is incident on the second surface, the light is There is a difference in the amount of light that is transmitted through the transparent member and guided to the first surface, and is reflected on the first surface between a portion where water droplets are formed and a portion where water droplets are not formed.
  • An image is taken, and this nose breath image is image-processed by an image processing device, and at least one of the nasal cavities has a shape, an area, a change in area over time, or a position coordinate of a characteristic end point.
  • the air permeability related information is calculated.
  • the imaging device is arranged at a position it where the nasal breath image formed on the first Iffi can be imaged via the light transmitting member. Is preferred. In this case, it is easier to capture the nose breath image than when capturing the nose breath image formed on the first side without using the light transmitting member.
  • the present invention preferably further includes a positioning device for positioning the subject at a position where the nose breath image can be formed on the first surface.
  • a positioning device for positioning the subject at a position where the nose breath image can be formed on the first surface. In this case, the position of the subject's nose with respect to the first surface of the light transmitting member is reliably determined by the positioning device.
  • the light transmitting member according to the present invention may be a fiber optical plate having a plurality of optical fibers extending in parallel from the first surface to the second surface.
  • the light transmitting member may be a fiber optical plate having a plurality of optical fibers extending in parallel from the first surface to the second surface.
  • the light transmissive member according to the present invention may be ground glass, and the first surface of the ground glass may be a rough surface.
  • the light transmissive member according to the present invention may be ground glass, and the first surface of the ground glass may be a rough surface.
  • the light-transmitting member according to the present invention may be a prism.
  • the prism has the first surface, the second surface, and the third surface, and the prism is formed from the second surface.
  • Light incident on the first surface and reflected by the first surface is emitted from the third surface, and the imaging device is disposed at a predetermined position capable of receiving light emitted from the third surface. You.
  • the reflected light is emitted from the third surface and received by the imaging device.
  • the predetermined position of the imaging device may be a position at which the light incident from the first surface, transmitted through the light transmitting member, and not emitted from the third surface is received.
  • light reflected in various directions by the subject's nose is not incident on the first surface of the prism, passes through the prism, exits from the third surface, and is received by the imaging device. It becomes. As a result, almost no image corresponding to the nose is displayed on the breath image captured by the imaging device.
  • the present invention provides a polarizer disposed between the light source and the light transmitting member, for converting light from the light source into linearly polarized light, and between the light transmitting member and the imaging device.
  • the apparatus may further include an analyzer disposed and selectively passing light polarized in a specific direction. In this case, when the light emitted from the light source is converted into linearly polarized light by the polarized light, and this linearly polarized light enters from the second surface of the light transmitting member, passes through the light transmitting member, and is emitted from the first surface, This light is projected onto the subject's nose, and its polarization is almost completely eliminated by the nose.
  • FIG. 1 is a perspective view showing a first embodiment of the nasal air permeability inspection apparatus of the present invention.
  • FIG. 2 is a side view showing the nasal air permeability inspection apparatus of FIG.
  • FIG. 3 is a cross-sectional view I showing the inside of the nasal air permeability inspection apparatus of FIG.
  • FIG. 4 is a block diagram illustrating a configuration of the image processing apparatus.
  • FIG. 5A to FIG. 5E are diagrams each showing one of a series of raster images showing the completion of the calculation of the area of the nasal breath image.
  • FIGS. 6A to 6E are diagrams each showing a 3 ⁇ 3 end point detection file
  • FIG. 6F is a diagram showing one of the 3 ⁇ 3 end point detection files.
  • FIGS. 7A to 7C are diagrams each showing a nose breath image as an image, and show how the end point coordinates of the nose breath image change with time.
  • FIG. 7D is a diagram showing end point coordinates of the nose breath images corresponding to FIGS. 7A to 7C, and a change in speed and direction of the end point coordinates.
  • FIG. 8 is a graph showing an example of the change over time in the area of the nasal breath image.
  • FIG. 9 is a sectional view showing a modified example of the dew condensation preventing device.
  • FIG. 10 is a cross-sectional view showing a second embodiment of the nasal cavity air permeability inspection apparatus according to the present invention.
  • FIG. 11 is a cross-sectional view showing a third embodiment of the nasal cavity air permeability inspection apparatus according to the present invention.
  • FIG. 12 is a cross-sectional view showing a fourth embodiment of the nasal cavity air permeability inspection apparatus according to the present invention.
  • FIG. 13 is a sectional view showing a fifth embodiment of the nasal air permeability inspection apparatus according to the present invention.o Best mode for carrying out the invention
  • FIG. 1 is a perspective view showing an appearance of the nasal air permeability inspection apparatus 1, and also shows a state in which a subject is placed on the nasal air permeability inspection apparatus 1.
  • FIG. FIG. 2 is a side view of the nasal air permeability inspection apparatus 1 of FIG. 1, and clearly shows a positional relationship between the subject's nose and the nasal air permeability inspection apparatus 1.
  • the nasal air permeability measuring device 1 includes a positioning device 80.
  • the positioning device 80 has a flat support 2, and a pair of support pipes 3, 3 extending perpendicular to the surface 2 a of the support 2 are attached to the support 2. Further, the positioning device 80 has a tape-shaped forehead 4, and the forehead 4 is provided at each end thereof.
  • the positioning device 80 is provided with a thick and thin chin receiving member 5.
  • the chin receiving member 5 has through holes 5 b,
  • the supporting pipes 3 and 3 can slide through holes 5b and 5c respectively. Noh penetrates.
  • the chin receiving member 5 can slide in the direction along the extending direction of the support pipes 3 (the direction of the double arrow K).
  • a concave portion 5 a for placing the chin J of the subject P is formed on the upper portion of the chin receiving member 5.
  • a flat-shaped chin receiving support 6 for supporting the chin receiving member 5 is fixed to the negative side 5 d (see FIG. 2).
  • a box 7 in the shape of a cuboid is provided at a position facing the support pipes 3, 3, and a flat box-shaped box 7 is provided on a surface 7 a of the box 7 facing the chin receiving member 5.
  • Box support 8 is attached.
  • a flat stage 9 fixed to the chin support 6 is provided between the chin support 6 and the box support 8, and the stage 9 has a rotating knob 9. Is attached.
  • the box supporting portion 8 is moved relative to the stage 9 via a mechanism such as a rack and pinion mechanism, whereby the box 7 is moved in a double arrow with respect to the stage 9. It is relatively moved along the A direction. Therefore, the subject P can move the box 7 to an appropriate position II with respect to the nose N with the forehead F and the chin J fixed.
  • an opening 14 is formed in the upper wall 7 b of the box 7, and a light-transmitting member is placed on the opening 14.
  • a glass 85 transparent to visible light with a rectangular shape is used.
  • the glass 85 has a first surface 70 and a second surface 71, and the first surface 70 and the second surface 71 are flat surfaces parallel to each other.
  • the flat surface refers to a macroscopically flat surface.
  • the first surface 70 of the glass 85 is a surface on which the subject P blows the nose breath B through the nasal cavity C.
  • On the first surface 70 a plurality of water droplets are formed due to the condensation of the nose breath B of the subject P. W is formed, and the outline of these water droplets W forms a nasal breath image I.
  • the shape and area of the nose breath image I change every moment in accordance with the respiration of the subject P.
  • the glass 85 is capable of transmitting light incident from the second surface 71 and guiding the light to the first surface 70.
  • the glass 85 has a surface opposite to the light incident on the second surface 71.
  • An anti-reflection film (AR film) 15 is coated to suppress radiation.
  • a pair of guide members 10a and 10b for guiding both edges 85a and 85b of the glass 85 are provided side by side on the upper wall 7b of the box 7, Above the surface 7 a of the box 7, a flat stop 11 for positioning one end of the first surface 70 of the glass 85 is attached.
  • a knob 12 for fixing the other end of the first surface 70 of the glass 85 is fixed to the upper wall 7 b of the box 7 at a position facing the stopper 11.
  • the knob 12 has a rubber suction plate 13 for sucking and positioning the first surface 70 of the glass 85.
  • a light source 1 capable of emitting light to be incident on the second surface 71 of the glass 85 is provided inside the box 7, that is, on the second surface 71 side of the glass 85.
  • a light source 1 capable of emitting light to be incident on the second surface 71 of the glass 85 is provided inside the box 7, that is, on the second surface 71 side of the glass 85.
  • an EL light source is provided inside the box 7 at a position facing the glass 85, and makes uniform light having a wavelength of 450 to 550 nm incident on the second surface 71.
  • the uniform light refers to light having a substantially uniform light intensity over the entire second surface 71.
  • a semi-transparent mirror 17 is disposed between the light source 16 and the second surface 71 of the glass 85.
  • the semi-transmissive mirror 17 is used to transmit light from the light source 16 and reflect light emitted from the glass 85.
  • the semi-transmissive mirror 17 has wavelength selectivity in order to prevent light other than the light source 16 from being incident. That is, for example, the semi-transparent mirror 17 can transmit or reflect light having a wavelength of 450 to 550 ⁇ in accordance with the wavelength of 450 to 550 nm of the light source 16. .
  • an imaging device for example, a CCD camera 18 that can capture a nose breath image I formed on the first surface 70 of the glass 85.
  • the CCD camera 18 is arranged at a position where the nasal breath image I formed on the first surface 70 can be imaged through the glass 85, for example, the CCD camera 18 is reflected by the semi-transparent mirror 17 In the direction of the light to be transmitted and on the side of the semi-transparent mirror 17 near the upper wall 7 b of the box 7. Further, the CCD camera 18 performs image processing on the nasal breath image I formed on the first surface 70, and processes the shape, the area, the time change of the area, and the position coordinates of the characteristic end point of the breath image I.
  • An image processing device 19 for calculating at least one piece of nasal air permeability related information is connected.
  • This image processing device 19 may be any computer as long as it is loaded with software programmed to calculate the above-mentioned nasal cavity air permeability-related information.
  • the process for calculating the nasal air permeability-related information is executed by software loaded in the combination according to a procedure described later. It should be noted that the nasal air permeability inspection apparatus 1 does not prevent the formation of water droplets W on the first surface 70 due to the condensation of the nose breath B of the subject P before measuring the nose image I of the subject P. To prevent this, a dew condensation prevention device 20 is provided.
  • the anti-condensation device 20 moves the flat plate-shaped shield 21 large enough to cover the first surface 70 of the glass 85 and the shirt 21-1 along the upper surface 7c of the box 7.
  • the apparatus includes a driving device 22 for a shirt to be operated and a breath detector 23 for detecting the nose breath B (respiration) of the subject P.
  • the shirt 21 is removed from the nose N of the subject P when the measurement is started by the shutter driver 22.
  • the timing of removing the shutter 21 is determined by the respiratory detector 23 based on the nose B of the subject P.
  • the respiration detector 23 has a cylindrical field stop 24, and the field stop 24 is disposed on the surface 21 a so that the through hole 25 is directed to the surface 21 a of the shutter 21. It is arranged diagonally above.
  • the field stop 24 is for blocking infrared rays emitted from the nose N and passing only infrared rays emitted from the sniff B.
  • the respiration detector 23 has an infrared element 26 for detecting infrared rays passing through the field stop 24, for example, a pyroelectric element.
  • the respiration detector 23 is provided with a signal generation circuit 27 and a delay circuit 28.
  • the signal detected by the infrared element 26 is output by the signal generation circuit 27 as an expiration pulse signal synchronized with expiration, and the expiration pulse signal is delayed and output by the delay circuit 28.
  • the shutter drive circuit 22 described above is based on the pulse signal output from the delay circuit 28, Drive and move to remove the shirt evening 2 1 from under the nose N.
  • the subject P is instructed to insert the face between the support pipes 3 and 3 so that the forehead F contacts the forehead rest 5. Then, the position of the chin receiving member 5 is adjusted to bring the chin J into contact with the concave portion 5a. Then, by rotating the rotation knob 9a of the stage 9, the position of the box 7 is adjusted so that the glass 85 is placed immediately below the nose N of the subject P. At this time, a shirt 21 is arranged between the nose N and the glass 85 as shown by a two-dot chain line in FIG.
  • the subject P is caused to breathe through the nose N for a while.
  • the aperture 25 of the cylindrical field stop 24 is directed to the shirt 21-1, infrared rays emitted from the nose N are blocked by the field stop 24.
  • the infrared radiation emitted from the nose breath B passes through the aperture 25 of the field stop 24 and is detected by the infrared element 26.
  • the signal detected by the infrared element 26 is converted into an expiration pulse signal synchronized with expiration by the signal generation circuit 27, and when the subject P's breathing is switched to resting breathing, a delay circuit set at an arbitrary time. According to 28, a delayed pulse signal that is delayed before the exhalation forming the water droplet W is output.
  • the delay pulse signal drives the shirt driving device 22, the shutter 21 is removed from under the nose N, and placed at the position indicated by the solid line in FIG. At this time, the nose breath B of the subject P is sprayed on the first surface 70 of the glass 85, and a water drop W due to the nose breath B of the subject P is formed on the first surface 70.
  • the uniform light is incident on the second surface 71 of the glass 85 through the semi-transparent mirror 17, the opening 14 and the antireflection film 15, and the glass 8 5 And is guided to the first surface 70.
  • the amount of light reflected on the first surface 70 decreases (the reflectivity is 0.6%), and as a result, However, the amount of light emitted from the second surface 71 of the glass 85 toward the semi-transparent mirror 17 is reduced.
  • uniform light is emitted from the first surface 7 where no water droplets W are formed.
  • the amount of light reflected by the first surface 70 becomes larger than that of the first surface 70 on which the water droplet W is formed (the reflectivity is 4.3%).
  • the amount of light emitted from the surface 71 toward the semi-transparent mirror 17 increases.
  • the nose breath image I by the water droplet W is formed by the reflected light from the first surface 70 of the glass 85.
  • the nose breath image I is reflected by the semi-transparent mirror 17 and then received by the CCD camera 18.
  • the temporal change of the nose image I is captured by the CCD camera 18 receiving the reflected light from the first surface 70 in real time.
  • the image output of the nasal breath image I captured by the CCD camera 18 is processed by the image processing device 19.
  • FIG. 5A to FIG. 5E the image processing step of calculating the shape, area, temporal change of the area, and the position coordinates of a characteristic end point of the nose breath image I from the nose breath image I captured by the CCD camera 18 by the ghost image processing device 19 will be described. 4, FIG. 5, FIG. 5A to FIG. 5E, FIG. 6A to FIG. 6F, and FIG. 7A to FIG.
  • an image N ′ corresponding to the nose N of the subject P is displayed on the nose breath image I output from the CCD camera 18. This occurs because light incident from the second surface 71 of the glass 85 and guided to the first surface 70 enters the nose N, is reflected by the nose N, and enters the first surface 70 again.
  • a part of the nasal breath image I which should be originally dark, becomes particularly bright, and includes an image N 'corresponding to the nose N in the nasal breath image I, as shown in FIG. 5A or 5B. Therefore, in order to remove the image N ′ of the nose N, the following lii image processing needs to be performed. Note that the image processing is executed by the software loaded on the combination as described above.
  • the image data output from the CCD camera 18 is A / D converted by the A / D converter 29 and binarized by the binarizer 30.
  • the white luminance level is represented by “1”
  • the white luminance level is represented by “0”.
  • this binarized image is recorded in the image memory 31 every 1/15 second, for example.
  • the nasal breath image I is inflated by the count value 33 through the dilator 32 by a predetermined count value (see FIG. 5C). Then, it is contracted by the same number of times as the counter value when inflated by inflation 2 (see Fig. 5D).
  • the image N ′ corresponding to the nose N in the nose breath image I is removed, and the original shape of the nose breath image I is calculated.
  • the data obtained here is sent to the area unit 35.
  • the area of the nose breath image I is calculated by the run coordinate measurement based on the nose breath image I obtained in this manner.
  • the address count value (XI) when the value initially becomes “0” and the image that becomes “0 j”
  • the address count value (X 2) that becomes “1” is stored in the table, the calculation of X 2 ⁇ X 1 is performed, and then the same calculation is sequentially performed in the Y direction to calculate the entire area.
  • FIG. 8 shows an example of a curve indicating a temporal change in the area of the nose breath image I monitored in this manner.
  • the black circles represent the area for the left nose
  • the white circles represent the area for the right nose.
  • FIG. 8 it can be seen that the left nose has a smaller area than the right nose, that is, the left nose has a smaller expiratory strength (expiratory capacity).
  • the address value from the area unit 35 is calculated by Coordinate values are stored in the coordinate memory 39, and the nose breath image I from the run coordinate memory 39 is encoded by the encoder 40 and output to the monitor 37 as an image.
  • the output from the area unit 35 is sent to the speed unit 38, and the speed unit 38 changes the area value for each frame, that is, the area. Calculate the speed. And this area velocity value is sent to the graph unit 36,
  • the horizontal axis is time and the vertical axis is area velocity, which is output to the monitor 37.
  • the data obtained by the contractor 34 is sent to the end point detector 42.
  • the end point detector 42 scans the data obtained by the contractor 34 with the five types of 3 ⁇ 3 end point detection filters 41 shown in FIGS. Find the end point E of the image I.
  • this portion is set as an end point E, and its coordinates are set as end point coordinates.
  • the center value of the output pattern shown in FIG. 6F is changed to zero.
  • the end point coordinates of the nose breath image I are stored in the end point coordinate memory 43, and the speed of the end point E of the nose breath image I is calculated based on the end point coordinate values. And the direction of change of the end point E is vector-displayed by the vector display 44, and this vector display is outputted to the monitor 37.
  • FIGS. 7A to 7C two end points E (circled) are shown for the nose breath image I formed when the nose breath B is blown onto the glass 85, and ⁇ 7A, [3 ⁇ 4 7B and FIG. 7C show that the nose breath image I gradually changes with time.
  • FIG. 7D the end point coordinates of the nasal breath image I are indicated by a, b, and c corresponding to FIGS. 7A to 7C, respectively.
  • the magnitude of the vector in FIG. 7D indicates the speed of the end point E, and the direction indicates the direction of the change of the end point E.
  • a dew condensation prevention apparatus 46 using an air blower 45 is used instead of the dew condensation prevention apparatus 20 using the shutter 21 as shown in FIG. You may be.
  • the air blower 45 is disposed obliquely above the first surface 70 of the glass 85. Then, when the nose N of the subject P is placed directly above the glass 85, if air is continuously sent out toward the first surface 70 of the glass 85, the first surface 70 Above, the condensation of nasal breath B is prevented. ON / OFF of the air blower 45 is controlled by a blower drive circuit 47.
  • the dew condensation prevention device 46 has a respiration detector 23 having the same configuration as the dew condensation prevention device 20, and the respiration detector 23 has a delay circuit 28.
  • the blower driving circuit 47 is driven to stop the air blower 45.
  • the second embodiment of the nasal air permeability inspection apparatus of the present invention is different from the first embodiment in that a fiber optic plate 49 is used as a light transmitting member.
  • the fiber optical plate 49 has a bundle of a plurality of optical fibers 50 extending in parallel from the first surface 70 to the second surface 71.
  • the light emitted from the light source 16 passes through the semi-transparent mirror 17, the opening 14 and the antireflection film 15, and is incident on the second surface 71 of the fiber optic plate 49, and this light is The light propagates through the fiber 50 and is guided to the first surface 70.
  • the light reflected by the first surface 70 passes through each optical fiber 50, exits from the second surface 71 of the fiber optic plate 49, and is reflected by the semi-transparent mirror 17.
  • the light is received by the CCD camera 18.
  • light that passes through the first surface 70 of the fiber optical plate 49 and enters the nose N of the subject P is reflected in various directions.
  • the reflected light R is incident again on the first surface 70 of the fiber optical plate 49, the amount of light propagating through each optical fiber 50 and emitted from the second surface 71 is extremely small.
  • the reflected light R from the nose N is finally hardly received by the CCD camera 18.
  • a nose breath image I in which the image N ′ corresponding to the nose N is hardly displayed is captured, and a decrease in the contrast of the nose breath image I captured by the CCD camera 18 is prevented. Therefore, when performing the image processing, the step of removing the image N ′ corresponding to the nose N in the nasal breath image I, that is, the expansion and contraction steps are not required.
  • the third embodiment of the nasal air permeability inspection apparatus of the present invention is different from the first embodiment in that a ground glass 52 is used as a light transmitting member.
  • the first surface 70 of the ground glass 52 has a rough surface.
  • the rough surface is constituted by, for example, a plurality of concave portions 86 microscopically alternately arranged.
  • the light emitted from the light source 16 passes through the semi-transparent mirror 17, the opening 14 and the antireflection film 15, and is emitted from the second surface 71 of the ground glass 52, and this light is ground.
  • the light propagates inside and is guided to the first surface 70.
  • the light reflected on the first surface 70 passes through the ground glass 52, exits from the second surface 71, is reflected by the transmission mirror 17, and is received by the CCD camera 18.
  • the fourth embodiment of the nasal air permeability inspection apparatus of the present invention is different from the above-described embodiment in that a prism 55 is used as a light-transmitting member and only scattered light mainly due to water droplets W is received.
  • the prism 55 is a triangular prism.
  • the triangular prism has a first surface 70, a second surface 71, and a third surface 58.
  • the light reflected on the first surface 70 is emitted from the third surface 58.
  • the light source 16 is arranged, for example, at a position facing the second surface 71, and the CCD camera 18 is arranged at a predetermined position capable of receiving light emitted from the third surface 58.
  • the predetermined position of the CCD camera 18 is a position where the light incident from the first surface 70 and transmitted through the prism 55 and not emitted from the third surface 58 is not received. This position is as follows. Is determined.
  • the light emitted from the light source 16 is incident on the second surface 71 of the prism 55, passes through the prism 55, and is guided to the first surface 70.
  • Light incident on the nose N is reflected in various directions.
  • the reflected light is incident on the first surface 70 again, even if the reflected light is transmitted through the prism 55 and emitted from the third surface 58, the reflected light is hardly received by the CCD camera 18.
  • the outgoing angle 6> 5 of the light beam emitted from the third surface 58 is expressed by the following equation with reference to the first surface 70.
  • the fifth embodiment of the nasal air permeability inspection apparatus of the present invention is a polarizer 59 that converts light from a light source into linearly polarized light and selectively transmits light that is polarized in a specific direction.
  • the difference from the first embodiment is that an analyzer 60 is further provided.
  • the polarizer 59 is arranged between the light source 16 and the glass 85, and the analyzer 60 is arranged between the CCD camera 18 and the mirror 17.
  • the light emitted from the light source 16 is converted into linearly polarized light by the polarizer 59, and this linearly polarized light enters from the second surface 71 of the glass 85, passes through the glass 85, and is emitted from the first surface 70. Then, this light is incident on the nose N of the subject P, and the polarized light is almost eliminated by the nose N. Therefore, this light is emitted from the first surface 70 of the glass 85 When the light exits from the second surface 71 and is no longer polarized in a specific direction, the amount of light passing through the analyzer 60 is considerably limited. Almost no light is received.
  • the nose breath image I picked up by the CCD camera 18 hardly displays the image N 'corresponding to the nose.c
  • the nose breath image I picked up by the CCD camera 18 is not displayed. Lowering of the rust is prevented. Therefore, when performing image processing, it becomes unnecessary to remove the image N ′ corresponding to the nose N in the nose breath image I.
  • the present invention is not limited to the above-described first to fifth aspects, and various modifications are possible.
  • the CCD camera 18 is arranged in the direction of light reflected by the first surface 70 of the light transmitting member 85 and reflected by the semi-transparent mirror 17.
  • the CCD camera 18 may be arranged at a position where it can receive the scattered light passing through the first surface 70 and scattered from the water droplet W.
  • the semi-transparent mirror 17 may be removed, and in this case, the CCD camera 18 may be arranged at a position facing the first surface 70. Even in this case, it is possible to capture the nose breath image I.
  • the light reflected by the first surface 70 may be positively received by the CCD camera 18, the light from the light source 16 is obliquely incident on the second surface 71,
  • the CCD camera 18 may be arranged in the direction of the light reflected from the first surface 70 and emitted from the second surface 71. Even in this case, it is possible to sufficiently capture the nose breath image I.
  • the nasal air permeability inspection apparatus of the present invention when a subject blows a nose breath on the first surface of the light-transmitting member, the nose breath condenses on the first surface and a plurality of water droplets is formed. Is formed, and a nose breath image is formed by the plurality of water droplets. At this time, the first side A portion where a nose breath image is formed and a portion where no nose breath image is formed occur on the upper portion. At this time, when light is emitted from the light source and the light is incident on the second surface, the light is transmitted through the light-transmitting member and guided to the first surface, and is formed with a portion where a water droplet is formed.
  • the nose breath image is image-processed by the image processing device, and at least one nasal cavity air permeability related information of the shape, the area, the time change of the area, or the position coordinates of the characteristic end point is calculated.
  • changes in the nasal breath image over time can be reliably observed, and as a result, useful medical information should be provided for nasal diseases such as allergic rhinitis, chronic sinusitis, and nasal septum curvature, mainly complaining of stomach obstruction. Can be.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Immunology (AREA)
  • Vascular Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A nasal cavity patency tester (1) which tests the patency of the nasal cavity (C) of a subject, comprising a light transmitting member (85) having a first flat face (70) and a second face (71), transmitting light incident from the second face (71) and directing the transmitted light to the first face (70), a light source (16) which emits light directed to the second face (71) of the light transmitting member (85), an image pickup device (18) which picks up the image (I) of the exhale (B) through the nostrils of the subjects (P) blown over the first face (70), formed of water droplets (W), and an image processor (19) which processes the image (I) and finds nasal cavity patency information about at least one of the shape, area, change with time of the area, and coordinates of the distinctive end points of the image (I).

Description

明 細 書 鼻腔通気度検査装置 技術分野  Description Nasal air permeability tester Technical field
本発明は、 被検者の鼻腔の通気度を検査し、 鼻疾患の症状の一つである鼻閉塞 の程度などを診断するための鼻腔通気度検査装置に関する。  TECHNICAL FIELD The present invention relates to a nasal air permeability inspection device for inspecting the air permeability of a nasal cavity of a subject and diagnosing the degree of nasal obstruction, which is one of the symptoms of a nasal disease.
背景技術 Background art
従来から、 特開昭 6 4— 8 9 5 0号公報に開示されるような鼻腔通気度検査装 置が存在する。 この鼻腔通気度検査装置は、 液晶を内部に含む液晶シートで構成 され、 この液晶シートの表面に鼻息が吹き付けられると、 その鼻息が凝結し、 そ の表面上で水滴が形成される。 そして、 この水滴がもつ熱により液晶シートが色 づき、 この色によって、 液晶シートに吹き付けられる鼻息を示す像が観測される 発明の開示  Conventionally, there is a nasal air permeability inspection apparatus as disclosed in Japanese Patent Application Laid-Open No. S64-89050. This nasal air permeability inspection apparatus is composed of a liquid crystal sheet containing a liquid crystal therein. When a nose breath is blown onto the surface of the liquid crystal sheet, the nose breath condenses and water droplets are formed on the surface. The liquid crystal sheet is colored by the heat of the water droplets, and an image showing a nose breath sprayed on the liquid crystal sheet is observed by the color.
しかしながら、 上記の装置は、 液晶シート内の液晶が水滴の熱で間接的に温め られるため、 鼻息が液晶シートに吹き付けられてから液晶シートが色づくまでに 時間がかかる。 このため、 ある時刻に吹き付けられた鼻息が遅れて観測されるこ とになり、 時々刻々と変化する鼻息を示す像の絰時変化をリアルタイムに観測す ることができないという問題があつた。  However, in the above-described apparatus, since the liquid crystal in the liquid crystal sheet is indirectly warmed by the heat of the water droplets, it takes time from when the breath is blown to the liquid crystal sheet to when the liquid crystal sheet becomes colored. For this reason, a nose breath sprayed at a certain time is observed with a delay, and there is a problem that a temporal change of an image showing a nose breath that changes every moment cannot be observed in real time.
従って、 本発明は、 鼻息を示す像の絰時変化を確実に観測し、 これにより被検 者の鼻腔の通気度を検査することができる装置を提供することを目的とする。 本発明による鼻腔通気度検査装置は、 被検者の鼻腔の通気度を検査するための 装置において、 第 1面と第 2面とを有し、 前記第 1面が平坦面であり、 前記第 2 面から入射される光を透過させて前記第 1面に導くことが可能となっている光透 過性部材、 前記光透過性部材の前記第 2面に入射されるべき光を出射することが 可能な光源、 前記被検者によって前記第 1面に吹き付けられる鼻息により前記第Accordingly, an object of the present invention is to provide an apparatus capable of reliably observing a temporal change of an image indicating a nose breath and thereby inspecting the air permeability of a nasal cavity of a subject. A nasal cavity air permeability inspection apparatus according to the present invention is an apparatus for inspecting a nasal air permeability of a subject, comprising: a first surface and a second surface; wherein the first surface is a flat surface; Light transmitted through the second surface can be transmitted and guided to the first surface. A transmissive member, a light source capable of emitting light to be incident on the second surface of the light transmissive member, and a nose breath blown onto the first surface by the subject.
1面に付着される水滴で構成される鼻息像を撮像することが可能な撮像装置、 及 び前記撮像装置で撮像される前記鼻息像を画像処理して前記鼻息像の形状、 面積、 前記面積の時間変化及び特徴的な端点の位置座標のうちの少なくとも一つの鼻腔 通気度関連情報を算出するための固像処理装置を備えるものである。 この装置に よれば、 被検者により光透過性部材の第 1面に鼻息が吹き付けられると、 第 1面 ヒで鼻息が凝結して複数の水滴が形成され、 この複数の水滴により鼻息像が形成 される。 このとき、 第 1 (fii上において水滴が形成される部分及び形成されない部 分が生じる。 このとき、 光源から光が出射されてその光が第 2面に入射されると、 その光は、 光透過性部材を透過して第 1面に導かれ、 水滴が形成される部分と形 成されない部分との間で第 1面で反射される光量に差が生じ、 この結果、 撮像装 置により鼻息像が撮像される。 そして、 この鼻息像が画像処理装置で画像処理さ れて、 鼻息像の形状、 面積、 面積の時問変化又は特徴的な端点の位置座標の少な くとも --つの鼻腔通気度関連情報が算出されることとなる。 An imaging device capable of capturing an image of a nose breath composed of water droplets attached to one surface; and an image processing unit that processes the nose breath image captured by the imaging device to obtain a shape, area, and area of the nose breath image And a solid image processing device for calculating at least one of the nasal air permeability related information out of the time change and the characteristic position coordinates of the end points. According to this device, when the subject blows a nose breath on the first surface of the light-transmitting member, the nose breath condenses on the first surface and forms a plurality of water droplets, and the plurality of water droplets form a nose breath image. It is formed. At this time, the first (the part where water droplets are formed on the fii and the part where water droplets are not formed. At this time, when light is emitted from the light source and the light is incident on the second surface, the light is There is a difference in the amount of light that is transmitted through the transparent member and guided to the first surface, and is reflected on the first surface between a portion where water droplets are formed and a portion where water droplets are not formed. An image is taken, and this nose breath image is image-processed by an image processing device, and at least one of the nasal cavities has a shape, an area, a change in area over time, or a position coordinate of a characteristic end point. The air permeability related information is calculated.
また、 本発明の鼻腔通気度検査装置に係る撮像装置は、 前 ¾第 1 Iffi上に形成さ れる前記鼻息像を前記光透過性部材を介して撮像することが可能な位 itに配置さ れていることが好ましい。 この場合、 光透過性部材を介さずに第 1而 に形成さ れる鼻息像を撮像する場合に比べて鼻息像を撮像することが容易となる。  Further, the imaging device according to the nasal air permeability inspection apparatus of the present invention is arranged at a position it where the nasal breath image formed on the first Iffi can be imaged via the light transmitting member. Is preferred. In this case, it is easier to capture the nose breath image than when capturing the nose breath image formed on the first side without using the light transmitting member.
また、 本発明は、 前記鼻息像を前記第 1面上に形成することが可能な位置に前 記被検者を位置决めするための位置決め装置を更に備えることが好ましい。 この 場合、 位置决め装置により光透過性部材の第 1面に対して被検者の鼻の位置が確 実に^定される。  Further, the present invention preferably further includes a positioning device for positioning the subject at a position where the nose breath image can be formed on the first surface. In this case, the position of the subject's nose with respect to the first surface of the light transmitting member is reliably determined by the positioning device.
また、 本発明に係る光透過性部材は、 前記第 1面から前記第 2面に向けて平行 に延びる複数本の光ファイバの朿を有するファイバ光学プレートであってもよい この場合、 光源によりファイバ光学プレートの第 2面に光が入射されると、 この 光は、 光ファイバの束の各光ファイバを透過し第 1面から出射され、 被検者の鼻 に入射される。 このとき、 被検者の鼻に入射された光は様々な方向に反射される ため、 この反射光がファイバ光学プレートに入射する場合に、 ファイバ光学プレ 一卜の第 1面と第 2面とを結ぶ方向に透過する光の光量は相当に制限され、 これ によって鼻からの反射光は撮像装置でほとんど受光されなくなる。 この結果、 撮 像装置により撮像される鼻息像には、 鼻に対応する像がほとんど表示されなくな る o Further, the light transmitting member according to the present invention may be a fiber optical plate having a plurality of optical fibers extending in parallel from the first surface to the second surface. When light enters the second surface of the optical plate, Light passes through each optical fiber of the bundle of optical fibers, exits from the first surface, and enters the subject's nose. At this time, since the light incident on the nose of the subject is reflected in various directions, when the reflected light is incident on the fiber optical plate, the first and second surfaces of the fiber optical plate are not reflected. The amount of light transmitted in the direction connecting is substantially restricted, so that the reflected light from the nose is hardly received by the imaging device. As a result, almost no image corresponding to the nose is displayed on the nose breath image captured by the imaging device.o
また、 本発明に係る光透過性部材はスリガラスであり、 前記スリガラスの前記 第 1面は粗面となっていてもよい。 この場合、 光源によりスリガラスの第 2面か ら入射されてスリガラスを透過する光が第 1面から出射されると、 この光は被検 者の鼻に入射され、 この鼻において様々な方向に反射される。 そして、 この反射 光がスリガラスに入射すると、 この光はスリガラスの粗面で散乱され、 スリガラ スを透過する光の光量は相当に制限され、 鼻からの反射光は撮像装置においてほ とんど受光されなくなる。 この結果、 撮像装置により撮像される鼻息像には、 鼻 に対応する像がほとんど表示されることがなくなる。  Further, the light transmissive member according to the present invention may be ground glass, and the first surface of the ground glass may be a rough surface. In this case, when light is incident on the second surface of the ground glass by the light source and passes through the ground glass and exits from the first surface, the light is incident on the subject's nose and reflected in various directions at the nose. Is done. When this reflected light is incident on the ground glass, the light is scattered by the rough surface of the ground glass, the amount of light transmitted through the glass is considerably limited, and the reflected light from the nose is almost received by the imaging device. Will not be. As a result, almost no image corresponding to the nose is displayed on the nose breath image captured by the imaging device.
また、 本発明に係る光透過性部材はプリズムであってもよく、 この場合、 プリ ズムは、 前記第 1面、 前記第 2面及び第 3面を有し、 前記第 2面から前記プリズ ムに入射されて前記第 1面で反射した光が前記第 3面から出射されるように構成 されて、 前記撮像装置は、 前記第 3面から出射される光を受光可能な所定位置に 配置される。 この場合、 光源によりプリズムの第 2面から入射されてプリズムを 透過する光が第 1面で反射されると、 この反射光は、 第 3面から出射され、 撮像 装置で受光される。  Further, the light-transmitting member according to the present invention may be a prism. In this case, the prism has the first surface, the second surface, and the third surface, and the prism is formed from the second surface. Light incident on the first surface and reflected by the first surface is emitted from the third surface, and the imaging device is disposed at a predetermined position capable of receiving light emitted from the third surface. You. In this case, when light that is incident on the second surface of the prism and transmitted through the prism by the light source is reflected on the first surface, the reflected light is emitted from the third surface and received by the imaging device.
更に、 上記の撮像装置の所定位置は、 前記第 1面から入射されて前記光透過性 部材を透過し前記第 3面から出射される光を受光しない位置であってもよい。 こ の場合、 被検者の鼻で様々な方向に反射された光が、 プリズムの第 1面から入射 されかつプリズムを透過し第 3面から出射されて撮像装置で受光されることがな くなる。 この結果、 撮像装置により撮像される舞息像には、 鼻に対応する像がほ とんど表示されなくなる。 Further, the predetermined position of the imaging device may be a position at which the light incident from the first surface, transmitted through the light transmitting member, and not emitted from the third surface is received. In this case, light reflected in various directions by the subject's nose is not incident on the first surface of the prism, passes through the prism, exits from the third surface, and is received by the imaging device. It becomes. As a result, almost no image corresponding to the nose is displayed on the breath image captured by the imaging device.
また、 本発明は、 前記光源と前記光透過性部材との間に配置され、 前記光源か らの光を直線偏光に変換する偏光子、 及び前記光透過性部材と前記撮像装置との 間に配置され、 特定方向に偏光する光を選択的に通過させる検光子を更に備えて もよい。 この場合、 光源から出射される光が偏光 により直線偏光に変換され、 この直線偏光が光透過性部材の第 2面から入射されて光透過性部材を透過し第 1 面から出射されると、 この光は被検者の鼻に人射され、 この鼻でその偏光がほぼ 解消される。 従って、 この光が光透過性部材の第 1面から入射されて第 2面から ίΐ',射されても、 その光はもはや特定方向に偏光していないので、 検光 fを通過す る光の量が相当に制限され、 この光は撮像装置でほとんど受光されなくなる。 こ の結果、 撮像装置により撮像される鼻息像には、 鼻に対応する像がほとんど表示 されることがなくなる。 図面の簡単な説明  Further, the present invention provides a polarizer disposed between the light source and the light transmitting member, for converting light from the light source into linearly polarized light, and between the light transmitting member and the imaging device. The apparatus may further include an analyzer disposed and selectively passing light polarized in a specific direction. In this case, when the light emitted from the light source is converted into linearly polarized light by the polarized light, and this linearly polarized light enters from the second surface of the light transmitting member, passes through the light transmitting member, and is emitted from the first surface, This light is projected onto the subject's nose, and its polarization is almost completely eliminated by the nose. Therefore, even if this light is incident from the first surface of the light transmitting member and is emitted from the second surface, the light is no longer polarized in a specific direction, and the light passing through the analyzer f Is considerably limited, and this light is hardly received by the imaging device. As a result, almost no image corresponding to the nose is displayed on the nose breath image captured by the imaging device. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の鼻腔通気度検査装置の第 1の態様を示す斜視図である。 図 2は、 図 1の鼻腔通気度検査装置を示す側面 である。  FIG. 1 is a perspective view showing a first embodiment of the nasal air permeability inspection apparatus of the present invention. FIG. 2 is a side view showing the nasal air permeability inspection apparatus of FIG.
図 3は、 図 1の鼻腔通気度検査装置の内部を示す断面 Iである。  FIG. 3 is a cross-sectional view I showing the inside of the nasal air permeability inspection apparatus of FIG.
図 4は、 画像処理装置の構成を示すプロック図である。  FIG. 4 is a block diagram illustrating a configuration of the image processing apparatus.
図 5 A〜図 5 Eはそれぞれ、 鼻息像の面積計算の様了-を示す一連のラスター 画像の一つを示す図である。  FIG. 5A to FIG. 5E are diagrams each showing one of a series of raster images showing the completion of the calculation of the area of the nasal breath image.
図 6 A〜図 6 Eはそれぞれ、 3 X 3の端点検出フィル夕を示す図であり、 図 6 Fは、 3 X 3の端点検出フィル夕の一つを示す図である。  6A to 6E are diagrams each showing a 3 × 3 end point detection file, and FIG. 6F is a diagram showing one of the 3 × 3 end point detection files.
図 7 A〜図 7 Cはそれぞれ鼻息像を画像で示す図であり、 鼻息像の端点座標 が時間と共に変化する様子を示す。 図 7 Dは、 図 7 A〜図 7 Cに対応する鼻息像 の端点座標と、 端点座標の速度変化及び方向変化とを示す図である。 図 8は、 鼻息像の面積の経時変化の一例を示すグラフである。 7A to 7C are diagrams each showing a nose breath image as an image, and show how the end point coordinates of the nose breath image change with time. FIG. 7D is a diagram showing end point coordinates of the nose breath images corresponding to FIGS. 7A to 7C, and a change in speed and direction of the end point coordinates. FIG. 8 is a graph showing an example of the change over time in the area of the nasal breath image.
図 9は、 結露防止装置の変形例を示す断面図である。  FIG. 9 is a sectional view showing a modified example of the dew condensation preventing device.
図 1 0は、 本発明に係る鼻腔通気度検査装置の第 2の態様を示す断面図であ る。  FIG. 10 is a cross-sectional view showing a second embodiment of the nasal cavity air permeability inspection apparatus according to the present invention.
図 1 1は、 本発明に係る鼻腔通気度検査装置の第 3の態様を示す断面図であ る。  FIG. 11 is a cross-sectional view showing a third embodiment of the nasal cavity air permeability inspection apparatus according to the present invention.
1 2は、 本発明に係る鼻腔通気度検査装置の第 4の態様を示す断面図であ る。  FIG. 12 is a cross-sectional view showing a fourth embodiment of the nasal cavity air permeability inspection apparatus according to the present invention.
図 1 3は、 本発明に係る鼻腔通気度検査装置の第 5の態様を示す断面図であ o 発明を実施するための最良の形態  FIG. 13 is a sectional view showing a fifth embodiment of the nasal air permeability inspection apparatus according to the present invention.o Best mode for carrying out the invention
本発明をより詳細に説述するために、 添付図面に従ってこれを説明する。  The present invention will be described in more detail with reference to the accompanying drawings.
図 1は、 鼻腔通気度検査装置 1の外観を示す斜視図であり、 鼻腔通気度検査装 置 1に対して被検者が配置される様子も示す。 図 2は、 図 1の鼻腔通気度検査装 置 1の側面を すものであり、 被検者の鼻と鼻腔通気度検査装置 1との位置関係 を明示する。  FIG. 1 is a perspective view showing an appearance of the nasal air permeability inspection apparatus 1, and also shows a state in which a subject is placed on the nasal air permeability inspection apparatus 1. FIG. FIG. 2 is a side view of the nasal air permeability inspection apparatus 1 of FIG. 1, and clearly shows a positional relationship between the subject's nose and the nasal air permeability inspection apparatus 1.
図 1に示すように、 鼻腔通気度検杳装置 1は位置決め装置 8 0を備えている。 位置決め装置 8 0は、 平板状の支持台 2を有し、 この支持台 2の表面 2 aに対し て垂直に延びる一対の支持パイブ 3 , 3が支持台 2に取り付けられている。 また、 位置決め装置 8 0は、 テープ状の額当て 4を有し、 この額当て 4は、 その各端部 As shown in FIG. 1, the nasal air permeability measuring device 1 includes a positioning device 80. The positioning device 80 has a flat support 2, and a pair of support pipes 3, 3 extending perpendicular to the surface 2 a of the support 2 are attached to the support 2. Further, the positioning device 80 has a tape-shaped forehead 4, and the forehead 4 is provided at each end thereof.
4 a , 4 bがそれぞれ支持パイプ 3 , 3の各先端部 3 a, 3 bに固定されている。 額当て 4は、 被検者 Pの鼻腔通気度を検査する際に被検者 Pの額 Fを固定するの に用いられる。 また、 位置決め装置 8 0には、 肉厚で細長い顎受け部材 5が設け られている。 顎受け部材 5には、 その両端部 8 1, 8 2にそれぞれ貫通孔 5 b ,4a and 4b are fixed to the tip portions 3a and 3b of the support pipes 3 and 3, respectively. Forehead patch 4 is used to fix the forehead F of the subject P when examining the nasal air permeability of the subject P. The positioning device 80 is provided with a thick and thin chin receiving member 5. The chin receiving member 5 has through holes 5 b,
5 cが形成され、 支持パイプ 3 , 3はそれそれ各貫通孔 5 b , 5 cをスライ ド可 能に貫通している。 これにより顎受け部材 5は、 支持パイプ 3 , 3の延び方向に 沿った方向 (両矢印 K方向) にスライ ドすることができる。 また、 顎受け部材 5 の上部には被検者 Pの顎 Jを載せるための凹部 5 aが形成され、 顎受け部材 5の5c is formed, and the supporting pipes 3 and 3 can slide through holes 5b and 5c respectively. Noh penetrates. As a result, the chin receiving member 5 can slide in the direction along the extending direction of the support pipes 3 (the direction of the double arrow K). In addition, a concave portion 5 a for placing the chin J of the subject P is formed on the upper portion of the chin receiving member 5.
-方の側部 5 dには、 顎受け部材 5を支持するための平板状の顎受け支持部 6が 固定されている (図 2参照) 。 A flat-shaped chin receiving support 6 for supporting the chin receiving member 5 is fixed to the negative side 5 d (see FIG. 2).
図 2に示すように、 支持パイブ 3 , 3に対向する位置には爽方体形状のボック ス 7が設けられ、 顎受け部材 5と対向するボックス 7の面 7 aには、 平板状のボ ックス支持部 8が取り付けられている。 顎受け支持部 6とボックス支持部 8との 問には、 顎受け支持部 6に固定される平板状のステージ 9が設けられ、 ステージ 9にはその側部 8 3に问転ノブ 9. aが取り付けられている。 回転ノブ 9 aが冋 されると、 例えばラックピニオン機構などの機構を介してボックス支待部 8がス テージ 9に対して相対的に移動され、 これによりボックス 7がステージ 9に対し て両矢印 A方向に沿って相対的に移動される。 このため、 被検者 Pは、 額 F及び 顎 Jを固定した状態でボックス 7を鼻 Nに対して適切な位 IIまで移動させること ができる。  As shown in FIG. 2, a box 7 in the shape of a cuboid is provided at a position facing the support pipes 3, 3, and a flat box-shaped box 7 is provided on a surface 7 a of the box 7 facing the chin receiving member 5. Box support 8 is attached. A flat stage 9 fixed to the chin support 6 is provided between the chin support 6 and the box support 8, and the stage 9 has a rotating knob 9. Is attached. When the rotary knob 9a is turned, the box supporting portion 8 is moved relative to the stage 9 via a mechanism such as a rack and pinion mechanism, whereby the box 7 is moved in a double arrow with respect to the stage 9. It is relatively moved along the A direction. Therefore, the subject P can move the box 7 to an appropriate position II with respect to the nose N with the forehead F and the chin J fixed.
図 3に示すように、 ボックス 7の上壁部 7 bには開 Π 1 4が形成され、 開口 1 4上には光透過性部材が載置されており、 光透過性部材としては例えば薄厚で矩 形状の可視光に対して透明なガラス 8 5が用いられる。 ガラス 8 5は、 第 1面 7 0と第 2面 7 1とを有し、 第 1面 7 0及び第 2面 7 1は相 に平行な平坦面とな つている。 ここで、 平坦面とは、 巨視的に見て平¾な面のことをいう。 ガラス 8 5の第 1面 7 0は被検者 Pが鼻腔 Cを通して鼻息 Bを吹き付けるための面であり、 その第 1面 7 0上には被検者 Pの鼻息 Bの凝結により複数の水滴 Wが形成され、 これらの水滴 Wの輪郭により鼻息像 Iが構成される。 鼻息像 Iは、 通常、 被検者 Pの呼吸に合わせて、 その形状、 及び面積等が時々刻々と変化する。  As shown in FIG. 3, an opening 14 is formed in the upper wall 7 b of the box 7, and a light-transmitting member is placed on the opening 14. A glass 85 transparent to visible light with a rectangular shape is used. The glass 85 has a first surface 70 and a second surface 71, and the first surface 70 and the second surface 71 are flat surfaces parallel to each other. Here, the flat surface refers to a macroscopically flat surface. The first surface 70 of the glass 85 is a surface on which the subject P blows the nose breath B through the nasal cavity C. On the first surface 70, a plurality of water droplets are formed due to the condensation of the nose breath B of the subject P. W is formed, and the outline of these water droplets W forms a nasal breath image I. Normally, the shape and area of the nose breath image I change every moment in accordance with the respiration of the subject P.
ガラス 8 5は、 その第 2面 7 1から入射される光を透過させて第 1面 7 0に導 くことが可能となっている。 ガラス 8 5には第 2面 7 1に入射される光の表面反 射を抑えるために反射防止膜 (A R膜) 1 5がコ一ティングされている。 また、 ボックス 7の上壁部 7 bには、 ガラス 8 5の両縁部 8 5 a , 8 5 bを案内するた めの一対のガイ ド部材 1 0 a, 1 0 bが並設され、 ボックス 7の面 7 aの上側に は、 ガラス 8 5の第 1面 7 0の一端を位置決めするための平板状のストツバ 1 1 が取り付けられている。 図 1に示すように、 ボックス 7の上壁部 7 bには、 ガラ ス 8 5の第 1面 7 0の他端を固定するためのつまみ 1 2がストツパ 1 1に対向す る位置に固定され、 つまみ 1 2は、 ガラス 8 5の第 1面 7 0を吸着して位置決め するゴム製の吸着板 1 3を有している。 The glass 85 is capable of transmitting light incident from the second surface 71 and guiding the light to the first surface 70. The glass 85 has a surface opposite to the light incident on the second surface 71. An anti-reflection film (AR film) 15 is coated to suppress radiation. A pair of guide members 10a and 10b for guiding both edges 85a and 85b of the glass 85 are provided side by side on the upper wall 7b of the box 7, Above the surface 7 a of the box 7, a flat stop 11 for positioning one end of the first surface 70 of the glass 85 is attached. As shown in FIG. 1, a knob 12 for fixing the other end of the first surface 70 of the glass 85 is fixed to the upper wall 7 b of the box 7 at a position facing the stopper 11. The knob 12 has a rubber suction plate 13 for sucking and positioning the first surface 70 of the glass 85.
図 3に示すように、 ボックス 7の内部、 すなわちガラス 8 5の第 2面 7 1側に は、 ガラス 8 5の第 2面 7 1に入射されるべき光を出射することが可能な光源 1 6、 例えば E L光源が設けられている。 光源 1 6は、 例えばボックス 7の内部で あってガラス 8 5に対向する位置に配置され、 波長 4 5 0〜5 5 0 n mの均一光 を第 2面 7 1に入射させる。 ここで、 均一光とは、 第 2面 7 1全体にわたってほ ぼ均一な光強度を有する光をいう。  As shown in FIG. 3, inside the box 7, that is, on the second surface 71 side of the glass 85, a light source 1 capable of emitting light to be incident on the second surface 71 of the glass 85 is provided. 6. For example, an EL light source is provided. The light source 16 is arranged, for example, inside the box 7 at a position facing the glass 85, and makes uniform light having a wavelength of 450 to 550 nm incident on the second surface 71. Here, the uniform light refers to light having a substantially uniform light intensity over the entire second surface 71.
光源 1 6とガラス 8 5の第 2面 7 1との間には半透鏡 1 7が配置されている。 半透鏡 1 7は、 光源 1 6からの光を透過させると共にガラス 8 5から出射される 光を反射させるのに用いられる。 特に、 半透鏡 1 7は、 光源 1 6以外からの光が 入射されるのを防止するために波長選択性を有している。 すなわち、 例えば半透 鏡 1 7は、 光源 1 6の波長 4 5 0〜5 5 0 nmに合わせて 4 5 0〜 5 5 0 η の 波長の光を透過又は反射することが可能となっている。  A semi-transparent mirror 17 is disposed between the light source 16 and the second surface 71 of the glass 85. The semi-transmissive mirror 17 is used to transmit light from the light source 16 and reflect light emitted from the glass 85. In particular, the semi-transmissive mirror 17 has wavelength selectivity in order to prevent light other than the light source 16 from being incident. That is, for example, the semi-transparent mirror 17 can transmit or reflect light having a wavelength of 450 to 550 η in accordance with the wavelength of 450 to 550 nm of the light source 16. .
ボックス 7の内部にはまた、 ガラス 8 5の第 1面 7 0上に形成される鼻息像 I を撮像することが可能な撮像装置、 例えば C C Dカメラ 1 8が設けられている。 C C Dカメラ 1 8は、 第 1面 7 0上に形成される鼻息像 Iをガラス 8 5を介して 撮像することが可能な位置に配置され、 例えば C C Dカメラ 1 8は、 半透鏡 1 7 で反射される光の方向であって半透鏡 1 7の側方のボックス 7の上壁部 7 b近傍 に配置されている。 また、 C C Dカメラ 1 8には、 第 1面 7 0上に形成される鼻息像 Iを画像処理 して赛息像 Iの形状、 面積、 面積の時間変化及び特徴的な端点の位置座標のうち の少なくとも 1つの鼻腔通気度関連情報を算出するための画像処理装置 1 9が接 続されている。 この画像処理装置 1 9は、 上記の鼻腔通気度関連情報を算出する ようプログラムされたソフトウエアをロードしたコンピュータであれば如何なる ものでもよい。 上記の鼻腔通気度関連情報を算出するための処理は、 コンビユー 夕にロードされたソフトウエアにより、 後述する手順に従って実行される。 なお、 鼻腔通気度検査装置 1には、 被検者 Pの鼻总像 Iを測定する前に被検者 Pの鼻息 Bの結露により第 1面 7 0上に水滴 Wが形成されるのを防ぐため、 結露 防止装置 2 0が設けられる。 結露防止装置 2 0は、 ガラス 8 5の第 1面 7 0を覆 い得る大きさを有する平板状のシャヅ夕ー 2 1と、 シャツ夕一 2 1をボックス 7 の上面 7 cに沿って移動させるシャツ夕一駆動器 2 2と、 被検者 Pの鼻息 B (呼 吸) を検出するための呼吸検出器 2 3とを備えている。 シャツ夕一 2 1は、 シャ ッ夕一駆動器 2 2により測定を開始する際に被検者 Pの鼻 Nのドから取り除かれ る。 シャッター 2 1を取り除くタイミングは、 被検者 Pの鼻总 Bに基づいて、 呼 吸検出器 2 3により決定される。 Inside the box 7 is also provided an imaging device, for example, a CCD camera 18 that can capture a nose breath image I formed on the first surface 70 of the glass 85. The CCD camera 18 is arranged at a position where the nasal breath image I formed on the first surface 70 can be imaged through the glass 85, for example, the CCD camera 18 is reflected by the semi-transparent mirror 17 In the direction of the light to be transmitted and on the side of the semi-transparent mirror 17 near the upper wall 7 b of the box 7. Further, the CCD camera 18 performs image processing on the nasal breath image I formed on the first surface 70, and processes the shape, the area, the time change of the area, and the position coordinates of the characteristic end point of the breath image I. An image processing device 19 for calculating at least one piece of nasal air permeability related information is connected. This image processing device 19 may be any computer as long as it is loaded with software programmed to calculate the above-mentioned nasal cavity air permeability-related information. The process for calculating the nasal air permeability-related information is executed by software loaded in the combination according to a procedure described later. It should be noted that the nasal air permeability inspection apparatus 1 does not prevent the formation of water droplets W on the first surface 70 due to the condensation of the nose breath B of the subject P before measuring the nose image I of the subject P. To prevent this, a dew condensation prevention device 20 is provided. The anti-condensation device 20 moves the flat plate-shaped shield 21 large enough to cover the first surface 70 of the glass 85 and the shirt 21-1 along the upper surface 7c of the box 7. The apparatus includes a driving device 22 for a shirt to be operated and a breath detector 23 for detecting the nose breath B (respiration) of the subject P. The shirt 21 is removed from the nose N of the subject P when the measurement is started by the shutter driver 22. The timing of removing the shutter 21 is determined by the respiratory detector 23 based on the nose B of the subject P.
呼吸検出器 2 3は、 円筒状の視野絞り 2 4を有し、 視野絞り 2 4は、 その貫通 孔 2 5がシャッター 2 1の表面 2 1 aに向けられるようにその表面 2 1 aに対し て斜め上方に配置されている。 視野絞り 2 4は、 鼻 Nから放射される赤外線を遮 断し、 鼻息 Bから放射される赤外線のみを通過させるためのものである。 また、 呼吸検出器 2 3は、 視野絞り 2 4を通過する赤外線を検出するための赤外線素 2 6、 例えば焦電素子を有している。 更に、 呼吸検出器 2 3には、 信号発生回路 2 7及び遅延回路 2 8が設けられている。 赤外線素子 2 6で検出される信号が信 号発生回路 2 7で呼気に同期した呼気パルス信号として出力され、 遅延回路 2 8 により呼気パルス信号が遅延されて出力される。 なお、 前述したシャッター駆動 回路 2 2は、 遅延回路 2 8から出力されるパルス信号に基づいてシャツ夕一 2 1 を駆動し、 鼻 Nの下からシャツ夕一 2 1を取り除くように移動させる。 The respiration detector 23 has a cylindrical field stop 24, and the field stop 24 is disposed on the surface 21 a so that the through hole 25 is directed to the surface 21 a of the shutter 21. It is arranged diagonally above. The field stop 24 is for blocking infrared rays emitted from the nose N and passing only infrared rays emitted from the sniff B. In addition, the respiration detector 23 has an infrared element 26 for detecting infrared rays passing through the field stop 24, for example, a pyroelectric element. Further, the respiration detector 23 is provided with a signal generation circuit 27 and a delay circuit 28. The signal detected by the infrared element 26 is output by the signal generation circuit 27 as an expiration pulse signal synchronized with expiration, and the expiration pulse signal is delayed and output by the delay circuit 28. The shutter drive circuit 22 described above is based on the pulse signal output from the delay circuit 28, Drive and move to remove the shirt evening 2 1 from under the nose N.
次に、 前述した鼻腔通気度検査装置 1を用いて、 被検者 Pがガラス 8 5の第 1 面 7 0上に形成される鼻息像 Iを観測する方法および作用について説明する。 まず、 被検者 Pに、 顔を支持パイブ 3 , 3の間に挿入して額 Fを額当て 5に当 接するように指示する。 そして、 顎受け部材 5の位置を調節して顎 Jを凹部 5 a に当接させる。 その後、 ステージ 9の回転ノブ 9 aを回転させて、 被検者 Pの鼻 Nの直下にガラス 8 5が配置されるようにボックス 7の位置を調節する。 このと き、 鼻 Nとガラス 8 5との間には、 図 3の 2点鎖線で示されるようにシャツ夕一 2 1が配置されている。 次いで、 被検者 Pにしばらく鼻 Nで呼吸をさせる。 この とき、 円筒状の視野絞り 2 4の開口 2 5がシャツ夕一 2 1に向けられているため、 鼻 Nから放射される赤外線が視野絞り 2 4で遮断される-方、 被検者 Pの鼻息 B から放射される赤外線が視野絞り 2 4の開口 2 5を通過して赤外線素子 2 6で検 出される。  Next, a method and an operation of the subject P for observing the nasal breath image I formed on the first surface 70 of the glass 85 using the above-described nasal cavity air permeability inspection apparatus 1 will be described. First, the subject P is instructed to insert the face between the support pipes 3 and 3 so that the forehead F contacts the forehead rest 5. Then, the position of the chin receiving member 5 is adjusted to bring the chin J into contact with the concave portion 5a. Then, by rotating the rotation knob 9a of the stage 9, the position of the box 7 is adjusted so that the glass 85 is placed immediately below the nose N of the subject P. At this time, a shirt 21 is arranged between the nose N and the glass 85 as shown by a two-dot chain line in FIG. Next, the subject P is caused to breathe through the nose N for a while. At this time, since the aperture 25 of the cylindrical field stop 24 is directed to the shirt 21-1, infrared rays emitted from the nose N are blocked by the field stop 24. The infrared radiation emitted from the nose breath B passes through the aperture 25 of the field stop 24 and is detected by the infrared element 26.
赤外線素子 2 6で検出される信号は、 信号発生回路 2 7で呼気に同期した呼気 パルス信号に変換され、 被検者 Pの呼吸が安静呼吸に切り替わった頃、 任意の時 間設定した遅延回路 2 8により、 水滴 Wを形成する呼気の前に遅延した遅延パル ス信 が出力される。 この遅延パルス信号によりシャツ夕一駆動器 2 2が駆動さ れ、 シャッター 2 1は鼻 Nの下から取り除かれ、 図 3の実線で示される位置に配 置される。 このとき、 被検者 Pの鼻息 Bがガラス 8 5の第 1面 7 0上に吹き付け られ、 第 1面 7 0上に被検者 Pの鼻息 Bによる水滴 Wが形成される。  The signal detected by the infrared element 26 is converted into an expiration pulse signal synchronized with expiration by the signal generation circuit 27, and when the subject P's breathing is switched to resting breathing, a delay circuit set at an arbitrary time. According to 28, a delayed pulse signal that is delayed before the exhalation forming the water droplet W is output. The delay pulse signal drives the shirt driving device 22, the shutter 21 is removed from under the nose N, and placed at the position indicated by the solid line in FIG. At this time, the nose breath B of the subject P is sprayed on the first surface 70 of the glass 85, and a water drop W due to the nose breath B of the subject P is formed on the first surface 70.
次いで、 光源 1 6から均一光を出射させると、 均一光は、 半透鏡 1 7、 開口 1 4及び反射防止膜 1 5を通ってガラス 8 5の第 2面 7 1に入射し、 ガラス 8 5を 透過して第 1面 7 0に導かれる。 このとき、 均一光が、 水滴 Wが形成された第 1 面 7 0上に入射すると、 第 1面 7 0で反射される光の光量は少なくなり (反射率 は 0 . 6 % ) 、 その結果、 ガラス 8 5の第 2面 7 1から半透鏡 1 7に向けて出射 される光量は少なくなる。 一方、 均一光が、 水滴 Wが形成されていない第 1面 7 0上に入射すると、 第 1面 70で反射される光の光量は、 水滴 Wが形成された第 1面 70より多くなり (反射率は 4. 3%) 、 その結果、 ガラス 85の第 2面 7 1から半透鏡 17に向けて出射される光量は多くなる。 Next, when the uniform light is emitted from the light source 16, the uniform light is incident on the second surface 71 of the glass 85 through the semi-transparent mirror 17, the opening 14 and the antireflection film 15, and the glass 8 5 And is guided to the first surface 70. At this time, when uniform light is incident on the first surface 70 on which the water droplet W is formed, the amount of light reflected on the first surface 70 decreases (the reflectivity is 0.6%), and as a result, However, the amount of light emitted from the second surface 71 of the glass 85 toward the semi-transparent mirror 17 is reduced. On the other hand, uniform light is emitted from the first surface 7 where no water droplets W are formed. When the light is incident on the first surface 70, the amount of light reflected by the first surface 70 becomes larger than that of the first surface 70 on which the water droplet W is formed (the reflectivity is 4.3%). The amount of light emitted from the surface 71 toward the semi-transparent mirror 17 increases.
このため、 ガラス 85の第 1面 70からの反射光により水滴 Wによる鼻息像 I が形成される。 この鼻息像 Iは半透鏡 17で反射された後、 CCDカメラ 18で 受光される。 このようにして、 CCDカメラ 18で第 1面 70からの反射光をリ アルタイムに受光することにより鼻总像 Iの絰時変化が撮像される。 そして、 こ の CCDカメラ 18で撮像された鼻息像 Iの画像出力が画像処理装置 19で処理 される。  For this reason, the nose breath image I by the water droplet W is formed by the reflected light from the first surface 70 of the glass 85. The nose breath image I is reflected by the semi-transparent mirror 17 and then received by the CCD camera 18. In this way, the temporal change of the nose image I is captured by the CCD camera 18 receiving the reflected light from the first surface 70 in real time. The image output of the nasal breath image I captured by the CCD camera 18 is processed by the image processing device 19.
ここで、 幽像処理装置 19により、 CCDカメラ 18で撮像される鼻息像 Iか ら、 鼻息像 Iの形状、 面積、 面積の時間変化及び特徴的な端点の位置座標を算出 する画像処理工程について、 図 4、 図 5A〜図 5E、 図 6 A〜冈 6 F及び図 7 A 〜図 7 Dを参照して説明する。  Here, the image processing step of calculating the shape, area, temporal change of the area, and the position coordinates of a characteristic end point of the nose breath image I from the nose breath image I captured by the CCD camera 18 by the ghost image processing device 19 will be described. 4, FIG. 5, FIG. 5A to FIG. 5E, FIG. 6A to FIG. 6F, and FIG. 7A to FIG.
図 5 A又は図 5 Bに示すように、 CCDカメラ 18から出力される鼻息像 Iに は、 被検者 Pの鼻 Nに対応する像 N' が表示される。 これは、 ガラス 85の第 2 面 71から入射されて第 1面 70に導かれる光が鼻 Nに入射し、 鼻 Nで反射され て再び第 1面 70に入射するために起こる。 この結果、 本来暗くなるはずの鼻息 像 Iの一部が特に明るくなり、 図 5 A又は図 5 Bに示されるように、 鼻息像 Iに おいて鼻 Nに対応する像 N' が含まれる。 従って、 この鼻 Nの像 N' を取り除く ために以下に述べる lii像処理が行われる必要がある。 なお、 闽像処理は、 前述し たようにコンビユー夕にロードされたソフトウエアによって実行される。  As shown in FIG. 5A or 5B, an image N ′ corresponding to the nose N of the subject P is displayed on the nose breath image I output from the CCD camera 18. This occurs because light incident from the second surface 71 of the glass 85 and guided to the first surface 70 enters the nose N, is reflected by the nose N, and enters the first surface 70 again. As a result, a part of the nasal breath image I, which should be originally dark, becomes particularly bright, and includes an image N 'corresponding to the nose N in the nasal breath image I, as shown in FIG. 5A or 5B. Therefore, in order to remove the image N ′ of the nose N, the following lii image processing needs to be performed. Note that the image processing is executed by the software loaded on the combination as described above.
すなわち、 図 4に示されるように、 まず、 CCDカメラ 18から出力される画 像デ一夕を A/D変換器 29により A/D変換し、 2値化器 30により 2値化を 行う。 このとき、 図 5 Bにおいて、 白の輝度レベルを 「1」 、 ¾の輝度レベルを 「0」 で表す。  That is, as shown in FIG. 4, first, the image data output from the CCD camera 18 is A / D converted by the A / D converter 29 and binarized by the binarizer 30. At this time, in FIG. 5B, the white luminance level is represented by “1”, and the white luminance level is represented by “0”.
そして、 この 2値化画像を、 例えば 1/ 15秒毎に画像メモリ 31に記録し、 フレーム毎に膨張器 3 2を通して鼻息像 Iをカウン夕一 3 3により所定のカウン 夕一値だけ膨張させる (図 5 C参照) 。 次いで、 膨張 2により膨張させたと きのカウンター値と同じ回数だけ収縮させる (図 5 D参照) 。 この結果、 鼻息像 Iの中の鼻 Nに対応する像 N ' が取り除かれ、 本来の鼻息像 Iの形状が算出され る。 ここで得られたデータは、 面積器 3 5に送られる。 Then, this binarized image is recorded in the image memory 31 every 1/15 second, for example. At each frame, the nasal breath image I is inflated by the count value 33 through the dilator 32 by a predetermined count value (see FIG. 5C). Then, it is contracted by the same number of times as the counter value when inflated by inflation 2 (see Fig. 5D). As a result, the image N ′ corresponding to the nose N in the nose breath image I is removed, and the original shape of the nose breath image I is calculated. The data obtained here is sent to the area unit 35.
面積器 3 5においては、 このようにして求められた鼻息像 Iに基づいて、 鼻息 像 Iの面積がラン座標計測により算出される。 すなわち、 図 5 Eに示されるよう に、 X方向に計測される 2値画像について、 最初に 「0」 となったときのァドレ スカウン夕値 (X I ) 、 及び「0 j となった画像が 「1」 となるアドレスカウン 夕値 (X 2 ) がテーブルに記憶され、 X 2— X 1の演算が行われ、 次いで Y方向 についても逐次同様な計算が行われて全体の面積が算出される。  In the area unit 35, the area of the nose breath image I is calculated by the run coordinate measurement based on the nose breath image I obtained in this manner. In other words, as shown in FIG. 5E, for the binary image measured in the X direction, the adress count value (XI) when the value initially becomes “0” and the image that becomes “0 j” The address count value (X 2) that becomes “1” is stored in the table, the calculation of X 2 −X 1 is performed, and then the same calculation is sequentially performed in the Y direction to calculate the entire area.
鼻息像 Iの面積の経時変化をモニタする場合には、 面積器 3 5の出力をグラフ 器 3 6に送出させ、 フレーム毎の面積値を、 横軸を時間、 縦軸を面積としてモニ 夕 3 7に出力させる。 このようにしてモニタされた鼻息像 Iの面積の絰時変化を 示す曲線の一例が図 8に示されている。 図中、 黒丸は、 左の鼻についての面積を 表し、 白丸は、 右の鼻についての面積を表す。 図 8に示されように、 左鼻の方が 右鼻に比べて面積が小さい、 すなわち左鼻の方が呼気の強さ (呼気能) が小さい ことが分かる。  In order to monitor the time-dependent change in the area of the snout image I, the output of the area scale 35 is sent to the graph scale 36, and the area value of each frame is represented by the time on the horizontal axis and the area on the vertical axis. Output to 7. FIG. 8 shows an example of a curve indicating a temporal change in the area of the nose breath image I monitored in this manner. In the figure, the black circles represent the area for the left nose, and the white circles represent the area for the right nose. As shown in FIG. 8, it can be seen that the left nose has a smaller area than the right nose, that is, the left nose has a smaller expiratory strength (expiratory capacity).
なお、 面積値の絰時変化をモニタするにあたって、 画像メモリ 3 1に記憶させ る容量を減少させるベく画像圧縮を行う場合には、 面積器 3 5からのアドレス力 ゥン夕値は、 ラン座標メモリ 3 9で座標値として記憶され、 ラン座標メモリ 3 9 による鼻息像 Iはエンコーダ 4 0でェンコ一ドされて、 画像としてモニタ 3 7に 出力される。  When monitoring the temporal change of the area value, when performing image compression to reduce the capacity stored in the image memory 31, the address value from the area unit 35 is calculated by Coordinate values are stored in the coordinate memory 39, and the nose breath image I from the run coordinate memory 39 is encoded by the encoder 40 and output to the monitor 37 as an image.
また、 面積の時間変化、 すなわち面積速度を算出する場合には、 面積器 3 5か らの出力を速度器 3 8に送らせ、 この速度器 3 8で面積値のフレーム毎の変化、 すなわち面積速度を算出する。 そして、 この面積速度値をグラフ器 3 6に送らせ、 横軸を時間、 縦軸を面積速度としてモニタ 3 7に出力させる。 When calculating the time change of the area, that is, the area speed, the output from the area unit 35 is sent to the speed unit 38, and the speed unit 38 changes the area value for each frame, that is, the area. Calculate the speed. And this area velocity value is sent to the graph unit 36, The horizontal axis is time and the vertical axis is area velocity, which is output to the monitor 37.
さらに、 鼻息像 Iの特徴的な端点の位置座標、 すなわち端点座標を算出する場 合には、 収縮器 3 4で得られたデータが端点検出器 4 2に送られる。 そして、 端 点検出器 4 2において、 収縮器 3 4で得られたデータについて、 図 6 A〜図 6 E に示される 5種類の 3 X 3の端点検出フィル夕 4 1をそれぞれ走査させて鼻息像 Iの端点 Eを捜し出す。 そして、 端点検出フィルタ 4 1のパターンが合致する部 分を発見したとき、 この部分を端点 Eとしてその座標を端点座標とする。 このと き、 図 6 Fに示される出力パターンの中心値をゼロに変更する。  Furthermore, when calculating the position coordinates of characteristic end points of the nose breath image I, that is, the end point coordinates, the data obtained by the contractor 34 is sent to the end point detector 42. Then, the end point detector 42 scans the data obtained by the contractor 34 with the five types of 3 × 3 end point detection filters 41 shown in FIGS. Find the end point E of the image I. Then, when a portion where the pattern of the end point detection filter 41 matches is found, this portion is set as an end point E, and its coordinates are set as end point coordinates. At this time, the center value of the output pattern shown in FIG. 6F is changed to zero.
端点 Eの位置座標の経時変化をモニ夕する場合には、 鼻息像 Iの端点座標を端 点座標メモリ 4 3に記憶させ、 この端点座標値に基づいて、 鼻息像 Iの端点 Eの 速度、 および端点 Eの変化の方向をベクトル表示器 4 4でベクトル表示し、 この べクトル表示をモニタ 3 7に出力させる。  When monitoring the change over time of the position coordinates of the end point E, the end point coordinates of the nose breath image I are stored in the end point coordinate memory 43, and the speed of the end point E of the nose breath image I is calculated based on the end point coordinate values. And the direction of change of the end point E is vector-displayed by the vector display 44, and this vector display is outputted to the monitor 37.
図 7 A〜闵 7 Cにはそれぞれ、 鼻息 Bをガラス 8 5に吹き付けるときに形成さ れる鼻息像 Iについて 2つの端点 E (丸で囲まれている) が/ され、 冈 7 A、 [¾| 7 B及び図 7 Cは、 鼻息像 Iが時間と共に徐々に変化する様子を示している。 鼻 息像 Iの端点座標は、 図 7 Dに示すように、 図 7 A〜図 7 Cのそれぞれに対応し て a , b , cで示される。 図 7 Dにおけるベク トルは、 その大きさが端点 Eの速 度を表し、 方向が端点 Eの変化の方向を ¾す。  In FIGS. 7A to 7C, two end points E (circled) are shown for the nose breath image I formed when the nose breath B is blown onto the glass 85, and 、 7A, [¾ 7B and FIG. 7C show that the nose breath image I gradually changes with time. As shown in FIG. 7D, the end point coordinates of the nasal breath image I are indicated by a, b, and c corresponding to FIGS. 7A to 7C, respectively. The magnitude of the vector in FIG. 7D indicates the speed of the end point E, and the direction indicates the direction of the change of the end point E.
なお、 鼻腔通気度検査装置 1においては、 シャッター 2 1を用いた結露防!ヒ装 置 2 0に代えて、 図 9に示されるように、 空気ブロア 4 5を用いる結露防止装置 4 6が用いられてもよい。 空気ブロア 4 5は、 ガラス 8 5の第 1面 7 0に対して 斜め上方に配置される。 そして、 被検者 Pの鼻 Nがガラス 8 5の真上に配置され る際に、 ガラス 8 5の第 1面 7 0に向けて空気が継続的に送出されると、 第 1面 7 0上で鼻息 Bの結露が防止される。 空気ブロア 4 5の O N · O F Fは、 ブロア 駆動回路 4 7により制御される。 また、 結露防止装置 4 6は、 結露防止装置 2 0 と同一構成の呼吸検出器 2 3を有し、 この呼吸検出器 2 3は、 その遅延问路 2 8 から遅延パルス信号が出力されるときに、 ブロア駆動回路 4 7を駆動させて、 空 気ブロア 4 5を停止させる。 In addition, in the nasal air permeability inspection apparatus 1, as shown in FIG. 9, a dew condensation prevention apparatus 46 using an air blower 45 is used instead of the dew condensation prevention apparatus 20 using the shutter 21 as shown in FIG. You may be. The air blower 45 is disposed obliquely above the first surface 70 of the glass 85. Then, when the nose N of the subject P is placed directly above the glass 85, if air is continuously sent out toward the first surface 70 of the glass 85, the first surface 70 Above, the condensation of nasal breath B is prevented. ON / OFF of the air blower 45 is controlled by a blower drive circuit 47. Further, the dew condensation prevention device 46 has a respiration detector 23 having the same configuration as the dew condensation prevention device 20, and the respiration detector 23 has a delay circuit 28. When the delay pulse signal is output from the controller, the blower driving circuit 47 is driven to stop the air blower 45.
次に、 本発明による鼻腔通気度検査装置の第 2の態様について説明する。  Next, a second embodiment of the nasal air permeability inspection apparatus according to the present invention will be described.
図 1 0に示すように、 本発明の鼻腔通気度検査装置の第 2の態様は、 光透過性 部材としてファイバ光学プレート 4 9が用いられる点で第 1の態様と異なる。 フ アイバ光学プレート 4 9は、 第 1面 7 0から第 2面 7 1に向けて平行に延びる複 数本の光ファイバ 5 0の束を有している。  As shown in FIG. 10, the second embodiment of the nasal air permeability inspection apparatus of the present invention is different from the first embodiment in that a fiber optic plate 49 is used as a light transmitting member. The fiber optical plate 49 has a bundle of a plurality of optical fibers 50 extending in parallel from the first surface 70 to the second surface 71.
この場合、 光源 1 6から出射される光は、 半透鏡 1 7、 開口 1 4及び反射防止 膜 1 5を通ってファイバ光学プレート 4 9の第 2面 7 1から入射され、 この光が 各光ファイバ 5 0中を伝搬し第 1面 7 0に導かれる。 このときに、 第 1面 7 0で 反射される光は、 各光ファイバ 5 0を通ってファイバ光学プレ一ト 4 9の第 2面 7 1から出射され、 半透鏡 1 7で反射された後、 C C Dカメラ 1 8で受光される。 一方、 ファイバ光学プレート 4 9の第 1面 7 0を透過して被検者 Pの鼻 Nに入射 される光は様々な方向に反射される。 このため、 この反射光 Rがファイバ光学ブ レート 4 9の第 1面 7 0に再び入射する場合に、 各光ファイバ 5 0を伝搬して第 2面 7 1から出射される光の光量は極めて少なくなり、 鼻 Nからの反射光 Rは、 最終的に C C Dカメラ 1 8でほとんど受光されることがなくなる。 この結果、 鼻 Nに対応する像 N ' がほとんど表示されない鼻息像 Iが撮像され、 C C Dカメラ 1 8で撮像される鼻息像 Iのコントラス卜の低下が防止される。 従って、 画像処 理を行う際、 鼻息像 Iの中の鼻 Nに対応する像 N ' を取り除く工程、 すなわち膨 張及び収縮工程が不要になる。  In this case, the light emitted from the light source 16 passes through the semi-transparent mirror 17, the opening 14 and the antireflection film 15, and is incident on the second surface 71 of the fiber optic plate 49, and this light is The light propagates through the fiber 50 and is guided to the first surface 70. At this time, the light reflected by the first surface 70 passes through each optical fiber 50, exits from the second surface 71 of the fiber optic plate 49, and is reflected by the semi-transparent mirror 17. The light is received by the CCD camera 18. On the other hand, light that passes through the first surface 70 of the fiber optical plate 49 and enters the nose N of the subject P is reflected in various directions. Therefore, when the reflected light R is incident again on the first surface 70 of the fiber optical plate 49, the amount of light propagating through each optical fiber 50 and emitted from the second surface 71 is extremely small. The reflected light R from the nose N is finally hardly received by the CCD camera 18. As a result, a nose breath image I in which the image N ′ corresponding to the nose N is hardly displayed is captured, and a decrease in the contrast of the nose breath image I captured by the CCD camera 18 is prevented. Therefore, when performing the image processing, the step of removing the image N ′ corresponding to the nose N in the nasal breath image I, that is, the expansion and contraction steps are not required.
次に、 本発明の鼻腔通気度検査装置の第 3の態様について説明する。  Next, a third embodiment of the nasal cavity air permeability inspection apparatus of the present invention will be described.
図 1 1に示すように、 本発明の鼻腔通気度検査装置の第 3の態様は、 光透過性 部材としてスリガラス 5 2が用いられる点で第 1の態様と異なる。 スリガラス 5 2は、 第 1面 7 0が粗面となっている。 粗面は、 例えば複数個の凹部 8 6が微視 的に交互に並んだもので構成される。 この場合、 光源 1 6から出射される光は、 半透鏡 1 7、 開口 1 4及び反射防止 膜 1 5を通ってスリガラス 5 2の第 2面 7 1から人射され、 この光がスリガラス 5 2中を伝搬し第 1面 7 0に導かれる。 このときに、 第 1面 7 0で反射される光 は、 スリガラス 5 2中を通って第 2面 7 1から出射され、 透鏡 1 7で反射され た後、 C C Dカメラ 1 8で受光される。 As shown in FIG. 11, the third embodiment of the nasal air permeability inspection apparatus of the present invention is different from the first embodiment in that a ground glass 52 is used as a light transmitting member. The first surface 70 of the ground glass 52 has a rough surface. The rough surface is constituted by, for example, a plurality of concave portions 86 microscopically alternately arranged. In this case, the light emitted from the light source 16 passes through the semi-transparent mirror 17, the opening 14 and the antireflection film 15, and is emitted from the second surface 71 of the ground glass 52, and this light is ground. The light propagates inside and is guided to the first surface 70. At this time, the light reflected on the first surface 70 passes through the ground glass 52, exits from the second surface 71, is reflected by the transmission mirror 17, and is received by the CCD camera 18.
一方、 スリガラス 5 2の第 1面 7 0を透過して被検者 Pの鼻 Nに人射される光 は様々な方向に反射される。 そして、 この反射光 Rがスリガラス 5 2の第 1面 7 0の凹部 8 6に入射する場合に、 光は第 1面 7 0で散乱される。 このため、 鼻 N からの反射光 Rは、 最終的に C C Dカメラ 1 8でほとんど受光されることがなく なる。 この結果、 鼻 Nに対応する像 N, がほとんど ¾示されない鼻息像 Iが撮像 され、 C C Dカメラ 1 8で撮像される鼻息像 Iのコントラス卜の低ドが防 され る。 従って、 画像処理を行う際、 鼻息像 Iの中の鼻 Nに対応する像 N ' を取り除 く工程、 すなわち膨張及び収縮工程が不要になる。  On the other hand, light transmitted through the first surface 70 of the ground glass 52 and projected on the nose N of the subject P is reflected in various directions. Then, when the reflected light R enters the concave portion 86 of the first surface 70 of the ground glass 52, the light is scattered on the first surface 70. Therefore, the reflected light R from the nose N is hardly finally received by the CCD camera 18. As a result, the nose breath image I in which the image N corresponding to the nose N is hardly displayed is captured, and the contrast of the nose breath image I captured by the CCD camera 18 is prevented from being lowered. Therefore, when performing image processing, the step of removing the image N ′ corresponding to the nose N in the nose breath image I, that is, the dilation and contraction steps are not required.
次に、 本発明の鼻腔通気度検査装置の第 4の態様について説明する。  Next, a fourth embodiment of the nasal cavity air permeability inspection apparatus of the present invention will be described.
図 1 2に示すように、 本発明の鼻腔通気度検査装置の第 4の態様は、 光透過性 部材としてプリズム 5 5が用いられ且つ主として水滴 Wによる散乱光のみが受光 される点で上記の第 1〜第 3の態様と異なる。 プリズム 5 5は、 三角プリズムで あり、 この三角プリズムは、 第 1面 7 0、 第 2面 7 1及び第 3面 5 8を有し、 第 2面 7 1からプリズム 5 5に入射されて第 1面 7 0で反射される光が第 3面 5 8 から出射されるように構成されている。 光源 1 6は、 例えば第 2面 7 1に対向す る位置に配置され、 C C Dカメラ 1 8は、 第 3面 5 8から出射される光を受光可 能な所定位置に配匱されている。 この C C Dカメラ 1 8の所定位置は、 第 1面 7 0から入射されてプリズム 5 5を透過し第 3面 5 8から出射される光を受光しな い位置であり、 この位置は以下のようにして決定される。  As shown in FIG. 12, the fourth embodiment of the nasal air permeability inspection apparatus of the present invention is different from the above-described embodiment in that a prism 55 is used as a light-transmitting member and only scattered light mainly due to water droplets W is received. Different from the first to third aspects. The prism 55 is a triangular prism. The triangular prism has a first surface 70, a second surface 71, and a third surface 58. The light reflected on the first surface 70 is emitted from the third surface 58. The light source 16 is arranged, for example, at a position facing the second surface 71, and the CCD camera 18 is arranged at a predetermined position capable of receiving light emitted from the third surface 58. The predetermined position of the CCD camera 18 is a position where the light incident from the first surface 70 and transmitted through the prism 55 and not emitted from the third surface 58 is not received. This position is as follows. Is determined.
すなわち、 プリズム 5 5の屈折率を n、 プリズム 5 5の頂角を 2、 鼻 Nか らの反射光の入射角を 0 1とする場合、 第 2面 5 8で出射される光線の出射角 0 3は、 第 1面 70を基準として次式で表される。 Θ3 = That is, when the refractive index of the prism 55 is n, the vertex angle of the prism 55 is 2 and the incident angle of the reflected light from the nose N is 0 1, the exit angle of the light beam emitted from the second surface 58 0 3 is expressed by the following equation based on the first surface 70. Θ3 =
90° — 6> 2 + s in— 1 (n s i n (02 - s i n— 1 ( s i n 6> 1/n) ) ) ここで、 例えばプリズム 55の屈折率 nを n= 1. 5、 プリズム 55の頂角 0 2を 02 = 60° 、 鼻 Nからの反射光が第 1面 70に入射される入射角 01を 0° 01≤90° とすると、 03≥58° となる。 この領域は鼻 Nからの反射 光が CCDカメラ 18で受光される領域である。 従って、 CCDカメラ 18の位 置は、 第 2面 58側で 6) 3 < 58° の領域、 すなわち図 12の斜線で示される領 域 Hとなる。 90 ° — 6> 2 + s in— 1 (nsin (02-sin— 1 (sin 6> 1 / n))) where, for example, the refractive index n of prism 55 is n = 1.5, the top of prism 55 If the angle 02 is 02 = 60 °, and the incident angle 01 at which the reflected light from the nose N is incident on the first surface 70 is 0 ° 01≤90 °, then 03≥58 °. This region is a region where the reflected light from the nose N is received by the CCD camera 18. Accordingly, the position of the CCD camera 18 is in the area of 6) 3 <58 ° on the second surface 58 side, that is, in the area H indicated by oblique lines in FIG.
この場合、 光源 16から出射される光が、 プリズム 55の第 2面 71から入射 されてプリズム 55を透過し第 1面 70に導かれると、 第 1面 70を通過して被 検者 Pの鼻 Nに入射される光は様々な方向に反射される。 この反射光が再び第 1 面 70に入射されると、 この反射光は、 プリズム 55を透過して第 3面 58から 出射されても、 CCDカメラ 18でほとんど受光されることがない。 一方、 水滴 Wが付着した第 1面 70上に光源 16からの光が入射されると、 この光は、 第 1 面 70を透過して水滴 Wに入射しこの水滴 Wで散乱され、 その後この光はプリズ ム 55を透過して第 3面 58から出射され、 領域 Hに配置された CCDカメラ 1 8で受光される。  In this case, the light emitted from the light source 16 is incident on the second surface 71 of the prism 55, passes through the prism 55, and is guided to the first surface 70. Light incident on the nose N is reflected in various directions. When the reflected light is incident on the first surface 70 again, even if the reflected light is transmitted through the prism 55 and emitted from the third surface 58, the reflected light is hardly received by the CCD camera 18. On the other hand, when light from the light source 16 is incident on the first surface 70 on which the water droplet W is attached, this light is transmitted through the first surface 70, is incident on the water droplet W, is scattered by the water droplet W, and then is The light passes through the prism 55 and exits from the third surface 58, and is received by the CCD camera 18 arranged in the region H.
ここで、 水滴 Wで散乱される光が CCDカメラ 18で撮像される原理を説明す る。  Here, the principle that the light scattered by the water droplet W is imaged by the CCD camera 18 will be described.
水滴 Wで散乱される光の散乱角を 04とすると、 第 3面 58から出射される 光線の出射角 6> 5は、 第 1面 70を基準として次の式で表される。  Assuming that the scattering angle of the light scattered by the water droplet W is 04, the outgoing angle 6> 5 of the light beam emitted from the third surface 58 is expressed by the following equation with reference to the first surface 70.
05 = 90° — + s in-1 (ns i η (Θ2-Θ4) ) 散乱角 >4を 0° 6>4≤90° とすると、 一 18° 6> 5≤ 120° となり、 水滴 Wから散乱光は、 CCDカメラ 18が配置される領域 H、 すなわち ( 3<5 8° の領域に入り込み、 水滴 Wからの散乱光は CCDカメラ 18で受光されるよ うになる。 この結果、 水滴 Wからの散乱光のみが CCDカメラ 18で受光される ので、 鼻 Nに対応する像 N, がほとんど表示されない鼻息像 Iが撮像され、 CC Dカメラ 18で撮像される鼻息像 Iのコントラス卜の低下が防止される。 従って、 画像処理を行う際、 鼻息像 Iの中の鼻 Nに対応する像 N' を取り除く工程、 すな わち膨張及び収縮工程が不要になる。 05 = 90 ° — + s in- 1 (ns i η (Θ2-Θ4)) If the scattering angle> 4 is 0 ° 6> 4≤90 °, then 18 ° 6> 5 ≦ 120 °, and the scattered light from the water droplet W is in the area H where the CCD camera 18 is arranged, that is, (3 <5 8 °, the scattered light from the water droplet W is received by the CCD camera 18. As a result, only the scattered light from the water droplet W is received by the CCD camera 18, so that the image corresponding to the nose N The nose breath image I in which N and are hardly displayed is captured, and the contrast of the nose breath image I captured by the CCD camera 18 is prevented from being reduced. The step of removing the image N ′ corresponding to the above, that is, the steps of expansion and contraction are not required.
なお、 このとき、 光源 16から出射されてプリズム 55の第 1面 70で直接反 射される光も混在する。 そこで、 第 1面 70からの反射光が CCDカメラ 18で ほとんど受光されないようにするには、 光源 16として指向性の強い光源が用い られかつ光源 16から入射角 6· 6≤42° で第 1面 70が照明されればよい。 こ の場合、 第 1面 70で反射されて第 3面 58から出射される出射角 07力 第 1 面 70を基準として 07≥ 58° となり、 光源 16からの光が第 1而70で直接 反射されて CCDカメラ 18でほとんど受光されることがない。  At this time, light emitted from the light source 16 and directly reflected on the first surface 70 of the prism 55 is also mixed. Therefore, in order that the reflected light from the first surface 70 is hardly received by the CCD camera 18, a light source having a strong directivity is used as the light source 16 and the first light source 16 has an incident angle of 66 The surface 70 need only be illuminated. In this case, the output angle of the light reflected from the first surface 70 and emitted from the third surface 58 becomes 07 ≥ 58 ° with respect to the first surface 70, and the light from the light source 16 is directly reflected by the first metal 70. The CCD camera 18 hardly receives light.
次に、 本発明の鼻腔通気度検査装置の第 5の態様について説明する。  Next, a fifth embodiment of the nasal cavity air permeability inspection apparatus of the present invention will be described.
図 13に すように、 本発明の鼻腔通気度検査装置の第 5の態様は、 光源から の光を直線偏光に変換する偏光子 59、 及び特定方向に偏光する光を選択的に通 過させる検光子 60を更に備える点で第 1の態様と異なる。 偏光子 59は、 光源 16とガラス 85との間に配置され、 検光子 60は、 CCDカメラ 18と -透鏡 17との間に配置される。  As shown in FIG. 13, the fifth embodiment of the nasal air permeability inspection apparatus of the present invention is a polarizer 59 that converts light from a light source into linearly polarized light and selectively transmits light that is polarized in a specific direction. The difference from the first embodiment is that an analyzer 60 is further provided. The polarizer 59 is arranged between the light source 16 and the glass 85, and the analyzer 60 is arranged between the CCD camera 18 and the mirror 17.
この場合、 光源 16から出射される光は、 偏光子 59により直線偏光に変換さ れ、 この直線偏光がガラス 85の第 2面 71から入射されてガラス 85を透過し 第 1面 70から出射されると、 この光は被検者 Pの鼻 Nに入射され、 この鼻 Nで その偏光がほぼ解消される。 従って、 この光がガラス 85の第 1面 70から人射 されて第 2面 7 1から出射されても、 その光はもはや特定方向に偏光していない ので、 検光子 6 0を通過する光の量が相当に制限され、 この光は C C Dカメラ 1 8でほとんど受光されなくなる。 一方、 ガラス 8 5の第 2面 7 1から入射しガラ ス 8 5を透過して第 1面 7 0で反射される光は、 その偏光を維持したまま半透鏡 1 7に入射し、 検光子 6 0を通過する。 この結果、 C C Dカメラ 1 8により撮像 される鼻息像 Iには、 鼻に対応する像 N ' がほとんど表示されることがなくなる c この結果、 C C Dカメラ 1 8で撮像される鼻息像 Iのコン卜ラス卜の低下が防止 される。 従って、 画像処理を行う際、 鼻息像 Iの中の鼻 Nに対応する像 N ' を取 り除く 程が不要になる。 In this case, the light emitted from the light source 16 is converted into linearly polarized light by the polarizer 59, and this linearly polarized light enters from the second surface 71 of the glass 85, passes through the glass 85, and is emitted from the first surface 70. Then, this light is incident on the nose N of the subject P, and the polarized light is almost eliminated by the nose N. Therefore, this light is emitted from the first surface 70 of the glass 85 When the light exits from the second surface 71 and is no longer polarized in a specific direction, the amount of light passing through the analyzer 60 is considerably limited. Almost no light is received. On the other hand, the light that enters from the second surface 71 of the glass 85, transmits through the glass 85, and is reflected by the first surface 70 enters the semi-transparent mirror 17 while maintaining its polarization, and is analyzed by the analyzer. Pass through 60. As a result, the nose breath image I picked up by the CCD camera 18 hardly displays the image N 'corresponding to the nose.c As a result, the nose breath image I picked up by the CCD camera 18 is not displayed. Lowering of the rust is prevented. Therefore, when performing image processing, it becomes unnecessary to remove the image N ′ corresponding to the nose N in the nose breath image I.
なお、 本発明は、 前述した第 1〜第 5の態様に限定されるものではなく、 種々 の変形が可能である。 例えば、 第 1、 第 3及び第 5の態様において、 C C Dカメ ラ 1 8は、 光透過性部材 8 5の第 1面 7 0で反射されて半透鏡 1 7で反射される 光の方向に配置されているが、 C C Dカメラ 1 8は、 第 1面 7 0を通過して水滴 Wから散乱される散乱光を受光することができる位置に配置されてもよい。 例え ば、 図 3において、 半透鏡 1 7は取り除かれてもよく、 この場合、 C C Dカメラ 1 8が第 1面 7 0に対向する位置に配置されればよい。 この場合でも、 鼻息像 I の撮像は可能である。  Note that the present invention is not limited to the above-described first to fifth aspects, and various modifications are possible. For example, in the first, third and fifth embodiments, the CCD camera 18 is arranged in the direction of light reflected by the first surface 70 of the light transmitting member 85 and reflected by the semi-transparent mirror 17. However, the CCD camera 18 may be arranged at a position where it can receive the scattered light passing through the first surface 70 and scattered from the water droplet W. For example, in FIG. 3, the semi-transparent mirror 17 may be removed, and in this case, the CCD camera 18 may be arranged at a position facing the first surface 70. Even in this case, it is possible to capture the nose breath image I.
勿論、 第 1面 7 0で反射される光を積極的に C C Dカメラ 1 8で受光してもよ いので、 光源 1 6からの光を第 2面 7 1に対して斜めに入射し、 第 1面 7 0で反 射されて第 2面 7 1から出射される光の方向に C C Dカメラ 1 8が配置されても よい。 この場合でも、 鼻息像 Iの撮像が十分に可能である。 産業上の利用可能性  Of course, since the light reflected by the first surface 70 may be positively received by the CCD camera 18, the light from the light source 16 is obliquely incident on the second surface 71, The CCD camera 18 may be arranged in the direction of the light reflected from the first surface 70 and emitted from the second surface 71. Even in this case, it is possible to sufficiently capture the nose breath image I. Industrial applicability
以上説明したように本発明の鼻腔通気度検査装置によれば、 被検者により光透 過性部材の第 1面に鼻息が吹き付けられると、 第 1面上で鼻息が凝結して複数の 水滴が形成され、 この複数の水滴により鼻息像が形成される。 このとき、 第 1面 上において鼻息像が形成される部分及び形成されない部分が生じる。 このとき、 光源から光が出射されてその光が第 2面に入射されると、 その光は、 光透過性部 材を透過して第 1面に導かれ、 水滴が形成される部分と形成されない部分との間 で第 1面上で反射される光量に差が生じ、 この結果、 C C Dカメラにより鼻息像 が撮像される。 そして、 この鼻息像が画像処理装置で画像処理されて、 鼻息像の 形状、 面積、 面積の時間変化又は特徴的な端点の位置座標の少なくとも一つの鼻 腔通気度関連情報が算出されることとなる。 このため、 鼻息像の経時変化等が確 実に観測され、 この結果、 舞閉塞を主訴とするアレルギー性鼻炎、 慢性副鼻腔炎、 鼻中隔湾曲 等の鼻疾患に対し、 有用な医療情報を提供することができる。 As described above, according to the nasal air permeability inspection apparatus of the present invention, when a subject blows a nose breath on the first surface of the light-transmitting member, the nose breath condenses on the first surface and a plurality of water droplets is formed. Is formed, and a nose breath image is formed by the plurality of water droplets. At this time, the first side A portion where a nose breath image is formed and a portion where no nose breath image is formed occur on the upper portion. At this time, when light is emitted from the light source and the light is incident on the second surface, the light is transmitted through the light-transmitting member and guided to the first surface, and is formed with a portion where a water droplet is formed. There is a difference in the amount of light reflected on the first surface between the non-irradiated portion and the nose breath image as a result. Then, the nose breath image is image-processed by the image processing device, and at least one nasal cavity air permeability related information of the shape, the area, the time change of the area, or the position coordinates of the characteristic end point is calculated. Become. As a result, changes in the nasal breath image over time can be reliably observed, and as a result, useful medical information should be provided for nasal diseases such as allergic rhinitis, chronic sinusitis, and nasal septum curvature, mainly complaining of stomach obstruction. Can be.

Claims

請 求 の 範 囲 The scope of the claims
1 . 被検者の鼻腔の通気度を検査するための装置において、 1. A device for testing the air permeability of a subject's nasal cavity,
第 1面と第 2面とを有し、 前記第 1面が平坦面であり、 前記第 2面から入射さ れる光を透過させて前記第 1面に導くことが可能となっている光透過性部材、 前記光透過性部材の前記第 2面に入射されるべき光を出射することが可能な光 源、  A first surface having a first surface and a second surface, wherein the first surface is a flat surface, and light transmitted through the second surface can be transmitted and guided to the first surface. A light source capable of emitting light to be incident on the second surface of the light transmitting member;
前記被検者によって前記第 1面に吹き付けられる鼻息により前記第 1面に付着 される水滴で構成される鼻息像を撮像することが可能な撮像装置、 及び  An imaging device capable of capturing an image of a nose breath composed of water droplets attached to the first surface by the nose breath sprayed on the first surface by the subject; and
前記撮像装置で撮像される前記鼻息像を画像処理して前記鼻息像の形状、 面積、 前記面積の時間変化及び特徴的な端点の位置座標のうちの少なくとも一つの鼻腔 通気度関連情報を算出するための画像処理装置、  The nasal breath image picked up by the imaging device is image-processed to calculate at least one nasal cavity air permeability related information among the shape, area, time change of the area, and position coordinates of a characteristic end point of the nasal breath image. Image processing device for
を備える鼻腔通気度検査装置。 A nasal air permeability inspection device comprising:
2 . 前記撮像装置は、 前記第 1面上に形成される前記鼻息像を前記光透過性部材 を介して撮像することが可能な位置に配置されている請求項 1記載の鼻腔通気度 検査装置。  2. The nasal air permeability inspection device according to claim 1, wherein the imaging device is arranged at a position where the nasal breath image formed on the first surface can be imaged via the light transmitting member. .
3 . 前記鼻息像を前記第 1面上に形成することが可能な位置に前記被検者を位置 決めするための位置決め装置を更に備える請求項 1に記載の鼻腔通気度検査装置。 3. The nasal air permeability inspection device according to claim 1, further comprising a positioning device for positioning the subject at a position where the nose breath image can be formed on the first surface.
4 . 前記光透過性部材はファイバ光学プレートであり、 前記ファイバ光学プレー トは、 前記第 1面から前記第 2面に向けて平行に延びる複数本の光ファイバの束 を有している請求項 1記載の鼻腔通気度検査装置。 4. The light transmissive member is a fiber optic plate, and the fiber optic plate has a bundle of a plurality of optical fibers extending in parallel from the first surface to the second surface. The nasal air permeability inspection device according to 1.
5 . 前記光透過性部材はスリガラスであり、 前記スリガラスの前記第 1面は粗面 となっている請求項 1記載の鼻腔通気度検査装置。  5. The nasal air permeability inspection device according to claim 1, wherein the light transmitting member is ground glass, and the first surface of the ground glass is a rough surface.
6 . 前記光透過性部材はプリズムであり、 前記プリズムは、 前記第 1面、 前記第 2面及び第 3面を有するものであり、 前記プリズムは、 前記第 2面から前記プリ ズムに入射されて前記第 1面で反射した光が前記第 3面から出射されるように構 成されており、 前記撮像装置は、 前記第 3面から出射される光を受光可能な所定 位置に配置されている請求項 1記載の鼻腔通気度検査装置。 6. The light transmitting member is a prism, and the prism has the first surface, the second surface, and the third surface, and the prism is incident on the prism from the second surface. The light reflected by the first surface is emitted from the third surface. The nasal air permeability inspection device according to claim 1, wherein the imaging device is arranged at a predetermined position capable of receiving light emitted from the third surface.
7 . 前記所定位置は、 前記第 1面から入射されて前記光透過性部材を透過し前記 第 3面から出射される光を受光しない位置である請求項 6記載の鼻腔通気度検査  7. The nasal air permeability test according to claim 6, wherein the predetermined position is a position that does not receive light that is incident from the first surface, passes through the light transmitting member, and is emitted from the third surface.
8 . 前記光源と前記光透過性部材との間に配置され、 前記光源からの光を直線偏 光に変換する偏光子、 及び 8. A polarizer that is disposed between the light source and the light transmissive member, and converts light from the light source into linearly polarized light, and
前記光透過性部材と前記撮像装置との間に配置され、 特定方向に偏光する光を 選択的に通過させる検光子、  An analyzer disposed between the light transmissive member and the imaging device, for selectively passing light polarized in a specific direction;
を更に備える請求頃 1記載の鼻腔通気度検査装置。 The nasal air permeability inspection device according to claim 1, further comprising:
PCT/JP1997/003180 1996-09-10 1997-09-10 Nasal cavity patency tester WO1998010700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/239272 1996-09-10
JP23927296A JP3746335B2 (en) 1996-09-10 1996-09-10 Nasal permeability tester

Publications (1)

Publication Number Publication Date
WO1998010700A1 true WO1998010700A1 (en) 1998-03-19

Family

ID=17042297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003180 WO1998010700A1 (en) 1996-09-10 1997-09-10 Nasal cavity patency tester

Country Status (2)

Country Link
JP (1) JP3746335B2 (en)
WO (1) WO1998010700A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4068237B2 (en) * 1998-10-27 2008-03-26 浜松ホトニクス株式会社 Nasal permeability tester
ES2433868T3 (en) * 2006-04-13 2013-12-12 Manuele Casale Apparatus and procedure for videorinohygrometric measurements (VRI - Inspiratory Reserve Volume)
JP6822656B2 (en) * 2016-11-22 2021-01-27 地方独立行政法人鳥取県産業技術センター Nasal breath test tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0156049A1 (en) * 1984-03-19 1985-10-02 Trupharm Ltd Device for diagnosing nasal obstructions
JPH08257015A (en) * 1995-03-28 1996-10-08 Nippon Koden Corp Breathing monitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0156049A1 (en) * 1984-03-19 1985-10-02 Trupharm Ltd Device for diagnosing nasal obstructions
JPH08257015A (en) * 1995-03-28 1996-10-08 Nippon Koden Corp Breathing monitor

Also Published As

Publication number Publication date
JPH1080415A (en) 1998-03-31
JP3746335B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
JP5578542B2 (en) Eye refractive power measuring device
JP2003121126A (en) Three-dimensional image detector and adapter for three- dimensional image detection
WO2007113975A1 (en) View point detecting device
TW200800458A (en) Laser safety system
WO1998010700A1 (en) Nasal cavity patency tester
JPS5970908A (en) Distance measuring apparatus of endoscope
JP2020062243A (en) Endoscopic apparatus and imaging method for the same
CN115752748A (en) Method, system and device for measuring human body temperature and monitoring human body temperature
JP2005505372A (en) Method and apparatus for measuring the corneal profile of the eye
JP3576656B2 (en) Alignment detection device for ophthalmic instruments
JP2004129710A (en) Ophthalmological device
JP4068237B2 (en) Nasal permeability tester
JP3901702B2 (en) Imaging / display device
JP2010175456A (en) Method of evaluating optical quality of optical material
JPH11235316A (en) Optometrical device
JP3420630B2 (en) Non-contact tonometer
JP2005253800A (en) Treatment instrument for operation and endoscope apparatus
JP2002017677A (en) Convergence angle measurement instrument
JP3232269B2 (en) Glass container thickness measuring device
JP2003047593A (en) Ophthalmic instrument
JP4864248B2 (en) Flexible endoscope device
JP3255240B2 (en) Ophthalmic equipment
JP2000254101A (en) Ophthalmological examination device
JPH06269410A (en) Eyechart display device
JP2001109047A (en) Image pickup device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase