WO1998003635A1 - Regions nonessential for the proliferation of avipoxviruses, and recombinant avipoxviruses and vaccines prepared with the use of the same - Google Patents

Regions nonessential for the proliferation of avipoxviruses, and recombinant avipoxviruses and vaccines prepared with the use of the same Download PDF

Info

Publication number
WO1998003635A1
WO1998003635A1 PCT/JP1997/002508 JP9702508W WO9803635A1 WO 1998003635 A1 WO1998003635 A1 WO 1998003635A1 JP 9702508 W JP9702508 W JP 9702508W WO 9803635 A1 WO9803635 A1 WO 9803635A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
recombinant
gene
avibox
apv
Prior art date
Application number
PCT/JP1997/002508
Other languages
French (fr)
Japanese (ja)
Inventor
Takanori Sato
Takashi Okuda
Original Assignee
Nippon Zeon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co., Ltd. filed Critical Nippon Zeon Co., Ltd.
Priority to AU34627/97A priority Critical patent/AU3462797A/en
Publication of WO1998003635A1 publication Critical patent/WO1998003635A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the present invention relates to a recombinant of an avibox virus (hereinafter, referred to as APV) and a vaccine comprising the same, and more particularly, an APV recombinant having a foreign gene inserted therein but having substantially the same growth potential as a parent strain. And vaccines consisting thereof.
  • APV avibox virus
  • APV belonging to the box virus is a suitable virus for use in constructing such a recombinant virus.
  • viruses represented by foul box virus (hereinafter sometimes abbreviated as FPV) and pigeon pox virus (hereinafter sometimes abbreviated as PPV), have large genomic DNA, and many regions of the virus Non-essential, multiple antigen genes can be inserted into these non-essential regions of the same virus.
  • FPV foul box virus
  • PPV pigeon pox virus
  • This method has been applied as a recombinant APV in which a foreign gene has been inserted into attenuated FPV or PPV, which has been used as a live vaccine against fowlpox, using genetic engineering techniques.
  • Use attenuated vaccine strain as parent strain The reason is that it occurs only with a negligible probability, but we take care not to become a virulent strain even if the gene inserted in the chicken drops out.
  • NDV Newcastle disease virus
  • recombinant APV can introduce various foreign antigen genes depending on the purpose, and can simultaneously introduce multiple antigen genes, so that a single inoculation can protect against multiple pathogens. It is promising that an effective multivalent vaccine will be possible and, as a result, a solution to the overcrowded Pectin program problem.
  • recombinant APV virus using an attenuated virus (such as the virus strain of vaccine) as the parent virus had weaknesses.
  • recombinants in which an exogenous gene has been introduced have a lower growth rate in chickens than the parental virus.
  • the attenuated parent virus is very low in its own right. Therefore, if an exogenous gene is inserted into the attenuated parent virus, the resulting recombinant APV naturally has a reduced proliferative potential. For this reason, vaccines using an attenuated virus as the parent virus often did not actually achieve sufficient effects in vivo.
  • VV Vaccinia virus belonging to the same box virus family as APV
  • the present inventors have conducted intensive studies to develop a method for producing a recombinant so that the growth in chickens does not decrease even when an exogenous gene is inserted. Succeeded in identifying an insertion site at which proliferation was not substantially reduced as compared with the proliferation of, and found that a recombinant that did not attenuate could be made by inserting a foreign gene into the insertion site, thus completing the present invention.
  • a recombinant that did not attenuate could be made by inserting a foreign gene into the insertion site, thus completing the present invention.
  • the first aspect of the present invention is a recombinant APV having at least two or more foreign genes in a genomic DNA region that is not essential for the growth of APV, and having substantially the same growth potential as the parent strain.
  • the region that is not essential for the growth of APV is characterized by having the nucleotide sequence of SEQ ID NO: 1 in the sequence listing.
  • the genomic DNA region that is not essential for APV growth also contains at least 300 bases 5 ′ to the most upstream gene and 3 ′ to the most downstream gene among the foreign genes. Characterized in that the base sequence has homology to a continuous part of the base sequence set forth in SEQ ID NO: 1.
  • the foreign gene is selected from the group consisting of a gene encoding a promoter, a gene encoding a promoter, and a gene encoding an antigenic determinant of a bird pathogen.
  • the transgenes encoding the antigenic determinants of the avian pathogens include infectious bursal disease virus, pigeon infectious bronchitis virus, chicken meningitis virus, Newcastle disease virus, Marek's disease virus, and chicken flu virus. It is characterized by being a gene encoding a viral determinant selected from the group consisting of viruses. Furthermore, the foreign gene may be a gene encoding an antigenic determinant of Newcastle disease virus, and the gene encoding the antigenic determinant of Newcastle disease virus is a gene encoding F antigen or HN antigen. It is characterized by the following.
  • the APV is a fowlpox vaccine strain.
  • the above-mentioned APV is characterized by a pigeonpox Nakano strain.
  • a second aspect of the present invention is a recombinant plasmid containing a genomic DNA region that is non-essential for the growth of APV from the pigeonpox Nakano strain. Furthermore, the genomic DNA region not essential for APV growth has at least the nucleotide sequence of SEQ ID NO: 1.
  • the genomic DNA region of the recombinant plasmid that is not essential for the growth of APV may further contain at least two or more foreign genes. It is selected from the group consisting of a marker gene, a gene encoding a promoter, and a gene encoding an antigenic determinant of a chicken pathogen.
  • the marker-gene is characterized in that the gene encoding the promoter and the gene encoding the antigenic determinant of the chicken pathogen are selected from the same group as described above for recombinant APV. Further, the exogenous gene may be an arresting gene encoding an antigenic determinant of Newcastle disease virus, in which case the distant gene encoding the antigenic determinant of Newcastle disease virus may be used. , F, or HN antigen.
  • a third aspect of the present invention is a vaccine containing the above-mentioned recombinant APV as an active ingredient.
  • An anti-Newcastle disease vaccine comprising the above-mentioned recombinant virus as an active ingredient.
  • a fourth aspect of the present invention provides: (l) a step of arbitrarily cleaving APV genomic DNA to obtain a DNA fragment; (2) a step of introducing two or more foreign genes into the DNA fragment; 3) a step of preparing a plasmid for recombination by introducing the DNA fragment into which the foreign gene has been introduced into a plasmid, and (4) a step of preparing recombinant APV by recombining APV with the plasmid for recombination.
  • a method for producing a recombinant APV having substantially the same growth ability in a chicken as a parent strain characterized by comprising:
  • the DNA fragment comprises a DNA region not essential for APV growth.
  • the exogenous arrestor is selected from the group consisting of a marker ⁇ gene, a promoter-encoding gene and an avian pathogen antigenic determinant-encoding element.
  • the genes encoding the antigenic determinants of the avian pathogen are infectious bursal disease transmitting gene, pigeon infectious bronchitis virus, chicken meningitis virus, Newcastle disease virus, It is an arrestor encoding an antigenic determinant of a virus selected from the group consisting of Marek's disease virus and chicken influenza virus.
  • the foreign gene is particularly preferably an arrestor encoding an NDV antigenic determinant, and the gene encoding the NDV antigenic determinant is a transgene encoding an F antigen or an HN antigen. It is characterized by being a child.
  • a fifth aspect of the present invention is a method of (l) selecting a virus that forms a blue plaque when a cell line derived from a bird infected with recombinant APV is cultured on agar in vitro. And (2) measuring the box size after infecting chickens with the virus that forms the blue plaque in vivo, wherein the growth in chickens is substantially reduced. Not a screening method for recombinant APV.
  • a sixth embodiment of the present invention relates to a genomic DNA region that is not essential for APV growth, wherein an Escherichia coli-derived 3-galactosidase arrestor (lacZ gene) has been inserted into the region together with the VV7.5K promoter. It is possible to obtain a recombinant APV in which the growth of recombinant APV in chickens is not substantially reduced as compared to the growth of the virus in chickens before the introduction of the above-mentioned galactosidase enzyme. Genomic DNA region.
  • the present invention is a genomic DNA region that is non-essential for APV growth and contains the nucleotide sequence of SEQ ID NO: 1 in which a foreign gene has been incorporated into a specific site.
  • the specific site is a Clal site existing at nucleotides 962 to 967 of the nucleotide sequence described in SEQ ID NO: 1 and an Hpal site existing at Z or nucleotides 4, 267 to 4,272 of the nucleotide sequence.
  • a seventh aspect of the present invention is the use of the above-mentioned vaccine in birds.
  • the above-mentioned birds are characterized in that they are selected from the group consisting of pigeons, duck, duck, duck, surprising bird, turkey, quail, chicken, pheasant, and slime.
  • An eighth aspect of the present invention is a method for preventing avian diseases using the above-mentioned vaccine.
  • the birds are characterized in that they are selected from the group consisting of pigeons, duck, duck, duck, eagle bird, turkey, quail, chicken, pheasant, and squirrel.
  • FIG. 1 is a graph showing the change in pox size in SPF chickens inoculated with various recombinants expressing the lacZZ gene.
  • the horizontal axis shows the number of days (days) after inoculation of each recombinant
  • the vertical axis shows the size of the varicella (wakefulness 3 ).
  • FIG. 2 shows a restriction map (a), a subclone (b), and a deletion mutant clone (c) of a non-essential region of PNP35, respectively.
  • 2 kbp in (a) indicates the distance from Clal.
  • Each number in (b) indicates the name of the subclone.
  • (C) shows the deletion clones, 35dl1, 35dl2, 35dl3, 35dl4 and 35dl5 in order from the top.
  • Figure 3 shows the development of chickens carrying a transfer antibody against Newcastle disease immunized with each recombinant. It is a graph which showed transition of pox size.
  • the horizontal axis shows the number of days (days) after inoculation of each recombinant, and the vertical axis shows the size of the varicella ( ⁇ 3 ).
  • FIG. 4 is a diagram showing the construction of plasmid pNZ76.
  • pNZ76 is a vector containing the 7.5V promoter of VV and ⁇ -galactosidase.
  • FIG. 5 is a diagram showing the construction of plasmid PNZ98.
  • pNZ98 is a vector having the 7.5V promoter of VV and the F gene of NDV.
  • FIG. 6 is a diagram showing the construction of plasmid PNZ87.
  • pNZ87 is a vector having the 7.5K promoter of VV and the HN gene of NDV.
  • FIG. 7 is a view showing a genomic DNA sequence of a region not essential for the growth of the APV of the present invention. Restriction enzyme cleavage sites in this genomic DNA region are underlined. The Cl site (base No. 962) or the Hpal site (base Nos. 3, 691 to 3, 696. 4, 267 to 4, 272) were indicated. BEST MODE FOR CARRYING OUT THE INVENTION
  • the region that is not essential for APV growth refers to a region that is not required for APV growth, and specifically refers to a region represented by the nucleotide sequence of SEQ ID NO: 1.
  • APV is a collective term for viruses belonging to the genus APV, a subfamily of the box virus family, which is an animal DNA virus. When the virus infects birds, it forms a bock, and the size of the bock formed can determine the degree of infectivity.
  • Specific viruses include foul box virus, pigeon box virus, canary box virus, and quell box virus.
  • the region that is not essential for APV growth includes the nucleotide sequence of SEQ ID NO: 1.
  • the nucleotide sequence set forth in SEQ ID NO: 1 is preferably derived from a fowlpox vaccine strain.
  • the fowlpox vaccine strain include the fowlpox Nakano strain (fetal fowlpox poison toxin Nakano strain) and the CEVA Pectin strain.
  • the nucleotide sequence set forth in SEQ ID NO: 1 is derived from the fowlpox Nakano strain among these fowlpox vaccine strains.
  • An exogenous gene is a gene not originally possessed by APV and may be of any animal species. Specific examples of such outpatients are Examples include the gene encoding the promoter, the gene encoding the various promoters, the gene encoding the antigenic determinant of the avian pathogen, and other genes.
  • Examples of various marker genes include a lacZ gene and a luciferase gene derived from Escherichia coli.
  • Genes encoding various promoters include those encoding the VV 7.5K polypeptide, those encoding the VV 11K polypeptide, and those encoding the VV 19K polypeptide. Examples include a gene, a gene encoding a 42K polypeptide of VV, a gene encoding a thymidine kinase, a gene encoding a 28K polypeptide of VV, and the like.
  • Genes encoding antigenic determinants of avian pathogens include antigens such as infectious bursal disease virus, pigeon infectious bronchitis virus, chicken meningitis virus, Newcastle disease virus, Marek's disease virus, and chicken flu virus Mention may be made of genes encoding determinants. If a gene encoding an antigenic determinant of the Castle Castle virus is selected as the foreign gene, an antibody against NDV is produced when a virus incorporating this gene infects chickens.
  • the gene encoding the antigenic determinant of the avian pathogen is the gene encoding the antigenic determinant of Newcastle disease virus, and if it is the gene encoding the F or HN antigen, the NDV It is particularly preferred because it produces antibodies that can prevent onset.
  • At least two or more foreign genes are integrated into a region that is not essential for APV growth.
  • exogenous transgenes may be introduced in any combination as long as the transgenes are expressed, and there is no limitation on the number of introduced transgenes.
  • a rapid gene encoding this antigenic determinant is expressed under the control of the introduced promoter, and the antigenic determinant of the bird pathogen is converted into a protein.
  • the above two or more arrested children may be linked via a phosphorus sequence as necessary and introduced, or they may be linked and introduced.
  • Non-essential regions for APV growth due to the introduction of at least two foreign genes Is separated into a region that binds to the most upstream 5 ′ side of the foreign gene and a region that binds to the most downstream 3 ′ side.
  • the region that is not essential for the growth of the APV has a base sequence of at least 300 bp (hereinafter referred to as an upstream base sequence) on the 5 'side of the gene located at the most upstream position of the foreign gene, It is advantageous for homologous recombination to have a nucleotide sequence of at least 300 bp (hereinafter, referred to as a downstream nucleotide sequence) also at the 3 ′ side of the gene located at the most downstream gene.
  • the upstream base sequence and the downstream base sequence are preferably about 600 bp or more, more preferably about 800 bp or more, and particularly preferably about l. OOObp.
  • These nucleotide sequences have homology with a continuous part of the nucleotide sequence shown in SEQ ID NO: 1.
  • the continuous part of the nucleotide sequence of SEQ ID NO: 1 refers to a sequence in which at least 300 bp of the above-mentioned sequence of at least 300 bp start from a base having the nucleotide sequence of SEQ ID NO: 1.
  • having homology means that it is only required that the upstream base sequence and the downstream base sequence are homologous to the base sequence described in SEQ ID NO: 1 by a certain ratio or more.
  • the homology referred to in the present invention is a DNA sequence input analysis system.
  • the non-essential region of the APV of the present invention can be obtained, for example, as follows. That is, fetal chicken cells are inoculated with fowl fowl pox poison venom Nakano strain (manufactured by Nippon Pharmacy) at a predetermined multiplicity of infection (mo i), allowed to adsorb for a certain period of time, added with a medium, and counted at 37 ° C. After culturing for a day, collect the supernatant, collect virus particles from it, and obtain virus DNA. This viral DNA is digested with restriction enzymes to obtain a DNA fragment.
  • fowl fowl pox poison venom Nakano strain manufactured by Nippon Pharmacy
  • An appropriate plasmid is digested with a restriction enzyme, and this plasmid and a DNA fragment digested with the restriction enzyme are ligated to prepare a transformed positive plasmid.
  • the plasmid is used to transform competent Escherichia coli, and the concentration of the transformant is increased using a selection medium.
  • the selected transformant Escherichia coli is further cultured to extract a plasmid, digested with restriction enzymes, and subjected to electrophoresis to detect whether there is the same restriction enzyme digest fragment of the original viral DNA.
  • a genomic DNA region not essential for the growth of APV can be created. Furthermore, when a recombinant APV is produced by homologous recombination of an APV with a genomic DNA region that is not essential for the growth of an APV having an exogenous gene, the genomic DNA region affects the growth of the recombinant APV. Whether it can be confirmed by the growth of recombinant APV in chickens, as described below. This makes it possible to determine the insertion site of the foreign gene where the growth of the recombinant APV does not substantially decrease compared to that of the parent strain.
  • a genomic DNA region that is non-essential for the growth of APV that has the ⁇ -galactosidase gene as a foreign gene together with the gene encoding the 7.5V promoter of VV can be obtained, for example, by the following steps. it can. That is, (a) a step of cleaving APV genomic DNA with a restriction enzyme and cloning into a predetermined vector to obtain a plurality of clones, and (b) a 7.5 KV of VV within the APV genomic DNA fragment of each clone. (C) transfection of each vector prepared in (b) into cells infected with APV, and (d) purification of each recombinant.
  • SEQ ID NO: 1 obtained by digesting genomic DNA of chicken embryonated pigeon pox Nakano strain (NP strain) with EcoRI.
  • NP strain chicken embryonated pigeon pox Nakano strain
  • the predetermined position refers to the nucleotide sequence of SEQ ID NO: 1.
  • the predetermined position refers to the nucleotide sequence of SEQ ID NO: 1.
  • the recombinant APV of the present invention contains a genomic DNA region that is non-essential for the growth of APV as described above, and its growth is substantially equivalent to that of the parent strain.
  • the parent strain refers to an APV that has not been recombined with a genomic DNA region that is not essential for the growth of APV, and a virus that can be recombined using a genomic DNA region that is not essential for the growth of APV described above.
  • a virus can be any virus as long as it infects birds, but propagates in cells of poultry, such as pigeons, ducks, duck, duck, eagle, turkey, quail, chicken, pheasant, and sarcophagi.
  • viruses examples include fowl box virus (FPV), pigeon pox virus (PPV), canari box virus, turkey box virus, and various viruses belonging to the subgenus quell box virus. Specific examples of these include viruses derived from ATCC VR-251, ATCC VR-250, ATCC VR-229, ATCC VR-249, ATCC VR-288, Nishigahara strain, Sashimi strain, CEVA strain, and CEVA vaccine strain.
  • a group of viruses called NPV in the narrow sense such as those that form large plaques when infected with chicken embryo fibroblasts (CEF), and a narrow group of FPV, such as the fetal fowlpox Nakano strain (NP strain)
  • NP strain fetal fowlpox Nakano strain
  • Examples include closely related viruses used as live fowlpox vaccine strains. These can be obtained from depositaries, commercial vaccines, or from institutions such as the American 'Type' Culture Collection (ATCC).
  • ATCC American 'Type' Culture Collection
  • a recombinant APV having substantially the same growth potential as the parent strain refers to an APV having a growth potential defined as follows when the growth potential of the parent strain is set to 100. Proliferation in chickens is calculated from the box size formed as APV proliferates. It is considered that the smaller the bock size formed after infection with the virus, the lower its proliferation.
  • the parental strain or the recombinant APV prepared as described above is Inoculate the membrane, measure the height-width-height of the box of each individual using digital calipers every 3 days after the inoculation, and calculate the box size as the product of these.
  • the box size formed by the parent strain is (A)
  • the box size formed by the recombinant APV is (B)
  • BZAX 100 (%) which is the ratio of A to B, is used as an index of proliferation.
  • This ratio is usually 90% or more and 110% or less, preferably 95% or more and 105% or less, and is preferably a genomic DNA region where APV growth is not essential. If this value is Ru der less 105% 95% or more, have preventive effects of disease when used as a vaccine which will be described later this virus ⁇
  • the above-described foreign gene is inserted into a predetermined site in a region not essential for the growth of the APV.
  • the region not essential for the growth of APV is the nucleotide sequence of SEQ ID NO: 1, the ClaI site
  • Such a recombinant virus can be obtained by incorporating a foreign gene into one or both of the base (base No. 962) or the Hpal site (base Nos. 4, 267).
  • a foreign gene for example, when the E. coli-derived / 3-galactosidase gene and the gene encoding the 7.5K promoter of the VV virus are integrated into the Cla site, a virus having substantially the same growth potential as the parent strain is obtained. Can be obtained.
  • the / 3-galactosidase used herein has a sequence known by accession number V00296 of Gene Bank.
  • the method for producing the recombinant APV of the present invention is not particularly limited, and may be performed according to a conventional method. That is, by introducing a recombinant vector into cells infected with APV in advance by, for example, the calcium phosphate coprecipitation method, homologous recombination between the vector and the viral genomic DNA in the infected cells is caused, and the recombinant APV is infected. Can be constructed. The recombinant APV thus obtained is used to infect host cells cultured in a medium such as Eagle MEM.
  • the host cell is not particularly limited as long as it can infect and proliferate the APV used.
  • FPV FPV
  • chicken-derived cells such as CEF cells (chick embryo fibroblasts) are used.
  • the recombinant plasmid of the present invention contains a genomic DNA region consisting of the nucleotide sequence of SEQ ID NO: 1 that is not essential for APV propagation. It is preferable that the nucleotide sequence described in SEQ ID NO: 1 further have at least two foreign telegenes at the above-mentioned Cla! And Z or Hpal sites. Suitable exotic speed transducers are as described above.
  • the vector for cloning the non-essential region of the virus used for construction of the above-mentioned recombinant plasmid is not particularly limited as long as it can be generally used. Specifically, plasmids such as pBR322, pBR325, pUC7, pUC8, and pUC18, phagemids such as ⁇ phage and ⁇ 13 phage, and cosmids such as pHC79 and pKT264 can be used. These plasmids contain the ampicillin resistance gene, the 3-galactosidase gene, the luciferase gene (Science, 234: 856-859 (1986), and Anal. Biochem., 188: 245-). 254 (1990)).
  • the recombinant plasmid of the present invention can be obtained by treating the above vector with an appropriate restriction enzyme and incorporating the above-mentioned genomic DNA region not essential for the growth of the APV of the present invention.
  • a gene encoding an antigenic determinant and a promoter gene that controls the gene as described below are inserted into a predetermined position in a genomic DNA region that is not essential for APV growth. It was done. By inserting these arrested children into predetermined positions, the living body can be exposed to the recombinant APV containing the foreign gene described above. When stained, it is possible to obtain an effect that the growth of the recombinant APV in the living body does not decrease.
  • the above-mentioned marker gene such as the Escherichia coli-derived ⁇ -galactosidase gene, may be incorporated together with the promoter for efficiency such as purification of recombinant APV.
  • a transgene encoding an antigenic determinant of a pathogen that integrates into a region of genomic DNA that is not essential for APV growth is transcribed in host cells when infection of these pathogens is established in the body of the bird. It is not particularly limited as long as it can be translated and expressed as an antigen protein and can produce an antibody as an antigen in the body of an infected bird.
  • antigenic determinants include infectious bursal disease virus, pigeon infectious bronchitis virus, chicken meningitis virus, Newcastle disease virus, Marek's disease virus, chicken influenza virus and other chicken pathogen antigens. Determinants can be mentioned.
  • a gene encoding the NDV HN protein (Miller et al., ⁇ Gen. Virol., 67: 1917-1927 (1986)), a gene encoding the F protein (McGinnes et al., Virus Res. 5: 343-356 (1986)), a gene encoding the glycoprotein gB of Marek's disease virus (Ross et al., Supra Gen. Virol., 70: 1789-1804 (1988)), infectious Fabrychus disease Genes encoding the VP2 structural protein of the virus (Bay) iss et al., J. Gen. Virol., 71: 1303-1312 (1990)). Encoded genes are preferred for their high immunogenicity.
  • the vaccine of the present invention contains the above-mentioned recombinant APV as an active ingredient.
  • the peptide of the present invention may be one in which one kind of the above-mentioned recombinant APV is produced and contained alone. Further, a mixture of a plurality of recombinant APVs may be used, or a combination of these may be used. Furthermore, they may be combined with other vaccines.
  • other vaccines that can be combined include, for example, recombinant APV (described in JP-A-157381 and JP-A-3-27284) as an anti-NDV vaccine, or a recombinant as an anti-MDV vaccine.
  • Examples include recombinant pectin such as APV (Japanese Patent Application Laid-Open No. 6-78764 and US Patent Application No. 08 / 499,474), and a turkey virus virus vaccine used as an anti-MDV vaccine.
  • the vaccine of the present invention may be inoculated together with carrier.
  • the method for producing the vaccine of the present invention is not particularly limited.
  • the recombinant of the present invention Cells capable of growing APV are infected with the recombinant APV of the present invention, and cultured until the recombinant APV has sufficiently grown. Thereafter, the cells are collected and crushed by an appropriate means to obtain a crushed cell. The cell lysate is centrifuged and separated in a centrifuge tube into a precipitate and a supernatant containing high-titer recombinant APV.
  • this medium containing cell culture medium and recombinant APV can be used directly as a vaccine. It may be appropriately diluted with physiological saline, phosphate buffered saline (PBS) or other pharmacologically acceptable buffers.
  • PBS phosphate buffered saline
  • the vaccine of the present invention can be frozen and stored in a cell culture medium as it is, or the centrifuged supernatant can be lyophilized and stored as a lyophilized vaccine.
  • the vaccine of the present invention may be administered to poultry by any method as long as the recombinant APV in the vaccine infects poultry and elicits protective immunity.
  • the vaccine may be vaccinated by wing puncture, scratching the skin, or subcutaneously vaccinating poultry with a needle or other device. It is also possible to administer the vaccine in such a way that it is suspended in poultry drinking water for ingestion, or mixed with solid feed for oral inoculation.
  • various methods such as a method of inhaling a vaccine by aerosol spray, an intravenous inoculation method, an intramuscular inoculation method, and an intraperitoneal inoculation method can be used.
  • Inoculation amount of the vaccine of the present invention for example, in the case of chickens, a per bird usually 10 to 10 6 plaques forming units (Pfu), and preferably 10 2 ⁇ 10 4 pfu.
  • a per bird usually 10 to 10 6 plaques forming units (Pfu), and preferably 10 2 ⁇ 10 4 pfu.
  • a pharmaceutically acceptable carrier such as saline or sterile water, such as glycerin.
  • the above Kiyarya one, for example, be suspended in an amount of about 5 mg to about 40mg and Kiyarya foremost sterile water LOmL, about 10 2 to about 10 6 pfu / mL of recombinant virus with inoculation when Wakuchineshiyon effect of Is high.
  • the recombinant APV of the present invention Since the recombinant APV of the present invention has substantially the same growth in the chicken as the parent strain, it can continuously exert an extremely excellent vaccine effect even on chickens having a transfer antibody.
  • a recombinant APV in which a gene encoding an NDV antigenic determinant, preferably an HN endogenous gene and an F ⁇ gene, is inserted as a foreign gene into a non-essential region of APV.
  • NDV antigenic determinant preferably an HN endogenous gene and an F ⁇ gene
  • This recombinant APV was added to a flock of three-day-old hens whose Newcastle disease virus hemagglutination-inhibiting antibody titer was at least 4 or more and whose average value was 16 or more and 32 or less. 1 X l to 0 4 pfu vaccination as times eyes.
  • the survival rate of chickens is 80%, preferably 90% or more.
  • APV power In the case of chicken embryonated pigeon pox Nakano strain ( ⁇ ⁇ strain), excellent effects can be obtained.
  • the hemagglutination-inhibiting antibody (NDV-HI antibody) titer is measured by an ordinary method. Specifically, the method described in the section “Hemagglutinating antigen for diagnosis of Newcastle disease” on page 282, published by Kinka Shobo Co., Ltd., 1996, “Chicken Vaccine”, 2nd edition.
  • the ND Ishii strain is inoculated into the urinary cavity of 9-11 day old embryonated chicken eggs, and cultured at 37 ° C for 3-5 days to collect urine fluid.
  • this 1/25 M KI0 4 was added an equal amount of, after shaking mixing, an additional 10% of the Budo ⁇ sugar solution is added at a ratio of 50%. Mix by shaking, dispense into aliquot containers, and freeze-dry to obtain ⁇ ⁇ antigen.
  • Serum is collected from highly immunized chickens that are frequently inoculated with NDV, dispensed into small aliquots and lyophilized. Make serial dilutions of the antigen in a tube using saline (0.4 mL each), and add an equal volume of 0.5% chicken red blood cell suspension. After mixing by shaking, allow to stand at room temperature (around 25 ° C). Erythrocytes sedimented in front of the tube bottom and showed a film form (a positive image was formed). The titer is determined by comparison with the control.
  • Vaccines such as the above, pigeon, duck, duck, duck, amazing bird, turkey, quail, chicken
  • the genes encoding the antigenic determinants of the pathogens of the birds integrated as described above into the recombinant APV used as vaccines are expressed in the birds.
  • an antigenic determinant protein is produced.
  • the antigenic determinants thus produced allow antibodies to be produced in the body of the vaccinated bird, thereby preventing the development of diseases having such antigenic determinants.
  • the recombinant APV used as the vaccine of the present invention can contain at least two or more exogenous genes in a region not essential for the growth of the APV incorporated therein.
  • one vaccine can be used to complete vaccines against multiple pathogens. Therefore, there is no need to administer vaccines for each type of pathogen as in the past, and a simple vaccine program can reduce manpower, time, and money.
  • the recombinant virus used as the vaccine of the present invention has substantially the same growth ability as the parent strain, unlike the conventionally used vaccine. For this reason, a sufficient effect can be obtained by the vaccine using the vaccine of the present invention.
  • a highly virulent strain was attenuated into a vaccine strain, and a foreign vaccine was incorporated into the vaccine strain and used as a live vaccine.
  • a virulent strain was not used, and a gene encoding an antigenic determinant of a pathogen was incorporated as a foreign gene by homologous recombination. If it is lost, it does not revert to the virulent strain.
  • the above-mentioned CEF cells are the most common, but are not particularly limited as long as they are cells capable of proliferating APV.
  • a recombinant plasmid is introduced by an appropriate means, and agar is added to an appropriate liquid medium and a growth medium containing serum, amino acids, etc. as appropriate. And form plaque.
  • a liquid medium examples include LB, MEM. DMEM, 199 medium, and MacCoy5A.
  • Avian-derived cells as described above are cultured in a monolayer and infected with APV at 0.05-0.2moi. 0. Power to infect at about lmo i It is preferable because the efficiency of obtaining the recombinant is high.
  • the monolayer cultured cells are treated with trypsin to prepare a cell suspension, and the recombinant plasmid is introduced.
  • the introduction of the recombinant plasmid can be carried out by various known means such as electrolysis and calcium phosphate method, but is preferably carried out by election-portion polish.
  • Recombinant virus was obtained from the cells into which the recombinant plasmid had been introduced, and the cells were again infected with bird-derived cells, and a growth medium containing agar was overlaid to form plaques.
  • a growth medium containing agar was overlaid to form plaques.
  • the integrated marker ⁇ gene is expressed and plaque force is formed which can be easily selected.
  • the recombinant APV contains the acZ gene
  • a blue plaque can be formed by adding Bluo-gal to an agar medium to be overlaid later.
  • Bluo-gal is preferably added at a concentration of 300 to 900 ⁇ g gL, and when added at a concentration of 600 g / ml, virus selection can be performed easily.
  • Example 1 Preparation of plasmid into which APV genomic DNA fragment was inserted
  • CEF cells were monolayer cultured in a 75 cm 2 culture flask.
  • APV chicken embryo poultry pox poison The Nakano strain (NP strain, manufactured by Nippon Pharmacy) was inoculated at 1 pfu / mL.
  • 10% tributose phosphate broth manufactured by Difco
  • single MEM containing 0.03% L-glutamine were added. Thereafter, the cells were cultured at 37 ° C in an incubator at 5 o / oCO for 4 days, and the culture supernatant was recovered.
  • the culture supernatant was centrifuged at 3,000 rpm (1,500 ⁇ g) for 4 minutes at 4 t to obtain a centrifuged supernatant.
  • the supernatant was centrifuged at about 98,000 xg for 1 hour at 4'C, and the precipitate was collected.
  • the precipitate is suspended in 10 volumes of a DNase reaction buffer (50 mM Tris-HCl (pH 7.5), lmM MgCl 2 ) of the culture supernatant, and DNasel (Boehringer Mannheim) is adjusted to 9 Zg / mL.
  • the mixture was added and reacted at 37'C for 30 minutes.
  • proteinase K Boehringer Mannheim
  • SDS sodium dodecyl sulfate
  • cleaved pUC18 0.5; g of pl) C18 (Pharmacia) is also digested with the restriction enzymes EcoRI or Hindi II, and treated with alkaline phosphatase (10 units) to remove the phosphoric acid at the 5, -terminal, and then phenol: Extracted with (1: 1) and precipitated with ethanol, 0.4 ⁇ g of cleaved pUC18 was recovered.
  • EcoRI EcoRI
  • pUC18 cleaved by Hindi 11 pUC18.
  • the recovered PUC18 (EcoRI) or pUC18 (Hindi II) and the previously prepared 0.05 g each of EcoRI or Hindlll digested NP strain genomic DNA fragments were added to 10 units of DNA ligase (T4 DNA ligase), respectively.
  • the ligation was performed by incubating at ° C for 1 hour.
  • Combi competent E. coli TG 1 were grown in L-broth, 10 9 were transformed with each recombinant plasmid 0.45 g of the above.
  • the transformed E. coli TG1 was placed on an LB agar medium containing X-Ga] (100 ⁇ g / mL) and ampicillin (50 g / mL) for The cells were cultured at 37 ° C to form colonies.
  • plasmid was extracted from each colony by the method of Birnboim and Dory [Birnboim, H. C. & Doly, J., Nucleic Acid Research, Vol. 7, pp. 1513- (1979)]. That is, a transformant of E. coli was solubilized with an alkali, treated with phenol, and then precipitated with ethanol to extract a plasmid (1 to 100 g).
  • the lacZ gene was inserted together with the promoter into the APV genomic DNA fragment of the plasmid obtained in Example 1 as follows to prepare a plasmid for recombination.
  • the selected plasmids were pNP03, pNP04, pNP25, pNP26, pNP29, pNP32, pNP35, pNP36, and pNP38.
  • PNP28, pNP29, and pNP35 were digested with Clal
  • pNP03, pP04, and pNP26 were digested with EcoKV
  • pNP32, pNP36, and pNP38 were digested with Hpa].
  • the cohesive end of the above plasmid digested with Clal was blunt-ended by using MA polymerase.
  • the mixture was extracted with an equal volume of a mixture of phenol and black form (1: 1), and precipitated with cold ethanol to obtain a cleavage plasmid (0.05 to 0.5 / g).
  • pUC19 was digested with BamHI, extracted with phenol-chloroform (1: 1), and recovered by ethanol precipitation.
  • the recovered pUC19 and the 9-galactosidase arrested gene were ligated with ligase to produce a recombinant plasmid pNZ66.
  • pUWP_l was double digested with Hpall and EcoRI and subjected to 15% low melting point agarose electrophoresis (70 V, 6 hours) to separate a fragment of about 0.26 Kbp containing the 7.5K promoter. Then, the agarose gel was crushed into small pieces and the DNA was recovered with TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). Since this DNA fragment had cohesive ends, it was blunt-ended with DNA polymerase to obtain a 7.5K promoter single speed gene.
  • the transformed E. coli TG1 was cultured on an LB agar medium containing 50 g / mL ambicilin at 37 ° C for 15 hours.
  • Released recombinant viruses were screened as follows. Infection as described above in dissolved lysate containing the released progeny virus from the cells dilution was 10-fold serially diluted in CEF cells were seeded into each of the two plates (1 X 10 7 cells / mL) Then, 10 mL of agar medium (0.8%) containing a growth medium (MEM containing 5% serum) was overlaid. After solidifying the agar at room temperature, the cells were cultured at 37'C until typical APV plaques appeared. Approximately one week after the plaques grew, another 10 mL of agar medium (0.8%) containing 600 ng / mL of Bluo-gal was overlaid on each culture plate, and further cultured for 24 hours at 37 ° C.
  • Example 4 Immunization experiments on chickens using recombinants and selection of non-attenuated recombinants Chicken was immunized using the recombinant APV prepared in Example 3 as follows, and non-attenuated recombinant APV was Selected.
  • the recombinant APV insertion site selected in Example 4 was analyzed for fNPI035.
  • the plasmid for recombination used in the preparation of the recombinant fNP1035 selected in Example 4 uses a non-essential region of PNP35 as an insertion site. Therefore, a detailed restriction map of pNP35 was prepared as follows.
  • fNP35 was digested with six different restriction enzymes (Hindi II, Bglll. Hpal, Sacl, EcoRI, Clal) alone or with two restriction enzymes. Each fragment obtained by this digestion was subjected to 0.8% agarose gel electrophoresis, and the number and number of bands appearing after digestion were examined.
  • the restriction enzymes used for double digestion are as shown in Figure 2 (a). By changing the combination of the restriction enzymes shown here, it was confirmed that the cleavage site of the restriction enzyme was at the position shown in FIG. 2 (column (a) of FIG. 2).
  • nucleotide sequence of the clone shown in column (b) of FIG. 2 was read using a nucleotide sequence analysis kit (ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit) and an ABI fully automatic sequencer.
  • the analysis data is described in SEQ ID NO: 1.
  • PNZ6927RL is based on pNZ1729R (Yanagida et al., J. Virol., 66, 1402-1408 (1992)), a plasmid in which a promoter from pigeonpox P17 is connected to a lacZ arrested child from Escherichia coli.
  • Figure 6 shows the NDV F gene linked to the 7.5K bromoester of PNZ98 (JP-A-3-27284) and pNZ87 (JP-A-1-157381) shown in Figure 5. Publication), the NDV HN telegene linked to the VV 7.5K promoter was inserted.
  • PNZ76 was digested with BamHI, and electrophoresed on a 0.8% agarose gel to recover an approximately 2.9 kb fragment not containing the -galactosidase gene.
  • hybrid phage mplO-HN180 was double-digested with Bglll and BamHI, and electrophoresed on a 0.8% agarose gel to recover an approximately 1.8 kb NDV HN ⁇ gene fragment.
  • This transgenic plant contains 0.03% of 5-bromo-4-chloro-3-indolyl-; 9-galactopyranoside, 0.03 mM of isopropyl- / 9-D-galactopyranoside, and 40 tg / mL of ampicillin.
  • the cells were cultured on an LB agar medium for 15 hours at 37 ° C. Among the traits grown on the agar medium, white colonies were collected and cultured in LB liquid medium containing 40 ⁇ g / mL ampicillin at 37 for 15 hours.
  • the transformant was recovered, and plasmid was extracted according to the method of Birnboim and Doley (Nucleic Acid Research, 7: 1513-, (1979)). Thus, a brasmid pNZ87 containing the HN fast gene was obtained.
  • Plasmid XL I ⁇ -1 OH (Virus Research, 7: 24-255 (1987)) containing NDV F and HN transgenes was used.
  • pNZ76 prepared as described above was double-digested with BamHI and Smal, and about 3. Okbp and BamHI-Sraai fragments excluding the lacZ gene were recovered. The recovered fragment was ligated with a fragment containing about 2.1 kb of the F gene completely by ligase to transform competent E. coli TG1 strain.
  • a plasmid was prepared by the same operation as above. This plasmid was digested with restriction enzymes (BamHI and Smal), and the desired clone was identified and named PNZ98 '. This PNZ98 'contains the full length of the F gene and about 300 bp of the 5'-end of the gene. To remove this part, ⁇ 98 'was double-digested with Smal and Kpnl, and a Smal-Kpnl fragment of about 4,150 bp was recovered by 0.8% agarose gel electrophoresis. Further, ⁇ 98 ′ was similarly double-digested with Smal and Avail, and about 650 bp of Smal Aval I was recovered by 1.5% agarose gel electrophoresis.
  • restriction enzymes BamHI and Smal
  • a recombinant fNZ6927RL was prepared and purified in the same manner as described in Example 3, except that PNZ6927RL was used as a recombinant vector.
  • Example 6 Production of recombinant fNP6935
  • PNP6935 was prepared by cleaving pNP35 (5 g) with Clal, blunting the cleaved end with DNA polymerase (Takara Shuzo), and removing the 5'-end phosphate by treatment with alkaline phosphatase. After that, it was extracted with phenol-cloth form (1: 1) and precipitated with ethanol to recover the cleavage plasmid.
  • PNZ6927RL (5 ⁇ g) prepared in Reference Example 1 (1) was cut with Hindlll, the cut ends were made blunt with DNA polymerase, and the lacZ fast gene of about 7.5 Kbp and HN and F telegrams of NDV from agarose gel. The DNA fragment (1 ⁇ ) containing the offspring was recovered.
  • cleavage plasmid (0.5 g) previously collected and this DNA fragment (0.5 g) were ligated with ligase (T4 DNA ligase) to obtain plasmid PNP6935 according to a conventional method.
  • This plasmid and the above-mentioned pNZ6927RL have the same exogenous repressed gene, and differ only in the region and region that are indispensable for APV growth.
  • a recombinant fNP6935 was produced and purified in the same manner as in Example 3 except that PNP6935 was used as a recombinant vector. Both recombinants of fNP6935 and fNZ6927RL are Each was analyzed by the Southern hybridization method, and it was confirmed that the F, HN ⁇ and 1 acZ NDV genes of NDV were in the expected positions.
  • Example 7 Pox size and toxicity of chickens immunized with the recombinants obtained in Example 6 and Comparative Example 1
  • Fifty three-day-old chicks were prepared having a transferable antibody having a hemagglutination-inhibiting antibody titer of Newcastle disease virus of at least 4 or more.
  • the average hemagglutination-inhibiting antibody titer in these chicks was 24.3.
  • Chicks of 13 groups were whole-blood-collected from the heart, and the serum was stored at 4 ° C.
  • the group of 9 birds received no vaccination and was bred together with the vaccinated group in a chicken isolator for 3 weeks.
  • the pock size of the chicks in the inoculated group and the non-inoculated group was measured in the same manner as in Example 4, and 3 x 10 4 pfu of poison was given at 24 days of age after 3 weeks.
  • Newcastle disease virus Sato strain was inoculated (challenge) into the muscles of the thighs, and observed for 2 weeks.
  • fNP6935 which is the recombinant of the present invention, has a larger pox size than fNZ6927RL, and has better NDV challenge test results and HI antibody induction than fNZ6927RL.
  • NDV-H1 antibody titer at the age of age NDV challenge 'test Inoculated virus 3 10 17 24 (day) Survival / test feather protection rate (%) fNP6935 24.3 8.0 18.0 7.3 13/14 92.9 fNZ6927RL 24.3 8.4 7.6 4.0 9/14 64.3 I (Non-inoculated) 24.3 11.3 2.8 2.0 2/9 22.2
  • a recombinant APV can be obtained which has substantially the same in vivo proliferative properties as the parent strain even when a foreign gene is introduced into the genomic DNA region.
  • the recombinant APV of the present invention can be used as a vaccine against various bird pathogens. Furthermore, the recombinant APV of the present invention can be used as an effective vaccine against chickens carrying a transfer antibody.
  • genomic DNA region that is not essential for the growth of the APV of the present invention can incorporate various exogenous genes into the region. Therefore, it can be used as a tool for incorporating a wide variety of foreign genes into viruses capable of producing recombinant viruses by homologous recombination.
  • Sequence type nucleic acid
  • Organism name Pigeonpox virus
  • NP strain flalpox live vaccine strain
  • CTGTAATCCA CCACATTTTG TGTGAAGCCC TGCGGTCTTT CGTATGACAT TACACCTCCT 1560
  • CTTTATATTA CTAATCCTAG AGTACATACA GGCTAAATGT ATAGGTGTTT TACCGTATCT 3780
  • CTTTATCTTC TTTAGCAGTT TTCTTGTAAT AGGTAAATTC CTTAATTCGT ATATACACAT 3960

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

Genomic DNA regions of avipoxviruses (hereinafter referred to as APVs) having at least two foreign genes in the genomic regions nonessential for the proliferation of the APVs: recombinant APVs carrying the above-mentionned genomic DNA regions integrated thereinto and having substantially the same proliferation properties as those of the parent strains; vaccines comprising these APVs; and a method for producing the above-mentionned recombinant APVs and a method for screening the same. Various foreign genes can be integrated into the genomic DNA regions as described above, which makes these regions usable as tools for integrating foreign genes over a considerably wide range into viruses usable in the construction of recombinant viruses via homologous integration.

Description

明細書 ァビポックスウイルスの増殖に非必須な領域、 それを用いた組み換えァビポッ クスウィルス及びワクチン 技術分野  Description Non-essential region for propagation of avipox virus, recombinant avipox virus and vaccine using the same
本発明は、 アビボックスウィルス (以下、 APVという) の組み換え体及びそれ から成るワクチンに関し、 さらに詳しくは、 外来遺伝子が揷入されているが親株 と実質的に同等な増殖性を有する APV組み換え体及びそれからなるワクチンに関 する。 背景技術  The present invention relates to a recombinant of an avibox virus (hereinafter, referred to as APV) and a vaccine comprising the same, and more particularly, an APV recombinant having a foreign gene inserted therein but having substantially the same growth potential as a parent strain. And vaccines consisting thereof. Background art
現在の養鶏分野においては、 種鶏、 産卵鶏、 及び肉用鶏の別を問わず、 ヮクチ ネ一シヨンによる疾病予防は衛生管理の柱である。 しかしながらヮクチネーショ ンのプログラムは実に過密であり、 これに要する人手、 時間ならびに経費は大き な問題となっている。 この解決策として、 近年、 組み換え DNA技術により、 病原 体より免疫誘導に必要なタンパク質をコードする逮伝子のみを取り出し、 これを 含む組み換えウィルスを構築することが可能となった。 このような組み換えウイ ルスを組み換え生ワクチンとして接種することによリ、 揷入した遺伝子がコ一ド する抗原タンパク質に対する免疫を誘導することが可能である。 ボックスウィル スに属する APVはそのような組み換えウィルスの構築に用いるのに好適なウィル スである。 ファウルボックスウィルス (以下、 FPVと略すことがある) や鳩痘ポ ックスウィルス (以下、 PPVと略すことがある) に代表されるこれらウィルスは、 大きなゲノム DNAを持ち、 その多くの領域がウィルス増殖に非必須であり、 同一 ウィルスのこれらの非必須な領域に複数の抗原遺伝子を揷入することができる。 このような組み換えウィルスワクチンを鶏に接種すると液性免疫、 細胞性免疫を 誘導できる。 この方法は、 従来、 鶏痘に対する生ワクチンとして使用されてきた 弱毒化した FPVまたは PPVに遺伝子工学的手法を用いて外来退伝子を挿入した組 み換え APVとして応用されてきた。 弱毒化されたワクチン株を親株として用いる 理由は、 無視しえる程の確率でしか起こらないが、 万が一、 鶏体内で挿入された 遣伝子が脱落する場合でも強毒株にならないよう配慮している為である。 In the current poultry farming field, prevention of disease by cultivation is a pillar of hygiene management, regardless of whether it is a breeder, a laying hen, or a meat hen. However, the construction program is overcrowded, and the manpower, time and costs involved are a major concern. As a solution, in recent years, using recombinant DNA technology, it has become possible to extract only arrested genes encoding proteins necessary for immunity induction from pathogens and construct a recombinant virus containing the same. By inoculating such a recombinant virus as a live recombinant vaccine, it is possible to induce immunity against the antigen protein encoded by the introduced gene. APV belonging to the box virus is a suitable virus for use in constructing such a recombinant virus. These viruses, represented by foul box virus (hereinafter sometimes abbreviated as FPV) and pigeon pox virus (hereinafter sometimes abbreviated as PPV), have large genomic DNA, and many regions of the virus Non-essential, multiple antigen genes can be inserted into these non-essential regions of the same virus. When chickens are inoculated with such a recombinant virus vaccine, humoral immunity and cellular immunity can be induced. This method has been applied as a recombinant APV in which a foreign gene has been inserted into attenuated FPV or PPV, which has been used as a live vaccine against fowlpox, using genetic engineering techniques. Use attenuated vaccine strain as parent strain The reason is that it occurs only with a negligible probability, but we take care not to become a virulent strain even if the gene inserted in the chicken drops out.
外来遺伝子として、 鶏病ウィルスであるニューキャッスル病ウィルス (以下、 NDVと略すことがある) の抗原決定基をコードした逮伝子 (以下、 抗原遠伝子と いう) 、 マレック病ウィルスの抗原違伝子、 鶏インフルエンザウイルスの抗原遠 伝子を挿入した組み換え APV力構築され、 実験的に SPF鶏に接種して、 ワクチン 効果が確認されている(Boursne l l et aし, V i rol ogy, 178, 297-300, 1990; Nazeri an et al . , J. Vi rol . , 66, 1409-1413, 1992; Taylor et al . , Vaccine, 6, 504-508, 1988) 。 このように組み換え APVは、 目的に応じて種々の外来抗原遠伝 子を揷入することができ、 また同時に複数の抗原遗伝子を揷入できるので 1回接 種で複数の病原体に対して有効な多価ワクチンが可能になり、 その結果、 前述の 過密なヮクチンプロダラム問題の解決策と成りうると有望視されている。  As foreign genes, arrested genes encoding antigenic determinants of fowl disease virus, Newcastle disease virus (hereinafter abbreviated as NDV), and antigens of Marek's disease virus Recombinant APV inserted with the gene and the antigen gene of the chicken influenza virus has been constructed, and the vaccine effect has been confirmed experimentally by inoculating SPF chickens (Boursnell et al., Viroloogy, 178). , 297-300, 1990; Nazerian et al., J. Virol., 66, 1409-1413, 1992; Taylor et al., Vaccine, 6, 504-508, 1988). In this way, recombinant APV can introduce various foreign antigen genes depending on the purpose, and can simultaneously introduce multiple antigen genes, so that a single inoculation can protect against multiple pathogens. It is promising that an effective multivalent vaccine will be possible and, as a result, a solution to the overcrowded Pectin program problem.
しかしながら、 親ウィルスとして弱毒化されたウィルス (ワクチン株のウィル スなど) を用いた組み換え APVウィルスには弱点があった。 元来、 外来遠伝子が 揷入された組み換え体は、 親ウイルスよりも鶏体内での増殖が低下する。 一方、 弱毒化された親ウィルスは、 それ自体増殖性がきわめて低いものである。従って、 弱毒化された親ウィルスに、外来遣伝子を挿入すれば、当然得られた組み換え APV の増殖性は低下する。 このため、 弱毒ウィルスを親ウィルスとしたワクチンは、 実際に生体内で十分な効果が得られないことが多かった。  However, recombinant APV virus using an attenuated virus (such as the virus strain of vaccine) as the parent virus had weaknesses. Originally, recombinants in which an exogenous gene has been introduced have a lower growth rate in chickens than the parental virus. On the other hand, the attenuated parent virus is very low in its own right. Therefore, if an exogenous gene is inserted into the attenuated parent virus, the resulting recombinant APV naturally has a reduced proliferative potential. For this reason, vaccines using an attenuated virus as the parent virus often did not actually achieve sufficient effects in vivo.
この外来退伝子挿入による弱毒化現象は他の組み換えウィルスにおいても知ら れている現象である。 APVと同じボックスウィルス科に属するワクシニアウィル ス (以下、 VVと略すことがある) でも外来遠伝子揷入によって弱毒化することが 報告されている (Journal of Vi ro logy. 66: 2617-2630( 1992) ) 。 また、 本発明 者らは本願の実施例にも示す如く、 APVにおいても、 外来遠伝子を揷入すると殆 どの場合に弱毒化することを経験した。 発明の開示  This attenuation caused by the insertion of a foreign gene is a phenomenon that is also known in other recombinant viruses. Vaccinia virus belonging to the same box virus family as APV (hereinafter abbreviated as VV) has also been reported to be attenuated by the introduction of an exogenous telegene (Journal of Viology. 66: 2617-2630). (1992)). In addition, as shown in the examples of the present application, the present inventors have also experienced that incorporation of a foreign telegene attenuates APV in most cases. Disclosure of the invention
本発明者らは、 外来逮伝子が挿入されても鶏での増殖性が低下しな 、組み換え 体を作る方法を開発すベく鋭意研究した結果、 外来遠伝子の挿入によっても親株 の増殖性と比較して実質的に増殖性が低下しない挿入部位の同定に成功し、 これ に外来遺伝子を挿入することで弱毒化しない組み換え体が作れることを見い出し、 本発明を完成するに到った。 The present inventors have conducted intensive studies to develop a method for producing a recombinant so that the growth in chickens does not decrease even when an exogenous gene is inserted. Succeeded in identifying an insertion site at which proliferation was not substantially reduced as compared with the proliferation of, and found that a recombinant that did not attenuate could be made by inserting a foreign gene into the insertion site, thus completing the present invention. Was.
すなわち、 本発明の第一の態様は、 APVの増殖に必須でないゲノム DNA領域に 少なくとも 2以上の外来遺伝子を有し、 かつ親株と実質的に同等な増殖性を有す る組換え APVである。 ここで、 上記 APVの増殖に非必須な領域は、 配列表の配列 番号 1に記載の塩基配列を有することを特徴とする。 上記 APVの増殖に非必須な ゲノム DNA領域はまた、 上記外来遺伝子のうち最上流に位置する遗伝子の 5'側お よび最下流に位置する遺伝子の 3'側に少なくとも 300塩基からなる塩基配列を有 し、 前記塩基配列が配列番号 1に記載の塩基配列の連続した一部と相同性を有す ることを特徴とする。  That is, the first aspect of the present invention is a recombinant APV having at least two or more foreign genes in a genomic DNA region that is not essential for the growth of APV, and having substantially the same growth potential as the parent strain. . Here, the region that is not essential for the growth of APV is characterized by having the nucleotide sequence of SEQ ID NO: 1 in the sequence listing. The genomic DNA region that is not essential for APV growth also contains at least 300 bases 5 ′ to the most upstream gene and 3 ′ to the most downstream gene among the foreign genes. Characterized in that the base sequence has homology to a continuous part of the base sequence set forth in SEQ ID NO: 1.
さらに、 上記外来遺伝子は、 マ一力一遺伝子、 プロモーターをコードする遺伝 子、 および鳥の病原体の抗原決定基をコードする遺伝子からなる群から選ばれる ことを特徴とする。  Further, the foreign gene is selected from the group consisting of a gene encoding a promoter, a gene encoding a promoter, and a gene encoding an antigenic determinant of a bird pathogen.
上記鳥の病原体の抗原決定基をコードする遠伝子は、 伝染性ファブリキウス嚢 病ウィルス、 鳩伝染性気管支炎ウィルス、 鶏脳髄膜炎ウィルス、 ニューキヤッス ル病ウィルス、 マレック病ウィルス、 および鶏インフルエンザウイルスからなる 群から選ばれるウィルスの抗原決定基をコ一ドする遠伝子であることを特徴とす る。 さらにまた、 上記外来遺伝子は、 ニューキャッスル病ウィルスの抗原決定基 をコードする遺伝子であってもよく、 上記ニューキャッスル病ウィルスの抗原決 定基をコードする遺伝子が、 F抗原または H N抗原をコードする遺伝子であるこ とを特徴とする。  The transgenes encoding the antigenic determinants of the avian pathogens include infectious bursal disease virus, pigeon infectious bronchitis virus, chicken meningitis virus, Newcastle disease virus, Marek's disease virus, and chicken flu virus. It is characterized by being a gene encoding a viral determinant selected from the group consisting of viruses. Furthermore, the foreign gene may be a gene encoding an antigenic determinant of Newcastle disease virus, and the gene encoding the antigenic determinant of Newcastle disease virus is a gene encoding F antigen or HN antigen. It is characterized by the following.
上記 APVは、 鶏痘ワクチン株であることを特徴とする。 加えて、 上記 APVは、 鳩痘中野株であることを特徴とする。  The APV is a fowlpox vaccine strain. In addition, the above-mentioned APV is characterized by a pigeonpox Nakano strain.
本発明の第二の態様は、 鳩痘中野株由来の APVの増殖に非必須なゲノム DNA領 域を含む組換えブラスミ ドである。さらに、上記 APVの増殖に非必須なゲノム DNA 領域が、 少なくとも配列番号 1に記載の塩基配列を有することを特徴とする。 上記組換えプラスミ ドの APVの増殖に非必須なゲノム DNA領域には、 さらに、 少なくとも 2以上の外来遺伝子が含まれていてもよく、このような外来遺伝子は、 マーカ一遠伝子、 プロモーターをコードする逮伝子、 および鶏の病原体の抗原決 定基をコードする遠伝子からなる群から選ばれることを特徴とする。 上記マーカ —遺伝子は、 プロモーターをコードする逮伝子、 鶏の病原体の抗原決定基をコー ドする遺伝子は、 組換え APVについて上述したのと同じ群から選ばれることを特 徴とする。 さらに、 上記外来遗伝子は、 ニューキャッスル病ウィルスの抗原決定 基をコードする逮伝子であってもよく、 その場合には、 ニューキャッスル病ウイ ルスの抗原決定基をコードする遠伝子が、 F抗原または H N抗原をコードする遺 伝子であることを特徴とする。 A second aspect of the present invention is a recombinant plasmid containing a genomic DNA region that is non-essential for the growth of APV from the pigeonpox Nakano strain. Furthermore, the genomic DNA region not essential for APV growth has at least the nucleotide sequence of SEQ ID NO: 1. The genomic DNA region of the recombinant plasmid that is not essential for the growth of APV may further contain at least two or more foreign genes. It is selected from the group consisting of a marker gene, a gene encoding a promoter, and a gene encoding an antigenic determinant of a chicken pathogen. The marker-gene is characterized in that the gene encoding the promoter and the gene encoding the antigenic determinant of the chicken pathogen are selected from the same group as described above for recombinant APV. Further, the exogenous gene may be an arresting gene encoding an antigenic determinant of Newcastle disease virus, in which case the distant gene encoding the antigenic determinant of Newcastle disease virus may be used. , F, or HN antigen.
本発明の第三の態様は、上述した組換え APVを有効成分とするワクチンである。 上記組換えウィルスを有効成分とする抗ニューキャッスル病用ワクチンである。 本発明の第四の態様は、 (l )APVのゲノム DNAを任意に切断して DNA断片を得る 工程と、 (2) 2以上の外来遣伝子を前記 DNA断片に導入する工程と、 (3)前記外来 退伝子を導入した DNA断片をブラスミドに導入して組換え用プラスミドを作製す る工程と、(4)前記組換え用プラスミドで APVを組み換えて組換え APVを作製する 工程とを備えることを特徴とする、 鶏の体内における増殖性が親株と実質的に同 等な組換え APVの製造方法である。  A third aspect of the present invention is a vaccine containing the above-mentioned recombinant APV as an active ingredient. An anti-Newcastle disease vaccine comprising the above-mentioned recombinant virus as an active ingredient. A fourth aspect of the present invention provides: (l) a step of arbitrarily cleaving APV genomic DNA to obtain a DNA fragment; (2) a step of introducing two or more foreign genes into the DNA fragment; 3) a step of preparing a plasmid for recombination by introducing the DNA fragment into which the foreign gene has been introduced into a plasmid, and (4) a step of preparing recombinant APV by recombining APV with the plasmid for recombination. A method for producing a recombinant APV having substantially the same growth ability in a chicken as a parent strain, characterized by comprising:
上記 DNA断片は、 APVの増殖に非必須な DNA領域からなることを特徴とする。 また、 上記外来逮伝子は、 マーカー遗伝子、 プロモーターをコードする退伝子、 および鳥の病原体の抗原決定基をコードする逮伝子からなる群から選ばれること を特徴とする。  The DNA fragment comprises a DNA region not essential for APV growth. In addition, the exogenous arrestor is selected from the group consisting of a marker 子 gene, a promoter-encoding gene and an avian pathogen antigenic determinant-encoding element.
本発明の製造方法においては、 上記鳥の病原体の抗原決定基をコードする遺伝 子は、 伝染性ファブリキウス嚢病遣伝子、 鳩伝染性気管支炎ウィルス、 鶏脳髄膜 炎ウィルス、 ニューキャッスル病ウィルス、 マレック病ウィルス、 および鶏イン フルェンザウィルスからなる群から選ばれるウィルスの抗原決定基をコードする 逮伝子であることを特徴とする。 また、 上記外来遺伝子は、 NDVの抗原決定基を コードする逮伝子であることが特に好ましく、 上記 NDVの抗原決定基をコ一ドす る遺伝子は、 F抗原または H N抗原をコードする退伝子であることを特徴とする。 本発明の第五の態様は、 (l ) in vi troで、 組換え APVに感染させたトリ由来の 株化細胞を寒天培養したときに青色プラークを形成するウィルスを選択する工程 と、 (2) in vivoで、 上記青色プラークを形成するウィルスを鶏に感染させた後の ボックサイズを測定する工程とを備えることを特徴とする、 鶏体内での増殖性が 実質的に低下していな 、組み換え APVのスクリ一ニング方法である。 In the production method of the present invention, the genes encoding the antigenic determinants of the avian pathogen are infectious bursal disease transmitting gene, pigeon infectious bronchitis virus, chicken meningitis virus, Newcastle disease virus, It is an arrestor encoding an antigenic determinant of a virus selected from the group consisting of Marek's disease virus and chicken influenza virus. In addition, the foreign gene is particularly preferably an arrestor encoding an NDV antigenic determinant, and the gene encoding the NDV antigenic determinant is a transgene encoding an F antigen or an HN antigen. It is characterized by being a child. A fifth aspect of the present invention is a method of (l) selecting a virus that forms a blue plaque when a cell line derived from a bird infected with recombinant APV is cultured on agar in vitro. And (2) measuring the box size after infecting chickens with the virus that forms the blue plaque in vivo, wherein the growth in chickens is substantially reduced. Not a screening method for recombinant APV.
本発明の第六の態様は、 APVの増殖に必須でないゲノム DNA領域であって、 前 記領域に大腸菌由来の 3—ガラクトシダーゼ逮伝子 (lacZ遺伝子) が VV 7. 5 K プロモーターとともに挿入された組換え APVの鶏体内での増殖性が前記 —ガラ クトシダ一ゼ遗伝子揷入前のウィルスの鶏体内での増殖性と比して実質的に低下 していなレヽ組換え APVが得られるゲノム DNA領域である。  A sixth embodiment of the present invention relates to a genomic DNA region that is not essential for APV growth, wherein an Escherichia coli-derived 3-galactosidase arrestor (lacZ gene) has been inserted into the region together with the VV7.5K promoter. It is possible to obtain a recombinant APV in which the growth of recombinant APV in chickens is not substantially reduced as compared to the growth of the virus in chickens before the introduction of the above-mentioned galactosidase enzyme. Genomic DNA region.
また、 本発明は、 外来遺伝子を特定の部位に組込んだ配列番号 1に記載の塩基 配列を含む APVの増殖に非必須なゲノム DNA領域である。 上記特定の部位は、 配 列番号 1に記載の塩基配列の塩基番号 962〜967に存在する Cl al部位および Zま たは塩基番号 4, 267〜4,272に存在する Hpal部位であることを特徴とする。  Further, the present invention is a genomic DNA region that is non-essential for APV growth and contains the nucleotide sequence of SEQ ID NO: 1 in which a foreign gene has been incorporated into a specific site. The specific site is a Clal site existing at nucleotides 962 to 967 of the nucleotide sequence described in SEQ ID NO: 1 and an Hpal site existing at Z or nucleotides 4, 267 to 4,272 of the nucleotide sequence. Features.
本発明の第七の態様は、 上述したワクチンの鳥類への使用である。 ここで、 上 記鳥類は、 鳩、 あひる、 鴨、 合鴨、 驚鳥、 七面鳥、 うずら、 鶏、 きじおよびほろ ほろちょうからなる群から選ばれることを特徴とする。  A seventh aspect of the present invention is the use of the above-mentioned vaccine in birds. Here, the above-mentioned birds are characterized in that they are selected from the group consisting of pigeons, duck, duck, duck, surprising bird, turkey, quail, chicken, pheasant, and slime.
本発明の第八の態様は、上述のワクチンを用いる鳥類の疾病の予防方法である。 ここで、 上記鳥類は、 鳩、 あひる、 鴨、 合鴨、 鷲鳥、 七面鳥、 うずら、 鶏、 きじ およびほろほろちようからなる群から選ばれることを特徴とする。 図面の簡単な説明  An eighth aspect of the present invention is a method for preventing avian diseases using the above-mentioned vaccine. Here, the birds are characterized in that they are selected from the group consisting of pigeons, duck, duck, duck, eagle bird, turkey, quail, chicken, pheasant, and squirrel. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 l acZ Z遺伝子を発現する様々な組み換え体を接種した SPF鶏での発痘 サイズの推移を示したグラフである。 ここで、 横軸は各組換え体を接種した後の 日数 (日) であり、 縦軸は発痘サイズ (醒3) を示したものである。 FIG. 1 is a graph showing the change in pox size in SPF chickens inoculated with various recombinants expressing the lacZZ gene. Here, the horizontal axis shows the number of days (days) after inoculation of each recombinant, and the vertical axis shows the size of the varicella (wakefulness 3 ).
図 2は、 PNP35の非必須領域の制限酵素地図 (a ) 、 サブクローン (b ) 、 お よび欠失変異クローン (c ) をそれぞれ示した図である。 図に示した通り、 (a ) の 2 kbpは Cl alからの距離を示す。 (b ) のそれぞれの数字は、 サブクローンの 名称を示す。 (c ) は、 欠失クローンを示し、 上から順に、 35dl l、 35dl2、 35dI3、 35dl4および 35dl 5である。  FIG. 2 shows a restriction map (a), a subclone (b), and a deletion mutant clone (c) of a non-essential region of PNP35, respectively. As shown in the figure, 2 kbp in (a) indicates the distance from Clal. Each number in (b) indicates the name of the subclone. (C) shows the deletion clones, 35dl1, 35dl2, 35dl3, 35dl4 and 35dl5 in order from the top.
図 3は、 各組換え体で免疫したニューカッスル病に対する移行抗体保有鶏の発 痘サイズの推移を示したグラフである。 ここで、 横軸は各組換え体を接種した後 の日数 (日) であり、 縦軸は発痘サイズ (删 3) を示したものである。 Figure 3 shows the development of chickens carrying a transfer antibody against Newcastle disease immunized with each recombinant. It is a graph which showed transition of pox size. Here, the horizontal axis shows the number of days (days) after inoculation of each recombinant, and the vertical axis shows the size of the varicella (删3 ).
図 4は、 プラスミド pNZ76の構築を示す図である。 pNZ76は、 VVの 7. 5 Kプロ モータ—と^—ガラクトシダーゼとを有するベクタ一である。  FIG. 4 is a diagram showing the construction of plasmid pNZ76. pNZ76 is a vector containing the 7.5V promoter of VV and ^ -galactosidase.
図 5は、 プラスミ ド PNZ98の構築を示す図である。 pNZ98は、 VVの 7. 5 Kプロ モータ一と NDVの F遺伝子とを有するベクターである。  FIG. 5 is a diagram showing the construction of plasmid PNZ98. pNZ98 is a vector having the 7.5V promoter of VV and the F gene of NDV.
図 6は、 プラスミド PNZ87の構築を示す図である。 pNZ87は、 VVの 7. 5 Kプロ モータ一と NDVの H N遺伝子とを有するベクタ一である。  FIG. 6 is a diagram showing the construction of plasmid PNZ87. pNZ87 is a vector having the 7.5K promoter of VV and the HN gene of NDV.
図 7は、本発明の APVの増殖に非必須な領域のゲノム DNA配列を示す図である。 このゲノム DNA領域中にある制限酵素の切断部位を下線をつけて示す。 C l al部 位 (塩基番号 962) または Hpal部位 (塩基番号 3, 691〜3, 696. 同 4, 267〜4, 272) を示した。 発明を実施するための最良の形態  FIG. 7 is a view showing a genomic DNA sequence of a region not essential for the growth of the APV of the present invention. Restriction enzyme cleavage sites in this genomic DNA region are underlined. The Cl site (base No. 962) or the Hpal site (base Nos. 3, 691 to 3, 696. 4, 267 to 4, 272) were indicated. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において APVの増殖に必須でない領域とは、 APVが増殖する際に必要と されない領域をいい、 具体的には、 配列番号 1に記載の塩基配列で表される領域 をいう。 ここで、 APVとは、 動物の DNAウィルスであるボックスウィルス科コル ドボックスウイルス亜科 APV属に属するウイルスの総称である。 このウィルスは 鳥類に感染するとボックを形成し、 形成されたボックの大きさによつて感染性の 強さを判断することができる。 具体的なウィルスとしては、 ファウルボックスゥ ィルス、 鳩ボックスウィルス、 カナリ一ボックスウィルス、 クエルボックスウイ ルスなどを挙げることができる。  In the present invention, the region that is not essential for APV growth refers to a region that is not required for APV growth, and specifically refers to a region represented by the nucleotide sequence of SEQ ID NO: 1. Here, APV is a collective term for viruses belonging to the genus APV, a subfamily of the box virus family, which is an animal DNA virus. When the virus infects birds, it forms a bock, and the size of the bock formed can determine the degree of infectivity. Specific viruses include foul box virus, pigeon box virus, canary box virus, and quell box virus.
APVの増殖に必須でない領域としては、 配列番号 1に記載の塩基配列を挙げる ことができる。 配列番号 1に記載の塩基配列は、 鶏痘ワクチン株由来であること が好ましい。 鶏痘ワクチン株としては、 鳩痘中野株 (鶏胎化鳩痘毒中野株) およ び CEVAヮクチン株などを挙げることができる。配列番号 1に記載の塩基配列は、 これらの鶏痘ワクチン株のうち鳩痘中野株に由来するものである。  The region that is not essential for APV growth includes the nucleotide sequence of SEQ ID NO: 1. The nucleotide sequence set forth in SEQ ID NO: 1 is preferably derived from a fowlpox vaccine strain. Examples of the fowlpox vaccine strain include the fowlpox Nakano strain (fetal fowlpox poison toxin Nakano strain) and the CEVA Pectin strain. The nucleotide sequence set forth in SEQ ID NO: 1 is derived from the fowlpox Nakano strain among these fowlpox vaccine strains.
外来遠伝子とは、 APVが本来有していない遺伝子をいい、 いかなる動物種に由 来するものであってもよい。 このような外来逮伝子の具体例としては、 各種マ一 力一遺伝子、 各種プロモータ一をコードする逮伝子、 鳥の病原体の抗原決定基を コードする遺伝子その他の遺伝子を挙げることができる。 An exogenous gene is a gene not originally possessed by APV and may be of any animal species. Specific examples of such outpatients are Examples include the gene encoding the promoter, the gene encoding the various promoters, the gene encoding the antigenic determinant of the avian pathogen, and other genes.
各種マ一カー遺伝子としては、 大腸菌由来の l acZ遠伝子、 ルシフェラーゼ逮伝 子などを挙げることができる。  Examples of various marker genes include a lacZ gene and a luciferase gene derived from Escherichia coli.
各種プロモーターをコードする遠伝子としては、 VVの 7. 5Kポリペプチドをコ ードする遠伝子、 VVの 1 1 Kポリペプチドをコードする遠伝子、 VVの 19 Kポリ ペプチドをコードする遺伝子、 VVの 42 Kポリペプチドをコードする遺伝子、 お よびチミジンキナーゼをコードする遺伝子、 VVの 28 Kポリぺプチドをコードす る遣伝子などを挙げることができる。  Genes encoding various promoters include those encoding the VV 7.5K polypeptide, those encoding the VV 11K polypeptide, and those encoding the VV 19K polypeptide. Examples include a gene, a gene encoding a 42K polypeptide of VV, a gene encoding a thymidine kinase, a gene encoding a 28K polypeptide of VV, and the like.
鳥の病原体の抗原決定基をコードする遺伝子としては、 伝染性ファブリキウス 嚢病ウィルス、 鳩伝染性気管支炎ウィルス、 鶏脳髄膜炎ウィルス、 ニューキヤッ スル病ウィルス、 マレック病ウィルス、 および鶏インフルエンザウイルスなどの 抗原決定基をコードする遺伝子を挙げることができる。 上記外来遺伝子としてュ 一キャッスル病ウイルスの抗原決定基をコードする遺伝子を選択すると、 この遺 伝子を組込んだウイルスが鶏に感染したときに、 NDVに対する抗体が産生される。 鳥の病原体の抗原決定基をコードする遠伝子がニューキャッスル病ウィルスの抗 原決定基をコードする遗伝子である場合、 F抗原または H N抗原をコードする遠 伝子であると、 NDVの発症を予防できる抗体が産生されるために、 特に好適であ る。  Genes encoding antigenic determinants of avian pathogens include antigens such as infectious bursal disease virus, pigeon infectious bronchitis virus, chicken meningitis virus, Newcastle disease virus, Marek's disease virus, and chicken flu virus Mention may be made of genes encoding determinants. If a gene encoding an antigenic determinant of the Castle Castle virus is selected as the foreign gene, an antibody against NDV is produced when a virus incorporating this gene infects chickens. If the gene encoding the antigenic determinant of the avian pathogen is the gene encoding the antigenic determinant of Newcastle disease virus, and if it is the gene encoding the F or HN antigen, the NDV It is particularly preferred because it produces antibodies that can prevent onset.
本発明においては、 少なくとも 2以上の外来遺伝子が上記 APVの増殖に必須で ない領域に組込まれることが好ましい。 これらの外来遠伝子は、 それらの遠伝子 が発現される限り、 どのような組み合わせで導入されてもよく、 導入される数に ついても制限はされないが、 例えば、 適当なプロモーターと鳥の病原体の抗原決 定基をコードする遗伝子とを組み合わせて導入すると、 導入されたプロモーター の制御下にこの抗原決定基をコードする速伝子が発現され、 鳥の病原体の抗原決 定基がタンパク質として産生される。 上記 2以上の逮伝子は、 必要に応じてリン 力一配列を介して連結し、 これを導入してもよく、 また、 連結させて導入しても よい。  In the present invention, it is preferable that at least two or more foreign genes are integrated into a region that is not essential for APV growth. These exogenous transgenes may be introduced in any combination as long as the transgenes are expressed, and there is no limitation on the number of introduced transgenes. When introduced in combination with a gene encoding the antigenic determinant of the pathogen, a rapid gene encoding this antigenic determinant is expressed under the control of the introduced promoter, and the antigenic determinant of the bird pathogen is converted into a protein. Produced. The above two or more arrested children may be linked via a phosphorus sequence as necessary and introduced, or they may be linked and introduced.
少なくとも 2以上の外来遺伝子の揷入によって、 APVの増殖に必須でない領域 は、外来遺伝子の最上流 5'側に結合する領域と最下流 3'側に結合する領域とに分 離する。 Non-essential regions for APV growth due to the introduction of at least two foreign genes Is separated into a region that binds to the most upstream 5 ′ side of the foreign gene and a region that binds to the most downstream 3 ′ side.
このとき、 上記 APVの増殖に必須でない領域は、 外来遣伝子のうち最上流に位 置する遺伝子の 5'側に少なくとも 300bpの塩基配列 (以下、 上流側塩基配列とい う) を有し、 最下流に位置する遺伝子に位置する遠伝子の 3'側にも少なくとも 300bpの塩基配列 (以下、 下流側塩基配列という) を有すると、 相同組換えに有 利である。 上流側塩基配列および下流側塩基配列は、 好ましくは約 600bp以上、 より好ましくは約 800bp以上であり、 約 l . OOObpであることが特に好ましい。 そ して、 これら塩基配列は配列番号 1に記載の塩基配列の連続した一部と相同性を 有するものである。  At this time, the region that is not essential for the growth of the APV has a base sequence of at least 300 bp (hereinafter referred to as an upstream base sequence) on the 5 'side of the gene located at the most upstream position of the foreign gene, It is advantageous for homologous recombination to have a nucleotide sequence of at least 300 bp (hereinafter, referred to as a downstream nucleotide sequence) also at the 3 ′ side of the gene located at the most downstream gene. The upstream base sequence and the downstream base sequence are preferably about 600 bp or more, more preferably about 800 bp or more, and particularly preferably about l. OOObp. These nucleotide sequences have homology with a continuous part of the nucleotide sequence shown in SEQ ID NO: 1.
配列番号 1に記載の塩基配列の連続した一部とは、 上記の少なくとも 300bpの 配列が、 配列番号 1に記載の塩基配列のある塩基を基点として少なくとも 300個 連続している配列をいう。  The continuous part of the nucleotide sequence of SEQ ID NO: 1 refers to a sequence in which at least 300 bp of the above-mentioned sequence of at least 300 bp start from a base having the nucleotide sequence of SEQ ID NO: 1.
また、 相同性を有するとは、 上流側塩基配列および下流側塩基配列と、 配列番 号 1に記載の塩基配列と力 一定の割合以上相同であればよいことを意味する。 少なくとも約 90%以上、 好ましくは約 95%以上、 より好ましくは約 99%以上の 相同性をいう。 なお、 本発明でいう相同性は、 DNAシーケンス入力解析システム Further, having homology means that it is only required that the upstream base sequence and the downstream base sequence are homologous to the base sequence described in SEQ ID NO: 1 by a certain ratio or more. A homology of at least about 90% or more, preferably about 95% or more, more preferably about 99% or more. The homology referred to in the present invention is a DNA sequence input analysis system.
「DNASYS」 (宝酒造製) により測定した値である。 The value was measured by "DNASYS" (Takara Shuzo).
本発明の APVの増殖に非必須な領域は、 例えば、 以下のようにして得ることが できる。 すなわち、 鶏胎児細胞に鶏胎化鳩痘毒中野株 (日本ファーマシー社製) を所定の感染多重度 (mo i ) で接種し、 一定時間吸着させた後に培地を添加して 37°Cで数日間培養し、上清を集めてここからウィルス粒子を回収し、 ウィルス DNA を得る。 このウィルス DNAを制限酵素で消化し、 DNA断片を得る。 適当なブラス ミドを制限酵素で消化し、 このプラスミドと制限酵素消化 DNA断片とをライゲー トして形質転換陽ブラスミドを作製する。 このプラスミドを用いてコンビテント な大腸菌を形質転換し、 選択用培地を用いて形質転換体の濃度を高める。 選択さ れた形質転換大腸菌をさらに培養してブラスミドを抽出し、 制限酵素で消化して 電気泳動にかけもとのウイルス DNAの制限酵素消化断片と同じものがあるかどう かを検出するという、 ショットガンクローング法などの方法で得ることができる (特開平 1 - 168279号公報) 。 The non-essential region of the APV of the present invention can be obtained, for example, as follows. That is, fetal chicken cells are inoculated with fowl fowl pox poison venom Nakano strain (manufactured by Nippon Pharmacy) at a predetermined multiplicity of infection (mo i), allowed to adsorb for a certain period of time, added with a medium, and counted at 37 ° C. After culturing for a day, collect the supernatant, collect virus particles from it, and obtain virus DNA. This viral DNA is digested with restriction enzymes to obtain a DNA fragment. An appropriate plasmid is digested with a restriction enzyme, and this plasmid and a DNA fragment digested with the restriction enzyme are ligated to prepare a transformed positive plasmid. The plasmid is used to transform competent Escherichia coli, and the concentration of the transformant is increased using a selection medium. The selected transformant Escherichia coli is further cultured to extract a plasmid, digested with restriction enzymes, and subjected to electrophoresis to detect whether there is the same restriction enzyme digest fragment of the original viral DNA. Can be obtained by a method such as the gun cloning method (JP-A-1-168279).
このようにして得られた APVの増殖に非必須なゲノム DNA領域に、 例えば、 β ーガラクトシダーゼ遺伝子を VVの 7. 5 Κプロモーターをコ一ドする遺伝子ととも に挿入することによって、 外来遺伝子を有する APVの増殖に非必須なゲノム DNA 領域を作製することができる。 さらに、 外来遠伝子を有する APVの増殖に非必須 なゲノム DNA領域で APVを相同組換えして組換え APVを作製したときに、 このゲ ノム DNA領域が組換え APVの増殖に影響を与えるかどうかは、 後述するように、 組換え APVの鶏の体内における増殖性によつて確認することができる。 これによ つて、 組換え APVの増殖性が親株のそれと比べて実質的に低下しない、 外来遣伝 子の挿入部位を決定することができる。  By inserting, for example, the β-galactosidase gene together with the gene encoding the 7.5 V promoter of VV into the genomic DNA region thus obtained, A genomic DNA region not essential for the growth of APV can be created. Furthermore, when a recombinant APV is produced by homologous recombination of an APV with a genomic DNA region that is not essential for the growth of an APV having an exogenous gene, the genomic DNA region affects the growth of the recombinant APV. Whether it can be confirmed by the growth of recombinant APV in chickens, as described below. This makes it possible to determine the insertion site of the foreign gene where the growth of the recombinant APV does not substantially decrease compared to that of the parent strain.
より具体的には、 VVの 7. 5 Κプロモーターをコードする遺伝子とともに^一 ガラクトシダーゼ遺伝子を外来遺伝子として有する APVの増殖に非必須なゲノム DNA領域は、 例えば、 以下のような工程で得ることができる。 すなわち、 (a ) APVのゲノム DNAを制限酵素で切断し、 所定のベクターにクローニングして複数 のクローンを得る工程と、 (b )各クローンの APVゲノム DNA断片内に、 VVの7. 5 Kプロモーターとともに /3—ガラクトシダーゼ遺伝子を揷入する工程と、 (c ) APVを感染させた細胞に (b ) で作製した各ベクターをトランスフエクシヨンす る工程と、 (d ) 各組換え体を純化する工程と、 (e ) 純化した各組み換え体お よび組み換え体の親株とをそれぞれ同量、 鶏に接種して接種後 3週間にわたって 発痘の大きさを測定する工程と、 (f ) 発痘の大きさが実質的に親株と同等な組 換え体を選択する工程とを備えるものである。 この方法を用いることによって、 その組み換え体を作製するのに使用した (a ) のベクターに本発明の APVの増殖 に非必須なゲノム DNA領域がクローニングされていることが確認される。  More specifically, a genomic DNA region that is non-essential for the growth of APV that has the ^ -galactosidase gene as a foreign gene together with the gene encoding the 7.5V promoter of VV can be obtained, for example, by the following steps. it can. That is, (a) a step of cleaving APV genomic DNA with a restriction enzyme and cloning into a predetermined vector to obtain a plurality of clones, and (b) a 7.5 KV of VV within the APV genomic DNA fragment of each clone. (C) transfection of each vector prepared in (b) into cells infected with APV, and (d) purification of each recombinant. (E) inoculating chickens with the same amount of each of the purified recombinants and the parent strain of the recombinants and measuring the magnitude of variability over 3 weeks after inoculation; and (f) variability And selecting a recombinant having substantially the same size as the parent strain. By using this method, it is confirmed that a genomic DNA region that is not essential for the growth of APV of the present invention has been cloned into the vector (a) used to prepare the recombinant.
本発明の APVの増殖に非必須なゲノム DNA領域の具体例としては、 鶏胎化鳩痘 中野株 (N P株) ゲノム DNAを EcoR Iで消化して得られる、 5 Kbの断片 (配列 番号 1 ) を挙げることができる。 この断片の所定の位置に^一ガラクトシダーゼ 遺伝子を VVの 7. 5 Kプロモータ一をコードする逮伝子とともに揷入すると、 APV の増殖性に影響を与えず、 親株と実質的に同等な増殖性を有する組換えウィルス を得ることができる。 ここで、 所定の位置とは、 配列番号 1の塩基配列において は、塩基番号 962〜967の C I al部位、 3, 691〜3, 696の Hpal部位および 4, 267〜4, 272 の Hpal部位である。 上記の外来遺伝子は、 これらのいずれかまたは複数の部位に 揷入することができる。 Specific examples of the genomic DNA region that is not essential for the growth of APV of the present invention include a 5 Kb fragment (SEQ ID NO: 1) obtained by digesting genomic DNA of chicken embryonated pigeon pox Nakano strain (NP strain) with EcoRI. ). When the ^ -galactosidase gene is inserted into this fragment at a predetermined position together with an arresting gene encoding the 7.5V promoter of VV, the growth of APV is not affected and the growth is substantially equivalent to that of the parent strain. A recombinant virus having the following formula: Here, the predetermined position refers to the nucleotide sequence of SEQ ID NO: 1. Are the CI al site at base numbers 962-967, the Hpal site at 3,691-3,696 and the Hpal site at 4,267-4,272. The above-mentioned foreign gene can be inserted into any or a plurality of these sites.
本発明の組換え APVは、 上述したような APVの増殖に非必須なゲノム DNA領域 を含むものであり、 さらにその増殖性は親株と実質的に同等である。  The recombinant APV of the present invention contains a genomic DNA region that is non-essential for the growth of APV as described above, and its growth is substantially equivalent to that of the parent strain.
親株とは、 上述した APVの増殖に非必須なゲノム DNA領域で組換えられていな い APVをいい、 上述した APVの増殖に非必須なゲノム DNA領域を用いて組換える ことができるウィルスを意味する。 このようなウィルスは鳥類に感染するもので ある限りいかなるウィルスでもよいが、 鳩、 ァヒル、 鴨、 合鴨、 鷲鳥、 七面鳥、 うずら、 鶏、 きじおよびほろほろちょう鶏などの家禽類の細胞中で増殖可能なも のであることが好ましい。  The parent strain refers to an APV that has not been recombined with a genomic DNA region that is not essential for the growth of APV, and a virus that can be recombined using a genomic DNA region that is not essential for the growth of APV described above. I do. Such a virus can be any virus as long as it infects birds, but propagates in cells of poultry, such as pigeons, ducks, duck, duck, eagle, turkey, quail, chicken, pheasant, and sarcophagi. Preferably, it is possible.
このようなウィルスとしては、 フオウルボックスウィルス (FPV) 、 ピジョンポ ックスウィルス (PPV) 、 カナリ一ボックスウィルス、 七面鳥ボックスウィルス、 クエルボックスウィルス亜属に属する各種のウィルスを挙げることができる。 そ れらの具体例としては、 ATCC VR-251、 ATCC VR-250, ATCC VR-229、 ATCC VR- 249、 ATCC VR-288, 西ケ原株、 泗水株、 CEVA株、 CEVAワクチン株由来のウィルスのう ち、 鶏胚繊維芽細胞(CEF) に感染したとき大きいプラークを形成するものなどの 狭義の FPVといわれるウィルス群、 鶏胎化鳩痘中野株 (N P株) 等のように狭義 の FPVと近縁のウィルスであって鶏痘生ワクチン株として使用されるウィルスな どが例示される。 これらは、 寄託機関、 市販ワクチンとして、 あるいはアメリカ ン ' タイプ 'カルチャー · コレクション (ATCC) などの機関から入手することが できる。  Examples of such viruses include fowl box virus (FPV), pigeon pox virus (PPV), canari box virus, turkey box virus, and various viruses belonging to the subgenus quell box virus. Specific examples of these include viruses derived from ATCC VR-251, ATCC VR-250, ATCC VR-229, ATCC VR-249, ATCC VR-288, Nishigahara strain, Sashimi strain, CEVA strain, and CEVA vaccine strain. A group of viruses called NPV in the narrow sense, such as those that form large plaques when infected with chicken embryo fibroblasts (CEF), and a narrow group of FPV, such as the fetal fowlpox Nakano strain (NP strain) Examples include closely related viruses used as live fowlpox vaccine strains. These can be obtained from depositaries, commercial vaccines, or from institutions such as the American 'Type' Culture Collection (ATCC).
これらのうちでも、 鷂痘ワクチン株を用いること力、 ワクチンとしての安全性 の点から好ましい。  Among these, it is preferable to use a smallpox vaccine strain and to be safe as a vaccine.
親株と実質的に同等な増殖性を有する組換え APVとは、 親株の増殖性を 100と したときに以下のように定義される増殖性を有する APVをいう。 鶏体内における 増殖性は、 APVの増殖に伴って形成されるボックサイズから算出する。 ウィルス の感染後に形成されるボックサイズが小さくなるほど、 その増殖性は低下したと 判断される。 具体的には、 親株または上述のように作製した組換え APVを鶏の翼 膜に接種し、接種後 3日おきにデジタルノギスを用いて各個体のボックの縦-横 - 高さを測定し、 これらの積としてボックサイズを算出する。 親株によって形成さ れたボックサイズを (A ) 、 組換え APVによって形成されたボックサイズを (B ) とし、 Aと Bとの比である B Z A X 100 ( % ) を増殖性の指標とする。 この比が、 通常 90%以上 1 10%以下、 好ましくは 95%以上 105%以下である APVの増殖必須 でないゲノム DNA領域であることが好ましい。 この値が 95%以上 105%以下であ ると、 このウィルスを後述するワクチンとして使用したときに疾病の予防効果が い β A recombinant APV having substantially the same growth potential as the parent strain refers to an APV having a growth potential defined as follows when the growth potential of the parent strain is set to 100. Proliferation in chickens is calculated from the box size formed as APV proliferates. It is considered that the smaller the bock size formed after infection with the virus, the lower its proliferation. Specifically, the parental strain or the recombinant APV prepared as described above is Inoculate the membrane, measure the height-width-height of the box of each individual using digital calipers every 3 days after the inoculation, and calculate the box size as the product of these. The box size formed by the parent strain is (A), the box size formed by the recombinant APV is (B), and BZAX 100 (%), which is the ratio of A to B, is used as an index of proliferation. This ratio is usually 90% or more and 110% or less, preferably 95% or more and 105% or less, and is preferably a genomic DNA region where APV growth is not essential. If this value is Ru der less 105% 95% or more, have preventive effects of disease when used as a vaccine which will be described later this virus β
親株と実質的に同等な組換え APVを作製するためには、 上記 APVの増殖に必須 でない領域中の所定の部位に上述した外来遺伝子を組込む。 例えば、 上記 APVの 増殖に必須でない領域が配列番号 1に記載の塩基配列である場合は、 C l al部位 In order to produce a recombinant APV substantially equivalent to the parent strain, the above-described foreign gene is inserted into a predetermined site in a region not essential for the growth of the APV. For example, if the region not essential for the growth of APV is the nucleotide sequence of SEQ ID NO: 1, the ClaI site
(塩基番号 962) または Hpa l部位 (塩基番号 4, 267) の一方または双方に外来遺 伝子を組込むことによって、 このような組換えウィルスを得ることができる。 例えば、 C l al部位に大腸菌由来の /3—ガラクトシダーゼ遠伝子と VVウィルス の 7. 5 Kプロモータ一をコードする遺伝子とを組み込んだ場合に、 親株と実質的 に同等な増殖性を有するウィルスを得ることができる。 ここで用いる /3—ガラク トシダーゼはジーン ·バンク (Gene Bank) の受託番号 (Access i on ) V00296で 公知の配列のものである。 Such a recombinant virus can be obtained by incorporating a foreign gene into one or both of the base (base No. 962) or the Hpal site (base Nos. 4, 267). For example, when the E. coli-derived / 3-galactosidase gene and the gene encoding the 7.5K promoter of the VV virus are integrated into the Cla site, a virus having substantially the same growth potential as the parent strain is obtained. Can be obtained. The / 3-galactosidase used herein has a sequence known by accession number V00296 of Gene Bank.
本発明の組換え APVの作製方法は特に限定されず、 常法に従って行えばよい。 すなわち、 あらかじめ、 APVを感染させた細胞に、 例えば、リン酸カルシウム共 沈法等によって組換えベクターを導入することにより、 ベクターと感染細胞中の ウィルスゲノム DNAとの間で相同組み換えを起こさせて組み換え APVを構築する ことができる。 このようにして得られた組換え APVを、 イーグル MEMなどの培地 で培養した宿主細胞に感染させる。 組み込んだ抗原遄伝子をプローブとするハイ プリダイゼ一シヨンや、 抗原遗伝子と共に組み込んだマーカー遠伝子を発現させ るといった手段によって、 培地上に生育してくるプラークの中から候補株を純化 し、 組み込んだ抗原速伝子のコードするポリペプチドに対する抗体を使用したィ ムノアツセィなどを行って、 目的とする組換えウィルスが得られたことを確認す ればよい。例えば、 マ一力一遺伝子として l acZ遺伝子が組み込まれている組換え APVの場合には、 このウィルスは /3 -ガラクトシダーゼを発現する。 したがって、 このような組換え APVは、 -ガラクトシダ一ゼの基質の 1つである Bluo-gal (GIBCO- BRL社製) 存在下で青いプラークを形成するので、 その性質を利用して 選択、 純化すればよい。 The method for producing the recombinant APV of the present invention is not particularly limited, and may be performed according to a conventional method. That is, by introducing a recombinant vector into cells infected with APV in advance by, for example, the calcium phosphate coprecipitation method, homologous recombination between the vector and the viral genomic DNA in the infected cells is caused, and the recombinant APV is infected. Can be constructed. The recombinant APV thus obtained is used to infect host cells cultured in a medium such as Eagle MEM. Purification of candidate strains from plaques growing on the culture medium by means such as hybridization using the incorporated antigen-gene as a probe or expressing the marker gene integrated with the antigen-gene Then, immunoassay using an antibody against the polypeptide encoded by the incorporated antigen fast gene may be performed to confirm that the desired recombinant virus has been obtained. For example, recombination in which the lacZ gene is In the case of APV, the virus expresses / 3-galactosidase. Therefore, such recombinant APV forms a blue plaque in the presence of Bluo-gal (GIBCO-BRL), one of the substrates for galactosidase, and is selected and purified using its properties. do it.
宿主細胞は、 用いる APVが感染し、 増殖することが可能なものであれば特に限 定されず、 例えば、 FPVを用いた場合には、 CEF細胞 (鶏胚線維芽細胞) などの鶏 由来継代培養細胞や、 発育鶏卵しょう尿膜細胞等が挙げられる。  The host cell is not particularly limited as long as it can infect and proliferate the APV used. For example, when FPV is used, chicken-derived cells such as CEF cells (chick embryo fibroblasts) are used. Subcultured cells, embryonated chicken egg allantois cells, and the like.
本発明の組換えブラスミ ドは、 配列番号 1に記載の塩基配列からなる APVの増 殖に必須でないゲノム DNA領域を含むものである。 配列番号 1に記載の塩基配列 中に上述した Cl a!および Zまたは Hpal部位に少なくとも 2つの外来遠伝子をさ らに有することが好ましい。 好適な外来速伝子は、 上述した通りである。例えば、 Cl al部位に VVウィルスの 7. 5 Kプロモーターをコードする遠伝子と、 NDVの F抗 原または H N抗原の抗原決定基を組込むと、 このプラスミドを用い APVを組換え たときに、 鳥の疾病の予防効果の高レ、ワクチンとして使用できる組換えウィルス を得ることができる。  The recombinant plasmid of the present invention contains a genomic DNA region consisting of the nucleotide sequence of SEQ ID NO: 1 that is not essential for APV propagation. It is preferable that the nucleotide sequence described in SEQ ID NO: 1 further have at least two foreign telegenes at the above-mentioned Cla! And Z or Hpal sites. Suitable exotic speed transducers are as described above. For example, when a gene encoding the 7.5K promoter of the VV virus and an antigenic determinant of the NDV F antigen or HN antigen are incorporated into the Clal site, when this plasmid is used to recombine APV, It is possible to obtain a recombinant virus which is highly effective in preventing bird diseases and can be used as a vaccine.
上記組換えブラスミドの構築に使用するウイルスの非必須領域をクローニング するためのベクターは、 一般的に使用できるものであれば特に限定されない。 具 体的には、 pBR322、 pBR325、 pUC7、 pUC8、 pUC18等のプラスミド、 λファージ、 Μ 13ファージなどのファージミド、 その他 pHC79、 pKT264などのコスミドを使用 することができる。 これらのプラスミ ドは、 アンピシリン耐性遺伝子、 3—ガラ クトシダーゼ遠伝子、 ルシフェラ一ゼ遠伝子 (Sci ence, 234 : 856-859 ( 1986), お よび Anal . B i ochem. , 188 : 245-254( 1990) ) などのさらに別のマーカ一退伝子を 有していてもよい。  The vector for cloning the non-essential region of the virus used for construction of the above-mentioned recombinant plasmid is not particularly limited as long as it can be generally used. Specifically, plasmids such as pBR322, pBR325, pUC7, pUC8, and pUC18, phagemids such as λ phage and Μ13 phage, and cosmids such as pHC79 and pKT264 can be used. These plasmids contain the ampicillin resistance gene, the 3-galactosidase gene, the luciferase gene (Science, 234: 856-859 (1986), and Anal. Biochem., 188: 245-). 254 (1990)).
上記のベクターを適当な制限酵素で処理して、 前述した本発明の APVの増殖に 必須でないゲノム DNA領域を組み込むことにより、 本発明の組換えブラスミドを 得ることができる。  The recombinant plasmid of the present invention can be obtained by treating the above vector with an appropriate restriction enzyme and incorporating the above-mentioned genomic DNA region not essential for the growth of the APV of the present invention.
本発明で用いる組み換え用ベクターでは、 APVの増殖に必須でないゲノム DNA 領域の所定の位置に、 後述するような抗原決定基をコードする遗伝子とそれを支 配するプロモーターの遺伝子と力揷入されたものである。 これらの逮伝子を所定 の位置に揷入することによって、 上述の外来遺伝子を含む組換え APVを生体に感 染させたときに、 この組換え APVの生体内における増殖が低下しないという効果 を得ることができる。 さらに、 組み換え APVの純化などの効率化のために大腸菌 由来の^一ガラクトシダ一ゼ遗伝子などの前述したマーカー遗伝子をプロモータ —とともに組み込んでもよい。 In the recombination vector used in the present invention, a gene encoding an antigenic determinant and a promoter gene that controls the gene as described below are inserted into a predetermined position in a genomic DNA region that is not essential for APV growth. It was done. By inserting these arrested children into predetermined positions, the living body can be exposed to the recombinant APV containing the foreign gene described above. When stained, it is possible to obtain an effect that the growth of the recombinant APV in the living body does not decrease. In addition, the above-mentioned marker gene, such as the Escherichia coli-derived ^ -galactosidase gene, may be incorporated together with the promoter for efficiency such as purification of recombinant APV.
本発明において、 APVの増殖に必須でないゲノム DNA領域に組み込む病原体の 抗原決定基をコードする遠伝子は、 れらの病原体の感染が鳥の体内で成立したと きに、 宿主細胞中で転写、 翻訳されて抗原タンパク質として発現され、 感染した 鳥の体内で抗原となって抗体を産生させることができるものであればよく、 特に 限定されない。 このような抗原決定基としては、 伝染性ファブリキウス嚢病ウイ ルス、 鳩伝染性気管支炎ウィルス、 鶏脳髄膜炎ウィルス、 ニューキャッスル病ゥ ィルス、 マレック病ウィルス、 鶏インフルエンザウイルスその他の鶏の病原体の 抗原決定基を挙げることができる。 具体的には、 NDVの HNタンパク質をコード する遺伝子 (Millerら, 丄 Gen. Virol., 67: 1917-1927(1986)) 、 Fタンパク 質をコードする遠伝子 (McGinnesら, Virus Res., 5: 343-356(1986)) 、 マレツ ク病ウィルスの糖タンパク質 g Bをコ一ドする遺伝子 (Rossら,上 Gen. Virol., 70:1789-1804(1988)) 、 伝染性ファブリキウス囊病ウィルスの構造タンパク VP2 をコードする遺伝子 (Bay】issら, J. Gen. Virol., 71:1303-1312(1990)) など、 これらのウイルスが感染したときの感染防御に関与する抗原決定基をコードした 遺伝子が、 免疫原性が高い点で好ましい。  In the present invention, a transgene encoding an antigenic determinant of a pathogen that integrates into a region of genomic DNA that is not essential for APV growth is transcribed in host cells when infection of these pathogens is established in the body of the bird. It is not particularly limited as long as it can be translated and expressed as an antigen protein and can produce an antibody as an antigen in the body of an infected bird. Such antigenic determinants include infectious bursal disease virus, pigeon infectious bronchitis virus, chicken meningitis virus, Newcastle disease virus, Marek's disease virus, chicken influenza virus and other chicken pathogen antigens. Determinants can be mentioned. Specifically, a gene encoding the NDV HN protein (Miller et al., 丄 Gen. Virol., 67: 1917-1927 (1986)), a gene encoding the F protein (McGinnes et al., Virus Res. 5: 343-356 (1986)), a gene encoding the glycoprotein gB of Marek's disease virus (Ross et al., Supra Gen. Virol., 70: 1789-1804 (1988)), infectious Fabrychus disease Genes encoding the VP2 structural protein of the virus (Bay) iss et al., J. Gen. Virol., 71: 1303-1312 (1990)). Encoded genes are preferred for their high immunogenicity.
本発明のワクチンは、 上述した組換え APVを有効成分とする。 本発明のヮクチ ンは、上記の組換え APVを 1種類作製してこれを単独で含むこのであってもよい。 また、 複数の組換え APVを混合したものであってもよく、 これらを併用したもの であってもよい。 さらに、 他のワクチンと組み合わせてもよい。 ここで、 組み合 わせ可能な他のワクチンとしては、 例えば、 抗 NDVワクチンとなる組み換え APV (特開平卜 157381号公報および特開平 3-27284号公報記載)、 または抗 MD Vヮ クチンとなる組み換え APVなどの組み換えヮクチン (特開平 6-78764号公報や米 国特許出願第 08/499, 474号)、抗 MDVワクチンとして用いられる七面鳥へルぺ スウィルスワクチンなど力例示される。 また、 本発明のワクチンは、 キヤリャ一 とともに接種してもよい。  The vaccine of the present invention contains the above-mentioned recombinant APV as an active ingredient. The peptide of the present invention may be one in which one kind of the above-mentioned recombinant APV is produced and contained alone. Further, a mixture of a plurality of recombinant APVs may be used, or a combination of these may be used. Furthermore, they may be combined with other vaccines. Here, other vaccines that can be combined include, for example, recombinant APV (described in JP-A-157381 and JP-A-3-27284) as an anti-NDV vaccine, or a recombinant as an anti-MDV vaccine. Examples include recombinant pectin such as APV (Japanese Patent Application Laid-Open No. 6-78764 and US Patent Application No. 08 / 499,474), and a turkey virus virus vaccine used as an anti-MDV vaccine. The vaccine of the present invention may be inoculated together with carrier.
本発明のワクチンの製造方法は、 特に限定されない。 例えば、 本発明の組換え APVが生育することのできる細胞に本発明の組み換え APVを感染させ、 組み換え APVが十分に増殖するまで培養する。 その後、 細胞を回収し、 適当な手段で破砕 し、 細胞破砕物を得る。 この細胞破砕物を遠心分離し、 遠心分離チューブ中で沈 殿物と高力価の組み換え APVを含んだ上清とに分離する。 The method for producing the vaccine of the present invention is not particularly limited. For example, the recombinant of the present invention Cells capable of growing APV are infected with the recombinant APV of the present invention, and cultured until the recombinant APV has sufficiently grown. Thereafter, the cells are collected and crushed by an appropriate means to obtain a crushed cell. The cell lysate is centrifuged and separated in a centrifuge tube into a precipitate and a supernatant containing high-titer recombinant APV.
本質的に宿主細胞を含まず、 細胞培養用培地と組換え APVとを含むこの速心上 清は、 そのままワクチンとして使用できる。 また、 生理食塩水、 リン酸緩衝生理 食塩水(PBS) その他の薬理学的に許容できる緩衝液などで、 適宜希釈して使用し てもよい。 本発明のワクチンは、 細胞培養用培地中でそのまま凍結して保存する こともでき、 また、 遠心上清を凍結乾燥して凍結乾燥ワクチンとして保存しても よい。  Essentially free of host cells, this medium containing cell culture medium and recombinant APV can be used directly as a vaccine. It may be appropriately diluted with physiological saline, phosphate buffered saline (PBS) or other pharmacologically acceptable buffers. The vaccine of the present invention can be frozen and stored in a cell culture medium as it is, or the centrifuged supernatant can be lyophilized and stored as a lyophilized vaccine.
本発明のワクチンは、 ワクチン中の組換え APVが家禽に感染して防御免疫を引 き起こすような方法であれば、 どのような方法で家禽に投与してもよい。例えば、 翼膜穿刺や、 皮膚に引つかき傷をつけるといった方法でワクチンを接種してもよ く、 注射針その他の器具で家禽の皮下にワクチン接種をしてもよい。 また、 ワク チンを家禽の飲み水に懸濁させて摂取させる、 あるいは固形飼料に混入して経口 接種させるといった方法で投与することも可能である。 さらに、 エアロゾルゃス プレーなどによるワクチンを吸入させる方法、 静脈内接種法、 筋肉中接種法、 腹 腔内接種法など、 種々の方法を用いることができる。  The vaccine of the present invention may be administered to poultry by any method as long as the recombinant APV in the vaccine infects poultry and elicits protective immunity. For example, the vaccine may be vaccinated by wing puncture, scratching the skin, or subcutaneously vaccinating poultry with a needle or other device. It is also possible to administer the vaccine in such a way that it is suspended in poultry drinking water for ingestion, or mixed with solid feed for oral inoculation. Further, various methods such as a method of inhaling a vaccine by aerosol spray, an intravenous inoculation method, an intramuscular inoculation method, and an intraperitoneal inoculation method can be used.
本発明のワクチンの接種量は、 例えば、 鶏の場合、 1羽あたり通常 10〜106プ ラーク形成単位 (Pfu) であり、 好ましくは 102〜104pfuである。 注射によって接 種する場合には、 この量を生理食塩水や滅菌水などの製剤学的に許容される液体 ゃグリセリンなどの製剤学的に許容されるキヤリヤーで希釈して 0. lmL程度にす ればよい。 上記のキヤリャ一を、 例えば、 滅菌水 lOmLにキヤリャ一と約 5 mg〜 約 40mg程度の量で懸濁させて、 約 102〜約 106pfu/mLの組換えウィルスとともに 接種するとワクチネーシヨンの効果が高い。 Inoculation amount of the vaccine of the present invention, for example, in the case of chickens, a per bird usually 10 to 10 6 plaques forming units (Pfu), and preferably 10 2 ~10 4 pfu. For inoculation by injection, dilute this volume to approximately 0.1 mL with a pharmaceutically acceptable carrier such as saline or sterile water, such as glycerin. Just do it. The above Kiyarya one, for example, be suspended in an amount of about 5 mg to about 40mg and Kiyarya foremost sterile water LOmL, about 10 2 to about 10 6 pfu / mL of recombinant virus with inoculation when Wakuchineshiyon effect of Is high.
本発明の組み換え APVは鶏体内での増殖性が親株と実質的に同等であるため、 移行抗体保有鶏に対しても、 きわめて優れたワクチン効果を持続的に発揮するこ とが出来る。  Since the recombinant APV of the present invention has substantially the same growth in the chicken as the parent strain, it can continuously exert an extremely excellent vaccine effect even on chickens having a transfer antibody.
例えば、 APVの増殖必須でない領域に、 外来遗伝子として NDVの抗原決定基を コードする遺伝子、 好ましくは H N遠伝子および F遗伝子を挿入した組換え APV は、 ニューキャッスル病ウィルスに対する抗体を産生することができる。 この組 み換え APVを、 ニューキャッスル病ウィルスの赤血球凝集抑制抗体価が少なくと も 4以上であり、 当該価平均が 16以上 32以下である 3日齢の雛鶏からなる鶏群 に、 第 1回目として 1 X l 04pfu接種する。 第 1回目の接種から 3週間後に、 強毒 ニューカッスル病ウィルス佐藤株 3 X l 04pfuを鶏腿筋肉に接種してチャレンジし、 チャレンジから 2週間後にチャレンジされた鶏の生存率を調べる。 本発明のワク チンを用いると、 これらの鶏の生存率は 80%、 好ましくは 90%以上となる。 For example, a recombinant APV in which a gene encoding an NDV antigenic determinant, preferably an HN endogenous gene and an F 遗 gene, is inserted as a foreign gene into a non-essential region of APV. Can produce antibodies against Newcastle disease virus. This recombinant APV was added to a flock of three-day-old hens whose Newcastle disease virus hemagglutination-inhibiting antibody titer was at least 4 or more and whose average value was 16 or more and 32 or less. 1 X l to 0 4 pfu vaccination as times eyes. After 3 weeks from the first round of vaccination, challenged inoculated with 3 X l 0 4 pfu virulent Newcastle disease virus Sato strain Niwatorimomo muscle, examine the survival rate of chickens that were challenged from the challenge after two weeks. Using the vaccine of the present invention, the survival rate of these chickens is 80%, preferably 90% or more.
特に、 鶏胎化鳩痘中野株 (N P株) の EcoRI消化 DNA断片 (配列番号 1 ) を用 い、 APVの増殖に必須でない領域中の第 964番目の制限酵素 Cl al切断部位、 ま たは第 3, 694番目と第 4, 270番目の制限酵素 Hpal切断部位に、 NDVの由来の遺伝 子、 好ましくは NDVの抗原決定基をコードする遠伝子、 ょリ好ましくは、 H N遺 伝子および Zまたは F遺伝子を揷入した組換え APVでは、 優れた NDV感染防御効 果を示す。 APV力 ί鶏胎化鳩痘中野株 (Ν Ρ株) の場合には、 とリわけ優れた効果 を得ることができる。  In particular, using the EcoRI-digested DNA fragment (SEQ ID NO: 1) of the fetal fowler pox pox Nakano strain (NP strain), the 964th restriction enzyme Clal cleavage site in a region not essential for APV growth, or The 3rd, 694th and the 4th, 270th restriction enzymes at the Hpal cleavage site, a gene derived from NDV, preferably a gene encoding an antigenic determinant of NDV, preferably an HN gene and Recombinant APV incorporating the Z or F gene exhibits excellent protection against NDV infection. APV power In the case of chicken embryonated pigeon pox Nakano strain (Ν Ρ strain), excellent effects can be obtained.
なお、 ここで赤血球凝集阻止抗体 (NDV-HI抗体) 価は、 常法により測定される ものである。 具体的には 「鶏のワクチン」 第 2版、 発行元: (株) 木香書房、 平 成 4年発行、 282頁 「ニューカッスル病診断用赤血球凝集抗原」 の項に記載され た方法である。  Here, the hemagglutination-inhibiting antibody (NDV-HI antibody) titer is measured by an ordinary method. Specifically, the method described in the section “Hemagglutinating antigen for diagnosis of Newcastle disease” on page 282, published by Kinka Shobo Co., Ltd., 1996, “Chicken Vaccine”, 2nd edition.
すなわち、 N D石井株を 9〜1 1日齢の発育鶏卵の尿腔内に接種して、 3〜 5日 間、 37°Cで培養して尿腔液を採取する。 この尿腔液に等量のェチルエーテルを加 え、 37°Cで 60分間、 ときどき振盪しながら感作不活化する。 ついでェチルエーテ ルを除き、 これに 1 /25 Mの KI04を等量加え、 振盪混和後、 さらに 10%のブド ゥ糖液を 50%の割合で加える。 振盪混和し、 小分け容器に分注して凍結乾燥し、 Η Α抗原とする。 NDVを頻回接種して高度に免疫した鶏から血清を採取し、 小分 け容器に分注して凍結乾燥する。 生理食塩水を用いて、 チューブ中で Η Α抗原の 階段希釈を作成 (各 0. 4mL) し、 ここに等量の 0. 5%鶏赤血球浮遊液を加える。 振 盪混和した後、 室温 (25°C前後) に静置し、 管底像で判定を行う。 管底前面に赤 血球が沈下し膜状を示した (陽性像を形成した) 最高希釈倍数を力価とする。 対 照との比較によって、 力価を決定する。 In other words, the ND Ishii strain is inoculated into the urinary cavity of 9-11 day old embryonated chicken eggs, and cultured at 37 ° C for 3-5 days to collect urine fluid. Add an equal volume of ethyl ether to this urinary fluid and inactivate sensitization at 37 ° C for 60 minutes, with occasional shaking. Then except Echiruete Le, this 1/25 M KI0 4 was added an equal amount of, after shaking mixing, an additional 10% of the Budo © sugar solution is added at a ratio of 50%. Mix by shaking, dispense into aliquot containers, and freeze-dry to obtain Α Α antigen. Serum is collected from highly immunized chickens that are frequently inoculated with NDV, dispensed into small aliquots and lyophilized. Make serial dilutions of the antigen in a tube using saline (0.4 mL each), and add an equal volume of 0.5% chicken red blood cell suspension. After mixing by shaking, allow to stand at room temperature (around 25 ° C). Erythrocytes sedimented in front of the tube bottom and showed a film form (a positive image was formed). The titer is determined by comparison with the control.
上記のようなワクチンを、 鳩、 あひる、 鴨、 合鴨、 驚鳥、 七面鳥、 うずら、 鶏、 きじおよびほろほろちょうなどの家禽に接種すると、 これらの鳥において、 ワク チンとして用いられだ組換え APVに上記のように組込まれた鳥の病原体の抗原決 定基にコードする遺伝子が鳥の体内で発現され、 抗原決定基タンパク質が産生さ れる。 このように産生された抗原決定基によってワクチンの接種を受けた鳥の体 内で抗体が産生され、 それによつてこのような抗原決定基を有する疾病の発生を 予防することができる。 Vaccines such as the above, pigeon, duck, duck, duck, amazing bird, turkey, quail, chicken, When inoculated into poultry such as pheasants and scabs, in these birds, the genes encoding the antigenic determinants of the pathogens of the birds integrated as described above into the recombinant APV used as vaccines are expressed in the birds. Thus, an antigenic determinant protein is produced. The antigenic determinants thus produced allow antibodies to be produced in the body of the vaccinated bird, thereby preventing the development of diseases having such antigenic determinants.
本発明のワクチンとして用いる組換え APVは、 ここに組込まれた APVの増殖に 必須でない領域に少なくとも 2以上の外来遠伝子を含むことができる。 このもた め、 複数の病原体の抗原決定基をコードする違伝子を組込むことによリ、 1種類 のワクチンを接種することによって複数の病原体に対するワクチネ一シヨンを完 了させることができる。 したがって、 従来のように病原体の種類ごとにワクチン を接種する必要がなく、 シンプルなワクチネ一シヨンプログラムによって、 人手、 時間、 経费ともに削減することが可能となる。  The recombinant APV used as the vaccine of the present invention can contain at least two or more exogenous genes in a region not essential for the growth of the APV incorporated therein. Thus, by incorporating a transgene encoding the antigenic determinant of multiple pathogens, one vaccine can be used to complete vaccines against multiple pathogens. Therefore, there is no need to administer vaccines for each type of pathogen as in the past, and a simple vaccine program can reduce manpower, time, and money.
本発明のワクチンとして使用する組換えウィルスは、 従来使用されてきたワク チンと異なり、 親株と実質的に同等の増殖性を有する。 このため、 本発明のワク チンを用いたヮクチネーシヨンによって、 十分な効果を得ることができる。  The recombinant virus used as the vaccine of the present invention has substantially the same growth ability as the parent strain, unlike the conventionally used vaccine. For this reason, a sufficient effect can be obtained by the vaccine using the vaccine of the present invention.
さらに、 鶏痘の場合を例に挙げると、 従来は強毒株を弱毒化してワクチン株と し、 これに外来遗伝子を組込んで生ワクチンとして使用してきた。 しかし、 組込 んだ逮伝子が脱落したり、 あるいはそれにともなつて弱毒化したワクチン株が強 毒株に復帰突然変異を起こす場合もなくはなかった。本発明ワクチンにおいては、 強毒株は使用しておらず、 外来遺伝子として病原体の抗原決定基をコードする遺 伝子が相同組換えによって組込まれているものであるため、 仮に組込まれた遺伝 子が脱落しても強毒株に復帰突然変異を起こすことはない。  Furthermore, taking the case of fowlpox as an example, in the past, a highly virulent strain was attenuated into a vaccine strain, and a foreign vaccine was incorporated into the vaccine strain and used as a live vaccine. However, it was not unusual for the integrated arrested child to be lost or for the attenuated vaccine strain to revert to the virulent strain. In the vaccine of the present invention, a virulent strain was not used, and a gene encoding an antigenic determinant of a pathogen was incorporated as a foreign gene by homologous recombination. If it is lost, it does not revert to the virulent strain.
本発明のスクリーニング方法の実施に当たって使用する鶏由来の継代培養細胞 (株化細胞) としては、 上述した C E F細胞が最も一般的であるが APV力増殖し 得る細胞であれば、 特に限定されない。  As the subcultured cells (cell lines) derived from chickens used in carrying out the screening method of the present invention, the above-mentioned CEF cells are the most common, but are not particularly limited as long as they are cells capable of proliferating APV.
これらの継代培養細胞に APVを感染させた後に組換え用ブラスミドを適当な手 段によって導入し、 適当な液体培地に、 適宜、 血清、 アミノ酸などを添加した生 育培地に寒天を加えて重層し、 プラークを形成させる。 このような液体培地とし ては、 L B、 MEM. DMEM、 199培地、 MacCoy5Aなどを挙げることができる。 上述の ようなトリ由来の細胞を単層培養し、 0. 05〜0. 2mo iで APVを感染させる。 0. lmo i 程度で感染させること力 組換え体の得られる効率が高いことから好ましい。 感 染後、 単層培養細胞をトリプシン処理して細胞懸濁液を調製し、 組換え用プラス ミドを導入する。 組換えプラスミドの導入は、 エレクトロボレ一シヨン、 リン酸 カルシゥム法など、 公知の種々の手段で行うことができるが、 エレクト口ポレー シヨンで行うことが好ましい。 After infecting these subcultured cells with APV, a recombinant plasmid is introduced by an appropriate means, and agar is added to an appropriate liquid medium and a growth medium containing serum, amino acids, etc. as appropriate. And form plaque. With such a liquid medium Examples include LB, MEM. DMEM, 199 medium, and MacCoy5A. Avian-derived cells as described above are cultured in a monolayer and infected with APV at 0.05-0.2moi. 0. Power to infect at about lmo i It is preferable because the efficiency of obtaining the recombinant is high. After infection, the monolayer cultured cells are treated with trypsin to prepare a cell suspension, and the recombinant plasmid is introduced. The introduction of the recombinant plasmid can be carried out by various known means such as electrolysis and calcium phosphate method, but is preferably carried out by election-portion polish.
組換えプラスミ ドを導入した細胞から、 組換えウィルスを得て、 再び、 トリ由 来の細胞に感染させて寒天を含む生育培地を重層してプラークを形成させ、 ブラ —クがある程度大きくなったところでさらに別の寒天培地を重層すると、 組込ま れたマーカー遴伝子が発現して容易に選択できるプラーク力形成される。例えば、 組換え APVに】acZ遺伝子が含まれている場合には、 後に重層する寒天培地に Bluo-ga lを添加することによって青色のプラークを形成させることができる。 Bluo-galは 300~900 μ. g Lの濃度で添加することが好ましく、 600 g /mLの 濃度で添加すると、 ウィルスの選択を容易に行うことができる。 青色のプラーク を形成するウィルスを選択する。 この操作を通常は 4〜6回、 必要に応じてさら に繰り返して、 組換え APVを純化する。 純化した組換え APVを上記のような適当 な培地で増殖させた後に、 上述のようにして鶏に感染させる。 感染した鶏の体内 におけるウィルスの増殖にしたがって形成されるボックサイズを上述のように測 定することによって, 鶏体内での増殖性が親株と実質的に同等な組換え APVをス クリーニングすることができる。  Recombinant virus was obtained from the cells into which the recombinant plasmid had been introduced, and the cells were again infected with bird-derived cells, and a growth medium containing agar was overlaid to form plaques. By the way, when another agar medium is overlaid, the integrated marker 遴 gene is expressed and plaque force is formed which can be easily selected. For example, when the recombinant APV contains the acZ gene, a blue plaque can be formed by adding Bluo-gal to an agar medium to be overlaid later. Bluo-gal is preferably added at a concentration of 300 to 900 μg gL, and when added at a concentration of 600 g / ml, virus selection can be performed easily. Select viruses that form blue plaques. This procedure is usually repeated 4 to 6 times, if necessary, to purify the recombinant APV. After the purified recombinant APV is propagated in an appropriate medium as described above, the chicken is infected as described above. By measuring the bock size formed as the virus grows in infected chickens as described above, it is possible to screen for recombinant APV that has substantially the same growth potential in chickens as the parent strain. it can.
実施例 Example
以下に実施例を挙げて本発明を具体的に説明するが、 本発明はこれらに何ら限 定されるものではない。 実施例 1 APVゲノム DNA断片を挿入したプラスミ ドの調製  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. Example 1 Preparation of plasmid into which APV genomic DNA fragment was inserted
( 1 ) N P株のゲノム DNAの取得  (1) Acquisition of genomic DNA of NP strain
75cm2の培養フラスコにて CEF細胞を単層培養した。 ここに、 APV鶏胎化鳩痘毒 中野株(NP株、 日本ファーマシー社製) を、 1 pfu/mLとなるように接種した。 5 %C02インキュベータ一中、 37°Cにて、 2時間培養した後に、 10%トリブトース ホスフェートブロス (Difco社製) および 0.03%の L-グルタミンを含有するィ一 グル MEMを mい添加した。 その後、 4日間、 5 o/oCO,インキュベータ一中、 37°C にて培養し、 培養上清を回収した。 この培養上清を、 4t、 3,000rpm (l,500x g) で 10分間速心し、 遠心上清を得た。 この上清を、 約 98,000x gで 1時間、 4'C で遠心し、 沈渣を回収した。 この沈渣を培養上清の 1 0容量の DNase反応バッフ ァー (50mMトリス塩酸 (pH 7.5), lmM MgCl2) に懸濁し、 DNasel (ベーリンガー マンハイム社製) を 9 Z g/mLになるように添加して、 37'Cで 30分間反応させた。 反応終了後、 プロティナ一ゼ K (ベーリンガーマンハイム社製) を 500 g/mL、 SDS (ドデシル硫酸ナトリウム) を 1 %となるように加えて、 37。Cで一夜反応させ た。 この後、 穏やかにフエノールークロロホルムで処理し、 エタノール沈殿によ つて、 鵾痘生ワクチン株である NP株のゲノム DNA l At gを得た。 CEF cells were monolayer cultured in a 75 cm 2 culture flask. Here, APV chicken embryo poultry pox poison The Nakano strain (NP strain, manufactured by Nippon Pharmacy) was inoculated at 1 pfu / mL. After culturing at 37 ° C. for 2 hours in a 5% CO 2 incubator, 10% tributose phosphate broth (manufactured by Difco) and single MEM containing 0.03% L-glutamine were added. Thereafter, the cells were cultured at 37 ° C in an incubator at 5 o / oCO for 4 days, and the culture supernatant was recovered. The culture supernatant was centrifuged at 3,000 rpm (1,500 × g) for 4 minutes at 4 t to obtain a centrifuged supernatant. The supernatant was centrifuged at about 98,000 xg for 1 hour at 4'C, and the precipitate was collected. The precipitate is suspended in 10 volumes of a DNase reaction buffer (50 mM Tris-HCl (pH 7.5), lmM MgCl 2 ) of the culture supernatant, and DNasel (Boehringer Mannheim) is adjusted to 9 Zg / mL. The mixture was added and reacted at 37'C for 30 minutes. After completion of the reaction, proteinase K (Boehringer Mannheim) was added at 500 g / mL and SDS (sodium dodecyl sulfate) at 1%, and 37. Reaction was carried out overnight at C. Thereafter, the cells were gently treated with phenol-chloroform, and genomic DNA l Atg of NP strain, a live smallpox vaccine strain, was obtained by ethanol precipitation.
(2) APVゲノム DNA断片を挿入したプラスミドの調製  (2) Preparation of plasmid with APV genomic DNA fragment inserted
これを 0.5 gずつ二つに分けて、 制限酵素用緩衝液中でそれぞれ制限酵素 EcoRIまたは Hindi で消化し、 0.8%ァガロースゲル電気泳動で 2 Kbp〜 7 Kb の DNA断片を約 0.05 g回収した。  This was divided into two portions of 0.5 g each and digested with a restriction enzyme EcoRI or Hindi, respectively, in a buffer for restriction enzyme, and about 0.05 g of a 2 Kbp to 7 Kb DNA fragment was recovered by 0.8% agarose gel electrophoresis.
0.5; gの pl)C18 (フアルマシア社) を同じく制限酵素 EcoRIまたは Hindi II で切断した後、 アルカリフォスファターゼ(10ユニット) 処理にょリ 5,—末端の リン酸を除去し、 その後フエノール: クロ口ホルム (1 : 1 ) で抽出し、 ェタノ —ルで沈殿させて、 0.4 μ gの開裂 pUC18を回収した。 以下、 EcoRIによって開裂 させた PUC18を pUC18 (EcoRI) といい、 Hindi 11で開裂させた pUC18を pUC18 0.5; g of pl) C18 (Pharmacia) is also digested with the restriction enzymes EcoRI or Hindi II, and treated with alkaline phosphatase (10 units) to remove the phosphoric acid at the 5, -terminal, and then phenol: Extracted with (1: 1) and precipitated with ethanol, 0.4 μg of cleaved pUC18 was recovered. Hereinafter, PUC18 cleaved by EcoRI is called pUC18 (EcoRI), and pUC18 cleaved by Hindi 11 is called pUC18.
(Hindlll) という。 (Hindlll).
回収した PUC18 (EcoRI) または pUC18 (Hindi II) と、先ほど調製した、各々 0.05 gの EcoRI または Hindlll消化 NP株ゲノム DNA断片とを、それぞれ 10ュニッ トの DNAリガーゼ (T4 DNAリガーゼ) を加えて 16°Cで 1時間ィンキュベートする ことによって連結した。  The recovered PUC18 (EcoRI) or pUC18 (Hindi II) and the previously prepared 0.05 g each of EcoRI or Hindlll digested NP strain genomic DNA fragments were added to 10 units of DNA ligase (T4 DNA ligase), respectively. The ligation was performed by incubating at ° C for 1 hour.
コンビテントな大腸菌 TG 1を Lブロス中で増殖させ、 109個を上記の各組換え プラスミ ド 0.45 gを用いて形質転換した。形質転換した大腸菌 TG 1を、 X-Ga】 (100 μ g/mL) とアンピシリン (50 g/mL) を含む LB寒天培地上で、 時間、 37°Cで培養し、 コロニーを形成させた。 Combi competent E. coli TG 1 were grown in L-broth, 10 9 were transformed with each recombinant plasmid 0.45 g of the above. The transformed E. coli TG1 was placed on an LB agar medium containing X-Ga] (100 μg / mL) and ampicillin (50 g / mL) for The cells were cultured at 37 ° C to form colonies.
白色のコロニー 60個を選択し、 アンピシリン (SO ^ g/mL) を含む LB液体培 地で培養した。その後、 ビルンボイムとドーリーの方法 [Birnboim, H. C. & Doly, J., Nucleic Acid Research, 7巻、 1513頁〜(1979)] で各コロニーからプラスミ ドを抽出した。 すなわち、 大腸菌の形質転換体をアルカリで可溶化し、 フエノー ル処理後にエタノール沈殿させることによってプラスミド ( 1〜100 g) を抽 出した。  Sixty white colonies were selected and cultured in LB liquid medium containing ampicillin (SO ^ g / mL). Thereafter, plasmid was extracted from each colony by the method of Birnboim and Dory [Birnboim, H. C. & Doly, J., Nucleic Acid Research, Vol. 7, pp. 1513- (1979)]. That is, a transformant of E. coli was solubilized with an alkali, treated with phenol, and then precipitated with ethanol to extract a plasmid (1 to 100 g).
得られたそれぞれのプラスミ ドを EcoRI または Hindlllで切断して APVゲノム DNA断片の挿入を確認し、 これらのプラスミドを pNP01〜pNP60と命名した。 実施例 2 組換え用プラスミ ドの調製  Each of the obtained plasmids was cut with EcoRI or Hindlll to confirm the insertion of the APV genomic DNA fragment, and these plasmids were named pNP01 to pNP60. Example 2 Preparation of recombinant plasmid
実施例 1で得たプラスミドの APVゲノム DNA断片内に、 下記のようにして lacZ 遺伝子をプロモータ一とともに揷入し、 組換え用ブラスミドを調製した。  The lacZ gene was inserted together with the promoter into the APV genomic DNA fragment of the plasmid obtained in Example 1 as follows to prepare a plasmid for recombination.
( 1 ) 挿入された APVゲノム DNA断片内に 1ケ所の制限酵素切断部位を有する開 裂プラスミドの調製  (1) Preparation of a cleavage plasmid having one restriction enzyme cleavage site in the inserted APV genomic DNA fragment
PUC18には Clal、 EcoRV、 Hpalの制限酵素切断部位が存在しないため、 実施例 1で得た pNP01〜pNP60を上記制限酵素で切断した。この制限酵素処理によって、 上記ブラスミド中にクローニングされた APVゲノム DNA断片中のどこか 1ケ所が 切断されたブラスミ ドを容易に選択することができた。  Since PUC18 does not have Clal, EcoRV, and Hpal restriction enzyme cleavage sites, pNP01 to pNP60 obtained in Example 1 were cleaved with the above restriction enzymes. By this restriction enzyme treatment, it was possible to easily select a brassmid in which one of the APV genomic DNA fragments cloned into the above-mentioned brasmid had been cut.
選択されたプラスミ ドは、 pNP03、 pNP04、 pNP25、 pNP26、 pNP29、 pNP32、 pNP35、 pNP36、 pNP38の 9種類であつた。  The selected plasmids were pNP03, pNP04, pNP25, pNP26, pNP29, pNP32, pNP35, pNP36, and pNP38.
PNP28, pNP29、 pNP35を Clalで消化し、 pNP03、 p P04、 pNP26を EcoKVで消化 し、 pNP32、 pNP36、 pNP38を Hpa】で消化した。 Clalで消化した上記ブラスミドの 付着末端を、 MAポリメラーゼを用レ、て平滑末端とした。  PNP28, pNP29, and pNP35 were digested with Clal, pNP03, pP04, and pNP26 were digested with EcoKV, and pNP32, pNP36, and pNP38 were digested with Hpa]. The cohesive end of the above plasmid digested with Clal was blunt-ended by using MA polymerase.
その後、アルカリフォスファタ一ゼ 10ュニットおよび 1 Mトリス塩酸(pH 8.0) で 56°C、 30分間処理することにより、 各切断プラスミドの 5,-末端のリン酸基を 除去した。  Then, the phosphate group at the 5, -terminal of each cleaved plasmid was removed by treating with 10 units of alkaline phosphatase and 1 M Tris-HCl (pH 8.0) at 56 ° C for 30 minutes.
ついで、 等量のフエノール: クロ口ホルム (1 : 1 ) 混液で抽出し、 冷ェタノ ールで沈殿させて、 開裂プラスミ ド (0.05〜0.5 / g) を回収した。  Then, the mixture was extracted with an equal volume of a mixture of phenol and black form (1: 1), and precipitated with cold ethanol to obtain a cleavage plasmid (0.05 to 0.5 / g).
( 2 )揷入された APVゲノム DNA断片内への lacZ速伝子とプロモーターの組込み ( 2 - a) pNZ76の作製 (2) Incorporation of lacZ fast gene and promoter into the inserted APV genomic DNA fragment (2-a) Preparation of pNZ76
ワクシニアウィルス W R株の 7.5 Kダルトンのぺブチドをコードする DNAのプ 口モーターを含む約 0.26Kbpの Sa】l〜RsaI断片(Cell, 125:805-813(1983))を、 PUC9の SalI〜SmaI部分に組込み、 プラスミド pUWP-1を構築した。  An approximately 0.26 Kbp Sa! L-RsaI fragment (Cell, 125: 805-813 (1983)) containing the 7.5 M dalton peptide coding DNA of the vaccinia virus WR strain (Cell, 125: 805-813 (1983)) and a PUC9 SalI-SmaI The plasmid pUWP-1 was constructed.
10 μ gの pMAOOKShirakawaら、 Gene, 28: 127- , (1984))を BamHlで消化した。 2 gの pUC18(フアルマシア社製)を BamHIで消化した後、 フエノールークロロ ホルム (1 : 1 ) で抽出し、 エタノール沈殿により、 開裂した pUC18を回収した。 5'-末端リン酸をアル力リホスファタ一ゼで処理して除去し、 DNAを再びフエノー ルークロロホルム (1 : 1 ) で抽出し、 エタノールで沈殿させて回収した。  10 μg of pMAOOKShirakawa et al., Gene, 28: 127-, (1984)) was digested with BamHl. 2 g of pUC18 (Pharmacia) was digested with BamHI, extracted with phenol-chloroform (1: 1), and cleaved pUC18 was recovered by ethanol precipitation. The 5'-terminal phosphate was removed by treatment with alkaline phosphatase, and the DNA was again extracted with phenol-chloroform (1: 1) and recovered by precipitation with ethanol.
開裂した 0.2^§の 11(18と、8^1と Hindi IIとで消化した 1 gの精製 APV(N P株) DNAとをリガーゼによって連結し、 これによつてコンビテントな大腸菌 JM103を形質転換し、 形質転換体を得た。 この形質転換体を、 0.03%の 5-ブロモ 一 4—クロロ— 3-ィンドリノレ- ^ -D-ガラクトビラノシド、 0.03raMのイソプロビル- -D-ガラクトビラノシド、 40 g/mLのアンピシリンを含む LB寒天培地で、 15 時間、 37 にて培養した。 寒天培地上に生育した形質体のうち、 白色コロニーを とリ、 40 g/mLのアンピシリンを含む LB液体培地で、 15時間、 37でにて培養 した。 形質転換体を回収し、 ビルンボイムとドーリーの方法 (Nucleic Acid Research, 7:1513-, (1979)) に従ってプラスミドを抽出し、 EcoRIと Hindi 11と で二重消化した。 この二重消化断片を 0.6%ァガロース電気泳動によって、 0 — ガラクトシダーゼ逮伝子 (約 3.3Kbp) を回収した。 1 g of purified APV (NP strain) DNA digested with cleaved 0.2 ^ §11 (18, 8 ^ 1 and Hindi II) was ligated with ligase, thereby transforming a competent E. coli JM103. to obtain a transformant the transformant, 0.03% of 5-bromo-one 4 -. chloro - 3 Indorinore - ^-D-galactopyranoside door Bruno Sid, isoproterenol building 0.03RaM --D-Garakutobira Nosids were cultured on LB agar medium containing 40 g / mL ampicillin for 15 hours at 37. Among the traits grown on the agar medium, white colonies were removed and 40 g / mL ampicillin was contained. The cells were cultured in LB liquid medium for 15 hours at 37. The transformants were collected, the plasmid was extracted according to the method of Birnboim and Dawley (Nucleic Acid Research, 7: 1513-, (1979)), and EcoRI and Hindi were extracted. The double digested fragment was subjected to 0.6% agarose electrophoresis to obtain 0- Galactosidase arrested children (about 3.3 Kbp) were recovered.
—方、 0.3 μ gの pUC19を BamHIで消化し、 フエノ一ルークロロホルム ( 1 : 1) で抽出し、 エタノール沈殿により回収した。 この回収 pUC19と 9ーガラクト シダ一ゼ逮伝子とをリガーゼでライゲ一シヨンし、 組換えプラスミド pNZ66を作 製した。  On the other hand, 0.3 μg of pUC19 was digested with BamHI, extracted with phenol-chloroform (1: 1), and recovered by ethanol precipitation. The recovered pUC19 and the 9-galactosidase arrested gene were ligated with ligase to produce a recombinant plasmid pNZ66.
—方、 40 β gの pUWP_lを Hpallと EcoRIとで二重消化し、 15%の低融点ァガ ロース電気泳動 (70 V、 6時間) にかけて 7.5Kプロモータ一を含む約 0.26Kbp の断片を分離し、 ァガロースゲルを細かく砕いて TE緩衝液(lOm トリス塩酸、 l mMEDTA、 pH 8.0) で DNAを回収した。 この DNA断片は付着末端を有するため、 DNAポリメラ一ゼで平滑末端とし、 7.5Kプロモータ一速伝子を得た。  On the other hand, 40 β g of pUWP_l was double digested with Hpall and EcoRI and subjected to 15% low melting point agarose electrophoresis (70 V, 6 hours) to separate a fragment of about 0.26 Kbp containing the 7.5K promoter. Then, the agarose gel was crushed into small pieces and the DNA was recovered with TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). Since this DNA fragment had cohesive ends, it was blunt-ended with DNA polymerase to obtain a 7.5K promoter single speed gene.
0.3 μ gの pNZ66を HincIIで消化し、 フエノール一クロ口ホルム (1 : 1 ) で 抽出し、 エタノール沈殿により回収した。 この Hincil消化 pNZ66 (/9—ガラクト シダーゼ遣伝子を含む) と上記のようにして得た 7.5 Kプロモータ一遺伝子とを リガーゼを用いてライゲ一シヨンし、 プラスミ ド pNZ76を得た (図 4) 。 Digest 0.3 μg of pNZ66 with HincII and use phenol monoclonal form (1: 1) Extracted and recovered by ethanol precipitation. This Hincil digested pNZ66 (containing the 9 / -galactosidase gene) and the 7.5 K promoter gene obtained as described above were ligated using ligase to obtain plasmid pNZ76 (FIG. 4). .
( 2-b) 形質転換用プラスミ ドの作製  (2-b) Preparation of plasmid for transformation
リガーゼ (10ユニット) を用いて、 こらの遠伝子を上記 ( 1) で回収した各開 裂プラスミドと連結し、 形質転換用プラスミ ド (0. l z g) を調製した。 103個の 大腸菌 TG 1を、 これらの形質転換用プラスミド (0.1 At g) を用いて形質転換 した。 Using ligase (10 units), these telegenes were ligated to each of the cleaved plasmids recovered in (1) above to prepare a transformation plasmid (0.1 lzg). 10 3 E. coli TG 1, were transformed with these transformants plasmid (0.1 At g).
形質転換した大腸菌 T G 1を 50 g/mLのアンビシリンを含む L B寒天培地上 にて、 37°Cで 15時間、 培養した。  The transformed E. coli TG1 was cultured on an LB agar medium containing 50 g / mL ambicilin at 37 ° C for 15 hours.
アンピシリンを含む LB寒天培地上に出現したコロニーをとリ、 アンピシリン 含有 LB液体培地で 37°Cで 5時間培養した後、 上述したビルンボイムとドーリー の方法でプラスミ ドを抽出し、 lacZ遠伝子力挿入されたブラスミドを選択した。 こうして上記 9種のプラスミ ドにそれぞれ lacZ逋伝子が挿入された 9種類の 組換え用ブラスミ ドが得られ、 それらを pNP1003、 pNP1004、 pNP1025、 pNP1026、 PNP1029, pNP1032、 pNP1035, pNP1036、 pNP1038と命名した。 実施例 3 1 acZ遺伝子を発現する組換え APVの作製と純化  The colonies that appeared on the LB agar medium containing ampicillin were cultured in an LB liquid medium containing ampicillin at 37 ° C for 5 hours, and then the plasmid was extracted using the above-mentioned method of Birnboim and Dolly, and the lacZ gene transfer ability was determined. The inserted brasmid was selected. In this way, nine types of plasmids for recombination were obtained, in which the lacZ gene was inserted into each of the above nine types of plasmids. did. Example 3 Preparation and Purification of Recombinant APV Expressing 1 acZ Gene
予め、 CEF細胞を 35°Cにて 5%C02インキュベータ一中で単層培養した。 コンフ レントに達した CEF細胞( 1 X 107個) に APVの NP株を 0.1の感染多重度で感染 させ、 37°Cで 3時間培養した。 3時間後、 これらの細胞を 0.1%トリブシン溶液 で処理して剥がし, 細胞懸濁液とした。 この細胞懸濁液を 4 °Cで 5分間、 1,500 X gで遠心分離して細胞を分離した。 リン酸緩衝生理食塩水 (Saline G、 (0.14M NaCl、 0.5mM KCl、 1. lraM Na2HP04、 0.5mM MgCl2-6H20, 0.01 ^グルコース) を用い て 2 X 107個/ mLの濃度に再懸濁し、 実施例 2で作製した組み換え用ブラスミ ド の数に合せて、 9等分した。 Previously were monolayer cultured CEF cells in 5% C0 2 incubator one at 35 ° C. The confluent CEF cells (1 × 10 7 ) were infected with the APV NP strain at a multiplicity of infection of 0.1 and cultured at 37 ° C. for 3 hours. Three hours later, these cells were treated with a 0.1% trypsin solution and detached to obtain a cell suspension. The cell suspension was centrifuged at 1,500 × g at 4 ° C. for 5 minutes to separate cells. Phosphate buffered saline (Saline G, (0.14M NaCl, 0.5mM KCl, 1. lraM Na 2 HP0 4, 0.5mM MgCl 2 -6H 2 0, 0.01 ^ glucose) 2 X 10 7 cells / mL using a The suspension was re-suspended at a concentration of 1 and divided into nine equal parts in accordance with the number of recombinant plasmides prepared in Example 2.
この各懸濁液 (0.7mL) に、 上記の組換え用プラスミド 10 gを 1種類ずつ加 え、これらの混合物を、室温にて、ジーンパルサ一(Bio-Rad社)を用いて 3.0KV/cm、 0.4msecの条件下におき、 エレクト口ポレーシヨンにより、 プラスミドの導入を 行った。 以上のようにして得たプラスミ ドを導入した細胞を、 その後 37°Cで 72時間培 養し、 ドライアイス一エタノールを用いて、 凍結融解を 3回繰り返して細胞を溶 解させ、 組換えウィルスを細胞内から放出させた。 To each of these suspensions (0.7 mL), 10 g of the above-mentioned plasmid for recombination is added one by one, and the mixture is added at room temperature to 3.0 KV / cm using Gene Pulser (Bio-Rad). The plasmid was introduced under an election port ratio of 0.4 msec. The cells transfected with the plasmid obtained as described above are then cultured at 37 ° C for 72 hours, and freeze-thaw three times using dry ice-ethanol to lyse the cells, and the recombinant virus is recovered. Was released from inside the cells.
放出された組み換えゥィルスを次のように選別した。 上記のように溶解させた 細胞から放出された子孫ウィルスを含んだ溶解液を 10倍連続希釈した希釈液を、 各々 2枚のプレートにまいた C E F細胞 ( 1 X 107個/ mL) に感染させ、 生育培地 ( 5 %ゥシ血清を含む MEM) を含んだ 10mLの寒天培地 (0. 8% ) を重層した。 室 温にて寒天を固めた後、 典型的な APVのプラークが出現するまで 37'Cで培養した。 プラークが大きくなる約 1週間後に、 Bluo-gal を 600 n g/mL含んだ別の寒天培 地(0. 8%) lOmLをそれぞれの培養プレートに重層し、 さらに 24時間 37°Cで培養 した。 Released recombinant viruses were screened as follows. Infection as described above in dissolved lysate containing the released progeny virus from the cells dilution was 10-fold serially diluted in CEF cells were seeded into each of the two plates (1 X 10 7 cells / mL) Then, 10 mL of agar medium (0.8%) containing a growth medium (MEM containing 5% serum) was overlaid. After solidifying the agar at room temperature, the cells were cultured at 37'C until typical APV plaques appeared. Approximately one week after the plaques grew, another 10 mL of agar medium (0.8%) containing 600 ng / mL of Bluo-gal was overlaid on each culture plate, and further cultured for 24 hours at 37 ° C.
プレート上には無色のプラークと Bluo- gaiで染色されて青色になるプラーク とが形成される。 これらの中から青色プラークを抜き取り、 ここに含まれている ウィルスを常法に従って回収した。形成される全てのプラークが Bluo- galで青く 染まるまで、 この操作を繰リ返し、 さらに組み換えウィルスの純化を行った。 通 常は、 この過程は 4〜 6回で終了する。  Colorless plaques and blue plaques stained with Blu-gai are formed on the plate. A blue plaque was extracted from these, and the virus contained therein was recovered according to a conventional method. This operation was repeated until all plaques formed were stained blue with Blu-gal, and the recombinant virus was further purified. Normally, this process is completed in 4-6 times.
こうして純化された組換えウィルスをそれぞれ、 fNP1003、 fNP1004、 fNP1025、 fNP1026、 fNP1029, fNP1032、 fNP1035, fNP1036, fNP1038と命名した。 実施例 4 組み換え体を用いた鶏の免疫実験と弱毒化していな 、組換え体の選択 実施例 3で作製した組み換え APVを用いて鶏を以下のように免疫し、 弱毒化し ていない組み換え APVを選択した。  The recombinant viruses purified in this way were named fNP1003, fNP1004, fNP1025, fNP1026, fNP1029, fNP1032, fNP1035, fNP1036, fNP1038, respectively. Example 4 Immunization experiments on chickens using recombinants and selection of non-attenuated recombinants Chicken was immunized using the recombinant APV prepared in Example 3 as follows, and non-attenuated recombinant APV was Selected.
組み換え APVおよび対照として N P株(親ウィルス) の 104pfuを、 それぞれ各 群 10羽ずつ 4日齢の SPF鶏の翼膜に穿刺針で接種した。 接種後 3、 7、 9、 11、 14、 17、 21日目に各個体の発痘 (ボック) サイズを測定し、 各群ごとの平均を算 出した。 ボックサイズは、 デジタルノギスを用いて縦、 横、 高さを測定し、 その 3つの測定値から計算した。 各群の発痘の平均値の推移を図 1に示す。 The 10 4 pfu of NP strain (parent virus) as a recombinant APV and control, were inoculated with the puncture needle on each wing membrane SPF chickens 4 day old ten chickens per group. On days 3, 7, 9, 11, 14, 17, and 21 after inoculation, the varicella (bock) size of each individual was measured, and the average for each group was calculated. The box size was calculated from the three measurements by measuring the height, width, and height using a digital caliper. Figure 1 shows the change in the mean value of varicella in each group.
図 1から明らかな様に、 fNP1035のみが親株と同様な発痘の推移を示し、 弱毒 化していないことが判明した。 一方、 他の組み換え APVのボックサイズは親株と 比較すると小さく、 これらの組み換え体は弱毒化していることがわかった。 実施例 5 組み換え APVの挿入部位の解析 As is clear from FIG. 1, only fNP1035 showed the same change in varicella as the parent strain, indicating that it was not attenuated. On the other hand, the box size of other recombinant APV was smaller than that of the parent strain, indicating that these recombinants were attenuated. Example 5 Analysis of insertion site of recombinant APV
実施例 4で選択した組み換え APVの揷入部位を、 fNPI035について解析した。 The recombinant APV insertion site selected in Example 4 was analyzed for fNPI035.
( 1 ) 制限酵素地図の作成 (1) Creating a restriction map
実施例 4で選択した組換え体 fNP1035の作製に使用した組換え用プラスミ ドは、 PNP35の非必須領域を揷入部位としている。 そこで、 この pNP35の詳細な制限酵 素地図を以下のように作製した。  The plasmid for recombination used in the preparation of the recombinant fNP1035 selected in Example 4 uses a non-essential region of PNP35 as an insertion site. Therefore, a detailed restriction map of pNP35 was prepared as follows.
fNP35を、 6種類の制限酵素 (Hindi II、 Bglll. Hpal、 Sacl、 EcoRI、 Clal) を それぞれ単独で用いて消化する力、または二つの制限酵素を用レ、て二重消化した。 この消化によって得られた各断片について 0.8 %ァガロースゲル電気泳動を行い、 消化されて出現するバンドの数と本数を調べた。 二重消化に用いた制限酵素は、 図 2 (a) に示すとおりである。 ここに示す制限酵素の組合わせを変えることに より、 上記制限酵素の切断部位が図 2 (図 2の (a) 列) に示す位置であること が確認された。  fNP35 was digested with six different restriction enzymes (Hindi II, Bglll. Hpal, Sacl, EcoRI, Clal) alone or with two restriction enzymes. Each fragment obtained by this digestion was subjected to 0.8% agarose gel electrophoresis, and the number and number of bands appearing after digestion were examined. The restriction enzymes used for double digestion are as shown in Figure 2 (a). By changing the combination of the restriction enzymes shown here, it was confirmed that the cleavage site of the restriction enzyme was at the position shown in FIG. 2 (column (a) of FIG. 2).
(2) 塩基配列分析  (2) Base sequence analysis
図 2 (図 2の (b)列) に示す EcoRI-5Kbp断片中のサブクローンをそれぞれ常 法に従い PUC18にクローニングした。また、 pNP35の欠失変異クローンを Henikoff の方法 (Gene, 28巻、 357頁〜 (1984) ) に従って得た。 このようにして得た欠 失変異クローンを図 2 (図 2の (c) 列) に示す。  The subclones in the EcoRI-5Kbp fragment shown in FIG. 2 (column (b) of FIG. 2) were each cloned into PUC18 according to a conventional method. Further, a deletion mutant clone of pNP35 was obtained according to the method of Henikoff (Gene, vol. 28, p. 357- (1984)). The deletion mutant clone thus obtained is shown in FIG. 2 (column (c) of FIG. 2).
図 2の( b )列で示したクローンの塩基配列を、塩基配列解析キット(ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit) と ABI全自動シークェ ンサ一で解読した。 その解析データを配列番号 1に記載する。 参考例 1 組み換え体 f NZ6927RLの作製  The nucleotide sequence of the clone shown in column (b) of FIG. 2 was read using a nucleotide sequence analysis kit (ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit) and an ABI fully automatic sequencer. The analysis data is described in SEQ ID NO: 1. Reference Example 1 Production of recombinant fNZ6927RL
( 1 ) fNZ6927RL作製用プラスミ ド pNZ6927RLの構築  (1) Construction of plasmid pNZ6927RL for fNZ6927RL production
比較対照として用いる組み換え体 fNZ6927RLを作製する為のブラスミド  Brasmid to generate recombinant fNZ6927RL to be used as control
PNZ6927RLは、 大腸菌由来の lacZ逮伝子に鳩痘由来のプロモータ一 P17を接続し たブラスミド、 pNZ1729R(Yanagidaら, J.Virol., 66, 1402-1408(1992)) を元に して、 図 6に示す PNZ98 (特開平 3-27284号公報) の VVの 7.5Kブロモ 一ターと連結した NDVの F遠伝子と、 図 5に示す pNZ87 (特開平 1- 157381号 公報)の VVの 7.5 Kプロモータ一を連結した NDVの HN遠伝子を挿入して作製し た。 PNZ6927RL is based on pNZ1729R (Yanagida et al., J. Virol., 66, 1402-1408 (1992)), a plasmid in which a promoter from pigeonpox P17 is connected to a lacZ arrested child from Escherichia coli. Figure 6 shows the NDV F gene linked to the 7.5K bromoester of PNZ98 (JP-A-3-27284) and pNZ87 (JP-A-1-157381) shown in Figure 5. Publication), the NDV HN telegene linked to the VV 7.5K promoter was inserted.
( 1 - a) プラスミド pNZ87の作製  (1-a) Preparation of plasmid pNZ87
上記のようにして PNZ76を BamHIで消化し、 0.8%ァガロースゲルで電気泳動し て、 ーガラクトシダーゼ遺伝子を含まない約 2.9kbの断片を回収した。  As described above, PNZ76 was digested with BamHI, and electrophoresed on a 0.8% agarose gel to recover an approximately 2.9 kb fragment not containing the -galactosidase gene.
—方、 ハイプリッドファージ mplO-HN180を Bglll と BamHI とで二重消化し、 0.8%ァガロースゲルで電気泳動して、約 1.8kbの NDVの H N遗伝子断片を回収し た。  On the other hand, the hybrid phage mplO-HN180 was double-digested with Bglll and BamHI, and electrophoresed on a 0.8% agarose gel to recover an approximately 1.8 kb NDV HN 遗 gene fragment.
両者をリガ一ゼによって連結し、コンビテントな大腸菌 TG- 1株を形質転換した。 この形質耘換体を、 0.03%の 5-ブロモ -4-クロロ- 3-ィンドリル- ;9 ガラクトピ ラノシド、 0.03mMのイソプロピル- /9- D-ガラクトビラノシド、 40 t g/mLのアン ピシリンを含む L B寒天培地で、 15時間、 37°Cにて培養した。 寒天培地上に生育 した形質体のうち、 白色コロニーをとリ、 40 μ g/mLのアンピシリンを含む LB 液体培地で、 15時間、 37でにて培養した。 形質転換体を回収し、 ビルンボイムと ド一リーの方法 (Nucleic Acid Research, 7:1513-, (1979)) に従ってプラスミ ド を抽出した。 このようにして HN速伝子を含むブラスミド pNZ87を得た。  Both were ligated by ligase to transform a competent E. coli TG-1 strain. This transgenic plant contains 0.03% of 5-bromo-4-chloro-3-indolyl-; 9-galactopyranoside, 0.03 mM of isopropyl- / 9-D-galactopyranoside, and 40 tg / mL of ampicillin. The cells were cultured on an LB agar medium for 15 hours at 37 ° C. Among the traits grown on the agar medium, white colonies were collected and cultured in LB liquid medium containing 40 μg / mL ampicillin at 37 for 15 hours. The transformant was recovered, and plasmid was extracted according to the method of Birnboim and Doley (Nucleic Acid Research, 7: 1513-, (1979)). Thus, a brasmid pNZ87 containing the HN fast gene was obtained.
( 1 - b) pNZ98の作製  (1-b) Preparation of pNZ98
NDVの F逮伝子および H N退伝子を含むプラスミ ド XL I Π - 1 OH ( V i rus Research, 7:24卜 255(1987))を使用した。  Plasmid XL IΠ-1 OH (Virus Research, 7: 24-255 (1987)) containing NDV F and HN transgenes was used.
4 At gのプラスミド XLIII-10Hを Xbalで消化し、生じた付着末端を DNAポリメ ラーゼで平滑末端とし、 フエノールークロロホルム ( 1 : 1 ) で抽出し、 ェタノ ール沈殿により回収した。 回収した DNAを BamHIで消化し、 0.8%ァガロースゲル で電気泳動して、 約 2. lkbの F逮伝子を完全に含む断片を回収した。  4 Atg of plasmid XLIII-10H was digested with Xbal, the cohesive ends generated were made blunt with DNA polymerase, extracted with phenol-chloroform (1: 1), and recovered by ethanol precipitation. The recovered DNA was digested with BamHI, and electrophoresed on a 0.8% agarose gel to recover a fragment completely containing about 2.1 kb of the F gene.
—方、 上記のようにして作製した pNZ76を BamHI と Smalで二重消化し、 lacZ 遠伝子部分を除いた約 3. Okbpのと BamHI -Sraai断片を回収した。 回収したこの断 片と、 約 2.1kbの F遠伝子を完全に含む断片とをリガーゼによって連結し、 コン ピテントな大腸菌 TG1株を形質転換した。  On the other hand, pNZ76 prepared as described above was double-digested with BamHI and Smal, and about 3. Okbp and BamHI-Sraai fragments excluding the lacZ gene were recovered. The recovered fragment was ligated with a fragment containing about 2.1 kb of the F gene completely by ligase to transform competent E. coli TG1 strain.
50 μ g/mLのアンピシリンを含む L B寒天培地上で生育してきたコロニーから、 上記と同様の操作によってブラスミ ドを調製した。 制限酵素 (BamHI と Smal) で このプラスミ ドを切断し、 目的のクローンを確認し、 PNZ98'と命名した。 この PNZ98'には、 F遺伝子全長の他、 ΗΝ遠伝子の 5'-末端約 300bpが含まれる。 こ の部分を除去するために、 ρΝΖ98'を Smal と Kpnl とで二重消化し、 約 4,150bpの Smal- Kpnl断片を 0.8%ァガロースゲル電気泳動により回収した。 また、 ρΝΖ98' を Smal と Avail とで同様に二重消化し、 約 650bpの Sma卜 Aval Iを 1.5%ァガロ ースゲル電気泳動にょリ回収した。 From the colonies grown on LB agar medium containing 50 μg / mL ampicillin, a plasmid was prepared by the same operation as above. This plasmid was digested with restriction enzymes (BamHI and Smal), and the desired clone was identified and named PNZ98 '. this PNZ98 'contains the full length of the F gene and about 300 bp of the 5'-end of the gene. To remove this part, ρΝΖ98 'was double-digested with Smal and Kpnl, and a Smal-Kpnl fragment of about 4,150 bp was recovered by 0.8% agarose gel electrophoresis. Further, ρΝΖ98 ′ was similarly double-digested with Smal and Avail, and about 650 bp of Smal Aval I was recovered by 1.5% agarose gel electrophoresis.
これら 2つの断片を混合し、 DNAポリメラ一ゼによって付着末端を平滑末端と した後にコンビテントな大腸菌 TG1 を形質転換し、 形質転換体を得た。 50 β g/mL のアンピシリンを含む L B寒天培地上でこの形質転換体を生育させ、 形成された コロニーよリ上述のようにしてプラスミ ドを得た。このプラスミ ドを Smalで再び 消化し、 切断されたものを選択してブラスミ ド pNZ98を得た。  These two fragments were mixed, the cohesive end was made blunt by DNA polymerase, and then Escherichia coli TG1 which was concomitant was transformed to obtain a transformant. This transformant was grown on LB agar medium containing 50 β g / mL of ampicillin, and a plasmid was obtained from the formed colony as described above. This plasmid was digested again with Smal, and the cleaved one was selected to obtain a plasmid pNZ98.
(2) fNZ6927RLの作製と純化  (2) Production and purification of fNZ6927RL
組み換え用ベクターとして PNZ6927RLを用いること以外は実施例 3に記載した のと同一方法で組み換え体 fNZ6927RLを作製し、 純化した。 実施例 6 組み換え体 fNP6935の作製  A recombinant fNZ6927RL was prepared and purified in the same manner as described in Example 3, except that PNZ6927RL was used as a recombinant vector. Example 6 Production of recombinant fNP6935
( 1) pNP35に NDVの HNと F遺伝子を揷入した組み換え用プラスミ ド PNP6935 の構築 (1) pNP35 the construction of recombinant for plasmid P NP6935 was揷入the HN and F genes of NDV
PNP6935は pNP35 (5 g) を Clalで切断した後、 DNAポリメラーゼ (宝酒造 社製) で切断末端を平滑にし、 アルカリフォスファタ一ゼ処理により 5'-末端の リン酸を除去した。 この後、 フエノール 'クロ口ホルム ( 1 : 1 ) で抽出しエタ ノールで沈殿させて開裂プラスミ ドを回収した。 参考例 1 ( 1 ) で作製した PNZ6927RL ( 5 ^ g ) を Hindlllで切断し、 DNAポリメラーゼで切断末端を平滑に し、 ァガロースゲルから約 7.5Kbpの lacZ速伝子と ND Vの HNと F遠伝子を含 む DNA断片 ( 1 μ δ) を回収した。 先に回収した開裂プラスミド (0.5 g) と この DNA断片 (0.5 g) とをリガーゼ (T4 DNAリガーゼ) で連結し、 常法に従 つてプラスミ ド PNP6935を取得した。 このプラスミ ドと上述の pNZ6927RLとは外 来退伝子が同一で、 APVの増殖に必須でなレ、領域が異なるのみである。 PNP6935 was prepared by cleaving pNP35 (5 g) with Clal, blunting the cleaved end with DNA polymerase (Takara Shuzo), and removing the 5'-end phosphate by treatment with alkaline phosphatase. After that, it was extracted with phenol-cloth form (1: 1) and precipitated with ethanol to recover the cleavage plasmid. PNZ6927RL (5 ^ g) prepared in Reference Example 1 (1) was cut with Hindlll, the cut ends were made blunt with DNA polymerase, and the lacZ fast gene of about 7.5 Kbp and HN and F telegrams of NDV from agarose gel. The DNA fragment (1 μδ ) containing the offspring was recovered. The cleavage plasmid (0.5 g) previously collected and this DNA fragment (0.5 g) were ligated with ligase (T4 DNA ligase) to obtain plasmid PNP6935 according to a conventional method. This plasmid and the above-mentioned pNZ6927RL have the same exogenous repressed gene, and differ only in the region and region that are indispensable for APV growth.
(2) 組み換え体 fNP6935の作製と純化  (2) Preparation and purification of recombinant fNP6935
組み換え用ベクターに PNP6935を用いること以外は実施例 3と同じ方法で、 組 み換え体 fNP6935を作製 ·純化した。 fNP6935と fNZ6927RLの両組み換え体は、 それぞれサザンハイブリダィゼーシヨン法により解析され、 NDVの F、 H N遗伝 子と 1 acZ遠伝子が予想通リの位置にあることが確認された。 実施例 7 実施例 6と比較例 1で得られた組み換え体を免疫した鶏の発痘サイズ と強毒 NDVによるチヤレンジ試験 A recombinant fNP6935 was produced and purified in the same manner as in Example 3 except that PNP6935 was used as a recombinant vector. Both recombinants of fNP6935 and fNZ6927RL are Each was analyzed by the Southern hybridization method, and it was confirmed that the F, HN 遗 and 1 acZ NDV genes of NDV were in the expected positions. Example 7 Pox size and toxicity of chickens immunized with the recombinants obtained in Example 6 and Comparative Example 1
ニューキャッスル病ウィルスの赤血球凝集抑制抗体価が少なくとも 4以上の移 行抗体を有する生後 3日齢の鶏の雛を 50羽用意した。これらの雛の赤血球凝集抑 制抗体価の平均値は 24. 3であつた。  Fifty three-day-old chicks were prepared having a transferable antibody having a hemagglutination-inhibiting antibody titer of Newcastle disease virus of at least 4 or more. The average hemagglutination-inhibiting antibody titer in these chicks was 24.3.
これらの鶏をそれぞれ、 14羽、 14羽、 13羽、 9羽づつの 4群に分けた。  These chickens were divided into four groups of 14, 14, 13, and 9, respectively.
そのうち、 14羽の群のふたつ (接種群 1および 2 ) については、 上記実施例で 得た組み換え APVfNZ6934と fNZ6927RL (いずれも 1 x 104pfu) を穿刺針にょリ翼 膜に接種した。 Two of the groups of 14 birds (inoculation groups 1 and 2) were inoculated with the recombinant APV fNZ6934 and fNZ6927RL (1 × 10 4 pfu in each case) obtained in the above example into the wing membrane of a puncture needle.
13羽の群 (採血群) の雛については心臓から全採血して、 その血清を 4 °Cで保 存した。  Chicks of 13 groups (blood collection group) were whole-blood-collected from the heart, and the serum was stored at 4 ° C.
また、 9羽の群 (非接種群) は、 何も接種せず、 接種群と共に、 鶏アイソレー タ一内で 3週間飼育した。 3週間の飼育中、 接種群と非接種群の計 3群の雛のポ ックサイズを、 実施例 4と同様の方法で測定し、 3週間後の 24日齢に 3 x l04pfu の強毒ニューカッスル病ウィルス佐藤株を腿の筋肉中に接種 (チャレンジ) し、 その後 2週間観察して耐過したものを感染防御と見なした。 The group of 9 birds (non-vaccinated group) received no vaccination and was bred together with the vaccinated group in a chicken isolator for 3 weeks. During breeding for 3 weeks, the pock size of the chicks in the inoculated group and the non-inoculated group was measured in the same manner as in Example 4, and 3 x 10 4 pfu of poison was given at 24 days of age after 3 weeks. Newcastle disease virus Sato strain was inoculated (challenge) into the muscles of the thighs, and observed for 2 weeks.
また、 免疫 1週間後、 2週間後、 攻擎直前に鶏から血液を部分採取し、 免疫時 に採血群よリ採血された血液と共に、 その血清中に存在する NDVに対する NDV- HI 価を常法 ( 「鶏のワクチン」 第 2版、 発行元: (株) 木香書房、 平成 4年発行、 282頁 「ニューカッスル病診断用赤血球凝集抗原」 の項に記載された方法) に従 つて測定した。 各群の鶏の発痘サイズの平均の推移を図 3に示す。 また、 NDV-H1 抗体価の平均値の推移と NDV攻搫試験の結果を表 1に示す。  One week, two weeks after immunization, and immediately before challenge, blood was partially collected from chickens, and the NDV-HI titer for NDV present in the serum was constantly determined along with the blood collected from the blood collection group at the time of immunization. The measurement was carried out according to the method described in “Vaccines of chickens”, 2nd edition, published by Kiko Shobo Co., Ltd., published in 1992, page 282, “Hemagglutinating antigen for diagnosis of Newcastle disease”. . Figure 3 shows the changes in the average size of chicken pox in each group. Table 1 shows the transition of the average NDV-H1 antibody titer and the results of the NDV challenge test.
図 3と表 1ょリ明らかなように、 本発明の組み換え体である fNP6935は、 fNZ6927RLよリも発痘サイズが大きく、 NDVチヤレンジ試験の成績、 H I抗体の誘 導も共に fNZ6927RLよりも優れたワクチンであることが証明された。 特に本発明 の組み換え体を接種した群では、 チャレンジを受けた鶏の 90%以上が生存し、 本 発明の組み換え体が極めて高い生存率を示す有効、 かつ実用的なワクチンである ことが示された, As is clear from FIG. 3 and Table 1, fNP6935, which is the recombinant of the present invention, has a larger pox size than fNZ6927RL, and has better NDV challenge test results and HI antibody induction than fNZ6927RL. Proven to be a vaccine. Particularly, in the group inoculated with the recombinant of the present invention, 90% or more of the challenged chickens survive, and the recombinant of the present invention is an effective and practical vaccine showing an extremely high survival rate. It was shown,
曰齢時における NDV-H1抗体価 NDVチヤレンシ'試験 接種ウィルス 3 10 17 24 (日) 生存/試験羽 防御率(%) fNP6935 24.3 8.0 18.0 7.3 13/14 92.9 fNZ6927RL 24.3 8.4 7.6 4.0 9/14 64.3 一 (非接種) 24.3 11.3 2.8 2.0 2/9 22.2 NDV-H1 antibody titer at the age of age NDV challenge 'test Inoculated virus 3 10 17 24 (day) Survival / test feather protection rate (%) fNP6935 24.3 8.0 18.0 7.3 13/14 92.9 fNZ6927RL 24.3 8.4 7.6 4.0 9/14 64.3 I (Non-inoculated) 24.3 11.3 2.8 2.0 2/9 22.2
実施例 8 pNP35の Hpal領域に外来遺伝子が揷入された組み換え体の作製 Example 8 Preparation of a recombinant in which a foreign gene has been inserted into the Hpal region of pNP35
図 1の pNP35の非必須領域中に 2ケ所存在する制限酵素 Hpal切断部位の中に外 来遺伝子を揷入した組み換え体が得られるかどうか調べる為に、 PNP35 (2 μ g) を Hpalで切断し、 アルカリフォスファタ一ゼ処理により 5,一末端のリン酸を除 去した。 その後フエノール: クロ口ホルム ( 1 : 1 ) で抽出し、 エタノールで沈 殿させて、 開裂 pNP35 ( l g) を回収した。 実施例 2で記載したように lacZ遠 伝子 (0.2 g) をこの回収した pNZ35 (0.2 g) に T4 DNAリガ一ゼで連結し、 大腸菌 TG 1を形質転換し、 得られた形質転換体から目的のプラスミ ド  Cleavage of PNP35 (2 μg) with Hpal to see if a recombinant with the foreign gene inserted into the Hpal cleavage site at the two restriction enzymes in the nonessential region of pNP35 in Figure 1 can be obtained Then, the phosphoric acid at the 5, 1 terminal was removed by alkaline phosphatase treatment. Thereafter, extraction with phenol: cloth form (1: 1) was performed, followed by precipitation with ethanol, and cleaved pNP35 (lg) was recovered. As described in Example 2, lacZ gene (0.2 g) was ligated to the recovered pNZ35 (0.2 g) with T4 DNA ligase, E. coli TG1 was transformed, and the resulting transformant was Desired plasmid
PNP1035-Hを 1 β g取得した。 このプラスミドを用いて実施例 3と同様にして組 み換え体 fNP1035- Hを作製 ·純化した。 実施例 4と同様にして SPF鶏に接種して その発痘サイズを親ウィルスである NP株と比較した。 fNP1035の場合と同様、 発痘の推移は NP株と同様であった。 このことは、 pNP35の非必須領域の揷入部 位としては、 Clal以外に、 Hpalも使用できることを示しており、 配列番号 1に示 された非必須領域が外来遺伝子が挿入されても生体内での増殖低下が起こらない ゲノム領域として有用であることが再確認された。 1 βg of PNP1035-H was obtained. Using this plasmid, a recombinant fNP1035-H was produced and purified in the same manner as in Example 3. SPF chickens were inoculated in the same manner as in Example 4, and their pox size was compared with that of the parent virus, NP strain. As with fNP1035, the change in varicella was similar to that of the NP strain. This indicates that Hpal, in addition to Clal, can be used as an insertion site for the non-essential region of pNP35, and the non-essential region shown in SEQ ID NO: 1 can be used in vivo even when a foreign gene is inserted. It has been reconfirmed that it is useful as a genomic region where the growth of the DNA does not decrease.
かくして本発明によれば、 ゲノム DNA領域に外来遠伝子が揷入されても実質的 に親株と同等な生体内における増殖性を有する、 組換え APVが得られる。 産業上の利用性 Thus, according to the present invention, a recombinant APV can be obtained which has substantially the same in vivo proliferative properties as the parent strain even when a foreign gene is introduced into the genomic DNA region. Industrial applicability
本発明の組換え APVは、 種々の鳥の病原体に対するワクチンとして使用するこ とができる。 さらに、 本発明の組換え APVは移行抗体を保有する鶏に対しても有 効なワクチンとして使用することができる。  The recombinant APV of the present invention can be used as a vaccine against various bird pathogens. Furthermore, the recombinant APV of the present invention can be used as an effective vaccine against chickens carrying a transfer antibody.
また、 本発明の APVの増殖に必須でないゲノム DNA領域は、 その領域内に種々 の外来退伝子を組込むことができる。 このため、 相同組換えによって組換えウイ ルスを作製できるウィルスに、 かなり広範な種類にわたって外来逸伝子を組込む ためのツールとして使用することができる。 In addition, the genomic DNA region that is not essential for the growth of the APV of the present invention can incorporate various exogenous genes into the region. Therefore, it can be used as a tool for incorporating a wide variety of foreign genes into viruses capable of producing recombinant viruses by homologous recombination.
配列表 配列番号: 1 Sequence Listing SEQ ID NO: 1
配列の長さ : 5055 Sequence length: 5055
配列の型:核酸 Sequence type: nucleic acid
鎖の数: 1本鎖 Number of chains: 1 strand
トポロジー:直鎖状  Topology: linear
配列の種類: genomic DNA Sequence type: genomic DNA
起源 Origin
生物名:鳩痘ウィルス  Organism name: Pigeonpox virus
株名: N P株 (鶏痘生ワクチン株)  Strain name: NP strain (fowlpox live vaccine strain)
配列 Array
GAATTCTAGA TATTTCAGTA TTGCCATTTT CTATAGCGCA GTGCAAAAGA GAACACCCAT 60 ATTCATTAAT CATATTCGGG TCCGAGTCAT TGTCTTTTAA AGCTTTAATA ACATCAGAAA 120 CACAGCCAGA TTCGATAGCC TCAAATACCT CCATGTTGTG TAATATTAGT AGTATCCGTG 180 TATGTACACC GGATGTACCA AGCGATATAA AAATGATTAA AATTTCAATT TTTATTTAAC 240 ATTAGGATGT CTATTTCATA ATCCCGTTAT TAGTAGTTAG TGGTTAGTAA GTACCATATT 300 ACTACTAATA AGATAAAAAA TAAAACTGCT GATGTACAGT TTATACCCAT AATGAAATTA 360 TTTATAAAAT CCTCAGCCAT GGAAATAATG AAATGATACA ACCAATTCAT ATACAATGTT 420 TATTTATAGG ATCTATTATG AATTAATATT TTTTTACTTT TTAACTAAAC GCGATTTAAT 480 AAATCTACTA TAGTATCAAT ATTATTTCAA ATAATAAAAA AATATTATAC GGTTAGTAAT 540 GTACTTTAAT GTATACCAAA ATAAAATCTA ATAGAGTAAT GTCTTTTTAA TTTCATATAT 600 ATCATTAGGA TTTATACATT TAATTGGGTA TTCAGTTCCA TAACCTCTAT AATTATCATC 660 AGTAGCCTTA AACATTTCTT CTTTATTAAC ATACTTACAT TTATTGGTAT CGTTCATGTT 720 AGATTTCAAA TCGTCAGTAT ATACTAAAGG TGCCATTGCC AAACAGAACT CTTCTTGGGA 780 TAGTTCATCT ACATAAAATT TACCATCGCT GTCTACCATA CCAAGAAATT CATTTCTTGT 840 AGTATATTGG ATACATCCAG AAACATACTC TATATCAGAA TTTAAACATC CTATGAATAT 900 ATKATTATA ATACATGATG TCATAAACTT ACATTTAGTG TCGTAATCGA ACACCTTTAA 960 TATCGATTCC GGAGTAGTTT TAGTTCCATT TACCTGCATG AATACCATGC TATCAGTAAC 1020 TGGAGTTACT GTATTAAAGC ATGATTTGAT TTCACTACTT ATTTCACGTA GTATAACCAT 1080GAATTCTAGA TATTTCAGTA TTGCCATTTT CTATAGCGCA GTGCAAAAGA GAACACCCAT 60 ATTCATTAAT CATATTCGGG TCCGAGTCAT TGTCTTTTAA AGCTTTAATA ACATCAGAAA 120 CACAGCCAGA TTCGATAGCC TCAAATACCT CCATGTTGTG TAATATTAGT AGTATCCGTG 180 TATGTACACC GGATGTACCA AGCGATATAA AAATGATTAA AATTTCAATT TTTATTTAAC 240 ATTAGGATGT CTATTTCATA ATCCCGTTAT TAGTAGTTAG TGGTTAGTAA GTACCATATT 300 ACTACTAATA AGATAAAAAA TAAAACTGCT GATGTACAGT TTATACCCAT AATGAAATTA 360 TTTATAAAAT CCTCAGCCAT GGAAATAATG AAATGATACA ACCAATTCAT ATACAATGTT 420 TATTTATAGG ATCTATTATG AATTAATATT TTTTTACTTT TTAACTAAAC GCGATTTAAT 480 AAATCTACTA TAGTATCAAT ATTATTTCAA ATAATAAAAA AATATTATAC GGTTAGTAAT 540 GTACTTTAAT GTATACCAAA ATAAAATCTA ATAGAGTAAT GTCTTTTTAA TTTCATATAT 600 ATCATTAGGA TTTATACATT TAATTGGGTA TTCAGTTCCA TAACCTCTAT AATTATCATC 660 AGTAGCCTTA AACATTTCTT CTTTATTAAC ATACTTACAT TTATTGGTAT CGTTCATGTT 720 AGATTTCAAA TCGTCAGTAT ATACTAAAGG TGCCATTGCC AAACAGAACT CTTCTTGGGA 780 TAGTTCATCT ACATAAAATT TACCATCGCT GTCTACCATA CCAAGAAATT CATTTCTTGT 840 AGTATATTGG ATACATCCAG AAACATACTC TATATCAGAA TTTAAACATC CTATGAATAT 900 ATKATTATA ATACATGATG TCATAAACTT ACATTTAGTG TCGTAATCGA ACACCTTTAA 960 TATCGATTCC GGAGTAGTTT TAGTTCCATT TACCTGCATG AATACCATGC TATCAGTAAC 1020 TGGAGTTACT GTATTAAAGC ATGATTTGAT TTCACTACTT ATTTCACGTA GTATAACCAT 1080
TATTGTAAAG TGTAGTAGTT ATATATTATT CTGTAATAAG GAATTAATTT GCTAGTTGGG 1140TATTGTAAAG TGTAGTAGTT ATATATTATT CTGTAATAAG GAATTAATTT GCTAGTTGGG 1140
TTATAAAACG TTCTAGATAA ATCTATTAAT AATTCATTTT TATATATGTT ACTCGGAAGA 1200TTATAAAACG TTCTAGATAA ATCTATTAAT AATTCATTTT TATATATGTT ACTCGGAAGA 1200
AATTACTATT TACTAGTTAA TTATAGAATA GATAAGTCTT AATAATTTAC TTTTAGTATT 1260AATTACTATT TACTAGTTAA TTATAGAATA GATAAGTCTT AATAATTTAC TTTTAGTATT 1260
ACTCGGAAGA AATTACTATA GTTGACTGTA TAAACATTAT AAGAAAGAAT AAATTCAAAA 1320ACTCGGAAGA AATTACTATA GTTGACTGTA TAAACATTAT AAGAAAGAAT AAATTCAAAA 1320
ATATTTATAA AATAAATATT CTACCATCTT CCGTAAACAT CTTTATATTC TGTTACTAGG 1380ATATTTATAA AATAAATATT CTACCATCTT CCGTAAACAT CTTTATATTC TGTTACTAGG 1380
TATTCTTTTC CTACATATCT TACAGGAAAT TCTCTGGCGT GTGTATCATT AAGCCAATAT 1440TATTCTTTTC CTACATATCT TACAGGAAAT TCTCTGGCGT GTGTATCATT AAGCCAATAT 1440
CTACAATATG GAATTTCGAC ATGGCCGATG ACACTTTCGT TTACCTTTAT ACTTGTGTAT 1500CTACAATATG GAATTTCGAC ATGGCCGATG ACACTTTCGT TTACCTTTAT ACTTGTGTAT 1500
CTGTAATCCA CCACATTTTG TGTGAAGCCC TGCGGTCTTT CGTATGACAT TACACCTCCT 1560CTGTAATCCA CCACATTTTG TGTGAAGCCC TGCGGTCTTT CGTATGACAT TACACCTCCT 1560
GTTACTATAC CGGTTACTCT CCATCTAGGA TTGCCGTAAT TACTTCCTAC GAAGCAAGTT 1620GTTACTATAC CGGTTACTCT CCATCTAGGA TTGCCGTAAT TACTTCCTAC GAAGCAAGTT 1620
ATCTTGGTTT CGTTTTCATG TTTTTCTAGT AGATAGGTTA TACCTTCTTT TTTAATTTCG 1680ATCTTGGTTT CGTTTTCATG TTTTTCTAGT AGATAGGTTA TACCTTCTTT TTTAATTTCG 1680
ATACATCTTT GATACGTTTC CTCTTTCCCA GAAGCAGTAA GTAGTACACA GGTAAAGCAC 1740ATACATCTTT GATACGTTTC CTCTTTCCCA GAAGCAGTAA GTAGTACACA GGTAAAGCAC 1740
AAACTTTGAG GACCTGTTTT TTTAACTGTA AAAGTAGAAG TATCTCCACT AACAGTTACT 1800AAACTTTGAG GACCTGTTTT TTTAACTGTA AAAGTAGAAG TATCTCCACT AACAGTTACT 1800
TCATATATAT CTCTATAAGG ACTAGGAACA TAATTGAAAG CGTTAAGTCC GTTACCTCCT 1860TCATATATAT CTCTATAAGG ACTAGGAACA TAATTGAAAG CGTTAAGTCC GTTACCTCCT 1860
ACCTGCTCTT GGGCTACCAT AATCCCATCG CTGCCTCTCC AAGTAGCTCT TGATATTCCT 1920ACCTGCTCTT GGGCTACCAT AATCCCATCG CTGCCTCTCC AAGTAGCTCT TGATATTCCT 1920
TCTCCGTATT CGGTTCTGCA TTGTAATTTT ACAGGGCTAC CCGGTACACC TTCTTCTCCA 1980TCTCCGTATT CGGTTCTGCA TTGTAATTTT ACAGGGCTAC CCGGTACACC TTCTTCTCCA 1980
TAGATATTTT TCAAGCTAAA TGCTATTATA GTAATTGCTA GAAATAAATA ATTAGCCTTC 2040TAGATATTTT TCAAGCTAAA TGCTATTATA GTAATTGCTA GAAATAAATA ATTAGCCTTC 2040
ATCTTGATTG CTTTATATTA AACACTGGAT AATGTACGAG GATCACATAT AGTAGTTAAT 2100ATCTTGATTG CTTTATATTA AACACTGGAT AATGTACGAG GATCACATAT AGTAGTTAAT 2100
ATACTTATTC ACTTTTTAAT TAAAAATGTA TTAATCTTAA AAAAATATCA AAAATTAAAC 2160ATACTTATTC ACTTTTTAAT TAAAAATGTA TTAATCTTAA AAAAATATCA AAAATTAAAC 2160
CAACCACCTC TTATAACGAG ATTTCTGTCC AGGTTCCATC AAAGATGATC CAGAGATCAG 2220CAACCACCTC TTATAACGAG ATTTCTGTCC AGGTTCCATC AAAGATGATC CAGAGATCAG 2220
AACCACAGAA AGGTCCTGTA ATTTTTCATC GTAAGAAGTC ATAGATGCTA CATAATCTCT 2280AACCACAGAA AGGTCCTGTA ATTTTTCATC GTAAGAAGTC ATAGATGCTA CATAATCTCT 2280
ACTTAGACCC AAGTAACTTA CCGTAAATAT TACTGTAGTA GTACAATCAG TGTAATTTGT 2340ACTTAGACCC AAGTAACTTA CCGTAAATAT TACTGTAGTA GTACAATCAG TGTAATTTGT 2340
ATTTGCTACT ATTTTTTTAC ATTCATTATC TTTCGAATAT TCTACCAATA CTTGAATATC 2400ATTTGCTACT ATTTTTTTAC ATTCATTATC TTTCGAATAT TCTACCAATA CTTGAATATC 2400
TTCGTTCAAC TTCACACCAC CTGCTCTAAC ATCTACTTTT ACTTCGTGGT CTTCTATAGT 2460TTCGTTCAAC TTCACACCAC CTGCTCTAAC ATCTACTTTT ACTTCGTGGT CTTCTATAGT 2460
TCTAGTCCTA TTTATTATAA AATCAATCAA ATCTTTATCT ACATTATCTA TAACATACGC 2520TCTAGTCCTA TTTATTATAA AATCAATCAA ATCTTTATCT ACATTATCTA TAACATACGC 2520
ATCTACGTGA GGCATTACTC TGAGTTCTAT ACCGTGTCTG TAACTCTCTG TTCCGTTGTA 2580ATCTACGTGA GGCATTACTC TGAGTTCTAT ACCGTGTCTG TAACTCTCTG TTCCGTTGTA 2580
ATAGAAGATA CATCTATAGC GACCTTCGTC ATTTCTGGAT GACCTTTTAG GAAGTTCAAC 2640ATAGAAGATA CATCTATAGC GACCTTCGTC ATTTCTGGAT GACCTTTTAG GAAGTTCAAC 2640
ATTATATTCT TTAACTGGAT CGTTACAATA GCATATACTG TCTTCTCCGG CATCATGTAT 2700ATTATATTCT TTAACTGGAT CGTTACAATA GCATATACTG TCTTCTCCGG CATCATGTAT 2700
GTCAATAGTT GCCTTAAACG CGTTATTTTT CATGTTTCCT TTTACTACAA TCAGTTTAGT 2760GTCAATAGTT GCCTTAAACG CGTTATTTTT CATGTTTCCT TTTACTACAA TCAGTTTAGT 2760
AGCGTGTCTG TCAGGTGGTA GAAGACAAGT CAAATTAACC ATTACATCGT TATGTACTAC 2820 CATAGTATAA GATCGACATT GTAGGAAGGT AGCCAATAAG AATAAAGAAA CTACGTACAC 2880AGCGTGTCTG TCAGGTGGTA GAAGACAAGT CAAATTAACC ATTACATCGT TATGTACTAC 2820 CATAGTATAA GATCGACATT GTAGGAAGGT AGCCAATAAG AATAAAGAAA CTACGTACAC 2880
TTTTCCAGCC ATTATTTTTT TTACCAACTA CTAATAATGC TACACTAGTG TTAGTGTTAT 2940TTTTCCAGCC ATTATTTTTT TTACCAACTA CTAATAATGC TACACTAGTG TTAGTGTTAT 2940
ATTTATGTTT TTTCCTAATA ATATCTGGAA ATCGTTTTAA GATCTTCCAT AGATAAATTT 3000ATTTATGTTT TTTCCTAATA ATATCTGGAA ATCGTTTTAA GATCTTCCAT AGATAAATTT 3000
GACAATATTA CTCTATGTAT CTCAGGAGAT AGTAGACACC ATCTGCTGCT ATGATCTTTA 3060GACAATATTA CTCTATGTAT CTCAGGAGAT AGTAGACACC ATCTGCTGCT ATGATCTTTA 3060
CTAGCGTATT CATTGATGAT CGATAACGTC AAGTCTATAG CTGTCTTCCT TTTTTCCATG 3120CTAGCGTATT CATTGATGAT CGATAACGTC AAGTCTATAG CTGTCTTCCT TTTTTCCATG 3120
TATTTTATAT GCTTCTTAAT AAAACAACGA AATATCCTTA TATTTTTAAG ATCTATCCTT 3180TATTTTATAT GCTTCTTAAT AAAACAACGA AATATCCTTA TATTTTTAAG ATCTATCCTT 3180
CGTATACGTT TTATAGAATT AGTTAGACCA TCCAGTTTAT CTAATATCAG AACATCGTAC 3240CGTATACGTT TTATAGAATT AGTTAGACCA TCCAGTTTAT CTAATATCAG AACATCGTAC 3240
AAGGATATTT TCTTATCACC CGTATAAAAT ACATTGTCTT TCATAATGGA CAGTTCGTGT 3300 丁 CTATTTCAT CCTTTAATGC TTTGGTTTCT TTATAGTTGT TTACAAATCT CATATTACGT 3360AAGGATATTT TCTTATCACC CGTATAAAAT ACATTGTCTT TCATAATGGA CAGTTCGTGT 3300 pcs CTATTTCAT CCTTTAATGC TTTGGTTTCT TTATAGTTGT TTACAAATCT CATATTACGT 3360
ATAAAACCTT GTTTCTTCTT TATAGAAGAG TCGTTTATCA CAGAAAAGTA TAAATATATT 3420ATAAAACCTT GTTTCTTCTT TATAGAAGAG TCGTTTATCA CAGAAAAGTA TAAATATATT 3420
ACAGCAATGA ACACAGCAGG ATTATTACGG GCTTTATGAA TAGTGATGGG AGTATGAAAT 3480ACAGCAATGA ACACAGCAGG ATTATTACGG GCTTTATGAA TAGTGATGGG AGTATGAAAT 3480
CTATTCATAA AACACATATC CGCTCCGTGT TCTAACAGTA CGCGAGTACA TTCTTCACAC 3540 丁 TATTACGTA TAGCGTAAGT TAGTGCTGTA TTTTTATCAT AATCTGTTTG ATTAACGTCA 3600CTATTCATAA AACACATATC CGCTCCGTGT TCTAACAGTA CGCGAGTACA TTCTTCACAC 3540 cho TATTACGTA TAGCGTAAGT TAGTGCTGTA TTTTTATCAT AATCTGTTTG ATTAACGTCA 3600
GCTCCATTAG CTAATAAGTA TTTCATATTA CTTACTTTAC TTTCTCTAGA ACAAATCATT 3660GCTCCATTAG CTAATAAGTA TTTCATATTA CTTACTTTAC TTTCTCTAGA ACAAATCATT 3660
AAAGGTGTTA TCCCGTAATT ATCTAGTTTC GTTAACGTTA GCTCCGTTTT TTAGTAATAT 3720AAAGGTGTTA TCCCGTAATT ATCTAGTTTC GTTAACGTTA GCTCCGTTTT TTAGTAATAT 3720
CTTTATATTA CTAATCCTAG AGTACATACA GGCTAAATGT ATAGGTGTTT TACCGTATCT 3780CTTTATATTA CTAATCCTAG AGTACATACA GGCTAAATGT ATAGGTGTTT TACCGTATCT 3780
ATTTCTTACA TTAACATCAG CACCTTTATT AACAAGTAGT CTAGTAAGCC TAGAAGTATT 3840ATTTCTTACA TTAACATCAG CACCTTTATT AACAAGTAGT CTAGTAAGCC TAGAAGTATT 3840
TATAGAAACA GCCGCGTGTA TAGGGTACAT ATTACAAGCA TCGCATGATA CGTTTATATC 3900TATAGAAACA GCCGCGTGTA TAGGGTACAT ATTACAAGCA TCGCATGATA CGTTTATATC 3900
CTTTATCTTC TTTAGCAGTT TTCTTGTAAT AGGTAAATTC CTTAATTCGT ATATACACAT 3960CTTTATCTTC TTTAGCAGTT TTCTTGTAAT AGGTAAATTC CTTAATTCGT ATATACACAT 3960
GCAGAGTATA GAAATAGGTA GATAATGAAT AGGTAAACTA AGTATGTATG AGATAATACT 4020GCAGAGTATA GAAATAGGTA GATAATGAAT AGGTAAACTA AGTATGTATG AGATAATACT 4020
ATAATACCTC TTACATATCG CTTCCATCAG TATATCGTTA CAACATCTTA TTTGAGCTCC 4080ATAATACCTC TTACATATCG CTTCCATCAG TATATCGTTA CAACATCTTA TTTGAGCTCC 4080
GTGTTTAACT AGAATATTGA ATAATCTTAC ACCGTGTTTA CTAGACATTA TAGCGTATTT 4140GTGTTTAACT AGAATATTGA ATAATCTTAC ACCGTGTTTA CTAGACATTA TAGCGTATTT 4140
TAACATTGTA TATACATCTC CTATATCTGG ATCTGCGCCG TGGTTTAATA ATAAATTTAC 4200TAACATTGTA TATACATCTC CTATATCTGG ATCTGCGCCG TGGTTTAATA ATAAATTTAC 4200
CAGAGTAACA TTTTCTTGTT CTACAGCATG ATATAATGCA GTATGCGTGT TTTCGCATAT 4260CAGAGTAACA TTTTCTTGTT CTACAGCATG ATATAATGCA GTATGCGTGT TTTCGCATAT 4260
ACCCGTGTTA ACATCAACTC CTGCATCAAT GAATAACTTT ACTATTTTAG GACTATTAGT 4320ACCCGTGTTA ACATCAACTC CTGCATCAAT GAATAACTTT ACTATTTTAG GACTATTAGT 4320
TTTAACGGCT TCTAAGAAAT AATCTTCTAA CATTGTATCT GTATCTACTA ATAAATTATT 4380TTTAACGGCT TCTAAGAAAT AATCTTCTAA CATTGTATCT GTATCTACTA ATAAATTATT 4380
AGTTATAAAA TATTCTACTA GTTCTGTATT TCTAGCTCTA ATTGCGCACT TAATAGTAAT 4440AGTTATAAAA TATTCTACTA GTTCTGTATT TCTAGCTCTA ATTGCGCACT TAATAGTAAT 4440
GTTTCGCATA TAATATAAAC TTGGATGTTT AGTTTCTTCC CATAGAATTT GACATAGGGG 4500GTTTCGCATA TAATATAAAC TTGGATGTTT AGTTTCTTCC CATAGAATTT GACATAGGGG 4500
TATAGTACTA AAATATGAAT ATCCTGTAGC ATAACCGTTT TTAACACAAT ATGAACTACC 4560TATAGTACTA AAATATGAAT ATCCTGTAGC ATAACCGTTT TTAACACAAT ATGAACTACC 4560
CTTGTAAGAA TCTAATACGT AAGATCTACA CGCCATTTTC AAATCAGCGC CATGTTTTAT 4620 —i 2 CTTGTAAGAA TCTAATACGT AAGATCTACA CGCCATTTTC AAATCAGCGC CATGTTTTAT 4620 —I 2
—9 —9
G TTAATAAT AATCTT CGC¾0 AG¾¾ CCA 504TTTG TTTTT TTT AT ACTATTA, ACA¾ TT.A TTG TTAATAAT AATCTT CGC¾0 AG¾¾ CCA 504TTTG TTTTT TTT AT ACTATTA, ACA¾ TT.A TT
0 ACGTG98AGC CTGC TTCTT. GTATAT AAGCCGCG 4A TTACATTATTTTATTG AATTTATAAA 0 ACGTG98AGC CTGC TTCTT. GTATAT AAGCCGCG 4A TTACATTATTTTATTG AATTTATAAA
0G92 AGCGG CGCAATATTCT TACATC 4AA AT CTACTTAT TATTATCTTCT CTAATTTGTATT 0G92 AGCGG CGCAATATTCT TACATC 4AA AT CTACTTAT TATTATCTTCT CTAATTTGTATT
0CG86 ACST CC TATTAACTTTAA TG 4TAT AAAACATTTTT TAATTCTAAG CATATTTTA  0CG86 ACST CC TATTAACTTTAA TG 4TAT AAAACATTTTT TAATTCTAAG CATATTTTA
TCGGGAAC ATA GCA TGATGAGTATAT TCC800ATATGTTAA TTTTACCSAAACG 4ACT TAT TCGGGAAC ATA GCA TGATGAGTATAT TCC800ATATGTTAA TTTTACCSAAACG 4ACT TAT
T CCGTTCT TATCTTTAATTAATTAAT0TT TTTT ATCACCCCCCGC 474TTC TAT  T CCGTTCT TATCTTTAATTAATTAAT0TT TTTT ATCACCCCCCGC 474TTC TAT
C¾ATTTTT iG TATATTCTT G680AMATATTCTTTT TATACAAGACGCC 4TT JTA GTT.  C¾ATTTTT iG TATATTCTT G680AMATATTCTTTT TATACAAGACGCC 4TT JTA GTT.

Claims

請求の範囲 The scope of the claims
1 . アビボックスウィルスの増殖に非必須なゲノム DNA領域に少なくとも 2以上 の外来遺伝子を有し、 かつ親株と実質的に同等な増殖性を有する組換えアビポッ クスウィルス。 1. A recombinant avipox virus having at least two or more foreign genes in a genomic DNA region that is not essential for the growth of avibox virus, and having substantially the same growth potential as the parent strain.
2 . 前記アビボックスウィルスの増殖に非必須な領域が、 配列表の配列番号 1に 記載の塩基配列を有する請求項 1に記載の組換えアビボックスウィルス。 2. The recombinant avibox virus according to claim 1, wherein the region that is not essential for propagation of the avibox virus has the nucleotide sequence of SEQ ID NO: 1 in the sequence listing.
3 .前記外来遣伝子のうち最上流に位置する遠伝子の 5 '側および最下流に位置す る遺伝子の 3'側に少なくとも 300塩基からなる塩基配列を有し、 前記塩基配列が 配列番号 1に記載の塩基配列の連続した一部と相同性を有する請求項 1または 2 に記載の組換えァビポックスウィルス。 3.A nucleotide sequence comprising at least 300 nucleotides on the 5 'side of the most upstream gene and the 3' side of the most downstream gene among the foreign genes, wherein the nucleotide sequence is 3. The recombinant avipoxvirus according to claim 1, which has homology to a continuous part of the nucleotide sequence described in No. 1.
4 . 前記外来遺伝子が、 マーカ一逮伝子、 プロモータ一をコードする遺伝子、 お よび鶏の病原体の抗原決定基をコードする遺伝子からなる群から選ばれることを 特徴とする請求項 1〜 3のいずれかに記載の組換えアビボックスウィルス。 4. The exogenous gene is selected from the group consisting of a marker, a gene encoding a promoter, and a gene encoding an antigenic determinant of a chicken pathogen. The recombinant avibox virus according to any one of the above.
5 . 前記鶏の病原体の抗原決定基をコードする速伝子が、 伝染性ファブリキウス 嚢病ウィルス、 鳩伝染性気管支炎ウィルス、 鶏脳髄膜炎ウィルス、 ニューキヤッ スル病ウィルス、 マレック病ウィルス、 および鸛インフルエンザウイルスからな る群から選ばれるウィルスの抗原決定基をコードする遺伝子であることを特徴と する請求項 1〜4のいずれかに記載の組換えアビボックスウィルス。 5. The rapid gene encoding the antigenic determinant of the chicken pathogen is infectious bursal disease virus, pigeon infectious bronchitis virus, chicken meningitis virus, Newcastle disease virus, Marek's disease virus, and drone influenza. The recombinant avibox virus according to any one of claims 1 to 4, which is a gene encoding an antigenic determinant of a virus selected from the group consisting of viruses.
6 . 前記外来遺伝子が、 ニューキャッスル病ウィルスの抗原決定基をコードする 遺伝子であることを特徴とする請求項 5に記載の組換え了ビポックスウィルス。 6. The recombinant transpoxvirus according to claim 5, wherein the foreign gene is a gene encoding an antigenic determinant of Newcastle disease virus.
7 . 前記ニューキャッスル病ウィルスの抗原決定基をコードする逮伝子が、 F抗 原または H N抗原をコードする遺伝子である請求項 6に記載の組換えアビボック スウィルス。 7. The recombinant Avibock according to claim 6, wherein the arresting gene encoding the antigenic determinant of the Newcastle disease virus is a gene encoding an F antigen or an HN antigen. Swirls.
8. 前記アビボックスウィルスが、 鶏痘ワクチン株であることを特徴とする請求 項 1〜 7のいずれかに記載の組換えアビボックスウィルス。 8. The recombinant avibox virus according to any one of claims 1 to 7, wherein the avibox virus is a fowlpox vaccine strain.
9. 前記アビボックスウィルスが、 鳩痘中野株であることを特徴とする請求項 1 〜 8のいずれかに記載の組換えァビポックスウィルス。 9. The recombinant avipoxvirus according to any one of claims 1 to 8, wherein the avibox virus is a pigeonpox Nakano strain.
1 0. アビボックスウイルスの増殖に非必須なゲノム DNA領域が、 少なくとも配 列番号 1に記載の塩基配列を含む組換えプラスミ ド。 10. Recombinant plasmid in which a genomic DNA region that is not essential for the growth of Avibox virus contains at least the nucleotide sequence of SEQ ID NO: 1.
1 1. 外来遺伝子のうち最上流に位置する遠伝子の 5'側および最下流に位置する 退伝子の 3,側に少なくとも 300塩基からなる塩基配列を有し、 前記塩基配列が配 列番号 1に記載の塩基配列の連続した一部と相同性を有する DNA配列を含む組換 えプラスミド。 1 1. Among the foreign genes, a nucleotide sequence consisting of at least 300 bases is located at the 5 'side of the farthest gene located at the most upstream position and at the 3 side of the downstream gene located at the most downstream position. A recombinant plasmid comprising a DNA sequence having homology to a continuous part of the nucleotide sequence of No. 1.
1 2. 請求項 1〜9のいずれかに記載された組換えアビボックスウィルスを有効 成分とするワクチン。 1 2. A vaccine comprising the recombinant avibox virus according to any one of claims 1 to 9 as an active ingredient.
1 3. 請求項 〜 9のいずれかに記載の組換えウィルスを有効成分とする抗ニュ —キャッスル病用ワクチン。 1 3. An anti-Newcastle disease vaccine comprising the recombinant virus according to any one of claims 1 to 9 as an active ingredient.
14. (1)アビボックスウィルスのゲノム DNAを任意に切断して DNA断片を得 る工程と、 14. (1) arbitrarily cleaving avibox virus genomic DNA to obtain a DNA fragment;
(2) 2以上の外来速伝子を前記 D N A断片に導入する工程と、  (2) introducing two or more exogenous speed genes into the DNA fragment;
(3)前記外来逡伝子を導入した DN A断片をプラスミ ドに導入して組換え用ブ ラスミドを作製する工程と、  (3) a step of preparing a plasmid for recombination by introducing the DNA fragment into which the foreign hesitant has been introduced into plasmid,
(4)前記組換え用プラスミ ドでアビボックスウィルスを組み換えて組換えアビ ボックスウィルスを作製する工程と、 を備えることを特徴とする、 鳥の体内における増殖性が親株と実質的に同等な組 換えアビボックスウィルスの製造方法。 (4) a step of recombining the avibox virus with the recombinant plasmid to produce a recombinant avibox virus; A method for producing a recombinant avibox virus, which is substantially equivalent to a parent strain in terms of growth in a bird, comprising:
1 5. 前記 DNA断片がアビボックスウィルスの増殖に非必須な DN A領域から なることを特徴とする、 請求項 14に記載の組換えァビポックスウィルスの製造 方法。 15. The method for producing a recombinant avipoxvirus according to claim 14, wherein the DNA fragment comprises a DNA region not essential for the growth of avibox virus.
1 6. 前記外来遺伝子が、 マーカー遠伝子、 プロモーターをコードする遠伝子、 および鳥の病原体の抗原決定基をコードする遺伝子からなる群から選ばれること を特徴とする請求項 14または 1 5に記載の組換えアビボックスウィルスの製造 方法。 16. The foreign gene is selected from the group consisting of a marker gene, a gene encoding a promoter, and a gene encoding an antigenic determinant of a bird pathogen. 3. The method for producing a recombinant avibox virus according to item 1.
1 7. 前記鳥の病原体の抗原決定基をコードする遠伝子が、 伝染性フアブリキゥ ス嚢病遺伝子、 鳩伝染性気管支炎ウィルス、 鶏脳髄膜炎ウィルス、 ニューキヤッ スル病ウィルス、 マレック病ウィルス、 および鶏インフルエンザウイルスからな る群から選ばれるウィルスの抗原決定基をコードする遺伝子であることを特徴と する請求項 14〜 16のいずれかに記載の組換えアビボックスウィルスの製造方 法。 1 7. The transgenes encoding the antigenic determinants of the avian pathogens are the infectious bursal disease gene, the pigeon infectious bronchitis virus, the chicken meningitis virus, the Newcastle disease virus, the Marek's disease virus, and 17. The method for producing a recombinant avibox virus according to any one of claims 14 to 16, wherein the gene encodes an antigenic determinant of a virus selected from the group consisting of chicken influenza viruses.
1 8. 前記外来遺伝子が、 ニューキャッスル病ウィルスの抗原決定基をコードす る遺伝子であることを特徴とする請求項 1 7に記載の組換えアビボックスウィル スの製造方法。 18. The method for producing a recombinant Avibox virus according to claim 17, wherein the foreign gene is a gene encoding an antigenic determinant of Newcastle disease virus.
19. 前記ニューキャッスル病ウィルスの抗原決定基をコードする遺伝子が、 F 抗原または HN抗原をコードする遺伝子である請求項 14〜 18記載のいずれか に記載の組換えアビボックスウィルスの製造方法。 19. The method according to any one of claims 14 to 18, wherein the gene encoding the antigenic determinant of the Newcastle disease virus is a gene encoding an F antigen or an HN antigen.
20. (I)in vitroで、 組換えアビボックスウィルスに感染させたトリ由来の株 化細胞を寒天培養したときに青色プラークを形成するウィルスを選択する工程と、 ( 2) i n v i voで、 上記青色プラークを形成するウィルスを鶏に感染させた後のポ ックサイズを測定する工程と、 20. (I) selecting in vitro a virus that forms blue plaques when avian cell lines infected with the recombinant avibox virus are cultured on agar, (2) a step of measuring the size of the pock after infecting the chicken with the virus that forms the blue plaque in vivo,
を備えることを特徴とする、 鸛体内での増殖性が実質的に低下していない組み換 えァビポックスウィルスのスクリーニング方法。 A method for screening for a recombinant avipox virus, which does not substantially reduce the growth in the body.
2 1 . アビボックスウィルスの増殖に非必須なゲノム D N A領域であって、 前記 領域に大腸菌由来の /9—ガラクトシダ—ゼ遗伝子がワクシニアウィルス 7. 5 Kプ 口モーターとともに挿入された組換えアビボックスウイルスの鶏体内での増殖性 が前記^一ガラクトシダ一ゼ遠伝子揷入前のウィルスの鶏体内での増殖性と比し て実質的に低下していな 、組換えァビポックスウイルスが得られるゲノム DNA領 域。 21. A genomic DNA region that is non-essential for the growth of avibox virus, in which a / 9-galactosidase gene from Escherichia coli has been inserted into the region together with a vaccinia virus 7.5K motor. A recombinant avipox virus, wherein the growth of the avibox virus in chicken is not substantially reduced as compared with the growth of the virus in the chicken before the introduction of the ^ -galactosidase gene. The genomic DNA region from which is obtained.
2 2 . 外来遗伝子を特定の部位に組込んだ配列番号 1に記載の塩基配列を含むァ ビポックスウイルスの増殖に非必須なゲノム D N A領域。 22. A genomic DNA region which is non-essential for the growth of avipoxviruses and which comprises the nucleotide sequence of SEQ ID NO: 1 incorporating a foreign gene at a specific site.
2 3 .前記特定の部位が、配列番号 1に記載の塩基配列の塩基番号 962〜967に存 在する C 1 al部位およびノまたは塩基番号 4, 267〜 272に存在する Hpa I部位であ る請求項 2 2に記載のアビボックスウィルスの増殖に非必須なゲノム DNA領域。 23. The specific site is a C1al site existing at nucleotide numbers 962 to 967 and an HpaI site existing at nucleotide numbers 4,267 to 272 in the nucleotide sequence of SEQ ID NO: 1. A genomic DNA region that is non-essential for propagation of the avibox virus according to claim 22.
PCT/JP1997/002508 1996-07-18 1997-07-18 Regions nonessential for the proliferation of avipoxviruses, and recombinant avipoxviruses and vaccines prepared with the use of the same WO1998003635A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU34627/97A AU3462797A (en) 1996-07-18 1997-07-18 Regions nonessential for the proliferation of avipoxviruses, and recombinant avipoxviruses and vaccines prepared with the use of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/207797 1996-07-18
JP8207797A JPH1028586A (en) 1996-07-18 1996-07-18 Non-essential region of avipoxvirus, recombinant avipoxvirus and vaccine using this region

Publications (1)

Publication Number Publication Date
WO1998003635A1 true WO1998003635A1 (en) 1998-01-29

Family

ID=16545659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002508 WO1998003635A1 (en) 1996-07-18 1997-07-18 Regions nonessential for the proliferation of avipoxviruses, and recombinant avipoxviruses and vaccines prepared with the use of the same

Country Status (3)

Country Link
JP (1) JPH1028586A (en)
AU (1) AU3462797A (en)
WO (1) WO1998003635A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426258A (en) * 2011-11-11 2012-04-25 中国兽医药品监察所 Positive serum national standard substance used for newcastle disease hemagglutination inhibition test and preparation method thereof
JP2015512633A (en) * 2012-03-30 2015-04-30 セヴァ サンテ アニマレCeva Sante Animale Multivalent recombinant avian herpesvirus and vaccine for immunizing birds

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261925A1 (en) * 1986-09-22 1988-03-30 Toa Nenryo Kogyo Kabushiki Kaisha Gene for A-type inclusion body of poxvirus, its preparation and use
EP0284416A1 (en) * 1987-03-27 1988-09-28 Nippon Zeon Co., Ltd. Recombinant avipoxyvirus
JPH0544269A (en) * 1991-08-14 1993-02-23 Dow Kakoh Kk Insert for thermal insulation slab
JPH05244940A (en) * 1991-08-09 1993-09-24 Nippon Zeon Co Ltd Recombinant avipox virus and vaccine composed thereof
JPH0630784A (en) * 1992-07-13 1994-02-08 Shionogi & Co Ltd Production of avian virus antigen protein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261925A1 (en) * 1986-09-22 1988-03-30 Toa Nenryo Kogyo Kabushiki Kaisha Gene for A-type inclusion body of poxvirus, its preparation and use
EP0284416A1 (en) * 1987-03-27 1988-09-28 Nippon Zeon Co., Ltd. Recombinant avipoxyvirus
JPH05244940A (en) * 1991-08-09 1993-09-24 Nippon Zeon Co Ltd Recombinant avipox virus and vaccine composed thereof
JPH0544269A (en) * 1991-08-14 1993-02-23 Dow Kakoh Kk Insert for thermal insulation slab
JPH0630784A (en) * 1992-07-13 1994-02-08 Shionogi & Co Ltd Production of avian virus antigen protein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIRUS RESEARCH, (1987), No. 7, HIRONORI SATO et al., "Molecular Cloning and Nucleotide Sequence of P,M and F Genes of Newcastle Disease Virus Avirulent Strain D26", p. 241-255. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426258A (en) * 2011-11-11 2012-04-25 中国兽医药品监察所 Positive serum national standard substance used for newcastle disease hemagglutination inhibition test and preparation method thereof
CN102426258B (en) * 2011-11-11 2014-03-05 中国兽医药品监察所 Positive serum national standard substance used for newcastle disease hemagglutination inhibition test and preparation method thereof
JP2015512633A (en) * 2012-03-30 2015-04-30 セヴァ サンテ アニマレCeva Sante Animale Multivalent recombinant avian herpesvirus and vaccine for immunizing birds

Also Published As

Publication number Publication date
AU3462797A (en) 1998-02-10
JPH1028586A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
JP6845266B2 (en) Vaccines for immunizing multivalent recombinant herpesviruses and birds
EP0431668B1 (en) Recombinant herpesvirus of turkeys and live vector vaccines derived thereof
AU684252B2 (en) Vaccines against Aujeszky's disease and other animal diseases containing pseudorabies virus mutants
EP3041939B1 (en) Recombinant marek's disease viruses and uses thereof
US5733554A (en) Avian herpesvirus-based live recombinant avian vaccine, in particular against Gumboro disease
EP1467753B1 (en) Recombinant herpesvirus of turkeys and use thereof
CN113226363A (en) Recombinant avian herpesvirus containing multiple foreign genes
WO2020136220A1 (en) Recombinant viruses and the uses thereof
WO1998003635A1 (en) Regions nonessential for the proliferation of avipoxviruses, and recombinant avipoxviruses and vaccines prepared with the use of the same
JP3428666B2 (en) Recombinant Marek's disease virus and its production
RU2812979C2 (en) Recombinant avian herpes viruses containing several alien genes
JP3675569B2 (en) Recombinant virus and vaccine comprising the same
MXPA02002904A (en) Recombinant infectious laryngotracheitis virus vaccine.
JPH07255488A (en) Recombinant marek's disease virus and its creation
JPH05244940A (en) Recombinant avipox virus and vaccine composed thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WR Later publication of a revised version of an international search report
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA