WO1998003312A1 - Vibration generation apparatus - Google Patents

Vibration generation apparatus Download PDF

Info

Publication number
WO1998003312A1
WO1998003312A1 PCT/JP1997/002492 JP9702492W WO9803312A1 WO 1998003312 A1 WO1998003312 A1 WO 1998003312A1 JP 9702492 W JP9702492 W JP 9702492W WO 9803312 A1 WO9803312 A1 WO 9803312A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
piston
switching valve
switching means
main
Prior art date
Application number
PCT/JP1997/002492
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Ishizaki
Shigeru Shinohara
Takayuki Muto
Mitsuru Arai
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO1998003312A1 publication Critical patent/WO1998003312A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • B06B1/183Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid operating with reciprocating masses
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/286Vibration or impact-imparting means; Arrangement, mounting or adjustment thereof; Construction or mounting of the rolling elements, transmission or drive thereto, e.g. to vibrator mounted inside the roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston

Definitions

  • the present invention relates to a vibration generator used for a breaker used for crushing work, a rolling machine used for rolling work, and the like.
  • a piston is inserted into a cylinder hole of a main body to form a first chamber and a second chamber at both ends of the piston, and a pressure receiving area of the first chamber is formed. Is smaller than the pressure receiving area of the second chamber, the first chamber is always connected to the hydraulic pressure source, and the second chamber alternately communicates with the hydraulic pressure source and the tank based on the reciprocation of the piston. It is known to reciprocate the ton in the working direction and the return direction.
  • the piston operating speed of the above-mentioned vibration generator is increased by reducing the difference in pressure receiving area between the first and second chambers and increasing the moving speed per flow rate, and the thrust of the piston is increased. Is increased by increasing the pressure receiving area difference between the first and second chambers and increasing the area on which hydraulic pressure acts to generate thrust.
  • the applicant has previously proposed a vibration generator capable of changing the pressure receiving area difference between the first chamber and the second chamber, but this apparatus is composed of the first chamber and the second chamber. There is a limit to changing the pressure receiving area difference with the chamber, and large thrust cannot be obtained.
  • an object of the present invention is to provide a vibration generator capable of solving the above-mentioned problem. Disclosure of the invention
  • One mode of the vibration generator according to the present invention for achieving the above object is as follows.
  • a first chamber in which a piston having a rod is inserted into a cylinder hole of the main body to move the piston in a returning direction, and a first chamber for moving the piston in a working direction.
  • a cylinder section defining a second chamber and an auxiliary chamber having a larger pressure receiving area than the first chamber;
  • a main switching valve for switching between a second position communicating the second chamber with a tank and a second position communicating the second chamber with a hydraulic pressure source
  • the auxiliary chamber In conjunction with the movement of the piston, the auxiliary chamber is connected to a hydraulic source and a tank.
  • a first switching means for switching and communicating the main switching valve between a first position and a second position.
  • a breaker position which is operated by an external signal to communicate the first chamber to a hydraulic pressure source and to cut off the operating pressure for the main switching valve from the first switching valve, and to communicate the first chamber to the tank and Second switching means for switching to a rolling position for communicating the operating pressure for the main switching valve from the first switching valve,
  • the first switching means communicates the auxiliary chamber to a hydraulic pressure source when the piston returns to the stroke end position and connects the main switching valve to the second switching valve.
  • the auxiliary chamber communicates with the tank, and when the piston comes to the working direction stroke position, the main switching valve is directly operated. Is the first position,
  • the first switching means communicates the auxiliary chamber to a hydraulic pressure source and sets the main switching valve to the second position when the piston reaches the return stroke position.
  • the auxiliary chamber communicates with the tank and the main switching valve is set to the first position via the second switching means. Things.
  • the piston in the return stroke stroke position has a large thrust at the start of the movement in the working direction, so that the piston starts to move quickly, and after the piston starts moving. Moves at high speed to the working direction stroke end position.
  • the present invention is a vibration generator suitable for a breaker operation.
  • the piston when the second switching means is at the rolling position D, the piston is always in communication with the tank, so the piston receives (pressure receiving area of the second chamber + pressure receiving area of the auxiliary chamber) It moves in the working direction by hydraulic pressure acting on the sum of the areas, and its thrust is large.
  • the main switching valve moves to the second position and the auxiliary chamber communicates with the tank, so that the reciprocating stroke of the piston is short. It becomes like this.
  • the thrust of the piston is large, and the number of reciprocating movements of the piston per unit time, that is, the frequency is increased.
  • the present invention is a vibration generator suitable for the rolling work.
  • FIG. 1 is a configuration explanatory view showing one embodiment of the vibration generator according to the present invention.
  • FIG. 2 is an explanatory diagram of a state where the switching valve is switched in the above embodiment.
  • FIG. 3 is an explanatory diagram of a case where the above embodiment is attached to the tip of an arm of a hydraulic shovel to perform a rolling operation.
  • a piston 3 is inserted into a cylinder hole 2 of the main body 1, a large-diameter rod 3a is inserted on one side of the piston 3, and an intermediate-diameter rod is inserted on the other side.
  • the first chamber 4 is provided with a rod 3b and a small-diameter rod 3c connected to the rod 3b.
  • One side of the piston 3 is provided with a first chamber 4 for pushing the piston 3 in the return direction.
  • a second chamber 5 that has a larger pressure receiving area than the first chamber 4 that pushes 3 in the working direction and an auxiliary chamber 6 that pushes the piston 3 in the working direction are defined, and these constitute the cylinder section 7. are doing.
  • the valve mechanism 10 includes the first pump port 11, the second pump port 12 -tank port 13, the i-th auxiliary port 14, the second auxiliary port 15 .
  • the main port 16, the auxiliary inlet It has a port 17 and an auxiliary outlet port 18 so that it can be switched to the first position a, the second position b, the third position c, and the fourth position d in conjunction with the movement of the piston 3. ing.
  • the main switching valve 20 has first, second, third, and fourth ports 21, 22, 23, and 24, and the first position A is determined by the pressure applied to the first pressure receiving portion 25. And the pressure on the second pressure receiving part 26 comes to the second position B.
  • the first port 21 communicates with the discharge path 27 a of the hydraulic pump 27, the second port 22 communicates with the second auxiliary port 15 of the valve mechanism 10, and the third port 2 3 communicates with the tank 28, and the fourth port 24 communicates with the second chamber 5 of the cylinder part 7 and the auxiliary inlet port 17 of the valve mechanism 10.
  • the switching valve 30 is held at the breaker position C by the spring 31 and becomes the rolling position D when the pressure oil is supplied to the pressure receiving portion 32.
  • the pressure receiving section 32 is supplied with and stopped by the hydraulic pressure pilot valve 33 from the hydraulic pressure discharge from the auxiliary hydraulic pump 34.
  • the switching valve 30 When the switching valve 30 is at the breaker position C, the first port 35 and the third port 37 are in communication, the second port 36 and the fifth port 39 are in communication, The fourth port 38 is shut off.
  • the switching valve 30 When the switching valve 30 is at the rolling position D, the first port 35 communicates with the fourth port 38, and the fourth port 38 communicates with the fourth port 38.
  • the third port 37 and the fifth port 39 communicate with each other, and the second port 36 is shut off.
  • the first port 35 is connected to one inlet side of a shuttle valve 40, and the other inlet side of the shuttle valve 40 is connected to a main port 16 of a valve mechanism 10.
  • the outlet side of the shuttle valve 40 is connected to the first pressure receiving portion 25 of the main switching valve 20.
  • the second port 36 is connected to a discharge path 27 a of a hydraulic pump 27, the third port 37 is connected to a tank 28, and the fourth port 38 is a valve mechanism 1. 0 is connected to the first auxiliary port 14, and the fifth port 39 is connected to the first chamber 4.
  • the discharge path 27 a of the hydraulic pump 27 is connected to both the first and second pump ports 11 1 and 12 of the valve mechanism 10, and the main switching valve 20 is connected to the second pressure receiving section 26.
  • the pressure receiving area of the first pressure receiving chamber 25 of the main switching valve 20 is larger than the pressure receiving area of the second pressure receiving chamber 26.
  • the valve mechanism 10 (first switching means) is in the fourth position d, at which time the auxiliary inlet port 17 and the auxiliary outlet port 18 communicate, and the main port 16 is connected to the tank port 13 Since the first port 35 of the switching valve 30 (the second switching means) communicates with the tank 28 through the third port 37, the main switching is performed. No pressure oil is supplied to the first pressure receiving chamber 25 of the valve 20, and the first pressure receiving chamber 25 is in communication with the tank 28, so that the main switching valve 20 is connected to the second pressure receiving section.
  • the second position B is set by the discharge pressure of the hydraulic pump 27 acting on 26.
  • the discharge pressure oil of the hydraulic pump 27 is supplied to the second chamber 5, the auxiliary chamber 6, and the first chamber 4 of the cylinder section 7 through the fourth port 24, so that (the second The piston 3 moves to the left (working direction) due to the hydraulic pressure acting on the pressure receiving area difference that is the pressure receiving area of the chamber 5 + the pressure receiving area of the auxiliary chamber 6-the pressure receiving area of the first chamber 4). Since the pressure receiving area difference at this time is large, the thrust to push the piston 3 in the working direction is large.
  • valve mechanism 10 As the piston 3 moves to the left, the valve mechanism 10 is sequentially switched to the third position c and the second position b.
  • the valve mechanism 10 When the valve mechanism 10 is in the second position b, the auxiliary inlet port 17 is shut off, the auxiliary outlet port 18 communicates with the tank port 13 and the auxiliary chamber 6 communicates with the tank 28 So The piston 3 moves to the left by the hydraulic pressure acting on the pressure receiving area difference of (pressure receiving area of the second chamber 5-pressure receiving area of the first chamber 4).
  • the valve mechanism 10 becomes the first position a, and the discharge pressure oil of the hydraulic pump 27 becomes the second pump port 12, It flows into the shuttle valve 40 from the port 16 and is supplied from the outlet side of the shuttle valve 40 to the first pressure receiving section 25 of the main switching valve 20.
  • the main switching valve 20 is switched to the first position A, so that the pressure oil in the second chamber 5 of the cylinder 7 is discharged from the fourth port 24 and the third port 23.
  • the oil in the auxiliary chamber 6 flows out to the tank 28, and the hydraulic oil in the auxiliary chamber 6 flows out of the auxiliary outlet port 18 and the tank port 13 to the tank 28. Therefore, the piston 2 moves to the right due to the pressure in the first chamber 4.
  • the valve mechanism 10 moves to the second position b, the third position c, and the fourth position d, and the state described above is reached.
  • the thrust is a dog at the initial stage of moving the piston 3 in the working direction, and therefore the inertia when the piston 3 moves in the returning direction is determined.
  • the piston 3 can start moving in the working direction against the force (proportional to the mass of the piston 3 and the rod), and the piston 3 starts moving in the working direction after the piston 3 starts moving in the working direction.
  • the piston 3 can move at high speed, so that the piston 3 moves quickly in the working direction and also moves quickly in the returning direction. Therefore, the present embodiment is preferable as a vibration generating device for a breaker operation.
  • the switching valve 30 When the switching valve 30 is in the rolling position D, the first chamber 4 of the cylinder 7 is connected to the tank 28 from the fifth port 39 and the third port 37 of the switching valve 30.
  • the first auxiliary port 14 of the valve mechanism 10 communicates with the fourth port 38 and the first port 35 to one inlet side of the shuttle valve 40.
  • the valve mechanism 10 When the piston 3 is in the right-stroke position, the valve mechanism 10 is in the fourth position d and the main switching valve 20 is in the second position B as described above. As a result, the discharge pressure of the hydraulic pump 27 is supplied to the second chamber 5 and the auxiliary chamber 6 of the cylinder section 7, and the piston 3 moves in the working direction.
  • the piston 3 is pushed in the working direction by the hydraulic pressure acting on the sum of the pressure receiving areas of (the pressure receiving area of the second chamber 5 + the pressure receiving area of the auxiliary chamber 6), Since the sum of the pressure receiving areas is larger by the pressure receiving area of the first chamber 4 than the area when the switching valve 30 is set to the breaker position C, the thrust for pushing the piston 3 in the working direction is large. Therefore, the present embodiment is preferable as a vibration generator for a rolling machine.
  • the first pump port 11 communicates with the first auxiliary port 14 so that the hydraulic pump 27
  • the discharge pressure flows into one inlet of the shuttle valve 40 via the valve mechanism 10 and the switching valve 30 and acts on the first pressure receiving portion 25 of the main switching valve 20 to cause the main switching valve 20 to operate.
  • the second chamber 5 of the cylinder section 7 communicates with the tank 28 by the main switching valve 20 c.
  • the auxiliary chamber 6 of the cylinder section 7 communicates with the tank 28 via the valve mechanism 10. I do.
  • the piston 3 moves to the right by an external force, and when it reaches the right stroke end position, the piston 3 moves in the working direction again as described above.
  • this embodiment is suitable as a vibration generator for a rolling machine.
  • an upper vehicle body 51 is pivotally mounted on a lower traveling body 50, and a boom 52 is mounted on the upper vehicle body 51 so that the boom can be vertically swung by a boom cylinder 53.
  • the arm 54 is mounted on the boom 52 such that the arm 54 can be swung up and down by the arm cylinder 55.
  • the main body 1 is attached to the tip of the arm 54. Attach the work machine cylinder 56 and the link 57 so that it can swing freely, leave the bom cylinder 53 floating and load the rod 3a with the boom weight and arm weight.

Abstract

The invention relates to a vibration generation apparatus used for brakers used in crushing and for roller compactors used in roller compaction. According to the invention, the vibration generation apparatus is suitable for braking work because a piston (3) reciprocates at high speed when a second switching means (30) is in a braker position (C). The vibration generation apparatus is suitable for roller compaction because the thrust of the piston is great and the number of reciprocal vibration of the piston per unit time, i.e., the frequency is high when the second switching means is in a roller compaction position (D).

Description

明細書 振動発生装置 技術分野  Description Vibration generator Technical field
本発明は、 破砕作業に用いられるブレーカや転圧作業に用いら れる転圧機等に用いられる振動発生装置に関するものである。 背景技術  The present invention relates to a vibration generator used for a breaker used for crushing work, a rolling machine used for rolling work, and the like. Background art
この種の振動発 0生装置と しては、 本体のシリ ンダ孔にビス ト ン を嵌挿してピス ト ンの両端側に第 1 室と第 2室を形成し、 第 1 室 の受圧面積を第 2室の受圧面積よ り小さ く し、 第 1 室を常時油圧 源に接続し、 第 2室を油圧源とタ ンクにピス ト ンの往復動に基づ いて交互に連通してピス ト ンを作業方向と戻り方向に往復動させ るものが知られている。  As this type of vibration generating device, a piston is inserted into a cylinder hole of a main body to form a first chamber and a second chamber at both ends of the piston, and a pressure receiving area of the first chamber is formed. Is smaller than the pressure receiving area of the second chamber, the first chamber is always connected to the hydraulic pressure source, and the second chamber alternately communicates with the hydraulic pressure source and the tank based on the reciprocation of the piston. It is known to reciprocate the ton in the working direction and the return direction.
前述の振動発生装置のピス ト ンの作動速度は、 第 1 室と第 2室 の受圧面積差を小さ く して流量当りの移動速度を大き く する こ と で速くなり、 ピス ト ンの推力は、 第 1 室と第 2 室の受圧面積差を 大き く して推力を発生するために油圧が作用する面積を大き く す ることで大き く なる。  The piston operating speed of the above-mentioned vibration generator is increased by reducing the difference in pressure receiving area between the first and second chambers and increasing the moving speed per flow rate, and the thrust of the piston is increased. Is increased by increasing the pressure receiving area difference between the first and second chambers and increasing the area on which hydraulic pressure acts to generate thrust.
破砕作業を行うためのブレーカの場合には、 チゼルの往復動速 度が速い方が効率良く破砕作業できるので、 ブレーカ用の振動発 生装置と しては第 1 室と第 2室の受圧面積差が小さい方が良い。  In the case of a breaker for crushing work, the higher the reciprocating speed of the chisel, the more efficient the crushing work.Therefore, as the vibration generator for the breaker, the pressure receiving area of the first and second chambers The smaller the difference, the better.
また、 転圧作業を行うための転圧機の場合には、 転圧板を強い 力で転圧面に押しつける方が効率良く 転圧作業できるので、 転圧 用の振動発生装置と しては第 1 室と第 2 室の受圧面積差が大きい 方が良い。 In the case of a compacting machine for performing compaction work, it is more efficient to press the compaction plate against the compaction surface with a strong force. It is better that the pressure receiving area difference between the first chamber and the second chamber is large as a vibration generator for use.
このこ とに鑑み、 本件出願人は先に、 第 1 室と第 2室の受圧面 積差を変更できるように した振動発生装置を提案したが、 こ の装 置は第 1室と第 2室との受圧面積差を変更するには限度があって 大きな推力が得られない。  In view of this, the applicant has previously proposed a vibration generator capable of changing the pressure receiving area difference between the first chamber and the second chamber, but this apparatus is composed of the first chamber and the second chamber. There is a limit to changing the pressure receiving area difference with the chamber, and large thrust cannot be obtained.
また、 第 1 室と第 2室の受圧面積差を小さ く して ピス ト ンの移 動速度を速く した場合にはピス ト ンの推力が小さ く なるので、 戻 り方向ス トロークェン ド位置のビス ト ンの作業方向への移動を開 始する時に、 そのビス ト ンの慣性力や重量によ って ビス ト ンが移 動開始するまでに時間がかかり、 結局ビス ト ンの往復動速度が遅 く なつてしまう。  When the piston moving speed is increased by reducing the pressure receiving area difference between the first chamber and the second chamber, the thrust of the piston becomes smaller, so that the return stroke position When the movement of the Boston in the working direction starts, it takes time for the Boston to start moving due to the inertia and weight of the Boston, and eventually the reciprocating speed of the Boston Will be delayed.
そこで、 本発明は前述の課題を解決できるよう に した振動発生 装置を提供することを目的とする。 発明の開示  Therefore, an object of the present invention is to provide a vibration generator capable of solving the above-mentioned problem. Disclosure of the invention
上記目的を達成するための本発明による振動発生装置の一態様 は、  One mode of the vibration generator according to the present invention for achieving the above object is as follows.
本体のシ リ ンダ孔内に、 ロ ッ ドを備えた ピス ト ンを嵌挿 して 前記ピス ト ンを戻り方向に移動する第 1 室と、 前記ピス ト ンを作 業方向に移動する前記第 1 室よ り受圧面積の大きな第 2室及び補 助室とを画成したシリ ンダ部と、  A first chamber in which a piston having a rod is inserted into a cylinder hole of the main body to move the piston in a returning direction, and a first chamber for moving the piston in a working direction. A cylinder section defining a second chamber and an auxiliary chamber having a larger pressure receiving area than the first chamber; and
前記第 2室をタ ンクに連通する第 1 の位置と、 前記第 2室を油 圧源に連通する第 2の位置とに切換作動する主切換弁と、  A main switching valve for switching between a second position communicating the second chamber with a tank and a second position communicating the second chamber with a hydraulic pressure source;
前記ピス ト ンの移動に連動して、 前記補助室を油圧源とタ ンク のいずれかに切換連通する と共に、 前記主切換弁を第 1 の位置と 第 2 の位置とに切換作動させる第 1切換手段と、 In conjunction with the movement of the piston, the auxiliary chamber is connected to a hydraulic source and a tank. A first switching means for switching and communicating the main switching valve between a first position and a second position.
外部信号で作動して、 前記第 1 室を油圧源に連通し且つ前記第 1 切換弁からの前記主切換弁用作動圧を遮断するブレーカ位置と 前記第 1室をタ ンクに連通し且つ前記第 1 切換弁からの前記主切 換弁用作動圧を連通させる転圧位置に切換えられる第 2切換手段 とを備え、  A breaker position which is operated by an external signal to communicate the first chamber to a hydraulic pressure source and to cut off the operating pressure for the main switching valve from the first switching valve, and to communicate the first chamber to the tank and Second switching means for switching to a rolling position for communicating the operating pressure for the main switching valve from the first switching valve,
前記第 2切換手段がブレーカ位置の時には、 前記第 1 切換手段 は、 前記ピス ト ンが戻りス ト ロークエ ン ド位置となる と前記補助 室を油圧源に連通し且つ前記主切換弁を第 2 の位置と し、 前記ピ ス ト ンが作業方向に移動する と前記補助室をタ ンクに連通し、 前 記ビス ト ンが作業方向ス ト ロ一クェン ド位置となる と直接前記主 切換弁を第 1 の位置と し、  When the second switching means is at the breaker position, the first switching means communicates the auxiliary chamber to a hydraulic pressure source when the piston returns to the stroke end position and connects the main switching valve to the second switching valve. When the piston moves in the working direction, the auxiliary chamber communicates with the tank, and when the piston comes to the working direction stroke position, the main switching valve is directly operated. Is the first position,
前記第 2 切換手段が耘圧位置の時には、 前記第 1 切換手段は. 前記ビス ト ンが戻り方向ス ト ロークェン ド位置となる と前記補助 室を油圧源に連通し且つ前記主切換弁を第 2 の位置と し、 前記ピ ス ト ンが作業方向に移動する と前記補助室をタ ンク に連通し且つ 前記第 2切換手段を介して前記主切換弁を第 1 の位置とする構成 と したものである。  When the second switching means is at the tilling pressure position, the first switching means communicates the auxiliary chamber to a hydraulic pressure source and sets the main switching valve to the second position when the piston reaches the return stroke position. When the piston moves in the working direction, the auxiliary chamber communicates with the tank and the main switching valve is set to the first position via the second switching means. Things.
この構成によれば、  According to this configuration,
第 2切換手段をブレーカ位置と した時には、 第 1 室 4 に常時油 圧源からの圧力が供給されるから、 ピス ト ンは (第 2室の受圧面 積 +補助室の受圧面積一第 1 室の受圧面積) である受圧面積差に 作用する圧力で作業方向に移動開始し、 ピス ト ンがある距離移動 した時に補助室がタ ンクに連通して、 ピス ト ン 3が (第 2室 5 の 受圧面積 -第 1 室 4 の受圧面積) の受圧面積差に作用する油圧で 作業ス トロークエン ド位置まで移動する。 When the second switching means is set to the breaker position, the pressure from the hydraulic pressure source is constantly supplied to the first chamber 4, so the piston is (the pressure receiving area of the second chamber + the pressure receiving area of the auxiliary chamber minus the first When the piston moves a certain distance, the auxiliary chamber communicates with the tank and the piston 3 moves to the second chamber (pressure receiving area of the second chamber). 5 of (Pressure receiving area-pressure receiving area of first chamber 4) Moves to the work stroke position by hydraulic pressure acting on the pressure receiving area difference.
これによ り、 戻り方向ス 卜 ロークェン ド位置にある ビス 卜 ンの 作業方向移動開始時の推力が大きいので、 ピス ト ンは迅速に移動 を開始する し、 ピス ト ンが移動を開始した後には高速で作業方向 ス ト ロークェン ド位置まで移動する。  As a result, the piston in the return stroke stroke position has a large thrust at the start of the movement in the working direction, so that the piston starts to move quickly, and after the piston starts moving. Moves at high speed to the working direction stroke end position.
従って、 ピス ト ンが高速で往復動するので、 本発明はブレーカ 作業に好適なる振動発生装置となる。  Therefore, since the piston reciprocates at a high speed, the present invention is a vibration generator suitable for a breaker operation.
また、 第 2切換手段を転圧位置 Dと した時には、 第 1 室が常時 タ ンクに連通しているから、 ピス ト ンは (第 2 室の受圧面積 +補 助室の受圧面積) の受圧面積和に作用する油圧で作業方向に移動 し、 その推力は大となる。  In addition, when the second switching means is at the rolling position D, the piston is always in communication with the tank, so the piston receives (pressure receiving area of the second chamber + pressure receiving area of the auxiliary chamber) It moves in the working direction by hydraulic pressure acting on the sum of the areas, and its thrust is large.
しかも、 ピス ト ンが作業方向に向けてある距離移動する と、 主 切換弁が第 2の位置となる と共に、 補助室がタ ンクに連通するか ら、 ビス ト ンの往復動ス トロークが短かく なる。  In addition, when the piston moves a certain distance in the working direction, the main switching valve moves to the second position and the auxiliary chamber communicates with the tank, so that the reciprocating stroke of the piston is short. It becomes like this.
これによ り、 ピス ト ンの推力が大き く 、 しかも単位時間当りの ビス ト ン往復動回数、 つま り周波数が大きく なる。  As a result, the thrust of the piston is large, and the number of reciprocating movements of the piston per unit time, that is, the frequency is increased.
従って、 本発明は転圧作業に好適なる振動発生装置となる。 図面の簡単な説明  Therefore, the present invention is a vibration generator suitable for the rolling work. BRIEF DESCRIPTION OF THE FIGURES
本発明は、 以下の詳細な説明及び本発明の実施例を示す添付図 面によ り、 よ り良く理解される ものとなろう。 なお、 添付図面に 示す実施例は、 発明を特定するこ とを意図する ものではな く 、 単 に説明及び理解を容易とするものである。  The invention will be better understood from the following detailed description and the accompanying drawings illustrating an embodiment of the invention. The embodiments shown in the accompanying drawings are not intended to specify the invention, but merely to facilitate explanation and understanding.
図中、 図 1 は、 本発明による振動発生装置の一実施例を示す構成説明 図である。 In the figure, FIG. 1 is a configuration explanatory view showing one embodiment of the vibration generator according to the present invention.
図 2 は、 上記実施例において切換弁を切換えた状態の説明図で ある。  FIG. 2 is an explanatory diagram of a state where the switching valve is switched in the above embodiment.
図 3 は、 上記実施例を油圧シ ョ ベルのアーム先端部に取付けて 転圧作業する場合の説明図である。 発明を実施するための好適な態様  FIG. 3 is an explanatory diagram of a case where the above embodiment is attached to the tip of an arm of a hydraulic shovel to perform a rolling operation. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の好適実施例による振動発生装置を添付図面を 参照しながら説明する。  Hereinafter, a vibration generator according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
図 1 に示すように、 本体 1 のシ リ ンダ孔 2 に ピス ト ン 3 を嵌挿 し、 そのピス ト ン 3 の一側に大径ロ ッ ド 3 a を、 他側に中間径 ロ ッ ド 3 b と、 それに連続する小径ロ ッ ド 3 c とを備えていて ビス 卜 ン 3 の一側にはビス ト ン 3 を戻り方向に押す第 1 室 4 が. 他側にはピス ト ン 3を作業方向に押す第 1室 4 よ り受圧面積の大 きな第 2室 5 と、 ピス ト ン 3 を作業方向に押す補助室 6 とが画成 され、 これらがシリ ンダ部 7を構成している。  As shown in Fig. 1, a piston 3 is inserted into a cylinder hole 2 of the main body 1, a large-diameter rod 3a is inserted on one side of the piston 3, and an intermediate-diameter rod is inserted on the other side. The first chamber 4 is provided with a rod 3b and a small-diameter rod 3c connected to the rod 3b. One side of the piston 3 is provided with a first chamber 4 for pushing the piston 3 in the return direction. A second chamber 5 that has a larger pressure receiving area than the first chamber 4 that pushes 3 in the working direction and an auxiliary chamber 6 that pushes the piston 3 in the working direction are defined, and these constitute the cylinder section 7. are doing.
弁機構 1 0 は、 第 1 ポンプポー ト 1 1 、 第 2 ポンプポー ト 1 2 - タ ンクポー ト 1 3 、 第 i 補助ポー ト 1 4 、 第 2補助ポー ト 1 5 . 主ポー ト 1 6、 補助入口ポー ト 1 7、 補助出口ポー ト 1 8を有し, ピス ト ン 3の移動に連動して第 1 位置 a、 第 2位置 b、 第 3位置 c、 第 4位置 dに切換えられるようになつている。  The valve mechanism 10 includes the first pump port 11, the second pump port 12 -tank port 13, the i-th auxiliary port 14, the second auxiliary port 15 .The main port 16, the auxiliary inlet It has a port 17 and an auxiliary outlet port 18 so that it can be switched to the first position a, the second position b, the third position c, and the fourth position d in conjunction with the movement of the piston 3. ing.
主切換弁 2 0 は、 第 1 · 第 2 , 第 3 · 第 4 ポー ト 2 1 , 2 2 , 2 3 , 2 4を有し、 第 1 受圧部 2 5への圧力で第 1 の位置 Aとな り、 第 2受圧部 2 6への圧力で第 2 の位置 B となるよ うになって いて、 第 1 ポー ト 2 1 が油圧ポンプ 2 7 の吐出路 2 7 a に連通し 第 2 ポー ト 2 2が弁機構 1 0 の第 2補助ポー ト 1 5 に連通し、 第 3 ポー ト 2 3がタ ンク 2 8 に連通し、 第 4 ポー ト 2 4 がシ リ ンダ 部 7の第 2室 5 と弁機構 1 0 の補助入口ポー ト 1 7 に連通してい る。 The main switching valve 20 has first, second, third, and fourth ports 21, 22, 23, and 24, and the first position A is determined by the pressure applied to the first pressure receiving portion 25. And the pressure on the second pressure receiving part 26 comes to the second position B. The first port 21 communicates with the discharge path 27 a of the hydraulic pump 27, the second port 22 communicates with the second auxiliary port 15 of the valve mechanism 10, and the third port 2 3 communicates with the tank 28, and the fourth port 24 communicates with the second chamber 5 of the cylinder part 7 and the auxiliary inlet port 17 of the valve mechanism 10.
切換弁 3 0 は、 スプリ ング 3 1 でブレーカ位置 C に保持され 受圧部 3 2 に圧油が供給される と転圧位置 D となるよう になって いる。 この受圧部 3 2 には油圧パイ ロ ッ 卜弁 3 3 よ り補助油圧ポ ンプ 3 4の吐出圧油が供給 · 停止されるようになっている。  The switching valve 30 is held at the breaker position C by the spring 31 and becomes the rolling position D when the pressure oil is supplied to the pressure receiving portion 32. The pressure receiving section 32 is supplied with and stopped by the hydraulic pressure pilot valve 33 from the hydraulic pressure discharge from the auxiliary hydraulic pump 34.
前記切換弁 3 0 がブレーカ位置 Cの時には、 第 1 のポー ト 3 5 と第 3のポー ト 3 7が連通し、 第 2のポー ト 3 6 と第 5 のポー ト 3 9が連通し、 第 4 のポー ト 3 8が遮断されるよ う になっている , 切換弁 3 0が転圧位置 Dの時には、 第 1 のポー ト 3 5 と第 4 の ポー ト 3 8が連通し、 第 3 のポー ト 3 7 と第 5 のポー ト 3 9が連 通し、 第 2のポー ト 3 6が遮断されるようになっている。  When the switching valve 30 is at the breaker position C, the first port 35 and the third port 37 are in communication, the second port 36 and the fifth port 39 are in communication, The fourth port 38 is shut off. When the switching valve 30 is at the rolling position D, the first port 35 communicates with the fourth port 38, and the fourth port 38 communicates with the fourth port 38. The third port 37 and the fifth port 39 communicate with each other, and the second port 36 is shut off.
前記第 1 のポー 卜 3 5 はシ ャ トル弁 4 0 の一方の入口側に接続 し、 このシ ャ トル弁 4 0の他方の入口側は弁機構 1 0の主ポー ト 1 6 に接続し、 そのシャ トル弁 4 0 の出口側は主切換弁 2 0の第 1受圧部 2 5に接続している。  The first port 35 is connected to one inlet side of a shuttle valve 40, and the other inlet side of the shuttle valve 40 is connected to a main port 16 of a valve mechanism 10. The outlet side of the shuttle valve 40 is connected to the first pressure receiving portion 25 of the main switching valve 20.
前記第 2のポー ト 3 6 は油圧ポンプ 2 7 の吐出路 2 7 a に接続 し、 第 3 のポー ト 3 7 はタ ンク 2 8に接続し、 第 4 のポー ト 3 8 は弁機構 1 0の第 1補助ポー ト 1 4 に接続し、 第 5 のポー ト 3 9 は第 1室 4に連通している。  The second port 36 is connected to a discharge path 27 a of a hydraulic pump 27, the third port 37 is connected to a tank 28, and the fourth port 38 is a valve mechanism 1. 0 is connected to the first auxiliary port 14, and the fifth port 39 is connected to the first chamber 4.
前記油圧ポンプ 2 7の吐出路 2 7 a は弁機構 1 0 の第 1 · 第 2 ポンプポー ト 1 1 , 1 2 の両方に接続していると共に、 主切換弁 2 0 の第 2 受圧部 2 6 に接続している。 そ して、 この主切換弁 2 0 の第 1 受圧室 2 5の受圧面積は第 2受圧室 2 6 の受圧面積よ り も大き く してある。 The discharge path 27 a of the hydraulic pump 27 is connected to both the first and second pump ports 11 1 and 12 of the valve mechanism 10, and the main switching valve 20 is connected to the second pressure receiving section 26. The pressure receiving area of the first pressure receiving chamber 25 of the main switching valve 20 is larger than the pressure receiving area of the second pressure receiving chamber 26.
次に、 本実施例の作動を説明する。  Next, the operation of the present embodiment will be described.
図 1 において、 ピス ト ン 3が右方 (戻り方向) のス ト ロークェ ン ド位置にあり、 切換弁 3 0がブレーカ位置 Cにある状態を考え る。  In FIG. 1, consider a state where piston 3 is at the right (return direction) stroke position and switching valve 30 is at breaker position C.
弁機構 1 0 (第 1 切換手段) は第 4位置 d とな り、 こ の時補助 入口ポー ト 1 7 と補助出口ポー ト 1 8が連通し、 主ポー ト 1 6 が タ ンクポー ト 1 3 よ りタ ンク 2 8 に連通し、 切換弁 3 0 (第 2切 換手段) の第 1 のポー ト 3 5が第 3 のポー ト 3 7 よ り タ ンク 2 8 に連通するから、 主切換弁 2 0 の第 1受圧室 2 5 には圧油が供給 されず、 該第 1 受圧室 2 5 はタ ンク 2 8 に連通した状態となるの で、 主切換弁 2 0は第 2受圧部 2 6 に作用する油圧ポンプ 2 7 の 吐出圧で第 2位置 Bとなる。  The valve mechanism 10 (first switching means) is in the fourth position d, at which time the auxiliary inlet port 17 and the auxiliary outlet port 18 communicate, and the main port 16 is connected to the tank port 13 Since the first port 35 of the switching valve 30 (the second switching means) communicates with the tank 28 through the third port 37, the main switching is performed. No pressure oil is supplied to the first pressure receiving chamber 25 of the valve 20, and the first pressure receiving chamber 25 is in communication with the tank 28, so that the main switching valve 20 is connected to the second pressure receiving section. The second position B is set by the discharge pressure of the hydraulic pump 27 acting on 26.
これによ り、 油圧ポンプ 2 7の吐出圧油が第 4 ポー ト 2 4 を経 てシリ ンダ部 7の第 2室 5 と補助室 6及び第 1 室 4 に供給される ので、 (第 2室 5 の受圧面積 +補助室 6の受圧面積 -第 1 室 4 の 受圧面積) である受圧面積差に作用する油圧によって、 ピス ト ン 3が左方 (作業方向) に移動する。 この時の受圧面積差は大きい ので、 ピス ト ン 3を作業方向に押す推力が大である。  Thereby, the discharge pressure oil of the hydraulic pump 27 is supplied to the second chamber 5, the auxiliary chamber 6, and the first chamber 4 of the cylinder section 7 through the fourth port 24, so that (the second The piston 3 moves to the left (working direction) due to the hydraulic pressure acting on the pressure receiving area difference that is the pressure receiving area of the chamber 5 + the pressure receiving area of the auxiliary chamber 6-the pressure receiving area of the first chamber 4). Since the pressure receiving area difference at this time is large, the thrust to push the piston 3 in the working direction is large.
ピス ト ン 3の左方への移動につれて、 弁機構 1 0が第 3位置 c 、 第 2位置 b に順次切換えられる。 弁機構 1 0が第 2位置 b となる と、 補助入口ポー ト 1 7が遮断され、 補助出口ポー ト 1 8がタ ン クポー ト 1 3 に連通して補助室 6 がタ ンク 2 8 に連通するので、 ピス ト ン 3 は (第 2室 5 の受圧面積一第 1 室 4 の受圧面積) であ る受圧面積差に作用する油圧によって左方に移動する。 As the piston 3 moves to the left, the valve mechanism 10 is sequentially switched to the third position c and the second position b. When the valve mechanism 10 is in the second position b, the auxiliary inlet port 17 is shut off, the auxiliary outlet port 18 communicates with the tank port 13 and the auxiliary chamber 6 communicates with the tank 28 So The piston 3 moves to the left by the hydraulic pressure acting on the pressure receiving area difference of (pressure receiving area of the second chamber 5-pressure receiving area of the first chamber 4).
この時の受圧面積差は小さいので、 ピス ト ン 3 が作業方向に移 動する速度が速くなる。  Since the pressure receiving area difference at this time is small, the speed at which the piston 3 moves in the working direction increases.
そ して、 ピス ト ン 3が左方のス ト ロークエン ド位置に達する と 弁機構 1 0が第 1位置 a とな り、 油圧ポンプ 2 7の吐出圧油が第 2 ポンプポー ト 1 2、 主ポー ト 1 6 よ り シ ャ トル弁 4 0 に流入し そのシ ャ トル弁 4 0 の出口側から主切換弁 2 0 の第 1 受圧部 2 5 に供給される。  Then, when the piston 3 reaches the left stroke position, the valve mechanism 10 becomes the first position a, and the discharge pressure oil of the hydraulic pump 27 becomes the second pump port 12, It flows into the shuttle valve 40 from the port 16 and is supplied from the outlet side of the shuttle valve 40 to the first pressure receiving section 25 of the main switching valve 20.
これによつて、 主切換弁 2 0が第 1 位置 Aに切換わるので、 シ リ ンダ部 7 の第 2 室 5 内の圧油が第 4 ポ一 ト 2 4 、 第 3 ポー ト 2 3 よりタ ンク 2 8 に流出 し、 補助室 6 内の圧油は補助出口ポー ト 1 8、 タ ンクポー ト 1 3 よ り タ ンク 2 8 に流出する。 このため に、 ピス ト ン 2 は第 1 室 4 内の圧力で右方に移動する。 これとと もに弁機構 1 0が第 2位置 b、 第 3位置 c 、 第 4位置 d に移動し て前述の状態となる。  As a result, the main switching valve 20 is switched to the first position A, so that the pressure oil in the second chamber 5 of the cylinder 7 is discharged from the fourth port 24 and the third port 23. The oil in the auxiliary chamber 6 flows out to the tank 28, and the hydraulic oil in the auxiliary chamber 6 flows out of the auxiliary outlet port 18 and the tank port 13 to the tank 28. Therefore, the piston 2 moves to the right due to the pressure in the first chamber 4. At the same time, the valve mechanism 10 moves to the second position b, the third position c, and the fourth position d, and the state described above is reached.
以上のように、 切換弁 3 0をブレーカ位置 C と した時には、 ピ ス ト ン 3を作業方向に移動する初期に推力が犬であるから、 ビス ト ン 3が戻り方向に移動した時の慣性力 (ピス ト ン 3 とロ ッ ドの 質量に比例する) に抗してビス ト ン 3 の作業方向の移動を開始で きる し、 ピス ト ン 3が作業方向に移動開始した後にはピス ト ン 3 を高速で移動させることができるので、 ピス ト ン 3が作業方向に 速く 移動する し、 戻り方向にも速く 移動する。 従って、 本実施例 は、 ブレーカ作業用の振動発生装置と して好ま しい。  As described above, when the switching valve 30 is set at the breaker position C, the thrust is a dog at the initial stage of moving the piston 3 in the working direction, and therefore the inertia when the piston 3 moves in the returning direction is determined. The piston 3 can start moving in the working direction against the force (proportional to the mass of the piston 3 and the rod), and the piston 3 starts moving in the working direction after the piston 3 starts moving in the working direction. The piston 3 can move at high speed, so that the piston 3 moves quickly in the working direction and also moves quickly in the returning direction. Therefore, the present embodiment is preferable as a vibration generating device for a breaker operation.
次に、 切換弁 3 0が図 2 に示すよう に転圧位置 Dの時の動作を 説明する。 Next, the operation when the switching valve 30 is at the rolling position D as shown in FIG. explain.
切換弁 3 0が転圧位置 Dの時には、 シ リ ンダ部 7 の第 1 室 4 が 切換弁 3 0 の第 5 のポー ト 3 9 、 第 3 のポー ト 3 7 よ り タ ンク 2 8 に連通し、 弁機構 1 0 の第 1 補助ポー ト 1 4 が第 4 のポー 卜 3 8、 第 1 のポー ト 3 5 よ り シャ トル弁 4 0 の一方の入口側に連 通する。  When the switching valve 30 is in the rolling position D, the first chamber 4 of the cylinder 7 is connected to the tank 28 from the fifth port 39 and the third port 37 of the switching valve 30. The first auxiliary port 14 of the valve mechanism 10 communicates with the fourth port 38 and the first port 35 to one inlet side of the shuttle valve 40.
ビス ト ン 3が右方ス ト ロ一クェン ド位置にある時には、 前述の ように弁機構 1 0が第 4位置 d となつて主切換弁 2 0が第 2位置 B となる。 これによ り、 シ リ ンダ部 7 の第 2 室 5 と補助室 6 に油 圧ポンプ 2 7の吐出圧が供給されてビス ト ン 3が作業方向に移動 する。  When the piston 3 is in the right-stroke position, the valve mechanism 10 is in the fourth position d and the main switching valve 20 is in the second position B as described above. As a result, the discharge pressure of the hydraulic pump 27 is supplied to the second chamber 5 and the auxiliary chamber 6 of the cylinder section 7, and the piston 3 moves in the working direction.
この時に、 第 1 室 4がタ ンク圧であるから ピス ト ン 3 は (第 2 室 5 の受圧面積 +補助室 6 の受圧面積) の受圧面積和に作用する 油圧で作業方向に押され、 その受圧面積和は前述の切換弁 3 0 を ブレーカ位置 C と した場合の面積よ り も第 1 室 4 の受圧面積分だ け大きいので、 ピス ト ン 3 を作業方向に押す推力は大きい。 従つ て、 本実施例は、 転圧機用の振動発生装置と して好ま しい。  At this time, since the first chamber 4 has the tank pressure, the piston 3 is pushed in the working direction by the hydraulic pressure acting on the sum of the pressure receiving areas of (the pressure receiving area of the second chamber 5 + the pressure receiving area of the auxiliary chamber 6), Since the sum of the pressure receiving areas is larger by the pressure receiving area of the first chamber 4 than the area when the switching valve 30 is set to the breaker position C, the thrust for pushing the piston 3 in the working direction is large. Therefore, the present embodiment is preferable as a vibration generator for a rolling machine.
ピス ト ン 3が作業方向に移動して弁機構 1 0が第 2位置 b とな ると、 第 1 ポンプポー ト 1 1 が第 1 補助ポー ト 1 4 に連通するの で、 油圧ポンプ 2 7 の吐出圧は弁機構 1 0 、 切換弁 3 0 を経て シャ トル弁 4 0の一方の入口に流入し、 主切換弁 2 0 の第 1 受圧 部 2 5 に作用して、 主切換弁 2 0を第 1 の位置 Aとする。 従って、 シ リ ンダ部 7の第 2室 5が主切換弁 2 0でタ ンク 2 8 に連通する c これとともにシリ ンダ部 7の補助室 6が弁機構 1 0 を経てタ ンク 2 8 に連通する。 かく して、 ピス ト ン 3 は外力で右方に移動し、 右方ス ト ローク エン ド位置となると、 前述のよ う に して再びピス ト ン 3 が作業方 向に移動する。 When the piston 3 moves in the working direction and the valve mechanism 10 moves to the second position b, the first pump port 11 communicates with the first auxiliary port 14 so that the hydraulic pump 27 The discharge pressure flows into one inlet of the shuttle valve 40 via the valve mechanism 10 and the switching valve 30 and acts on the first pressure receiving portion 25 of the main switching valve 20 to cause the main switching valve 20 to operate. Let it be the first position A. Accordingly, the second chamber 5 of the cylinder section 7 communicates with the tank 28 by the main switching valve 20 c. At the same time, the auxiliary chamber 6 of the cylinder section 7 communicates with the tank 28 via the valve mechanism 10. I do. Thus, the piston 3 moves to the right by an external force, and when it reaches the right stroke end position, the piston 3 moves in the working direction again as described above.
以上のよう に、 切換弁 3 0 を転圧位置 Dと した時にはビス ト ン 3の推力が大である し、 しかも ピス ト ン 3 の往復動ス ト ロークが 短かく て同一のポンプ流量でも単位時間当りの往復動回数、 つま り周波数が大き く なるので、 本実施例は転圧機用の振動発生装置 と して好適となる。  As described above, when the switching valve 30 is set at the rolling position D, the thrust of the piston 3 is large, and the reciprocating stroke of the piston 3 is short, and the unit is used even if the pump flow rate is the same. Since the number of reciprocating movements per time, that is, the frequency is increased, this embodiment is suitable as a vibration generator for a rolling machine.
例えば、 図 3 に示すよう に、 下部走行体 5 0 に上部車体 5 1 を 旋回自在に取付け、 この上部車体 5 1 にブーム 5 2 をブームシ リ ンダー 5 3で上下揺動自在となるよ う に して取付け、 そのブーム 5 2にアーム 5 4をアームシ リ ンダ 5 5 で上下揺動自在となるよ う に して取付けた油圧式パワーシ ョ ベルにおいて、 前記アーム 5 4 の先端部に本体 1 を作業機シ リ ンダ一 5 6 と リ ンク 5 7で首 振自在となるよう に して取付け、 ブ一ムシ リ ンダ 5 3 を浮状態と してブーム重量、 アーム重量でロ ッ ド 3 aを転圧板 5 8 に押しつ けて転圧作業するこ とで、 第 2室 5、 補助室 6 に圧油が供給され た時にシリ ンダ部 7のそれ以外の部分がピス ト ン 3 に対して相対 的に上方に移動し、 第 2室 5 、 補助室 6がタ ンクに連通した時に シリ ンダ部 7のそれ以外の部分がビス ト ン 3 に対して相対的に下 方に移動する。  For example, as shown in FIG. 3, an upper vehicle body 51 is pivotally mounted on a lower traveling body 50, and a boom 52 is mounted on the upper vehicle body 51 so that the boom can be vertically swung by a boom cylinder 53. The arm 54 is mounted on the boom 52 such that the arm 54 can be swung up and down by the arm cylinder 55.In this case, the main body 1 is attached to the tip of the arm 54. Attach the work machine cylinder 56 and the link 57 so that it can swing freely, leave the bom cylinder 53 floating and load the rod 3a with the boom weight and arm weight. By pressing against the rolling plate 58 to perform the rolling operation, when the pressurized oil is supplied to the second chamber 5 and the auxiliary chamber 6, the other part of the cylinder part 7 moves against the piston 3. It moves relatively upward, and when the second chamber 5 and the auxiliary chamber 6 communicate with the tank, that of the cylinder section 7 The other parts move downward relative to Boston 3.
なお、 本発明は例示的な実施例について説明 したが、 開示した 実施例に関 して、 本発明の要旨及び範囲を逸脱する こ と な く 種々の変更、 省略、 追加が可能であるこ とは、 当業者において自 明である。 従って、 本発明は、 上記の実施例に限定される もので はなく 、 請求の範囲に記載された要素によって規定される範囲及 びその均等範囲を包含するものと して理解されなければならない。 Although the present invention has been described with reference to exemplary embodiments, it is understood that various changes, omissions, and additions can be made to the disclosed embodiments without departing from the spirit and scope of the present invention. It is obvious to those skilled in the art. Therefore, the present invention is limited to the above embodiment. And should be understood as encompassing the range defined by the elements recited in the claims and their equivalents.

Claims

請求の範囲 The scope of the claims
1 . 本体のシリ ンダ孔内に、 ロ ッ ドを備えたピス ト ンを嵌挿 して 前記ピス ト ンを戻り方向に移動する第 1 室と、 前記ピス ト ンを作 業方向に移動する前記第 1 室よ り受圧面積の大きな第 2室及び補 助室とを画成したシリ ンダ部と、  1. A first chamber in which a piston having a rod is inserted into a cylinder hole of the main body to move the piston in a return direction, and to move the piston in a working direction. A cylinder section defining a second chamber and an auxiliary chamber having a larger pressure receiving area than the first chamber,
前記第 2室をタ ンク に連通する第 1 の位置と、 前記第 2室を油 圧源に連通する第 2の位置とに切換作動する主切換弁と、  A main switching valve operable to switch between a first position communicating the second chamber with a tank and a second position communicating the second chamber with a hydraulic pressure source;
前記ピス ト ンの移動に連動して、 前記補助室を油圧源とタ ンク のいずれかに切換連通する と共に、 前記主切換弁を第 1 の位置と 第 2の位置とに切換作動させる第 1切換手段と、  In conjunction with the movement of the piston, the auxiliary chamber is switched to communicate with one of a hydraulic source and a tank, and the first switching valve is operated to switch between a first position and a second position. Switching means;
外部信号で作動して、 前記第 1 室を油圧源に連通し且つ前記第 1 切換弁からの前記主切換弁用作動圧を遮断するブレーカ位置と 前記第 1 室をタ ンク に連通し且つ前記第 1 切換弁からの前記主切 換弁用作動圧を連通させる転圧位置に切換えられる第 2切換手段 とを備え、  Activated by an external signal, the first chamber communicates with a hydraulic pressure source and a breaker position for interrupting the operating pressure for the main switching valve from the first switching valve, and the first chamber communicates with a tank, and Second switching means for switching to a rolling position for communicating the operating pressure for the main switching valve from the first switching valve,
前記第 2切換手段がブレーカ位置の時には、 前記第 1 切換手段 は、 前記ピス ト ンが戻りス ト ロークェ ン ド位置となる と前記補助 室を油圧源に連通し且つ前記主切換弁を第 2 の位置と し、 前記ピ ス ト ンが作業方向に移動する と前記補助室をタ ンク に連通し、 前 記ビス ト ンが作業方向ス ト ロークェ ン ド位置となる と直接前記主 切換弁を第 1 の位置と し、  When the second switching means is at the breaker position, the first switching means communicates the auxiliary chamber to a hydraulic pressure source when the piston returns to the stroke position and sets the main switching valve at the second stroke position. When the piston moves in the working direction, the auxiliary chamber communicates with the tank, and when the piston comes to the working direction stroke end position, the main switching valve is directly operated. The first position,
前記第 2切換手段が転圧位置の時には、 前記第 1 切換手段は 前記ピス ト ンが戻り方向ス ト ロークエン ド位置となると前記補助 室を油圧源に連通し且つ前記主切換弁を第 2 の位置と し、 前記ピ ス ト ンが作業方向に移動する と前記補助室をタ ンクに連通し且つ 前記第 2切換手段を介して前記主切換弁を第 1 の位置とする構成 と した、 振動発生装置。 When the second switching means is at the rolling position, the first switching means communicates the auxiliary chamber with a hydraulic pressure source when the piston comes to the return stroke position and connects the main switching valve to the second switching means. When the piston moves in the working direction, the auxiliary chamber communicates with the tank and A vibration generator, wherein the main switching valve is set to a first position via the second switching means.
2 . 前記第 1 切換手段から前記主切換弁の受圧部へ向かう主弁切 換用作動圧を供給する一油路と前記第 2切換手段から前記主切換 弁の受圧部へ向かう主切換弁用作動圧を供給する他の油路との合 流点にシャ トル弁を配置した、 請求項 1 に記載の振動発生装置。 2. One oil passage for supplying a main valve switching operating pressure from the first switching means to the pressure receiving portion of the main switching valve and a main switching valve from the second switching means to the pressure receiving portion of the main switching valve. The vibration generator according to claim 1, wherein a shuttle valve is arranged at a junction with another oil path that supplies an operating pressure.
PCT/JP1997/002492 1996-07-18 1997-07-17 Vibration generation apparatus WO1998003312A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18930496A JP3729428B2 (en) 1996-07-18 1996-07-18 Vibration generator
JP8/189304 1996-07-18

Publications (1)

Publication Number Publication Date
WO1998003312A1 true WO1998003312A1 (en) 1998-01-29

Family

ID=16239102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002492 WO1998003312A1 (en) 1996-07-18 1997-07-17 Vibration generation apparatus

Country Status (3)

Country Link
JP (1) JP3729428B2 (en)
KR (1) KR980009761A (en)
WO (1) WO1998003312A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI116124B (en) * 2004-02-23 2005-09-30 Sandvik Tamrock Oy Impact fluid driven impactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262543A (en) * 1993-03-11 1994-09-20 Teisaku:Kk Striking unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262543A (en) * 1993-03-11 1994-09-20 Teisaku:Kk Striking unit

Also Published As

Publication number Publication date
KR980009761A (en) 1998-04-30
JP3729428B2 (en) 2005-12-21
JPH1034562A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP5009779B2 (en) Pressure fluid actuated impact device
US5884713A (en) Vibration generating apparatus
JP4663624B2 (en) Control valve in impact device, operation cycle control method for impact device, and impact device for rock drilling
JPH0513509Y2 (en)
US9308635B2 (en) Variable volume accumulator
KR20070060089A (en) Hydraulic impact mechanism
US4142447A (en) Hydraulic actuator
EP1388670A4 (en) Hydraulic driving unit
WO1998003312A1 (en) Vibration generation apparatus
JP2005524541A (en) Impact device with transmission element for compressing elastic energy storage material
WO1997013925A1 (en) Roller-crusher
KR100524671B1 (en) Breaker
ATE285873T1 (en) HYDRAULIC CONSTANT PRESSURE IMPACT MACHINE
JP3867814B2 (en) Vibration generator
JP3462395B2 (en) Exciter
JPS5828017Y2 (en) Hydraulic vibratory compaction machine
JPH0639796Y2 (en) Structure of crusher body
JP2577856B2 (en) Starting method of hammer device and starting device
JP2930888B2 (en) Hammer device with starting means
JP3281594B2 (en) Vibration type hydraulic cylinder device for construction work machine
JPH0957648A (en) Vibration generating device
JPS591803A (en) Cylinder controller
US560935A (en) James robertson
JPH1058351A (en) Vibration generator
JP2001018177A (en) Vibration generating device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase