WO1998002693A1 - Combustion apparatus - Google Patents

Combustion apparatus Download PDF

Info

Publication number
WO1998002693A1
WO1998002693A1 PCT/JP1997/002429 JP9702429W WO9802693A1 WO 1998002693 A1 WO1998002693 A1 WO 1998002693A1 JP 9702429 W JP9702429 W JP 9702429W WO 9802693 A1 WO9802693 A1 WO 9802693A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon monoxide
concentration
combustion
exhaust gas
value
Prior art date
Application number
PCT/JP1997/002429
Other languages
French (fr)
Japanese (ja)
Inventor
Naoyuki Takeshita
Toshihisa Saito
Masanori Enomoto
Masato Kondo
Toru Izumisawa
Original Assignee
Gastar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP20664196A external-priority patent/JPH1030817A/en
Priority claimed from JP20664096A external-priority patent/JP3727418B2/en
Priority claimed from JP20901796A external-priority patent/JPH1038270A/en
Priority claimed from JP21801796A external-priority patent/JP3691599B2/en
Priority claimed from JP28641896A external-priority patent/JP3810153B2/en
Application filed by Gastar Co., Ltd. filed Critical Gastar Co., Ltd.
Priority to EP97930779A priority Critical patent/EP0913644A1/en
Publication of WO1998002693A1 publication Critical patent/WO1998002693A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements

Definitions

  • the present invention relates to a combustion device, and more particularly, to a combustion device that detects carbon monoxide gas (hereinafter referred to as CO) and performs a safe operation on the gas.
  • CO carbon monoxide gas
  • FIG. 1 is a diagram showing a schematic structure of a water heater generally known as a combustion device.
  • FIG. 2 is a diagram showing a use mode when the water heater is installed in a room of a building.
  • the water heater 1 sends the indoor air to the burner 4 through the filter 3 by the i'J fc of the fan 2 and burns the fuel gas supplied to the burner 4 to heat the hot water.
  • the heat exchanger 5 is heated, the water passing through the heat supply heat exchanger 5 is drained, and hot water is supplied to a place such as a kitchen through a water supply pipe connected to the outlet of the hot water supply heat exchanger 5.
  • the combustion operation of this water heater is controlled by a control unit 6: a remote controller 7 is connected to the control unit 6.
  • CO carbon monoxide gas
  • Exhaust gas is discharged outside through the chimney 10 and usually leaks into the room There is no. However, if there is a gap in the seam of the chimney 10 or it has come off, or if there is a hole in the chimney 10 due to decay or damage, etc. If the CO gas leaks into the room and the CO concentration in the indoor air reaches a level that is dangerous for the human body, there is a risk of causing CO poisoning.
  • CO poisoning occurs when hemoglobin in the blood of the human body binds to CO. Depending on the concentration of hemoglobin bound to C 0 (hereinafter referred to as blood hemoglobin CO concentration), CO poisoning occurs as shown in FIG. Causes symptoms.
  • the blood hemoglobin C0 concentration reaches a concentration that can put the human body in a dangerous state! 3 ⁇ 4] (hereinafter referred to as “danger arrival time”) is short when the CO concentration in the air is high. Reach by time. Even when the CO concentration is low, the blood hemoglobin CO concentration gradually increases due to prolonged exposure to air containing CO, and becomes dangerous after a certain period of time.
  • the graph in FIG. 4 shows the relationship between the concentration of CO in the air and the concentration of CO in the blood. According to FIG. 4, when the air CO concentration is 0.2%, if this is sucked for 2 hours, the blood hemoglobin CO concentration reaches about 64%. For this reason, conventionally, as shown in Fig.
  • a CO sensor 11 is installed on the exhaust side of the water heater 1, and when it is assumed that the exhaust gas has leaked into the room, the danger arrival time is C ⁇ The value is given in correspondence with each C0 concentration detected by the sensor 11. Then, when the time from the start of combustion reaches the danger arrival time corresponding to the CO concentration detected by the CO sensor 11, safety measures such as issuing an alarm or stopping combustion operation are taken. Had been.
  • the c ⁇ concentration in air (hereinafter referred to as indoor CO concentration), which is a reference for the dangerous arrival time, has been determined based on the CO concentration of exhaust gas discharged from combustion equipment.
  • indoor CO concentration the CO concentration in the air bleeder in the room where CO is leaking depends not only on the CO concentration in the exhaust gas but also on the combustion conditions described below.
  • the indoor CO concentration depends on the combustion capacity of the combustion equipment or exhaust gas emissions. That is, the combustion operation of the water heater 1 is performed by controlling the air flow of the fan 2 so as to match the combustion capacity, that is, to match the gas supply amount. Therefore, the amount of exhaust gas emitted per unit time (exhaust volume) differs depending on the combustion capacity.
  • exhaust volume exhaust volume
  • the danger arrival time corresponding to each C0 concentration is set on the assumption that the combustion operation is performed at the maximum combustion capacity where the danger for CO is large.
  • the combustion operation of the combustion equipment is controlled and controlled within the range of the minimum combustion capacity and the maximum combustion capacity. Therefore, for example, when the combustion operation is performed with the capacity close to the minimum combustion capacity, the danger arrival time corresponding to the CO concentration detected by the CO sensor 11 is set at the time of the IS large combustion capacity. For this reason, there was a question that even though the danger of C0 poisoning was not reached, it was determined that the danger of C ⁇ poisoning had occurred, and the combustion operation was stopped.
  • the indoor CO concentration is a value that depends on the volume inside the combustion equipment. That is, if the concentration of CO in the exhaust gas is -constantly discharged into the air, the indoor C0 concentration differs depending on the volume of the air.
  • the danger arrival time corresponding to each C0 concentration is set based on a certain room volume, and the combustion equipment is installed in a room larger than the room content ffi, there is a dangerous C Before reaching zero concentration, the set danger arrival time may be reached. In such a case, there was a problem that combustion operation was stopped even though there was no danger of CO poisoning.
  • the indoor CO concentration depends on the type of S (gas electrode) of the gas to be burned. That is, the type of gas used for the combustion operation of the water heater 1 may vary depending on the region. For this reason, usually, the water heater 1 is provided with a gas type switch (not shown), At the time of shipment, the gas type switching switch is operated to select the gas type of the destination, and the combustion capacity of the water heater 1 is adjusted according to the gas type.
  • a gas type switch not shown
  • the gas type switching switch is operated to select the gas type of the destination, and the combustion capacity of the water heater 1 is adjusted according to the gas type.
  • differences in gas types have not been taken into account in performing CO safe operation. The present inventor examined the difference in gas types in performing the C0 safe operation, and found that the reliability of the C0 safe operation was greatly affected by the gas type.
  • the indoor CO concentration is a value that depends on the structure of the supply / exhaust pipe of the combustion equipment, that is, whether it is a double pipe structure or a double pipe structure.
  • the double pipe structure and the double tube structure will be described.
  • FIGS. 5 and 6 are schematic diagrams of a combustion device having a two-pipe structure and a --main pipe structure supply / exhaust structure, respectively.
  • an air supply pipe 401 and an exhaust pipe 402 are provided in a tubular shape for exhaust, and an adab 403 is fixed to the tip side of the pipe for the air supply and exhaust.
  • a different type of air supply / exhaust unit 404 is connected to this adapter 403.
  • the equipment shown in Fig. 5 is an air supply / exhaust unit 404 in which the air supply pipe 401 and the exhaust pipe 402 are formed in a two-tube shape. 4 0 1 and 2 are guided to the outside, for example, behind the roof of a creature.
  • the water supply / exhaust unit 404 of the water heater shown in FIG. 6 has a double pipe supply / exhaust structure in which an air supply pipe 401 and an exhaust pipe 402 are separately formed. Whether these water supply / exhaust structures are of a single-pipe air supply / exhaust structure or of a two-pipe air supply / exhaust structure is determined by the conditions of the hot water heater installation site. In the water heaters shown in Figs. 5 and 6, an adapter 40 is provided on the fixture side so as to be able to cope with either of the air supply and exhaust structures.
  • the unit 404 and the supply / exhaust unit 404 of the double pipe supply / exhaust structure can be detachably mounted. In the water heaters shown in FIGS.
  • the rotation of the fan 405 sends external air to the burner 406 via the air supply pipe 401, and the burner passes through the gas pipe 407.
  • the fuel gas supplied to 406 is burned to heat the hot water supply heat exchanger 408, and the water supply pipe 4
  • the water supplied to the hot water supply heat exchanger 4 08 from 10 is turned into hot water, and the hot water is supplied to a desired place such as a kitchen via a hot water supply pipe 4 1 1 connected to the outlet side of the hot water supply heat exchanger 4 08. It is to do.
  • the combustion operation of the water heater is performed by a control device 4 12, and a remote control 4 13 is connected to the control device 4 12.
  • 414 is a gas solenoid valve that opens and closes the passage of the gas pipe 407
  • 415 is a proportional valve that controls the gas supply by opening a
  • 416 is the CO of exhaust gas.
  • Each of the C0 sensors for detecting the concentration is shown.
  • the present inventor believes that due to the difference between the two-tube supply / exhaust structure and the two-tube supply / exhaust structure, the exhaust gas may be cleaved or separated at the joint of the exhaust 402 (the intake pipe 401 ).
  • the intake pipe 401 The situation of C ⁇ contamination in the room when it leaked into the room from a defective part such as a pipe connected outside was determined by experiments. Examples of the results are shown in FIG. 7 and FIG. Fig. 7 shows a case where the supply / exhaust structure is a dual pipe supply / exhaust structure. If exhaust gas leaks from the exhaust pipe 2 of this dual pipe supply / exhaust structure into the room, the supply air 401 is also the exhaust pipe 402. It is probable that a leak occurred due to damage in the same place as above.
  • the indoor air is supplied to the burner 406 through the air supply pipe 401. That is, as the exhaust gas leaks into the room, the oxygen concentration in the room decreases, and the oxygen-deficient air is supplied and supplied to the burner 406 side. Therefore, the combustion becomes incomplete combustion, and the oxygen concentration in the room sharply decreases with time. Along with this, the combustion state deteriorates further due to the lack of oxygen in the air supplied to the burner 406 side, the generation of CO gas increases, and the indoor CO contamination rapidly progresses.
  • FIG. 7 shows the temporal change of the oxygen concentration in the room
  • FIG. 7 shows the temporal change in the CO concentration in the exhaust gas
  • FIG. 7 shows the temporal change in the indoor CO concentration. It illustrates the change.
  • the solid line in this figure indicates the case where the combustion capacity is 40,000 Kcal / h
  • the broken line indicates the case where the combustion capacity is 30,000 Kcal / h
  • the dashed line indicates the case where the combustion capacity is 10,000 Kcal / h. I have.
  • the greater the combustion capacity the greater the rate of decrease in the oxygen concentration in the room.
  • the higher the combustion capacity the lower the oxygen concentration of the air supplied to the PANA 406, so that the rise of the exhaust CO concentration becomes faster than when the combustion capacity is low.
  • the higher the combustion capacity the more the unit of exhaust gas As a result, the flow rate per hour increases and a large amount of exhaust gas is introduced into the room. As a result, the indoor C0 concentration increases as the combustion capacity increases.
  • the supply / exhaust structure is a double pipe supply / exhaust structure
  • the exhaust pipe 401 and the supply pipe 402 are separate and independent, so the exhaust pipe 401 and the supply pipe 402 At the same time, it is unlikely that the gas will be damaged from the location. Even if the exhaust gas leaks from the defective part of the exhaust pipe 401 into the room, the outside of the exhaust pipe 402 is clean from the outside. As a result, the air continues to be supplied to the parner 406, and as shown in FIG. 8 (a), the CO concentration of the exhaust gas is generated at a substantially constant concentration. The CO generation mechanism is completely different from the case.
  • the two cases of ffi pipe supply and exhaust structure as described above, the oxygen in the room by the exhaust gas leaks into the room (0 2) lack of concentration indoor CO: greatly affect dyeing, the indoor 0 2 concentration Because the combustion capacity is directly affected by the combustion capacity, it is preferable to evaluate the degree of indoor CO pollution in consideration of the combustion capacity.
  • ER value (Each Rate) is obtained from the CO concentration in the exhaust gas detected by the CO sensor, and a TR value (Total Rate), which is a sum of the ER values, is obtained.
  • TR value Total Rate
  • the ER value is defined as the blood hemoglobin C 0 concentration when the human body is exposed to air containing the predetermined air C 0 concentration detected during a certain unit time t. Is defined as t / T, given the time T required for a substance to reach a predetermined concentration (eg, 25%) that poses a risk to the human body. Normally, the concentration of CO in the air changes over time, so by calculating the ratio of the unit time t to the time T corresponding to the CO concentration, a weight value is obtained for each position time question. be able to. Then, the value obtained by calculating the ER value is the TR value, and when the TR value becomes 1, it means that the hemoglobin C0 concentration in the blood has reached the predetermined dangerous concentration.
  • the predetermined hazard concentration may be set low, for example, 10%, in order to prevent the generation of C poisoning, depending on the environment where the combustion equipment is installed. Is set, and the corresponding ER value is determined.
  • FIG. 9 shows a conventional ER value table corresponding to the C0 concentration of exhaust gas.
  • the table is stored in a storage means such as a ROM in a control means such as a microcomputer of the combustion equipment.
  • the ER value shown in Fig. 9 is multiplied by 250 for microcomputer program reasons.
  • the concentration of CO in the air depends not only on the CO concentration of the exhaust gas that is emitted, but also on the exhaust ft of the exhaust gas. For example, in the maximum operation and the minimum operation of combustion, even if the CO concentration in the exhaust gas is the same, if the exhaust gas amount differs, the amount of C0 discharged into the air, that is, almost The air CO concentration under a certain volume is different.
  • the CO concentration in the air depends on the volume of a space, such as a room in a room, that is adjacent to the exhaust passage and from which exhaust gas may leak from the exhaust passage. That is, for example, when a constant amount of CO is discharged into a space having a constant volume over time, the C 0 concentration varies depending on the volume of the space.
  • the ER value was calculated only from the CO concentration of the exhaust gas.
  • the time required for the concentration of blood hemoglobin CO to reach a predetermined concentration (for example, 25%) or more was sometimes different.
  • a predetermined concentration for example, 25%
  • the amount of exhaust gas emitted is relatively small, and the amount of emitted CO is also relatively small, so that before the CO concentration in the blood reaches the predetermined concentration, TR value reaches 1.
  • the TR value reaches 1 before the CO concentration in the blood reaches the predetermined concentration. That is, before the hemoglobin CO concentration in the blood reaches the predetermined concentration, safety measures may be activated and combustion may stop. Therefore, when monitoring C0 concentration by ER value, it is more efficient to use ER ⁇ that takes into account the exhaust S of exhaust gas and also the volume of the air gap where CO gas is emitted. This is preferable for monitoring the concentration.
  • the present invention has been made to solve the above-described problems, and has as its object the purpose of adding the C ⁇ concentration of the exhaust gas detected by the C0 sensor, the state of the combustion operation of the combustion device, and the installation of the combustion device.
  • the room volume, the type of combustion gas, and the air temperature are determined in accordance with the supply and exhaust structure of the combustion equipment, to determine a more accurate danger arrival time, and to judge the risk of CO poisoning at an appropriate time in a positive m. It is an object of the present invention to provide a combustion device that performs c0 safety operation with high accuracy.
  • Another object of the present invention is to use not only the c0 concentration in the exhaust gas, but also the ER value in consideration of the displacement of the exhaust gas and / or the volume of the air gap from which the C0 gas is discharged. It is to provide combustion equipment that performs accurate C ⁇ safe operation.
  • a first aspect of the present invention for achieving the above object is a combustion device that includes a C0 sensor that detects a CO concentration in exhaust gas and performs a CO safe operation based on the CO concentration detected by the CO sensor.
  • This is a combustion device characterized by having a control means for determining a timing of a CO safe operation based on a CO concentration detected by a sensor and a combustion capacity of the combustion device or an exhaust gas amount.
  • the CO concentration in the exhaust gas is detected by the CO sensor on the exhaust side. Then, the combustion capacity or the displacement of the combustion equipment in the combustion operation state is detected, and the combustion operation time is detected by the CO sensor.
  • C0 C0 safety operation such as combustion operation stop is performed by the safety operation.
  • the danger arrival time at which the person in the room is estimated to reach the danger of CO poisoning is determined not only by the CO concentration but also by the CO concentration.
  • CO safety operation is performed. Therefore, compared with the case where the continuous combustion time is set only by the CO concentration, the time when the danger of CO poisoning is reached can be determined accurately by considering the operating state of the combustion equipment such as the combustion capacity. It is possible to perform a safe CO operation.
  • a second aspect of the present invention for achieving the above object is a combustion device that includes a CO sensor that detects a CO concentration in exhaust gas and performs a C0 safe operation based on the CO concentration emitted by the CO sensor.
  • a combustion device characterized by including a control means for determining a timing of a CO safe operation based on a C 0 concentration detected by the C 0 sensor and a volume in a chamber from which exhaust gas is discharged. .
  • an estimated value of the indoor C0 concentration is obtained based on the information on the C ⁇ concentration in the exhaust gas detected by the CO sensor and the volume of the room where the exhaust gas is assumed to leak. Can be Then, when the obtained value reaches a predetermined danger judgment reference value, a safe operation for converting to C0 gas is performed, so that a highly reliable C0 safe operation is possible.
  • the third finding to achieve the above object is a combustion device that has a C0 sensor that detects the CO concentration in exhaust gas and performs a CO safe operation based on the CO concentration detected by the CO sensor.
  • a combustion apparatus characterized by having control means for determining the timing of the CO safety operation based on the CO concentration detected by the CO sensor and the type of fuel gas.
  • the CO concentration in the exhaust gas is detected by the CO sensor.
  • the CO safety operation performs a CO safety operation such as stopping the combustion operation.
  • the danger arrival time at which a person is estimated to reach the danger state of CO poisoning is given not only by the CO concentration but also by considering the gas type, so the danger arrival time is set only by the C0 concentration
  • the danger arrival time is set only by the C0 concentration
  • a fourth aspect of the present invention to achieve the above object is a combustion device that includes a CO sensor that detects a CO concentration in exhaust gas and performs a CO safety operation based on the CO concentration detected by the CO sensor.
  • a combustion device characterized by having control means for determining the timing of a CO safe operation based on the C0 concentration detected by the 0 sensor and the type of structure of the supply / exhaust pipe of the combustion device.
  • the structure of the supply / exhaust pipe attached to the exhaust 51 side of the combustion equipment at the time of shipment of the combustion equipment or at the time of installation of the combustion equipment namely, a double pipe structure and a double pipe structure.
  • the danger arrival time at which the corresponding C0 safe operation is performed is given.
  • the combustion operation time reaches a danger that corresponds to the C0 concentration detected by the C ⁇ sensor and the structure of the supply and exhaust pipes, the C0 safety operation such as combustion operation ⁇ 11: is performed. It is. Therefore, CO safe operation will be performed in accordance with the actual situation of the 3 ⁇ 4P air supply and exhaust structure of the combustion equipment, and the reliability of the CO Annex will be improved.
  • the fifth invention which achieves the above object is a method wherein the detection is performed at every predetermined order time t.
  • the ER value obtained by the ratio t / T to the time T at which the moglobin CO concentration reaches the dangerous reference concentration when blood is released in an atmosphere of CO concentration is set, and the TR value, which is the integrated value of the ERii, is set.
  • a combustion device having means for detecting an abnormal state of the combustion device when a predetermined standard is met, wherein the ER value is a CO concentration of exhaust gas of the combustion device, and an exhaust gas amount of the combustion device.
  • the combustion apparatus is set in accordance with Z and Z or the volume of a space from which exhaust gas is discharged.
  • the ER value is determined in consideration of not only the CO concentration in the exhaust gas, but also the exhaust gas amount and / or the space from which the exhaust gas is discharged. Accurate ER values can be obtained according to actual conditions, and more accurate and reliable combustion equipment that performs CO safe operation is provided.
  • FIG. 1 is an explanatory diagram of a configuration of an indoor-installed type water heater generally known as a combustion device.
  • FIG. 2 is an explanatory diagram of an example of indoor installation of a combustion device.
  • FIG. 3 is a chart showing the relationship between blood hemoglobin C0 concentration and human symptoms.
  • FIG. 4 is a graph showing the relationship between the concentration of C ⁇ in the air and the concentration of C0 in hemoglobin.
  • FIG. 5 is an explanatory view of a configuration of a water heater having a double water supply / drainage five structure.
  • FIG. 7 is an explanatory diagram of the state of indoor C0 contamination in a case where exhaust gas from a double-pipe water supply air heater has leaked into a room.
  • FIG. 8 is an explanatory diagram of the state of C0 contamination in a room in a case where exhaust gas of a hot water supply unit having a double water supply / drainage structure leaks into a room.
  • FIG. 9 is an example of a conventional ER value table corresponding to C 0 ⁇ of exhaust gas.
  • FIG. 10 is a control function block diagram of a control means of a combustion device which performs a C 0 safe operation in one embodiment of the present invention.
  • FIG. 11 is an explanatory view showing a combustion device of a hot water supply / combiner.
  • FIG. 12 is an explanatory diagram of data in which the relationship between the CO concentration of exhaust gas and the dangerous arrival time at which the indoor CO degree reaches the dangerous state of CO poisoning is divided for each combustion capacity.
  • FIG. 13 is an explanatory diagram of a configuration in which the combustion control section 23 supplies a ⁇ valve drive current to the proportional valve 22 to control the combustion capacity.
  • Fig. 14 is an explanatory diagram of data obtained by dividing the relationship between the CO concentration of exhaust gas and the dangerous arrival time at which the indoor CO concentration reaches the dangerous state of CO poisoning for each fan airflow.
  • FIG. 15 is a control function block diagram of control means of a combustion device for performing a CO safe operation in the first third embodiment of the present invention.
  • FIG. 16 is an explanatory view of a multi-stage combustion surface switching type wrench.
  • FIG. 17 is a control function block diagram of control means of a combustion device that performs a C ⁇ safe operation in the second embodiment of the present invention.
  • FIG. 18 is an indoor model diagram for deriving an arithmetic expression for calculating the indoor CO concentration.
  • FIG. 19 is a control function block diagram of control means of a combustion device for performing a CO safe operation according to the second embodiment of the present invention.
  • Fig. 20 is data showing the relationship between the CO concentration in exhaust gas and the time T required for the indoor CO concentration to reach the danger criterion value when it is assumed that exhaust gas of that CO2 level leaked into the room. is there.
  • FIG. 21 is a control function block diagram of control means of a combustion device which performs a CO safe operation according to the third embodiment of the present invention.
  • 22 (1) is an explanatory diagram of data obtained by dividing the relationship between the CO concentration of the exhaust gas and the dangerous arrival time at which the indoor CO concentration reaches the dangerous state of CO poisoning for each rare gas.
  • Twenty-fourth 24I is a control of a combustion device that performs a CO safety act in the fourth embodiment of the present invention. It is a control function block diagram of a means.
  • Fig. 25 is a graph showing examples of CO safe operation start condition data used when the supply / exhaust structure is a pipe supply / exhaust structure.
  • Fig. 26te! Is a graph showing an example of CO safety operation start condition data used when the exhaust structure is--the mains supply / exhaust structure.
  • FIG. 27 is an explanatory diagram of an example in which a valve-opening drive current to a comparison valve is used as combustion performance information.
  • FIG. 28 is a control function block diagram of control means of a combustion device for performing a CO safety act according to the fourth and second embodiments of the present invention.
  • FIG. 29 is an explanatory diagram of a water heater of a forced air supply type of combustion air in which a fan is provided below a parner.
  • FIG. 30 is a diagram showing a configuration of a combustion apparatus according to a fifth embodiment of the present invention.
  • FIG. 31 is a flowchart of the CO concentration monitoring control according to the fifth embodiment of the present invention.
  • Fig. 32 is an example of a table of ER values corresponding to the CO concentration of exhaust gas and the number of rotations of the fan.
  • Fig. 33 shows an example of a table of ER values corresponding to the CO concentration of exhaust gas and the volume of the space from which exhaust gas is exhausted.
  • FIG. 34 is an example of a table of ER values corresponding to the CO concentration of the exhaust gas and the number of rotations of the fan, which are determined for each volume of each space from which the exhaust gas is discharged.
  • combustion equipment of the present embodiment described below is not limited to the hot water supply single function device shown in FIG. 1, but includes, for example, a hot water supply / bath combined device, and further, a heating device, a cooling device, a heating and cooling device, etc. It may be an internal combustion device or the like.
  • Exhaust gas from the combustion equipment is discharged outside (outdoors) via the chimney (duct) 10 in FIG.
  • the air supplied for combustion can take various forms, such as an evening air that takes in indoor air or a type that takes in outside air. It is applicable to all types of indoor installation type combustion equipment, regardless of the type or type.
  • the CO safety operation takes into account the combustion capacity or exhaust volume, the room volume, the type of combustion gas, and the structure of the supply and exhaust pipes Will be described below. Further, the CO safe operation is executed by control means of the combustion equipment such as the control device 6 described above.
  • control means is realized by a microcomputer, the control functions described below are realized by software.
  • FIG. 10 is a control function block diagram of a control unit of a combustion device that performs a CO safety operation according to the first embodiment.
  • the control means has a memory 111, a combustion time measuring means 113, and a CO safe operation part 114.
  • the hot water supply / bath combined unit shown in Fig. 11 is a hot water supply that heats and heats the hot water supply heat exchanger 5.
  • the outgoing pipes 16 and 17 connected to the additional heat exchanger 15 are connected to a bath tub (not shown), and a circulation pump 18 is driven to circulate the bath tub water. Hot water is heated by the combustion heat of the Pana 4 b when passing through the reheater 15, and reheating is performed.
  • the operation of the heat supply heat exchanger 5 is the same as the operation of the water heater of FIG. 1, and the same components are denoted by the same reference numerals.
  • data as shown in] 12 is given to the data memory 112.
  • the horizontal axis of the graph in FIG. 12 indicates the CO concentration of the exhaust gas, and the vertical axis indicates the reference value for the dangerous state of C0 poisoning when the exhaust gas leaks into the room and the indoor C0 concentration is C0 poisoning.
  • Curve A in the graph shows the operating condition when the combustion capacity of the combustion equipment is 40,000 Kcal / h
  • curve B shows the operation when the combustion capacity is 29500 Kcal / h
  • curve C shows the operation when the combustion capacity is 19500 Kcal / h.
  • the llii line D indicates the combustion state of the burner of the hot water / bath combined unit as shown in FIG. 11 at a burning capacity of 10,000 Kcal / h of the burner 4b.
  • Even when the CO concentration in the gas is the same, the time required for the indoor CO concentration to reach the dangerous judgment * standard value of 300 ppm is different.
  • the danger criterion value for indoor CO concentration is set to 300 ppm, and when it is assumed that exhaust gas of each CO concentration has leaked into the room, the danger arrival time when the indoor C0 concentration reaches the danger determination criterion value is assumed.
  • the data is stored in the data memory 1 1 2 according to the combustion capacity of the combustion equipment. It should be noted that the data indicating the relationship between the exhaust C0 concentration and the danger arrival time can be given not only from the graph data, but also from the table data, arithmetic expression data, and the like.
  • the CO safe operation section 114 acquires the detection information of the C ⁇ concentration of the exhaust gas from the CO sensor 11 and also acquires the combustion capacity information. This combustion capacity information is obtained from the combustion control unit in the control device 6.
  • the gas passage 20 of the wrench 4 is provided with a solenoid valve 21 for closing and closing the gas passage and a proportional valve 22 for controlling the gas supply amount based on the opening amount.
  • the opening amount of the proportional valve 22 is controlled by the combustion control unit 23. That is, for example, during the combustion operation of the water heater 1, the combustion control section 23 is connected to the outlet side of the hot water supply heat exchanger 5.
  • the combustion capacity is calculated by calculation so that the temperature becomes the set temperature set by the remote controller 7, and the magnitude of the valve-opening drive current applied to the proportional valve 22 is controlled so as to obtain this combustion capacity.
  • the magnitude of the valve-opening drive current applied from the combustion control unit 23 to the proportional valve 22 corresponds to the magnitude of the related valve amount of the proportional valve 22, in other words, the magnitude of the gas supply amount.
  • detection data of the valve-opening drive current is obtained as the combustion performance information. Based on this combustion capacity report and the information on the CO concentration in the exhaust gas input from the CO sensor 11, the data stored in the data memory 112 is shown in FIG. The danger arrival time T at which the CO ffi degree becomes the danger judgment reference value is acquired.
  • the danger arrival time T corresponding to the exhaust C 0 concentration is given separately for each combustion capacity, and the combustion capacity information and the CO sensor 11 detect the danger arrival time T.
  • the appropriate danger arrival time T corresponding to the information on the exhaust C0 concentration can be obtained. As a result, it is possible to significantly improve the accuracy of the CO safe operation, and to prevent a malfunction in which the combustion is stopped even though the indoor CO concentration does not reach the dangerous concentration.
  • the data of the valve drive current to the proportional valve 22 is used as the combustion capacity ⁇ ⁇ .
  • the data of the gas supply amount and the data of the combustion control unit 23 are used instead. Similar results can be obtained when the calculated value of the combustion capacity is calculated.
  • a gas flow sensor or the like is provided in the gas supply passage 20, and a detection signal of the gas supply by this sensor is used as the CO safety operation unit 1 Entered in 1 4
  • the first and second embodiments are characterized in that the C0 safe operation is performed using the air volume data of the fan corresponding to the displacement in place of the combustion capacity in the first embodiment.
  • the rest is the same as in the first embodiment.
  • the combustion operation is performed by supplying a fan airflow corresponding to the combustion capacity, the combustion capacity and the exhaust quantity, that is, the fan capacity, are increased.
  • fan airflow data is used instead of combustion capacity.
  • the relationship between the exhaust CO concentration and the danger arrival time T is given to each fan wind a in Fig. 10 in the data memory 112 as shown in Fig. 14. ing.
  • Curve E shown in Fig. 14 is a time chart when the rotation speed (rotation speed) of fan 2 is 6000 rpm, and curve F is an operation condition when fan rotation speed (rotation speed) is 550 (h'pm).
  • the curve G shows the operating state when the fan rotation speed (rotational speed) is 5000 ⁇ ⁇ ⁇ , and thus the data showing the relationship between the exhaust C ⁇ concentration and the danger time.
  • the data is provided separately for each fan airflow, and such data is stored in the data memory 112 in an appropriate form such as graph data, table data, and arithmetic expression data.
  • the fan capacity information is taken into the C0 safe operation section 114 as indicated by the broken line of I: 110. If the fan wind information is low, a fan rotation detection sensor 24 such as a hall IC that protrudes the fan Lnjfe of the fan 2 is provided as shown in Fig. 1 and I] 11 and the fan rotation detection sensor 24 The rotation detection report is added to the C0 safety operation section 1 14 as data.
  • a fan rotation detection sensor 24 such as a hall IC that protrudes the fan Lnjfe of the fan 2 is provided as shown in Fig. 1 and I] 11 and the fan rotation detection sensor 24
  • the rotation detection report is added to the C0 safety operation section 1 14 as data.
  • the CO safety operation 114 captures the CO concentration of the exhaust gas from the CO sensor 11 and the information of the fan airflow from the fan rotation detection sensor 24, As shown in Fig. 14 obtained in the evening memory 1 1 and 2, the danger arrival time ⁇ , ⁇ , which is related to the fan airflow and the C0 concentration in the exhaust gas, was obtained from the data, and the combustion time was measured. Using the means 113, when the combustion time from the start of combustion reaches this danger arrival time ⁇ , safety operations such as stopping the combustion operation are performed.
  • the information from the CO sensor 11 and the information on the fan air volume corresponding to the exhaust gas are acquired and the C0 safe operation is performed.
  • the appropriate danger arrival time T corresponding to the operating state of the combustion equipment highly accurate CO safe operation becomes possible, and the same effects as those of the first embodiment can be obtained.
  • the fan air volume is used as the fan air volume, but the fan air volume is used as the air volume.
  • the fan air volume is used as the air volume. Is provided with an air flow sensor and a wind speed sensor for indirect detection. -Evening can be used as fan airflow data.
  • the fan drive power can also be used as fan air volume data.
  • FIG. 15 shows a block configuration of the first to third embodiments of the present invention.
  • the control means in the present embodiment includes a CO concentration sampling section 125 of exhaust gas, a tsp / T calculation integration section 127, a clock mechanism 126, a data memory 112, and a CO safety operation. Parts 114.
  • the C ⁇ concentration sampling unit 125 samples the C 0 concentration C ext in the exhaust gas from the C 0 sensor 11 after the start of combustion in units of a predetermined unit sampling time t sp. Specifically, the sampling time is set to, for example, 10 seconds, and the CO concentration sampling unit 125 obtains the detection information of the CO sensor 11 every second, finds the average detector, and obtains the average reconnaissance. Determine the value of the CO concentration in the exhaust gas in question. The timing of this sampling is performed based on iS- of the clock mechanism 126 configured by a timer, a clock, and the like.
  • the data memory 112 has a relationship between the dangerous arrival time T and the C 0 concentration C ext in the exhaust gas divided for each combustion capacity as shown in ⁇ 12 as in the first embodiment. Data is given.
  • the t sp / T calculation integration unit 127 obtains the value of the C ⁇ concentration in the exhaust gas detected in units of the unit sampling time t sp input from the CO concentration sampling unit 125, and Calculate the value of T.
  • the selection is made based on the combustion capacity information taken in the same manner as in the first embodiment. For example, when the combustion capacity information indicates 29500 Kcal / h, the data of curve B is selected and the danger arrival time T is calculated based on this data.
  • the danger arrival time T is, as described above, the danger criterion value of the indoor CO concentration of 300 ppm, for example, assuming that the exhaust gas with the C 0 concentration C ext detected by the CO sensor 11 has leaked into the room. It is time to reach C th.
  • the ratio of the sampling time t sp to the time T is determined.
  • This value of t sp / T is the safe time T This means that the ratio of t sp / T is spent, leaving only the safe ratio (1— t sp / T).
  • tsp is spent, and the remaining safety time is neglected because only T-tsp is left. I do.
  • the t sp / T calculation integration unit 127 calculates t sp / T at the first sampling time of S, and also at the next sampling time, the t sp / T calculated by the detection of CO concentration in exhaust gas. / T! ? Put out. Then, the calculated value is added to t sp / T obtained at the time of the previous sampling to obtain an integrated value ⁇ :. In this way, the t sp / T calculation / integration unit 127 successively integrates the value of t sp / T obtained at each sampling time t sp at each sampling time.
  • t sp / T 1 is determined by T 1 for the exhaust CO concentration C extl at the first sampling
  • t sp / T 1 is determined by T 2 for the exhaust 5 C 0 concentration C ext2 at the next sampling.
  • T 2 is determined, and the value of t sp / T 1 + t sp / T 2 is determined as
  • the accumulated ffi is t sp (1 / T 1 + 1 / T 2 + 1 / ⁇ 3)
  • the t sp / T calculation integration unit 127 integrates the value of t sp / T obtained at each sampling time, and gives the result to the CO safe operation unit 114.
  • the CO safety operation unit 114 monitors the integration result given from the tsp / T calculation integration unit 127, and when the integration 1 ⁇ 2 reaches a predetermined set value, for example, 1.0, the indoor CO concentration C room Judgment is made that the set danger criterion ftSC th has been reached, and the CO safety operation such as shutting off gas to the Pana 4 is performed.
  • a predetermined set value for example, 1.0
  • the combustion capacity at the first sampling time is the capacity of curve A in Fig. 12, and the second sampling time
  • the value of tsp / T was calculated using the data of curve A at the time of the first sampling, when it changed to the capability of curve B at the time of the third sampling, and at the time of the third sampling.
  • the value of t sp / T is obtained using the curve B
  • the value of t sp / T is obtained using the data of the curve C. It is.
  • t sp / T is calculated using the combustion capacity data corresponding to the change in the combustion capacity. / T is integrated, and when the integrated value becomes 1, the CO safety operation is performed.
  • data on the relationship between the exhaust CO concentration and the dangerous arrival time T corresponding to the combustion capacity of the combustion equipment in the combustion operation state is selected, and based on the data based on these combustion capacities.
  • ts / T is calculated for each sampling time and integrated one after another. Therefore, it is possible to accurately determine the danger arrival time at which the indoor CO concentration reaches the danger criterion value in consideration of the change in the combustion capacity of the combustion operation, thereby improving the accuracy of the CO safe operation. You can increase it.
  • the exhaust gas CO is divided into the data memory 111 of FIG. Stores the correlation data between the concentration and the danger arrival time T.
  • fan air volume information is added in place of the combustion capacity information in the same manner as in the first embodiment.
  • the other configuration is the same as that of the first embodiment.
  • the detected value of the exhaust C ⁇ concentration from the C 0 sensor 11 is sampled by the C 0 concentration sampling unit 125.
  • the sampling value is subjected to arithmetic processing by the tsp / T calculation integration section 127, and the tsp / T output integration section 127 calculates various data shown in FIG. 14 based on the fan air volume information. Among them, the data corresponding to the fan air volume information to be manually input is selected.
  • the CO safe operation unit 114 when the fan air volume information is GOOOrpm, the data of the curve E is selected and the danger arrival time T corresponding to the exhaust C0 concentration is obtained, and as in the third embodiment, t sp / The calculation of T and the accumulation of the values of t sp / T at each sampling time are performed, and when the integrated value reaches 1, the CO safe operation is performed by the CO safe operation unit 114.
  • the present invention is not limited to the above embodiments, and various embodiments can be adopted.
  • the burner 4 (4 a, 4 b) is assumed to be burnt in the plane, but the burning surface of the burner 4 is duplicated so as to reduce the size of the burner to 16.
  • a multi-stage combustion type may be used. This exfoliating burner type burner divides fij into multiple stages (two stages in Fig. 16) and switches solenoid valves 2 la and 21 b to burn the A side according to the required combustion capacity. Or to burn the A side and ⁇ ⁇ at the same time.
  • the method of performing the C 0 safe operation using the fan air volume information provides particularly desirable results.
  • the standard value for determining the risk of C0 poisoning in a room is defined by the CO concentration in the room, but in addition to that, the amount of CO taken into the blood hemoglobin of a person is also specified. It may be defined by the amount, that is, the value of blood hemoglobin CO concentration.
  • the danger criterion value for example, 10%
  • a dangerous state of CO poisoning occurs, and the blood hemoglobin CO concentration reaches the danger criterion value.
  • t for each combustion capacity is divided for each exhaust gas amount, that is, fan air flow, and a correlation data of the danger arrival time T corresponding to each exhaust CO concentration is created and stored in the data memory 112. Just give it.
  • correlation data between the exhaust CO concentration and the dangerous arrival time T was obtained for each combustion capacity.
  • a correlation may be given for only one representative combustion capacity.
  • the danger arrival time ⁇ for other combustion capabilities can be obtained by multiplying the danger arrival time ⁇ obtained using the representative correlation by the supplementary iH coefficient given.
  • the correction coefficient corresponds to the difference between the representative combustion capacity and the combustion capacity in the actual operating state (input combustion capacity report).-The correction coefficient is given as a value corresponding to the a or ratio of exhaust a per unit time. I just need.
  • the correlation data of the exhaust gas CO concentration and the dangerous time T may be given only for one representative fan airflow.
  • the danger arrival time T for the exhaust CO concentration of the other fan airflow is obtained by multiplying the danger arrival time ⁇ obtained based on the correlation of the representative fan airflow by a correction coefficient given in advance.
  • This correction coefficient may also be given as a depression according to the difference or ratio of the exhaust air volume per unit time corresponding to the difference between the representative fan air volume and the fan air volume in the actual operating state (input fan air volume information).
  • FIG. 17 is a control function block diagram of control means of a combustion device for performing a CO safe operation in the second embodiment.
  • the control means has an indoor CO concentration estimation calculating section 2 12, a combustion time measuring section 2 13, and a CO safe operation section 2 14.
  • the indoor CO concentration estimation calculation unit 2 12 calculates the indoor CO concentration based on the information on the CO concentration in the exhaust gas detected by the CO sensor 11 assuming that the entire amount of the exhaust gas has leaked into the room. Include the combustion time of the combustion equipment and the volume of the room in the parameters It is determined by an arithmetic expression given in advance.
  • This arithmetic expression is given by the following (1), and this arithmetic expression is stored in advance in a memory or the like inside the arithmetic unit 212.
  • C room (Q 3 XC ext / n V) ⁇ 1 -exp (-nt) ⁇ (1)
  • C room is the indoor CO concentration (ppm)
  • Q 3 is the total exhaust gas amount (m 3 / h )
  • X is the ratio of the amount of exhaust gas leaking into the room out of the total amount of exhaust gas (total amount)
  • C ext is the CO concentration (ppm) in the exhaust gas
  • n is the ventilation rate with a ventilation fan, etc.
  • V is the volume of the room (m 3 )
  • t indicates the combustion time.
  • Fig. 18 shows a model of the room for the calculation of equation (1).
  • reference numeral 215 denotes an air intake pipe for introducing air from outside to the combustion equipment
  • reference numeral 216 denotes a defective portion 216 generated in the middle of the chimney 210. This shows a state in which the exhaust gas leaks from the defective portion 2 16 into the room.
  • C ext is detected by the CO sensor 11 as the concentration of C ⁇ in the exhaust gas. Further, the combustion time t is measured by a combustion time measuring means 2 13 such as a clock or a clock, and is obtained as a known value.
  • the indoor CO concentration estimation calculation section 2 1 2 acquires information on the CO concentration in the exhaust gas detected from the CO sensor 1 1 and the value of the combustion time t measured by the combustion time measuring means 2 1 3, Calculate the indoor CO concentration C room when it is assumed that the exhaust gas has leaked into the room. In this calculation, assuming safety, and assuming that all the exhaust gas leaked into the room, the indoor CO concentration C room was calculated under the condition of X-1.0, and the calculation result was the CO safe operation unit 2. Given to 14.
  • the CO safety operation section 214 preliminarily contains the dangerous value C th for indoor CO concentration O 98/02693
  • the CO safe operation unit 2 14 uses this danger judgment reference value C th and the indoor CO concentration estimation calculation unit 2 12-! Compare the output value C room with the room C 0 concentration. When the value of the room C room reaches the danger criterion value C th, shut off the fuel to the burner (cut off the valve provided in the gas passage to supply to the parner). And other safe actions against CO.
  • the exhaust gas C 0 concentration sampling unit 2 17 samples the C 0 concentration C ext of the exhaust gas blown from the C ⁇ sensor 11 after the start of combustion in units of a predetermined sampling time t sp given in advance. Specifically, the CO concentration sampling unit 217 sets the sampling time to, for example, 10 seconds, acquires the detection information of the CO sensor 211 every second, obtains the average value, and obtains the unit sampling. Determined as the value of CO concentration in exhaust gas per hour. This sampling is performed based on a signal of a clock mechanism 220 constituted by a timer, a clock, and the like.
  • the data memory 221 provides a data relationship between the time T and the CO concentration C ext in the exhaust gas as shown in FIG.
  • the time T on the vertical axis of this data indicates the time required for the indoor CO concentration C room to reach the predetermined danger criterion value C th when the exhaust gas with the C 0 concentration C ext leaks into the room. I have.
  • the dangerous judgment reference value C th for example, 300 ppm
  • the C 0 concentration of C ext2 is shown.
  • the indoor CO The degree C room indicates that the danger criterion value C th is reached.
  • the graph shown in FIG. 20 is obtained by calculation or experiment.
  • t is obtained by substituting C th into the value of C room and substituting C extl into the value of C ext to obtain t using the equation (1). 1 is required.
  • t T 2 is obtained by substituting C ext2 in addition to C ext. In this way, when it is assumed that exhaust gas with a certain CO concentration leaks into the room, the time T when the room C 0 concentration C room reaches the danger criterion ⁇ C th is obtained.
  • the data of FIG. 20 is obtained.
  • a C0 sensor should be provided separately in the room.
  • the C Measure the risk T 1 when changing to the danger criterion value C th This operation is performed by measuring the time T corresponding to each temperature while changing the CO concentration of the exhaust gas, and similarly, data as shown in FIG. 20 is obtained. 2 Stored in 1.
  • the t sp / ⁇ calculation integration unit 2 18 obtains the value of the C 0 concentration in the exhaust gas detected using the unit sampling time t sp as a unit input from the exhaust gas C 0 concentration sampling unit 2 17 And return the value of t sp / T.
  • the time T is obtained using the data shown in FIG. 20 stored in the data memory 222, and the exhaust gas having the CO concentration C ext detected by the CO sensor 211 is obtained. This is the time T when the indoor CO concentration reaches the danger criterion iifi Cth, assuming that it has leaked into the room.
  • the ratio of the sampling time t sp to the time T is obtained.
  • This value of t sp / T means that the proportion of t sp / T in the safe time T is spent, leaving only (1— t sp / T) of the safe rate.
  • tsp is spent, and the remaining safety time means only T-tsp time is left. .
  • the t sp / T calculating and integrating unit 218 calculates t sp / T at the first sampling time, and also at the next sampling time, t sp / T calculated by detecting CO concentration in exhaust gas. And calculate this! ?
  • the output value is added to t sp / T calculated at the previous sampling, and the integrated value is calculated.
  • the t sp / T calculation integration section 218 sequentially integrates the value of t sp / T obtained at the sampling time for each sampling time. In other words, if t sp / T 1 is found during the first sampling, and if t sp / T 2 is found at the next sampling time, the product! ?
  • the value of t sp / T 1 + t sp / T 2 is obtained as the integrated value. Also, when t sp / T 3 is obtained at the time of the third sampling, the integrated value is t sp (l / T l + 1 / T 2 + 1 / T 3).
  • the / T calculation and integration unit 218 integrates the value of t sp / T obtained at each sampling time, and gives the result to the CO safety work unit 214.
  • the CO safety operation unit 214 monitors the integration result given from the tsp / T calculation and calculation unit 218, and when the integrated value reaches a predetermined set value, for example, 1.0, the indoor C 0 concentration C Judge that the room has reached the danger judgment reference value C th set in advance, and perform CO safe operation such as shutting off gas to burner 4.
  • a predetermined set value for example, 1.0
  • the indoor C 0 concentration C Judge that the room has reached the danger judgment reference value C th set in advance
  • the indoor C0 concentration is obtained by an arithmetic expression in consideration of the indoor volume.
  • the calculation formula (1) for converting and calculating the CO concentration in the exhaust gas to the indoor CO concentration taking into account the indoor volume can be given in an extremely simple form, so that the calculation does not require a large-scale view. It is possible to perform a sufficiently accurate calculation using the micro-computer installed in the control device 6 of the combustion equipment, thereby performing a fine-grained safe operation with respect to C0 gas. Moreover, since the CO safe operation can be performed using the actual indoor CO concentration value, the accuracy of the CO safe operation is improved, and the reliability of the C0 safe operation is also thorough.
  • FIG. 20 shows data for calculating the time T at which the indoor C ⁇ concentration reaches the danger determination reference value from the value of the CO concentration in the exhaust gas.
  • the graph data is in the form, but the data can be given in a desired form such as a table, an arithmetic expression, or the like.
  • FIG. 21 is a control function block diagram of control means of a combustion device for performing a CO safe operation in the third embodiment.
  • the control means has a data memory 312, a gas type setting means 309, a combustion interrogation measuring means 313, and a C0 safe operation section 314.
  • the gas type setting means 309 sets the type of gas to be used.
  • a plurality of tact switches may be provided, and the rare gas to be used may be set by the & tact switch.
  • a gas type switching switch provided in a normal water heater or the like is used as gas type setting means.
  • This gas ⁇ setting means includes 13 A, 12 A, L 1 (6 B, 6 C, 7 A), L 2 (5 A, 5 B, 5 AN), L 3 (4 A, 4 B, 4 C). ) Select the gas type such as 6A, 5C, LPG etc. by switch operation.
  • the data memory 312 is provided with data obtained by dividing the correlation between the exhaust C ⁇ concentration and the dangerous arrival time T for each gas electrode as shown in FIG.
  • the horizontal axis of the graph data in Fig. 22 indicates the CO concentration of the exhaust gas, and the vertical axis indicates the risk that the exhaust gas leaks into the room and the indoor C0 concentration is the reference value for the dangerous state of C0 poisoning.
  • the danger arrival time T which reaches the judgment reference value of 300 ppm, is shown.
  • Curve A in the graph shows the L1 gas type
  • curve B shows the 13A gas type
  • curve C shows the propane gas type.
  • the time required for the indoor CO concentration to reach the hazardous judgment reference value of 300 ppm differs depending on the gas type.
  • the danger criterion value for the indoor CO concentration is 300 ppm, and the danger arrival time at which the indoor C0 concentration reaches the danger criterion value when it is assumed that exhaust gas of each C0 concentration has leaked into the room. Is given to memory 3 1 2 You.
  • the data showing the relationship between the exhaust CO concentration and the dangerous arrival time can be given not only from the graph data, but also from the table data and the calculation formula data.
  • the CO safe operation section 314 obtains the detection information of the CO concentration of the exhaust gas from the CO sensor 11 and also obtains the information of the used fll gas from the gas electrode setting means 309. Further, the CO safe operation section 3 14 stores the data stored in the memory 3 12 based on the gas type information and the information of the CO concentration in the exhaust gas input from the CO sensor 11. 22 From the data shown in 2, obtain the danger arrival time T when the indoor CO concentration becomes the danger criterion ⁇ when the exhaust gas leaks into the house.
  • the CO safety operation section 314 monitors the progress of combustion from the start of combustion from the combustion time measuring means 313, and when the combustion time reaches the danger arrival time T, the indoor C ⁇ concentration is reduced. Hazard judgment base Judgment is made that the vehicle has been lowered, and safety operations such as stopping the combustion operation are performed.
  • the danger arrival time T corresponding to the exhaust C 0 concentration is given separately for each gas rare: information on the used gas ffi and the CO sensor 11
  • the danger arrival time T is obtained based on the information on the exhaust COS degree detected at step C, and the C0 safety operation is performed. Therefore, an appropriate danger arrival time T can be obtained according to each exhaust CO concentration and rare gas, and the accuracy of the safe CO operation can be significantly improved by the nj function, and even if the indoor CO concentration does not reach the dangerous concentration. Regardless, it is possible to prevent a malfunction that combustion is stopped.
  • FIG. 23 is a control function block diagram of the control means of the combustion device that performs the CO safe operation in the third embodiment of the present invention.
  • the control means in the present embodiment includes a CO concentration sampling section 325 for exhaust gas, a tsp / T calculation integration section 327, a clock mechanism 3226, a data memory 312, It has a CO safe operation section 3 14.
  • the CO concentration sampling unit 325 samples the CO concentration C ext in the exhaust gas from the CO sensor 11 after the start of combustion in units of a predetermined unit sampling time t sp given in advance. Specifically, the C0 concentration sampling unit 3 25 sets the sampling time to, for example, 10 seconds, obtains the detection information of the C ⁇ sensor 11 every second, obtains the average value, and obtains the unit. Determine as the value of CO concentration in exhaust gas per sampling time. The timing of this sampling is This is performed based on the signal of the clock mechanism 3 26 constituted by the above.
  • the t sp / T calculation integration unit 327 obtains the value of the CO concentration in the exhaust gas detected in units of the unit sampling time t sp given from the CO concentration sampling unit 3 25, and calculates the t sp / T Calculate the value.
  • the graph data of each curve shown in FIG. Which data is to be used is selected based on the used gas type information taken in from the gas type setting means 309 as in the third embodiment. For example, if the gas used is 13 A, the data of curve B is selected, and the danger arrival time T is calculated based on this data.
  • this danger arrival time T is, assuming that the exhaust gas with the C0 concentration Cext detected by the C ⁇ sensor 11 has leaked into the room, assuming that the indoor CO concentration is, for example, 300 ppm. Jd to the quasi-value C th]. Then, when the sampling time t sp is reached by R ⁇ T when the danger criterion value is reached, the sum of the sampling time t sp for that time point is obtained.
  • This value of t sp / T means that the proportion of t sp / T in the safe time T is spent, leaving only (l- t sp / T) safe cases. I do. In other words, of the time T when the indoor C0 concentration reaches the danger criterion value, tsp is spent, and the remaining safety time is only T-tsp. means.
  • the t sp / T calculation integration unit 3 2 7 first calculates t sp ZT at the first sampling time of 15, and also at the next sampling time, detects the CO concentration in the exhaust gas. / T is calculated, and this calculated value is added to t sp / T obtained in the previous sampling to obtain an integrated value. In this way, the tsp / T calculation integration unit 327 sequentially integrates the value of tsp / T obtained at each sampling time tsp for each sampling time. For example, if t sp / T 1 is obtained by T 1 for exhaust C ⁇ concentration C extl during the first sampling, then t sp / T 1 is obtained by T 2 for exhaust CO concentration C ext2 at the next sampling time.
  • T 2 is obtained, and the value of t sp / T 1 + t sp / T 2 is obtained as an integrated value.
  • the integrated value is t sp (1 / T 1 + 1 / + 2 + 1 / ⁇ 3)
  • the t sp / T calculation integration unit 327 integrates the value of t sp / T obtained at each sampling time, and provides the integration result to the CO safe operation unit 314.
  • the safety operation unit 314 monitors the integration result given from the tsp / T calculation integration unit 327, and when the integrated value reaches a predetermined set value, for example, 1.0, the indoor CO concentration C room is Judge that the danger judgment reference value C th set in the above has been reached, and perform the CO safe operation such as shutting off the gas to Pana 4.
  • a predetermined set value for example, 1.0
  • data on the relationship between the exhaust CO concentration and the danger arrival time T corresponding to the gas type in the combustion operation state of the combustion equipment is selected, and is adapted to the gas type used.
  • ts / T is calculated for each sampling time in accordance with the value of the CO concentration in the exhaust gas detected by the CO sensor 11, and integrated one after another. Therefore, it is possible to accurately determine the danger arrival time at which the indoor C0 concentration reaches the danger determination reference value, thereby further improving the accuracy of the CO safe operation.
  • the present invention is not limited to the above embodiments, and various embodiments can be adopted.
  • the criterion value for determining that a person in a room is at risk of CO poisoning is defined by the indoor CO concentration, but in addition to the above, the amount of CO taken into human blood by moglobin, That is, it may be specified by the value of the blood hemoglobin C0 concentration.
  • the risk judgment reference value for example, 10%
  • Danger arrival time T a correlation data of the danger arrival time T corresponding to each exhaust CO concentration may be created for each gas type and provided to the data memory 312.
  • correlation data between the exhaust CO concentration and the dangerous arrival time T is given for each gas type as shown in the data of FIG.
  • correlation data may be provided for only one representative gas type.
  • the danger arrival time T for other gas types is It can be obtained by multiplying the danger arrival time T obtained using the correlation of the gaseous species by a correction coefficient given in advance.
  • the correction coefficient may be set to a value corresponding to the difference or ratio of the displacement between the representative gas type and the actual gas type used per unit time ( further, the representative gas paddle is detected by the exhaust gas component. It may be given for each gas type group arbitrarily determined in consideration of the output value.
  • a description will be given of a combustion apparatus according to a fourth embodiment that performs a CO safe operation in consideration of the structure of the supply and exhaust pipes in addition to the CO concentration of the exhaust gas detected by the CO sensor.
  • the system of the combustion equipment in each of the following embodiments is the same as that shown in FIGS. 5 and 6, and a redundant description of the components of these combustion equipment will be omitted.
  • FIG. 24 is a control function block diagram of a control unit of a combustion device performing a C0 safe operation in the fourth embodiment.
  • the control means of the present embodiment includes a data memory 4 17, a combustion measurement stage 4 18, a CO safety operation section 4 20, and a supply / exhaust structure switching setting means 4 2 1. are doing.
  • the air supply / exhaust structure switching setting means 421 sets the air supply / exhaust structure on the exhaust side of the water heater.
  • the supply / discharge structure switching setting means 4 21 is provided, for example, as a switch on the control board of the control device 4 12.
  • a dual pipe supply / exhaust structure as shown in Fig. 5 is set.
  • a double pipe supply / exhaust structure as shown in Fig. 6 is set. Is set. In this way, the supply and exhaust structure of the double pipe and the double pipe is switched and set by the switch operation. Then, the information on the air supply / exhaust structure set by the air supply / exhaust structure switching setting means 4 21 is given to the CO safe operation section 4 20.
  • Data memory 4 17 has the start condition data of C0 safe operation corresponding to the dual pipe supply / exhaust structure as shown in Fig. 25 and the dual pipe supply / exhaust structure as shown in Fig. 26.
  • the start condition data of the C0 safe operation is given separately.
  • the indoor CO concentration in the case of the double-pipe supply / exhaust structure is greatly affected by the combustion capacity, so that a data corresponding to the combustion capacity is given.
  • the indoor CO concentration in the case of the double pipe supply / exhaust structure is larger than the exhaust gas displacement. Data is given corresponding to the fan airflow.
  • the horizontal axis of the graph data in Fig. 25 shows the CO concentration of the exhaust gas
  • the vertical axis shows the reference value for the dangerous state of C0 poisoning when the exhaust gas leaks into the room and the indoor C0 concentration is dangerous. It indicates the time when the danger is reached when the judgment value reaches 300 ppm.
  • Curve A in the graph indicates the operating condition when the combustion capacity of the combustion equipment is 40,000 Kcal / h
  • curve B indicates the operating condition when the combustion capacity is 29500 Kcal / h. It is shown.
  • the danger criterion value of the indoor CO concentration is set to 300 ppm, and when it is assumed that the exhaust gas of each C0 concentration has leaked into the room, when the danger that the indoor C0 concentration reaches the danger criterion value is reached.
  • the questions are given to the memory 417 as the initial conditions for CO safe operation of the double pipe supply / exhaust structure for each combustion capacity of the combustion equipment.
  • G indicates the operating state when the fan speed (rpm) is 5000 rpm.
  • data indicating the relationship between the exhaust CO concentration and the danger arrival time T is given separately for each fan airflow.
  • the data is stored in the data memory 417 in an appropriate form such as graph data, table data, or arithmetic expression data.
  • the CO safety operation section 420 acquires the detection information of the CO concentration of the exhaust gas from the CO sensor 416, and also acquires the fan capacity information corresponding to the combustion capacity information and the exhaust 3 information.
  • the combustion capacity ⁇ i5 report is obtained from the combustion control unit of the control device 4 12 ⁇ .
  • V the gas passage 407 of the burner 406 is opened in the gas passage 407.
  • An electromagnetic valve 415 for closing and a proportional valve 415 for controlling the gas supply amount by the valve control amount are provided. The opening amount of the proportional valve 415 is controlled by the combustion control unit 423.
  • the combustion control unit 4 23 adjusts the combustion capacity so that the temperature at the outlet side of the hot water heat exchanger 408 becomes the set temperature set by the remote controller 4 13.
  • the magnitude of the valve-opening drive current applied to the proportional valves 415 is obtained by calculation and controlled so that this combustion capacity is obtained. That is, the magnitude of the valve-opening drive current applied from the combustion control unit 4 2 3 to the proportional valve 4 15 corresponds to the magnitude of the valve opening amount of the proportional valve 4 15, in other words, the magnitude of the gas supply amount. However, this corresponds to the combustion capacity calculated by the combustion control unit 423.
  • the detection data of the valve-opening drive current is taken in as the combustion performance information.
  • the fan-style information is provided, for example, by a fan rotation number detection sensor 424 such as a Hall IC that detects the fan rotation number of the fan 405 as shown in FIG. 15 and FIG.
  • the fan number detection of the number detection sensor 4 2 4 is obtained as air volume data.
  • the CO safety operation unit 420 When the supply / exhaust structure set by the supply / exhaust structure switching setting means 4 21 is a 2 S pipe supply / exhaust structure, the CO safety operation unit 420 has CO safe operation ⁇ start condition data as FIG. If the supply / exhaust structure is a double pipe supply / exhaust structure, select the data shown in Fig. 26 as the CO safety operation start condition overnight. Then, in the case of a double pipe supply / exhaust structure, based on the combustion capacity information and the information on the CO concentration of the exhaust gas detected by the CO sensor 416, the curve corresponding to the combustion capacity corresponds to the detected CO concentration. Danger arrival time T is obtained.
  • the CO safety department 420 monitors the combustion elapsed time from the start of combustion using the combustion time measuring means 418, and when the combustion time reaches the danger arrival time T, the indoor C 0 Judgment that the concentration has reached the danger judgment reference value and perform safe operation such as stopping the combustion operation.
  • the supply / exhaust structure switching setting means 4 221 sets the double pipe supply / exhaust structure
  • the data shown in FIG. 26 is selected.
  • the CO safety operation unit 420 acquires information on the CO concentration of the exhaust gas detected by the C0 sensor 4 16 and information on the fan air volume which is information on the exhaust gas amount, and further obtains the fan From the air volume curve graph data corresponding to the air volume information, the danger arrival time T corresponding to the C0 detection concentration of exhaust gas is calculated. get.
  • the CO safety operation unit 420 determines that the indoor C0 concentration has reached the danger judgment reference value when the combustion time from the start of combustion reaches the danger arrival time T, and similarly stops the combustion operation. And other safety actions.
  • the water supply / exhaust structure of the water heater is a double pipe supply / exhaust structure or a double pipe supply / exhaust structure, and corresponds to the actual water supply / exhaust structure of the water heater.
  • C ⁇ Safety operation start condition data is selected. Then, since the CO safe operation is performed using the data dedicated to the actual air supply and exhaust structure, the CO safe operation according to the actual conditions of the actual air supply and exhaust structure is performed accurately, and as a result, the CO safe operation is performed. Accuracy and reliability can be improved.
  • the data of the valve-opening drive current to the proportional valve 415 is used as the combustion capacity information.
  • the data of the gas supply amount and the combustion control are used instead.
  • the data of the calculated value of the combustion capacity calculated in the part 423 may be used.
  • a gas flow sensor or the like is provided in the gas supply circuit 407, and the detection signal of the gas supply amount by this sensor is provided. Input to CO safe operation section 420.
  • airflow sensors and wind speed sensors that detect airflow directly or indirectly are provided in the ventilation path from the power supply side to the exhaust side using fan rotation data as fan airflow data.
  • fan rotation data As fan airflow data.
  • the fan drive power can be used as the fan air volume.
  • FIG. 28 is a control function block diagram of a control unit of a combustion device that performs a CO safe operation according to the fourth and second embodiments of the present invention.
  • the control means of the present embodiment includes a CO concentration sampling section 425 of exhaust gas, a tsp / T calculation integration section 427, a clock mechanism 426, a data memory 417, It has a CO safe operation section 420 and supply / exhaust structure switching setting means 421.
  • the CO concentration sampling unit 4 25 samples the CO concentration C ext in the exhaust gas from the CO sensor 4 16 after the start of combustion in units of a predetermined unit sampling time t sp given in advance. Specifically, the CO concentration sampling unit 4 25 sets the sampling time to, for example, 10 seconds, and detects the detection information of the CO sensor 4 16 every 1 second. Obtain the average value and determine it as the value of the CO concentration in the exhaust gas per unit sampling time. Note that the timing of this sampling is performed based on a signal of a clock mechanism 426 constituted by a clock or clock.
  • the data memory 417 is provided with CO safe operation start condition data divided for each supply / exhaust structure as shown in FIGS. 25 and 26 in the same manner as in the fourth embodiment. .
  • the air supply / exhaust structure switching setting means 4 21 may be configured such that the water supply / exhaust structure of the water heater is a double pipe supply / exhaust structure or a double pipe supply / exhaust structure. This is to set whether there is any.
  • the t sp / T lS output integrating section 4 27 obtains the value of the C ⁇ concentration in the exhaust gas detected with the unit sampling time t sp given by the CO concentration sampling section 4 25 Find the value of sp / T.
  • the danger time T is obtained using the data shown in FIG. 26, which is stored in the data memory 4 17 as shown in FIG. 25. Whether to use the data shown is determined by the air supply / exhaust report of the air supply / exhaust structure switching setting f stage 421. In other words, if the air supply / exhaust structure is a dual air supply / exhaust structure, the data of ⁇ 25 is selected. Then, in FIG. 25, the data selected from the graph data of the curves shown in FIG. 25 is used in the fourth embodiment. Is selected based on the combustion performance information obtained in the same manner as in the above embodiment. For example, when the combustion capacity information indicates 29500 Kcal / h, the data of the curve B is selected, and the danger arrival time T is calculated based on this data.
  • the data for the CO safety operation [starting condition data is selected as shown in Fig. 26, the data in the graph of each curve shown in Fig. 26 is displayed. Whether to use it or not is selected in accordance with the fan air volume information acquired in the same manner as in the fourth embodiment. For example, when the fan air volume information is 6000 rpm, the entirety of the curve E is selected, and the danger arrival time T corresponding to the exhaust CO concentration is obtained.
  • the danger arrival time T is, assuming that the exhaust gas having the CO concentration C ext detected by the CO sensor 416 leaks into the room, assuming that the indoor CO concentration is 300 ppm, for example, the danger criterion value C th It is time to reach.
  • the ratio of the sampling time t sp to the time T is obtained by dividing the question t sp by the time T at which this danger criterion value is reached.
  • This value of tsP / T means that the ratio of tsp / T in the safe time T is spent, leaving only the safe ratio (l-tssp / T).
  • the indoor CO concentration reaches the danger criterion value t, t sp has been reduced, and the only remaining safety time is ⁇ 1 t sp.
  • the t sp / T calculation and integration unit 427 calculates t sp / T at the first sampling time, and also at the next sampling time, the t sp / T calculated by the detection of CO concentration in exhaust gas. T is calculated, and the calculated value ⁇ : is added to ts P / T obtained in the previous sampling to obtain an integrated value. In this way, the tsp / T calculation calculating unit 427 successively applies the value of tsp / T obtained in the sampling time tsp to each sampling time U.
  • t sp / T 1 was obtained by TI for exhaust C 0 concentration C extl at the first sampling 3 ⁇ 4, and exhaust C 0 concentration C ext2 at the next sampling time From T 2, t sp / T 2 is obtained, and the value of sp / T 1 + t sp / T 2 is obtained as a calculated value. Also, at the time of 3 ⁇ 3rd sampling ⁇ , when t sp / T 3 is obtained from T 3 for exhaust CO concentration C ext3, the integrated value is t sp (1 / T 1 + 1 / T 2 + 1 / T 3 ).
  • the t sp / T calculation integration unit 427 performs fr ⁇ on the value of t sp / T obtained at each sampling time, and provides the integration result to the CO safe operation unit 420. It should be noted that the integrated value of t sp / T is obtained in the same manner when the graph shown in FIG. 26 is selected.
  • the CO Safety Department 420 monitors the integration result added from the tsp / T calculation integration unit 427, and when the integrated value reaches the set value, for example, 1.0, the indoor C ⁇ concentration C room is Judgment is made that the danger judgment reference value C th has been set in advance, and a CO safe operation such as shutting off gas to the parner 406 is performed.
  • the combustion capacity at the first sampling time is the capacity of the curve ⁇ in Fig. 25.
  • the capacity changed to the curve B At the time of the second sampling time, the capacity changed to the curve B, and at the time of the third sampling, the combustion capacity changed to the curve C
  • the value of t sp / T is obtained using the data of the curve A
  • the value of t sp / T is obtained using the curve B.
  • the third [T sp / T is obtained using the data of curve C at the time of sampling at the HJ.
  • t sp / T is obtained using the combustion capacity data corresponding to the change in the combustion capacity, and is obtained at each sampling.
  • T sp / T is integrated, and when the integrated value becomes 1, C 0 safe operation is performed.
  • t sp / T is calculated at each sampling time according to the value of the carbon dioxide concentration in the exhaust gas detected by the CO sensor 416, and is successively integrated.
  • the danger when the indoor c0 concentration reaches the danger criterion value can be determined accurately in consideration of the combustion performance of the combustion operation and changes in the fan wind M. This makes it possible to further improve the accuracy of the C0 safe operation together with distinguishing the CO safe operation start condition data by the supply / exhaust structure.
  • the present invention is not limited to the form of each projecting but can take various forms of projecting.
  • the reference value for the danger of C ⁇ poisoning in a room is defined by the indoor C0 concentration, but in addition to that, CO taken into human blood by moglobin is also specified. It may be defined by the amount, that is, the value of blood hemoglobin CO concentration. In this case, it is assumed that when the blood hemoglobin CO concentration reaches the risk judgment reference value (for example, 10%), it is assumed that CO poisoning is in danger, and the time required for the blood moglobin CO concentration to reach the risk judgment reference value is determined.
  • the risk judgment reference value for example, 10%
  • the correlation data of the danger arrival time T corresponding to each exhaust C0 concentration for each combustion capacity or each exhaust air volume, that is, each fan air volume, is created separately for each air supply / exhaust structure and stored in the data memory 17. Just give it.
  • the correction coefficient may be given as a value corresponding to the difference or ratio of the displacement per unit time corresponding to the difference in capacity between the representative combustion capacity and the combustion capacity in the actual operating state (input combustion capacity information). .
  • the danger arrival time T for the exhaust gas concentration of the other fan wind is the correction coefficient given to the danger arrival time T obtained based on the correlation data of the representative fan wind S. Multiplied by This correction coefficient may also be given as a value corresponding to the difference or ratio of the exhausted Si per unit time corresponding to the difference between the representative fan airflow and the fan airflow in the actual operating state (manually operated fan airflow information). .
  • the data for obtaining the dangerous arrival time ⁇ of the CO safe operation start condition data based on the exhaust CO concentration and the combustion capacity (or fan air volume) obtained from the exhaust gas CO concentration and the fuel gas may be given separately for each gas type. Since the composition of fuel gas differs depending on the gas type, the amount of exhaust per unit time differs depending on the gas type. Therefore, even if the C ⁇ concentration of the exhaust gas is the same value, when the exhaust gas leaks into the room, the degree of the C0 contamination in the room increases as the type of exhaust gas increases per unit time. Therefore, by giving the CO safe operation start condition data separately for each rare gas to be used, more precise and reliable CO safe operation can be performed. In this case, the information of the gas type switching switch provided in the ordinary water heater etc. is taken in, the type of gas used is determined, and the safety operation start condition data corresponding to that gas type is used. Thus, the C0 safety operation may be performed in the same manner as in each of the above embodiments.
  • the adapter 403 is provided on the exhaust side of the water heater, and the double pipe and the double pipe supply / exhaust unit 404 are detachably mounted.
  • the adapter 403 may be omitted, and a water supply / exhaust structure of either the S pipe or the double pipe may be attached to the exhaust side of the water heater.
  • any of the air supply and exhaust structures can be used at the installation site of the water heater. It will be able to cope well even if it is installed.
  • a suction / exhaust type water heater in which the fan 405 is provided on the exhaust side has been described as an example.
  • the present invention provides a fan as shown in FIG. Can also be applied to the water heater of the extrusion supply / exhaust type provided below the parner.
  • a single-function hot-water supply device (a hot-water supply device having only a hot-water supply function) has been described as an example of a combustion device.
  • the combustion device of the present invention has a bath function, a hot-water supply function, and a heating function. It can be applied to various types of combustion equipment, such as functions and hot water supply functions, cooling and hot water supply functions, cooling and heating functions and hot water supply functions, wind ovens, heating machines, cooling and cooling / heating machines, and internal installation types.
  • FIG. 30 is a diagram showing a configuration of a water heater as an example of the combustion equipment.
  • a hot water tap (not shown) is opened, water passes through the water supply sensor 5 12 and branches to the hot water supply heat exchanger 5 16 and the binos passage 5 14 .
  • the water flow sensor 5 1 2 senses the flow.
  • the fan 52 which sucks air from the air supply passage 55, and discharges the exhaust gas after combustion from the exhaust passage 55, rotates, and the prepurge starts.
  • the original gas solenoid valve 528 and the gas solenoid valve 530 are opened at the time of the ignition, and gas flows through the gas proportional valve 532.
  • the flame rod 520 detects the flame and starts burning.
  • the hot water heated by the hot water supply heat exchanger 5 16 and the water passing through the bypass passage 5 14 are mixed and the hot water flows into the hot water tap.
  • the opening of the gas proportional valve 532 and the number of revolutions of the fan 5224 are controlled so that the temperature of the hot water outlet 5356 becomes the set temperature. If the ignition does not occur within the predetermined time, the safety circuit operates, shuts off the gas solenoid valve 528 and the gas solenoid valve 530, and stops the discharge.
  • Hot water supply, water volume, water pressure change during hot water supply If the tap water temperature changes due to gasification, etc., the set temperature difference is calculated from the tap water temperature, the incoming water temperature, and the amount of water, and the deviation is transmitted to the gas proportional valve 532 and the water fi control valve 538. Control to keep at the set temperature.
  • the fan 52 4 has a hall IC 5 26 that detects the number of rotations of the fan.
  • the rotation of the fan 5 24 Is controlled to be sent to the burner 5 2 2.
  • the electrical board 560 has, for example, a microcomputer including a RAM, a ROM, a CPU, and the like, and the CPU executes the above-described combustion control based on a combustion program stored in the ROM.
  • a CO sensor 540 is provided in the exhaust passage.
  • the resistance value of the gold resistor which changes in response to the temperature change, is compared with a comparative element and converted into a CO concentration.
  • the number of rotations of the fan 524 increases, and complete combustion is achieved by increasing the amount of air sent into the combustion chamber.
  • the rotation speed of the fan is controlled so as to be performed. However, in spite of the increase in the wind, if the CO gas concentration does not decrease and reaches a predetermined concentration or more, the combustion is stopped.
  • the exhaust S of the exhaust gas to be exhausted changes according to the rotation speed of the fan 524. That is, the larger the number of rotations of the fan, the larger the displacement, and the smaller the number of rotations of the fan 52, the smaller the displacement.
  • the above-mentioned ER value depends not only on the C 0 degree in the exhaust gas but also on the exhaust gas S :. Therefore, in the fifth embodiment of the present invention, not only the C ⁇ concentration of the exhaust gas, but also the ER value taking into account the rotation speed of the fan, which is substantially proportional to the amount of exhaust from the exhaust passage 552, is considered. Combustion equipment for monitoring and controlling C0 concentration in air is provided.
  • FIG. 31 is a flowchart of the CO concentration monitoring control according to the fifth embodiment.
  • the CO concentration monitoring and control described below (the fifth and second embodiments and the The fifth embodiment (including the fifth and third embodiments) is executed by the electric board 560 which is the control means of the above-described combustion equipment.
  • step S510 the CO concentration of the exhaust gas is detected, and in step S510, the rotation speed of the fan is detected.
  • the CO concentration of the exhaust gas is measured every 0.2 seconds by the CO sensor 540, and the rotation speed of the fan is measured every 0.1 second by the hall IC 526.
  • an average value of the C ⁇ concentration during a predetermined unit time t (step S5 12) such as 10 seconds is obtained (step S5 14).
  • the ⁇ -average value is calculated because, for example, when starting the combustion operation and when switching the combustion capacity, the detected CO concentration may fluctuate, such as a temporary increase in the CO concentration. To obtain a more accurate C 0 concentration.
  • a certain unit time t is required to obtain such an average value of f, and at this time, the question can be set to any.
  • step S 5 18 is synchronized with the unit time t in step S 5 14, and the rotation speed of the fan is changed by switching the combustion capacity during the time period t. If it has changed, a large rotation speed is selected by ⁇ of the unit time t (step S520). Since the instantaneous change during combustion is smaller than the C ⁇ concentration, it is not necessary to take f-average, so the maximum value of the fan speed is used from the point of safety side. . Of course, an average value may be used for more accurate control.
  • step S522 the corresponding ER value is obtained from the average of the CO concentration and the maximum fan rotation speed value, and the ER value table divided according to the average value.
  • FIG. 32 is an example of the table. This table is stored in, for example, R0M in the microcomputer provided in the electrical equipment board 560 in FIG. 30 for performing various combustion controls in the combustion equipment as described above. According to the table, different ER values are given when the fan rotation speed (displacement amount) is different even for the same CO concentration. In other words, if the fan speed is high, the ER value is large because the exhaust volume is large, and if the fan speed is small, the ER value is small because the exhaust volume is small. The ER value in FIG. 32 is also multiplied by 250 for the same reason as described above.
  • step S522 The ER value selected in step S522 is multiplied by the product in step S522. And the TR value is calculated. Then, when the integrated TR value reaches a predetermined reference value, an alarm such as a lamp or a buzzer is issued (step S530), and the combustion is stopped (step S532).
  • the CO concentration monitoring control is used to compensate for a temporary decrease in the CO concentration in the air, such as when combustion is temporarily stopped while integrating the ER value. (Not shown) may be provided.
  • a plurality of reference values are set for the TR value.For example, before the blood hemoglobin CO concentration reaches a predetermined dangerous concentration, only an alarm is issued and a process in which combustion is not stopped, or a process in which combustion is temporarily stopped. In this case, a finer control step may be provided, such as a step of lowering the degree of COS in the air and then restarting combustion.
  • the ER value is obtained by using the rotation speed of the fan which is substantially proportional to the ER value in order to take the exhaust gas amount into consideration, but, for example, a wind turbine provided in the exhaust passage is used.
  • the exhaust gas may be directly measured by a sensor to obtain the corresponding ER ffi.
  • a fifth and second embodiment of the present invention will be described.
  • the fifth and second embodiments not only the C0 concentration of the exhaust gas but also the ER considering the volume of a space such as a room in a room where the exhaust gas may leak from the exhaust passage. Accordingly, there is provided a combustion apparatus for monitoring and controlling the concentration of C0 in the air in the space.
  • FIG. 33 is an example of a table of the ER value at the average value of the CO concentration corresponding to a plurality of spaces having different volumes. As before, this table is stored in a storage means such as the ROM of the microcomputer of the electrical equipment board 560 if it is clean. According to FIG. 33, if the CO concentration of the exhaust gas is the same, the ER value decreases as the volume of the discharged space increases. Further, the volume of the air gap is set in advance by a switching switch (not shown) provided in the combustion equipment.
  • the exhaust passage when the exhaust passage is arranged adjacent to a plurality of spaces in the room, it is safe to use the ER value of the smallest volume among the spaces as the volume of the set space. Preferred from the parent point of In addition, the division of the space may be divided more finely than the number of divisions shown in FIG. 33 in order to perform finer and more precise control.
  • the CO concentration monitoring control in the present embodiment is the same as the flow chart in FIG. The process is almost the same, and the processes of steps S516, 518, and 520 in FIG. 31 are not performed, but in step S522, the process shown in FIG. 33 provided in the present embodiment is performed.
  • the corresponding ER ffi is obtained from the ER value table.
  • a combustion apparatus for performing C0 concentration monitoring and control in the air according to an ER value in consideration of an exhaust gas amount and a fffij method of a space volume.
  • FIG. 34 shows, for each of the divisions of the space volume described in the fifth embodiment, the ER value corresponding to the rotation speed of the fan described in the first embodiment.
  • An example of a table is shown. As described above, this table is stored in a storage means such as a ROM of a microcomputer of the electronic circuit board 560 in a row. The microcomputer selects a table of ER values corresponding to the number of fans in the volume division according to the volume set by the cut-off switch for setting the volume of the space. Perform the corresponding CO concentration monitoring and control.
  • the CO concentration monitoring control in the present embodiment is almost the same as the flowchart in FIG. 31.
  • step S522 in FIG. 31 the ER value shown in FIG.
  • the corresponding ER reconnaissance is obtained from the table.
  • the table shown in Fig. 34 is stored in the memory with the table for the 20 f supply / exhaust structure, the table for the dual pipe supply / exhaust structure, or the table for each gas type. By selecting an appropriate table, it is possible to perform a more optimal C0 safety enactment.
  • the data for determining the time required for the person in the room to reach the danger state of CO poisoning is divided into one or more combustion performances and exhaust volumes. Given. Then, when actually performing the CO safety operation, information on the combustion capacity and the displacement is obtained, and the c ⁇ safe operation is performed based on the time to reach the danger corresponding to the combustion capacity and the displacement. Therefore, the accuracy of c ⁇ safe operation is greatly improved, and even though the person in the room does not reach the danger of c ⁇ poisoning, This eliminates the problem of premature shut-off, such as safe operation such as burning stop, and greatly improves the reliability of CO safe operation.
  • the arithmetic expression for obtaining the indoor C0 concentration is determined by the following equation.
  • the time is given as a parameter, and the indoor C ⁇ concentration is obtained based on this equation. Therefore, it is possible to give an expression for calculating the indoor CO concentration using the value of the CO concentration in the exhaust gas in an extremely simple form, thereby eliminating the need for a large-scale computer and the combustion equipment.
  • Accurate room C0 concentration can be obtained by using the microcomputer installed in the room.
  • the present invention is based on the fact that the mechanism of C0 contamination in the room when exhaust gas leaks into the chamber differs depending on whether the supply / exhaust structure of the combustion equipment is a 2S pipe structure or a 2 pipe structure. Attention is given to the c ⁇ safe operation start condition data corresponding to each air supply and exhaust structure. As a result, regardless of whether the combustion equipment is connected to a double-pipe or double-pipe air supply / exhaust structure, CO safe operation based on the CO safe operation start condition Therefore, the accuracy of C ⁇ safe operation is greatly improved, and the reliability of CO safe operation can be increased.
  • the ER value is determined not only by the C ⁇ concentration in the exhaust gas but also by the It is determined in consideration of the amount of exhaust gas due to the engine speed, the volume of the space where exhaust gas is exhausted, the supply / exhaust structure and / or the type of gas. This enables more accurate and reliable monitoring and control of CO concentration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

A combustion apparatus for deciding a timing for performing a carbon monoxide safety operation such as a combustion shutdown based on information on the concentration of carbon monoxide contained in exhaust gas detected by a carbon monoxide sensor mounted on the combustion apparatus, as well as information on the combustion capacity of the combustion apparatus, the amount of exhaust gas, the volume of a chamber into which exhaust gas is emitted, types of fuel gases used or the construction of intake and exhaust pipes of the combustion apparatus (a double-pipe construction or twin-pipe construction).

Description

明細書  Specification
燃焼機器 [技術分野]  Combustion equipment [Technical field]
本発明は、 燃焼機器に関し、 特に、 一酸化炭素ガス (以下 C Oという) を検知 し、 それに対する安全動作を行う燃焼機器に関する。  The present invention relates to a combustion device, and more particularly, to a combustion device that detects carbon monoxide gas (hereinafter referred to as CO) and performs a safe operation on the gas.
[背景技術] [Background technology]
図 1は、 燃焼機器として一般的に知られている給湯器の模式構造を示した図で ある。 また、 図 2は、 この給湯器を建物の室内に設 した場合の使用態様を示す 図である。  FIG. 1 is a diagram showing a schematic structure of a water heater generally known as a combustion device. FIG. 2 is a diagram showing a use mode when the water heater is installed in a room of a building.
図 1によれば、 給湯器 1は、 ファン 2の「i'J fcによってフィルタ 3を介して室内 の空気をバ一ナ 4に送り込み、 パーナ 4に供給される燃料ガスを燃焼して給湯熱 交換器 5を加熱し、 この給¾熱交換器 5を通る水を にし、 給湯熱交換器 5の出 側に接続される給 ¾管を介して台所等の所 の場所に給湯を行うものである。 こ の給湯器の燃焼運転は、 制御装!: 6により制御され、 この制御装 6にはリモコ ン 7が接 されている。  According to FIG. 1, the water heater 1 sends the indoor air to the burner 4 through the filter 3 by the i'J fc of the fan 2 and burns the fuel gas supplied to the burner 4 to heat the hot water. The heat exchanger 5 is heated, the water passing through the heat supply heat exchanger 5 is drained, and hot water is supplied to a place such as a kitchen through a water supply pipe connected to the outlet of the hot water supply heat exchanger 5. The combustion operation of this water heater is controlled by a control unit 6: a remote controller 7 is connected to the control unit 6.
そして、 この給 器 1が)!內に設 iSされる ¾ A、 給湯器 1の 気出口筒部 8に 突 1 0の根元は ί 合装着され、 煙突 1 0の先端側は逑物の外に出され、 室内の 空気を取り入れて燃焼した排気ガスを逑物の外に排出するようにしている。 この 煙突 1 0を外に出す場合、 図 2に示すように、 給湯器 1の近傍に^穴を開け、 こ の壁穴から外に煙突 1 0の先端を突き出す施工方式を採る場合もあるが、 建物の 構造によって、 破線で示すように、 煙突 1 0の筒体をつなぎ合わせて天井裏をは わせ、 この天井裏から煙突 1 0の先端を建物の外に突き出す施工方式も採られて いる。  And this supply 1)! ¾ A is installed in the 突 ¾ A, the base of the protruding part 10 is combined with the air outlet cylinder part 8 of the water heater 1, and the tip side of the chimney 10 is taken out of the groin to take in the indoor air Exhaust gas burned out is discharged outside the loincloth. When the chimney 10 is taken out, as shown in Fig. 2, a construction method may be adopted in which a hole is made near the water heater 1 and the tip of the chimney 10 is protruded out of the wall hole. Depending on the structure of the building, as shown by the broken line, a construction method is also adopted in which the cylinders of the chimney 10 are joined together to attach the ceiling, and the tip of the chimney 10 projects outside the building from the ceiling. .
この給湯器 1を燃焼運転させるときに、 煙突 1 0の排気口に強風が吹き込む等 すると不完全燃焼を起こし一酸化炭素ガス (以下 C Oという) が発生する場合が ある。 排気ガスは、 煙突 1 0を通って外に排出され、 通常は、 室内に漏れること はない。 しかし、 煙突 10 の継ぎ目に隙問が生じたり、 外れたりしている場合、 又は、 腐 や破損などにより煙突 1 0に穴があいている場合など、 その部分から (煙突 10 を天井裏に适わせたものにあっては天并裏の隙問を通して) 室内に C 0ガスが漏れ、 室内の空気中の C O濃度が人体に危険な濃度まで達すると、 C O 中毒を起こすという危険がある。 When the water heater 1 is operated for combustion, if a strong wind blows into the exhaust port of the chimney 10 or the like, incomplete combustion may occur and carbon monoxide gas (hereinafter referred to as CO) may be generated. Exhaust gas is discharged outside through the chimney 10 and usually leaks into the room There is no. However, if there is a gap in the seam of the chimney 10 or it has come off, or if there is a hole in the chimney 10 due to decay or damage, etc. If the CO gas leaks into the room and the CO concentration in the indoor air reaches a level that is dangerous for the human body, there is a risk of causing CO poisoning.
一般に、 C O中毒は、 人体の血液中のヘモグロビンが C Oと結合することによ り起こり、 その C 0と結合したヘモグロビン濃度 (以下、 血中ヘモグロビン C O 濃度という) に応じて図 3に示すような症状を引き起こす。  In general, CO poisoning occurs when hemoglobin in the blood of the human body binds to CO. Depending on the concentration of hemoglobin bound to C 0 (hereinafter referred to as blood hemoglobin CO concentration), CO poisoning occurs as shown in FIG. Causes symptoms.
また、 この血中ヘモグロビン C 0濃度が人体を危険な状態に至らせる濃度に達 するまでの時! ¾] (以下、 危険到達時問という) は、 空気中の C O濃度が高い場合 には短い時問で到達する。 また、 C O濃度が低い場合でも C Oを含む空気中に長 い時問晒されることにより、 血屮ヘモグロビン C O濃度が徐々に増加し、 一定時 間経過後には危険な状態に る。 図 4のグラフに、 空気中 C O濃度と血中へモグ ロビン C 0濃度との関係を示す。 図 4によれば、 空 ¾中 C O濃度が 0 . 2 %のと き、 これを 2時間吸人すると、 血中ヘモグロビン C O濃度は約 6 4 %に達する。 このため、 従来においては、 図 1に示すように、 給湯器 1の排気側に C Oセン サ 1 1が設置され、 排気ガスが室内に漏れたと仮定したときに、 ヒ記危険到達時 間が C〇センサ 1 1が検出する各 C 0濃度に対応して了,め与えられている。 そし て、 燃焼開始からの時間が C Oセンサ 1 1によって検出される C O濃度に対応す る危険到達時間に達したときに警報を出したり、 燃焼運転を停 Iヒする等の安全対 策が講じられていた。  Also, when the blood hemoglobin C0 concentration reaches a concentration that can put the human body in a dangerous state! ¾] (hereinafter referred to as “danger arrival time”) is short when the CO concentration in the air is high. Reach by time. Even when the CO concentration is low, the blood hemoglobin CO concentration gradually increases due to prolonged exposure to air containing CO, and becomes dangerous after a certain period of time. The graph in FIG. 4 shows the relationship between the concentration of CO in the air and the concentration of CO in the blood. According to FIG. 4, when the air CO concentration is 0.2%, if this is sucked for 2 hours, the blood hemoglobin CO concentration reaches about 64%. For this reason, conventionally, as shown in Fig. 1, a CO sensor 11 is installed on the exhaust side of the water heater 1, and when it is assumed that the exhaust gas has leaked into the room, the danger arrival time is C 〇 The value is given in correspondence with each C0 concentration detected by the sensor 11. Then, when the time from the start of combustion reaches the danger arrival time corresponding to the CO concentration detected by the CO sensor 11, safety measures such as issuing an alarm or stopping combustion operation are taken. Had been.
このように、 従来は、 この危険到達時間の基準となる空気中の c〇濃度(以下、 室内 C O濃度という) を、 燃焼機器が排出する排気ガスの C O濃度に基づいて求 めていた。 しかしながら、 C Oが漏れている室内の空気屮の C O濃度は、 排気ガ スの C O濃度のみならず、 以下に述べる燃焼条件にも依存する値である。  As described above, in the past, the c〇 concentration in air (hereinafter referred to as indoor CO concentration), which is a reference for the dangerous arrival time, has been determined based on the CO concentration of exhaust gas discharged from combustion equipment. However, the CO concentration in the air bleeder in the room where CO is leaking depends not only on the CO concentration in the exhaust gas but also on the combustion conditions described below.
第一に、 室内 C O濃度は、 燃焼機器の燃焼能力又は排気ガスの排気量に依存す る。 即ち、 給湯器 1の燃焼運転は、 燃焼能力に見合うように、 つまり、 ガス供給 量に見合うようにファン 2の風量を制御して燃焼運転が行われる。 従って、 燃焼 能力によって排気ガスの単位時間当たりの排出量 (排気量) が異なり、 排気ガス が室内に漏れたときに、 C Oセンサ 1 1により検出される C O濃度の値が同じで あっても、 室内への漏れ ¾が異なり、 燃焼能力又は排気量が大きい程室内の C 0 汚染は大きくなる。 First, the indoor CO concentration depends on the combustion capacity of the combustion equipment or exhaust gas emissions. That is, the combustion operation of the water heater 1 is performed by controlling the air flow of the fan 2 so as to match the combustion capacity, that is, to match the gas supply amount. Therefore, the amount of exhaust gas emitted per unit time (exhaust volume) differs depending on the combustion capacity. When the CO leaks indoors, even if the CO concentration detected by the CO sensor 11 is the same, the leakage into the room differs, and the greater the combustion capacity or the amount of exhaust, the greater the C0 pollution in the room Become.
出願人の従来の試作装置では、 C Oに対する危険度が ¾も大きい最大燃焼能力 での燃焼運転を想定して各 C 0濃度に対応する危険到達時間を設定している。 しかしながら、 燃焼機器の燃焼運転は最小燃焼能力と最大燃焼能力の範囲内で 能力が制御されて燃焼運転されている。 従って、 例えば、 最小燃焼能力に近い能 力で燃焼運転している場合に、 C Oセンサ 1 1で検出される C O濃度に対応する 危険到達時問は IS大燃焼能力時のデ一夕で設定されるために、 C 0中毒の危険に 達しないにもかかわらず宰内が c〇中毒の危険状態になったものと判断されて燃 焼運転が停止されてしまうという問题があった。  In the conventional prototype device of the applicant, the danger arrival time corresponding to each C0 concentration is set on the assumption that the combustion operation is performed at the maximum combustion capacity where the danger for CO is large. However, the combustion operation of the combustion equipment is controlled and controlled within the range of the minimum combustion capacity and the maximum combustion capacity. Therefore, for example, when the combustion operation is performed with the capacity close to the minimum combustion capacity, the danger arrival time corresponding to the CO concentration detected by the CO sensor 11 is set at the time of the IS large combustion capacity. For this reason, there was a question that even though the danger of C0 poisoning was not reached, it was determined that the danger of C 宰 poisoning had occurred, and the combustion operation was stopped.
第二に、 室内 C O濃度は、 燃焼機器が設置されている' 内の容積に依存する値 である。 即ち、 排気ガス中の濃度が -定の C Oが空問に排出される場合、 その空 問の容積によって室内 C 0濃度は異なるからである。  Secondly, the indoor CO concentration is a value that depends on the volume inside the combustion equipment. That is, if the concentration of CO in the exhaust gas is -constantly discharged into the air, the indoor C0 concentration differs depending on the volume of the air.
例えば、 一定の室内容積を基準に各 C 0濃度に対応する危険到達時間が設定さ れた場合において、 燃焼機器が、 その室内容 ffiより広い室内に設置されると、 人 体に危険な C 0濃度に達する前に、 設定されている危険到達時間に達してしまう 場合がある。 このような場合、 C O中毒の危険がないにもかかわらず、 燃焼運転 が停止されてしまうという^題点があった。  For example, if the danger arrival time corresponding to each C0 concentration is set based on a certain room volume, and the combustion equipment is installed in a room larger than the room content ffi, there is a dangerous C Before reaching zero concentration, the set danger arrival time may be reached. In such a case, there was a problem that combustion operation was stopped even though there was no danger of CO poisoning.
第三に、 室内 C O濃度は、 燃焼されるガスの S類 (ガス極) に依存する値であ る。 即ち、 給湯器 1の燃焼運転に使用するガス種は地域によって異なる場合があ り、 このため、 通常は、 給湯器 1にガス種切り i えスィッチ (図示せず) を設け、 給湯器 1の出荷時にガス種切り替えスィッチを操作して仕向先のガス種を切り替 え選択し、 そのガス種に対応させて給湯器 1の燃焼能力の調整が行われている。 しかしながら、 従来においては、 C O安全動作を行う上では、 ガス種の違いは 考慮されていなかった。 本発明者は C 0安全動作を行う上でのガス種の違いを検 討したところ、 ガス種によって C 0安全動作の信頼性が大きく影響されることを 突き止めた。  Third, the indoor CO concentration depends on the type of S (gas electrode) of the gas to be burned. That is, the type of gas used for the combustion operation of the water heater 1 may vary depending on the region. For this reason, usually, the water heater 1 is provided with a gas type switch (not shown), At the time of shipment, the gas type switching switch is operated to select the gas type of the destination, and the combustion capacity of the water heater 1 is adjusted according to the gas type. However, conventionally, differences in gas types have not been taken into account in performing CO safe operation. The present inventor examined the difference in gas types in performing the C0 safe operation, and found that the reliability of the C0 safe operation was greatly affected by the gas type.
すなわち、 ガス種によってその成分が異なるので、 燃料ガスを燃焼させた場合、 単位時間当たりの排気ガスの排気量がガス種によって異なり、 排気ガスが室内に 漏れたときに、 C Oセンサ 1 1により検出される値が同じであっても、 室内の CIn other words, since the components differ depending on the gas type, when burning fuel gas, Even if the value detected by the CO sensor 11 is the same when the exhaust gas leaks into the room, the amount of exhaust gas discharged per unit
0汚染の程度が異なり、 単位時間当たりの排気 が大きいガス種ほど宰内の c 0 汚染は大きくなる。 0The degree of pollution is different, and the larger the gas type emitted per unit time, the greater the c0 pollution in Nanai.
このため、 C Oに対する安全性を重視し、 単位当たりの排気量が最も大きいガ ス種を基準にして C O中毒の危険状態に達する時間を短く設定することも考えら れるが、 他のガス種が使用される場合には、 C O中 , の危険状態に達する前に燃 焼停止等の安全動作が行われてしまうという問題が生じる。  For this reason, it is conceivable that the safety of CO is emphasized and the time required to reach the dangerous state of CO poisoning is set shorter based on the gas type with the largest displacement per unit. When used, there is a problem that safety operations such as stopping the combustion are performed before reaching the dangerous state in CO.
第四に、 室内 C O濃度は、 燃焼機器の給排気管の構造、 即ち、 二重管構造であ るか二本管構造であるかに依存する値である。 以下に、 この二重管構造及び二本 構^について説明する。  Fourth, the indoor CO concentration is a value that depends on the structure of the supply / exhaust pipe of the combustion equipment, that is, whether it is a double pipe structure or a double pipe structure. Hereinafter, the double pipe structure and the double tube structure will be described.
図 5及び図 6は、 それそれ二 管構造及び --本管^造の給排気構造を有する燃 焼機器の概略図である。 これらの各給湯器は、 排 侧に給気筲 4 0 1と排気管 4 0 2を二 ¾管状に設け、 この給気と排気の二 fi管の先端側にァダブ夕 4 0 3を固 定配設しており、 このアダプタ 4 0 3に異なる極類の給排気ユニッ ト 4 0 4を接 続している。  FIGS. 5 and 6 are schematic diagrams of a combustion device having a two-pipe structure and a --main pipe structure supply / exhaust structure, respectively. In each of these water heaters, an air supply pipe 401 and an exhaust pipe 402 are provided in a tubular shape for exhaust, and an adab 403 is fixed to the tip side of the pipe for the air supply and exhaust. A different type of air supply / exhaust unit 404 is connected to this adapter 403.
図 5にポす器具は、 給排気ュニッ 卜 4 0 4を給気管 4 0 1と排気管 4 0 2を二 ffi管状に形成したもので、 この給排気ユニッ ト 4 0 4の給 ·排気^ 4 0 1 , 2 は、 例えば逑物の天井裏を;3わせて外部へ導かれている。  The equipment shown in Fig. 5 is an air supply / exhaust unit 404 in which the air supply pipe 401 and the exhaust pipe 402 are formed in a two-tube shape. 4 0 1 and 2 are guided to the outside, for example, behind the roof of a creature.
図 6に示す給湯器の給排気ュニッ 卜 4 0 4は給気管 4 0 1と排気管 4 0 2が個 別に分離形成されている二本管給排気構造のものである。 これら給 ·排気構造を 一-重管給排気構造のものにするか、 あるいは二本管給排気構造のものにするかは 給湯器の設置施工現場の状況等によって定まる。 図 5、 図 6の給湯器は、 そのど ちらの給排気構造にも対応できるように、 アダプタ 4 0を器具側に設けておき、 このアダプタ 4 0 3に二重管給排気構造の給排気ュニッ 卜 4 0 4と二本管給排気 構造の給排気ュニッ 卜 4 0 4を着脱交換自在に取り付けられるようにしてある。 なお、 これら図 5、 図 6の給湯器は、 ファン 4 0 5の回転によって外部の空気 を給気管 4 0 1を介してバ一ナ 4 0 6に送り込み、 ガス管 4 0 7を通してバ一ナ 4 0 6に供給される燃料ガスを燃焼して給湯熱交換器 4 0 8を加熱し、 給水管 4 1 0からこの給湯熱交換器 4 0 8に供給される水を湯にし、 給湯熱交換器 4 0 8 の出側に接続される給湯管 4 1 1を介して台所等の所望の場所に給湯を行うもの である。 この給湯器の燃焼運転は制御装置 4 1 2により行われ、 この制御装置 4 1 2にはリモコン 4 1 3が接続されている。 The water supply / exhaust unit 404 of the water heater shown in FIG. 6 has a double pipe supply / exhaust structure in which an air supply pipe 401 and an exhaust pipe 402 are separately formed. Whether these water supply / exhaust structures are of a single-pipe air supply / exhaust structure or of a two-pipe air supply / exhaust structure is determined by the conditions of the hot water heater installation site. In the water heaters shown in Figs. 5 and 6, an adapter 40 is provided on the fixture side so as to be able to cope with either of the air supply and exhaust structures. The unit 404 and the supply / exhaust unit 404 of the double pipe supply / exhaust structure can be detachably mounted. In the water heaters shown in FIGS. 5 and 6, the rotation of the fan 405 sends external air to the burner 406 via the air supply pipe 401, and the burner passes through the gas pipe 407. The fuel gas supplied to 406 is burned to heat the hot water supply heat exchanger 408, and the water supply pipe 4 The water supplied to the hot water supply heat exchanger 4 08 from 10 is turned into hot water, and the hot water is supplied to a desired place such as a kitchen via a hot water supply pipe 4 1 1 connected to the outlet side of the hot water supply heat exchanger 4 08. It is to do. The combustion operation of the water heater is performed by a control device 4 12, and a remote control 4 13 is connected to the control device 4 12.
なお、 図中、 4 1 4はガス管 4 0 7の通路開閉を行うガス電磁弁、 4 1 5はガ スの供給量を開弁 aによって制御する比例弁、 4 1 6は排気ガスの C O濃度を検 出する C 0センサをそれぞれ示している。  In the figure, 414 is a gas solenoid valve that opens and closes the passage of the gas pipe 407, 415 is a proportional valve that controls the gas supply by opening a, and 416 is the CO of exhaust gas. Each of the C0 sensors for detecting the concentration is shown.
本発明者は、 これら二 ffi管給排気構造と二本管給排気構造の違いにより、 排気 ガスが排気 4 0 2の継ぎ Ξの隙間や外れ部分 (給気管 4 0 1排気管 4 0 2は筒 体を繋ぎ合わせて外部へ配管される) 等の欠陥部から室内に漏れたときの室内の C〇汚染の状況を実験により求めた。 その結果の一例を闵 7及び図 8に示す。 図 7は給排気構造が二' 管給排気構造の場合であり、 この二重管給排気構造の 排気管 2から室内に排 ガスが漏れる場合は、 給気 4 0 1も排気管 4 0 2と同 一の場所で破損等により漏れが生じていると考えられる。 このような状態におい ては、 室内の空気が給気管 4 0 1を介してバ一ナ 4 0 6側へ供給されることにな る。 即ち、 排気ガスが室内に漏れるに従い、 室内の酸素濃度が減少していき、 こ の酸素欠乏の空気が給気され、 ίびバ一ナ 4 0 6側へ供給される。 従って、 燃焼 が不完全燃焼となり、 時問の経過に伴い室内の酸素濃度が急激に减少する。 これ に伴い、 バ一ナ 4 0 6側に供給される空気の酸欠により燃焼状態が益々悪化し、 C Oガスの発生が大きくなり、 室内の C O汚染は急激に進行する。  The present inventor believes that due to the difference between the two-tube supply / exhaust structure and the two-tube supply / exhaust structure, the exhaust gas may be cleaved or separated at the joint of the exhaust 402 (the intake pipe 401 The situation of C〇 contamination in the room when it leaked into the room from a defective part such as a pipe connected outside was determined by experiments. Examples of the results are shown in FIG. 7 and FIG. Fig. 7 shows a case where the supply / exhaust structure is a dual pipe supply / exhaust structure. If exhaust gas leaks from the exhaust pipe 2 of this dual pipe supply / exhaust structure into the room, the supply air 401 is also the exhaust pipe 402. It is probable that a leak occurred due to damage in the same place as above. In such a state, the indoor air is supplied to the burner 406 through the air supply pipe 401. That is, as the exhaust gas leaks into the room, the oxygen concentration in the room decreases, and the oxygen-deficient air is supplied and supplied to the burner 406 side. Therefore, the combustion becomes incomplete combustion, and the oxygen concentration in the room sharply decreases with time. Along with this, the combustion state deteriorates further due to the lack of oxygen in the air supplied to the burner 406 side, the generation of CO gas increases, and the indoor CO contamination rapidly progresses.
図 7の (a ) は室内の酸素濃度の経時変化を示し、 同図の (b ) は排気ガス中 の C O濃度の絰時変化を示し、 同図の (c ) は室内 C O濃度の絰時変化をそれそ れ示している。 なお、 この図の実線は燃焼能力が 40000 Kcal/ hの場合であり、 破線は燃焼能力が 30000 Kcal/ hの場合であり、 一点鎖線は燃焼能力が 10000 Kcal/ hの場合をそれそれ示している。  (A) in Fig. 7 shows the temporal change of the oxygen concentration in the room, (b) in Fig. 7 shows the temporal change in the CO concentration in the exhaust gas, and (c) in Fig. 7 shows the temporal change in the indoor CO concentration. It illustrates the change. The solid line in this figure indicates the case where the combustion capacity is 40,000 Kcal / h, the broken line indicates the case where the combustion capacity is 30,000 Kcal / h, and the dashed line indicates the case where the combustion capacity is 10,000 Kcal / h. I have.
この図から明らかなように、 燃焼能力が大きくなるほど、 室内の酸素濃度の低 下の割合が大きくなる。 また、 排気 C O濃度は、 燃焼能力が大きいほどパーナ 4 0 6に供給される空気の酸素濃度が低下するため、 燃焼能力が低い場合より排気 C O濃度の立ち上がりが早くなる。 また、 燃焼能力が大きいほど排気ガスの単位 時間当たりの流量が大きくなり、 その大量の排気ガスが室内に導入される結果、 室内 C 0濃度は、 燃焼能力が大きいほど室内汚染の立ち上がりが甲-くなつている。 これに対し、 給排気構造が二本管給排気構造の場合は、 排気管 4 0 1と給気管 4 0 2が別個独立に分離されているため、 排気管 4 0 1と給気管 4 0 2が同時に 冏ー場所から破損することは殆ど生じることはなく、 排気管 4 0 1の欠陥部から 排気ガスが室内に漏れている状態にあっても、 給気管 4 0 2からは外部のきれい な空気がパーナ 4 0 6に供給され続ける結果となるので、 図 8の (a ) に示すよ うに、 排気ガスの C O濃度はほぼ一定の濃度で発生する状態となり、 前記二重管 給排気構造の場合とは全く C Oの発生メカニズムが異なっている。 As is clear from this figure, the greater the combustion capacity, the greater the rate of decrease in the oxygen concentration in the room. Also, as for the exhaust CO concentration, the higher the combustion capacity, the lower the oxygen concentration of the air supplied to the PANA 406, so that the rise of the exhaust CO concentration becomes faster than when the combustion capacity is low. Also, the higher the combustion capacity, the more the unit of exhaust gas As a result, the flow rate per hour increases and a large amount of exhaust gas is introduced into the room. As a result, the indoor C0 concentration increases as the combustion capacity increases. On the other hand, when the supply / exhaust structure is a double pipe supply / exhaust structure, the exhaust pipe 401 and the supply pipe 402 are separate and independent, so the exhaust pipe 401 and the supply pipe 402 At the same time, it is unlikely that the gas will be damaged from the location. Even if the exhaust gas leaks from the defective part of the exhaust pipe 401 into the room, the outside of the exhaust pipe 402 is clean from the outside. As a result, the air continues to be supplied to the parner 406, and as shown in FIG. 8 (a), the CO concentration of the exhaust gas is generated at a substantially constant concentration. The CO generation mechanism is completely different from the case.
従って、 二 ffi管給排気構造の場合は、 上述のように、 排気ガスが室内に漏れる ことによる室内の酸素 (0 2 ) 濃度の欠乏が室内 C O :染に大きく影響し、 この 室内 0 2濃度は燃焼能力に人きく左右されることから、 燃焼能力を考慮して室内 C O汚染の度合いを評 ffiすることが^ましい。 Accordingly, the two cases of ffi pipe supply and exhaust structure, as described above, the oxygen in the room by the exhaust gas leaks into the room (0 2) lack of concentration indoor CO: greatly affect dyeing, the indoor 0 2 concentration Because the combustion capacity is directly affected by the combustion capacity, it is preferable to evaluate the degree of indoor CO pollution in consideration of the combustion capacity.
一方、 二本管給排気構 の場合は、 上述のように、 排気ガスが室内に漏れてい る状態においても、 室外からきれいな空気がパーナに供給され続けることになり、 室内の C 0汚染の度合いは ¾内に流れ込む単位時問 ¾りの排気量に大きく左右さ れることから、 フアン を Ϋ慮して室内 C O汚染の度合いを評価することが望 ましい。  On the other hand, in the case of the double pipe supply / exhaust system, as described above, even when the exhaust gas is leaking into the room, clean air continues to be supplied from outside to the parner, and the degree of indoor C0 contamination It is highly desirable to evaluate the degree of indoor CO pollution taking into account the fan because it is greatly affected by the displacement per unit time flowing into the room.
このように、 排気ガスが室内に漏れる場合、 給湯器の給排気構造によって室内 の C O汚染のメカニズムが? なる。 従って、 従来の如く、 給排気構造を全く考慮 せずに、 給排気構造の如何にかかわらず 定の条件のもとで室内 C O汚染の状況 を評価する方式では、 正確な室内 C O汚染の評価を行うことは困難であり、 必然 的に C 0安全動作の信頼性も失われるという問題がある。  In this way, when exhaust gas leaks into the room, what is the mechanism of CO contamination in the room by the supply and exhaust structure of the water heater? Become. Therefore, as in the past, the method of evaluating indoor CO pollution under certain conditions regardless of the air supply / exhaust structure, without considering the air supply / exhaust structure at all, requires accurate evaluation of indoor CO pollution. It is difficult to do this, and there is a problem that the reliability of C0 safe operation is necessarily lost.
さらに、 上述の従来における C Oに対する安全対策においては、 C Oセンサに よって検出される排気ガス中の C O濃度からいわゆる E R値 (Each Rate) を求 め、 該 E R値の総和である T R値 (Total Rate) が所定の基準値に達したとき に燃焼機器を停止するなどの安全手段が講じられている。  Furthermore, in the conventional safety measures for CO described above, a so-called ER value (Each Rate) is obtained from the CO concentration in the exhaust gas detected by the CO sensor, and a TR value (Total Rate), which is a sum of the ER values, is obtained. Safety measures such as shutting down the combustion equipment when) reaches a predetermined reference value are taken.
ここで、 上記 E R値とは、ある一定の単位時間 tの問に検出された所定の空気 中 C 0濃度を含んだ空気中に人体が晒されたときに、 血中ヘモグロビン C 0濃度 が人体に危険を及ぼす所定の濃度 (例えば 25%) に達するまでの時間 Tが与え られているとき、 t/Tで定義される値である。 通常、 空気中 CO濃度は時間的 に変化するので、 前記単位時間 tとその CO濃度に対応する前記時問 Tとの比を 計算することにより、 ' .位時問ごとの重みづけ値を得ることができる。 そして、 前記 ER値を褚算した倘が TR値であり、 該 TR値が 1になったとき、 血中へモ グロビン C 0濃度は前記所定の危険濃度に達したことを意味する。 前記所定の危 険濃度は、 C〇中毒の ¾生を未然に防止するために、 例えば 1 0%のように低め に設定されてもよく、 燃焼機器の設置された ¾境に応じて任患に設定され、 それ に対応した E R値が定められる。 Here, the ER value is defined as the blood hemoglobin C 0 concentration when the human body is exposed to air containing the predetermined air C 0 concentration detected during a certain unit time t. Is defined as t / T, given the time T required for a substance to reach a predetermined concentration (eg, 25%) that poses a risk to the human body. Normally, the concentration of CO in the air changes over time, so by calculating the ratio of the unit time t to the time T corresponding to the CO concentration, a weight value is obtained for each position time question. be able to. Then, the value obtained by calculating the ER value is the TR value, and when the TR value becomes 1, it means that the hemoglobin C0 concentration in the blood has reached the predetermined dangerous concentration. The predetermined hazard concentration may be set low, for example, 10%, in order to prevent the generation of C poisoning, depending on the environment where the combustion equipment is installed. Is set, and the corresponding ER value is determined.
ER値及び TR偵に関するさらに詳しい説明は、 口本国実用新案公開公報平 6 For a more detailed explanation of the ER value and TR reconnaissance, see
- 46 1 64号に Πΰ載されている。 -No. 46 1 64
しかしながら、 I dERii:は、 従来、 C〇センサーによって検知される排気ガ ス中の CO濃度によって求められていた。 即ち、 空気中に排出される C 0の濃度 を燃焼機器の排^ガスの C〇濃度によって定めていた。 図 9に、 従来における排 気ガスの C 0濃度に対応した E R値のテーブルを示す。 該テ一ブルは、 燃焼機器 のマイクロコンピュータのような制御手段の中の ROMのような記憶手段に記憶 されている。 図 9に示される ER値は、 マイクロコンピュー夕のプログラム上の 理由から 2 50倍した値が用いられている。  However, I dERii: has traditionally been determined by the CO concentration in the exhaust gas detected by the C〇 sensor. That is, the concentration of C 0 discharged into the air was determined by the C〇 concentration of the exhaust gas of the combustion equipment. FIG. 9 shows a conventional ER value table corresponding to the C0 concentration of exhaust gas. The table is stored in a storage means such as a ROM in a control means such as a microcomputer of the combustion equipment. The ER value shown in Fig. 9 is multiplied by 250 for microcomputer program reasons.
しかし、 本来、 空気中の COの濃度は、 排出される排気ガスの CO濃度のみな らず、 排気ガスの排気 ftにも依存する値である。 例えば、 燃焼の最大運転と最小 運転において、 排気ガス中の CO濃度が同じであっても、 排気ガスの排気量が異 なれば、 空気中に排出される C 0の量即ち室内のようなほぼ一定体積の下での空 気中 CO濃度は異なる。  However, originally, the concentration of CO in the air depends not only on the CO concentration of the exhaust gas that is emitted, but also on the exhaust ft of the exhaust gas. For example, in the maximum operation and the minimum operation of combustion, even if the CO concentration in the exhaust gas is the same, if the exhaust gas amount differs, the amount of C0 discharged into the air, that is, almost The air CO concentration under a certain volume is different.
さらに、 空気中の CO濃度は、 排気通路に隣接し、 この排気通路からの排気ガ スが漏れる可能性のある室内の部屋のような空間の容積にも依存する値である。 即ち、 例えば、 時間的に一定の COの量が一定容積の空間に排出される場合、 そ の空間の容積の大きさによって C 0濃度は異なる。  Furthermore, the CO concentration in the air depends on the volume of a space, such as a room in a room, that is adjacent to the exhaust passage and from which exhaust gas may leak from the exhaust passage. That is, for example, when a constant amount of CO is discharged into a space having a constant volume over time, the C 0 concentration varies depending on the volume of the space.
従って、 前述のように、 従来は上記 ER値を排気ガスの CO濃度からのみ求め ていたため、 燃焼の運転状態によって、 安全手段が作動するまでの時間と実際に 血屮ヘモグロビン COの濃度が所定濃度 (例えば 25%) 以ヒに達するまでの時 間とは異なる場合があった。 例えば、 最小運転で燃焼を行っている場合は、 排気 ガスの排気量は比較的少なく、 排出される COの量も比較的少ないので、 血中へ モグロビン CO濃度が該所定濃度になる前に、 TR値が 1に達してしまう。 また、 所定の基準容積よりも大きい空間に COガスが排出される場合も同様に血中へモ グロビン CO濃度が該所定濃度になる前に、 TR値が 1に達してしまう。 即ち、 血中ヘモグロビン CO濃度が ¾所定濃度になる前に、 安全手段が作動し、 燃焼が 停止する場合がある。 よって、 ER値による C 0濃度監視を行う際、 排気ガスの 排気 S、 さらには、 COガスが排出される空問の容積をも考慮した ER储を用い ることがより £¾'な C 0濃度の監視を行う上で好ましい。 Therefore, as described above, conventionally, the ER value was calculated only from the CO concentration of the exhaust gas. The time required for the concentration of blood hemoglobin CO to reach a predetermined concentration (for example, 25%) or more was sometimes different. For example, when combustion is performed with the minimum operation, the amount of exhaust gas emitted is relatively small, and the amount of emitted CO is also relatively small, so that before the CO concentration in the blood reaches the predetermined concentration, TR value reaches 1. Similarly, when the CO gas is discharged into a space larger than the predetermined reference volume, the TR value reaches 1 before the CO concentration in the blood reaches the predetermined concentration. That is, before the hemoglobin CO concentration in the blood reaches the predetermined concentration, safety measures may be activated and combustion may stop. Therefore, when monitoring C0 concentration by ER value, it is more efficient to use ER 储 that takes into account the exhaust S of exhaust gas and also the volume of the air gap where CO gas is emitted. This is preferable for monitoring the concentration.
[発明の開示] [Disclosure of the Invention]
本発明は、 上記問题点を解決するためになされたものであり、 その目的は、 C 0センサが検出する排気ガスの C〇濃度に加えて、 燃焼機器の燃焼運転の状態、 燃焼機器が設置されている室内容積、 燃焼ガスの種類、 乂は、 燃焼機器の給排気 構造に応じてより正確な危険到達時間を求め、 適切なタイ ミングで CO中毒に対 する危険性を正 mに判断して精度の高い c 0安全 作を行う燃焼機器を提供する ことにある。  The present invention has been made to solve the above-described problems, and has as its object the purpose of adding the C〇 concentration of the exhaust gas detected by the C0 sensor, the state of the combustion operation of the combustion device, and the installation of the combustion device. The room volume, the type of combustion gas, and the air temperature are determined in accordance with the supply and exhaust structure of the combustion equipment, to determine a more accurate danger arrival time, and to judge the risk of CO poisoning at an appropriate time in a positive m. It is an object of the present invention to provide a combustion device that performs c0 safety operation with high accuracy.
さらに、 本発明の ¾なる目的は、 排気ガス中の c 0濃度のみならず、 排気ガス の排気量及び/又は C 0ガスが排出される空問の容積を考慮した E R値を用いて、 より正確な C〇安全動作を行う燃焼機器を提供することである。  Further, another object of the present invention is to use not only the c0 concentration in the exhaust gas, but also the ER value in consideration of the displacement of the exhaust gas and / or the volume of the air gap from which the C0 gas is discharged. It is to provide combustion equipment that performs accurate C〇 safe operation.
上記目的を達成するための第一の発明は、 排気ガス中の CO濃度を検出する C 0センサを備え、 該 COセンサによって検出される CO濃度に基づいて CO安全 動作を行う燃焼機器において、 COセンサによって検出される CO濃度と燃焼機 器の燃焼能力又は排気ガスの排気量とに基づいて、 CO安全動作のタイミングを 決定する制御手段を有することを特徴とする燃焼機器である。  A first aspect of the present invention for achieving the above object is a combustion device that includes a C0 sensor that detects a CO concentration in exhaust gas and performs a CO safe operation based on the CO concentration detected by the CO sensor. This is a combustion device characterized by having a control means for determining a timing of a CO safe operation based on a CO concentration detected by a sensor and a combustion capacity of the combustion device or an exhaust gas amount.
上記第一の発明において、 燃焼機器の燃焼運転が開始すると、 排気側で、 CO センサにより排気ガス中の CO濃度が検出される。 そして、 燃焼機器の燃焼運転 状態の燃焼能力あるいは排気量が検出され、 燃焼運転時間が COセンサによって P T 97/02429 検出される C 0濃度と燃焼能力に対応した危険到達時間に達したとき、 あるいは COセンサによって検出される CO濃度と排気量に対応する危険到達時間に達し たときに、 C 0安全動作により燃焼運転停止等の C 0安全動作が行われる。 In the first aspect of the invention, when the combustion operation of the combustion equipment is started, the CO concentration in the exhaust gas is detected by the CO sensor on the exhaust side. Then, the combustion capacity or the displacement of the combustion equipment in the combustion operation state is detected, and the combustion operation time is detected by the CO sensor. PT 97/02429 When the danger arrival time corresponding to the detected C0 concentration and combustion capacity is reached, or when the danger arrival time corresponding to the CO concentration and displacement detected by the CO sensor is reached, C0 C0 safety operation such as combustion operation stop is performed by the safety operation.
このように、 本発明では、 排気ガスが室内に漏れたと仮定したときに、 室内に 居る人が CO中毒の危険に達すると推定される危険到達時間を、 CO濃度のみで はなく、 CO濃度と燃焼能力や排気量を考慮して与えて CO安全動作が行われる。 従って、 C O濃度のみによって燃焼連続可能時間を設定する場合に比べ、 燃焼能 力等の燃焼機器の運転状態を考慮して正確に C O中毒の危険に達する時問を確定 でき、 これにより、 精度の ¾い CO安全動作を行うことが可能となる。  As described above, according to the present invention, when it is assumed that the exhaust gas has leaked into the room, the danger arrival time at which the person in the room is estimated to reach the danger of CO poisoning is determined not only by the CO concentration but also by the CO concentration. Given the combustion capacity and the displacement, CO safety operation is performed. Therefore, compared with the case where the continuous combustion time is set only by the CO concentration, the time when the danger of CO poisoning is reached can be determined accurately by considering the operating state of the combustion equipment such as the combustion capacity. It is possible to perform a safe CO operation.
また、 上記目的を達成するための第二の発明は、 排気ガス中の CO濃度を検出 する COセンサを備え、 ¾COセンサによって険出される CO濃度に基づいて C 0安全動作を行う燃焼機器において、 該 C 0センサによって検出される C 0濃度 と排気ガスが排出される ¾内の容積とに基づいて、 CO安全動作のタイミングを 决定する制御手段をネ ίすることを特徴とする燃焼機器である。  A second aspect of the present invention for achieving the above object is a combustion device that includes a CO sensor that detects a CO concentration in exhaust gas and performs a C0 safe operation based on the CO concentration emitted by the CO sensor. A combustion device characterized by including a control means for determining a timing of a CO safe operation based on a C 0 concentration detected by the C 0 sensor and a volume in a chamber from which exhaust gas is discharged. .
上記第二の発明において、 C Oセンサによって検出される排気ガス中の C〇濃 度と排気ガスが漏浊すると仮定される室内の容積の情報に基づいて、 室内 C 0濃 度の推定値が求められる。 そして、 求められた値が所定の危険判断基準値に達し たときに C 0ガスに する安全動作が行われるので、 信頼性の高い C 0安全動作 が可能となる。  In the above second invention, an estimated value of the indoor C0 concentration is obtained based on the information on the C〇 concentration in the exhaust gas detected by the CO sensor and the volume of the room where the exhaust gas is assumed to leak. Can be Then, when the obtained value reaches a predetermined danger judgment reference value, a safe operation for converting to C0 gas is performed, so that a highly reliable C0 safe operation is possible.
また、 上記目的を達成する第三の究明は、 排気ガス中の C O濃度を険出する C 0センサを備え、 C Oセンサによって検出される CO濃度に基づいて CO安全動 作を行う燃焼機器において、 C Oセンサによって検出される CO濃度と燃料ガス の種類とに基づいて、 CO安全動作のタイミングを决定する制御手段を有するこ とを特徴とする燃焼機器である。  The third finding to achieve the above object is a combustion device that has a C0 sensor that detects the CO concentration in exhaust gas and performs a CO safe operation based on the CO concentration detected by the CO sensor. A combustion apparatus characterized by having control means for determining the timing of the CO safety operation based on the CO concentration detected by the CO sensor and the type of fuel gas.
J:記第三の発明において、 燃焼機器の燃焼運転が開始すると、 COセンサによ り排気ガス中の CO濃度が検出される。 そして、 燃焼運転時間が COセンサによ つて検出される C 0濃度と使用されるガス種に対応した危険到達時間に達したと きに、 CO安全動作により燃焼運転停止等の CO安全動作が行われる。  J: In the third invention, when the combustion operation of the combustion equipment starts, the CO concentration in the exhaust gas is detected by the CO sensor. When the combustion operation time reaches the danger arrival time corresponding to the C0 concentration detected by the CO sensor and the type of gas used, the CO safety operation performs a CO safety operation such as stopping the combustion operation. Will be
このように、 本発明では、 排気ガスが室内に漏れたと仮定したときに、 室内に 居る人が CO中毒の危険状態に達すると推定される危険到達時問が、 CO濃度の みではなく併せてガス種を考慮して与えられるので、 C 0濃度のみによって危険 到達時間を設定する場合に比べ、 正確に CO中毒の危険に達する時問を確定でき、 これにより、 精度の高い CO安全動作を行うことが可能となる。 Thus, in the present invention, when it is assumed that the exhaust gas has leaked into the room, When the danger arrival time at which a person is estimated to reach the danger state of CO poisoning is given not only by the CO concentration but also by considering the gas type, so the danger arrival time is set only by the C0 concentration As compared with, it is possible to determine the time when the danger of CO poisoning is reached more accurately, and thereby it is possible to perform highly accurate CO safe operation.
また、 上記目的を達成するための第四の発明は、 排気ガス中の CO濃度を検出 する COセンサを備え、 COセンサによって検出される CO濃度に基づいて CO 安全動作を行う燃焼機器において、 C 0センサによって検出される C 0濃度と燃 焼機器の給排気管の構造の種類に基づいて、 CO安全動作のタイミングを決定す る制御手段を有することを特徴とする燃焼機器である。  A fourth aspect of the present invention to achieve the above object is a combustion device that includes a CO sensor that detects a CO concentration in exhaust gas and performs a CO safety operation based on the CO concentration detected by the CO sensor. A combustion device characterized by having control means for determining the timing of a CO safe operation based on the C0 concentration detected by the 0 sensor and the type of structure of the supply / exhaust pipe of the combustion device.
上記第四の発明において、 燃焼機器の出荷時あるいは燃焼機器の設 1»施工時に、 燃焼機器の排 51側に取り付けられる給排気管の構造、 即ち、 二重管構^と二本管 構造にそれそれ対応した C 0安全動作が行われる危険到達時間が与えられる。 そ して、 燃焼運転時問が C◦センサによって検出される C 0濃度と給排気管の構造 に対応した危険到達時 に^したときに、 燃焼運転^ 11:等の C 0安全動作が行わ れる。 従って、 燃焼機器の ¾P の給排気構造の実情に即した CO安全動作が行わ れることになり、 CO安^勅作の信頼性が向上する。  In the fourth invention, the structure of the supply / exhaust pipe attached to the exhaust 51 side of the combustion equipment at the time of shipment of the combustion equipment or at the time of installation of the combustion equipment, namely, a double pipe structure and a double pipe structure. The danger arrival time at which the corresponding C0 safe operation is performed is given. Then, when the combustion operation time reaches a danger that corresponds to the C0 concentration detected by the C◦ sensor and the structure of the supply and exhaust pipes, the C0 safety operation such as combustion operation ^ 11: is performed. It is. Therefore, CO safe operation will be performed in accordance with the actual situation of the ¾P air supply and exhaust structure of the combustion equipment, and the reliability of the CO Annex will be improved.
さらに、 上記目的を迮成する第五の発明は、 所定の -位時間 t毎に検出された Further, the fifth invention which achieves the above object is a method wherein the detection is performed at every predetermined order time t.
CO濃度の雰囲気中に吶されたときの血中へモグロビン CO濃度が危険基準濃度 になる時間 Tとの比 t/Tで えられる ER値が設定され、 該 ERii の積算値で ある T R値が所定の基準^に^したときに、 燃焼機器の異常状態を検出する手段 を有する燃焼機器において、 前記 ER値が、 前記燃焼機器の排気ガスの CO濃度 と、 前記燃焼機器の排気ガスの排気量及び Z又は排気ガスが排出される空間の容 積とに応じて設定されることを特徴とする燃焼機器である。 The ER value obtained by the ratio t / T to the time T at which the moglobin CO concentration reaches the dangerous reference concentration when blood is released in an atmosphere of CO concentration is set, and the TR value, which is the integrated value of the ERii, is set. A combustion device having means for detecting an abnormal state of the combustion device when a predetermined standard is met, wherein the ER value is a CO concentration of exhaust gas of the combustion device, and an exhaust gas amount of the combustion device. The combustion apparatus is set in accordance with Z and Z or the volume of a space from which exhaust gas is discharged.
上記第五の発明によれば、 ER値が排気ガス中の CO濃度のみならず、 排気ガ スの排気量及び/又は排気ガスが排出される空間をも考慮して定められるので、 燃焼運転の実状にあった正確な ER値を取得することができ、 より正確で信頼性 の高い CO安全動作を行う燃焼機器が提供される。  According to the fifth aspect, the ER value is determined in consideration of not only the CO concentration in the exhaust gas, but also the exhaust gas amount and / or the space from which the exhaust gas is discharged. Accurate ER values can be obtained according to actual conditions, and more accurate and reliable combustion equipment that performs CO safe operation is provided.
[図面の簡単な説明] 第 1図は、 燃焼機器として一般的に知られている屋内設置型給湯器の構成説明 図である。 [Brief description of drawings] FIG. 1 is an explanatory diagram of a configuration of an indoor-installed type water heater generally known as a combustion device.
第 2図は、 燃焼機器の屋内設置例の説明図である。  FIG. 2 is an explanatory diagram of an example of indoor installation of a combustion device.
第 3図は、 血中ヘモグロビン C 0濃度と人体の症状との関係を示した図表であ る。  FIG. 3 is a chart showing the relationship between blood hemoglobin C0 concentration and human symptoms.
第 4図は、 空気中 C〇濃度と血屮へモグロビン C 0濃度との関係を示したグラ フである。  FIG. 4 is a graph showing the relationship between the concentration of C〇 in the air and the concentration of C0 in hemoglobin.
第 5図は、 二重 給排 5構造の給湯器の構成説明冈である。  FIG. 5 is an explanatory view of a configuration of a water heater having a double water supply / drainage five structure.
第 6図は、 二本管給排気構造の給 1器の構成説明 1である。 6 is a structural explanatory 1 of the sheet 1 unit of double-pipe supply and exhaust structure.
第 7図は、 二重管給 :気構造の給湯器の排気ガスが室内に漏れた場合の室内 C 0汚染状況の説明図である。  FIG. 7 is an explanatory diagram of the state of indoor C0 contamination in a case where exhaust gas from a double-pipe water supply air heater has leaked into a room.
第 8図は、 二本^給排 ϊ造の給湯器の排気ガスが ¾内に漏れた場合の室内 C 0汚染状況の説明図である。  FIG. 8 is an explanatory diagram of the state of C0 contamination in a room in a case where exhaust gas of a hot water supply unit having a double water supply / drainage structure leaks into a room.
第 9図は、排気ガスの C 0 Πに対応した従来の E R値のテーブルの例である。。 第 1 0図は、 本発明の^一の一の実施の形態における C 0安全動作を行う燃焼 機器の制御手段の制御機能ブロック図である。  FIG. 9 is an example of a conventional ER value table corresponding to C 0 Π of exhaust gas. . FIG. 10 is a control function block diagram of a control means of a combustion device which performs a C 0 safe operation in one embodiment of the present invention.
第 1 1図は、 給湯 ·複合器の燃焼機器を示す説明図である。  FIG. 11 is an explanatory view showing a combustion device of a hot water supply / combiner.
第 1 2図は、 排気ガスの C O濃度と、 室内 C O 度が C O中毒の危険状態に達 する危険到達時間との閱係を燃焼能力ごとに分けて えたデータの説明図である。 第 1 3図は、 燃焼制御部 2 3により比例弁 2 2に閗弁駆動電流を供給して燃焼 能力を制御する構成説明図である。  FIG. 12 is an explanatory diagram of data in which the relationship between the CO concentration of exhaust gas and the dangerous arrival time at which the indoor CO degree reaches the dangerous state of CO poisoning is divided for each combustion capacity. FIG. 13 is an explanatory diagram of a configuration in which the combustion control section 23 supplies a 閗 valve drive current to the proportional valve 22 to control the combustion capacity.
第 1 4図は、 排気ガスの C O濃度と、 室内 C O濃度が C O中毒の危険状態に達 する危険到達時間との関係をファン風量ごとに分けて^えたデータの説明図であ る。  Fig. 14 is an explanatory diagram of data obtained by dividing the relationship between the CO concentration of exhaust gas and the dangerous arrival time at which the indoor CO concentration reaches the dangerous state of CO poisoning for each fan airflow.
第 1 5図は本発明の第一の三の実施の形態における C O安全動作を行う燃焼機 器の制御手段の制御機能プロック図である。  FIG. 15 is a control function block diagram of control means of a combustion device for performing a CO safe operation in the first third embodiment of the present invention.
第 1 6図は、 複数段燃焼面切り替え方式のパーナの説明図である。  FIG. 16 is an explanatory view of a multi-stage combustion surface switching type wrench.
第 1 7図は、 本発明の第二の一の実施の形態における C〇安全動作を行う燃焼 機器の制御手段の制御機能プロック図である。 第 1 8図は、 室内 CO濃度を求める演算式を導くための室内モデル図である。 第 1 9図は、 本発明の第二の二の実施の形態における CO安全動作を行う燃焼 機器の制御手段の制御機能プロック図である。 FIG. 17 is a control function block diagram of control means of a combustion device that performs a C〇 safe operation in the second embodiment of the present invention. FIG. 18 is an indoor model diagram for deriving an arithmetic expression for calculating the indoor CO concentration. FIG. 19 is a control function block diagram of control means of a combustion device for performing a CO safe operation according to the second embodiment of the present invention.
第 20図は、 排気ガス中の CO濃度と、 その CO¾度の排気ガスが室内に漏れ たと仮定したときに室内 CO濃度が危険判断基準値に達するまでに要する時間 T との関係を示すデータである。  Fig. 20 is data showing the relationship between the CO concentration in exhaust gas and the time T required for the indoor CO concentration to reach the danger criterion value when it is assumed that exhaust gas of that CO2 level leaked into the room. is there.
第 2 1図は、 本発明の第三の一の実施の形態における CO安全動作を行う燃焼 機器の制御手段の制御機能プロック図である。  FIG. 21 is a control function block diagram of control means of a combustion device which performs a CO safe operation according to the third embodiment of the present invention.
第 2 2( 1は、 排気ガスの CO濃度と、 室内 CO濃度が CO中毒の危険状態に達 する危険到達時間との関係をガス稀ごとに分けて えたデータの説明図である。 第 23図は、 本発明の^二の二の実施の形態に対応するプロック [ 1である。 第 24 Iは、 本発明の第四の一の突施の形態における CO安全勅作を行う燃焼 機器の制御手段の制御機能プロック図である。  22 (1) is an explanatory diagram of data obtained by dividing the relationship between the CO concentration of the exhaust gas and the dangerous arrival time at which the indoor CO concentration reaches the dangerous state of CO poisoning for each rare gas. Is a block [1] corresponding to the second and second embodiments of the present invention. Twenty-fourth 24I is a control of a combustion device that performs a CO safety act in the fourth embodiment of the present invention. It is a control function block diagram of a means.
第 2 5図は、 給排気構造が 管給排気構造の場合に使用される CO安全動作 開始条件データの - -例を すグラフである。  Fig. 25 is a graph showing examples of CO safe operation start condition data used when the supply / exhaust structure is a pipe supply / exhaust structure.
第 26te!は、 排気構造が - -本管給排気構造の場合に使用される CO安全動作開 始条件データの -例を示すグラフである。  Fig. 26te! Is a graph showing an example of CO safety operation start condition data used when the exhaust structure is--the mains supply / exhaust structure.
第 27図は、 比 ί列弁への開弁駆動電流を燃焼能力 報として採用する例の説明 図である。  FIG. 27 is an explanatory diagram of an example in which a valve-opening drive current to a comparison valve is used as combustion performance information.
第 2 8図は、 本発明の第四の二の実施の形態における CO安全勅作を行う燃焼 機器の制御手段の制御機能プロック図である。  FIG. 28 is a control function block diagram of control means of a combustion device for performing a CO safety act according to the fourth and second embodiments of the present invention.
第 2 9図は、 ファンがパーナの下側に設けられる燃焼空気の押し込み供給タイ プの給湯器の説明図である。  FIG. 29 is an explanatory diagram of a water heater of a forced air supply type of combustion air in which a fan is provided below a parner.
第 30図は、 本発明の第五の実施の形態における燃焼機器の構成を示す図であ る。  FIG. 30 is a diagram showing a configuration of a combustion apparatus according to a fifth embodiment of the present invention.
第 3 1図は、 本発明の第五の一の実施の形態における CO濃度監視制御のフロ 一チヤ一トである。  FIG. 31 is a flowchart of the CO concentration monitoring control according to the fifth embodiment of the present invention.
第 32図は、 排気ガスの CO濃度及びファンの回転数に対応した ER値のテ一 ブルの例である。 第 3 3図は、 排気ガスの C O濃度及び排気ガスが排出される空間の容積に対応 した E R値のテ一ブルの例である。 Fig. 32 is an example of a table of ER values corresponding to the CO concentration of exhaust gas and the number of rotations of the fan. Fig. 33 shows an example of a table of ER values corresponding to the CO concentration of exhaust gas and the volume of the space from which exhaust gas is exhausted.
第 3 4図は、 排気ガスが排出される各空間の容積ごとに定められた、 排気ガス の C O濃度及びファンの回転数に対応した E R値のテーブルの例である。  FIG. 34 is an example of a table of ER values corresponding to the CO concentration of the exhaust gas and the number of rotations of the fan, which are determined for each volume of each space from which the exhaust gas is discharged.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下、 本発明の実施の形態について図面に従って説明する。 しかしながら、 本 ¾明の技術的範囲はかかる実施の形態によって限定されるものではない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited by such an embodiment.
また、 以下に述べる本実施の形態の燃焼機器は、 図 1に示した給湯単能器に限 られれず、 例えば、 給湯 ·風呂複合器、 さらには、 暖房機、 冷房機、 冷暖房機等 の燃焼を行う 内設^ の燃焼機器などであってもよい。  In addition, the combustion equipment of the present embodiment described below is not limited to the hot water supply single function device shown in FIG. 1, but includes, for example, a hot water supply / bath combined device, and further, a heating device, a cooling device, a heating and cooling device, etc. It may be an internal combustion device or the like.
また、 燃焼機器の排気ガスは、 図 2における煙突(ダク ト) 1 0を介して外(室 外) に排出される。 燃焼のために給気される空気は、 室内の空気を取り入れる夕 イブのもの、 あるいは外の空気を取り入れるタイプのものなど様々な形態を採り 得るものであり、 本実施の形態は燃焼機器の種類や形式にはとらわれず、 屋内設 置型の全てのタイプの燃焼機器に適用される。  Exhaust gas from the combustion equipment is discharged outside (outdoors) via the chimney (duct) 10 in FIG. The air supplied for combustion can take various forms, such as an evening air that takes in indoor air or a type that takes in outside air. It is applicable to all types of indoor installation type combustion equipment, regardless of the type or type.
このような燃焼機器において、 C Oセンサ 1 1が險出する排気ガスの c〇濃度 に加えて、 燃焼能力又は排気量、 室内容積、 燃焼ガスの種類、 給排気管の構造を 考慮した C O安全動作についてそれそれ以下に説明する。 また、 C O安全動作は、 上記制御装置 6のような燃焼機器の制御手段によって実行される。 そして、 制御 手段がマイクロコンビュ一夕で実現される場合は、 以下に述べる各制御機能はソ フ トウエアによって実現される。  In such a combustion device, in addition to the c〇 concentration of the exhaust gas emitted by the CO sensor 11, the CO safety operation takes into account the combustion capacity or exhaust volume, the room volume, the type of combustion gas, and the structure of the supply and exhaust pipes Will be described below. Further, the CO safe operation is executed by control means of the combustion equipment such as the control device 6 described above. When the control means is realized by a microcomputer, the control functions described below are realized by software.
[第一の実施の形態]  [First Embodiment]
まず、 C Oセンサの検出する排気ガスの C O濃度に加えて、 燃焼能力又は排気 ガスの排気量を考慮した C O安全動作を行う第一の実施の形態における燃焼機器 について説明する。 図 1 0は、 第一の一の実施の形態における C O安全動作を行 う燃焼機器の制御手段の制御機能ブロック図である。 制御手段は、 デ一夕メモリ 1 1 2と、 燃焼時間計測手段 1 1 3と、 C O安全動作部 1 1 4とを有している。 なお、 図 1 1に示す給湯,風呂複合器は、 給湯熱交換器 5を燃焼加熱する給湯 側のパーナ 4 aと追い焚き熱交換器 5を燃焼加熱する風呂側のパーナ 4 bとを有 する。 これらパーナ 4 a , 4 bにはファン 2から給排気の空気が供給される。 追 い焚き熱交換器 1 5に接続される往 ¾ 1 6と ¾り 5 1 7は、 図示されていない浴 槽に接続され、 循環ポンプ 1 8を駆動して浴槽湯水を循環させ、 この循環湯水を パーナ 4 bの燃焼火力でもって追い焚き熱交換器 1 5を通るときに加熱し、 追い 焚きが行われる。 また、 給^熱交換器 5側の動作は図 1の給湯器の動作と同様で あり、 同一の構成部分には同一の符号を付してある。 First, a description will be given of a combustion device according to the first embodiment that performs a CO safety operation in consideration of the combustion capacity or the exhaust gas displacement in addition to the CO concentration of the exhaust gas detected by the CO sensor. FIG. 10 is a control function block diagram of a control unit of a combustion device that performs a CO safety operation according to the first embodiment. The control means has a memory 111, a combustion time measuring means 113, and a CO safe operation part 114. The hot water supply / bath combined unit shown in Fig. 11 is a hot water supply that heats and heats the hot water supply heat exchanger 5. And a bath-side wrench 4 b for burning and heating the reheater 5. Air is supplied from the fan 2 to these parners 4a and 4b. The outgoing pipes 16 and 17 connected to the additional heat exchanger 15 are connected to a bath tub (not shown), and a circulation pump 18 is driven to circulate the bath tub water. Hot water is heated by the combustion heat of the Pana 4 b when passing through the reheater 15, and reheating is performed. The operation of the heat supply heat exchanger 5 is the same as the operation of the water heater of FIG. 1, and the same components are denoted by the same reference numerals.
図 1 0において、 データメモリ 1 1 2には ] 1 2に示すようなデータが与えら れている。 この図 1 2のグラフデ一夕の横軸は排気ガスの C O濃度を示しており、 縦軸は排気ガスが室内に漏れて室内 C 0濃度が C 0中毒の危険状態の判断基準値 である、 危険判断 ¾ の 300 ppm に達する危険到達時問を示している。 グラ フ中の曲線 Aは燃焼機器の燃焼能力が 40000 Kcal/ hの運転状態を示し、曲線 B は燃焼能力が 29500 Kcal/ h、 曲線 Cは燃焼能力が 19500 Kcal/ hの迩転状態 をそれそれ示しており、 llii線 Dは図 1 1に示すような給湯 ' ¾呂複合器の燃焼機 器におけるパーナ 4 bの 10000 Kcal/ hの燃焼能力での燃焼状態を示している。 このグラフのように、 棑:気ガス中の C O濃度が同じであっても、 室内 C O濃度 が危険判断 *準値である 300 ppm に達するまでの時問は異なる。 本実施の形態 では、 室内 C O濃度の危険判断基準値を 300 ppm とし、 各 C O濃度の排気ガス が室内に漏れたと仮定したときに室内 C 0濃度が危険判断基準値に達する危険到 達時間が燃焼機器の燃焼能力ごとに分けてデータメモリ 1 1 2に^えられる。 な お、 この排気 C 0濃度と危険到達時間との関係を示すデータはグラフデ一夕以外 に、 表デ一夕、 演算式データ等で与えることはもとより可能である。  In FIG. 10, data as shown in] 12 is given to the data memory 112. The horizontal axis of the graph in FIG. 12 indicates the CO concentration of the exhaust gas, and the vertical axis indicates the reference value for the dangerous state of C0 poisoning when the exhaust gas leaks into the room and the indoor C0 concentration is C0 poisoning. Indicates the time when the danger is reached when the danger judgment 危 険 reaches 300 ppm. Curve A in the graph shows the operating condition when the combustion capacity of the combustion equipment is 40,000 Kcal / h, curve B shows the operation when the combustion capacity is 29500 Kcal / h, and curve C shows the operation when the combustion capacity is 19500 Kcal / h. The llii line D indicates the combustion state of the burner of the hot water / bath combined unit as shown in FIG. 11 at a burning capacity of 10,000 Kcal / h of the burner 4b. As shown in this graph, 棑: Even when the CO concentration in the gas is the same, the time required for the indoor CO concentration to reach the dangerous judgment * standard value of 300 ppm is different. In the present embodiment, the danger criterion value for indoor CO concentration is set to 300 ppm, and when it is assumed that exhaust gas of each CO concentration has leaked into the room, the danger arrival time when the indoor C0 concentration reaches the danger determination criterion value is assumed. The data is stored in the data memory 1 1 2 according to the combustion capacity of the combustion equipment. It should be noted that the data indicating the relationship between the exhaust C0 concentration and the danger arrival time can be given not only from the graph data, but also from the table data, arithmetic expression data, and the like.
C O安全動作部 1 1 4は C Oセンサ 1 1から排気ガスの C〇濃度の検出情報を 取得すると共に、 燃焼能力情報を取得する。 この燃焼能力情報は、 制御装置 6内 の燃焼制御部から取得される。  The CO safe operation section 114 acquires the detection information of the C〇 concentration of the exhaust gas from the CO sensor 11 and also acquires the combustion capacity information. This combustion capacity information is obtained from the combustion control unit in the control device 6.
図 1 3に示すように、 パーナ 4のガス通路 2 0にはガス通路の閲閉を行う電磁 弁 2 1と開弁量によってガス供給量を制御する比例弁 2 2が介設されており、 比 例弁 2 2の開弁量は燃焼制御部 2 3によって制御されている。 すなわち、 燃焼制 御部 2 3は、 例えば、 給湯器 1の燃焼運転に際しては、 給湯熱交換器 5の出側の 温度がリモコン 7により設定された設定温度となるように燃焼能力が演算により 求められ、 この燃焼能力が得られるように比例弁 2 2に加える開弁駆動電流の大 きさが制御される。 つまり、 燃焼制御部 2 3から比例弁 2 2に加えられる開弁駆 動電流の大きさは比例弁 2 2の関弁量の大きさ、 換言すれば、 ガス供給量の大き さに相当し、 これは燃焼制御部 2 3が演算により求めた燃焼能力に対応する。 本実施の形態では燃焼能力情報として開弁駆動電流の検出データを取得される。 この燃焼能力^報と前記 C Oセンサ 1 1から入力される排気ガス中の C O濃度の 情報に基づき、 データメモリ 1 1 2に格納されている図 1 2に/丁、すデ一夕から、 室内 C O ffi度が危険判断基準値となる危険到達時間 Tが取得される。 そして、 燃 焼時問計測手段 1 1 3からの燃焼開始時からの燃焼絰過時間がモニタされ、 燃焼 時 f 3が危険到達時 ίίΠ Τになったときに室内 C 0 度は危険判断基準値に违したも のと判断して燃焼 fc停 !i:等の安全動作が行われる。 As shown in FIG. 13, the gas passage 20 of the wrench 4 is provided with a solenoid valve 21 for closing and closing the gas passage and a proportional valve 22 for controlling the gas supply amount based on the opening amount. The opening amount of the proportional valve 22 is controlled by the combustion control unit 23. That is, for example, during the combustion operation of the water heater 1, the combustion control section 23 is connected to the outlet side of the hot water supply heat exchanger 5. The combustion capacity is calculated by calculation so that the temperature becomes the set temperature set by the remote controller 7, and the magnitude of the valve-opening drive current applied to the proportional valve 22 is controlled so as to obtain this combustion capacity. In other words, the magnitude of the valve-opening drive current applied from the combustion control unit 23 to the proportional valve 22 corresponds to the magnitude of the related valve amount of the proportional valve 22, in other words, the magnitude of the gas supply amount. This corresponds to the combustion capacity calculated by the combustion control unit 23. In the present embodiment, detection data of the valve-opening drive current is obtained as the combustion performance information. Based on this combustion capacity report and the information on the CO concentration in the exhaust gas input from the CO sensor 11, the data stored in the data memory 112 is shown in FIG. The danger arrival time T at which the CO ffi degree becomes the danger judgment reference value is acquired. Then, the combustion elapsed time from the start of combustion from the combustion time measuring means 113 is monitored, and when the combustion time f3 reaches the danger arrival time 室内, the indoor C 0 degree is the danger judgment reference value. Judgment is made that safety action such as combustion fc stop! I: is performed.
この実施の形態によれば、 1¾1 1 2に示すように、 排気 C 0濃度に対応する危険 到達時間 Tが各燃焼能力ごとに分けて与えられ、 燃焼能力の 報と C Oセンサ 1 1で検出される排気 C 0濃度の情報に対応した適 ¾な危険到達時問 Tが得られる。 これにより、 C O安全 j作の精度を格段に高めることが可能となり、 室内 C O濃 度が危険濃度に违しないにもかかわらず、 燃焼停止がされてしまうという誤動作 を防止することができる。  According to this embodiment, as shown in 1¾1 22, the danger arrival time T corresponding to the exhaust C 0 concentration is given separately for each combustion capacity, and the combustion capacity information and the CO sensor 11 detect the danger arrival time T. The appropriate danger arrival time T corresponding to the information on the exhaust C0 concentration can be obtained. As a result, it is possible to significantly improve the accuracy of the CO safe operation, and to prevent a malfunction in which the combustion is stopped even though the indoor CO concentration does not reach the dangerous concentration.
なお、 この第一の一の実施の形態では、 燃焼能力 ^银として、 比例弁 2 2への 弁駆動電流のデータを いたが、 これに代えてガス供給量のデータや燃焼制御 部 2 3で演算される燃焼能力の演算値のデ一夕を用いた場合も同様な結果を得る ことができる。 なお、 燃焼能力情報のデ一夕としてガス供給量のデータを用いる 場合には、 ガス供給通路 2 0にガス流量センサ等が設けられ、 このセンサによる ガス供給量の検出信号が C O安全動作部 1 1 4に入力される  In the first embodiment, the data of the valve drive current to the proportional valve 22 is used as the combustion capacity ^ 银. However, the data of the gas supply amount and the data of the combustion control unit 23 are used instead. Similar results can be obtained when the calculated value of the combustion capacity is calculated. In the case of using gas supply data as data for combustion performance information, a gas flow sensor or the like is provided in the gas supply passage 20, and a detection signal of the gas supply by this sensor is used as the CO safety operation unit 1 Entered in 1 4
次に本発明の第一の二の実施の形態について説明する。 この第一の二の実施の 形態は、 前記第一の一の実施の形態における燃焼能力の代わりに排気量に対応す るファンの風量のデータを用いて C 0安全動作を行うことを特徴とするものであ り、 それ以外は第一の一の実施の形態と同様である。 燃焼運転は、 燃焼能力に見 合うファン風量を供給して運転が行われることから、 燃焼能力と排気量即ちファ ン風量との間には相関関係があり、 この第一の二の実施の形態では、 燃焼能力の 代わりにファン風量のデータが用いられる。 そのために、 図 1 0に,丁;すデータメ モリ 1 1 2には、 図 1 4に示す如く、 排気 C O濃度と危険到達時問 Tとの関係が、 各ファン風 aに区分して与えられている。 Next, a first embodiment of the present invention will be described. The first and second embodiments are characterized in that the C0 safe operation is performed using the air volume data of the fan corresponding to the displacement in place of the combustion capacity in the first embodiment. The rest is the same as in the first embodiment. Since the combustion operation is performed by supplying a fan airflow corresponding to the combustion capacity, the combustion capacity and the exhaust quantity, that is, the fan capacity, are increased. There is a correlation with the fan airflow. In the first and second embodiments, fan airflow data is used instead of combustion capacity. For this purpose, the relationship between the exhaust CO concentration and the danger arrival time T is given to each fan wind a in Fig. 10 in the data memory 112 as shown in Fig. 14. ing.
図 1 4に示される曲線 Eはファン 2の回転速度 (回転数) が 6000rpm の動作 状態のデ一夕であり、 曲線 Fはファン回転速度 (冋転数) が 550(h'pm の動作状 態であり、 曲線 Gはファン回転速度 (回転数) が 5000ι·ρηι の動作状態をそれそ れ示している。 このように、 排気 C〇濃度と危険到 ^時問 Τとの関係を示すデー タが各ファン風量に分けて与えられ、 このようなデータがグラフデ一夕、 表デー 夕、 演算式データ等の適宜の形態でデ一夕メモリ 1 1 2に格納される。  Curve E shown in Fig. 14 is a time chart when the rotation speed (rotation speed) of fan 2 is 6000 rpm, and curve F is an operation condition when fan rotation speed (rotation speed) is 550 (h'pm). The curve G shows the operating state when the fan rotation speed (rotational speed) is 5000ι · ρηι, and thus the data showing the relationship between the exhaust C〇 concentration and the danger time. The data is provided separately for each fan airflow, and such data is stored in the data memory 112 in an appropriate form such as graph data, table data, and arithmetic expression data.
C 0安全動作部 1 1 4には I:ズ 1 1 0の破線で すようにファン ¾量情報が取り込 まれる。 このファン風 報は、 冽えば、 図 1および I ] 1 1に示す如くファン 2 のファン Lnjfeを険出するホール I C等のファン回転検出センサ 2 4を設け、 この ファン回転検出センサ 2 4のファン问転検出愦報を) データとして C 0安全動 作部 1 1 4に加えるようにする。  The fan capacity information is taken into the C0 safe operation section 114 as indicated by the broken line of I: 110. If the fan wind information is low, a fan rotation detection sensor 24 such as a hall IC that protrudes the fan Lnjfe of the fan 2 is provided as shown in Fig. 1 and I] 11 and the fan rotation detection sensor 24 The rotation detection report is added to the C0 safety operation section 1 14 as data.
この第一の二の実施の形態では、 C O安全勋作郃 1 1 4は C Oセンサ 1 1から 排気ガスの C O濃度を取り込み、 ファン回転検出センサ 2 4からファン風量の情 報を取り込み、 デ一夕メモリ 1 1 2に えられている図 1 4に示す如くデータか ら、 ファン風量と排気ガス中の C 0濃度に対 Ι,ύ' する危険到達時問 Τが取得され、 燃焼時問計測手段 1 1 3を利用し、 燃焼開始時から燃焼時問がこの危険到達時間 Τに達したときに燃焼運転停止等の安全動作が行われる。  In the first and second embodiments, the CO safety operation 114 captures the CO concentration of the exhaust gas from the CO sensor 11 and the information of the fan airflow from the fan rotation detection sensor 24, As shown in Fig. 14 obtained in the evening memory 1 1 and 2, the danger arrival time ύ, ύ, which is related to the fan airflow and the C0 concentration in the exhaust gas, was obtained from the data, and the combustion time was measured. Using the means 113, when the combustion time from the start of combustion reaches this danger arrival time 安全, safety operations such as stopping the combustion operation are performed.
この第一の二の実施の形態も、 C Oセンサ 1 1による情報と排気逢に対応する フアン風量の情報を取得して C 0安全動作が行われるので、 第一の一の実施の形 態と同様に、 燃焼機器の動作状態に対応した適切な危険到達時間 Tに基づいて、 精度の高い C O安全動作が可能となり、 前記第一の -の実施の形態と同様な効果 を奏することができる。  In the first and second embodiments as well, the information from the CO sensor 11 and the information on the fan air volume corresponding to the exhaust gas are acquired and the C0 safe operation is performed. Similarly, based on the appropriate danger arrival time T corresponding to the operating state of the combustion equipment, highly accurate CO safe operation becomes possible, and the same effects as those of the first embodiment can be obtained.
なお、 この第一の二の実施の形態では、 ファン風量のデ一夕として、 ファン回 数のデ一夕を用いたが、 給気側から排気側にかけての通風路に風量を直接的あ るいは ί Ι接的に検出する風量センサゃ風速センサを設けておき、 これらの検出デ —夕をファン風量データとして用いることも可能である。 またファン駆動電力を ファン風量データとして用いることもできる。 In the first and second embodiments, the fan air volume is used as the fan air volume, but the fan air volume is used as the air volume. Is provided with an air flow sensor and a wind speed sensor for indirect detection. -Evening can be used as fan airflow data. The fan drive power can also be used as fan air volume data.
図 1 5には本発明の第一-の三の実施の形態のブロック構成が示されている。 本 実施の形態における制御手段は、 排気ガスの C O濃度サンプリング部 1 2 5と、 t sp/ T算出積算部 1 2 7と、 時計機構 1 2 6と、 データメモリ 1 1 2と、 C O 安全動作部 1 1 4とを有している。  FIG. 15 shows a block configuration of the first to third embodiments of the present invention. The control means in the present embodiment includes a CO concentration sampling section 125 of exhaust gas, a tsp / T calculation integration section 127, a clock mechanism 126, a data memory 112, and a CO safety operation. Parts 114.
C〇濃度サンプリング部 1 2 5は、所定の単位サンプリング時問 t spを単位と して燃焼開始後 C 0センサ 1 1からの排気ガス中の C 0濃度 C ext をサンプリ ングする。 具体的には、 サンプリング時間を例えば 10 秒に設定し、 C O濃度サ ンプリング部 1 2 5は、 1秒毎に C Oセンサ 1 1の検出情報を取得し、 その平均 偵を求めて ^位サンプリング時問 たりの排気ガス中の C O濃度の値として確定 する。 なお、 このサンプリングのタイ ミングは、 タイマやクロック等によって構 成される時計機構 1 2 6の iS -に基づき行われる。  The C〇 concentration sampling unit 125 samples the C 0 concentration C ext in the exhaust gas from the C 0 sensor 11 after the start of combustion in units of a predetermined unit sampling time t sp. Specifically, the sampling time is set to, for example, 10 seconds, and the CO concentration sampling unit 125 obtains the detection information of the CO sensor 11 every second, finds the average detector, and obtains the average reconnaissance. Determine the value of the CO concentration in the exhaust gas in question. The timing of this sampling is performed based on iS- of the clock mechanism 126 configured by a timer, a clock, and the like.
データメモリ 1 1 2には前記第一の一の実施の形態と同様に冈 1 2に示すよう な燃焼能力ごとに分けた危険到達時間 Tと排気ガス中の C 0濃度 C ext との関 係データが与えられている。  As in the first embodiment, the data memory 112 has a relationship between the dangerous arrival time T and the C 0 concentration C ext in the exhaust gas divided for each combustion capacity as shown in 冈 12 as in the first embodiment. Data is given.
t sp/ T算出積算部 1 2 7は、 C O濃度サンプリング部 1 2 5から入力される 単位サンプリング時間 t sp を単位として検出された排気ガス中の C〇濃度の値 を取得し、 t sp/ Tの値を算出する。 ここで、 データメモリ 1 1 2に格納されて いる図 1 2に示すデータを用いて危険到達時間 T求めるとき、 この図 1 2に示さ れるような各曲線のグラフデータのうちのどのデータを使用するかは前記第一の 一の実施の形態と同様に取り込まれる燃焼能力情報に基づ t、て選択される。 例え ば、 燃焼能力情報が 29500 Kcal/ hを示している場合には、 曲線 Bのデ一夕が選 択され、 このデータに基づき危険到達時間 Tが求められる。  The t sp / T calculation integration unit 127 obtains the value of the C〇 concentration in the exhaust gas detected in units of the unit sampling time t sp input from the CO concentration sampling unit 125, and Calculate the value of T. Here, when obtaining the danger arrival time T using the data shown in FIG. 12 stored in the data memory 112, which data of the graph data of each curve as shown in FIG. The selection is made based on the combustion capacity information taken in the same manner as in the first embodiment. For example, when the combustion capacity information indicates 29500 Kcal / h, the data of curve B is selected and the danger arrival time T is calculated based on this data.
この危険到達時間 Tは、 前述した如く、 C Oセンサ 1 1によって検出される C 0濃度 C ext の排気ガスが室内に漏れたと仮定したときに、 室内 C O濃度が例え ば 300 ppm の危険判断基準値 C thに達する時間である。サンプリング時間 t sp をこの危険判断基準値に達する時間 Tで割ることにより、 その時間 Tに対するサ ンプリング時間 t spの割合が求められる。 この t sp/ Tの値は、 安全な時間 T のうち t sp/Tの割合が費やされ、 安全な割合が ( 1— t sp/T) しか残され ていないことを意味する。 換言すれば、 室内 CO濃度が危険判断基準値に達する 時間 Tのうち、 t spが費やされたこととなり、 残りの安全の時間は T一 t spの 時間しか残されていないことを怠味する。 The danger arrival time T is, as described above, the danger criterion value of the indoor CO concentration of 300 ppm, for example, assuming that the exhaust gas with the C 0 concentration C ext detected by the CO sensor 11 has leaked into the room. It is time to reach C th. By dividing the sampling time t sp by the time T at which this danger criterion value is reached, the ratio of the sampling time t sp to the time T is determined. This value of t sp / T is the safe time T This means that the ratio of t sp / T is spent, leaving only the safe ratio (1— t sp / T). In other words, of the time T when the indoor CO concentration reaches the danger criterion value, tsp is spent, and the remaining safety time is neglected because only T-tsp is left. I do.
t sp/T算出積算部 1 27は、 S初のサンプリング時間において、 t sp/T を求め、 次のサンプリング時問のときにも、 排気ガス中の CO濃度の検出デ一夕 によって求まる t sp/Tを!?出する。 そして、 この算出値を前冋のサンプリング 時に求めた t sp/Tに加^して積算 ίι:を求める。 このようにして、 t sp/T算 出積算部 127は、 各サンプリング時間 t spにおいて求められる t sp/Tの値 を各サンプリング時問毎に次々に積算していく。 例えば、 第 1回 のサンプリン グ時に排気 CO濃度 C extlに対する T 1 により、 t sp/T 1 が求められた場合、 次のサンプリング時 で排 5 C 0濃度 C ext2に対する T 2 により、 t sp/ T 2 が求められ、 として t sp/T 1 + t sp/T 2 の値が求められる。 また、 第 3回目のサンプリング時問において排気 CO濃度 Cext3に Wする T 3 により、 t sp/T 3 が求められたときには、 積算 ffiは t sp ( 1 / T 1 + 1 /T 2 + 1/ Τ 3 ) となる。 このように、 t sp/T算出積算部 1 27は、 各サンプリング時 毎に求められる t sp/Tの値を積算していき、 その祯 結果を CO安全動作部 1 14に与える。  The t sp / T calculation integration unit 127 calculates t sp / T at the first sampling time of S, and also at the next sampling time, the t sp / T calculated by the detection of CO concentration in exhaust gas. / T! ? Put out. Then, the calculated value is added to t sp / T obtained at the time of the previous sampling to obtain an integrated value ίι :. In this way, the t sp / T calculation / integration unit 127 successively integrates the value of t sp / T obtained at each sampling time t sp at each sampling time. For example, if t sp / T 1 is determined by T 1 for the exhaust CO concentration C extl at the first sampling, t sp / T 1 is determined by T 2 for the exhaust 5 C 0 concentration C ext2 at the next sampling. T 2 is determined, and the value of t sp / T 1 + t sp / T 2 is determined as In addition, when t sp / T 3 is obtained by T 3 which changes the exhaust CO concentration Cext3 at the time of the third sampling, the accumulated ffi is t sp (1 / T 1 + 1 / T 2 + 1 / Τ 3) As described above, the t sp / T calculation integration unit 127 integrates the value of t sp / T obtained at each sampling time, and gives the result to the CO safe operation unit 114.
CO安全動作部 1 14は、 t sp/T算出積算部 1 27から与えられた積算結果 を監視し、 その積算 ½が ίめ定めた設定値の例えば 1.0 に達したときに室内 CO 濃度 C roomは め設定した危険判断基準 ftSC thに達したものと判断し、 パーナ 4へのガス遮断を行う等の CO安全動作を行う。  The CO safety operation unit 114 monitors the integration result given from the tsp / T calculation integration unit 127, and when the integration ½ reaches a predetermined set value, for example, 1.0, the indoor CO concentration C room Judgment is made that the set danger criterion ftSC th has been reached, and the CO safety operation such as shutting off gas to the Pana 4 is performed.
なお、 上記例では各サンプリング時間において燃焼能力は変化しない場合で説 明したが、 例えば、 第 1回目のサンプリング時間での燃焼能力は図 12の曲線 A の能力であり、 第 2回目のサンプリング時間のときには曲線 Bの能力に変化し、 さらに第 3回目のサンプリング時には曲線 Cの燃焼能力に変化していたときには、 第 1回目のサンプリング時には曲線 Aのデータを用いて t sp/Tの値が求めら れ、 第 2回目のサンプリング時には曲線 Bを用いて t sp/Tの値が求められ、 さ らに、第 3回目のサンプリング時には曲線 Cのデータを用いて t sp/Tが求めら れる。 これら燃焼運転の絰過に伴い、 燃焼能力が可変するときには、 その燃焼能 力の変化に応じた燃焼能力のデータを用いて t sp/ Tが求められ、 これら、 各サ ンプリング時に求めた t sp/ Tが積算され、 その積算値が 1になったときに C O 安全動作が行われる。 In the above example, the case where the combustion capacity does not change at each sampling time has been described.For example, the combustion capacity at the first sampling time is the capacity of curve A in Fig. 12, and the second sampling time At the time of, the value of tsp / T was calculated using the data of curve A at the time of the first sampling, when it changed to the capability of curve B at the time of the third sampling, and at the time of the third sampling. In the second sampling, the value of t sp / T is obtained using the curve B, and in the third sampling, the value of t sp / T is obtained using the data of the curve C. It is. When the combustion capacity fluctuates due to these combustion operation delays, t sp / T is calculated using the combustion capacity data corresponding to the change in the combustion capacity. / T is integrated, and when the integrated value becomes 1, the CO safety operation is performed.
この第一の三の実施の形態によれば、 燃焼機器の燃焼運転状態の燃焼能力に対 応する排気 C O濃度と危険到達時間 Tの関係データが選択され、 これら燃焼能力 に即したデータに基づき、 C Oセンサ 1 1で検出される排気ガス中の C O濃度の 値に応じて t sp/ Tがサンプリング時間ごとに浈算されて次々に積算される。従 つて、 燃焼運転の燃焼能力の変化を考慮して室内 C O濃度が危険判断基準値に達 する危険到達時問を正確に確定することができ、 これにより、 C O安全動作の精 度をより一^高めることが可能となる。  According to the first third embodiment, data on the relationship between the exhaust CO concentration and the dangerous arrival time T corresponding to the combustion capacity of the combustion equipment in the combustion operation state is selected, and based on the data based on these combustion capacities. In accordance with the value of the CO concentration in the exhaust gas detected by the CO sensor 11, ts / T is calculated for each sampling time and integrated one after another. Therefore, it is possible to accurately determine the danger arrival time at which the indoor CO concentration reaches the danger criterion value in consideration of the change in the combustion capacity of the combustion operation, thereby improving the accuracy of the CO safe operation. You can increase it.
次に、 本発明の^一の四の実施の形態について説明する。 この第一の四の実施 の形態は、 冈 1 5のデータメモリ 1 1 2に前記第一の二の実施の形態で示したよ うに図 1 4にホすようなファン風量によって区分けした、 排気 C O濃度と危険到 達時問 Tとの相関関係データを格納する。 t sp/ T算出 2 7には燃焼能 力情報の代わりに前記第一の二の突施の形態と同様にファン風量情報を加える。 それ以外の構成は前記第一の三の実施の形態と ^様である。  Next, a fourth embodiment of the present invention will be described. In the first fourth embodiment, as shown in the first second embodiment, the exhaust gas CO is divided into the data memory 111 of FIG. Stores the correlation data between the concentration and the danger arrival time T. To the tsp / T calculation 27, fan air volume information is added in place of the combustion capacity information in the same manner as in the first embodiment. The other configuration is the same as that of the first embodiment.
この第一の四の実施の形態では、 前記第一の三の実施の形態と同様に C 0濃度 サンプリング部 1 2 5により C 0センサ 1 1からの排気 C〇濃度の検出値がサン プリングされ、 そのサンプリング値が t sp/ T算出積算部 1 2 7により演算処理 されるが、 この t sp/ T ¾出積算部 1 2 7は、 ファン風量情報に基づいて図 1 4 に示す各種データのうち、 人力されるファン風量情報に対応するデータを選択す る。 例えば、 ファン風量情報が GOOOrpm であるときには曲線 Eのデ一夕が選択 されて排気 C 0濃度に対応する危険到達時間 Tが求められ、 前記第一の三の実施 の形態と同様に t sp/ Tの演算と、 各サンプリング時毎の t sp/ Tの値の積算 が行われ、 その積算値が 1に達したときに C O安全動作が C O安全動作部 1 1 4 により行われる。  In the first fourth embodiment, similarly to the first third embodiment, the detected value of the exhaust C〇 concentration from the C 0 sensor 11 is sampled by the C 0 concentration sampling unit 125. The sampling value is subjected to arithmetic processing by the tsp / T calculation integration section 127, and the tsp / T output integration section 127 calculates various data shown in FIG. 14 based on the fan air volume information. Among them, the data corresponding to the fan air volume information to be manually input is selected. For example, when the fan air volume information is GOOOrpm, the data of the curve E is selected and the danger arrival time T corresponding to the exhaust C0 concentration is obtained, and as in the third embodiment, t sp / The calculation of T and the accumulation of the values of t sp / T at each sampling time are performed, and when the integrated value reaches 1, the CO safe operation is performed by the CO safe operation unit 114.
この実施の形態によれば、 排気量に対応するファン風量の変化を考慮するので、 前記第一の三の実施の形態と同様に精度の高い C O安全動作を行うことが可能と なる。 According to this embodiment, since a change in the fan airflow corresponding to the displacement is taken into account, it is possible to perform a highly accurate CO safety operation as in the first embodiment. Become.
前記の如く、 燃焼能力とファン風量は相関関係を冇し、 燃焼能力とファン風量 のいずれか一方の情報を川いて C O安全勁作を行うことにより、 C O安全動作の 精度を格段に高めることが可能となる。 つまり、 排気ガスの c〇濃度が同じ値で あっても、 燃焼能力やファン風量が異なると単位時問当たりの排気量が異なり、 排気ガスが室内に漏れた場合には、 燃焼能力やファン風量の大きさによって室内 の C Oガスによる汚染度は異なる。 従って、 燃焼能力やファン風量を無視して C 0安全動作を行う従来の方式では、 C O安全動作の ί度を βめることができない が、 上記各実施の形態においては燃焼能力あるいはファン風量を考慮して c〇安 全動作を行うようにしているので、 C O安全動作の精度を高めることができると 共に、 C〇安全動作の^顿性を卨めることができるのである。  As described above, there is a correlation between the combustion capacity and the fan airflow, and the accuracy of the CO safe operation can be significantly improved by performing information on either the combustion capacity or the fan airflow and performing CO safety operations. It becomes possible. In other words, even if the c〇 concentration of the exhaust gas is the same, if the combustion capacity and the fan air volume are different, the exhaust volume per unit time will be different. If the exhaust gas leaks indoors, the combustion capacity and the fan air volume will be different. The degree of contamination by indoor CO gas varies depending on the size of the room. Therefore, in the conventional method of performing the C0 safe operation ignoring the combustion capacity and the fan airflow, the intensity of the CO safe operation cannot be reduced by β. However, in the above embodiments, the combustion capacity or the fan airflow is reduced. Considering this, the c-safe operation is performed, so the accuracy of the CO safe operation can be improved and the safety of the C-safe operation can be improved.
なお、 本 明は上記各実施の形態に限定されることはなく、 様々な実施の形態 を採り得る。 例えば、 上 各突施の形態ではバ一ナ 4 ( 4 a , 4 b ) を ^面燃焼 させる場合を想定して説明したが、 凶 1 6に小すように、 パーナ 4の燃焼面を複 数段燃焼式としたものでもよい。 この祓数段燃焼式のパーナは、 燃焼 [fijを複数段 (図 1 6では 2段) に区分し、 電磁弁 2 l a , 2 1 bを切り替えて要求燃焼能力 に応じ、 A面を燃焼させたり、 A面と Β ίΏίを同時燃焼させたりするものである。 このような複数段燃焼式パーナを用いる場合には、 フアン風量情報を用いて C 0 安全動作を行う方式は特に望ましい結果を得る。  Note that the present invention is not limited to the above embodiments, and various embodiments can be adopted. For example, in the above embodiments, the burner 4 (4 a, 4 b) is assumed to be burnt in the plane, but the burning surface of the burner 4 is duplicated so as to reduce the size of the burner to 16. A multi-stage combustion type may be used. This exfoliating burner type burner divides fij into multiple stages (two stages in Fig. 16) and switches solenoid valves 2 la and 21 b to burn the A side according to the required combustion capacity. Or to burn the A side and ίΏί 同時 at the same time. When such a multi-stage burner is used, the method of performing the C 0 safe operation using the fan air volume information provides particularly desirable results.
すなわち、 例えば、 Α ίϋίのみが燃焼している場合にも、 ファン 2からパーナ 4 の Β面に対しても空気が供給され続けられる状態となり、 Α面の単独燃焼から A 面と B面の同時燃焼へ燃焼面が切り替わったときにおいても排気側の単位時間当 たりの排気量に大きな変化がなく、 このパーナ燃焼面切り替えによる影響を受け ることなく C O安全動作を行わせることができる。 もちろん、 燃焼能力を考慮し た C O安全動作においても、 燃焼面切り @え時に支障をきたすような大きな影響 を受けることはないので、 特に問題はない。  That is, for example, even when only Α ίϋί is burning, the air can be continuously supplied from the fan 2 to the Β side of the parner 4. Even when the combustion surface is switched to combustion, there is no significant change in the exhaust volume per unit time on the exhaust side, and the CO safe operation can be performed without being affected by the change of the burner surface. Of course, there is no particular problem in the safe operation of CO in consideration of the combustion capacity, since there is no significant effect that would hinder combustion cutoff.
また、 上記各実施の形態では室内に居る人が C 0中毒の危険状態になる判断基 準値を室内 C O濃度で規定したが、 それ以外に、 人の血中ヘモグロビンに取り込 まれる C Oの量、 つまり血中ヘモグロビン C O濃度の値によって規定してもよい。 この場合は血中ヘモグロビン C O濃度が危険判断基準値(例えば 10% ) に達する ときに C O中毒の危険状態になるものと推定し、 血中へモグロビン C O濃度が危 険判断基準値に達する時問を危険到達時間 τとする。 そして、 燃焼能力ごとある t、は排気量即ちファン風量ごとに区分して各排気 C 0濃度に対応する危険到達時 間 Tの相関関係デ一夕を作成してデ一夕メモリ 1 1 2に与えればよい。 In each of the above embodiments, the standard value for determining the risk of C0 poisoning in a room is defined by the CO concentration in the room, but in addition to that, the amount of CO taken into the blood hemoglobin of a person is also specified. It may be defined by the amount, that is, the value of blood hemoglobin CO concentration. In this case, it is presumed that when the blood hemoglobin CO concentration reaches the danger criterion value (for example, 10%), a dangerous state of CO poisoning occurs, and the blood hemoglobin CO concentration reaches the danger criterion value. Is the danger arrival time τ. Then, t for each combustion capacity is divided for each exhaust gas amount, that is, fan air flow, and a correlation data of the danger arrival time T corresponding to each exhaust CO concentration is created and stored in the data memory 112. Just give it.
さらにヒ記実施の形態では、 燃焼能力を考慮する場合には、 図 1 2に示すデー 夕の如く、 各燃焼能力ごとに排気 C O濃度と危険到達時間 Tの相関関係データが - えられたが、 これとは異なり、 代表的な 1つの燃焼能力についてのみ相関関係 デ一夕を与えるようにしてもよい。 この場合は、 他の燃焼能力についての危険到 违時問 τは、 その代表の相関関係を用いて求めた危険到達時間 τに子め与えた補 iH係数を掛けることによって求めることができる。 なお、 補正係数は代表の燃焼 能力と実際の運転状態の燃焼能力 (入力される燃焼能力' 報) との能力差に対応 する -位時間当たりの排気 aの ¾又は比に応じた値として与えればよい。  Furthermore, in the embodiment described above, when the combustion capacity is considered, as shown in the data of FIG. 12, correlation data between the exhaust CO concentration and the dangerous arrival time T was obtained for each combustion capacity. Alternatively, a correlation may be given for only one representative combustion capacity. In this case, the danger arrival time τ for other combustion capabilities can be obtained by multiplying the danger arrival time τ obtained using the representative correlation by the supplementary iH coefficient given. The correction coefficient corresponds to the difference between the representative combustion capacity and the combustion capacity in the actual operating state (input combustion capacity report).-The correction coefficient is given as a value corresponding to the a or ratio of exhaust a per unit time. I just need.
同様に、 ファン風量を考慮する場合も、 代表的な 1つのファン風量についての み排気 C O濃度と危険到) S時問 Tの相関関係データが与えられてもよい。 この場 合、 他のファン風量の排気 C O濃度に対する危険到達時問 Tは、 代表のファン風 量の相関関係デ一夕に基づいて求めた危険到達時間 τに予め与えられる補正係数 を掛けて求めることができる。 この補正係数も、 代表のファン風量と実際の運転 状態のファン風量 (入力されるファン風量情報) の差に対応する単位時問当たり の排気量の差又は比に応じた俯として与えればよい。  Similarly, when the fan airflow is considered, the correlation data of the exhaust gas CO concentration and the dangerous time T may be given only for one representative fan airflow. In this case, the danger arrival time T for the exhaust CO concentration of the other fan airflow is obtained by multiplying the danger arrival time τ obtained based on the correlation of the representative fan airflow by a correction coefficient given in advance. be able to. This correction coefficient may also be given as a depression according to the difference or ratio of the exhaust air volume per unit time corresponding to the difference between the representative fan air volume and the fan air volume in the actual operating state (input fan air volume information).
[第二の実施の形態]  [Second embodiment]
次に、 C Oセンサの検出する排気ガスの C O濃度に加えて、 室内容積を考慮し た C 0安全動作を行う第二の実施の形態における燃焼機器について説明する。 図 1 7は、 第二の一の実施の形態における C O安全動作を行う燃焼機器の制御手段 の制御機能ブロック図である。 制御手段は、 室内 C O濃度推定演算部 2 1 2と、 燃焼時間計測手段 2 1 3と、 C O安全動作部 2 1 4とを有している。  Next, a description will be given of a combustion device according to a second embodiment that performs a C0 safe operation in consideration of the indoor volume in addition to the C0 concentration of the exhaust gas detected by the C0 sensor. FIG. 17 is a control function block diagram of control means of a combustion device for performing a CO safe operation in the second embodiment. The control means has an indoor CO concentration estimation calculating section 2 12, a combustion time measuring section 2 13, and a CO safe operation section 2 14.
前記室内 C O濃度推定演算部 2 1 2は、 C Oセンサ 1 1によって検出される排 気ガス中の C O濃度の情報に基づき、 排気ガスの全量が室内に漏れたと仮定した ときの室内 C O濃度を、 燃焼機器の燃焼時問と室内の容積とをパラメ一夕に含む 予め与えられる演算式によって求める。 The indoor CO concentration estimation calculation unit 2 12 calculates the indoor CO concentration based on the information on the CO concentration in the exhaust gas detected by the CO sensor 11 assuming that the entire amount of the exhaust gas has leaked into the room. Include the combustion time of the combustion equipment and the volume of the room in the parameters It is determined by an arithmetic expression given in advance.
この演算式は、 次の ( 1 ) によって与えられ、 この演算式は演算部 2 1 2の内 部のメモリ等に予め格納されている。  This arithmetic expression is given by the following (1), and this arithmetic expression is stored in advance in a memory or the like inside the arithmetic unit 212.
C room= ( Q 3 X C ext / n V ) { 1 -exp (- n t ) } ( 1 ) この式で、 C roomは室内 CO濃度 (ppm ) 、 Q 3 は総排気ガス量 (m3 / h) 、 Xは排気ガスの総量 (全量) のうち室内に漏れる排気ガス量の割合、 C ext は排気ガス中の CO濃度 (ppm ) 、 nは換気扇等による換気率、 Vは室内の容積 (m3 ) 、 tは燃焼時間をそれそれ示している。 なお、 換気率 nは n二 Q 1 /V であり、 ここに Q 1 は換気扇による排出空気量 (m:i /h) であり、 Q 1 は Q 1 =Q 0 +Q 3 Xの関係式によって与えられる。 ここで、 Q 0 は室内流入空気量 (m 3 /h) である。 C room = (Q 3 XC ext / n V) {1 -exp (-nt)} (1) In this equation, C room is the indoor CO concentration (ppm), and Q 3 is the total exhaust gas amount (m 3 / h ), X is the ratio of the amount of exhaust gas leaking into the room out of the total amount of exhaust gas (total amount), C ext is the CO concentration (ppm) in the exhaust gas, n is the ventilation rate with a ventilation fan, etc., and V is the volume of the room (m 3 ), t indicates the combustion time. Note that the ventilation rate n is n 2 Q 1 / V, where Q 1 is the amount of air exhausted by the ventilation fan (m : i / h), and Q 1 is the relational expression of Q 1 = Q 0 + Q 3 X Given by Here, Q 0 is the amount of air flowing into the room (m 3 / h).
上記 ( 1 ) 式に されるとおり、 定性的には、 ¾内容積 Vが大きいときは、 室内 C 0濃度 C roomは、 小さくなり、 室内容積 Vが小さいときは、 室内 CO濃 度 C roomは大きくなる。  As expressed by the above equation (1), qualitatively, ¾When the internal volume V is large, the indoor C 0 concentration C room becomes small, and when the indoor volume V is small, the indoor CO concentration C room becomes growing.
図 1 8は、 この ( 1 ) 式の演算に関しての室内のモデル である。 同図におい て、 2 1 5は燃焼機器に外部から空気を導入するための空気吸入管であり、 2 1 6は煙突 2 1 0の途中に生じた欠陥部 2 1 6を示し、 燃焼機器からの排気ガスが その欠陥部 2 1 6から室内に漏れている状態を示す。  Fig. 18 shows a model of the room for the calculation of equation (1). In the figure, reference numeral 215 denotes an air intake pipe for introducing air from outside to the combustion equipment, and reference numeral 216 denotes a defective portion 216 generated in the middle of the chimney 210. This shows a state in which the exhaust gas leaks from the defective portion 2 16 into the room.
前記 ( 1 ) 式において、 Q 3 , X, n, V等のパラメ一夕は既知データとして 与えられる。 また、 C ext は COセンサ 1 1によって排気ガス中の C〇濃度とし て検出される。 さらに、 燃焼時間 tは夕イマやクロック等の燃焼時問計測手段 2 1 3によって計測されて、 既知の値として得られる。  In the above equation (1), parameters such as Q 3, X, n, V, etc. are given as known data. C ext is detected by the CO sensor 11 as the concentration of C〇 in the exhaust gas. Further, the combustion time t is measured by a combustion time measuring means 2 13 such as a clock or a clock, and is obtained as a known value.
室内 CO濃度推定演算部 2 1 2は、 COセンサ 1 1から検出される排気ガス中 の CO濃度の情報と、 燃焼時間計測手段 2 1 3によって計測される燃焼時間 tの 値を取得して、排気ガスが室内に漏洩したと仮定したときの室内 CO濃度 C room を算出する。 なお、 この計算において、 安全性を見込み、 排気ガスの全量が室内 に漏れたと仮定し、 X-1.0 の条件の下で、 室内 CO濃度 C room が算出され、 その演算結果が CO安全動作部 2 1 4に与えられる。  The indoor CO concentration estimation calculation section 2 1 2 acquires information on the CO concentration in the exhaust gas detected from the CO sensor 1 1 and the value of the combustion time t measured by the combustion time measuring means 2 1 3, Calculate the indoor CO concentration C room when it is assumed that the exhaust gas has leaked into the room. In this calculation, assuming safety, and assuming that all the exhaust gas leaked into the room, the indoor CO concentration C room was calculated under the condition of X-1.0, and the calculation result was the CO safe operation unit 2. Given to 14.
CO安全動作部 2 14には予め室内 CO濃度の危険判断 準値 C th が例えば O 98/02693 For example, the CO safety operation section 214 preliminarily contains the dangerous value C th for indoor CO concentration O 98/02693
300 ppm の値で与えられている。 そして、 C O安全動作部 2 1 4はこの危険判断 基準値 C thと室内 C O濃度推定演算部 2 1 2で-!?出された値 C roomとを比較し、 室内 C 0濃度 C roomの値が危険判断基準値 C thに達したときにバーナヘの燃料 遮断 (パーナに供給するガス通路に設けた弁の遮断) などの、 C Oに対する安全 動作が行われる。 Given at a value of 300 ppm. Then, the CO safe operation unit 2 14 uses this danger judgment reference value C th and the indoor CO concentration estimation calculation unit 2 12-! Compare the output value C room with the room C 0 concentration. When the value of the room C room reaches the danger criterion value C th, shut off the fuel to the burner (cut off the valve provided in the gas passage to supply to the parner). And other safe actions against CO.
なお、 この C Oに対する安全動作としては、 危険判断基準値を複数段設け、 例 えば、 演算により求められた室内 C O濃度が第 1段の危険判断基準値に達したと きにはファン 2の回転を増加させて空気量を増やし、 パーナ 4の燃焼改善を行い、 それにもかかわらず、 室内 C O濃度推定演算部 2 1 2により算出される室内 C O 濃度 C room の ίι¾が第 2段の危険判断基準値に達したときに燃料遮断を行う等、 室内 C 0濃度の値に対応した複数の C◦安全動作を行わせることが可能である。 次に、 本発明の 二の一の実施の形態を図 1 9に. ½づいて説明する。 この図 1 9に示す実施の形態の制御手段は、 排気ガス C O 度サンプリング部 2 1 7と、 t spZ T ^出積算部 2 1 8と、 計機構 2 2 0と、 デ一夕メモリ 2 2 1と、 C O 安全動作部 2 1 4とをおしている。 排気ガス C 0濃度サンプリング部 2 1 7は、 予め与えられる所定の 位サンプリング時問 t sp を単位として燃焼開始後 C〇 センサ 1 1からの排気ガス屮の C 0濃度 C ext をサンプリングする。具体的には、 C O濃度サンプリング部 2 1 7は、 サンプリング時問を例えば 10 秒に設定し、 1秒毎に C Oセンサ 2 1 1の検出情報を取得し、 その 均値を求めて単位サンプ リング時間当たりの排気ガス中の C O濃度の値として確定する。 なお、 このサン プリングの夕ィ ミングはタイマやクロ 'ソク等によって構成される時計機構 2 2 0 の信号に基づき行われる。  As a safe operation for this CO, multiple levels of danger criteria are provided.For example, when the indoor CO concentration calculated by calculation reaches the first level danger criteria, the fan 2 is rotated. Nevertheless, the air amount was increased to improve the combustion of PANA4. Nevertheless, the 室内 ι 推定 of the indoor CO concentration C room calculated by the indoor CO concentration It is possible to perform a plurality of C • safe operations corresponding to the indoor C0 concentration value, such as performing fuel cutoff when the value reaches the value. Next, a second embodiment of the present invention will be described with reference to FIG. The control means of the embodiment shown in FIG. 19 includes an exhaust gas CO degree sampling section 2 17, a t spZ T ^ output integration section 2 18, a meter mechanism 2 20, and a data memory 2 2 1 and the CO safety operation section 2 1 4. The exhaust gas C 0 concentration sampling unit 2 17 samples the C 0 concentration C ext of the exhaust gas blown from the C〇 sensor 11 after the start of combustion in units of a predetermined sampling time t sp given in advance. Specifically, the CO concentration sampling unit 217 sets the sampling time to, for example, 10 seconds, acquires the detection information of the CO sensor 211 every second, obtains the average value, and obtains the unit sampling. Determined as the value of CO concentration in exhaust gas per hour. This sampling is performed based on a signal of a clock mechanism 220 constituted by a timer, a clock, and the like.
デ一夕メモリ 2 2 1には、 図 2 0に示すような時間 Tと排気ガス中の C O濃度 C ext との関係デ一夕が与えられている。 このデータの縦軸の時間 Tは C 0濃度 C ext の排気ガスが室内に漏洩したときに、 室内 C O濃度 C roomが予め与えら れる危険判断基準値 C thに達するのに要する時間を示している。例えば、 C extl の C O濃度の排気ガスが室内に漏洩したときには、 T 1 の時間で危険判断基準値 C th (例えば 300 ppm ) に達することを示しており、 同様に、 C ext2の C 0濃 度の排気ガスが室内に漏洩したときには、 時間 T 2 経過したときに、 室内 C O濃 度 C roomは危険判断基準値 C thに達することを示している。 The data memory 221 provides a data relationship between the time T and the CO concentration C ext in the exhaust gas as shown in FIG. The time T on the vertical axis of this data indicates the time required for the indoor CO concentration C room to reach the predetermined danger criterion value C th when the exhaust gas with the C 0 concentration C ext leaks into the room. I have. For example, when the exhaust gas with the CO concentration of C extl leaks into the room, it indicates that the dangerous judgment reference value C th (for example, 300 ppm) is reached in the time of T 1, and similarly, the C 0 concentration of C ext2 is shown. When the exhaust gas leaks into the room, the indoor CO The degree C room indicates that the danger criterion value C th is reached.
この図 2 0に示すグラフデ一夕は、 演算あるいは実験により求められる。 演算 により求める場合は、 前記 ( 1 ) 式を用い、 この ( 1 ) の C roomの値に C thを 代入し、 C ext の値に C extlを代入して tを求めることにより、 t = T 1 が求 められる。 同様に、 C ext の他に C ext2を代人することにより、 t = T 2 が求 められる。 このように、 一定の各 C O濃度の排気ガスが室内に漏れたと仮定した ときに、室内 C 0濃度 C roomが危険判断基準 ίιίί C thに達する時問 Tが求められ、 これをグラフ化すれば、 図 2 0のデータが得られる。  The graph shown in FIG. 20 is obtained by calculation or experiment. In the case of obtaining by calculation, t is obtained by substituting C th into the value of C room and substituting C extl into the value of C ext to obtain t using the equation (1). 1 is required. Similarly, t = T 2 is obtained by substituting C ext2 in addition to C ext. In this way, when it is assumed that exhaust gas with a certain CO concentration leaks into the room, the time T when the room C 0 concentration C room reaches the danger criterion ίιίί C th is obtained. The data of FIG. 20 is obtained.
h記した式 ( 1 ) から明らかなとおり、 室内容積 Vが大きいときは、 時間 Tは 長くなり、 室内容積 Vが小さいときは、 時間 Tは短くなる。 即ち、 図 2 0中破線 が容積 Vがより大きい場合のデータである。  As is clear from equation (1) described above, when the room volume V is large, the time T becomes long, and when the room volume V is small, the time T becomes short. That is, the broken line in FIG. 20 is the data when the volume V is larger.
図 2 0のデータを実験により求める場合には、 室内に C 0センサを別途設けて おき、 例えば、 -定濃度 C extlの排気ガスを室内に漏浊させたときに、 室内の C ◦センサが危険判断基準値 C thに^する時問 T 1 を¾測する。 この操作を排気 ガスの C O濃度を変えて各〇〇¾¾度に対応する時問 Tを測定することにより、 同 様に図 2 0に示すようなデータが ί られ、 これらのデータがデータメモリ 2 2 1 に格納される。  If the data in Fig. 20 is to be obtained by experiment, a C0 sensor should be provided separately in the room.For example, when exhaust gas with a constant concentration C extl is leaked into the room, the C Measure the risk T 1 when changing to the danger criterion value C th. This operation is performed by measuring the time T corresponding to each temperature while changing the CO concentration of the exhaust gas, and similarly, data as shown in FIG. 20 is obtained. 2 Stored in 1.
t sp/ Τ算出積算部 2 1 8は、排気ガス C 0濃度サンプリング部 2 1 7から入 力される単位サンプリング時問 t sp を単位として検出された排気ガス中の C 0 濃度の値を取得し、 t sp/ Tの値を^出する。 ここで、 時間 Tはデータメモリ 2 2 1に格納されている図 2 0に示すデ一夕を用いて求められるもので、 C Oセン サ 2 1 1によって検出される C O濃度 C extの排気ガスが室内に漏れたと仮定し たときに、 室内 C O濃度が危険判断基準 iifi C thに達する時間 Tである。そして、 サンプリング時間 t spをこの危険判断基準値に達する時間 Tで割ることにより、 その時間 Tに対するサンプリング時問 t spの割合が求められる。 この t sp/ T の値は、 安全な時間 Tのうち t sp/ Tの割合が費やされ、 安全な割合が ( 1— t sp/ T ) しか残されていないことを意味する。 換言すれば、 室内 C O濃度が危険 判断基準値に達する時間 Tのうち、 t spが費やされたこととなり、残りの安全の 時間は T— t spの時間しか残されていないことを意味する。 t sp/T算出積算部 2 18は、 最初のサンプリング時間において、 t sp/T を求め、 次のサンプリング時間のときにも、 排気ガス中の CO濃度の検出デ一夕 によって求まる t sp/Tを算出すると共に、 この!?出値を前回のサンプリング時 に求めた t sp/Tに加算し、 その積算値を求める。 このようにして、 t sp/T 算出積算部 2 1 8は サンプリング時間において求められる t sp/Tの値を各 サンプリング時間毎に次々に積算していく。 ί列えば、 第 1回目のサンプリング時 に t sp/T 1 が求められた場合、 次のサンプリング時間で t sp/T 2 が求めら れたときには、 積!?値として t sp/T 1 + t sp/T 2 の値が積算値として求め られる。 また、 第 3回目のサンプリング時問において t sp/T 3 が求められた ときには、 積算値は t sp ( l/T l + 1/T 2 + 1/T 3 ) となり、 このよう に、 t sp/T算出積算部 2 18は各サンプリング時毎に求められる t sp/Tの 値を積算していき、 その桢箅結果を CO安全勅作部 2 14に与える。 The t sp / Τ calculation integration unit 2 18 obtains the value of the C 0 concentration in the exhaust gas detected using the unit sampling time t sp as a unit input from the exhaust gas C 0 concentration sampling unit 2 17 And return the value of t sp / T. Here, the time T is obtained using the data shown in FIG. 20 stored in the data memory 222, and the exhaust gas having the CO concentration C ext detected by the CO sensor 211 is obtained. This is the time T when the indoor CO concentration reaches the danger criterion iifi Cth, assuming that it has leaked into the room. Then, by dividing the sampling time t sp by the time T required to reach the danger criterion value, the ratio of the sampling time t sp to the time T is obtained. This value of t sp / T means that the proportion of t sp / T in the safe time T is spent, leaving only (1— t sp / T) of the safe rate. In other words, out of the time T when the indoor CO concentration reaches the danger criterion value, tsp is spent, and the remaining safety time means only T-tsp time is left. . The t sp / T calculating and integrating unit 218 calculates t sp / T at the first sampling time, and also at the next sampling time, t sp / T calculated by detecting CO concentration in exhaust gas. And calculate this! ? The output value is added to t sp / T calculated at the previous sampling, and the integrated value is calculated. In this way, the t sp / T calculation integration section 218 sequentially integrates the value of t sp / T obtained at the sampling time for each sampling time. In other words, if t sp / T 1 is found during the first sampling, and if t sp / T 2 is found at the next sampling time, the product! ? The value of t sp / T 1 + t sp / T 2 is obtained as the integrated value. Also, when t sp / T 3 is obtained at the time of the third sampling, the integrated value is t sp (l / T l + 1 / T 2 + 1 / T 3). The / T calculation and integration unit 218 integrates the value of t sp / T obtained at each sampling time, and gives the result to the CO safety work unit 214.
CO安全動作部 2 14は、 t sp/T算出楨算部 2 18から与えられる積算結果 を監視し、 その積算値が予め定めた設定値の例えば、 1.0 に達したときに室内 C 0濃度 C roomが予め設定した危険判断基準値 C thに達したものと判断し、 バー ナ 4へのガス遮断等の CO安全動作を行う。  The CO safety operation unit 214 monitors the integration result given from the tsp / T calculation and calculation unit 218, and when the integrated value reaches a predetermined set value, for example, 1.0, the indoor C 0 concentration C Judge that the room has reached the danger judgment reference value C th set in advance, and perform CO safe operation such as shutting off gas to burner 4.
本発明の実施の形態によれば、 COセンサにより検出される CO濃度の排気ガ スが室内に漏れたと仮定したときに、 その室内 C 0濃度が室内容積を考慮した演 算式によって求められる。  According to the embodiment of the present invention, when it is assumed that the exhaust gas having the CO concentration detected by the CO sensor has leaked into the room, the indoor C0 concentration is obtained by an arithmetic expression in consideration of the indoor volume.
排気ガス中の CO濃度を室内容積を考慮した室内 CO濃度に変換算出する演算 式 ( 1 ) は極めて簡易な形態で与えることができるので、 その演算に大型のコン ビュー夕を必要とせずに、 燃焼機器の制御装置 6に搭載されるマイクロコンビュ 一夕を用いて十分に正確な計算を行うことが可能となり、 これによりきめ細かな C 0ガスに対する安全動作を行うことができる。 しかも、 CO安全動作は実際の 室内 CO濃度の値を用いて行うことができるので、 CO安全動作の精度が高まり、 その C 0安全動作の信頼性も万全となる。  The calculation formula (1) for converting and calculating the CO concentration in the exhaust gas to the indoor CO concentration taking into account the indoor volume can be given in an extremely simple form, so that the calculation does not require a large-scale view. It is possible to perform a sufficiently accurate calculation using the micro-computer installed in the control device 6 of the combustion equipment, thereby performing a fine-grained safe operation with respect to C0 gas. Moreover, since the CO safe operation can be performed using the actual indoor CO concentration value, the accuracy of the CO safe operation is improved, and the reliability of the C0 safe operation is also thorough.
なお、 本発明は上記実施の形態に限定されることはなく、 様々な実施の形態を 採り得るものである。 例えば、 上記実施の形態では、 排気ガス中の CO濃度の値 から室内 C◦濃度が危険判断基準値に達する時間 Tを求めるデータを図 20に示 す如くグラフデータの形態としたが、 このデ一夕は、 表デ一夕、 演算式デ一夕等 の所望の形態で与えることが可能である。 It should be noted that the present invention is not limited to the above embodiment, but can adopt various embodiments. For example, in the above embodiment, FIG. 20 shows data for calculating the time T at which the indoor C◦ concentration reaches the danger determination reference value from the value of the CO concentration in the exhaust gas. As described above, the graph data is in the form, but the data can be given in a desired form such as a table, an arithmetic expression, or the like.
[第三の突施の形態]  [Third pier form]
次に、 C Oセンサの検出する排気ガスの C O濃度に加えて、燃料ガスの種類(ガ ス種) を考慮した C O安全動作を行う第三の実施の形態における燃焼機器につい て説明する。  Next, a description will be given of a combustion device according to a third embodiment that performs a CO safe operation in consideration of the type of fuel gas (gas type) in addition to the CO concentration of the exhaust gas detected by the CO sensor.
図 2 1は、 第三の の実施の形態における C O安全動作を行う燃焼機器の制御 手段の制御機能ブロック図である。 制御手段は、 データメモリ 3 1 2と、 ガス種 設定手段 3 0 9と、 燃焼時問針測手段 3 1 3と、 C 0安全動作部 3 1 4とを有し ている。  FIG. 21 is a control function block diagram of control means of a combustion device for performing a CO safe operation in the third embodiment. The control means has a data memory 312, a gas type setting means 309, a combustion interrogation measuring means 313, and a C0 safe operation section 314.
ガス種設定手段 3 0 9は、 使用するガス種を設定するものであり、 例えば、 タ ク トスィ ツチ等を複数設け、 &タク トスィツチにより使用するガス稀を設定して もよいが、 この実施の形態では通常の給湯器等に設けられているガス種切り替え スィッチがガス種設定手段として用いられる。 このガス揷設定手段は、 13 A, 12 A , L 1 ( 6 B , 6 C , 7 A ) , L 2 ( 5 A , 5 B , 5 A N ) , L 3 ( 4 A , 4 B , 4 C ) , 6 A , 5 C, L P G等の使用ガス種をスィッチ操作により選択設定 する。  The gas type setting means 309 sets the type of gas to be used.For example, a plurality of tact switches may be provided, and the rare gas to be used may be set by the & tact switch. In the embodiment, a gas type switching switch provided in a normal water heater or the like is used as gas type setting means. This gas 揷 setting means includes 13 A, 12 A, L 1 (6 B, 6 C, 7 A), L 2 (5 A, 5 B, 5 AN), L 3 (4 A, 4 B, 4 C). ) Select the gas type such as 6A, 5C, LPG etc. by switch operation.
デ一夕メモリ 3 1 2には、 図 2 2に示すような排気 C〇濃度と危険到達時間 T との相関関係をガス極ごとに分けたデータが与えられている。 この図 2 2のグラ フデータの横軸は排気ガスの C O濃度を示しており、 縦軸は排気ガスが室内に漏 れて室内 C 0濃度が C 0中毒の危険状態の判断基準値である危険判断基準値の 300 ppm に達する危険到達時間 Tを示している。グラフ中の曲線 Aは L 1のガス 種を示し、 曲線 Bは 13 Aのガス種、 曲線 Cはプロパンのガス種をそれぞれ一例 として示してある。  The data memory 312 is provided with data obtained by dividing the correlation between the exhaust C〇 concentration and the dangerous arrival time T for each gas electrode as shown in FIG. The horizontal axis of the graph data in Fig. 22 indicates the CO concentration of the exhaust gas, and the vertical axis indicates the risk that the exhaust gas leaks into the room and the indoor C0 concentration is the reference value for the dangerous state of C0 poisoning. The danger arrival time T, which reaches the judgment reference value of 300 ppm, is shown. Curve A in the graph shows the L1 gas type, curve B shows the 13A gas type, and curve C shows the propane gas type.
このグラフに示すように、 排気ガス中の C 0濃度が同じであっても、 室内 C O 濃度が危険判断基準値である 300 ppm に達するまでの時間はガス種によって異 なる。 本実施の形態では、 室内 C O濃度の危険判断基準値を 300 ppm とし、 各 C 0濃度の排気ガスが室内に漏れたと仮定したときに室内 C 0濃度が危険判断基 準値に達する危険到達時間がガス種ごとに分けてデ一夕メモリ 3 1 2に与えられ る。 なお、 この排気 C O濃度と危険到達時間との関係を示すデータはグラフデ一 夕以外に、 表デ一夕、 演算式デ一夕等で与えることはもとより可能である。 As shown in this graph, even if the CO concentration in the exhaust gas is the same, the time required for the indoor CO concentration to reach the hazardous judgment reference value of 300 ppm differs depending on the gas type. In this embodiment, the danger criterion value for the indoor CO concentration is 300 ppm, and the danger arrival time at which the indoor C0 concentration reaches the danger criterion value when it is assumed that exhaust gas of each C0 concentration has leaked into the room. Is given to memory 3 1 2 You. The data showing the relationship between the exhaust CO concentration and the dangerous arrival time can be given not only from the graph data, but also from the table data and the calculation formula data.
C O安全動作部 3 1 4は、 C Oセンサ 1 1から排気ガスの C O濃度の検出情報 を取得すると共に、 ガス極設定手段 3 0 9から使 fflガス種の情報を取得する。 さらに、 C O安全動作部 3 1 4は、 このガス種情報と前記 C Oセンサ 1 1から 入力される排気ガス中の C O濃度の情報に基づき、 デ一夕メモリ 3 1 2に格納さ れている図 2 2に示すデータから、 排気ガスが宰内に漏れた場合に室内 C O濃度 が危険判断基準倘となる危険到達時間 Tを取得する。  The CO safe operation section 314 obtains the detection information of the CO concentration of the exhaust gas from the CO sensor 11 and also obtains the information of the used fll gas from the gas electrode setting means 309. Further, the CO safe operation section 3 14 stores the data stored in the memory 3 12 based on the gas type information and the information of the CO concentration in the exhaust gas input from the CO sensor 11. 22 From the data shown in 2, obtain the danger arrival time T when the indoor CO concentration becomes the danger criterion 倘 when the exhaust gas leaks into the house.
そして、 C O安全動作部 3 1 4は、 燃焼時間計測手段 3 1 3からの燃焼開始時 からの燃焼経過時問をモニタし、 燃焼時間が危険到達時間 Tになったときに室内 C〇濃度は危険判断基 俯に したものと判断して燃焼運転停止等の安全動作を 行う。  Then, the CO safety operation section 314 monitors the progress of combustion from the start of combustion from the combustion time measuring means 313, and when the combustion time reaches the danger arrival time T, the indoor C〇 concentration is reduced. Hazard judgment base Judgment is made that the vehicle has been lowered, and safety operations such as stopping the combustion operation are performed.
この実施の形態によれば、 図 2 2に示すように、 排気 C 0濃度に対応する危険 到達時問 Tが各ガス稀:ごとに分けて与えられ、 使用ガス ffiの情報と C Oセンサ 1 1で検出される排気 C O S度の' 報に基づき危険到達時問 Tが求められて C 0安 全動作が行われる。 従って、 各排気 C O濃度とガス稀.に応じて適切な危険到達時 間 Tが得られ、 C O安全動作の精度を格段に高めることが nj能となり、 室内 C O 濃度が危険濃度に達しないにもかかわらず、 燃焼停止がされてしまうという誤動 作を防止することができる。  According to this embodiment, as shown in FIG. 22, the danger arrival time T corresponding to the exhaust C 0 concentration is given separately for each gas rare: information on the used gas ffi and the CO sensor 11 The danger arrival time T is obtained based on the information on the exhaust COS degree detected at step C, and the C0 safety operation is performed. Therefore, an appropriate danger arrival time T can be obtained according to each exhaust CO concentration and rare gas, and the accuracy of the safe CO operation can be significantly improved by the nj function, and even if the indoor CO concentration does not reach the dangerous concentration. Regardless, it is possible to prevent a malfunction that combustion is stopped.
図 2 3は、 本 ¾明の第三の二の実施の形態における C O安全動作を行う燃焼機 器の制御手段の制御機能プロック図である。 本実施の形態における制御手段は、 排気ガスの C O濃度サンプリング部 3 2 5と、 t sp/ T算出積算部 3 2 7と、 時 計機構 3 2 6と、 デ一夕メモリ 3 1 2と、 C O安全動作部 3 1 4とを有している。  FIG. 23 is a control function block diagram of the control means of the combustion device that performs the CO safe operation in the third embodiment of the present invention. The control means in the present embodiment includes a CO concentration sampling section 325 for exhaust gas, a tsp / T calculation integration section 327, a clock mechanism 3226, a data memory 312, It has a CO safe operation section 3 14.
C O濃度サンプリング部 3 2 5は、 予め与えられる所定の単位サンプリング時 間 t sp を単位として燃焼開始後 C Oセンサ 1 1からの排気ガス中の C O濃度 C ext をサンプリングする。 具体的には、 C 0濃度サンプリング部 3 2 5は、 サン プリング時間を例えば 10 秒に設定し、 1秒毎に C〇センサ 1 1の検出情報を取 得し、 その平均値を求めて単位サンプリング時問当たりの排気ガス中の C O濃度 の値として確定する。 なお、 このサンプリングのタイミングは夕イマやクロック 等によって構成される時計機構 3 2 6の信号に基づき行われる。 The CO concentration sampling unit 325 samples the CO concentration C ext in the exhaust gas from the CO sensor 11 after the start of combustion in units of a predetermined unit sampling time t sp given in advance. Specifically, the C0 concentration sampling unit 3 25 sets the sampling time to, for example, 10 seconds, obtains the detection information of the C〇 sensor 11 every second, obtains the average value, and obtains the unit. Determine as the value of CO concentration in exhaust gas per sampling time. The timing of this sampling is This is performed based on the signal of the clock mechanism 3 26 constituted by the above.
デ一夕メモリ 3 1 2には前記第三の一の実施の形態と同様に図 2 2に示すよう なガス種ごとに分けた危険到達時間 Tと排気ガス中の C O濃度 C ext との関係 データが与えられている。  As in the third embodiment, the relationship between the dangerous arrival time T divided by gas type and the CO concentration C ext in the exhaust gas is shown in FIG. Data is given.
t sp/ T算出積算部 3 2 7は、 C O濃度サンプリング部 3 2 5から与えられる 単位サンプリング時間 t sp を 位として検出された排気ガス中の C O濃度の値 を取得し、 t sp/ Tの値を算出する。 ここで、 データメモリ 3 1 2に格納されて いる図 2 2に示すデータを用いて危険到達時問 Tが求められるとき、 この図 2 2 に示されるような各曲線のグラフデ一夕のうちのどのデータを使用するかは前記 第三の -の実施の形態と冋様にガス種設定手段 3 0 9から取り込まれる使用ガス 種情報に^づいて選択される。 例えば、 使用ガス稗:が 13 Aの場合には、 曲線 B のデータが選択され、 このデータに基づき危険到達時問 Tが求められる。  The t sp / T calculation integration unit 327 obtains the value of the CO concentration in the exhaust gas detected in units of the unit sampling time t sp given from the CO concentration sampling unit 3 25, and calculates the t sp / T Calculate the value. Here, when the danger arrival time T is obtained using the data shown in FIG. 22 stored in the data memory 3 1 2, the graph data of each curve shown in FIG. Which data is to be used is selected based on the used gas type information taken in from the gas type setting means 309 as in the third embodiment. For example, if the gas used is 13 A, the data of curve B is selected, and the danger arrival time T is calculated based on this data.
この危険到達時問 Tは、 前述した如く、 C〇センサ 1 1によって検出される C 0濃度 C ext の排気ガスが室内に漏れたと仮定したときに、 室内 C O濃度が例え ば 300 ppm の危険判断 準値 C thに jdする時 】である。 そして、 サンプリング 時間 t spをこの危険判断基準値に達する時 R^ Tで别ることにより、その時間丁に 対するサンプリング時間 t spの'釗合が求められる。 この t sp/ Tの値は、 安全 な時問 Tのうち t sp/ Tの割合が費やされ、 安全な'别合が ( l— t sp/ T ) し か残されていないことを意味する。 換言すれば、 室内 C 0濃度が危険判断基準値 に達する時間 Tのうち、 t spが費やされたこととなり、残りの安全の時間は T一 t spの時問しか残されていないことを意味する。  As described above, this danger arrival time T is, assuming that the exhaust gas with the C0 concentration Cext detected by the C〇 sensor 11 has leaked into the room, assuming that the indoor CO concentration is, for example, 300 ppm. Jd to the quasi-value C th]. Then, when the sampling time t sp is reached by R ^ T when the danger criterion value is reached, the sum of the sampling time t sp for that time point is obtained. This value of t sp / T means that the proportion of t sp / T in the safe time T is spent, leaving only (l- t sp / T) safe cases. I do. In other words, of the time T when the indoor C0 concentration reaches the danger criterion value, tsp is spent, and the remaining safety time is only T-tsp. means.
t sp/ T算出積算部 3 2 7は、 まず 15初のサンプリング時間において、 t sp Z Tを求め、 次のサンプリング時間のときにも、 排気ガス中の C O濃度の検出デ —夕によって求まる t sp/ Tを算出すると共に、 この算出値を前回のサンプリン グ時に求めた t sp/ Tに加算して積算値を求める。 このようにして、 t sp/ T 算出積算部 3 2 7は、 各サンプリング時問 t spにおいて求められる t sp/ Tの 値を各サンプリング時間毎に次々に積算していく。 例えば、 第 1回目のサンプリ ング時に排気 C〇濃度 C extlに対する T 1 により、 t sp/ T 1 が求められた場 合、 次のサンプリング時間で排気 C O濃度 C ext2に対する T 2 により、 t sp/ T 2 が求められ、 積算値として t sp/T 1 + t sp/T 2 の値が求められる。 ま た、 第 3回目のサンプリング時間において排気 CO濃度 C ext3に対する T 3 に より、 t sp/T 3 が求められたときには、積算値は t sp( 1 /T 1 + 1/Τ 2 + 1/Τ 3 ) となる。 このように、 t sp/T算出積算部 327は、 各サンプリン グ時毎に求められる t sp/Tの値を積算していき、その積算結果を CO安全動作 部 3 14に与える。 The t sp / T calculation integration unit 3 2 7 first calculates t sp ZT at the first sampling time of 15, and also at the next sampling time, detects the CO concentration in the exhaust gas. / T is calculated, and this calculated value is added to t sp / T obtained in the previous sampling to obtain an integrated value. In this way, the tsp / T calculation integration unit 327 sequentially integrates the value of tsp / T obtained at each sampling time tsp for each sampling time. For example, if t sp / T 1 is obtained by T 1 for exhaust C〇 concentration C extl during the first sampling, then t sp / T 1 is obtained by T 2 for exhaust CO concentration C ext2 at the next sampling time. T 2 is obtained, and the value of t sp / T 1 + t sp / T 2 is obtained as an integrated value. When t sp / T 3 is obtained from T 3 for the exhaust CO concentration C ext3 at the third sampling time, the integrated value is t sp (1 / T 1 + 1 / + 2 + 1 / Τ 3) As described above, the t sp / T calculation integration unit 327 integrates the value of t sp / T obtained at each sampling time, and provides the integration result to the CO safe operation unit 314.
C〇安全動作部 3 14は、 t sp/T算出積算部 327から与えられた積算結果 を監視し、 その積算値が予め定めた設定値の例えば 1.0 に達したときに室内 CO 濃度 C roomはチめ設定した危険判断基準値 C thに達したものと判断し、 パーナ 4へのガス遮断を行う等の CO安全動作を行う。  C〇 The safety operation unit 314 monitors the integration result given from the tsp / T calculation integration unit 327, and when the integrated value reaches a predetermined set value, for example, 1.0, the indoor CO concentration C room is Judge that the danger judgment reference value C th set in the above has been reached, and perform the CO safe operation such as shutting off the gas to Pana 4.
この第三の二の実施の形態によれば、 燃焼機器の燃焼遝転状態のガス種に対応 する排気 C 0濃度と危険到達時問 Tの関係データが選択され、 使用ガス種に即し たデ一夕に ¾づき、 COセンサ 1 1で検出される排気ガス中の CO濃度の値に応 じて t sp/Tがサンプリング時間ごとに演算されて次々に積算される。従って、 室内 C 0濃度が危険判断基準値に達する危険到達時間を正確に確定することがで き、 これにより、 CO安全動作の精度をより一層高めることが可能となる。  According to the third and second embodiments, data on the relationship between the exhaust CO concentration and the danger arrival time T corresponding to the gas type in the combustion operation state of the combustion equipment is selected, and is adapted to the gas type used. Over time, ts / T is calculated for each sampling time in accordance with the value of the CO concentration in the exhaust gas detected by the CO sensor 11, and integrated one after another. Therefore, it is possible to accurately determine the danger arrival time at which the indoor C0 concentration reaches the danger determination reference value, thereby further improving the accuracy of the CO safe operation.
なお、 本発明は上 各実施の形態に限定されることはなく、様々な実施の形態 を採り得る。 例えば、 上記各実施の形態では室内に居る人が CO中毒の危険状態 になる判断基準値を室内 CO濃度で規定したが、 それ以外に、 人の血中へモグロ ビンに取り込まれる COの量、 つまり血中ヘモグロビン C 0濃度の値によって規 定してもよい。 この場合は血中ヘモグロビン CO濃度が危険判断基準値 (例えば 10%) に達するときに CO中毒の危険状態になるものと推定し、 血中へモグロビ ン CO濃度が危険判断基準値に達する時間を危険到達時間 Tとする。 そして、 ガ ス種ごとに区分して各排気 C 0濃度に対応する危険到達時間 Tの相関関係デ一夕 を作成してデータメモリ 312に与えればよい。  Note that the present invention is not limited to the above embodiments, and various embodiments can be adopted. For example, in each of the embodiments described above, the criterion value for determining that a person in a room is at risk of CO poisoning is defined by the indoor CO concentration, but in addition to the above, the amount of CO taken into human blood by moglobin, That is, it may be specified by the value of the blood hemoglobin C0 concentration. In this case, it is assumed that when the blood hemoglobin CO concentration reaches the risk judgment reference value (for example, 10%), a dangerous state of CO poisoning will occur, and the time required for the blood hemoglobin CO concentration to reach the risk judgment reference value is estimated. Danger arrival time T Then, a correlation data of the danger arrival time T corresponding to each exhaust CO concentration may be created for each gas type and provided to the data memory 312.
さらに上記実施の形態では、 燃焼能力を考慮する場合には、 図 3に示すデータ の如く、 各ガス種ごとに排気 C 0濃度と危険到達時間 Tの相関関係データを与え たが、 これとは異なり、 代表的な 1つのガス種についてのみ相関関係データを与 えるようにしてもよい。 この場合は、 他のガス種についての危険到達時間 Tは代 衷ガス種の相関関係を用いて求めた危険到達時間 Tに予め与えた補正係数を掛け ることによって求めることができる。 なお、 補正係数は代表のガス種と実際の使 用ガス種との単位時間 ¾たりの排気量の差又は比に応じた値として えればよい ( さらに、 代表のガス櫂は排気ガス成分による検出出力値を考慮して任意に定めた ガス種グループごとに与えてもよい。 Further, in the above embodiment, when the combustion capacity is considered, correlation data between the exhaust CO concentration and the dangerous arrival time T is given for each gas type as shown in the data of FIG. Alternatively, correlation data may be provided for only one representative gas type. In this case, the danger arrival time T for other gas types is It can be obtained by multiplying the danger arrival time T obtained using the correlation of the gaseous species by a correction coefficient given in advance. The correction coefficient may be set to a value corresponding to the difference or ratio of the displacement between the representative gas type and the actual gas type used per unit time ( further, the representative gas paddle is detected by the exhaust gas component. It may be given for each gas type group arbitrarily determined in consideration of the output value.
[第四の実施の形態]  [Fourth embodiment]
次に、 C Oセンサの検出する排気ガスの C O濃度に加えて、給排気管の構造を 考慮した C O安全動作を行う第四の実施の形態における燃焼機器について説明す る。 なお、 以下の各実施の形態における燃焼機器のシステムは、 記図 5および 図 6に示すものと同栊であり、 これらの燃焼機器の各部構成部分の重複説明は省 略する。  Next, a description will be given of a combustion apparatus according to a fourth embodiment that performs a CO safe operation in consideration of the structure of the supply and exhaust pipes in addition to the CO concentration of the exhaust gas detected by the CO sensor. The system of the combustion equipment in each of the following embodiments is the same as that shown in FIGS. 5 and 6, and a redundant description of the components of these combustion equipment will be omitted.
図 2 4は、 第四の一の'夷施の形態における C 0安全動作を行う燃焼機器の制御 手段の制御機能プロック図である。 本実施の形態の制御手段は、 デ一タメモリ 4 1 7と、 燃焼時問 測 ί·段 4 1 8と、 C O安全動作部 4 2 0と、 給排気構造切り 替え設定手段 4 2 1とを している。  FIG. 24 is a control function block diagram of a control unit of a combustion device performing a C0 safe operation in the fourth embodiment. The control means of the present embodiment includes a data memory 4 17, a combustion measurement stage 4 18, a CO safety operation section 4 20, and a supply / exhaust structure switching setting means 4 2 1. are doing.
前記給排気構造切り^え設定手段 4 2 1は、 給湯器の排気側の給排気構造を設 定するものである。 この給排 ¾ 造切り替え設定手段 4 2 1は、 例えば、 制御装 置 4 1 2の制御基板にスィツチとして設けられる。 そして、 そのスィツチが一方 側に倒されると、 図 5に示すような二重管給排気構造が設定され、 スィッチが他 方側に倒されると、 図 6に示すような二本管給排気構造が設定される。 このよう に、 スィッチ操作により二重管と二本管の給排気構造が切り替え設定される。 そ して、 この給排気構造切り替え設定手段 4 2 1によって設定された給排気構造の 情報は C O安全動作部 4 2 0に与えられる。  The air supply / exhaust structure switching setting means 421 sets the air supply / exhaust structure on the exhaust side of the water heater. The supply / discharge structure switching setting means 4 21 is provided, for example, as a switch on the control board of the control device 4 12. When the switch is tilted to one side, a dual pipe supply / exhaust structure as shown in Fig. 5 is set. When the switch is tilted to the other side, a double pipe supply / exhaust structure as shown in Fig. 6 is set. Is set. In this way, the supply and exhaust structure of the double pipe and the double pipe is switched and set by the switch operation. Then, the information on the air supply / exhaust structure set by the air supply / exhaust structure switching setting means 4 21 is given to the CO safe operation section 4 20.
データメモリ 4 1 7には、 図 2 5に示すような二重管給排気構造に対応した C 0安全動作の開始条件データと、 図 2 6に示すような二本管給排気構造に対応し た C 0安全動作の開始条件データがそれぞれ区別して与えられている。  Data memory 4 17 has the start condition data of C0 safe operation corresponding to the dual pipe supply / exhaust structure as shown in Fig. 25 and the dual pipe supply / exhaust structure as shown in Fig. 26. The start condition data of the C0 safe operation is given separately.
即ち、 二重管給排気構造の場合の室内 C O濃度は、 前述のとおり、 燃焼能力に 大きく影響されるので、 燃焼能力に対応したデ一夕が与えられる。 そして、 二本 管給排気構造の場合の室内 C O濃度は、 前述のとおり、 排気ガスの排気量に大き く影響されるので、 ファン風量に対応したデータが与えられる。 That is, as described above, the indoor CO concentration in the case of the double-pipe supply / exhaust structure is greatly affected by the combustion capacity, so that a data corresponding to the combustion capacity is given. And, as described above, the indoor CO concentration in the case of the double pipe supply / exhaust structure is larger than the exhaust gas displacement. Data is given corresponding to the fan airflow.
この図 2 5のグラフデータの横軸は排気ガスの C O濃度を示しており、 縦軸は 排気ガスが室内に漏れて室内 C 0濃度が C 0中毒の危険状態の判断基準値である、 危険判断基準値の 300 ppm に達する危険到達時問を示している。 グラフ中の曲 線 Aは燃焼機器の燃焼能力が 40000 Kcal/ hの運転状態を示し、曲線 Bは燃焼能 力が 29500 Kcal/ hヽ ^線 Cは燃焼能力が 19500 Kcal/ hの運転状態をそれそ れ示している。  The horizontal axis of the graph data in Fig. 25 shows the CO concentration of the exhaust gas, and the vertical axis shows the reference value for the dangerous state of C0 poisoning when the exhaust gas leaks into the room and the indoor C0 concentration is dangerous. It indicates the time when the danger is reached when the judgment value reaches 300 ppm. Curve A in the graph indicates the operating condition when the combustion capacity of the combustion equipment is 40,000 Kcal / h, and curve B indicates the operating condition when the combustion capacity is 29500 Kcal / h. It is shown.
このグラフに示すように、 排気ガス中の C O濃度が同じであっても、 燃焼能力 が異なると、 室内 C O濃度が危険判断基準値である 300 ppm に達するまでの時 は異なる。 本実施の形態では、 室内 C O濃度の危険判断基準値を 300 ppm と し、 各 C 0濃度の排気ガスが室内に漏れたと仮定したときに室内 C 0濃度が危険 判断基準値に達する危険到達時問が、 燃焼機器の燃焼能力ごとに分けて二重管給 排気構造の C O安全動作問始条件デ一夕としてデ一夕メモリ 4 1 7に与えられて いる。 なお、 この排 ¾ C 0濃度と危険到违時問との f 1係を Γ;すデータはグラフデ 一夕以外に、 ¾データ、 ¾算式デ一夕等で与えることはもとより可能である。 図 2 6に示すグラフデータの横軸は図 2 5の場合と同様に排気ガスの C 0濃度 を示しており、 縦軸は排気ガスが室内に漏れて室内 C 0濃度が C 0中毒の危険状 態の危険判断基準値である 300 ppm に達する危険到達時間を示している。 グラ フ中の曲線 Eはファン 4 0 5の回転速度 (0転数) が 6000rpm の動作状態のデ —夕であり、 曲線 Fはファン回転速度 (回転数) が 5500rpm の動作状態であり、 曲線 Gはファン冋 速度 (回転数) が 5000rpm の動作状態をそれそれ示してい る。 このように、 排気 C O濃度と危険到達時間 Tとの関係を示すデータが各ファ ン風量毎に分けて与えられ、 このようなデ一夕が二本管給排気構造の C O安全動 作開始条件データとしてグラフデータ、 表データ、 演算式データ等の適宜の形態 でデータメモリ 4 1 7に格納される。  As shown in this graph, even if the CO concentration in the exhaust gas is the same, when the combustion capacity is different, the time until the indoor CO concentration reaches the dangerous judgment reference value of 300 ppm will be different. In this embodiment, the danger criterion value of the indoor CO concentration is set to 300 ppm, and when it is assumed that the exhaust gas of each C0 concentration has leaked into the room, when the danger that the indoor C0 concentration reaches the danger criterion value is reached. The questions are given to the memory 417 as the initial conditions for CO safe operation of the double pipe supply / exhaust structure for each combustion capacity of the combustion equipment. It should be noted that data relating to the f 1 between the exhausted C 0 concentration and the time of danger can be given as well as graph data overnight, 、 data, calculation formula data overnight, or the like. The horizontal axis of the graph data shown in Fig. 26 shows the C0 concentration of the exhaust gas as in Fig. 25, and the vertical axis shows the danger of C0 poisoning when the exhaust gas leaks into the room and the indoor C0 concentration becomes It indicates the danger arrival time to reach the danger criterion value of the state of 300 ppm. Curve E in the graph is a de-evening when the rotation speed of the fan 405 (0 rotation number) is 6000 rpm, and curve F is an operation state when the fan rotation speed (rotation speed) is 5500 rpm. G indicates the operating state when the fan speed (rpm) is 5000 rpm. In this way, data indicating the relationship between the exhaust CO concentration and the danger arrival time T is given separately for each fan airflow. The data is stored in the data memory 417 in an appropriate form such as graph data, table data, or arithmetic expression data.
C O安全動作部 4 2 0は、 C Oセンサ 4 1 6から排気ガスの C O濃度の検出情 報を取得すると共に、 燃焼能力情報と排気 3情報に対応するファン風量情報を取 得する。 前記燃焼能力†i5報は、 制御装置 4 1 2內の燃焼制御部から取得される。 図 2 7に; V;すように、 バ一ナ 4 0 6のガス通路 4 0 7にはガス通路 4 0 7の開 閉を行う電磁弁 4 1 4と閲弁量によってガス供給量を制御する比例弁 4 1 5が介 設されている。 そして、 比例弁 4 1 5の開弁量は燃焼制御部 4 2 3によって制御 されている。 すなわち、 燃焼制御部 4 2 3は、 例えば給湯器の燃焼運転に際して は、 給湯熱交換器 4 0 8の出側の温度がリモコン 4 1 3により設定された設定温 度となるように燃焼能力を演算により求め、 この燃焼能力が得られるように比例 弁 4 1 5に加える開弁駆動電流の大きさを制御する。 つまり、 燃焼制御部 4 2 3 から比例弁 4 1 5に加えられる開弁駆動電流の大きさは比例弁 4 1 5の開弁量の 大きさ、 換言すれば、 ガス供給量の大きさに相当し、 これは燃焼制御部 4 2 3が 演算により求めた燃焼能力に対応する。 このことから、 本実施の形態では燃焼能 力情報として開弁駆動電流の検出データを取り込んでいる。 The CO safety operation section 420 acquires the detection information of the CO concentration of the exhaust gas from the CO sensor 416, and also acquires the fan capacity information corresponding to the combustion capacity information and the exhaust 3 information. The combustion capacity {i5 report is obtained from the combustion control unit of the control device 4 12}. As shown in FIG. 27; V; the gas passage 407 of the burner 406 is opened in the gas passage 407. An electromagnetic valve 415 for closing and a proportional valve 415 for controlling the gas supply amount by the valve control amount are provided. The opening amount of the proportional valve 415 is controlled by the combustion control unit 423. That is, for example, during the combustion operation of the water heater, the combustion control unit 4 23 adjusts the combustion capacity so that the temperature at the outlet side of the hot water heat exchanger 408 becomes the set temperature set by the remote controller 4 13. The magnitude of the valve-opening drive current applied to the proportional valves 415 is obtained by calculation and controlled so that this combustion capacity is obtained. That is, the magnitude of the valve-opening drive current applied from the combustion control unit 4 2 3 to the proportional valve 4 15 corresponds to the magnitude of the valve opening amount of the proportional valve 4 15, in other words, the magnitude of the gas supply amount. However, this corresponds to the combustion capacity calculated by the combustion control unit 423. For this reason, in the present embodiment, the detection data of the valve-opening drive current is taken in as the combustion performance information.
また、 フアン風 情報は、 例えば、 1 5および図 6に^す如くファン 4 0 5の ファン回転数を検出するホール I C等のファン冋転数検出センサ 4 2 4が設けら れ、 このファン回転数検出センサ 4 2 4のファン问 数検出 ^報が風量データと して取得される。  The fan-style information is provided, for example, by a fan rotation number detection sensor 424 such as a Hall IC that detects the fan rotation number of the fan 405 as shown in FIG. 15 and FIG. The fan number detection of the number detection sensor 4 2 4 is obtained as air volume data.
C O安全動作部 4 2 0は、 前記給排気構造切り替え設定手段 4 2 1で設定され た給排気構造が二 S管給排^構造の場合は、 C O安全動作^始条件データとして、 図 2 5に示すデ一夕を選択し、 給排気構造が二本管給排気構造の場合は、 C O安 全動作開始条件デ一夕として、 図 2 6に示すデータを選択する。 そして、 二重管 給排気構造の場合は、 燃焼能力情報と、 C Oセンサ 4 1 6で検出される排気ガス の C O濃度の情報に基づき、 燃焼能力に対応する曲線から、 C O検出濃度に対応 する危険到達時間 Tが取得される。 そして、 C O安全勁作部 4 2 0は、 燃焼時間 計測手段 4 1 8を用いて燃焼開始時からの燃焼絰過時間をモニタし、 燃焼時間が 危険到達時間 Tになったときに室内 C 0濃度は危険判断基準値に達したものと判 断して燃焼運転停止等の安全動作を行う。  When the supply / exhaust structure set by the supply / exhaust structure switching setting means 4 21 is a 2 S pipe supply / exhaust structure, the CO safety operation unit 420 has CO safe operation ^ start condition data as FIG. If the supply / exhaust structure is a double pipe supply / exhaust structure, select the data shown in Fig. 26 as the CO safety operation start condition overnight. Then, in the case of a double pipe supply / exhaust structure, based on the combustion capacity information and the information on the CO concentration of the exhaust gas detected by the CO sensor 416, the curve corresponding to the combustion capacity corresponds to the detected CO concentration. Danger arrival time T is obtained. Then, the CO safety department 420 monitors the combustion elapsed time from the start of combustion using the combustion time measuring means 418, and when the combustion time reaches the danger arrival time T, the indoor C 0 Judgment that the concentration has reached the danger judgment reference value and perform safe operation such as stopping the combustion operation.
一方、 給排気構造切り替え設定手段 4 2 1が二本管給排気構造を設定している ときには、 図 2 6のデ一夕が選択される。 そして、 C O安全動作部 4 2 0は、 C 0センサ 4 1 6で検出される排気ガスの C O濃度の情報と排気ガスの排気量の情 報であるファン風量情報を取得し、 さらに、 そのファン風量情報に対応する風量 の曲線のグラフデータから排気ガスの C 0検出濃度に対応する危険到達時間 Tを 取得する。 さらに、 C O安全動作部 4 2 0は、 燃焼開始時からの燃焼時間が危険 到達時間 Tになったときに室内 C 0濃度が危険判断基準値に達したものと判断し て同様に燃焼運転停止等の安全動作を行う。 On the other hand, when the supply / exhaust structure switching setting means 4 221 sets the double pipe supply / exhaust structure, the data shown in FIG. 26 is selected. Then, the CO safety operation unit 420 acquires information on the CO concentration of the exhaust gas detected by the C0 sensor 4 16 and information on the fan air volume which is information on the exhaust gas amount, and further obtains the fan From the air volume curve graph data corresponding to the air volume information, the danger arrival time T corresponding to the C0 detection concentration of exhaust gas is calculated. get. Furthermore, the CO safety operation unit 420 determines that the indoor C0 concentration has reached the danger judgment reference value when the combustion time from the start of combustion reaches the danger arrival time T, and similarly stops the combustion operation. And other safety actions.
この実施の形態によれば、 給湯器の給排気構造が二重管給排気構造であるか、 二本管給排気構造であるかを区別判断し、 給湯器の実際の給排気構造に対応する C〇安全動作開始条件データが選択される。 そして、 その実際の給排気構造専用 のデータを用いて C O安全動作が行われるので、 実際の給排気構造の実情に即し た C O安全動作が的確に行われることとなり、 これにより、 C O安全動作の精度 および信頼性を向上させることが可能である。  According to this embodiment, it is determined whether the water supply / exhaust structure of the water heater is a double pipe supply / exhaust structure or a double pipe supply / exhaust structure, and corresponds to the actual water supply / exhaust structure of the water heater. C〇Safety operation start condition data is selected. Then, since the CO safe operation is performed using the data dedicated to the actual air supply and exhaust structure, the CO safe operation according to the actual conditions of the actual air supply and exhaust structure is performed accurately, and as a result, the CO safe operation is performed. Accuracy and reliability can be improved.
なお、 この第四の一の実施の形態では、 燃焼能力情報として、 比例弁 4 1 5へ の開弁駆動電流のデータを用いたが、 これに代えてガス供給量のデー夕や燃焼制 御部 4 2 3で演算される燃焼能力の演算値のデータが用いられてもよい。 なお、 燃焼能力情報のデ一夕としてガス供給 ¾のデ一夕を用いる場合には、 ガス供給通 路 4 0 7にガス流量センサ等が設けられ、 このセンサによるガス供給量の検出信 号が C O安全動作部 4 2 0に入力される。  In the fourth embodiment, the data of the valve-opening drive current to the proportional valve 415 is used as the combustion capacity information. However, the data of the gas supply amount and the combustion control are used instead. The data of the calculated value of the combustion capacity calculated in the part 423 may be used. When the data of the gas supply 供給 is used as the data of the combustion performance information, a gas flow sensor or the like is provided in the gas supply circuit 407, and the detection signal of the gas supply amount by this sensor is provided. Input to CO safe operation section 420.
また、 ファン風量のデータとして、 ファン问転のデ一夕を用いた力 給気側か ら排気側にかけての通風路に風量を直接的あるいは間接的に検出する風量センサ や風速センサを設けておき、 これらの検出データをファン風量データとして用い ることも可能である。 またファン駆動電力をファン風量デ一夕として用いること もできる。  In addition, airflow sensors and wind speed sensors that detect airflow directly or indirectly are provided in the ventilation path from the power supply side to the exhaust side using fan rotation data as fan airflow data. However, it is also possible to use these detected data as fan air volume data. Also, the fan drive power can be used as the fan air volume.
図 2 8は、本発明の第四の二の 実施の形態における C O安全動作を行う燃焼機 器の制御手段の制御機能ブロック図である。 本実施の形態の制御手段は、 排気ガ スの C O濃度サンプリング部 4 2 5と、 t sp/ T算出積算部 4 2 7と、 時計機構 4 2 6と、 デ一夕メモリ 4 1 7と、 C O安全動作部 4 2 0と、 給排気構造切り替 え設定手段 4 2 1とを有している。  FIG. 28 is a control function block diagram of a control unit of a combustion device that performs a CO safe operation according to the fourth and second embodiments of the present invention. The control means of the present embodiment includes a CO concentration sampling section 425 of exhaust gas, a tsp / T calculation integration section 427, a clock mechanism 426, a data memory 417, It has a CO safe operation section 420 and supply / exhaust structure switching setting means 421.
C O濃度サンプリング部 4 2 5は、 予め与えられる所定の単位サンプリング時 間 t sp を単位として燃焼開始後 C Oセンサ 4 1 6からの排気ガス中の C O濃度 C ext をサンプリングする。 具体的には、 C O濃度サンプリング部 4 2 5は、 サ ンプリング時間を例えば 10 秒に設定し、 1秒毎に C Oセンサ 4 1 6の検出情報 を取得し、 その- Ψ.均値を求めて単位サンプリング時間当たりの排気ガ中の C O濃 度の値として確定する。 なお、 このサンプリングのタイ ミングは夕イマやクロッ ク等によって構成される時計機構 4 2 6の信号に基づき行われる。 The CO concentration sampling unit 4 25 samples the CO concentration C ext in the exhaust gas from the CO sensor 4 16 after the start of combustion in units of a predetermined unit sampling time t sp given in advance. Specifically, the CO concentration sampling unit 4 25 sets the sampling time to, for example, 10 seconds, and detects the detection information of the CO sensor 4 16 every 1 second. Obtain the average value and determine it as the value of the CO concentration in the exhaust gas per unit sampling time. Note that the timing of this sampling is performed based on a signal of a clock mechanism 426 constituted by a clock or clock.
データメモリ 4 1 7には、 前記第四の一の実施の形態と同様に図 2 5および図 2 6に示すような給排気構造ごとに分けた C O安全動作開始条件データが与えら れている。 また、 給排気構造切り替え設定手段 4 2 1は、 前記第四の一の実施の 形態と同様に、 給湯器の給排気構造が二重管給排気構造であるか、 二本管給排気 構造であるかを切り替え設定するものである。  The data memory 417 is provided with CO safe operation start condition data divided for each supply / exhaust structure as shown in FIGS. 25 and 26 in the same manner as in the fourth embodiment. . Further, as in the fourth embodiment, the air supply / exhaust structure switching setting means 4 21 may be configured such that the water supply / exhaust structure of the water heater is a double pipe supply / exhaust structure or a double pipe supply / exhaust structure. This is to set whether there is any.
t sp/ T lS出積算部 4 2 7は、 C O濃度サンプリング部 4 2 5から与えられる 単位サンプリング時問 t sp を -位として検出された排気ガス中の C〇濃度の値 を取得し、 t sp/ Tの値を箅出する。 ここで、 危険到 ^時問 Tはデータメモリ 4 1 7に格納されている図 2 5乂は 1 2 6に示すデータを用いて求められるが、 図 2 5のデータを用いるか図 2 6に示すデータを用いるかは、 給排気構造切り替え 設定 f段 4 2 1の給排 定 ½報により決定される。 つまり、 給排気構造が二重 ^給排気構造の場合は冈 2 5のデ一夕が、 二本管給排気構造の場合は図 2 6のデ 一夕が選択される。 そして、 図 2 5に/丁;すデ一夕が選択された場台に、 この図 2 5に示される各曲線のグラフデータのうちのどのデータを使用するかは前記第四 の一の実施の形態と同様に取得される燃焼能力情報に基づいて選択される。 咧え ば、 燃焼能力情報が 29500 Kcal/ hを示している場 には、 曲線 Bのデータが選 択され、 このデ一夕に基づき危険到達時問 Tが求められる。  The t sp / T lS output integrating section 4 27 obtains the value of the C〇 concentration in the exhaust gas detected with the unit sampling time t sp given by the CO concentration sampling section 4 25 Find the value of sp / T. Here, the danger time T is obtained using the data shown in FIG. 26, which is stored in the data memory 4 17 as shown in FIG. 25. Whether to use the data shown is determined by the air supply / exhaust report of the air supply / exhaust structure switching setting f stage 421. In other words, if the air supply / exhaust structure is a dual air supply / exhaust structure, the data of 冈 25 is selected. Then, in FIG. 25, the data selected from the graph data of the curves shown in FIG. 25 is used in the fourth embodiment. Is selected based on the combustion performance information obtained in the same manner as in the above embodiment. For example, when the combustion capacity information indicates 29500 Kcal / h, the data of the curve B is selected, and the danger arrival time T is calculated based on this data.
一方、 C O安全動作 [¾始条件データとして、 図 2 6に/ Γ;すデータが選択された 場合には、 その図 2 6に示される各曲線のグラフデ一夕のうちのどのデ一夕を使 用するかは、 前記第四の一の実施の形態と同様に取得されるファン風量情報に対 応するデ一夕を選択する。例えば、 ファン風量情報が 6000rpm であるときには、 曲線 Eのデ一夕が選択されて排気 C 0濃度に対応する危険到達時間 Tが求められ る。  On the other hand, if the data for the CO safety operation [starting condition data is selected as shown in Fig. 26, the data in the graph of each curve shown in Fig. 26 is displayed. Whether to use it or not is selected in accordance with the fan air volume information acquired in the same manner as in the fourth embodiment. For example, when the fan air volume information is 6000 rpm, the entirety of the curve E is selected, and the danger arrival time T corresponding to the exhaust CO concentration is obtained.
危険到達時間 Tは、 前述した如く、 C Oセンサ 4 1 6によって検出される C O 濃度 C ext の排気ガスが室内に漏れたと仮定したときに、 室内 C O濃度が例えば 300 ppm の危険判断基準値 C thに達する時間である。 そして、 サンプリング時 問 t spをこの危険判断基準値に達する時間 Tで割ることにより、その時間 Tに対 するサンプリング時間 t spの割合が求められる。 この t sP/ Tの値は、 安全な 時間 Tのうち t sp/Tの割合が費やされ、 安全な割合が ( l— t sp/T) しか 残されていないことを, 味する。 換言すれば、 室内 CO濃度が危険判断基準値に 達する時 ί Τのうち、 t spが^やされたこととなり、残りの安全の時問は Τ一 t spの時問しか残されていないことを意味する。 As described above, the danger arrival time T is, assuming that the exhaust gas having the CO concentration C ext detected by the CO sensor 416 leaks into the room, assuming that the indoor CO concentration is 300 ppm, for example, the danger criterion value C th It is time to reach. And when sampling The ratio of the sampling time t sp to the time T is obtained by dividing the question t sp by the time T at which this danger criterion value is reached. This value of tsP / T means that the ratio of tsp / T in the safe time T is spent, leaving only the safe ratio (l-tssp / T). In other words, when the indoor CO concentration reaches the danger criterion value t, t sp has been reduced, and the only remaining safety time is Τ 1 t sp. Means
t sp/T算出積算部 427は、 最初のサンプリ ング時間において、 t sp/T を求め、 次のサンプリング時問のときにも、 排気ガス中の CO濃度の検出デ一夕 によって求まる t sp/Tを算出すると共に、 この算出 ίι:を前回のサンプリング時 に求めた t sP/ Tに加算して積箅値を求める。 このようにして、 t sp/T算出 擀算部 427は^サンプリング時問 t spにおいて求められる t sp/Tの値を各 サンプリング時問 Uに次 に ¾ ^していく。 例えば、 1 25のグラフデータで、 第 1回 のサンプリング時に排 C 0濃度 C extlに対する T I により、 t sp/ T 1 が求められた ¾ 、 次のサンプリング時問で排気 C 0 ¾度 C ext2に対する T 2 により、 t sp/T 2 が求められ、 ¾算値として sp/T 1 + t sp/T 2 の 値が求められる。 また、 ίβ3回目のサンプリング時^において排気 CO濃度 C ext3に対する T 3 により、 t sp/T 3 が求められたときには、 積算値は t sp ( 1/T 1 + 1/T 2 + 1/T 3 ) となる。 このように、 t sp/T算出積算部 427は各サンプリング時毎に求められる t sp/Tの値を fr ^していき、 その積 算結果を CO安全動作部 420に与える。 なお、 図 26のグラフデ一夕が選択さ れた場合も同様に t sp/Tの積算値が求められる。 The t sp / T calculation and integration unit 427 calculates t sp / T at the first sampling time, and also at the next sampling time, the t sp / T calculated by the detection of CO concentration in exhaust gas. T is calculated, and the calculated value ίι: is added to ts P / T obtained in the previous sampling to obtain an integrated value. In this way, the tsp / T calculation calculating unit 427 successively applies the value of tsp / T obtained in the sampling time tsp to each sampling time U. For example, in the graph data of 125, t sp / T 1 was obtained by TI for exhaust C 0 concentration C extl at the first sampling ¾, and exhaust C 0 concentration C ext2 at the next sampling time From T 2, t sp / T 2 is obtained, and the value of sp / T 1 + t sp / T 2 is obtained as a calculated value. Also, at the time of 3β3rd sampling ^, when t sp / T 3 is obtained from T 3 for exhaust CO concentration C ext3, the integrated value is t sp (1 / T 1 + 1 / T 2 + 1 / T 3 ). As described above, the t sp / T calculation integration unit 427 performs fr ^ on the value of t sp / T obtained at each sampling time, and provides the integration result to the CO safe operation unit 420. It should be noted that the integrated value of t sp / T is obtained in the same manner when the graph shown in FIG. 26 is selected.
CO安全勅作部 420は、 t sp/T算出積算部 427から加えられる積算結果 を監視し、 その積算値が子め定めた設定値の例えば 1.0 に達したときに室内 C〇 濃度 C roomは予め設定した危険判断基準値 C thに したものと判断し、 パーナ 406へのガス遮断を行う等の CO安全動作を行う。  The CO Safety Department 420 monitors the integration result added from the tsp / T calculation integration unit 427, and when the integrated value reaches the set value, for example, 1.0, the indoor C〇 concentration C room is Judgment is made that the danger judgment reference value C th has been set in advance, and a CO safe operation such as shutting off gas to the parner 406 is performed.
なお、 上記図 25の例では各サンプリング時問において燃焼能力は変化しない 場合で説明したが、 ί列えば、 第 1回目のサンプリング時 での燃焼能力は図 2 5 の曲線 Αの能力であり、 第 2回目のサンプリング時間のときには曲線 Bの能力に 変化し、 さらに第 3回目のサンプリング時には曲線 Cの燃焼能力に変化していた ときには、第 1回目のサンプリング時には曲線 Aのデ一夕を用いて t sp/ Tの値 求められ、第 2回目のサンプリング時には曲線 Bを用いて t sp/ Tの値が求めら れ、 さらに、 第 3 [HJ目のサンプリング時には曲線 Cのデ一夕を用いて t sp/ Tが 求められる。 このように、 これら燃焼運転の絰過に伴い、 燃焼能力が可変すると きには、 その燃焼能力の変化に応じた燃焼能力のデータを用いて t sp/ Tが求め られ、 各サンプリング時に求められた t sp/ Tが積算され、 その積算値が 1にな つたときに C 0安全動作が行われる。 In the example of Fig. 25 above, the case where the combustion capacity does not change at each sampling time has been described.However, in parallel, the combustion capacity at the first sampling time is the capacity of the curve の in Fig. 25. At the time of the second sampling time, the capacity changed to the curve B, and at the time of the third sampling, the combustion capacity changed to the curve C Sometimes, during the first sampling, the value of t sp / T is obtained using the data of the curve A, and at the second sampling, the value of t sp / T is obtained using the curve B. The third [T sp / T is obtained using the data of curve C at the time of sampling at the HJ. As described above, when the combustion capacity varies with the passage of the combustion operation, t sp / T is obtained using the combustion capacity data corresponding to the change in the combustion capacity, and is obtained at each sampling. T sp / T is integrated, and when the integrated value becomes 1, C 0 safe operation is performed.
同様に、 図 2 6のデ一夕が選択された場合においても、 各サンプリング時間に おいてファン風量が変化した場合には、 各サンプリング時間毎に、 対応するファ ン風量のデータを用いて t sp/ Tが求められ、 各サンプリング時毎にファン風量 に対応した曲線データから求められた t sp / Tの ίιΐ'ίが^サンプリング時毎に積 算され、 その ¾算値が例えば 1になったときに C〇安全動作 われる。  Similarly, even when the data shown in Fig. 26 is selected, if the fan air volume changes at each sampling time, t is calculated using the corresponding fan air volume data at each sampling time. The sp / T is calculated, and the ίιΐ 't of t sp / T calculated from the curve data corresponding to the fan airflow is calculated at each sampling time, and the calculated value is 1, for example. C〇 safety operation is performed when
この第四の二の ¾施の形態は、 C Oセンサ 4 1 6で検出される排気ガス中の C 〇濃度の値に応じて t sp/ Tがサンプリング時問ごとに ¾算されて次々に積算 されていく構成としているので、 燃焼運転の燃焼能力やファン風 Mの変化を考慮 して室内 c 0濃度が危険判断基準値に達する危険到 ϋ時卩 3を正確に確定すること ができ、 これにより、 給排気構造によって C O安全動作 ΠΠ始条件データを区別す ることと相俟って C 0安全動作の精度をより一曆高めることが可能となる。 なお、 本発明はヒ記各突施の形態に限定されることはなく様々な突施の形態を 採り得る。 例えば、 上記各実施の形態では室内に居る人が C〇中毒の危険状態に なる判断基準値を室内 C 0濃度で規定したが、 それ以外に、 人の血中へモグロビ ンに取り込まれる C Oの量、 つまり血中ヘモグロビン C O濃度の値によって規定 してもよい。 この場合は血中ヘモグロビン C O濃度が危険判断基準値 (例えば 10 % ) に達するときに C O中毒の危険状態になるものと推定し、 血中へモグロビ ン C O濃度が危険判断基準値に達する時間を危険到達時間 Tとする。 そして、 燃 焼能力ごと、 あるいは排気量即ちファン風量ごとに区分して各排気 C 0濃度に対 応ずる危険到達時間 Tの相関関係デ一夕を給排気構造毎に区別作成してデータメ モリ 17に与えればよい。  In the fourth and second embodiments, t sp / T is calculated at each sampling time according to the value of the carbon dioxide concentration in the exhaust gas detected by the CO sensor 416, and is successively integrated. The danger when the indoor c0 concentration reaches the danger criterion value can be determined accurately in consideration of the combustion performance of the combustion operation and changes in the fan wind M. This makes it possible to further improve the accuracy of the C0 safe operation together with distinguishing the CO safe operation start condition data by the supply / exhaust structure. In addition, the present invention is not limited to the form of each projecting but can take various forms of projecting. For example, in each of the above embodiments, the reference value for the danger of C 室内 poisoning in a room is defined by the indoor C0 concentration, but in addition to that, CO taken into human blood by moglobin is also specified. It may be defined by the amount, that is, the value of blood hemoglobin CO concentration. In this case, it is assumed that when the blood hemoglobin CO concentration reaches the risk judgment reference value (for example, 10%), it is assumed that CO poisoning is in danger, and the time required for the blood moglobin CO concentration to reach the risk judgment reference value is determined. Danger arrival time T Then, the correlation data of the danger arrival time T corresponding to each exhaust C0 concentration for each combustion capacity or each exhaust air volume, that is, each fan air volume, is created separately for each air supply / exhaust structure and stored in the data memory 17. Just give it.
さらにヒ記実施の形態では、 燃焼能力を考慮する場合には、 図 2 5に示すデー 夕の如く、 各燃焼能力ごとに排気 C 0濃度と危険到達時間 Tの相関関係デ一夕が 与えられたが、 これとは異なり、 代表的な 1つの燃焼能力についてのみ相関関係 デ一夕が与えられてもよい。 この場合は、 他の燃焼能力についての危険到達時問In the embodiment described above, when the combustion capacity is considered, the data shown in Fig. 25 As shown in the evening, the correlation between the exhaust CO concentration and the danger arrival time T was given for each combustion capacity, but unlike this, the correlation for only one representative combustion capacity was different. May be given. In this case, when the danger of other combustion
Tは代表の相関関係を用いて求めた危険到達時間 Tに予め与えた補正係数を掛け ることによって求めることができる。 なお、 補正係数は代表の燃焼能力と実際の 運転状態の燃焼能力 (入力される燃焼能力情報) との能力差に対応する単位時間 当たりの排気量の差又は比に応じた値として与えればよい。 T can be obtained by multiplying the danger arrival time T obtained using the representative correlation by a correction coefficient given in advance. The correction coefficient may be given as a value corresponding to the difference or ratio of the displacement per unit time corresponding to the difference in capacity between the representative combustion capacity and the combustion capacity in the actual operating state (input combustion capacity information). .
同様に、 図 2 6に示すデータの如く、 排気量即ちファン風量を考慮する場合も、 代表的な 1つのファン風量についてのみ排気 C O濃度と危険到達時間 Tの相関関 係データが与えられてもよい。 この場合、 他のファン風最の排気 C O濃度に対す る危険到達時問 Tは代表のファン風 Sの相関関係デ一夕に基づいて求めた危険到 達時問 Tに子め与えられる補正係数を掛けて求めることができる。 この補正係数 も、 代表のファン風量と実際の運転状態のファン風量 (人力されるファン風量情 報) の差に対応する単位時 P たりの排 Si の差又は比に応じた値として与えれ ばよい。  Similarly, as shown in the data shown in Fig. 26, when the exhaust air volume, that is, the fan air volume is considered, even if the correlation data between the exhaust CO concentration and the dangerous arrival time T is given for only one representative fan air volume, Good. In this case, the danger arrival time T for the exhaust gas concentration of the other fan wind is the correction coefficient given to the danger arrival time T obtained based on the correlation data of the representative fan wind S. Multiplied by This correction coefficient may also be given as a value corresponding to the difference or ratio of the exhausted Si per unit time corresponding to the difference between the representative fan airflow and the fan airflow in the actual operating state (manually operated fan airflow information). .
さらに、 C O安全動作開始条件データの危険到達時間 τを排気 C O濃度と燃焼 能力 (又はファン風量) によって求める危険到達時間 Tを求めるデータは、 上述 の第二の実施の形態のように燃料ガスのガス種毎に分けて与えられてもよい。 ガ ス種によって燃料ガスの成分が異なるので、 ガス種によって単位時問当たりの排 気量が異なる。 よって、 排気ガスの C〇濃度が同じ値であっても、 その排気ガス が室内に漏れたときには、 単位時間当たりの排気量が大きくなるガス種ほど室内 の C 0汚染の度合いが大きくなる。 したがって、 使用するガス稀毎に C O安全動 作開始条件データを分けて与えておくことにより、 より緻密で信頼性の高い C O 安全動作を行うことが可能となる。 この場合、 通常の給湯器等に設けられている ガス種切り替えスィッチの情報を取り込み、 使用されているガス種を判断し、 そ のガス種に対応する C◦安全動作開始条件デ一夕を用いて前記各実施の形態と同 様に C 0安全動作を行うようにすればよい。  Further, the data for obtaining the dangerous arrival time τ of the CO safe operation start condition data based on the exhaust CO concentration and the combustion capacity (or fan air volume) obtained from the exhaust gas CO concentration and the fuel gas It may be given separately for each gas type. Since the composition of fuel gas differs depending on the gas type, the amount of exhaust per unit time differs depending on the gas type. Therefore, even if the C〇 concentration of the exhaust gas is the same value, when the exhaust gas leaks into the room, the degree of the C0 contamination in the room increases as the type of exhaust gas increases per unit time. Therefore, by giving the CO safe operation start condition data separately for each rare gas to be used, more precise and reliable CO safe operation can be performed. In this case, the information of the gas type switching switch provided in the ordinary water heater etc. is taken in, the type of gas used is determined, and the safety operation start condition data corresponding to that gas type is used. Thus, the C0 safety operation may be performed in the same manner as in each of the above embodiments.
さらに、 上記各実施の形態では、 給湯器の排気側にアダプタ 4 0 3を設け、 二 重管と二本管の給排気ュニッ 卜 4 0 4を着脱交換自在に取り付けるように構成し たが、 アダプタ 4 0 3を省略し、 給湯器の排気側に二 S管と二本管のいずれかの 給排気構造のものを取り付けるようにしてもよい。 この場合も、 データメモリ 4 1 7に二重管用と二本^用のそれぞれの C O安全動作開始条件データを与えてお くことにより、 給湯器の設置施工現場で、 いずれの給排気構造のものが取り付け られても十分に対応できることになる。 Further, in each of the above embodiments, the adapter 403 is provided on the exhaust side of the water heater, and the double pipe and the double pipe supply / exhaust unit 404 are detachably mounted. However, the adapter 403 may be omitted, and a water supply / exhaust structure of either the S pipe or the double pipe may be attached to the exhaust side of the water heater. In this case as well, by providing each of the CO safe operation start condition data for the double pipe and the two pipes to the data memory 417, any of the air supply and exhaust structures can be used at the installation site of the water heater. It will be able to cope well even if it is installed.
さらに、 上記各突施の形態では、 ファン 4 0 5が排気側に設けられている吸い 出し給排気タイプの給湯器を例にして説明したが、 本発明は、 図 2 9に示すよう なファンをパーナの下方側に設けた押し出し給排気方式の給湯器に対しても適用 できる。  Further, in each of the above embodiments, a suction / exhaust type water heater in which the fan 405 is provided on the exhaust side has been described as an example. However, the present invention provides a fan as shown in FIG. Can also be applied to the water heater of the extrusion supply / exhaust type provided below the parner.
さらに、 上記第四の実施の形態では、 燃焼機器として、 給湯単能器 (給湯機能 のみの給湯器) を例にして説明したが、 本発明の燃焼機器は、 風呂機能と給湯機 能、 暖房機能と給湯機能、 冷房機能と給湯機能、 冷暖房機能と給湯機能、 風 g釜、 暖房機、 冷房機、 冷暖 機 、 内設置型の様々なタイプの燃焼機器に適用でき るものである。  Furthermore, in the fourth embodiment, a single-function hot-water supply device (a hot-water supply device having only a hot-water supply function) has been described as an example of a combustion device. However, the combustion device of the present invention has a bath function, a hot-water supply function, and a heating function. It can be applied to various types of combustion equipment, such as functions and hot water supply functions, cooling and hot water supply functions, cooling and heating functions and hot water supply functions, wind ovens, heating machines, cooling and cooling / heating machines, and internal installation types.
[第五の実施の形態]  [Fifth embodiment]
次に、 本発明の第五の突施の形態について図面に従って説明する。  Next, a fifth embodiment of the present invention will be described with reference to the drawings.
図 3 0は、 燃焼機器の -例である給湯器の構成を示す図である。 図示されない 給湯栓を開くと、 水は水遣センサー 5 1 2を通り、 給湯熱交換器 5 1 6とバイノ ス通路 5 1 4に分岐され、 水量が一定以ヒに達すると水量センサ一 5 1 2が流量 を感知する。 そして、 給気通路 5 5 ◦から空気を吸引し、 燃焼後の排気ガスを排 気通路 5 5 2から排出するファン 5 2 4が回転し、 プリパージが開始する。 続い て、 点火プラグ 5 1 8が着火すると冏時に元ガス電磁弁 5 2 8、 ガス電磁弁 5 3 0が開き、 ガス比例弁 5 3 2を通してガスが流れる。  FIG. 30 is a diagram showing a configuration of a water heater as an example of the combustion equipment. When a hot water tap (not shown) is opened, water passes through the water supply sensor 5 12 and branches to the hot water supply heat exchanger 5 16 and the binos passage 5 14 .When the water volume reaches a certain level, the water flow sensor 5 1 2 senses the flow. Then, the fan 52, which sucks air from the air supply passage 55, and discharges the exhaust gas after combustion from the exhaust passage 55, rotates, and the prepurge starts. Subsequently, when the ignition plug 518 is ignited, the original gas solenoid valve 528 and the gas solenoid valve 530 are opened at the time of the ignition, and gas flows through the gas proportional valve 532.
バーナー 5 2 2に点火されると、 フレームロツ ド 5 2 0が炎を検知して燃焼が 始まる。 給湯熱交換器 5 1 6で加熱された湯とバイパス通路 5 1 4を絰た水は混 合されて給湯栓に湯が流れる。 そして、 出湯サ一ミス夕 5 3 6の温度が設定温度 になるように、 ガス比例弁 5 3 2の開度、 ファン 5 2 4の回転数が制御される。 所定時間内に点火しない場合には、 安全回路が作動し、 兀ガス電磁弁 5 2 8、 ガ ス電磁弁 5 3 0を遮断し、 放電も停止する。 給湯使用中に出湯量、 水量、 水圧変 化などにより、 出湯温度が変化した場合には、 設定温度差を出湯温度、 入水温度、 水量で演算して、 その偏差値分をガス比例弁 5 3 2、 水 fi制御弁 5 3 8へ伝え設 定温度に保持するよう制御する。 When the burner 522 is ignited, the flame rod 520 detects the flame and starts burning. The hot water heated by the hot water supply heat exchanger 5 16 and the water passing through the bypass passage 5 14 are mixed and the hot water flows into the hot water tap. Then, the opening of the gas proportional valve 532 and the number of revolutions of the fan 5224 are controlled so that the temperature of the hot water outlet 5356 becomes the set temperature. If the ignition does not occur within the predetermined time, the safety circuit operates, shuts off the gas solenoid valve 528 and the gas solenoid valve 530, and stops the discharge. Hot water supply, water volume, water pressure change during hot water supply If the tap water temperature changes due to gasification, etc., the set temperature difference is calculated from the tap water temperature, the incoming water temperature, and the amount of water, and the deviation is transmitted to the gas proportional valve 532 and the water fi control valve 538. Control to keep at the set temperature.
ファン 5 2 4には、 ファンの回転数を検知するホール I C 5 2 6が取り付けら れており、 ファン 5 2 4の回転はガスの供給量に応じて完全燃焼を生じさせるよ うに最適な風量をバーナー 5 2 2に送り込むように制御されている。  The fan 52 4 has a hall IC 5 26 that detects the number of rotations of the fan. The rotation of the fan 5 24 Is controlled to be sent to the burner 5 2 2.
上記各燃焼制御は、 制御手段である電装基板 5 6 0によって行われる。 電装 基板 5 6 0は、 例えば、 R A M、 R O M及び C P Uなどから構成されるマイクロ コンピュータを搭載し、 R O Mに格納された燃焼プログラムに基づいて C P Uが 上記燃焼制御を実行する。  Each of the above-described combustion controls is performed by an electrical board 560 that is a control means. The electrical board 560 has, for example, a microcomputer including a RAM, a ROM, a CPU, and the like, and the CPU executes the above-described combustion control based on a combustion program stored in the ROM.
また、 排気通路内には C Oセンサ一 5 4 0が設 ; されている。 C Oセンサ一 5 4 0は、 -般的に、 C Oガスと化学反応を起こす特定の触媒を周りに有する白金 抵抗からなっており、 触媒が C Oガスと化学反応を引き起こすことにより、 触媒 の温度が上 し、 その温度変化に対応して変化する [ 金抵抗の抵抗値を比較素子 と比較し、 C O濃度に換^するものである。  Further, a CO sensor 540 is provided in the exhaust passage. A CO sensor 540-generally consists of a platinum resistor around a specific catalyst that undergoes a chemical reaction with CO gas, causing the catalyst to react with the CO gas, thereby reducing the temperature of the catalyst. In addition, the resistance value of the gold resistor, which changes in response to the temperature change, is compared with a comparative element and converted into a CO concentration.
C Oセンサ一 5 4 0により C Oガス濃度が許容 以 h検知されると、 まず、 フ アン 5 2 4の冋転数が ¾し、 燃焼室内に送り込む ¾量を多くすることにより、 完 全燃焼が行われるようにファンの回転数が制御される。 しかし、 風最を増したに もかかわらず、 C Oガス濃度が减少せず、 所定濃度以上に達する場合は、 燃焼が 停止される。  When the CO gas concentration is detected by the CO sensor 540 for h or more, the number of rotations of the fan 524 increases, and complete combustion is achieved by increasing the amount of air sent into the combustion chamber. The rotation speed of the fan is controlled so as to be performed. However, in spite of the increase in the wind, if the CO gas concentration does not decrease and reaches a predetermined concentration or more, the combustion is stopped.
このような燃焼によって、 排出される排気ガスの排気 Sは、 前記ファン 5 2 4 の回転数に応じて変化する。 即ち、 ファンの回転数が大きければ排気量は多く、 ファン 5 2 4の回転数が小さければ排気量は少ない。 そして、 上述の E R値は、 排気ガス中の C 0 度のみならず、 排気ガスの排気 S:にも依存する値である。 従って、 本発明の第五の一の実施の形態では、排気ガスの C〇濃度のみならず、 排気通路 5 5 2からの排気量にほぼ比例する前記ファンの回転数をも考慮した E R値に従って空気中の C 0濃度監視制御を行う燃焼機器が提供される。  Due to such combustion, the exhaust S of the exhaust gas to be exhausted changes according to the rotation speed of the fan 524. That is, the larger the number of rotations of the fan, the larger the displacement, and the smaller the number of rotations of the fan 52, the smaller the displacement. The above-mentioned ER value depends not only on the C 0 degree in the exhaust gas but also on the exhaust gas S :. Therefore, in the fifth embodiment of the present invention, not only the C〇 concentration of the exhaust gas, but also the ER value taking into account the rotation speed of the fan, which is substantially proportional to the amount of exhaust from the exhaust passage 552, is considered. Combustion equipment for monitoring and controlling C0 concentration in air is provided.
図 3 1は、 第五の一の実施の形態における C O濃度監視制御のフローチヤ一卜 である。 なお、 以下に説明する C O濃度監視制御 (第五の二の実施の形態及び第 五の三の実施の形態を含む) は、 上述の燃焼機器の制御手段である電装基板 5 6 0によって実行される。 FIG. 31 is a flowchart of the CO concentration monitoring control according to the fifth embodiment. The CO concentration monitoring and control described below (the fifth and second embodiments and the The fifth embodiment (including the fifth and third embodiments) is executed by the electric board 560 which is the control means of the above-described combustion equipment.
ステップ S 5 1 0では排気ガスの C O濃度が検出され、 ステップ S 5 1 6では ファンの回転数が検出される。 排気ガスの C O濃度は前 ¾ C Oセンサ一 5 4 0に より 0 . 2秒毎に測定され、 ファンの回転数は前記ホール I C 5 2 6により 0 . 1秒毎に測定されている。  In step S510, the CO concentration of the exhaust gas is detected, and in step S510, the rotation speed of the fan is detected. The CO concentration of the exhaust gas is measured every 0.2 seconds by the CO sensor 540, and the rotation speed of the fan is measured every 0.1 second by the hall IC 526.
そして、 例えば 1 0秒のような所定の単位時間 t (ステップ S 5 1 2 ) の間の 前記 C〇濃度の平均値が求められる (ステップ S 5 1 4 ) 。 Ψ-均値を求めるのは、 例えば、 燃焼運転開始時及び燃焼能力切り替え時は、 一時的に C O濃度が高くな る等、 検出される C O濃度にばらつきが生じる場合があるので、 それを平均化し、 より正確な C 0濃度を得るためである。 またこのような f均値を求めるために所 定の単位時間 tが必要であり、 この時問は任,' に設定することができる。  Then, an average value of the C〇 concentration during a predetermined unit time t (step S5 12) such as 10 seconds is obtained (step S5 14). The 均 -average value is calculated because, for example, when starting the combustion operation and when switching the combustion capacity, the detected CO concentration may fluctuate, such as a temporary increase in the CO concentration. To obtain a more accurate C 0 concentration. In addition, a certain unit time t is required to obtain such an average value of f, and at this time, the question can be set to any.
一方、 ステップ S 5 1 8における舉位時問 tはステップ S 5 1 4の単位時間 t と同期していて、 この^位時問 tの間に燃焼能力を切り替えることなどによって ファンの回転数が変わったときは、 該単位時問 tの ί で^大の回転数を選択する (ステップ S 5 2 0 ) 。 ファンの回転数は、 前記 C〇濃度に比べ燃焼中の瞬間的 な変化が小さいため、 f-均 ίήを取る必要性に乏しく、 安全サイ ドの銳点から前記 回転数の最大値を使用する。 もちろん、 より正確な制御を行うために、 平均値を 用いてもよい。  On the other hand, the time period t in step S 5 18 is synchronized with the unit time t in step S 5 14, and the rotation speed of the fan is changed by switching the combustion capacity during the time period t. If it has changed, a large rotation speed is selected by の of the unit time t (step S520). Since the instantaneous change during combustion is smaller than the C〇 concentration, it is not necessary to take f-average, so the maximum value of the fan speed is used from the point of safety side. . Of course, an average value may be used for more accurate control.
ステップ S 5 2 2において、 前記 C O濃度の 均 ½及び前記ファン回転数最大 値それそれによつて分割された E R値のテ一ブルから対応する E R値が取得され る。 図 3 2は、 該テーブルの例である。 このテーブルは、 例えば、 上記のような 燃焼機器における様々な燃焼制御を行う図 3 0における電装基板 5 6 0内に設け られたマイクロコンピュー夕内の R 0 Mに記憶される。 当該テーブルによれば、 同じ C O濃度であっても、 ファンの回転数 (排気量) が異なれば、 異なる E R値 が与えられている。 即ち、 ファンの回転数が大きければ、 排気量は大きいので E R値は大きく、 ファンの回転が小さければ、 排気量は小さいので E R値は小さい。 図 3 2における E R値も前述同様の理由から 2 5 0倍されている。  In step S522, the corresponding ER value is obtained from the average of the CO concentration and the maximum fan rotation speed value, and the ER value table divided according to the average value. FIG. 32 is an example of the table. This table is stored in, for example, R0M in the microcomputer provided in the electrical equipment board 560 in FIG. 30 for performing various combustion controls in the combustion equipment as described above. According to the table, different ER values are given when the fan rotation speed (displacement amount) is different even for the same CO concentration. In other words, if the fan speed is high, the ER value is large because the exhaust volume is large, and if the fan speed is small, the ER value is small because the exhaust volume is small. The ER value in FIG. 32 is also multiplied by 250 for the same reason as described above.
ステップ S 5 2 2において選択された E R値は、 ステップ S 5 2 4において積 算され、 T R値が計算される。 そして、 この積算された T R値が所定の基準値に 達すると、 ランプやブザー等の警報が発せられ (ステップ S 5 3 0 ) 、 燃焼が停 止される (ステップ S 5 3 2 ) 。 The ER value selected in step S522 is multiplied by the product in step S522. And the TR value is calculated. Then, when the integrated TR value reaches a predetermined reference value, an alarm such as a lamp or a buzzer is issued (step S530), and the combustion is stopped (step S532).
また、 当該 C O濃度監視制御には、 記 E R値を積算している間に、 一時的に燃 焼が停止した場合など、 空気中の C O濃度が一時的に低下する場合、 それを補正 するための図示されない減衰補正工程が設けられてもよい。 さらに、 前記 T R値 に複数の基準値を設定し、 例えば、 血中ヘモグロビン C O濃度が所定の危険濃度 に達する前に、 警報のみを発し、 燃焼を停止させない工程や、 一時的に燃焼を停 止させ、 空気中の C O S度を低下させ、 その後燃焼を再開させる工程などよりき め細かい制御工程を有してもよい。  In addition, the CO concentration monitoring control is used to compensate for a temporary decrease in the CO concentration in the air, such as when combustion is temporarily stopped while integrating the ER value. (Not shown) may be provided. Furthermore, a plurality of reference values are set for the TR value.For example, before the blood hemoglobin CO concentration reaches a predetermined dangerous concentration, only an alarm is issued and a process in which combustion is not stopped, or a process in which combustion is temporarily stopped. In this case, a finer control step may be provided, such as a step of lowering the degree of COS in the air and then restarting combustion.
また、 本実施の形態においては、 E R値に排気ガスの排気量を考慮するために それにほぼ比例するファンの回転数を用いて E R値を取得したが、 例えば、 排気 通路に設けられた風虽センサにより直接排気 を測定し、 対応する E R ffiを取得 してもよい。  Further, in the present embodiment, the ER value is obtained by using the rotation speed of the fan which is substantially proportional to the ER value in order to take the exhaust gas amount into consideration, but, for example, a wind turbine provided in the exhaust passage is used. The exhaust gas may be directly measured by a sensor to obtain the corresponding ER ffi.
次に、 本発明の第五の二の実施の形態について説明する。 第五の二の実施の形 態においては、 排気ガスの C 0濃度のみならず、 例えば、 排気通路からの排気ガ スが漏れる可能性のある室内の部屋のような空間の容積を考慮した E R に従つ て該空間内の空気中の C 0濃度監視制御を行う燃焼機器が提供される。  Next, a fifth and second embodiment of the present invention will be described. In the fifth and second embodiments, not only the C0 concentration of the exhaust gas but also the ER considering the volume of a space such as a room in a room where the exhaust gas may leak from the exhaust passage. Accordingly, there is provided a combustion apparatus for monitoring and controlling the concentration of C0 in the air in the space.
図 3 3に、 容積が異なる複数の空間の区分に対応した前記 C O濃度の平均値に おける E R値のテーブルの例である。 前述同様に、 このテーブルは、 冽えば、 前 記電装基板 5 6 0のマイクロコンピュー夕の R O Mのような記憶手段に記憶され る。 図 3 3によれば、 排気ガスの C O濃度が同じであれば、 排出される空間の容 稂が大きいほど E R値は小さくなる。 また、 空問の容積は、 燃焼機器に設けられ た図示されない切り替えスィツチなどによりあらかじめ設定される。  FIG. 33 is an example of a table of the ER value at the average value of the CO concentration corresponding to a plurality of spaces having different volumes. As before, this table is stored in a storage means such as the ROM of the microcomputer of the electrical equipment board 560 if it is clean. According to FIG. 33, if the CO concentration of the exhaust gas is the same, the ER value decreases as the volume of the discharged space increases. Further, the volume of the air gap is set in advance by a switching switch (not shown) provided in the combustion equipment.
また、 排気通路が室内の複数の空間に隣接して配設されている場合、 設定され る空間の容積は、 複数の空間の中で最小の容積の区分の E R値が用いられること が安全性の親点から好ましい。 また、 空間の区分は、 よりきめ細かい正確な制御 を行うために、 図 3 3に示した区分数よりさらに細かく分けてもよい。  Also, when the exhaust passage is arranged adjacent to a plurality of spaces in the room, it is safe to use the ER value of the smallest volume among the spaces as the volume of the set space. Preferred from the parent point of In addition, the division of the space may be divided more finely than the number of divisions shown in FIG. 33 in order to perform finer and more precise control.
本実施の形態における C O濃度監視制御は、 図 3 1におけるフローチヤ一卜と ほぼ同様であり、 図 3 1におけるステップ S 5 1 6、 5 1 8及び 5 2 0の工程は 行われないが、 ステップ S 5 2 2において、 本実施の形態において提供された図 3 3に される E R値のテーブルから対応する E R ffiが取得される。 The CO concentration monitoring control in the present embodiment is the same as the flow chart in FIG. The process is almost the same, and the processes of steps S516, 518, and 520 in FIG. 31 are not performed, but in step S522, the process shown in FIG. 33 provided in the present embodiment is performed. The corresponding ER ffi is obtained from the ER value table.
さらに、 本発明の第五の の実施の形態においては、 排気ガスの排気量及び空 間の容積の fffij方を考慮した E R値に従って空気中の C 0濃度監視制御を行う燃焼 機器が提供される。  Further, in the fifth embodiment of the present invention, there is provided a combustion apparatus for performing C0 concentration monitoring and control in the air according to an ER value in consideration of an exhaust gas amount and a fffij method of a space volume. .
図 3 4には、 前記第五の ―.の実施の形態において説明した空間の容積の区分毎 に、 上記第丑の一の実施の形態において説明されたファンの回転数に対応した E R値のテーブルの例が示される。 前述同様に、 このテーブルは、 ί列えば、 前記電 装基板 5 6 0のマイクロコンピュー夕の R O Mのような 憶手段に記憶される。 空間の容積を設定する ヒ 切り^えスィツチにより設定された容積 分に応じ て、 前記マイクロコンピュータは、 その容積区分におけるファンの 数に対応 した E R値のテーブルを逸択し、 そのテーブルの値に対応した C O濃度監視制御 を行う。  FIG. 34 shows, for each of the divisions of the space volume described in the fifth embodiment, the ER value corresponding to the rotation speed of the fan described in the first embodiment. An example of a table is shown. As described above, this table is stored in a storage means such as a ROM of a microcomputer of the electronic circuit board 560 in a row. The microcomputer selects a table of ER values corresponding to the number of fans in the volume division according to the volume set by the cut-off switch for setting the volume of the space. Perform the corresponding CO concentration monitoring and control.
本実施の形態における C O濃度監視制御は、 図 3 1におけるフローチャートと ほぼ同様であり、 図 3 1のステップ S 5 2 2において、 本実施の形態において提 供された図 3 4に示される E R値のテーブルから対応する E R偵が取得される。 さらに、 図 3 4のごときテーブルを、 二 ¾ f給排気構造の場合のテーブルと、 二本管給排気構造の ¾合のテーブル、 又はガス種毎のテーブルをメモリ内に格納 して、 それそれ ¾適のテーブルを ϋ択することで、 より最適な C 0安全勅作を行 うことができる。  The CO concentration monitoring control in the present embodiment is almost the same as the flowchart in FIG. 31. In step S522 in FIG. 31, the ER value shown in FIG. The corresponding ER reconnaissance is obtained from the table. Furthermore, the table shown in Fig. 34 is stored in the memory with the table for the 20 f supply / exhaust structure, the table for the dual pipe supply / exhaust structure, or the table for each gas type. By selecting an appropriate table, it is possible to perform a more optimal C0 safety enactment.
[産業上の利用の可能性] [Possibility of industrial use]
本発明によれば、 排気ガスが室内に漏れたと仮定したときに、 室内に居る人 が C O中毒の危険状態に违する危険到達時間を求めるデータが、 1つ以上の燃焼 能力や排気量に分けて与えられる。 そして、 実際に C O安全動作を行う際には、 燃焼能力や排気量の情報が取得され、 これら燃焼能力や排気量に対応する危険到 達時間に基づいて c〇安全動作が行われる。 従って、 c〇安全動作の精度が格段 にアップし、 室内に居る人が c〇中毒の危険状態に達しないにもかかわらず、 燃 焼停止等の安全動作が行われてしまうという早切れの問題がなくなり、 C O安全 動作の信頼性を大幅に¾めることができる。 According to the present invention, when it is assumed that the exhaust gas has leaked into the room, the data for determining the time required for the person in the room to reach the danger state of CO poisoning is divided into one or more combustion performances and exhaust volumes. Given. Then, when actually performing the CO safety operation, information on the combustion capacity and the displacement is obtained, and the c〇safe operation is performed based on the time to reach the danger corresponding to the combustion capacity and the displacement. Therefore, the accuracy of c〇 safe operation is greatly improved, and even though the person in the room does not reach the danger of c〇 poisoning, This eliminates the problem of premature shut-off, such as safe operation such as burning stop, and greatly improves the reliability of CO safe operation.
また、 本発明によれば、 排気ガスが室内に漏れたと仮定したときに、 排気ガス 中において検出される C 0濃度の情報を利用し、 室内 C 0濃度を求める演算式が 室内の容積と燃焼時問をパラメ一夕として与えられ、 この演算式に基づき室内 C 〇濃度が取得される。 従って、 排気ガス中の C O濃度の値を利用して室内 C O濃 度を算出する演 式を極めて簡¾な形態で与えることが可能であり、 これにより、 大型のコンピュータを必要とせず、 燃焼機器に搭載されるマイクロコンピュー夕 を用いて正確な室内 C 0濃度を得ることができる。  Further, according to the present invention, when it is assumed that the exhaust gas has leaked into the room, using the information on the C0 concentration detected in the exhaust gas, the arithmetic expression for obtaining the indoor C0 concentration is determined by the following equation. The time is given as a parameter, and the indoor C〇 concentration is obtained based on this equation. Therefore, it is possible to give an expression for calculating the indoor CO concentration using the value of the CO concentration in the exhaust gas in an extremely simple form, thereby eliminating the need for a large-scale computer and the combustion equipment. Accurate room C0 concentration can be obtained by using the microcomputer installed in the room.
また、 室内の容祯を考慮して室内 C O濃度が求められるので、 室内容積の大小 の如何にかかわらず、 ιΗ確な室内 C 0濃度を求めることができ、 この正確な室内 C〇濃度の 報に づいて C 0 ¾仝動作を行うようにしたので、 C〇安全動作に 対する精度が上がり、 安 ± 作の 頼性を袼段に高めることが可能となる。  In addition, since the indoor CO concentration is determined in consideration of the indoor volume, an accurate indoor C0 concentration can be obtained regardless of the size of the indoor volume, and this accurate indoor C〇 concentration report can be obtained. Since the C 0 ¾ 仝 operation is performed based on す る 精度 精度 精度 精度 上 が り 精度 精度 〇 〇 〇 〇 〇 上 が り 〇 精度 〇 精度 〇.
また、 木発明によれば、 排 ガスが宰内に漏れたと仮定したときに、 室内に居 る人が C O中毒の危険状態に達する危険到 iiB 問を求めるデータが 1つ以上のガ ス種ごとに分けて^えられる。 そして、 突際に C 0安仝動作を行う際には、 使用 されるガス稀の情報が取 されて、 この使用ガス種に対応する危険到達時 Ri]に基 づいて C 0安全動作が行われる。 従って、 C O安全勅作の精度が格段にアップし、 室內に居る人が C 0中 ^の危険状態に逹しないにもかかわらず、 燃焼停止等の安 全動作が行われてしまうという早切れの問題がなくなり、 C O安全動作の信頼性 を大幅に高めることができる。  Also, according to the tree invention, when it is assumed that exhaust gas has leaked into the house, there is a danger that a person in the room will reach a dangerous state of CO poisoning. Can be divided into When the C0 safety operation is performed at the time of collision, information on the rare gas used is taken, and the C0 safety operation is performed based on the danger arrival Ri corresponding to the used gas type. Will be Therefore, the accuracy of the CO Safety Code is significantly improved, and even if the person in the room 燃 焼 does not reach the dangerous state of C 0 ^, safety operations such as combustion stop etc. will be performed early This eliminates the problem and greatly enhances the reliability of CO safe operation.
また、 本発明は、 燃焼機器の給排気構造が、 二 S管構造又は二本管構造である かによつて、 排気ガスが ¾内に漏れたときの室内 C 0汚染のメカニズムが異なる ことに着目し、 それそれの給排気構造に対応した c◦安全動作開始条件デー夕が 与えられる。 これにより、 燃焼機器に二重管又は二本管のいずれの給排気構造の ものが接続された場合にも実際の給排気構造に対応する C O安全動作開始条件デ 一夕に基づいて C O安全動作が行われるので、 C〇安全動作の精度が大幅に向上 し、 C O安全動作の信頼性を高めることが可能である。  Further, the present invention is based on the fact that the mechanism of C0 contamination in the room when exhaust gas leaks into the chamber differs depending on whether the supply / exhaust structure of the combustion equipment is a 2S pipe structure or a 2 pipe structure. Attention is given to the c◦ safe operation start condition data corresponding to each air supply and exhaust structure. As a result, regardless of whether the combustion equipment is connected to a double-pipe or double-pipe air supply / exhaust structure, CO safe operation based on the CO safe operation start condition Therefore, the accuracy of C〇 safe operation is greatly improved, and the reliability of CO safe operation can be increased.
さらに、 本発明によれば、 E R値は、 排気ガス中の C〇濃度のみならず、 ファ ンの回転数に起因する排気量、 排気ガスが排出される空間の容積、 給排気構造及 び/又はガス種をも考慮して定められるので、 燃焼運転の実情にあった正確な E R値を取得することができ、 より正確で信頼性の高い C O濃度監視制御が実現さ れる。 Further, according to the present invention, the ER value is determined not only by the C〇 concentration in the exhaust gas but also by the It is determined in consideration of the amount of exhaust gas due to the engine speed, the volume of the space where exhaust gas is exhausted, the supply / exhaust structure and / or the type of gas. This enables more accurate and reliable monitoring and control of CO concentration.

Claims

請求の範囲 The scope of the claims
1 . 排気ガス中の一酸化炭素濃度を検出する一酸化炭素センサを備え、 該 一酸化炭素センサによって検出される一酸化炭素濃度に基づいて一酸化炭素安全 動作を行う燃焼機器において、 1. Combustion equipment comprising a carbon monoxide sensor for detecting the concentration of carbon monoxide in exhaust gas, and performing a carbon monoxide safety operation based on the carbon monoxide concentration detected by the carbon monoxide sensor,
該一酸化炭素センサによって検出される一酸化炭素濃度と燃焼機器の燃焼能力 とに基づいて、 -酸化炭素安全動作のタイミングを决定する制御手段を冇するこ とを特徴とする燃焼機器。  Combustion equipment characterized by comprising control means for determining the timing of carbon monoxide safe operation based on the carbon monoxide concentration detected by the carbon monoxide sensor and the combustion capacity of the combustion equipment.
2 . 排気ガス中の一酸化炭素濃度を検出する一酸化炭素センサを備え、 該 一酸化炭素センサによって検出される一酸化炭素濃度に基づいて一酸化炭素安全 動作を行う燃焼機器において、  2. Combustion equipment comprising a carbon monoxide sensor for detecting the concentration of carbon monoxide in exhaust gas, and performing a carbon monoxide safety operation based on the concentration of carbon monoxide detected by the carbon monoxide sensor;
排気ガスが室内に漏れた場合に一酸化炭素中毒の危険状態に達すると推定され る危険到達時間のデータが排気ガス中の一酸化炭素濃度と燃焼機器の燃焼能力に 対応して記憶されている ¾憶手段と、  The danger arrival time data, which is estimated to reach the danger state of carbon monoxide poisoning when the exhaust gas leaks into the room, is stored in correspondence with the concentration of carbon monoxide in the exhaust gas and the combustion capacity of the combustion equipment Memory means,
燃焼時問が、 該ー酸化炭素センサによって検出される一酸化炭素濃度と燃焼中 の燃焼能力に対応する前記危険到達時間に達したときに一 fi 化炭^安全動作を行 う制御手段とを冇することを特徴とする燃焼機器。  When the combustion time reaches the danger arrival time corresponding to the carbon monoxide concentration detected by the carbon monoxide sensor and the combustion capacity during combustion, the control means for performing a safe operation of carbonized carbon is provided.燃 焼 Combustion equipment characterized by:
3 . 排気ガス中の一酸化炭素濃度を検出する一酸化炭素センサを備え、 該 一酸化炭素センサによって検出される一酸化炭素濃度に基づいて一酸化炭素安全 動作を行う燃焼機器において、  3. Combustion equipment comprising a carbon monoxide sensor for detecting the concentration of carbon monoxide in exhaust gas, and performing a safe operation of carbon monoxide based on the concentration of carbon monoxide detected by the carbon monoxide sensor.
排気ガスが室内に漏れた場合に一酸化炭素中毒の危険状態に達すると推定され る危険到達時間のデ一夕が排気ガスの一酸化炭素濃度と燃焼機器の燃焼能力に対 応して記憶されている記憶手段と、  The danger arrival time, which is estimated to reach the danger state of carbon monoxide poisoning when the exhaust gas leaks into the room, is stored according to the carbon monoxide concentration of the exhaust gas and the combustion capacity of the combustion equipment. Storage means,
燃焼中の所定の単位時問 t における該一酸化炭素濃度及び該燃焼能力に対応 する危険到達時間 Tから t sp/ Tの値を求め、 各単位時間 t SP毎に求めた t SP の値を積算し、 該 t SP/ Tの積算値が予め定めた設定値になったときに一酸 化炭素安全動作を行う制御手段とを有することを特徴とする燃焼機器。 The value of tsp / T is calculated from the concentration of carbon monoxide at the predetermined unit time t during combustion and the dangerous arrival time T corresponding to the combustion capacity, and the value of tSP obtained for each unit time tSP is calculated. A combustion device comprising: a control means for performing a cumulative operation and performing a carbon monoxide safety operation when the integrated value of t SP / T reaches a predetermined set value.
4 . 請求の範囲 2又は 3において、  4. In claims 2 or 3,
前記記憶手段は、 一の燃焼能力に対する他の燃焼能力の補正係数を記憶し、 前記制御手段は、 該他の燃焼能力に対応する危険到達時間 Tを、 該一の燃焼能力 に対応する危険到達時間 Tに該補正係数を掛けることによって求めることを特徴 とする燃焼機器。 The storage means stores a correction coefficient of another combustion capacity with respect to one combustion capacity, The combustion device, wherein the control means obtains the danger arrival time T corresponding to the other combustion ability by multiplying the danger arrival time T corresponding to the one combustion ability by the correction coefficient.
5 . 請求の範囲 1乃至 4において、  5. In Claims 1 to 4,
前記燃焼能力は、 燃焼機器に供給されるガス量を調節する比例弁に加えられる 駆動電流の値に基づいて求められることを特徴とする燃焼機器。  The combustion equipment according to claim 1, wherein the combustion capacity is determined based on a value of a drive current applied to a proportional valve that adjusts an amount of gas supplied to the combustion equipment.
6 . 排気ガス中の--酸化炭素濃度を検出する一酸化炭素センサを備え、 該 一酸化炭素センサによって検出される一酸化炭尜濃度に基づいて一酸化炭素安全 動作を行う燃焼機器において、  6. Combustion equipment equipped with a carbon monoxide sensor for detecting a carbon monoxide concentration in exhaust gas and performing a safety operation based on the carbon monoxide concentration detected by the carbon monoxide sensor,
該一酸化炭素センサによって検出される一酸化炭素濃度と排気ガスの排気量と に基づいて、 一酸化炭素安全動作のタイ ミングを決定する制御手段を有すること を特徴とする燃焼機器。  Combustion equipment comprising control means for determining the timing of a safe operation of carbon monoxide based on the concentration of carbon monoxide detected by the carbon monoxide sensor and the displacement of exhaust gas.
7 . 排気ガス中の -酸化炭素濃度を検出する -酸化炭素センサを備え、 該 一酸化炭素センサによって検出される一酸化炭素濃度に基づいて一酸化炭素安全 動作を行う燃焼機器において、  7. Combustion equipment provided with -a carbon oxide sensor for detecting a carbon oxide concentration in exhaust gas and performing a carbon monoxide safe operation based on the carbon monoxide concentration detected by the carbon monoxide sensor.
排気ガスが室内に漏れた場合に一酸化炭素中毒の危険状態に達すると推定され る危険到達時問のデータが排気ガスの一酸化炭素濃度と排気ガスの排気量とに対 応して記憶されている記憶手段と、  The danger arrival time data, which is estimated to reach the danger state of carbon monoxide poisoning when the exhaust gas leaks into the room, is stored in correspondence with the exhaust gas carbon monoxide concentration and the exhaust gas volume. Storage means,
燃焼時間が前記一酸化炭素センサによって検出される一酸化炭素濃度及び該排 気量に対応する該危険到達時間に達したときに一酸化炭素安全動作を行う制御手 段とを有することを特徴とする燃焼機器。  Control means for performing a carbon monoxide safety operation when the combustion time reaches the dangerous arrival time corresponding to the carbon monoxide concentration detected by the carbon monoxide sensor and the exhaust gas amount. Burning equipment.
8 . 排気ガス中の一酸化炭素濃度を検出する一酸化炭素センサを備え、 該 一酸化/ 素センサによって検出される一酸化炭素濃度に基づいて一酸化炭素安全 動作を行う燃焼機器において、  8. Combustion equipment comprising a carbon monoxide sensor for detecting the concentration of carbon monoxide in exhaust gas, and performing a safe operation of carbon monoxide based on the concentration of carbon monoxide detected by the carbon monoxide sensor;
排気ガスが室内に漏れた場合に一酸化炭素中毒の危険状態に達すると推定され る危険到達時間のデ一夕が排気ガスの一酸化炭素濃度と排気ガスの排気量とに対 応して記憶されている記憶手段と、  When the exhaust gas leaks into the room, the danger arrival time estimated to reach the danger state of carbon monoxide poisoning is stored in correspondence with the concentration of exhaust gas and the amount of exhaust gas. Storage means,
燃焼中の所定の単位時間 t SPにおける該一酸化炭素濃度及び該排気量に対応す る危険到達時間 Tから t sp/ Tの値を求め、 各単位時間毎に求めた t SP/ Tの値 を積算し、 該 t SP/ Tの積算値が予め定めた設定値になったときに一酸化炭素安 全動作を行う制御手段とを冇することを特徴とする燃焼機器。 The value of t sp / T is calculated from the dangerous arrival time T corresponding to the carbon monoxide concentration and the displacement at a predetermined unit time t SP during combustion, and the value of t SP / T obtained for each unit time Burning appliance integrated, characterized by冇and control means for carbon monoxide safety operation when the integrated value of the t SP / T became predetermined set value.
9 . 請求の範囲 7又は 8において、  9. In claims 7 or 8,
前記記憶手段は、 一の排気量に対する他の排気量の補正係数を記憶し、 前記制御手段は、 該他の排気量に対応する危険到達時間 Tを、 該一の排気量に 対応する危険到達時問 Tに該補正係数を掛けることによって求めることを特徴と する燃焼機器。  The storage unit stores a correction coefficient of another exhaust amount with respect to one exhaust amount, and the control unit stores a danger arrival time T corresponding to the other exhaust amount, a danger arrival time corresponding to the one exhaust amount. A combustion device characterized by being obtained by multiplying the time factor T by the correction coefficient.
1 0 . ^求の範囲 6乃至 9において、  10. In the range 6 to 9 of the calculation,
前記排気 aは、 燃焼機器のファンの風量に基づいて求められることを特徴とす る燃焼機器。  The combustion equipment wherein the exhaust a is obtained based on the air volume of a fan of the combustion equipment.
1 1 . 排気ガス中の一酸化^素濃度を検出する -酸化炭素センサを備え、 該一酸化炭素センサによって険出される一酸化炭素濃度に基づいて一酸化炭素安 全動作を行う燃焼機器において、  1 1. Detecting the concentration of carbon monoxide in exhaust gas-A combustion device equipped with a carbon monoxide sensor and performing a carbon monoxide safety operation based on the carbon monoxide concentration emitted by the carbon monoxide sensor,
該一酸化炭素センサによって検出される一酸化炭素濃度と排気ガスが排出され る室内の容積とに基づいて、 酸化 素安全動作のタイ ミングを決定する制御手 段を冇することを特徴とする燃焼機器。  Combustion means for determining the timing of the safe operation of oxygen based on the concentration of carbon monoxide detected by the carbon monoxide sensor and the volume of the room from which exhaust gas is discharged. machine.
1 2 . 排気ガス中の一酸化炭素濃度を検出する一酸化炭素センサを備え、 該一酸化炭素センサによって検出される一酸化炭素濃度に基づいて一酸化炭素安 全動作を行う燃焼機器において、  12. Combustion equipment comprising a carbon monoxide sensor for detecting the concentration of carbon monoxide in exhaust gas, and performing a carbon monoxide safety operation based on the carbon monoxide concentration detected by the carbon monoxide sensor,
排気ガスが室内に漏れた場合の室内一酸化炭素濃度の推定値を、 該一酸化炭素 センサが検出する一酸化炭素濃度及び排気ガスが排出される室内の容積に基づい て求める室内一酸化炭素濃度推定手段と、  An estimated value of the indoor carbon monoxide concentration when the exhaust gas leaks into the room is obtained based on the carbon monoxide concentration detected by the carbon monoxide sensor and the volume of the room from which the exhaust gas is discharged. Estimating means;
該一酸化炭素濃度推定手段によって求められた室内一酸化炭素濃度の推定値が 所定の危険判断基準値に達したときに一酸化炭素安全動作を行う制御手段とを有 する燃焼機器。  A combustion device having control means for performing a carbon monoxide safe operation when the estimated value of the indoor carbon monoxide concentration obtained by the carbon monoxide concentration estimating means reaches a predetermined danger judgment reference value.
1 3 . 排気ガス中の一酸化炭素濃度を検出する一酸化炭素センサを備え、 該一酸化炭素センサによって検出される一酸化炭素濃度に基づいて一酸化炭素安 全動作を行う燃焼機器において、  13. Combustion equipment provided with a carbon monoxide sensor for detecting the concentration of carbon monoxide in exhaust gas, and performing a carbon monoxide safety operation based on the carbon monoxide concentration detected by the carbon monoxide sensor.
排気ガスが室内に漏れた場合に室内一酸化炭素濃度が所定の危険判断基準値に 達するまでの危険到達時間 Tが排気ガス中の一酸化炭素濃度と排気ガスが排出さ れる室内の容積に対応して記憶されている記憶手段と、 If exhaust gas leaks into the room, the indoor carbon monoxide concentration will reach the predetermined risk judgment reference value. A storage means in which the danger arrival time T until the storage reaches a value corresponding to the concentration of carbon monoxide in the exhaust gas and the volume of the room in which the exhaust gas is discharged;
所定の単位時問 t spにおける該一酸化炭素濃度及び該室内容積に対応する危険 到達時間丁から t sp/ Tの値を求め、各単位時問 t 毎に求めた t sp/ Tの値を 積算し、 該 t SP/ Tの積算値が予め定めた設定値になったときに一酸化炭素ガス に対する安全動作を行う制御手段とを有する燃焼機器。  Calculate the value of tsp / T from the dangerous arrival time corresponding to the carbon monoxide concentration and the room volume at a predetermined unit time tsp, and calculate the value of tsp / T obtained for each unit time t. A combustion device comprising: a control unit that performs a safety operation on carbon monoxide gas when the integrated value of t SP / T reaches a predetermined set value.
1 4 . 排気ガス中の一酸化炭素濃度を検出する一酸化炭素センサを備え、 該一酸化炭素センサによって検出される一酸化炭素濃度に ^づいて一酸化炭素安 全動作を行う燃焼機器において、  14. Combustion equipment equipped with a carbon monoxide sensor for detecting the concentration of carbon monoxide in exhaust gas and performing a carbon monoxide safety operation based on the carbon monoxide concentration detected by the carbon monoxide sensor.
該一酸化炭素センサによって検出される一酸化炭素濃度と燃料ガスの種類とに 基づいて、 一酸化炭素安 動作のタイミングを決定する制御?段を有することを 特徴とする燃焼機器。  Control that determines the timing of carbon monoxide operation based on the carbon monoxide concentration detected by the carbon monoxide sensor and the type of fuel gas? Combustion equipment characterized by having a step.
1 5 . 排気ガス中の一酸化炭素濃度を検出する一酸化炭素センサを備え、 該一酸化炭素センサによって検出される一酸化炭素濃度に基づいて一酸化 ^素安 全動作を行う燃焼機器において、  15. Combustion equipment equipped with a carbon monoxide sensor for detecting the concentration of carbon monoxide in exhaust gas and performing a safety operation based on the concentration of carbon monoxide detected by the carbon monoxide sensor.
排気ガスが室内に漏れた場合に一酸化^素中 の危険状態に達すると推定され る危険到達時間のデ一夕が排気ガスの一酸化炭素濃度と燃料ガスの種類に対応し て記憶されている記憶手段と、  When the exhaust gas leaks into the room, the danger arrival time estimated to reach a dangerous state in the carbon monoxide is stored in correspondence with the carbon monoxide concentration of the exhaust gas and the type of fuel gas. Storage means,
燃焼時間が、 該 酸化炭素センサによって検出される一酸化炭素濃度と使用さ れる燃料ガスに対応する該危険到達時間に達したときに一酸化炭素安全動作を行 う制御手段とを有する燃焼機器。  Combustion equipment comprising: control means for performing a carbon monoxide safe operation when the combustion time reaches the dangerous arrival time corresponding to the concentration of carbon monoxide detected by the carbon oxide sensor and the fuel gas used.
1 6 . 排気ガス中の一酸化炭素濃度を検出する 酸化炭素センサを備え、 該一酸化炭素センサによって検出される一酸化炭素濃度に基づいて一酸化炭素安 全動作を行う燃焼機器において、  16. Combustion equipment equipped with a carbon monoxide sensor for detecting the concentration of carbon monoxide in exhaust gas and performing a carbon monoxide safety operation based on the carbon monoxide concentration detected by the carbon monoxide sensor,
排気ガスが室内に漏れた場合に一酸化炭素中毒の危険状態に達すると推定され る危険到達時間のデ一夕が排気ガスの一酸化炭素濃度と燃料ガスの種類に対応し て記憶されている記憶手段と、  The danger arrival time, which is estimated to reach the danger state of carbon monoxide poisoning when the exhaust gas leaks into the room, is stored corresponding to the carbon monoxide concentration of the exhaust gas and the type of fuel gas. Storage means;
所定の単位畤間 t SPにおける該一酸化炭素濃度及び使用される燃料ガスに対応 する危険到達時間 Tから t SP/ Tの値を求め、 各単位時間 t SP毎に求めた t SP / Tの値を積算し、 該 t SP/ Tの積算値が子め定めた設定値になったときに一酸 化炭素ガスに対する安全動作を行う制御手段とを有する燃焼機器。 The value of tSP / T is calculated from the concentration of carbon monoxide at the predetermined unit time tSP and the dangerous arrival time T corresponding to the fuel gas used, and the value of tSP calculated for each unit time tSP / Value of T by integrating, combustion equipment and a control means for the integrated value of the t SP / T performs the safety operation against monoxide and carbon gas when it becomes a set value that defines Me child.
1 7 . 請求の範囲 1 5又は 1 6において、  17. In claims 15 or 16,
前記記憶手段は、 一の燃料ガスに対する他の燃料ガスの補正係数を記憶し、 前記制御手段は、 該他のガス燃料ガスに対応する危険到達時間 Tを、 該一の風 量に対応する危険到達時間 Tに該補正係数を掛けることによって求めることを特 徴とする燃焼機器。  The storage unit stores a correction coefficient of another fuel gas with respect to one fuel gas, and the control unit stores a danger arrival time T corresponding to the other gas fuel gas with a danger arrival time corresponding to the one air volume. Combustion equipment characterized by being obtained by multiplying the arrival time T by the correction coefficient.
1 8 . 排気ガス中の一酸化炭素濃度を検出する一酸化^素センサを備え、 該一酸化炭素センサによって検出される一酸化炭素濃度に基づいて一酸化炭素安 全動作を行う燃焼機器において、  18. Combustion equipment that includes a carbon monoxide sensor for detecting the concentration of carbon monoxide in exhaust gas and performs a carbon monoxide safety operation based on the carbon monoxide concentration detected by the carbon monoxide sensor.
該一酸化炭素センサによって検出される一酸化炭素濃度と燃焼機器の給排気管 の構造の種類とに基づいて、 一酸化炭素安全動作のタイミングを決定する制御手 段を有することを特徴とする燃焼機器。  Combustion characterized by having a control means for determining the timing of carbon monoxide safe operation based on the carbon monoxide concentration detected by the carbon monoxide sensor and the type of structure of the supply and exhaust pipes of the combustion equipment. machine.
1 9 . 排気ガス中の一酸化炭素濃度を検出する 酸化炭素センサを備え、 該一酸化炭素センサによって検出される一酸化炭素濃度に基づいて一酸化炭素安 全動作を行う燃焼機器において、  19. Combustion equipment that includes a carbon monoxide sensor for detecting the concentration of carbon monoxide in exhaust gas and performs a carbon monoxide safety operation based on the carbon monoxide concentration detected by the carbon monoxide sensor.
排気ガスが室内に漏れた場合に一酸化炭素中毒の危険状態に達すると推定され る危険到達時問のデータが排気ガスの一酸化炭素濃度と燃焼機器の給排気管の構 造の種類に対応して記憶されている記憶手段と、  The danger arrival time data, which is estimated to reach the danger state of carbon monoxide poisoning when exhaust gas leaks into the room, corresponds to the carbon monoxide concentration of the exhaust gas and the structure of the supply and exhaust pipes of the combustion equipment Storage means stored as
燃焼時間が、 該一酸化炭素センサによって検出される一酸化炭素濃度と該給排 気管の構造の種類に対応する前記危険到達時間に達したときに一酸化炭素安全動 作を行う制御手段とを有する燃焼機器。  Control means for performing a carbon monoxide safe operation when the combustion time reaches the dangerous arrival time corresponding to the carbon monoxide concentration detected by the carbon monoxide sensor and the type of the structure of the supply and exhaust pipes. Having combustion equipment.
2 0 . 排気ガス中の一酸化炭素濃度を検出する一酸化炭素センサを備え、 該一酸化炭素センサによって検出される一酸化炭素濃度に基づいて一酸化炭素安 全動作を行う燃焼機器において、  20. Combustion equipment comprising a carbon monoxide sensor for detecting the concentration of carbon monoxide in exhaust gas, and performing a carbon monoxide safety operation based on the carbon monoxide concentration detected by the carbon monoxide sensor,
排気ガスが室内に漏れた場合に一酸化炭素中毒の危険状態に達すると推定され る危険到達時間のデータが排気ガスの一酸化炭素濃度と燃焼機器の給排気管の構 造に対応して記憶されている記憶手段と、  Danger arrival time data, which is estimated to reach a dangerous state of carbon monoxide poisoning when exhaust gas leaks into the room, is stored in correspondence with the exhaust gas carbon monoxide concentration and the structure of the supply and exhaust pipes of the combustion equipment Storage means,
所定の単位時間 t SPにおける前記一酸化炭素濃度及び燃焼機器の給排気管の構 造に対応する危険到達時間 Tから t SP/ Tの値を求め、各単位時間 t SP毎に求め た t SPZ Tの値を積算し、 該 t SP/ Tの積算値が予め定めた設定値になったとき に一酸化炭素ガスに対する安全動作を行う制御手段とを有する燃焼機器。 The carbon monoxide concentration at a predetermined unit time t SP and the structure of the supply / exhaust pipe of the combustion equipment Obtains the value of t SP / T danger arrival time T corresponding to the granulation, total values of t SPZ T determined for each unit time t SP, the set value the accumulated value of the t SP / T is predetermined And a control means for performing a safe operation on carbon monoxide gas when the temperature of the combustion chamber becomes low.
2 1 . 請求の範囲 1 8乃至 2 0において、  2 1. In claims 18 to 20,
前記給排気管の構造は、 排気管と給気管の一方が他方に収容された構造である 二重管方式又は排気管と給気管が別に配置された構造である二本管構造であるこ とを特徴とする燃焼機器。  The structure of the supply / exhaust pipe is a double pipe structure in which one of the exhaust pipe and the air supply pipe is housed in the other, or a double pipe structure in which the exhaust pipe and the air supply pipe are separately arranged. Features combustion equipment.
2 2 . 請求の範囲 2 1において、  2 2. In Claim 21,
前記給排気管構造が二 S管構造であるとき、 前記制御手段は、 該一酸化炭素セ ンサによって検出される一 fi 化炭素濃度と燃焼機器の燃焼能力に基づいて、 一酸 化炭素安全動作を行い、  When the supply / exhaust pipe structure is a 2S pipe structure, the control means controls the carbon monoxide safe operation based on the carbon monoxide concentration detected by the carbon monoxide sensor and the combustion capacity of the combustion equipment. Do
前記給排気管構造が二 管構造であるとき、 前記制御手段は、 前記一酸化炭素 センサによって検出される一酸化炭素濃度と排気ガスの排気 Sとに基づいて一酸 化炭素安全動作を行うことを特徴とする燃焼機器。  When the supply / exhaust pipe structure is a two-pipe structure, the control means performs a carbon monoxide safety operation based on the carbon monoxide concentration detected by the carbon monoxide sensor and the exhaust gas S. Combustion equipment.
2 3 . 所定の単位時問 t ^に検出された一酸化^素濃度の雰囲気中に晒さ れたときの血屮へモグロビン一酸化炭素濃度が危険基準濃度になる時間 Tとの比 t / Tで与えられる E R値が設定され、 該 E R値の稂算値である T R値が所定の 基準値に達したときに、 燃焼機器の異常状態を検出する手段を有する燃焼機器に おいて、  2 3. Time when moglobin carbon monoxide concentration reaches dangerous reference concentration when exposed to atmosphere of concentration of monoxide detected at predetermined unit time t ^ T / T An ER value given by: is set, and when the TR value, which is the calculated value of the ER value, reaches a predetermined reference value, in the combustion equipment having means for detecting an abnormal state of the combustion equipment,
前記 E R値が、 前記燃焼機器の排気ガスの一酸化炭素濃度及び前記燃焼機器の 排気ガスの排気量に応じて設定されることを特徴とする燃焼機器。  The combustion equipment, wherein the ER value is set according to the concentration of carbon monoxide in the exhaust gas of the combustion equipment and the displacement of the exhaust gas of the combustion equipment.
2 4 . 所定の単位時間 t毎に検出された一酸化炭素濃度の雰囲気中に晒さ れたときの血中へモグロビン一酸化炭素濃度が危険基準濃度になる時間 Tとの比 t / Tで与えられる E R値が設定され、 該 E R値の積算値である T R値が所定の 基準値に達したときに、 燃焼機器の異常状態を検出する手段を有する燃焼機器に おいて、  24. Given to the blood when exposed to the atmosphere with the concentration of carbon monoxide detected every predetermined unit time t, give the ratio of t / T to the time T at which the concentration of moglobin carbon monoxide reaches the dangerous reference concentration. ER value is set, and when the TR value, which is an integrated value of the ER value, reaches a predetermined reference value, the combustion equipment has means for detecting an abnormal state of the combustion equipment.
前記 E R値が、 前記燃焼機器の排気ガスの一酸化炭素濃度及び排気ガスが排出 される空間の容積に応じて設定されることを特徴とする燃焼機器。  The combustion device, wherein the ER value is set according to a concentration of carbon monoxide in an exhaust gas of the combustion device and a volume of a space from which the exhaust gas is discharged.
2 5 . 所定の単位時間 t毎に検出された一酸化炭素濃度の雰囲気中に晒さ れたときの血中ヘモグロビン一酸化炭素濃度が危険基準濃度になる時間 Tとの比 t / Tで与えられる E R値が設定され、 該 E R値の積算値である T R値が所定の 基準値に達したときに、 燃焼機器の異常状態を検出する手段を有する燃焼機器に おいて、 2 5. Exposure to an atmosphere with the concentration of carbon monoxide detected every predetermined unit time t The ER value is given by the ratio t / T to the time T at which the blood hemoglobin carbon monoxide concentration reaches the dangerous reference concentration at the time of exposure, and the TR value, which is the integrated value of the ER value, becomes the predetermined reference value. A combustion device having means for detecting an abnormal state of the combustion device when
前記 E R値が、 前記燃焼機器の排気ガスの一酸化炭素濃度、 前¾燃焼機器の排 気ガスの排気量及び排気ガスが排出される空間の容積に応じて設定されることを 特徴とする燃焼機器。  The combustion wherein the ER value is set according to the concentration of carbon monoxide in the exhaust gas of the combustion equipment, the amount of exhaust gas discharged from the combustion equipment, and the volume of the space from which the exhaust gas is discharged. machine.
2 6 . 詰求の範丽 2 3又は 2 5において、  2 6. In the range of packing 23 or 25,
前記燃焼機器の排気ガスの排気量は燃焼機器のファンの回転数によって定められ ることを特徴とする燃焼機器。 The combustion device according to claim 1, wherein an exhaust gas amount of the combustion device is determined by a rotation speed of a fan of the combustion device.
2 7 . 詰求の範 [1 2 3又は 2 5において、  2 7. Range of packing [1 2 3 or 25
前記排気ガスの一酸化炭素濃度は該単位時間中の一酸化炭素濃度の平均値が使 用され、 前記排気ガスの排気量は該単位時間巾で最も大きい値が使用され前記 E R値を設定することを特徴とする燃焼機器。  The average value of the carbon monoxide concentration in the unit time is used as the carbon monoxide concentration of the exhaust gas, and the largest value in the unit time width is used as the exhaust gas amount of the exhaust gas to set the ER value. Combustion equipment characterized by the above-mentioned.
2 8 . 請求の範 H 2 4又は 2 5において、  28. In claims 24 or 25,
排気通路が複数の空間に隣接している場合、 前記排気ガスが排出される空間の 容積は、 前記複数の空問の容積のうち最小の容積が使用され前記 E R値を設定す ることを特徴とする燃焼機器。  When the exhaust passage is adjacent to a plurality of spaces, the volume of the space from which the exhaust gas is exhausted is set to the ER value by using a minimum volume of the plurality of empty spaces. And combustion equipment.
PCT/JP1997/002429 1996-07-17 1997-07-14 Combustion apparatus WO1998002693A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97930779A EP0913644A1 (en) 1996-07-17 1997-07-14 Combustion apparatus

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP20664196A JPH1030817A (en) 1996-07-17 1996-07-17 Combustion equipment and method of safety action against co
JP8/206640 1996-07-17
JP20664096A JP3727418B2 (en) 1996-07-17 1996-07-17 CO safety device for combustion equipment
JP8/206641 1996-07-17
JP20901796A JPH1038270A (en) 1996-07-19 1996-07-19 Combustion appliance having co safety device, and its co safety operating method
JP8/209017 1996-07-19
JP21801796A JP3691599B2 (en) 1996-07-31 1996-07-31 Combustion equipment
JP8/218017 1996-07-31
JP28641896A JP3810153B2 (en) 1996-10-29 1996-10-29 CO concentration monitoring method and combustion apparatus implementing the same
JP8/286418 1996-10-29

Publications (1)

Publication Number Publication Date
WO1998002693A1 true WO1998002693A1 (en) 1998-01-22

Family

ID=27529412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002429 WO1998002693A1 (en) 1996-07-17 1997-07-14 Combustion apparatus

Country Status (2)

Country Link
EP (1) EP0913644A1 (en)
WO (1) WO1998002693A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109759B2 (en) * 2006-03-29 2012-02-07 Fives North America Combustion, Inc. Assured compliance mode of operating a combustion system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298723A (en) * 1989-05-10 1990-12-11 Rinnai Corp Burning safety apparatus
JPH0526438A (en) * 1991-07-19 1993-02-02 Paloma Ind Ltd Incomplete combustion preventing device for combustion apparatus
JPH0646164U (en) * 1992-11-30 1994-06-24 株式会社ガスター Safety equipment for combustion equipment
JPH08178281A (en) * 1994-12-28 1996-07-12 Tokyo Gas Co Ltd Co gas safety system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298723A (en) * 1989-05-10 1990-12-11 Rinnai Corp Burning safety apparatus
JPH0526438A (en) * 1991-07-19 1993-02-02 Paloma Ind Ltd Incomplete combustion preventing device for combustion apparatus
JPH0646164U (en) * 1992-11-30 1994-06-24 株式会社ガスター Safety equipment for combustion equipment
JPH08178281A (en) * 1994-12-28 1996-07-12 Tokyo Gas Co Ltd Co gas safety system

Also Published As

Publication number Publication date
EP0913644A1 (en) 1999-05-06

Similar Documents

Publication Publication Date Title
KR101601709B1 (en) Method for sensing exhaust port closure of gas boiler
KR101938572B1 (en) Exhaust-pipe deviation detection and combustion control method of boiler
US6840198B2 (en) Air-proportionality type boiler
WO1998002693A1 (en) Combustion apparatus
JPH05154323A (en) Method for detecting clogging of filter
JPH08224425A (en) Method for detecting filter clogging
KR100704712B1 (en) Multi air proportionality type gas boiler
KR0146011B1 (en) Combustion terminating device in incomplete combustion of combustion instrument
JP2768635B2 (en) Combustion equipment
JPS62223522A (en) Controller for combustion type warm-air heater
JP5295676B2 (en) Exhaust system
JP3810153B2 (en) CO concentration monitoring method and combustion apparatus implementing the same
KR100704708B1 (en) Air proportionality type gas boiler
KR100633365B1 (en) Air proportionality type gas boiler
KR100686009B1 (en) Device for controlling air volume based on system load and method for controlling air volume in gas burner
JPH1038270A (en) Combustion appliance having co safety device, and its co safety operating method
JPH1030816A (en) Safety device against co in combustion equipment
JP3579512B2 (en) Combustion equipment
JP3403862B2 (en) Gas water heater
JP3060060B2 (en) Gas Combustor Safety Devices
JP2022086426A (en) Combustor
JP3777011B2 (en) Combustion device
JPH11141865A (en) Hot water supply apparatus, and its control method
CN116293776A (en) Combustion apparatus, ignition control method thereof, and readable storage medium
JPH1047671A (en) Method and apparatus for securing co safety

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09214975

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997930779

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997930779

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997930779

Country of ref document: EP